WO2023120566A1 - Method for manufacturing color filter and photomask for proximity exposure - Google Patents

Method for manufacturing color filter and photomask for proximity exposure Download PDF

Info

Publication number
WO2023120566A1
WO2023120566A1 PCT/JP2022/047055 JP2022047055W WO2023120566A1 WO 2023120566 A1 WO2023120566 A1 WO 2023120566A1 JP 2022047055 W JP2022047055 W JP 2022047055W WO 2023120566 A1 WO2023120566 A1 WO 2023120566A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photomask
exposure
pattern
shielding
Prior art date
Application number
PCT/JP2022/047055
Other languages
French (fr)
Japanese (ja)
Inventor
冬木 今野
彩子 神立
建也 三好
貴司 冨永
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023120566A1 publication Critical patent/WO2023120566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/29Rim PSM or outrigger PSM; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Definitions

  • the present disclosure relates to a method for manufacturing a photomask for proximity exposure and a color filter.
  • a photosensitive resin layer formed on a substrate is subjected to pattern exposure, and after the exposure, the photosensitive resin layer is developed to obtain a desired pattern.
  • a photolithographic method is used to form the In the photolithography method, it is common to irradiate light through a photomask.
  • a projection transfer exposure method in which a projection lens is provided between the photomask and the substrate to be processed.
  • a projection transfer exposure method since a pattern image can be transferred onto an object to be exposed, a resolution corresponding to the exposure wavelength can be obtained.
  • the projection transfer exposure method requires a high-precision lens, which increases the cost of the exposure apparatus. Therefore, there is a demand for a photomask capable of forming a fine pattern in a desired shape by the proximity exposure method.
  • Patent Literature 1 discloses a technique for miniaturization with a proximity exposure machine using OPC (Optical Proximity Correction). Specifically, a light-transmitting substrate, a light-shielding portion that is provided on the light-transmitting substrate and blocks exposure light, and a region that corresponds to a desired pattern in the light-shielding portion, and the light from the opening of the light-shielding portion is provided. and a main pattern portion provided along a side forming an outline portion of the desired pattern in a peripheral portion of a position corresponding to the desired pattern in the light shielding portion, and out of phase with the light transmitted through the main pattern portion.
  • a photomask is disclosed that includes an auxiliary pattern portion that includes a plurality of in-phase auxiliary patterns formed of openings that transmit aligned in-phase light.
  • the pixel size As the resolution of liquid crystal panels increases, the pixel size also decreases, and the pillars (photospacers) that maintain the cell gap between the color filter and the TFT substrate are required to have finer pattern dimensions and improved taper angles. is required.
  • Patent Document 1 describes that a phase shift film is provided in the opening, the process, the film formation cost, and the manufacturing lead time are lengthened, and the demand for photomasks cannot be met.
  • the present disclosure has been made in view of the above circumstances, and a main object of the present disclosure is to provide a photomask that enables miniaturization of the transfer pan dimension and improvement of the taper angle by proximity exposure.
  • An embodiment of the present disclosure is a photomask for proximity exposure, comprising a transparent substrate and a light shielding film disposed on the transparent substrate, the light shielding film having a substantially polygonal or substantially circular shape.
  • a light shielding main portion having an opening formed thereon, and a light shielding auxiliary pattern disposed inside the opening of the light shielding main portion and formed with a gap from the light shielding main portion, wherein the light shielding film is
  • a photomask for proximity exposure which is a phase shift film having a phase shift action of shifting the phase of exposure light by 180 degrees ⁇ 45 degrees and having a transmittance of 1% or more and 10% or less of the exposure light. do.
  • the reference photomask intended to form a transfer pattern of the same size of the bottom base is set so that the rising angle of the peak of the light intensity distribution of the light that has passed through is increased. It is preferable that a light shielding auxiliary pattern is arranged.
  • the diameter of the opening is preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the exposure light is preferably light with a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm). .
  • One embodiment of the present disclosure is a method for manufacturing a color filter comprising a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter, wherein the above-described proximity exposure photomask is used,
  • a method for manufacturing a color filter comprising a photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion.
  • the present disclosure can provide a photomask that enables miniaturization of the dimension of the transfer pattern and improvement of the taper angle by proximity exposure.
  • FIG. 1A and 1B are a plan view and a schematic cross-sectional view showing an example of a photomask for proximity exposure according to the present disclosure
  • FIG. FIG. 4 is a diagram for explaining light amplitude distribution and light intensity distribution on the imaging plane of a photomask when a phase shift film is used as a light shielding film; It is a figure for demonstrating Fresnel diffraction.
  • 1 is a plan view showing an example of a proximity exposure photomask of the present disclosure
  • FIG. FIG. 10 is a simulation result showing the relationship between the bottom size of the transfer pattern (columnar pattern) and the slope value in the proximity exposure photomask and the reference photomask of the present disclosure
  • FIG. 1 is a plan view showing an example of a proximity exposure photomask of the present disclosure
  • FIG. 1 is a plan view of proximity exposure photomasks of Example 1 and Comparative Example 1, and simulation results thereof.
  • FIG. FIG. 10 is a plan view of proximity exposure photomasks of Example 2 and Comparative Example 2 and their simulation results.
  • FIG. FIG. 10 is a plan view of proximity exposure photomasks of Example 3 and Comparative Example 3 and their simulation results.
  • FIG. These are the results of Examples 1-3 and Comparative Examples 1-3.
  • FIG. 10 is a plan view of a proximity exposure photomask of Example 4 and simulation results thereof.
  • 2 when expressing a mode of arranging another member on top of a certain member, when simply describing “above” or “below”, unless otherwise specified, 2 includes both cases in which another member is arranged directly above or directly below, and cases in which another member is arranged above or below a certain member via another member.
  • 2 when expressing a mode in which another member is arranged on the surface of a certain member, when simply describing “on the surface side” or “on the surface”, unless otherwise specified, It includes both the case of arranging another member directly above or directly below so as to be in contact with it, and the case of arranging another member above or below a certain member via another member.
  • photomask for proximity exposure of the present disclosure will be described in detail below.
  • the "photomask for proximity exposure” may be simply referred to as a "photomask”.
  • FIG. 1(A) is a schematic plan view showing an example of a photomask of the present disclosure
  • FIG. 1(B) is a cross-sectional view taken along the line AA in FIG.
  • a proximity exposure photomask 1 of the present disclosure has a transparent substrate 2 and a light shielding film 3 disposed on the transparent substrate 2 .
  • the light-shielding film 3 has a main light-shielding portion 31 having a substantially polygonal or circular opening O, and an auxiliary light-shielding pattern 32 spaced apart from the main light-shielding portion 31 in the opening.
  • the light shielding film 3 is a phase shift film that shifts the phase of the exposure light that exposes the photomask by 180° ⁇ 45°, and has a transmittance of 1% or more and 10% or less with respect to the exposure light. Also, in the proximity exposure photomask 1 of the present disclosure shown in FIG.
  • a phase shift film that shifts the phase of exposure light by 180° ⁇ 45° is used as the light shielding film, and the auxiliary light shielding pattern is formed inside the opening of the main light shielding portion, whereby a desired light shielding pattern can be obtained.
  • the dimension of the transfer pattern (for example, the columnar pattern corresponding to the opening) can be made finer, and the taper angle can be improved.
  • the proximity exposure photomask of the present disclosure it is possible to reduce the dimension of the transfer pattern and improve the taper angle.
  • the transfer pattern can be formed with high accuracy even when the photomask is large.
  • the light intensity increases near the center of the desired transfer pattern, even if an HRU (High Resolution Unit) is used to reduce the exposure collimation angle, the decrease in production efficiency can be suppressed.
  • HRU High Resolution Unit
  • FIG. 2A shows the imaging surface of the photomask (specifically, the photosensitive resin layer) when the light-shielding film of the photomask for proximity exposure is a 180-degree phase shift film with a transmittance of 5.2%.
  • 2(B) shows the light intensity distribution on the imaging plane of the photomask.
  • the use of the phase shift film allows the light to pass through the phase shift film outside the boundary of the desired transfer pattern (specifically, the position where the light intensity corresponds to the resolution threshold of the resist). It is confirmed that the light L2 that has passed through the opening interferes with the light L1 that has passed through the transparent region in the opening, and the light intensity outside the boundary is weakened.
  • the pattern corresponding to the light shielding auxiliary pattern is not resolved, and only the pattern corresponding to the shape of the opening is formed. be done.
  • the proximity exposure photomask in the present disclosure has a larger rise angle of the peak of the light intensity distribution of the light that has passed through compared to the reference photomask intended to form a transfer pattern of the same bottom size.
  • the light shielding auxiliary pattern is arranged so as to
  • the reference photomask has a light-shielding film that does not substantially transmit light, and has an opening corresponding to the transfer pattern formed on a transparent substrate, and an auxiliary pattern is formed inside the opening.
  • the shape and position of such a light shielding auxiliary pattern can be determined by simulating the light intensity distribution.
  • the light intensity distribution simulation is based on general Fresnel diffraction.
  • the light amplitude E P at the point P on the substrate is calculated as the integrated value of the spherical wave from each point of the opening (transparent region) of the corresponding proximity exposure photomask.
  • the light intensity I at the point P can be calculated by the following formula (2).
  • FIG. 3 is a diagram for explaining the calculation of the light intensity distribution at the point P on the substrate 52 according to the following formula (1).
  • 5 is a schematic diagram showing a positional relationship with an arbitrary point P on a substrate 52;
  • the point S is the position on the substrate 52 when the exposure light 53 passing through the point Q travels straight.
  • k 2 ⁇ / ⁇
  • E P is the amplitude of light at point P on the substrate
  • A is a constant determined by the intensity of incident light
  • is the wavelength of incident light
  • is the line
  • r is the distance from the point Q to the point P
  • i is the imaginary unit.
  • Equation (2) E P * is the complex conjugate of E P . It should be noted that the above calculation is performed by dividing the opening of the photomask for proximity exposure into finite minute sections and using a computer.
  • the diameter A of the opening and the light-shielding assist pattern shown in FIG. If the width B of the pattern 32 and the inner diameter C of the light shielding auxiliary pattern 32 satisfy the following formula, the light intensity at the center of the transfer pattern can be reliably increased, and the boundary of the transfer pattern ( Specifically, the light intensity can be lowered outside the position where the light intensity corresponds to the resolution threshold of the resist.
  • FIG. 5 shows the results obtained by simulating the relationship between the bottom size of the transfer pattern (columnar pattern) and the slope value when using the photomask of the present disclosure that satisfies the above formula (3).
  • the transfer conditions were as follows: Collimation half angle: 0.7 degrees, light source of exposure device: 4-wavelength mixed light source of j-line (313 nm), i-line (365 nm), h-line (405 nm), and g-line (436 nm), exposure gap : 200 ⁇ m.
  • the relationship between the bottom size of the columnar pattern and the slope value was obtained by simulation.
  • the photomask of the present disclosure has a higher slope value than the reference photomask at all points that satisfy the above formula (3).
  • the slope value is the slope of the tangential line at the resist resolution threshold in the simulation result of the light intensity distribution.
  • the slope value becomes high, that is, the taper angle of the transfer pattern becomes nearly vertical.
  • the taper angle refers to the angle between the side surface of a layer having a tapered shape and the bottom surface of the layer.
  • the proximity exposure photomask in the present disclosure does not necessarily have a peak of the light intensity distribution of the light that has passed through, compared to the reference photomask intended for the transfer pattern of the same bottom size.
  • the auxiliary light shielding pattern does not have to be arranged so that the rising angle is large.
  • the light-shielding main portion of the photomask in the present disclosure is arranged on a transparent base material and has a substantially polygonal or substantially circular opening.
  • the opening is a region corresponding to a desired transfer pattern (design pattern).
  • the number of openings in the light shielding main portion is not particularly limited, and may be one or more.
  • substantially circular refers to a circular shape (perfect circle) and an elliptical shape whose maximum diameter is greater than 1 and less than or equal to 3.0 when the minimum diameter is 1.
  • a substantially polygonal shape means a regular polygon and a straight line drawn from each corner passing through the center. Polygons within the range of 0 or less are defined.
  • the diameter of the opening is, for example, 10 ⁇ m or more. On the other hand, it is, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less. A specific range is, for example, about 10 ⁇ m or more and 20 ⁇ m or less, and particularly preferably about 10 ⁇ m or more and 15 ⁇ m or less.
  • the diameter of the opening is defined as the length of a straight line drawn from each corner and passing through the center.
  • the minimum diameter is preferably within the above range.
  • the light-shielding auxiliary pattern of the photomask for proximity exposure in the present disclosure is formed inside the opening of the light-shielding main portion with a gap from the light-shielding main portion.
  • Such a light-shielding auxiliary pattern is such that, when exposed under the same conditions to a reference photomask intended for a transfer pattern of the same bottom size, the rising angle of the peak of the light intensity distribution of the light that passes through is increased. It is preferable that the width, size, and distance from the light shielding main portion are arranged.
  • the same condition means that the exposure wavelength, exposure gap, and exposure collimation angle are the same.
  • the light shielding auxiliary pattern arranged inside the opening may be one or two or more.
  • the auxiliary light-shielding pattern 32 has an outer transparent region 42 inside the auxiliary light-shielding pattern 32 and a gap between the auxiliary light-shielding pattern 32 and the main light-shielding portion 31 in the opening O. It is preferable that the light shielding auxiliary pattern is arranged so that the light transmitted through the transparent region 41 interferes to increase the light intensity in the vicinity of the center of the transfer pattern.
  • a photomask for proximity exposure when there are two light shielding auxiliary patterns arranged inside the opening will be described.
  • a first light-shielding auxiliary pattern 32a and a second light-shielding auxiliary pattern 32b are formed inside the opening O from the light-shielding main portion 31 side.
  • the second light-shielding assist pattern and the first light-shielding assist pattern are arranged so that the light passing through the transparent region 41, which is the gap with the main portion 31, increases the light intensity in the vicinity of the center of the transfer pattern due to interference. is preferred.
  • the specific size and width of the auxiliary light-shielding pattern, and the distance between the main light-shielding portion and the auxiliary light-shielding pattern can be determined by simulating the light intensity distribution based on the Fresnel diffraction described above.
  • Specific shapes of the light shielding auxiliary pattern include various shapes such as a circular ring shape and a polygonal ring shape.
  • the external shape of the auxiliary light shielding pattern may or may not be similar to the shape of the opening of the light shielding main portion, but is preferably similar. This is because the shape of the transfer pattern is stabilized.
  • the shape of the opening of the auxiliary light shielding pattern may be the same as the shape of the opening of the light shielding main portion, but it does not have to be the same shape.
  • the center of the light shielding auxiliary pattern and the opening in the light shielding main portion are concentric.
  • the fact that the center of the auxiliary light-shielding pattern is concentric with the center of the opening of the main light-shielding portion means that the center of the auxiliary light-shielding pattern is within a circle with a radius of 1 ⁇ m from the center of the opening of the main light-shielding portion. .
  • the light shielding auxiliary pattern may be formed continuously or may be formed discontinuously.
  • its width ((B) in FIG. 4) is preferably 0.5 ⁇ m or more, and more preferably 0.8 ⁇ m or more.
  • 8.0 ⁇ m or less is preferable, and 7.0 ⁇ m or less is particularly preferable.
  • about 0.5 ⁇ m or more and 8 ⁇ m or less is preferable, and about 0.8 ⁇ m or more and 7.0 ⁇ m or less is particularly preferable. This is because if the width of the light-shielding assist pattern is less than the above range, the desired effect of the light-shielding assist pattern cannot be obtained. This is because there is a possibility that the image will be resolved at the time.
  • the inner diameter of the light shielding auxiliary pattern ((C) in FIG. 4) is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • 19 ⁇ m or less is preferable, and 11 ⁇ m or less is particularly preferable.
  • a specific range is preferably about 1 ⁇ m or more and 19 ⁇ m or less, more preferably about 2 ⁇ m or more and 11 ⁇ m or less.
  • the width of the gap (transparent region) between the main light-shielding portion and the auxiliary light-shielding pattern is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more.
  • 4 ⁇ m or less is preferable, and 2.0 ⁇ m or less is particularly preferable.
  • about 1 ⁇ m to 4 ⁇ m is preferable, and about 1.5 ⁇ m to 2.0 ⁇ m is particularly preferable.
  • the widths of the first and second auxiliary light-shielding patterns are 0.5. 8 ⁇ m or more is preferable.
  • 3.0 ⁇ m or less is preferable, and 2.0 ⁇ m or less is particularly preferable.
  • about 0.8 ⁇ m to 3.0 ⁇ m is preferable, and about 0.8 ⁇ m to 2.0 ⁇ m is particularly preferable.
  • the width of the gap (transparent region) between the main light-shielding portion and the first auxiliary light-shielding pattern is preferably 1 ⁇ m or more.
  • 4 ⁇ m or less is preferable, and 2.0 ⁇ m or less is particularly preferable.
  • about 1 ⁇ m to 4 ⁇ m is preferable, and about 1.0 ⁇ m to 2.0 ⁇ m is particularly preferable.
  • the width of the gap (transparent region) between the first light-shielding auxiliary pattern and the second light-shielding auxiliary pattern is preferably 1.0 ⁇ m or more.
  • 4.0 ⁇ m or less is preferable, and 2.0 ⁇ m or less is particularly preferable.
  • about 1.0 ⁇ m or more and 4.0 ⁇ m or less is preferable, and about 1.0 ⁇ m or more and 2.0 ⁇ m or less is particularly preferable.
  • the thickness of the auxiliary light-shielding pattern is approximately the same as the thickness of the main light-shielding portion. This is because, as described above, the auxiliary light-shielding pattern and the main light-shielding portion can be collectively formed in the process of manufacturing the photomask for proximity exposure according to the present invention.
  • the light-shielding film in the present disclosure includes the light-shielding main portion and the light-shielding auxiliary pattern.
  • the light-shielding film has a phase shift effect of shifting the phase of the exposure light transmitted through the transparent region by 180 degrees ⁇ 45 degrees, and the exposure light is transmitted by 1% or more, preferably 4% or more. have a rate.
  • it has a transmittance of 10% or less, preferably 7% or less.
  • a specific range of the transmittance is 1% or more and 10% or less, preferably 4% or more and 7% or less.
  • any of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm), or mixed wavelength light including these wavelength ranges. can do.
  • the transmittance can be measured using the transmittance of a transparent substrate, which will be described later, as a reference (100%).
  • An ultraviolet/visible spectrophotometer for example, Hitachi U-4000
  • Hitachi U-4000 can be used for the measurement of the average transmittance. Table 1 summarizes the measurement conditions of the ultraviolet/visible spectrophotometer (Hitachi U-4000).
  • the transmittance in the case of a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm) is the value of the wavelength with the highest transmittance among the mixed wavelengths. be.
  • the configuration of the light-shielding film may be a single-layer film formed by selecting a material that provides the above transmittance with a film thickness that shifts the phase of the exposure light by 180° ⁇ 45°.
  • a phase adjustment layer made of a material with high transmittance that mainly shifts the phase by 180 degrees ⁇ 45 degrees and a transmittance adjustment layer made of a material with low transmittance that mainly determines the transmittance is also mentioned.
  • the refractive index n is high (usually 1.5 or more), and the thickness d that shifts the phase of the exposure light of wavelength ⁇ by 180° ⁇ 45° is 1% to 10%.
  • Materials for such a semitransparent phase shift film composed of a single layer include chromium oxynitride (CrON), molybdenum silicide nitride (MoSiN), molybdenum silicide oxynitride (MoSiON), silicon oxynitride (SiON), Titanium oxynitride (TiON) can be exemplified, and the transmittance is adjusted by changing the content of oxygen and nitrogen.
  • CrON chromium oxynitride
  • MoSiN molybdenum silicide nitride
  • MoSiON molybdenum silicide oxynitride
  • SiON silicon oxynitride
  • TiON Titanium oxynitride
  • the light-shielding film is required to have a film thickness that shifts the phase of the exposure light by 180° ⁇ 45°.
  • the film thickness d is ⁇ /2(n ⁇ 1).
  • the phase difference is not limited to 180 degrees, and a sufficient phase shift effect can be obtained as long as it is within the range of 180 degrees ⁇ 45 degrees.
  • the light-shielding film is composed of two layers, first, a material with a high refractive index at the exposure wavelength and a high light transmittance is selected as a material for the phase adjustment layer, and a layer for inverting the phase is selected. A material having a low transmittance at the exposure wavelength is selected, the phase of the exposure light is inverted for the entire two-layer film, and each film thickness is adjusted so that the transmittance has a desired value.
  • Chromium oxynitride (CrON), chromium oxyfluoride (CrFO), silicon oxynitride (SiON), molybdenum silicide oxynitride (MoSiON), and titanium oxynitride (TiON) are used as materials for the phase adjustment layer.
  • Chromium (Cr), chromium nitride (CrN), tantalum (Ta), and titanium (Ti) are used as the index adjusting layer.
  • a specific combination of materials for forming the semitransparent phase shift film in two layers is a combination of chromium oxynitride (CrON) for the phase adjustment layer and chromium nitride (CrN) for the transmittance adjustment layer, and oxidation of the phase adjustment layer.
  • CrON chrome fucca
  • CrN chromium nitride
  • MoSiON molybdenum oxynitride silicide
  • MoSiON molybdenum oxynitride silicide
  • MoSiON molybdenum oxynitride silicide
  • a single-layer chromium oxynitride (CrON) film can be exemplified.
  • the transparent substrate used in the present invention is not particularly limited as long as it can form the light shielding main portion and the light shielding auxiliary pattern, and transparent substrates used in general photomasks can be used.
  • transparent substrates include optically polished low-expansion glass such as borosilicate glass and aluminoborosilicate glass, quartz glass, synthetic quartz glass, Pyrex (registered trademark) glass, soda lime glass, and white sapphire.
  • a transparent rigid material, or a transparent flexible material such as a transparent resin film or an optical resin film can be used.
  • quartz glass is a material with a small coefficient of thermal expansion, and is excellent in dimensional stability and properties in high-temperature heat treatment.
  • the photomask for proximity exposure of the present invention is not particularly limited as long as a light-shielding film having the light-shielding main portion and the light-shielding auxiliary pattern is formed on the transparent substrate.
  • a photomask for proximity exposure generally includes a light shielding main portion in which one or more openings are formed, and one or more light shielding auxiliary patterns described above disposed inside the openings.
  • the plurality of openings formed in the light-shielding main portion of the proximity exposure photomask of the present disclosure may have the same shape and size, or may have different sizes.
  • the auxiliary light shielding patterns arranged inside the respective openings may have the same shape, the same size, and the arrangement positions in the openings, or may be different from each other.
  • At least one of the plurality of openings formed in the light-shielding main portion of the photomask for proximity exposure may have the above-described light-shielding auxiliary pattern disposed inside. It may have openings that are not located inside.
  • the proximity exposure photomask in the present disclosure includes a plurality of combinations of openings and light shielding auxiliary patterns, or openings in which light shielding auxiliary patterns are not arranged in addition to openings in which light shielding auxiliary patterns are arranged.
  • columnar patterns for example, photospacers
  • the photomask for proximity exposure of the present invention does not particularly limit the exposure light source, but the exposure light source is, for example, a mercury lamp, and the exposure light is j-line (313 nm), i-line (365 nm), h-line ( 405 nm), g-line (436 nm), or mixed wavelengths including these wavelength ranges.
  • the exposure light source is, for example, a mercury lamp
  • the exposure light is j-line (313 nm), i-line (365 nm), h-line ( 405 nm), g-line (436 nm), or mixed wavelengths including these wavelength ranges.
  • the use of the above-described mixed wavelength exposure light has the advantage that the exposure energy applied to the photosensitive resin layer in the transparent region can be increased and the exposure time can be shortened.
  • the photomask for proximity exposure of the present invention is suitably used when forming a fine columnar pattern corresponding to the opening using a negative resist. Specifically, it is particularly useful when forming a photospacer for a color filter for a liquid crystal display device, which will be described later. However, it is not limited to this case, and can also be used when forming fine holes corresponding to the openings using a positive resist.
  • a method for manufacturing a color filter is a method for manufacturing a color filter including a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter.
  • a method for manufacturing a color filter comprising a photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion using an exposure photomask.
  • the photospacer formation step in the present disclosure is a step of forming a photospacer including a columnar pattern corresponding to the opening using the proximity exposure photomask. Specifically, a step of exposing and developing a photospacer-forming composition containing a negative photosensitive resin to form a photospacer including a columnar pattern formed in a pattern similar to that of the openings. be able to.
  • the photospacer-forming composition used in this step is preferably less sensitive to light in regions other than the transfer pattern (columnar pattern), and the resolution threshold of the resist is equal to or higher than the intensity of light transmitted through the phase shift film. things are preferred.
  • the shape of the above-mentioned columnar pattern formed by this process is usually a columnar shape or a polygonal columnar shape.
  • the bottom dimension (diameter) of the columnar pattern is, for example, 17 ⁇ m or less, preferably 12 ⁇ m or less.
  • 5 ⁇ m or more is preferable, and 8 ⁇ m or more is particularly preferable.
  • it is preferably in the range of 5 ⁇ m or more and 17 ⁇ m or less, particularly in the range of 8 ⁇ m or more and 12 ⁇ m or less.
  • the height of the columnar pattern formed by this step is usually 1.0 ⁇ m or more, preferably 1.5 ⁇ m or more. On the other hand, it is usually 4.0 ⁇ m or less, preferably 3.0 ⁇ m or less. A specific range is generally about 1.0 ⁇ m to 4.0 ⁇ m, preferably about 1.5 ⁇ m to 3.0 ⁇ m.
  • a color filter including a first photospacer and a second photospacer lower than the first photospacer can be manufactured.
  • the transfer pattern corresponding to the openings of the proximity exposure photomask in the present disclosure may be at least one of the first photospacer and the second photospacer.
  • a negative resist composition for forming a photospacer is applied onto a transparent substrate for a color filter on which a black matrix and colored pixels are formed, dried, and exposed through a mask.
  • the photospacer can be patterned by curing the exposed portion with an alkali developer and developing with an alkaline developer.
  • the photospacer is preferably formed above the non-display area, that is, the black matrix.
  • the method for producing a color filter according to the present embodiment is not particularly limited as long as it includes the photospacer forming step. It may have necessary steps such as a colored layer forming step of forming a layer and a transparent electrode layer forming step of forming a transparent electrode layer on the colored layer. Each of these steps can be the same as each step in a general color filter manufacturing method.
  • Comparative Example 1 Example 1
  • Example 1 For the photomasks of Comparative Example 1 and Example 1, which were set as follows, the difference in bottom dimension size at the same light intensity was determined by simulation.
  • FIG. 7A a binary mask having a light-shielding film with an OD value of 3 or more and an opening with a diameter of 13 ⁇ m formed on a transparent substrate made of quartz glass was used as a photomask of Comparative Example 1.
  • FIG. 7B a light-shielding main portion 31 having a transmittance of 5.2% and an opening having a diameter of 14 ⁇ m, which is made of a 180-degree phase shift film, is formed on a transparent substrate made of quartz glass, and an opening.
  • a photomask of Example 1 was used, in which a ring-shaped light shielding auxiliary pattern 32 with a width of 2 ⁇ m and an inner diameter of 2 ⁇ m was formed inside the portion.
  • the bottom size of the transfer pattern obtained in Comparative Example 1 is 12.61 ⁇ m
  • the bottom size of the transfer pattern obtained in Example 1 is 12.61 ⁇ m.
  • the slope value was 0.093 in Comparative Example 1 and 0.170 in Example 1, and it was confirmed that in Example 1, the dimension of the transfer pattern was reduced and the taper angle was also improved.
  • Comparative Example 2 Example 2
  • Example 2 For the photomasks of Comparative Example 2 and Example 2, which were set as follows, the difference in the taper angle at the same bottom dimension size was determined by simulation.
  • the photomask of Example 2 is provided with a ring-shaped light shielding auxiliary pattern 32a having a width of 1 ⁇ m and an inner diameter of 8 ⁇ m and a ring-shaped light shielding auxiliary pattern 32b having a width of 1 ⁇ m and an inner diameter of 2 ⁇ m. and
  • Proximity exposure was performed on an object to be exposed at a distance of 200 ⁇ m as the exposure gap G so that the bottom size of the obtained transfer pattern was almost the same as Comparative Example 2: 9.38 ⁇ m and Example 2: 9.28 ⁇ m.
  • the light intensity distribution formed on the exposed body was obtained by simulation. The results are shown in FIG. 8(C).
  • the transfer conditions were: Collimation half angle: 0.7 degrees, Exposure wavelength: Light with a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm).
  • Example 3 As shown in FIG. 9B, a light-shielding main portion 31 having a transmittance of 5.2% and an opening having a diameter of 17 ⁇ m, which is made of a 180-degree phase shift film, is formed on a transparent substrate made of quartz glass, and an opening.
  • a photomask of Example 3 was used in which a ring-shaped light shielding auxiliary pattern 32 with a width of 1 ⁇ m and an inner diameter of 13 ⁇ m was arranged inside the portion.
  • a light intensity distribution was obtained by simulation when proximity exposure was performed with an exposure gap G of 200 ⁇ m and a transfer pattern dimension of 13.2 ⁇ m.
  • the maximum light intensity in Example 3 was 2.011.
  • the transfer conditions were: Collimation half angle: 0.7 degrees, Exposure wavelength: Light with a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm). Further, the transfer pattern dimension was obtained by simulation when the exposure gap was changed to 180 ⁇ m and the proximity exposure was performed under the above transfer conditions. The change rate ( ⁇ CD/ ⁇ Gap) of the transfer pattern dimension CD due to changing the exposure gap from 200 ⁇ m to 180 ⁇ m was calculated by the following formula and found to be 0.003.
  • CD 200 is the dimension of the transferred pattern when the exposure gap is 200 ⁇ m
  • CD 180 is the dimension of the transferred pattern when the exposure gap is 180 ⁇ m.
  • the photomask of Comparative Example 3 was a binary mask in which a light-shielding film having an opening with a diameter of 14 ⁇ m and an OD value of 3 or more was formed on a transparent substrate made of quartz glass. Proximity exposure was performed on the photomask of Comparative Example 3 under the same transfer conditions as in Example 3 so that the exposure gap G was 200 ⁇ m and the size of the bottom of the transfer pattern was 13.3 ⁇ m, which was almost the same as in Example 3. was obtained by simulation. The results are shown in FIG. 9(C). The maximum light intensity at an exposure gap of 200 ⁇ m in Comparative Example 3 was 2.128. FIG.
  • FIG. 9C shows the light intensity distribution obtained by simulation when only the exposure gap is changed to 180 ⁇ m. Also, the change rate ( ⁇ CD/ ⁇ Gap) of the transfer pattern dimension CD due to changing the exposure gap from 200 ⁇ m to 180 ⁇ m was calculated by the above formula. ⁇ CD/ ⁇ Gap was 0.027. It was confirmed that in Example 3, compared with Comparative Example 3, variations in the transfer pattern dimension caused by variations in the exposure gap were smaller (FIG. 10(C)).
  • Example 4 For proximity exposure photomasks having two types of opening patterns for the first photospacer and the second photospacer shown in FIGS.
  • the light intensity distribution was obtained by simulation. The results are shown in FIG. 11(C).
  • the light-shielding film 3 is a 180-degree phase shift film with a transmittance of 5.2%. Mixed wavelength light of line (405 nm) and g line (436 nm), exposure gap: 200 ⁇ m.
  • the opening pattern of FIG. 11(A) and the opening pattern of FIG. 11(B) have the same bottom dimension of 11.8 ⁇ m, and different maximum light intensities were obtained ((A): 2.62, (B): 0.88). From the above, it was confirmed that by combining different opening patterns, it is possible to form columnar photospacers of different heights and sizes with one mask.
  • a photomask for proximity exposure Having a transparent substrate and a light shielding film disposed on the transparent substrate,
  • the light shielding film includes a light shielding main portion having a substantially polygonal or circular opening, and a light shielding main portion disposed inside the opening of the light shielding main portion and spaced apart from the main light shielding portion. and a light shielding auxiliary pattern,
  • the light shielding film is a phase shift film having a phase shift action of shifting the phase of the exposure light by 180 degrees ⁇ 45 degrees and having a transmittance of the exposure light of 1% or more and 10% or less. photo mask.
  • the light shielding assist pattern is arranged so that the rising angle of the peak of the light intensity distribution of the light that passes through is larger than that of the reference photomask intended to form a transfer pattern of the same bottom size. is disposed, the photomask for proximity exposure according to [1].
  • Photomask for proximity exposure A method for manufacturing a color filter comprising a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter, comprising: Using the proximity exposure photomask according to any one of [1] to [4], a photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion.
  • a method for manufacturing a color filter characterized by:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

The main purpose of the present invention is to provide a photomask that, using proximity exposure, enables miniaturization of transfer pattern dimensions and an improved taper angle. The present disclosure provides a photomask for proximity exposure, comprising: a transparent substrate; and a light-blocking film arranged atop the transparent substrate. The light-blocking film has a light-blocking main section (31) in which a substantially polygonal or substantially circular opening is formed, and a light-blocking auxiliary pattern (32) which is arranged inside the opening of the light-blocking main section and which is formed at an interval from the light-blocking main section. The light-blocking film is a phase-shifting film that has a phase-shifting action for shifting the phase relative to exposure light by 180 degrees ± 45 degrees, and that has a 1-10% transmittance of the exposure light.

Description

プロキシミティ露光用フォトマスクおよびカラーフィルタの製造方法Photomask for proximity exposure and method for manufacturing color filter
 本開示は、プロキシミティ露光用フォトマスクおよびカラーフィルタの製造方法に関する。 The present disclosure relates to a method for manufacturing a photomask for proximity exposure and a color filter.
 従来より、液晶表示装置のカラーフィルタの着色層等の形成には、基板上に形成された感光性樹脂層にパターン露光を行い、露光後に感光性樹脂層を現像することによって、目的とするパターンを形成するフォトリソグラフィー法が用いられている。フォトリソグラフィー法においては、フォトマスクを介して光を照射するのが一般的である。 Conventionally, in forming a colored layer or the like of a color filter of a liquid crystal display device, a photosensitive resin layer formed on a substrate is subjected to pattern exposure, and after the exposure, the photosensitive resin layer is developed to obtain a desired pattern. A photolithographic method is used to form the In the photolithography method, it is common to irradiate light through a photomask.
 この際、フォトマスクが被露光体に密着することによって生じる傷を防ぐため、または、フォトマスクに塵埃が付着している場合に欠陥が生じるのを防ぐために、フォトマスクと被露光体との間に間隙を設けて露光する、すなわちプロキシミティ(近接)露光を行うことが多い。しかしながら、このような間隙を設けた場合、フレネル回折現象等により、細かいパターンを目的とする形状に形成することができないという問題があった。 At this time, in order to prevent scratches caused by the photomask coming into close contact with the object to be exposed, or to prevent defects from occurring when dust adheres to the photomask, there is a gap between the photomask and the object to be exposed. In many cases, the exposure is performed with a gap provided between the substrates, that is, the proximity exposure is performed. However, when such a gap is provided, there is a problem that a fine pattern cannot be formed in a desired shape due to Fresnel diffraction phenomenon or the like.
 近年では、フォトマスクと、加工する基板との間に投影レンズを設ける投影転写露光法が用いられる場合がある。投影転写露光法によれば、被露光体にパターン像を転写することができるため、露光波長相当までの解像度が得られるようになる。しかしながら、投影転写露光法には、高精度レンズが必要となり、露光装置に多大なコストがかかる。そのため、プロキシミティ露光方式により、細かいパターンを目的とする形状に形成することが可能なフォトマスクが求められている。 In recent years, there are cases where a projection transfer exposure method is used in which a projection lens is provided between the photomask and the substrate to be processed. According to the projection transfer exposure method, since a pattern image can be transferred onto an object to be exposed, a resolution corresponding to the exposure wavelength can be obtained. However, the projection transfer exposure method requires a high-precision lens, which increases the cost of the exposure apparatus. Therefore, there is a demand for a photomask capable of forming a fine pattern in a desired shape by the proximity exposure method.
 そこで、マスクパターンに工夫を施すことにより、プロキシミティ露光方式における解像度を向上させる試みがなされている。例えば、特許文献1には、OPC(Optical Proximity Correction)を使用してプロキシミティ露光機で微細化を図る技術が知られている。具体的には、透光性基板と、前記透光性基板に設けられ、露光光を遮る遮光部と、前記遮光部における所望のパターンと対応する領域に設けられ、前記遮光部の開口部からなる主パターン部と、遮光部における前記所望のパターンと対応する位置の周辺部で且つ前記所望のパターンの輪郭部を構成する辺に沿って設けられ、前記主パターン部を透過する光と位相が揃った同位相の光を透過する開口部からなる複数の同位相補助パターンを含む補助パターン部とを備えるフォトマスクが開示されている。 Therefore, attempts have been made to improve the resolution in the proximity exposure method by devising mask patterns. For example, Patent Literature 1 discloses a technique for miniaturization with a proximity exposure machine using OPC (Optical Proximity Correction). Specifically, a light-transmitting substrate, a light-shielding portion that is provided on the light-transmitting substrate and blocks exposure light, and a region that corresponds to a desired pattern in the light-shielding portion, and the light from the opening of the light-shielding portion is provided. and a main pattern portion provided along a side forming an outline portion of the desired pattern in a peripheral portion of a position corresponding to the desired pattern in the light shielding portion, and out of phase with the light transmitted through the main pattern portion. A photomask is disclosed that includes an auxiliary pattern portion that includes a plurality of in-phase auxiliary patterns formed of openings that transmit aligned in-phase light.
特許第6118996号Patent No. 6118996
 液晶パネルの高解像度化に伴い、画素サイズも小さくなっており、カラーフィルターとTFT基板との間のセルギャップを維持する柱(フォトスペーサー)についても、パターン寸法の微細化、テーパ角の向上等が求められている。 As the resolution of liquid crystal panels increases, the pixel size also decreases, and the pillars (photospacers) that maintain the cell gap between the color filter and the TFT substrate are required to have finer pattern dimensions and improved taper angles. is required.
 プロキシミティ露光方式で、柱の転写寸法とテーパ角を改善する手段については、いくつか考えられる。例えば、露光ギャップを小さくする方法が挙げられるが、大型マスクではマスクの撓みが無視できず、露光ギャップの限界に近付いている。また、レジストを変更する方法が挙げられるが、レジストの解像度も限界に近づいており、準備ができたとしても、エンドユーザーの材料変更承認が得ることは難しく、また、コスト面で不利である。さらに、露光コリメーション角度を小さくする方法等が挙げられるが、フライアイレンズやロッドレンズを用いたHRU(High Resolution Unit)を使用すると露光照度が低下し、タクト時間が延びて生産効率が低下する。 There are several ways to improve the transfer dimensions and taper angles of the pillars in the proximity exposure method. For example, there is a method of reducing the exposure gap, but with a large mask, the deflection of the mask cannot be ignored, and the limit of the exposure gap is approaching. There is also a method of changing the resist, but the resolution of the resist is approaching its limit, and even if preparations were made, it would be difficult to obtain approval from the end user for changing the material, and it would be disadvantageous in terms of cost. Furthermore, there is a method of reducing the exposure collimation angle, but if an HRU (High Resolution Unit) using a fly-eye lens or a rod lens is used, the exposure illuminance will decrease, the takt time will increase, and the production efficiency will decrease.
 また、特許文献1に記載のような、光を通さない遮光膜を用いる場合には、転写パターン寸法の微細化には効果が薄い。また、特許文献1には、開口部に位相シフト膜を設ける記載があるものの、工程、成膜費、製造リードタイムが長くなり、フォトマスクに求められている需要に応えられない。 Also, in the case of using a light-shielding film that does not transmit light, as described in Patent Document 1, there is little effect on miniaturization of the transfer pattern dimension. Further, although Patent Document 1 describes that a phase shift film is provided in the opening, the process, the film formation cost, and the manufacturing lead time are lengthened, and the demand for photomasks cannot be met.
 本開示は、上記事情に鑑みてなされたものであり、プロキシミティ露光により、転写パーンの寸法の微細化およびテーパ角の向上が可能となるフォトマスクを提供することを主目的とする。 The present disclosure has been made in view of the above circumstances, and a main object of the present disclosure is to provide a photomask that enables miniaturization of the transfer pan dimension and improvement of the taper angle by proximity exposure.
 本開示の一実施形態は、プロキシミティ露光用のフォトマスクであって、透明基板と、上記透明基板上に配置された遮光膜とを有し、上記遮光膜は、略多角形または略円形の開口部が形成された遮光主部と、上記遮光主部の上記開口部の内側に配置され、上記遮光主部と間隔をあけて形成された遮光補助パターンと、を有し、上記遮光膜は、露光光に対し位相を180度±45度シフトする位相シフト作用を有するとともに、上記露光光の透過率が1%以上10%以下となる位相シフト膜である、プロキシミティ露光用フォトマスクを提供する。 An embodiment of the present disclosure is a photomask for proximity exposure, comprising a transparent substrate and a light shielding film disposed on the transparent substrate, the light shielding film having a substantially polygonal or substantially circular shape. A light shielding main portion having an opening formed thereon, and a light shielding auxiliary pattern disposed inside the opening of the light shielding main portion and formed with a gap from the light shielding main portion, wherein the light shielding film is A photomask for proximity exposure, which is a phase shift film having a phase shift action of shifting the phase of exposure light by 180 degrees ± 45 degrees and having a transmittance of 1% or more and 10% or less of the exposure light. do.
 本開示におけるプロキシミティ露光用フォトマスクにおいては、同じ下底サイズの転写パターンの形成を目的とする基準フォトマスクに対して、通過した光の光強度分布のピークの立ち上がり角度が大きくなるように上記遮光補助パターンが配置されていることが好ましい。 In the photomask for proximity exposure according to the present disclosure, the reference photomask intended to form a transfer pattern of the same size of the bottom base is set so that the rising angle of the peak of the light intensity distribution of the light that has passed through is increased. It is preferable that a light shielding auxiliary pattern is arranged.
 本開示におけるプロキシミティ露光用フォトマスクにおいては、上記開口部の直径が、10μm以上20μm以下であることが好ましい。 In the photomask for proximity exposure according to the present disclosure, the diameter of the opening is preferably 10 μm or more and 20 μm or less.
 本開示におけるプロキシミティ露光用フォトマスクにおいては、上記露光光は、j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の光であることが好ましい。 In the photomask for proximity exposure according to the present disclosure, the exposure light is preferably light with a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm). .
 本開示の一実施形態は、カラーフィルタ用透明基板上に、ブラックマトリクスと、着色画素と、フォトスペーサーと、を備えるカラーフィルタの製造方法であって、上述のプロキシミティ露光用フォトマスクを用い、上記遮光主部における前記開口部に対応する柱状パターンを含むフォトスペーサーを形成するフォトスペーサー形成工程を有することを特徴とするカラーフィルタの製造方法を提供する。 One embodiment of the present disclosure is a method for manufacturing a color filter comprising a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter, wherein the above-described proximity exposure photomask is used, A method for manufacturing a color filter is provided, comprising a photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion.
 本開示は、プロキシミティ露光により、転写パターンの寸法の微細化およびテーパ角の向上が可能となるフォトマスクを提供することができる。 The present disclosure can provide a photomask that enables miniaturization of the dimension of the transfer pattern and improvement of the taper angle by proximity exposure.
本開示のプロキシミティ露光用フォトマスクの一例を示す平面図および概略断面図である。1A and 1B are a plan view and a schematic cross-sectional view showing an example of a photomask for proximity exposure according to the present disclosure; FIG. 遮光膜として位相シフト膜を使用した場合のフォトマスクの結像面での光振幅分布および光強度分布を説明する図である。FIG. 4 is a diagram for explaining light amplitude distribution and light intensity distribution on the imaging plane of a photomask when a phase shift film is used as a light shielding film; フレネル回折を説明するための図である。It is a figure for demonstrating Fresnel diffraction. 本開示のプロキシミティ露光用フォトマスクの一例を示す平面図である。1 is a plan view showing an example of a proximity exposure photomask of the present disclosure; FIG. 本開示のプロキシミティ露光用フォトマスクと基準フォトマスクにおける、転写パターン(柱状パターン)の下底サイズとスロープ値との関係を示すシミュレーション結果である。FIG. 10 is a simulation result showing the relationship between the bottom size of the transfer pattern (columnar pattern) and the slope value in the proximity exposure photomask and the reference photomask of the present disclosure; FIG. 本開示のプロキシミティ露光用フォトマスクの一例を示す平面図である。1 is a plan view showing an example of a proximity exposure photomask of the present disclosure; FIG. 実施例1および比較例1のプロキシミティ露光用フォトマスクの平面図およびこれらのシミュレーション結果である。1 is a plan view of proximity exposure photomasks of Example 1 and Comparative Example 1, and simulation results thereof. FIG. 実施例2および比較例2のプロキシミティ露光用フォトマスクの平面図およびこれらのシミュレーション結果である。FIG. 10 is a plan view of proximity exposure photomasks of Example 2 and Comparative Example 2 and their simulation results. FIG. 実施例3および比較例3のプロキシミティ露光用フォトマスクの平面図およびこれらのシミュレーション結果である。FIG. 10 is a plan view of proximity exposure photomasks of Example 3 and Comparative Example 3 and their simulation results. FIG. 実施例1~3および比較例1~3の結果である。These are the results of Examples 1-3 and Comparative Examples 1-3. 実施例4のプロキシミティ露光用フォトマスクの平面図およびこれらのシミュレーション結果である。FIG. 10 is a plan view of a proximity exposure photomask of Example 4 and simulation results thereof. FIG.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Embodiments of the present disclosure will be described below with reference to the drawings and the like. However, the present disclosure can be embodied in many different modes and should not be construed as limited to the description of the embodiments exemplified below. In addition, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part compared to the actual form, but this is only an example and limits the interpretation of the present disclosure. not something to do. In addition, in this specification and each figure, the same reference numerals may be given to the same elements as those described above with respect to the existing figures, and detailed description thereof may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。 In this specification, when expressing a mode of arranging another member on top of a certain member, when simply describing “above” or “below”, unless otherwise specified, 2 includes both cases in which another member is arranged directly above or directly below, and cases in which another member is arranged above or below a certain member via another member. In addition, in this specification, when expressing a mode in which another member is arranged on the surface of a certain member, when simply describing “on the surface side” or “on the surface”, unless otherwise specified, It includes both the case of arranging another member directly above or directly below so as to be in contact with it, and the case of arranging another member above or below a certain member via another member.
 以下、本開示のプロキシミティ露光用フォトマスクについて、詳細に説明する。なお、本明細書において、「プロキシミティ露光用フォトマスク」を単に「フォトマスク」と称する場合がある。 The photomask for proximity exposure of the present disclosure will be described in detail below. In this specification, the "photomask for proximity exposure" may be simply referred to as a "photomask".
A.プロキシミティ露光用フォトマスク
 図1(A)は、本開示のフォトマスクの一例を示す概略平面図であり、図1(B)は図1(A)のA-A断面図である。図1に示すように、本開示のプロキシミティ露光用フォトマスク1は、透明基材2と、透明基材2上に配置された遮光膜3とを有する。遮光膜3は、略多角形または略円形の開口部Oを有する遮光主部31と、開口部内に、遮光主部31と間隔をあけて配置された遮光補助パターン32とを有する。遮光膜3は、フォトマスクを露光する露光光の位相を180度±45度シフトする位相シフト膜であり、露光光に対して、1%以上10%以下の透過率を有する。また、図1に示す本開示のプロキシミティ露光用フォトマスク1は、遮光補助パターン32により、開口部Oの領域が、内側透明領域42と外側透明領域41とに区別される。
A. Photomask for Proximity Exposure FIG. 1(A) is a schematic plan view showing an example of a photomask of the present disclosure, and FIG. 1(B) is a cross-sectional view taken along the line AA in FIG. As shown in FIG. 1 , a proximity exposure photomask 1 of the present disclosure has a transparent substrate 2 and a light shielding film 3 disposed on the transparent substrate 2 . The light-shielding film 3 has a main light-shielding portion 31 having a substantially polygonal or circular opening O, and an auxiliary light-shielding pattern 32 spaced apart from the main light-shielding portion 31 in the opening. The light shielding film 3 is a phase shift film that shifts the phase of the exposure light that exposes the photomask by 180°±45°, and has a transmittance of 1% or more and 10% or less with respect to the exposure light. Also, in the proximity exposure photomask 1 of the present disclosure shown in FIG.
 本開示によれば、遮光膜として露光光の位相を180度±45度シフトする位相シフト膜を使用し、かつ、遮光主部の開口部の内側に遮光補助パターンを形成することにより、所望の転写パターン(例えば、開口部に対応する柱状パターン)の寸法を微細化することができ、テーパ角を向上させることができる。これは、遮光膜として上記位相シフト膜を使用することにより、所望の転写パターンの境界部外側においては、上記位相シフト膜を通過した光と、開口部における透明領域を通過した光とが干渉し、弱め合い、かつ、所望の転写パターンの中心近傍においては、開口部の遮光補助パターンで区切られた透明領域を透過した光同士が干渉し、強め合うことで、通過した光が急峻な光強度分布を示すためと推察される。従って、本開示におけるプロキシミティ露光用フォトマスクによれば、転写パターンの寸法の微細化や、テーパ角の向上が可能となる。また、露光ギャップ変動に対しての転写パターンの寸法の変動を少なくすることができるため、フォトマスクが大型である場合でも、精度良く転写パターンを形成することができる。さらに、所望の転写パターンの中心近傍においては光強度が大きくなるため、露光コリメーション角度を小さくするためにHRU(High Resolution Unit)を使用したとしても、生産効率の低下を抑制することができる。 According to the present disclosure, a phase shift film that shifts the phase of exposure light by 180°±45° is used as the light shielding film, and the auxiliary light shielding pattern is formed inside the opening of the main light shielding portion, whereby a desired light shielding pattern can be obtained. The dimension of the transfer pattern (for example, the columnar pattern corresponding to the opening) can be made finer, and the taper angle can be improved. By using the phase shift film as a light shielding film, the light passing through the phase shift film and the light passing through the transparent region in the opening interfere with each other outside the boundary of the desired transfer pattern. In the vicinity of the center of the desired transfer pattern, the light transmitted through the transparent regions separated by the light shielding auxiliary pattern of the opening interferes with each other and strengthens each other, so that the transmitted light has a steep light intensity. It is presumed that this is to show the distribution. Therefore, according to the proximity exposure photomask of the present disclosure, it is possible to reduce the dimension of the transfer pattern and improve the taper angle. In addition, since the variation in the dimension of the transfer pattern with respect to the exposure gap variation can be reduced, the transfer pattern can be formed with high accuracy even when the photomask is large. Furthermore, since the light intensity increases near the center of the desired transfer pattern, even if an HRU (High Resolution Unit) is used to reduce the exposure collimation angle, the decrease in production efficiency can be suppressed.
 図2(A)は、プロキシミティ露光用フォトマスクの遮光膜が透過率5.2%の180度位相シフト膜である場合の、フォトマスクの結像面(具体的には感光性樹脂層の表面)での光振幅分布を示しており、図2(B)はフォトマスクの結像面での光強度分布を示している。図2に示すように、位相シフト膜の使用により、所望の転写パターンの境界部(具体的には、レジストの解像閾値に相当する光強度となる位置)の外側において、位相シフト膜を通過した光L2と、開口部における透明領域を通過した光L1とが干渉し、境界部外側における光強度が弱くなることが確認される。 FIG. 2A shows the imaging surface of the photomask (specifically, the photosensitive resin layer) when the light-shielding film of the photomask for proximity exposure is a 180-degree phase shift film with a transmittance of 5.2%. 2(B) shows the light intensity distribution on the imaging plane of the photomask. As shown in FIG. 2, the use of the phase shift film allows the light to pass through the phase shift film outside the boundary of the desired transfer pattern (specifically, the position where the light intensity corresponds to the resolution threshold of the resist). It is confirmed that the light L2 that has passed through the opening interferes with the light L1 that has passed through the transparent region in the opening, and the light intensity outside the boundary is weakened.
 なお、本開示のプロキシミティ露光用フォトマスクを用いて感光性樹脂層のパターニングを行った場合、遮光補助パターンに対応するパターンは解像されずに、開口部の形状に対応したパターンのみが形成される。 When the photosensitive resin layer is patterned using the proximity exposure photomask of the present disclosure, the pattern corresponding to the light shielding auxiliary pattern is not resolved, and only the pattern corresponding to the shape of the opening is formed. be done.
 本開示におけるプロキシミティ露光用フォトマスクは、後述するように、同じ下底サイズの転写パターンの形成を目的とする基準フォトマスクに対して、通過した光の光強度分布のピークの立ち上がり角度が大きくなるように、遮光補助パターンが配置されていることが好ましい。ここで、上記基準フォトマスクとは、透明基板上に、転写パターンに対応する開口部が形成された、実質的に光を透過させない遮光膜を有し、開口部の内側には補助パターンが形成されていないフォトマスクをいう。 As will be described later, the proximity exposure photomask in the present disclosure has a larger rise angle of the peak of the light intensity distribution of the light that has passed through compared to the reference photomask intended to form a transfer pattern of the same bottom size. It is preferable that the light shielding auxiliary pattern is arranged so as to Here, the reference photomask has a light-shielding film that does not substantially transmit light, and has an opening corresponding to the transfer pattern formed on a transparent substrate, and an auxiliary pattern is formed inside the opening. A photomask that has not been
 このような遮光補助パターンの形状や位置については、光強度分布のシミュレーションによって決定することができる。光強度分布のシミュレーションは、一般的なフレネル回折に基づく。下記の数式(1)により、基板上の点Pでの光の振幅Eを、対応するプロキシミティ露光用フォトマスクの開口部(透明領域)の各点からの球面波の積分値として計算により求め、さらに、下記の数式(2)により、点Pでの光強度Iを、計算により求めることができる。 The shape and position of such a light shielding auxiliary pattern can be determined by simulating the light intensity distribution. The light intensity distribution simulation is based on general Fresnel diffraction. Using the following formula (1), the light amplitude E P at the point P on the substrate is calculated as the integrated value of the spherical wave from each point of the opening (transparent region) of the corresponding proximity exposure photomask. Furthermore, the light intensity I at the point P can be calculated by the following formula (2).
 図3は、下記の数式(1)による基板52上の点Pでの光強度分布の計算を説明するための図であり、プロキシミティ露光用フォトマスク1の開口部の任意の点Qと、基板52上の任意の点Pとの位置関係を示した模式図である。図3において、点Sは点Qを通過した露光光53が直進した場合の基板52上の位置である。 FIG. 3 is a diagram for explaining the calculation of the light intensity distribution at the point P on the substrate 52 according to the following formula (1). 5 is a schematic diagram showing a positional relationship with an arbitrary point P on a substrate 52; FIG. In FIG. 3, the point S is the position on the substrate 52 when the exposure light 53 passing through the point Q travels straight.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、数式(1)において、k=2π/λであり、Eは基板上の点Pにおける光の振幅、Aは入射光の強度によって決まる定数、λは入射光の波長、δは線分QSと線分QPのなす角、rは点Qから点Pまでの距離、iは虚数単位である。 Here, in formula (1), k = 2π/λ, E P is the amplitude of light at point P on the substrate, A is a constant determined by the intensity of incident light, λ is the wavelength of incident light, and δ is the line The angle formed by the segment QS and the line segment QP, r is the distance from the point Q to the point P, and i is the imaginary unit.
 I=E×E      (2)
 ここで、数式(2)において、E はEの共役複素数である。なお、上記の計算は、プロキシミティ露光用フォトマスクの開口部を有限の微小区間に区切り、計算機により行うものとする。
I=E P ×E P * (2)
Here, in Equation (2), E P * is the complex conjugate of E P . It should be noted that the above calculation is performed by dividing the opening of the photomask for proximity exposure into finite minute sections and using a computer.
 例えば、開口部の内側に配置される遮光補助パターンが1つであり、遮光補助パターンの形状が連続的な円形リング状である場合においては、図4に示す、開口部の直径A、遮光補助パターン32の幅B、遮光補助パターン32の内径Cが、以下の式を満たす形状であれば、確実に、転写パターンの中心の光強度を高くすることができ、かつ、転写パターンの境界部(具体的には、レジストの解像閾値に相当する光強度となる位置)の外側において光強度を低くすることができる。 For example, when there is one light-shielding assist pattern arranged inside the opening and the shape of the light-shielding assist pattern is a continuous circular ring shape, the diameter A of the opening and the light-shielding assist pattern shown in FIG. If the width B of the pattern 32 and the inner diameter C of the light shielding auxiliary pattern 32 satisfy the following formula, the light intensity at the center of the transfer pattern can be reliably increased, and the boundary of the transfer pattern ( Specifically, the light intensity can be lowered outside the position where the light intensity corresponds to the resolution threshold of the resist.
A×S1+S2-S3≦C≦A×S1+S2+S3     (3)
(式中、S1、S2、S3は以下の通りである。
S1=(-0.0360×B+0.185×B+0.829)
S2=(0.775×B-5.97×B-0.777)
S3=(0.0938×B-1.31×B+5.26))
A×S1+S2−S3≦C≦A×S1+S2+S3 (3)
(In the formula, S1, S2, and S3 are as follows.
S1=(−0.0360×B 2 +0.185×B+0.829)
S2=(0.775×B 2 −5.97×B−0.777)
S3=(0.0938×B 2 −1.31×B+5.26))
 上記(3)式を満たす本開示のフォトマスクを用いた場合における、転写パターン(柱状パターン)の下底サイズとスロープ値との関係をシミュレーションにより求めた結果を図5に示す。なお、転写条件は、Collimation半角:0.7度、露光装置の光源:j線(313nm)、i線(365nm)、h線(405nm)、g線(436nm)の4波長混合光源、露光ギャップ:200μmである。同様に、基準フォトマスクについても、柱状パターンの下底サイズとスロープ値との関係をシミュレーションにより求めた。 FIG. 5 shows the results obtained by simulating the relationship between the bottom size of the transfer pattern (columnar pattern) and the slope value when using the photomask of the present disclosure that satisfies the above formula (3). The transfer conditions were as follows: Collimation half angle: 0.7 degrees, light source of exposure device: 4-wavelength mixed light source of j-line (313 nm), i-line (365 nm), h-line (405 nm), and g-line (436 nm), exposure gap : 200 μm. Similarly, for the reference photomask, the relationship between the bottom size of the columnar pattern and the slope value was obtained by simulation.
 図5に示すように、基準フォトマスクでは、転写パターンの下底サイズ(μm)が小さい場合、特に、転写パターンの下底サイズが10μm以下の場合、スロープ値の低下が著しいことが確認できる。一方、本開示のフォトマスクは、上記(3)式を満たす全ての点において、基準フォトマスクに対してスロープ値が高いことが確認された。なお、スロープ値とは、光強度分布のシミュレーション結果におけるレジスト解像閾値における接線の傾きである。 As shown in FIG. 5, with the reference photomask, when the bottom size (μm) of the transfer pattern is small, particularly when the bottom size of the transfer pattern is 10 μm or less, it can be confirmed that the slope value significantly decreases. On the other hand, it was confirmed that the photomask of the present disclosure has a higher slope value than the reference photomask at all points that satisfy the above formula (3). The slope value is the slope of the tangential line at the resist resolution threshold in the simulation result of the light intensity distribution.
 このように、本開示のフォトマスクを用いた場合には、スロープ値が高くなり、即ち、転写パターンのテーパ角が垂直に近いものとなる。なお、テーパ角とは、テーパ形状を有する層の側面と、当該層の底面との間の角度を指す。 Thus, when the photomask of the present disclosure is used, the slope value becomes high, that is, the taper angle of the transfer pattern becomes nearly vertical. The taper angle refers to the angle between the side surface of a layer having a tapered shape and the bottom surface of the layer.
 なお、本開示におけるプロキシミティ露光用フォトマスクは、転写パターンの用途によっては、必ずしも、同じ下底サイズの転写パターンを目的とする基準フォトマスクに対して、通過した光の光強度分布のピークの立ち上がり角度が大きくなるように遮光補助パターンが配置されていなくてもよい。 In addition, depending on the application of the transfer pattern, the proximity exposure photomask in the present disclosure does not necessarily have a peak of the light intensity distribution of the light that has passed through, compared to the reference photomask intended for the transfer pattern of the same bottom size. The auxiliary light shielding pattern does not have to be arranged so that the rising angle is large.
 以下、本開示のフォトマスクにおける各構成について、詳細に説明する。 Each configuration of the photomask of the present disclosure will be described in detail below.
1.遮光主部
 本開示におけるフォトマスクの遮光主部は、透明基材上に配置され、略多角形または略円形の開口部が形成されている。開口部は、所望の転写パターン(設計パターン)に対応する領域である。遮光主部における開口部の数は特に限定されず、1つまたは複数である。
1. Light-Shielding Main Portion The light-shielding main portion of the photomask in the present disclosure is arranged on a transparent base material and has a substantially polygonal or substantially circular opening. The opening is a region corresponding to a desired transfer pattern (design pattern). The number of openings in the light shielding main portion is not particularly limited, and may be one or more.
 開口部の形状はプロキシミティ露光用フォトマスクの種類や用途等に応じて適宜選択される。本開示において略円形とは、円形(正円)、最小径を1とした場合の最大径が1より大きく3.0以下の範囲内となる楕円形をいうこととする。また、略多角形とは、正多角形、各角から中心を通るように引いた直線のうち、最小の直線の長さを1とした場合、最長の直線の長さが1より大きく3.0以下の範囲内となる多角形をいうこととする。 The shape of the opening is appropriately selected according to the type and application of the proximity exposure photomask. In the present disclosure, the term “substantially circular” refers to a circular shape (perfect circle) and an elliptical shape whose maximum diameter is greater than 1 and less than or equal to 3.0 when the minimum diameter is 1. Further, a substantially polygonal shape means a regular polygon and a straight line drawn from each corner passing through the center. Polygons within the range of 0 or less are defined.
 本発明においては、上記開口部の径が、例えば10μm以上である。一方、例えば20μm以下であり、好ましくは15μm以下である。具体的範囲としては、例えば10μm以上20μm以下程度、特に10μm以上15μm以下程度であることが好ましい。なお、上記開口部が略多角形である場合の上記開口部の径とは、各角から中心を通るように引いた直線の長さをいうこととする。また、楕円や、正多角形以外の多角形の場合、最小径が上記範囲であることが好ましい。 In the present invention, the diameter of the opening is, for example, 10 μm or more. On the other hand, it is, for example, 20 μm or less, preferably 15 μm or less. A specific range is, for example, about 10 μm or more and 20 μm or less, and particularly preferably about 10 μm or more and 15 μm or less. When the opening is substantially polygonal, the diameter of the opening is defined as the length of a straight line drawn from each corner and passing through the center. Moreover, in the case of an ellipse or a polygon other than a regular polygon, the minimum diameter is preferably within the above range.
2.遮光補助パターン
 本開示におけるプロキシミティ露光用のフォトマスクの遮光補助パターンは、遮光主部の開口部の内側に、遮光主部と間隔をあけて形成される。このような遮光補助パターンは、同じ下底サイズの転写パターンを目的とする基準フォトマスクに対して同条件で露光した場合において、通過した光の光強度分布のピークの立ち上がり角度が大きくなるような幅、大きさ、及び遮光主部との間隔で配置されることが好ましい。上記同条件とは、露光波長、露光ギャップ、および露光コリメーション角度が同一であることをいう。
2. Light-Shielding Auxiliary Pattern The light-shielding auxiliary pattern of the photomask for proximity exposure in the present disclosure is formed inside the opening of the light-shielding main portion with a gap from the light-shielding main portion. Such a light-shielding auxiliary pattern is such that, when exposed under the same conditions to a reference photomask intended for a transfer pattern of the same bottom size, the rising angle of the peak of the light intensity distribution of the light that passes through is increased. It is preferable that the width, size, and distance from the light shielding main portion are arranged. The same condition means that the exposure wavelength, exposure gap, and exposure collimation angle are the same.
 開口部の内側に配置される遮光補助パターンは、1つであっても、2以上であってもよい。 The light shielding auxiliary pattern arranged inside the opening may be one or two or more.
 開口部の内側に配置される遮光補助パターンが1つである場合のプロキシミティ露光用のフォトマスクについて説明する。図1に示すように、遮光補助パターン32は、開口部Oにおける、遮光補助パターン32の内側の内側透明領域42を透過する光と、遮光補助パターン32と遮光主部31との間隙である外側透明領域41を透過する光が干渉によって、転写パターンの中央近傍における光強度が大きくなるように、遮光補助パターンが配置されることが好ましい。 A photomask for proximity exposure when there is one light shielding auxiliary pattern arranged inside the opening will be described. As shown in FIG. 1, the auxiliary light-shielding pattern 32 has an outer transparent region 42 inside the auxiliary light-shielding pattern 32 and a gap between the auxiliary light-shielding pattern 32 and the main light-shielding portion 31 in the opening O. It is preferable that the light shielding auxiliary pattern is arranged so that the light transmitted through the transparent region 41 interferes to increase the light intensity in the vicinity of the center of the transfer pattern.
 開口部の内側に配置される遮光補助パターンが2つである場合のプロキシミティ露光用のフォトマスクについて、説明する。図6に示すプロキシミティ露光用のフォトマスクは、開口部Oの内側に、遮光主部31側から、第1遮光補助パターン32a、第2遮光補助パターン32bが形成されている。第2の遮光補助パターン32bの内側の透明領域43と、第1の遮光補助パターンと32aと第2の遮光補助パターン32bとの間隙である透明領域42と、第1の遮光補助パターン32aと遮光主部31との間隙である透明領域41を通過する光が干渉によって、転写パターンの中央近傍における光強度が大きくなるように、第2の遮光補助パターンおよび第1の遮光補助パターンが配置されることが好ましい。 A photomask for proximity exposure when there are two light shielding auxiliary patterns arranged inside the opening will be described. In the photomask for proximity exposure shown in FIG. 6, a first light-shielding auxiliary pattern 32a and a second light-shielding auxiliary pattern 32b are formed inside the opening O from the light-shielding main portion 31 side. A transparent area 43 inside the second auxiliary light-shielding pattern 32b, a transparent area 42 which is the gap between the first auxiliary light-shielding pattern 32a and the second auxiliary light-shielding pattern 32b, the first auxiliary light-shielding pattern 32a, and the light-shielding pattern. The second light-shielding assist pattern and the first light-shielding assist pattern are arranged so that the light passing through the transparent region 41, which is the gap with the main portion 31, increases the light intensity in the vicinity of the center of the transfer pattern due to interference. is preferred.
 具体的な遮光補助パターンの大きさや、幅、遮光主部と遮光補助パターンとの距離については、上述したフレネル回折に基づく光強度分布のシミュレーションにより決定することができる。 The specific size and width of the auxiliary light-shielding pattern, and the distance between the main light-shielding portion and the auxiliary light-shielding pattern can be determined by simulating the light intensity distribution based on the Fresnel diffraction described above.
 具体的な遮光補助パターンの形状としては、円形のリング状、多角形のリング状等、種々の形状が挙げられる。また、遮光補助パターンの外形形状は、上記遮光主部が有する開口部の形状と相似形状であってもよいし、相似形状でなくてもよいが、相似形状であることが好ましい。転写パターンの形状が安定するためである。また、遮光補助パターンの開口部の形状としては、上記遮光主部の開口部の形状と同様の形状が挙げられるが、同様の形状でなくてもよい。 Specific shapes of the light shielding auxiliary pattern include various shapes such as a circular ring shape and a polygonal ring shape. Further, the external shape of the auxiliary light shielding pattern may or may not be similar to the shape of the opening of the light shielding main portion, but is preferably similar. This is because the shape of the transfer pattern is stabilized. Further, the shape of the opening of the auxiliary light shielding pattern may be the same as the shape of the opening of the light shielding main portion, but it does not have to be the same shape.
 また、遮光補助パターンの中心と、遮光主部における開口部は、同心であることが好ましい。ここで、遮光補助パターンの中心が遮光主部の開口部の中心と同心であるとは、遮光補助パターンの中心が、遮光主部の開口部の中心から半径1μmの円内にあることをいう。 Further, it is preferable that the center of the light shielding auxiliary pattern and the opening in the light shielding main portion are concentric. Here, the fact that the center of the auxiliary light-shielding pattern is concentric with the center of the opening of the main light-shielding portion means that the center of the auxiliary light-shielding pattern is within a circle with a radius of 1 μm from the center of the opening of the main light-shielding portion. .
 遮光補助パターンは、連続的に形成されているものであってもよく、非連続に形成されているものであってもよい。 The light shielding auxiliary pattern may be formed continuously or may be formed discontinuously.
 開口部の内側に配置される遮光補助パターンが1つである場合、その幅(図4における(B))は、0.5μm以上が好ましく、中でも0.8μm以上が好ましい。一方、8.0μm以下が好ましく、中でも7.0μm以下が好ましい。具体的範囲としては、0.5μm以上8μm以下程度が好ましく、特に、0.8μm以上7.0μm以下程度が好ましい。遮光補助パターンの幅が上記範囲に満たない場合、所望する遮光補助パターンの効果を得ることができないからであり、上記範囲を越える場合、プロキシミティ露光用フォトマスクを用いて露光および現像を行った際、解像されるおそれがあるからである。 When there is one light-shielding auxiliary pattern arranged inside the opening, its width ((B) in FIG. 4) is preferably 0.5 μm or more, and more preferably 0.8 μm or more. On the other hand, 8.0 μm or less is preferable, and 7.0 μm or less is particularly preferable. As a specific range, about 0.5 μm or more and 8 μm or less is preferable, and about 0.8 μm or more and 7.0 μm or less is particularly preferable. This is because if the width of the light-shielding assist pattern is less than the above range, the desired effect of the light-shielding assist pattern cannot be obtained. This is because there is a possibility that the image will be resolved at the time.
 また、遮光補助パターンの内径(図4における(C))は、1μm以上が好ましく、中でも2μm以上が好ましい。一方、19μm以下が好ましく、中でも11μm以下が好ましい。具体的範囲としては、1μm以上19μm以下程度が好ましく、特に、2μm以上11μm以下程度が好ましい。 In addition, the inner diameter of the light shielding auxiliary pattern ((C) in FIG. 4) is preferably 1 μm or more, more preferably 2 μm or more. On the other hand, 19 μm or less is preferable, and 11 μm or less is particularly preferable. A specific range is preferably about 1 μm or more and 19 μm or less, more preferably about 2 μm or more and 11 μm or less.
 また、遮光主部と遮光補助パターンとの間隙(透明領域)の幅は、1μm以上が好ましく、中でも1.5μm以上が好ましい。一方、4μm以下が好ましく、中でも2.0μm以下が好ましい。具体的範囲としては、1μm以上4μm以下程度が好ましく、特に、1.5μm以上2.0μm以下程度が好ましい。 Further, the width of the gap (transparent region) between the main light-shielding portion and the auxiliary light-shielding pattern is preferably 1 μm or more, more preferably 1.5 μm or more. On the other hand, 4 μm or less is preferable, and 2.0 μm or less is particularly preferable. As a specific range, about 1 μm to 4 μm is preferable, and about 1.5 μm to 2.0 μm is particularly preferable.
 また、開口部の内側に配置される遮光補助パターンが2つ(第1遮光補助パターンおよび第2遮光補助パターン)である場合、第1遮光補助パターンおよび第2遮光補助パターンの幅は、0.8μm以上が好ましい。一方、3.0μm以下が好ましく、中でも2.0μm以下が好ましい。具体的範囲としては、0.8μm以上3.0μm以下程度が好ましく、特に、0.8μm以上2.0μm以下程度が好ましい。 Further, when there are two auxiliary light-shielding patterns (first and second auxiliary light-shielding patterns) arranged inside the opening, the widths of the first and second auxiliary light-shielding patterns are 0.5. 8 μm or more is preferable. On the other hand, 3.0 μm or less is preferable, and 2.0 μm or less is particularly preferable. As a specific range, about 0.8 μm to 3.0 μm is preferable, and about 0.8 μm to 2.0 μm is particularly preferable.
 また、遮光主部と第1遮光補助パターンの間隙(透明領域)の幅は、1μm以上が好ましい。一方、4μm以下が好ましく、中でも2.0μm以下が好ましい。具体的範囲としては、1μm以上4μm以下程度が好ましく、特に、1.0μm以上2.0μm以下程度が好ましい。 Also, the width of the gap (transparent region) between the main light-shielding portion and the first auxiliary light-shielding pattern is preferably 1 μm or more. On the other hand, 4 μm or less is preferable, and 2.0 μm or less is particularly preferable. As a specific range, about 1 μm to 4 μm is preferable, and about 1.0 μm to 2.0 μm is particularly preferable.
 また、第1遮光補助パターンと第2遮光補助パターンとの間隙(透明領域)の幅は、1.0μm以上が好ましい。一方、4.0μm以下が好ましく、中でも2.0μm以下が好ましい。具体的範囲としては、1.0μm以上4.0μm以下程度が好ましく、特に、1.0μm以上2.0μm以下程度が好ましい。 Also, the width of the gap (transparent region) between the first light-shielding auxiliary pattern and the second light-shielding auxiliary pattern is preferably 1.0 μm or more. On the other hand, 4.0 μm or less is preferable, and 2.0 μm or less is particularly preferable. As a specific range, about 1.0 μm or more and 4.0 μm or less is preferable, and about 1.0 μm or more and 2.0 μm or less is particularly preferable.
 また、遮光補助パターンの厚みは、遮光主部の厚みと同程度とされることが好ましい。
上述したように、本発明のプロキシミティ露光用フォトマスクの製造過程において、遮光補助パターンおよび遮光主部を一括して形成することができるからである。
Moreover, it is preferable that the thickness of the auxiliary light-shielding pattern is approximately the same as the thickness of the main light-shielding portion.
This is because, as described above, the auxiliary light-shielding pattern and the main light-shielding portion can be collectively formed in the process of manufacturing the photomask for proximity exposure according to the present invention.
3.遮光膜
 本開示における遮光膜は、上記遮光主部および上記遮光補助パターンを含む。本開示において、遮光膜は、透明領域を透過した露光光の位相を180度±45度シフトする位相シフト作用を有するとともに、露光光に対して、1%以上、好ましくは、4%以上の透過率を有する。一方、10%以下、好ましくは7%以下の透過率を有する。上記透過率の具体的範囲としては、1%以上10%以下であり、好ましくは、4%以上7%以下である。
なお、本開示においては、露光光として、j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)のいずれか、またはこれらの波長範囲を含む混合波長の光とすることができる。
3. Light-Shielding Film The light-shielding film in the present disclosure includes the light-shielding main portion and the light-shielding auxiliary pattern. In the present disclosure, the light-shielding film has a phase shift effect of shifting the phase of the exposure light transmitted through the transparent region by 180 degrees ± 45 degrees, and the exposure light is transmitted by 1% or more, preferably 4% or more. have a rate. On the other hand, it has a transmittance of 10% or less, preferably 7% or less. A specific range of the transmittance is 1% or more and 10% or less, preferably 4% or more and 7% or less.
In the present disclosure, as exposure light, any of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm), or mixed wavelength light including these wavelength ranges. can do.
 このような位相シフト作用を有する遮光膜を使用することにより、上述したように、通過した光が急峻な光強度分布を示す。なお、上記透過率は、後述する透明基板の透過率をリファレンス(100%)として測定することができる。また上記平均透過率の測定には、紫外・可視分光光度計(例えば日立U-4000)を用いることができる。紫外・可視分光光度計(日立U-4000)の測定条件を表1にまとめる。 By using a light-shielding film having such a phase-shifting action, the light passing therethrough exhibits a steep light intensity distribution, as described above. The transmittance can be measured using the transmittance of a transparent substrate, which will be described later, as a reference (100%). An ultraviolet/visible spectrophotometer (for example, Hitachi U-4000) can be used for the measurement of the average transmittance. Table 1 summarizes the measurement conditions of the ultraviolet/visible spectrophotometer (Hitachi U-4000).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の場合の透過率は、混合波長の中で最も高い透過率となる波長の値である。 In addition, the transmittance in the case of a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm) is the value of the wavelength with the highest transmittance among the mixed wavelengths. be.
 遮光膜の構成は、露光光の位相を180度±45度シフトする膜厚で上記透過率が得られる材質を選択して単層膜で構成する形態が挙げられる。また、主に位相を180度±45度シフトする透過率の高い材質からなる位相調整層と、主に透過率を決める透過率の低い材質からなる透過率調整層の2層の構成とする形態も挙げられる。 The configuration of the light-shielding film may be a single-layer film formed by selecting a material that provides the above transmittance with a film thickness that shifts the phase of the exposure light by 180°±45°. In addition, a phase adjustment layer made of a material with high transmittance that mainly shifts the phase by 180 degrees ± 45 degrees and a transmittance adjustment layer made of a material with low transmittance that mainly determines the transmittance. is also mentioned.
 遮光膜を単層で構成する場合は、屈折率nが高く(通常1.5以上)、波長λの露光光の位相を180度±45度シフトさせる厚さdで、1%から10%の範囲で所望の透過率が得られる材質を選択する。このような単層で構成される半透明位相シフト膜の材質としては、酸化窒化クロム(CrON)、モリブデンシリサイド窒化物(MoSiN)、モリブデンシリサイド酸化窒化物(MoSiON)、酸化窒化シリコン(SiON)、チタン酸化窒化物(TiON)を例示することが出来、酸素や窒素の含有率を変えて透過率を調整する。 When the light-shielding film is composed of a single layer, the refractive index n is high (usually 1.5 or more), and the thickness d that shifts the phase of the exposure light of wavelength λ by 180° ± 45° is 1% to 10%. Select a material that provides the desired transmittance within the range. Materials for such a semitransparent phase shift film composed of a single layer include chromium oxynitride (CrON), molybdenum silicide nitride (MoSiN), molybdenum silicide oxynitride (MoSiON), silicon oxynitride (SiON), Titanium oxynitride (TiON) can be exemplified, and the transmittance is adjusted by changing the content of oxygen and nitrogen.
 遮光膜は、露光光の位相を180度±45度シフトさせる膜厚が求められ、遮光主部の膜厚d、屈折率n、露光光の波長λと、露光光が遮光主部および遮光補助パターンを通過して生じる位相差Φの間には、Φ=2π(n-1)d/λの関係があり、位相差が反転するのは、Φ=πであるから、位相差が反転する膜厚dは、λ/2(n-1)となる。なお、位相差は180度に限られず、180度±45度の範囲内であれば、十分な位相シフトの効果が得られる。 The light-shielding film is required to have a film thickness that shifts the phase of the exposure light by 180°±45°. There is a relationship of Φ=2π(n−1)d/λ between the phase differences Φ generated through the pattern, and the phase differences are inverted because Φ=π. The film thickness d is λ/2(n−1). The phase difference is not limited to 180 degrees, and a sufficient phase shift effect can be obtained as long as it is within the range of 180 degrees±45 degrees.
 遮光膜を2層で構成する場合は、まず位相調整層の材質として露光波長で屈折率が高く、光透過率も高い材質を選んで位相を反転させる層とし、さらに透過率調整層の材質として露光波長で透過率の低い材質を選び、2層の膜全体として露光光の位相を反転し、透過率が所望の値となる様に各膜厚を調整する。位相調整層の材質としては、酸化窒化クロム(CrON)、酸化フッ化クロム(CrFO)、酸化窒化シリコン(SiON)、酸化窒化モリブデンシリサイド(MoSiON)、チタン酸化窒化物(TiON)が用いられ、透過率調整層としてはクロム(Cr)、窒化クロム(CrN)、タンタル(Ta)、チタン(Ti)が用いられる。半透明位相シフト膜を2層で構成する具体的な材料の組み合わせとしては、位相調整層を酸化窒化クロム(CrON)、透過率調整層を窒化クロム(CrN)とする組み合わせ、位相調整層を酸化フッカクロム(CrFO)、透過率調整層を窒化クロム(CrN)とする組み合わせ、位相調整層を酸化窒化モリブデンシリサイド(MoSiON)、透過率調整層を位相調整層より酸素比率の小さい酸化窒化モリブデンシリサイド(MoSiON)とする組み合わせを例示することが出来る。 When the light-shielding film is composed of two layers, first, a material with a high refractive index at the exposure wavelength and a high light transmittance is selected as a material for the phase adjustment layer, and a layer for inverting the phase is selected. A material having a low transmittance at the exposure wavelength is selected, the phase of the exposure light is inverted for the entire two-layer film, and each film thickness is adjusted so that the transmittance has a desired value. Chromium oxynitride (CrON), chromium oxyfluoride (CrFO), silicon oxynitride (SiON), molybdenum silicide oxynitride (MoSiON), and titanium oxynitride (TiON) are used as materials for the phase adjustment layer. Chromium (Cr), chromium nitride (CrN), tantalum (Ta), and titanium (Ti) are used as the index adjusting layer. A specific combination of materials for forming the semitransparent phase shift film in two layers is a combination of chromium oxynitride (CrON) for the phase adjustment layer and chromium nitride (CrN) for the transmittance adjustment layer, and oxidation of the phase adjustment layer. A combination of chrome fucca (CrFO) and chromium nitride (CrN) for the transmittance adjustment layer, molybdenum oxynitride silicide (MoSiON) for the phase adjustment layer, and molybdenum oxynitride silicide (MoSiON) having a smaller oxygen ratio than the phase adjustment layer for the transmittance adjustment layer. ) can be exemplified.
 本開示においては、具体的には、単層の酸化窒化クロム(CrON)膜を例示できる。 Specifically, in the present disclosure, a single-layer chromium oxynitride (CrON) film can be exemplified.
4.透明基板
 本発明に用いられる透明基板は、上記遮光主部および遮光補助パターンを形成可能なものであれば特に限定されるものではなく、一般的なフォトマスクに用いられる透明基板を使用することができる。透明基板としては、例えばホウ珪酸ガラス、アルミノホウ珪酸ガラス等の光学研磨された低膨張ガラス、石英ガラス、合成石英ガラス、パイレックス(登録商標)ガラス、ソーダライムガラス、ホワイトサファイアなどの可撓性のない透明なリジット材、あるいは、透明樹脂フィルム、光学用樹脂フィルムなどの可撓性を有する透明なフレキシブル材を用いることができる。中でも、石英ガラスは、熱膨脹率の小さい素材であり、寸法安定性および高温加熱処理における特性に優れている。
4. Transparent Substrate The transparent substrate used in the present invention is not particularly limited as long as it can form the light shielding main portion and the light shielding auxiliary pattern, and transparent substrates used in general photomasks can be used. can. Examples of transparent substrates include optically polished low-expansion glass such as borosilicate glass and aluminoborosilicate glass, quartz glass, synthetic quartz glass, Pyrex (registered trademark) glass, soda lime glass, and white sapphire. A transparent rigid material, or a transparent flexible material such as a transparent resin film or an optical resin film can be used. Among them, quartz glass is a material with a small coefficient of thermal expansion, and is excellent in dimensional stability and properties in high-temperature heat treatment.
5.プロキシミティ露光用フォトマスク
 次に、本開示におけるプロキシミティ露光用フォトマスクについて説明する。本発明のプロキシミティ露光用フォトマスクは、上記透明基板上に、上記遮光主部および上記遮光補助パターンを備える遮光膜が形成されたものであれば、特に限定されるものではない。
5. Photomask for Proximity Exposure Next, a photomask for proximity exposure according to the present disclosure will be described. The photomask for proximity exposure of the present invention is not particularly limited as long as a light-shielding film having the light-shielding main portion and the light-shielding auxiliary pattern is formed on the transparent substrate.
 本開示におけるプロキシミティ露光用フォトマスクは、通常、1つまたは複数の開口部が形成された遮光主部と、上記開口部の内側に配置された、1つまたは複数の上述した遮光補助パターンとを有する。本開示におけるプロキシミティ露光用フォトマスクの遮光主部に形成された複数の開口部は、互いに形状、大きさが同一であってもよいし、異なっていてもよい。また、それぞれの開口部の内側に配置される遮光補助パターンも互いに形状、大きさ、開口部における配置位置が同一であってもよいし、異なっていてもよい。 A photomask for proximity exposure according to the present disclosure generally includes a light shielding main portion in which one or more openings are formed, and one or more light shielding auxiliary patterns described above disposed inside the openings. have The plurality of openings formed in the light-shielding main portion of the proximity exposure photomask of the present disclosure may have the same shape and size, or may have different sizes. Further, the auxiliary light shielding patterns arranged inside the respective openings may have the same shape, the same size, and the arrangement positions in the openings, or may be different from each other.
 また、本開示においては、プロキシミティ露光用フォトマスクにおける遮光主部に形成された複数の開口部のうち少なくとも1つが、内側に上述の遮光補助パターンが配置されていればよく、遮光補助パターンが内側に配置されていない開口部を有していてもよい。 Further, in the present disclosure, at least one of the plurality of openings formed in the light-shielding main portion of the photomask for proximity exposure may have the above-described light-shielding auxiliary pattern disposed inside. It may have openings that are not located inside.
 近年の液晶パネルの高精細化や薄型化、タッチパネル機能の付与等の動きを受けて、スペーサーの微細化や耐久性向上に対する要求が高まっており、例えば、第1のフォトスペーサーと、第1のフォトスペーサーより低い(厚みの薄い)第2のフォトスペーサーとを備えるカラーフィルタなどが開発されている。 In recent years, liquid crystal panels have become higher definition and thinner, and the touch panel function has been added. A color filter or the like including a second photospacer that is lower (thinner) than the photospacer has been developed.
 本開示におけるプロキシミティ露光用フォトマスクが、開口部および遮光補助パターンの組み合わせを複数種類含むことによって、または、遮光補助パターンが配置された開口部に加えて遮光補助パターンが配置されていない開口部を含むことによって、1つのマスクで、異なる高さ(厚み)、または異なる寸法(直径)の柱状パターン(例えば、フォトスペーサー)を形成することが出来る。 The proximity exposure photomask in the present disclosure includes a plurality of combinations of openings and light shielding auxiliary patterns, or openings in which light shielding auxiliary patterns are not arranged in addition to openings in which light shielding auxiliary patterns are arranged. By including , it is possible to form columnar patterns (for example, photospacers) with different heights (thicknesses) or different dimensions (diameters) with one mask.
 本発明のプロキシミティ露光用フォトマスクは、特に露光光源を限定するものではないが、露光光源は、例えば、水銀ランプとし、露光光はj線(313nm)、i線(365nm)、h線(405nm)、g線(436nm)のいずれか、またはこれらの波長範囲を含む混合波長の光とすることができる。上述した混合波長の露光光を用いた場合は、透明領域において感光性樹脂層に与える露光エネルギーを大きくすることができ、露光時間を短くすることができるといった利点を有する。 The photomask for proximity exposure of the present invention does not particularly limit the exposure light source, but the exposure light source is, for example, a mercury lamp, and the exposure light is j-line (313 nm), i-line (365 nm), h-line ( 405 nm), g-line (436 nm), or mixed wavelengths including these wavelength ranges. The use of the above-described mixed wavelength exposure light has the advantage that the exposure energy applied to the photosensitive resin layer in the transparent region can be increased and the exposure time can be shortened.
 また、本発明のプロキシミティ露光用フォトマスクは、ネガ型のレジストを用いて、上記開口部に対応する微細な柱状パターンを形成する場合に好適に使用される。具体的には、後述するような、液晶表示装置用カラーフィルタのフォトスペーサーを形成する際に特に有用である。ただし、この場合に限定されず、ポジ型のレジストを用いて、上記開口部に対応する微細な孔を形成する場合にも用いることができる。 Also, the photomask for proximity exposure of the present invention is suitably used when forming a fine columnar pattern corresponding to the opening using a negative resist. Specifically, it is particularly useful when forming a photospacer for a color filter for a liquid crystal display device, which will be described later. However, it is not limited to this case, and can also be used when forming fine holes corresponding to the openings using a positive resist.
B.カラーフィルタの製造方法
 本開示におけるカラーフィルタの製造方法は、カラーフィルタ用透明基板上に、ブラックマトリクスと、着色画素と、フォトスペーサーと、を備えるカラーフィルタの製造方法であって、上述のプロキシミティ露光用フォトマスクを用い、前記遮光主部における前記開口部に対応する柱状パターンを含むフォトスペーサーを形成するフォトスペーサー形成工程を有することを特徴とするカラーフィルタの製造方法である。
B. A method for manufacturing a color filter A method for manufacturing a color filter according to the present disclosure is a method for manufacturing a color filter including a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter. A method for manufacturing a color filter, comprising a photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion using an exposure photomask.
(1)フォトスペーサー形成工程
 本開示におけるフォトスペーサー形成工程は、上記プロキシミティ露光用フォトマスクを用い、上記開口部に対応する柱状パターンを含むフォトスペーサーを形成する工程である。具体的には、ネガ型の感光性樹脂を含有するフォトスペーサー形成用組成物を露光および現像し、上記開口部と同様のパターン状に形成された柱状パターンを含むフォトスペーサーを形成する工程とすることができる。
(1) Photospacer formation step The photospacer formation step in the present disclosure is a step of forming a photospacer including a columnar pattern corresponding to the opening using the proximity exposure photomask. Specifically, a step of exposing and developing a photospacer-forming composition containing a negative photosensitive resin to form a photospacer including a columnar pattern formed in a pattern similar to that of the openings. be able to.
 本工程において使用するフォトスペーサー形成用組成物としては、転写パターン(柱状パターン)以外の領域においては感光しにくいことが好ましく、レジストの解像閾値が位相シフト膜を透過した光の強度以上であるものが好ましい。 The photospacer-forming composition used in this step is preferably less sensitive to light in regions other than the transfer pattern (columnar pattern), and the resolution threshold of the resist is equal to or higher than the intensity of light transmitted through the phase shift film. things are preferred.
 本工程により形成される上記柱状パターンの形状は、通常、円柱状や多角柱状が挙げられる。また上記柱状パターンの下底寸法(直径)は、例えば17μm以下であり、中でも、12μm以下が好ましい。一方、5μm以上が好ましく、中でも8μm以上が好ましい。具体的範囲としては、5μm以上17μm以下の範囲内、特に8μm以上12μm以下の範囲内とされることが好ましい。 The shape of the above-mentioned columnar pattern formed by this process is usually a columnar shape or a polygonal columnar shape. The bottom dimension (diameter) of the columnar pattern is, for example, 17 μm or less, preferably 12 μm or less. On the other hand, 5 µm or more is preferable, and 8 µm or more is particularly preferable. As a specific range, it is preferably in the range of 5 μm or more and 17 μm or less, particularly in the range of 8 μm or more and 12 μm or less.
 また、本工程により形成される上記柱状パターンの高さは、通常、1.0μm以上であり、中でも1.5μm以上が好ましい。一方、通常、4.0μm以下であり、中でも、3.0μm以下が好ましい。具体的範囲としては、通常1.0μm以上4.0μm以下程度、中でも1.5μm以上3.0μm以下程度とされることが好ましい。 In addition, the height of the columnar pattern formed by this step is usually 1.0 μm or more, preferably 1.5 μm or more. On the other hand, it is usually 4.0 μm or less, preferably 3.0 μm or less. A specific range is generally about 1.0 μm to 4.0 μm, preferably about 1.5 μm to 3.0 μm.
 また、本開示のプロキシミティ露光用フォトマスクを用いれば、第1のフォトスペーサーと、第1のフォトスペーサーより低い第2のフォトスペーサーとを備えるカラーフィルタを製造することができる。この場合、本開示におけるプロキシミティ露光用フォトマスクの開口部に対応する転写パターンが、第1のフォトスペーサーおよび第2のフォトスペーサーの少なくともいずれかであればよい。 Further, by using the photomask for proximity exposure of the present disclosure, a color filter including a first photospacer and a second photospacer lower than the first photospacer can be manufactured. In this case, the transfer pattern corresponding to the openings of the proximity exposure photomask in the present disclosure may be at least one of the first photospacer and the second photospacer.
 本工程は、具体的には、ブラックマトリクスと、着色画素とが形成されたカラーフィルタ用透明基板上に、フォトスペーサー形成用ネガ型レジスト組成物を塗布し、乾燥し、マスクを介して露光して露光部分を硬化させ、アルカリ現像液を用いて現像することにより、フォトスペーサーのパターニングを行うことができる。 Specifically, in this step, a negative resist composition for forming a photospacer is applied onto a transparent substrate for a color filter on which a black matrix and colored pixels are formed, dried, and exposed through a mask. The photospacer can be patterned by curing the exposed portion with an alkali developer and developing with an alkaline developer.
 フォトスペーサーは、非表示領域すなわちブラックマトリックスの上方に形成されることが好ましい。 The photospacer is preferably formed above the non-display area, that is, the black matrix.
 (2)その他の工程
 本実施態様のカラーフィルタの製造方法は、上記フォトスペーサー形成工程を有する
ものであれば特に限定されるものではなく、例えば、ブラックマトリクスを形成するブラックマトリクス形成工程や、着色層を形成する着色層形成工程、上記着色層上に透明電極層を形成する透明電極層形成工程等、必要な工程を有していてもよい。これらの各工程については、一般的なカラーフィルタの製造方法における各工程と同様とすることができる。
(2) Other steps The method for producing a color filter according to the present embodiment is not particularly limited as long as it includes the photospacer forming step. It may have necessary steps such as a colored layer forming step of forming a layer and a transparent electrode layer forming step of forming a transparent electrode layer on the colored layer. Each of these steps can be the same as each step in a general color filter manufacturing method.
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 It should be noted that the present disclosure is not limited to the above embodiments. The above embodiment is an example, and any device that has substantially the same configuration as the technical idea described in the claims of the present disclosure and achieves the same effect is the present invention. It is included in the technical scope of the disclosure.
 以下に実施例および比較例を示し、本開示をさらに詳細に説明する。 Examples and comparative examples are shown below to describe the present disclosure in more detail.
(比較例1、実施例1)
 下記のように設定した比較例1および実施例1のフォトマスクに対し、同一光強度時の下底寸法サイズの違いをシミュレーションにより求めた。
 図7(A)に示す、石英ガラスからなる透明基板上に、直径13μmの開口部が形成されたOD値が3より大きい遮光膜を有するバイナリマスクを比較例1のフォトマスクとした。
 図7(B)に示す、石英ガラスからなる透明基板上に、透過率5.2%であり、180度位相シフト膜からなる、直径14μmの開口部が形成された遮光主部31と、開口部の内側に配置された幅2μm、内径2μmのリング状の遮光補助パターン32とが形成されたフォトマスクを実施例1のフォトマスクとした。
(Comparative Example 1, Example 1)
For the photomasks of Comparative Example 1 and Example 1, which were set as follows, the difference in bottom dimension size at the same light intensity was determined by simulation.
As shown in FIG. 7A, a binary mask having a light-shielding film with an OD value of 3 or more and an opening with a diameter of 13 μm formed on a transparent substrate made of quartz glass was used as a photomask of Comparative Example 1.
As shown in FIG. 7B, a light-shielding main portion 31 having a transmittance of 5.2% and an opening having a diameter of 14 μm, which is made of a 180-degree phase shift film, is formed on a transparent substrate made of quartz glass, and an opening. A photomask of Example 1 was used, in which a ring-shaped light shielding auxiliary pattern 32 with a width of 2 μm and an inner diameter of 2 μm was formed inside the portion.
 露光ギャップGとして200μm離れた被露光体に、最大光強度が、比較例1:1.87、実施例1:1.83とほぼ同一となるように、プロキシミティ露光した場合における、被露光体上に形成される光強度分布を、シミュレーションにより得た。結果を図7(C)に示す。なお、上記最大光強度は、光の入射強度を1とした時の値であり、その他の転写条件は、Collimation半角:0.7度、露光波長:j線(313nm)、i線(365nm)、h線(405nm)、およびg線(436nm)の混合波長の光とした。 An object to be exposed at a distance of 200 μm as an exposure gap G is subjected to proximity exposure so that the maximum light intensity is almost the same as Comparative Example 1: 1.87 and Example 1: 1.83. The light intensity distribution formed above was obtained by simulation. The results are shown in FIG. 7(C). The above maximum light intensity is a value when the incident light intensity is 1. Other transfer conditions are Collimation half angle: 0.7 degrees, exposure wavelength: j-line (313 nm), i-line (365 nm). , h-line (405 nm), and g-line (436 nm).
 図7(C)から、比較例1で得られる転写パターンの下底サイズ(図7中Y)は12.61μmであり、実施例1で得られる転写パターンの下底サイズ(図7中X)は9.86μmと算出された(図10(A))。また、スロープ値は比較例1が0.093、実施例1が0.170であり、実施例1では転写パターンの寸法が小さくなり、テーパ角も向上することが確認された。 From FIG. 7C, the bottom size of the transfer pattern obtained in Comparative Example 1 (Y in FIG. 7) is 12.61 μm, and the bottom size of the transfer pattern obtained in Example 1 (X in FIG. 7) is 12.61 μm. was calculated to be 9.86 μm (FIG. 10(A)). The slope value was 0.093 in Comparative Example 1 and 0.170 in Example 1, and it was confirmed that in Example 1, the dimension of the transfer pattern was reduced and the taper angle was also improved.
(比較例2、実施例2)
 下記のように設定した比較例2および実施例2のフォトマスクに対し、同一下底寸法サイズ時のテーパ角の違いをシミュレーションにより求めた。
 図8(A)に示す、石英ガラスからなる透明基板上に、直径8μmの開口部が形成された遮光膜(OD値:3より大)を有するバイナリマスクを比較例2のフォトマスクとした。
 図8(B)に示す、石英ガラスからなる透明基板上に、透過率5.2%であり、180度位相シフト膜からなる、直径14μmの開口部が形成された遮光主部31と、開口部の内側に配置された幅1μm、内径8μmのリング状の遮光補助パターン32aと、幅1μm、内径2μmのリング状の遮光補助パターン32bと、が配置されたフォトマスクを実施例2のフォトマスクとした。
(Comparative Example 2, Example 2)
For the photomasks of Comparative Example 2 and Example 2, which were set as follows, the difference in the taper angle at the same bottom dimension size was determined by simulation.
A binary mask having a light-shielding film (OD value: greater than 3) with an opening of 8 μm in diameter formed on a transparent substrate made of quartz glass as shown in FIG. 8A was used as a photomask of Comparative Example 2.
As shown in FIG. 8B, a light-shielding main portion 31 having a transmittance of 5.2% and an opening having a diameter of 14 μm, which is made of a 180-degree phase shift film, is formed on a transparent substrate made of quartz glass, and an opening. The photomask of Example 2 is provided with a ring-shaped light shielding auxiliary pattern 32a having a width of 1 μm and an inner diameter of 8 μm and a ring-shaped light shielding auxiliary pattern 32b having a width of 1 μm and an inner diameter of 2 μm. and
 露光ギャップGとして200μm離れた被露光体に、得られる転写パターンの下底サイズが比較例2:9.38μm、実施例2:9.28μmとほぼ同一となるように、プロキシミティ露光した場合の、被露光体上に形成される光強度分布を、シミュレーションにより得た。結果を図8(C)に示す。なお、転写条件は、Collimation半角:0.7度、露光波長:j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の光とした。 Proximity exposure was performed on an object to be exposed at a distance of 200 μm as the exposure gap G so that the bottom size of the obtained transfer pattern was almost the same as Comparative Example 2: 9.38 μm and Example 2: 9.28 μm. , the light intensity distribution formed on the exposed body was obtained by simulation. The results are shown in FIG. 8(C). The transfer conditions were: Collimation half angle: 0.7 degrees, Exposure wavelength: Light with a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm).
 図8(C)から、比較例2で得られる最大光強度は、0.39であり、実施例2で得られる最大光強度は1.26であった。また、スロープ値は比較例2が0.05であり、実施例2が0.165であり、テーパ角も向上することが確認された(図10(B))。 From FIG. 8(C), the maximum light intensity obtained in Comparative Example 2 was 0.39, and the maximum light intensity obtained in Example 2 was 1.26. Moreover, the slope value was 0.05 in Comparative Example 2 and 0.165 in Example 2, and it was confirmed that the taper angle was also improved (FIG. 10(B)).
(実施例3)
 図9(B)に示す、石英ガラスからなる透明基板上に、透過率5.2%であり、180度位相シフト膜からなる、直径17μmの開口部が形成された遮光主部31と、開口部の内側に配置された幅1μm、内径13μmのリング状の遮光補助パターン32とが配置されたフォトマスクを実施例3のフォトマスクとした。露光ギャップGを200μm、転写パターン寸法が13.2μmとなるようにプロキシミティ露光した場合の光強度分布を、シミュレーションにより得た。実施例3における最大光強度は2.011であった。転写条件は、Collimation半角:0.7度、露光波長:j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の光とした。
また、露光ギャップを180μmと変更し、上記転写条件でプロキシミティ露光した場合の転写パターン寸法をシミュレーションにより求めた。露光ギャップを200μmから180μmに変更したことによる、転写パターン寸法CDの変化率(ΔCD/ΔGap)を以下の式により算出したところ、0.003であった。
 ΔCD/ΔGap=(CD200-CD180)/(200μm-180μm)
 式中、CD200は露光ギャップ200μm時の転写パターン寸法であり、CD180は露光ギャップ180μm時の転写パターン寸法である。
(Example 3)
As shown in FIG. 9B, a light-shielding main portion 31 having a transmittance of 5.2% and an opening having a diameter of 17 μm, which is made of a 180-degree phase shift film, is formed on a transparent substrate made of quartz glass, and an opening. A photomask of Example 3 was used in which a ring-shaped light shielding auxiliary pattern 32 with a width of 1 μm and an inner diameter of 13 μm was arranged inside the portion. A light intensity distribution was obtained by simulation when proximity exposure was performed with an exposure gap G of 200 μm and a transfer pattern dimension of 13.2 μm. The maximum light intensity in Example 3 was 2.011. The transfer conditions were: Collimation half angle: 0.7 degrees, Exposure wavelength: Light with a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm).
Further, the transfer pattern dimension was obtained by simulation when the exposure gap was changed to 180 μm and the proximity exposure was performed under the above transfer conditions. The change rate (ΔCD/ΔGap) of the transfer pattern dimension CD due to changing the exposure gap from 200 μm to 180 μm was calculated by the following formula and found to be 0.003.
ΔCD/ΔGap=(CD 200 −CD 180 )/(200 μm−180 μm)
In the formula, CD 200 is the dimension of the transferred pattern when the exposure gap is 200 μm, and CD 180 is the dimension of the transferred pattern when the exposure gap is 180 μm.
(比較例3)
 図9(A)に示す、石英ガラスからなる透明基板上に、直径14μmの開口部を有する、OD値が3より大きい遮光膜が形成されたバイナリマスクを比較例3のフォトマスクとした。比較例3のフォトマスクに対し、露光ギャップGを200μm、転写パターンの下底サイズが実施例3とほぼ同じ13.3μmとなるように、実施例3と同様の転写条件でプロキシミティ露光した場合の光強度分布をシミュレーションにより求めた。結果を図9(C)に示す。比較例3における露光ギャップ200μm時の最大光強度は2.128であった。また、露光ギャップのみを180μmに変更した場合におけるシミュレーションにより得られた光強度分布を図9(C)に示す。また、露光ギャップを200μmから180μmに変更したことによる、転写パターン寸法CDの変化率(ΔCD/ΔGap)を上記式により算出した。ΔCD/ΔGapは0.027であった。
 実施例3は比較例3に対して、露光ギャップの変動による転写パターン寸法の変動が小さいことが確認された(図10(C))。
(Comparative Example 3)
As shown in FIG. 9A, the photomask of Comparative Example 3 was a binary mask in which a light-shielding film having an opening with a diameter of 14 μm and an OD value of 3 or more was formed on a transparent substrate made of quartz glass. Proximity exposure was performed on the photomask of Comparative Example 3 under the same transfer conditions as in Example 3 so that the exposure gap G was 200 μm and the size of the bottom of the transfer pattern was 13.3 μm, which was almost the same as in Example 3. was obtained by simulation. The results are shown in FIG. 9(C). The maximum light intensity at an exposure gap of 200 μm in Comparative Example 3 was 2.128. FIG. 9C shows the light intensity distribution obtained by simulation when only the exposure gap is changed to 180 μm. Also, the change rate (ΔCD/ΔGap) of the transfer pattern dimension CD due to changing the exposure gap from 200 μm to 180 μm was calculated by the above formula. ΔCD/ΔGap was 0.027.
It was confirmed that in Example 3, compared with Comparative Example 3, variations in the transfer pattern dimension caused by variations in the exposure gap were smaller (FIG. 10(C)).
(実施例4)
 図11(A)、(B)に示す、第1のフォトスペーサー用および第2のフォトスペーサー用の2種類の開口パターンを有するプロキシミティ露光用フォトマスクに対し、被露光体上に形成される光強度分布を、シミュレーションにより得た。結果を図11(C)に示す。なお、遮光膜3は、透過率5.2%の180度位相シフト膜であり、転写条件は、Collimation半角:0.7度、露光波長:j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の光、露光ギャップ:200μmとした。図11(A)の開口パターンと図11(B)の開口パターンとは、下底寸法11.8μmで同じであり、最大光強度が異なるものが得られた((A):2.62、(B):0.88)。以上により、異なる開口パターンを組み合わせることで、1つのマスクで異なる高さおよびサイズの柱状フォトスペーサー(Photo Spacer)を形成することも出来ることが確認された。
(Example 4)
For proximity exposure photomasks having two types of opening patterns for the first photospacer and the second photospacer shown in FIGS. The light intensity distribution was obtained by simulation. The results are shown in FIG. 11(C). The light-shielding film 3 is a 180-degree phase shift film with a transmittance of 5.2%. Mixed wavelength light of line (405 nm) and g line (436 nm), exposure gap: 200 μm. The opening pattern of FIG. 11(A) and the opening pattern of FIG. 11(B) have the same bottom dimension of 11.8 μm, and different maximum light intensities were obtained ((A): 2.62, (B): 0.88). From the above, it was confirmed that by combining different opening patterns, it is possible to form columnar photospacers of different heights and sizes with one mask.
 なお、本開示においては、例えば、以下の発明が提供される。 The present disclosure provides, for example, the following inventions.
[1]
 プロキシミティ露光用のフォトマスクであって、
 透明基板と、前記透明基板上に配置された遮光膜とを有し、
 前記遮光膜は、略多角形または略円形の開口部が形成された遮光主部と、前記遮光主部の前記開口部の内側に配置された、前記遮光主部と間隔をあけて形成された遮光補助パターンと、を有し、
 前記遮光膜は、露光光に対し位相を180度±45度シフトする位相シフト作用を有するとともに、前記露光光の透過率が1%以上10%以下となる位相シフト膜である、プロキシミティ露光用フォトマスク。
[2]
 前記プロキシミティ露光用フォトマスクは、同じ下底サイズの転写パターンの形成を目的とする基準フォトマスクに対して、通過した光の光強度分布のピークの立ち上がり角度が大きくなるように前記遮光補助パターンが配置されている、[1]に記載のプロキシミティ露光用フォトマスク。
[3]
 前記開口部の直径が、10μm以上20μm以下である、[1]または[2]に記載のプロキシミティ露光用フォトマスク。
[4]
 前記露光光は、j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の光である、[1]から[3]までのいずれかに記載のプロキシミティ露光用フォトマスク。
[5]
 カラーフィルタ用透明基板上に、ブラックマトリクスと、着色画素と、フォトスペーサーと、を備えるカラーフィルタの製造方法であって、
 [1]から[4]までのいずれかに記載のプロキシミティ露光用フォトマスクを用い、前記遮光主部における前記開口部に対応する柱状パターンを含むフォトスペーサーを形成するフォトスペーサー形成工程を有することを特徴とするカラーフィルタの製造方法。
[1]
A photomask for proximity exposure,
Having a transparent substrate and a light shielding film disposed on the transparent substrate,
The light shielding film includes a light shielding main portion having a substantially polygonal or circular opening, and a light shielding main portion disposed inside the opening of the light shielding main portion and spaced apart from the main light shielding portion. and a light shielding auxiliary pattern,
For proximity exposure, the light shielding film is a phase shift film having a phase shift action of shifting the phase of the exposure light by 180 degrees ± 45 degrees and having a transmittance of the exposure light of 1% or more and 10% or less. photo mask.
[2]
In the proximity exposure photomask, the light shielding assist pattern is arranged so that the rising angle of the peak of the light intensity distribution of the light that passes through is larger than that of the reference photomask intended to form a transfer pattern of the same bottom size. is disposed, the photomask for proximity exposure according to [1].
[3]
The photomask for proximity exposure according to [1] or [2], wherein the opening has a diameter of 10 μm or more and 20 μm or less.
[4]
The exposure light according to any one of [1] to [3], wherein the exposure light is light of a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm). Photomask for proximity exposure.
[5]
A method for manufacturing a color filter comprising a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter, comprising:
Using the proximity exposure photomask according to any one of [1] to [4], a photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion. A method for manufacturing a color filter, characterized by:
 1 … プロキシミティ露光用フォトマスク
 2 … 透明基板
 3 … 遮光膜
 31… 遮光主部
 32… 遮光補助パターン
DESCRIPTION OF SYMBOLS 1... Photomask for proximity exposure 2... Transparent substrate 3... Light-shielding film 31... Light-shielding main part 32... Light-shielding auxiliary pattern

Claims (5)

  1.  プロキシミティ露光用のフォトマスクであって、
     透明基板と、前記透明基板上に配置された遮光膜とを有し、
     前記遮光膜は、略多角形または略円形の開口部が形成された遮光主部と、前記遮光主部の前記開口部の内側に配置された、前記遮光主部と間隔をあけて形成された遮光補助パターンと、を有し、
     前記遮光膜は、露光光に対し位相を180度±45度シフトする位相シフト作用を有するとともに、前記露光光の透過率が1%以上10%以下となる位相シフト膜である、プロキシミティ露光用フォトマスク。
    A photomask for proximity exposure,
    Having a transparent substrate and a light shielding film disposed on the transparent substrate,
    The light shielding film includes a light shielding main portion having a substantially polygonal or circular opening, and a light shielding main portion disposed inside the opening of the light shielding main portion and spaced apart from the main light shielding portion. and a light shielding auxiliary pattern,
    For proximity exposure, the light shielding film is a phase shift film having a phase shift action of shifting the phase of the exposure light by 180 degrees ± 45 degrees and having a transmittance of the exposure light of 1% or more and 10% or less. photomask.
  2.  前記プロキシミティ露光用フォトマスクは、同じ下底サイズの転写パターンの形成を目的とする基準フォトマスクに対して、通過した光の光強度分布のピークの立ち上がり角度が大きくなるように前記遮光補助パターンが配置されている、請求項1に記載のプロキシミティ露光用フォトマスク。 In the proximity exposure photomask, the light shielding assist pattern is arranged so that the rising angle of the peak of the light intensity distribution of the light that passes through is larger than that of the reference photomask intended to form a transfer pattern of the same bottom size. 2. The photomask for proximity exposure according to claim 1, wherein is arranged.
  3.  前記開口部の直径が、10μm以上20μm以下である、請求項1に記載のプロキシミティ露光用フォトマスク。 The photomask for proximity exposure according to claim 1, wherein the opening has a diameter of 10 µm or more and 20 µm or less.
  4.  前記露光光は、j線(313nm)、i線(365nm)、h線(405nm)およびg線(436nm)の混合波長の光である、請求項1に記載のプロキシミティ露光用フォトマスク。 The photomask for proximity exposure according to claim 1, wherein the exposure light is light of a mixed wavelength of j-line (313 nm), i-line (365 nm), h-line (405 nm) and g-line (436 nm).
  5.  カラーフィルタ用透明基板上に、ブラックマトリクスと、着色画素と、フォトスペーサーと、を備えるカラーフィルタの製造方法であって、
     請求項1から請求項4までのいずれかの請求項に記載のプロキシミティ露光用フォトマスクを用い、前記遮光主部における前記開口部に対応する柱状パターンを含むフォトスペーサーを形成するフォトスペーサー形成工程を有することを特徴とするカラーフィルタの製造方法。
    A method for manufacturing a color filter comprising a black matrix, colored pixels, and photospacers on a transparent substrate for a color filter, comprising:
    A photospacer forming step of forming a photospacer including a columnar pattern corresponding to the opening in the light shielding main portion, using the proximity exposure photomask according to any one of claims 1 to 4. A method for manufacturing a color filter, comprising:
PCT/JP2022/047055 2021-12-22 2022-12-21 Method for manufacturing color filter and photomask for proximity exposure WO2023120566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021208201A JP2023092901A (en) 2021-12-22 2021-12-22 Photomask for proximity exposure and manufacturing method of color filter
JP2021-208201 2021-12-22

Publications (1)

Publication Number Publication Date
WO2023120566A1 true WO2023120566A1 (en) 2023-06-29

Family

ID=86902618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047055 WO2023120566A1 (en) 2021-12-22 2022-12-21 Method for manufacturing color filter and photomask for proximity exposure

Country Status (3)

Country Link
JP (1) JP2023092901A (en)
TW (1) TW202340761A (en)
WO (1) WO2023120566A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148300A (en) * 2004-12-21 2007-06-14 Dainippon Printing Co Ltd Patterning method and original mask for proximity exposure to be used for the method, and color filter substrate
JP2007256880A (en) * 2006-03-27 2007-10-04 Toppan Printing Co Ltd Photomask correcting method, photomask, exposure method, and aligner
JP2008026668A (en) * 2006-07-21 2008-02-07 Dainippon Printing Co Ltd Gradation mask
JP2013101361A (en) * 2006-07-21 2013-05-23 Dainippon Printing Co Ltd Manufacturing method of color filter
WO2014128794A1 (en) * 2013-02-22 2014-08-28 パナソニック株式会社 Photomask, and method for creating pattern data thereof, and pattern forming method and processing method using photomask

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148300A (en) * 2004-12-21 2007-06-14 Dainippon Printing Co Ltd Patterning method and original mask for proximity exposure to be used for the method, and color filter substrate
JP2007256880A (en) * 2006-03-27 2007-10-04 Toppan Printing Co Ltd Photomask correcting method, photomask, exposure method, and aligner
JP2008026668A (en) * 2006-07-21 2008-02-07 Dainippon Printing Co Ltd Gradation mask
JP2013101361A (en) * 2006-07-21 2013-05-23 Dainippon Printing Co Ltd Manufacturing method of color filter
WO2014128794A1 (en) * 2013-02-22 2014-08-28 パナソニック株式会社 Photomask, and method for creating pattern data thereof, and pattern forming method and processing method using photomask

Also Published As

Publication number Publication date
TW202340761A (en) 2023-10-16
JP2023092901A (en) 2023-07-04

Similar Documents

Publication Publication Date Title
TWI584058B (en) Large-size phase shift mask and producing method of same
TWI541588B (en) Photo mask for manufacturing a display device and pattern transfer method
TWI635353B (en) Photomask and method of manufacturing a display device
TWI475316B (en) A method of manufacturing a mask and a mask, and a method of transferring the pattern
KR101624436B1 (en) Large phase shift mask and method for manufacturing phase shift mask
TWI621907B (en) Photomask, method of manufacturing a photomask, photomask blank and method of manufacturing a display device
JP6282847B2 (en) Photomask and method of manufacturing substrate using the photomask
WO2023120566A1 (en) Method for manufacturing color filter and photomask for proximity exposure
JPH06301192A (en) Photo-mask
TWI721247B (en) Photomask for use in manufacturing a display device and method of manufacturing a display device
JP7080070B2 (en) Manufacturing method of photomask and display device
TWI495929B (en) Method of manufacturing a photomask, pattern transfer method and method of manufacturing a display device
KR100659782B1 (en) Exposure Method and Attenuated Phase Shift Mask
JP2021103338A (en) Photomask and manufacturing method of display device
JP2009069388A (en) Photomask for proximity exposure and method for manufacturing color filter
JP2015200719A (en) Phase shift mask and method for manufacturing the same
JP2010175697A (en) Concentration distribution mask
JPH118179A (en) Pattern forming method
JPH1115133A (en) Pattern forming method
CN113406857A (en) Photomask and method for manufacturing display device
JP2012083400A (en) Density distribution mask
CN117234028A (en) Transfer mask and method for manufacturing display device
TW202131091A (en) Photomask, method of manufacturing a photomask, method of manufacturing a device for a display unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911268

Country of ref document: EP

Kind code of ref document: A1