JPH118179A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPH118179A
JPH118179A JP9159496A JP15949697A JPH118179A JP H118179 A JPH118179 A JP H118179A JP 9159496 A JP9159496 A JP 9159496A JP 15949697 A JP15949697 A JP 15949697A JP H118179 A JPH118179 A JP H118179A
Authority
JP
Japan
Prior art keywords
pattern
main pattern
transparent
main
translucent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9159496A
Other languages
Japanese (ja)
Inventor
Katsuya Hayano
勝也 早野
Norio Hasegawa
昇雄 長谷川
Akira Imai
彰 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9159496A priority Critical patent/JPH118179A/en
Publication of JPH118179A publication Critical patent/JPH118179A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems

Abstract

PROBLEM TO BE SOLVED: To prevent a pattern from being deformed by a method wherein a light source is changed in form, and a transparent auxiliary pattern where the phase difference of a transmitted light is equal to that of a transparent region is arranged at a main pattern which is to be projected. SOLUTION: A region 72 semitransparent to an exposure light and a transparent region to become a main pattern 73 are included, the semitransparent region 72 is so regulated as to reverse a phase difference between light which passes through the semitransparent region 72 and another light which passes through the transparent region, and the main pattern 73 is recurrently arranged. The recurrent pitch of the main pattern 73 is set 3.2 or less times as large as the size of the main pattern 73. Furthermore, an auxiliary pattern 74 which is a transparent auxiliary aperture and whose one side is smaller in size than the resolution limit of the projection optical system of a projection aligner is arranged so as to correct the main pattern 73 on form. By this setup, a fine pattern can be prevented from being deformed, and a hole pattern can be arranged high in density with an enough margin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置などの製
造に用いるホトマスク、特に照明光の位相を変える処理
を施したホトマスクの構造に関し、特に転写するパタン
の形状補正に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask used for manufacturing a semiconductor device or the like, and more particularly to a photomask having a process of changing the phase of illumination light, and more particularly to correcting the shape of a pattern to be transferred.

【0002】[0002]

【従来の技術】マスクパタンを転写する露光装置の解像
力を向上させる従来技術のひとつとして、特開平04−
136854では単一透明パタンの解像度向上手段とし
て、上記単一パタン周囲を半透明にして、すなわち従来
型マスクの遮光部を半透明にし、上記半透明部を通過す
るわずかな光と透明パタンを通過する光の位相を反転さ
せるようにしている。すなわちパタンを転写するレジス
トの感度以下の光を半透明膜から通過させ、この光と透
明パタンを通過してきた光の位相が反転するようにし
た。半透明膜を通過した光は主パタンを通過してきた光
に対して位相が反転しているため、その境界部で位相が
反転し、境界部の光強度が0に近づく。これにより、相
対的に透明パタンを通過した光の強度とパタン境界部の
光強度の比は大きくなり、従来法に比べコントラストの
高い光強度分布が得られる。このマスク構造は、従来の
遮光膜を位相反転機能をもつ半透明膜に変更するだけで
実現でき、マスク製作が簡単であることが特徴である。
また周期的に配置されたパタンの焦点深度向上手段とし
て、特開昭61−91662に示すような円環状透明部
を持つ特殊絞りを用いた露光装置を用いてパタンを形成
する方法がある。この露光装置を用いた場合、周期性を
持ったパタンの焦点深度向上が可能である。
2. Description of the Related Art As one of conventional techniques for improving the resolution of an exposure apparatus for transferring a mask pattern, Japanese Patent Application Laid-Open No.
In 136854, as a means for improving the resolution of a single transparent pattern, the periphery of the single pattern is made translucent, that is, the light shielding portion of the conventional mask is made translucent, and a small amount of light passing through the translucent portion and a transparent pattern are passed. The phase of the light is inverted. That is, light less than the sensitivity of the resist for transferring the pattern is passed through the translucent film, and the phase of this light and the light passing through the transparent pattern are inverted. Since the light that has passed through the translucent film has a phase inverted with respect to the light that has passed through the main pattern, the phase is inverted at the boundary, and the light intensity at the boundary approaches zero. As a result, the ratio of the intensity of light that has passed through the transparent pattern to the intensity of light at the boundary of the pattern becomes relatively large, and a light intensity distribution with higher contrast than that of the conventional method can be obtained. This mask structure can be realized only by changing the conventional light-shielding film to a translucent film having a phase inversion function, and is characterized in that the mask can be easily manufactured.
As a means for improving the depth of focus of a periodically arranged pattern, there is a method of forming a pattern using an exposure apparatus using a special stop having an annular transparent portion as disclosed in Japanese Patent Application Laid-Open No. 61-91662. When this exposure apparatus is used, it is possible to improve the depth of focus of a pattern having periodicity.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
得られる投影像では、形成するパタンのピッチが小さい
場合にパタンの形状が変形し(丸が楕円になる等)問題
である。このパタンの変形により、実効的な焦点深度が
低下し、良好なパタン形成の障害となることが問題とな
っていた。
In the projection image obtained in the above-mentioned prior art, there is a problem that the pattern shape is deformed (for example, a circle becomes an ellipse) when the pitch of the pattern to be formed is small. Due to the deformation of the pattern, there has been a problem that the effective depth of focus is reduced, which becomes an obstacle to formation of a good pattern.

【0004】本発明の目的は、パタンの変形を防止し、
より大きなリソグラフィプロセスの余裕を得ることにあ
る。
[0004] It is an object of the present invention to prevent pattern deformation.
The purpose is to have a larger lithography process margin.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では光源形状を変更し、且つ投影する主パタ
ンに、透過光の位相差が透明領域と同じでかつ透明な補
助パタンを配置した。すなわち、斜入射照明法を用い、
周期性のあるパタンの形成が容易である事を利用し、周
期性のない方向に補助透明パタンを配置したマスクを用
いる。
In order to achieve the above object, according to the present invention, a transparent auxiliary pattern having the same phase difference of transmitted light as a transparent region is used as a main pattern for changing a light source shape and projecting. Placed. That is, using the oblique incidence illumination method,
Utilizing the fact that a periodic pattern is easily formed, a mask having an auxiliary transparent pattern arranged in a non-periodic direction is used.

【0006】具体的には、少なくとも露光光に対して半
透明な領域と主パタンとなる透明な領域を含み、前記半
透明な領域は前記半透明な領域と前記透明な領域を通過
する光の位相差が反転するように調整され、前記主パタ
ンは繰り返し配置されており、前記主パタンの繰り返し
ピッチは前記ホトマスク主面上の水平方向と垂直方向で
異なっており、何れかの方向の繰り返しピッチが前記主
パタンの大きさの3.2倍以下に配置され、前記基板に転
写される前記主パタンの形状を補正するために少なくと
も一辺の大きさが前記投影露光装置の投影光学系の解像
限界以下の透明な補助開孔部が配置されていることを特
徴とするホトマスクやそれを用いたパタン形成方法によ
り達成される。
[0006] More specifically, the translucent area includes at least a translucent area for exposure light and a transparent area serving as a main pattern, and the translucent area includes the translucent area and the light passing through the transparent area. The phase difference is adjusted so as to be inverted, the main pattern is repeatedly arranged, and the repetition pitch of the main pattern is different in the horizontal direction and the vertical direction on the main surface of the photomask, and the repetition pitch in any direction is different. Is arranged 3.2 times or less of the size of the main pattern, the size of at least one side to correct the shape of the main pattern transferred to the substrate is not more than the resolution limit of the projection optical system of the projection exposure apparatus And a pattern forming method using the photomask, wherein the transparent auxiliary opening is disposed.

【0007】なお、ここでは半透明とは光の透過率が2
5%以下、望ましくは5%以下の状態をいう。
[0007] Here, translucent means that light transmittance is 2
5% or less, preferably 5% or less.

【0008】[0008]

【発明の実施の形態】主パタンが透明領域で形成されて
いる場合の、通常マスクの実施例を図1で説明する。図
1(a)は従来法のマスクの平面図であり、図1(b)
はマスクの断面図である。11はガラス基板、12は半透明
位相シフト膜、13は透明領域で形成される主パタンであ
る。半透明位相シフト膜12は、クロムの酸窒化膜(CrON
膜)を用いた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a normal mask when a main pattern is formed of a transparent region will be described with reference to FIG. FIG. 1A is a plan view of a conventional mask, and FIG.
Is a cross-sectional view of the mask. 11 is a glass substrate, 12 is a translucent phase shift film, and 13 is a main pattern formed in a transparent region. The translucent phase shift film 12 is a chromium oxynitride film (CrON
Membrane) was used.

【0009】また、半透明位相シフト膜12の露光光に対
する透過率は4%とした。この半透明位相シフト膜12の
厚さはこの膜のある領域と無い領域とを透過した光の位
相が互いにほぼ反転するような厚さに設定される。なお
ここでは半透明膜にCrON膜使用したがこれに限らない。
CrO、CrN、MoSiO、MoSiONなど、あるいはSiO2等の透明
膜との多層膜など、半透明部と透明部と通過する光の位
相がほぼ反転していればよく、通常の半透明位相シフト
マスク構造で良い。
The transmittance of the translucent phase shift film 12 for exposure light is 4%. The thickness of the translucent phase shift film 12 is set to a thickness such that the phases of light transmitted through a region where the film is present and a region where the film is not present are substantially reversed to each other. Although the CrON film is used here as the translucent film, the invention is not limited to this.
Normal translucent phase shift mask structure, as long as the phase of light passing through the translucent part and the transparent part, such as a multilayer film of a transparent film such as CrO, CrN, MoSiO, MoSiON, or SiO2, is almost reversed. Is good.

【0010】図1(c)に示すようにこのマスクを通過
した光の振幅分布は、光透過部である主パタン13を通過
した光が正の符号であるのに対し、半透明位相シフト膜
12を通過した光の位相は反転し負の符号となる。この光
をレンズを通しウエハ上に投影すると、図1(d)に示
すように光透過部である主パタン13と半透明位相シフト
膜12の境界で位相が反転しているためその直下で光強度
はほぼ0となる。そのため光強度の広がりが抑えられ、
コントラストの高い微細なパタンが形成できる。
As shown in FIG. 1C, the amplitude distribution of the light passing through the mask is such that the light passing through the main pattern 13 which is a light transmitting portion has a positive sign, while the translucent phase shift film
The phase of the light passing through 12 is inverted and becomes a negative sign. When this light is projected onto the wafer through a lens, the light is inverted immediately below the boundary between the main pattern 13 and the translucent phase shift film 12, which are light transmitting portions, as shown in FIG. The intensity is almost zero. Therefore, the spread of light intensity is suppressed,
A fine pattern with high contrast can be formed.

【0011】従来の方法を、図2〜図6を用いて説明す
る。図2(a)は従来法のマスクの平面図であり、図2
(b)は非連続方向A−A’の、図2(d)は連続方向
B−B‘のマスク断面図である。21はガラス基板、22は
半透明位相シフト膜、23は透明領域で形成される主パタ
ンである。半透明位相シフト膜22は、CrON膜を用いた。
また、半透明位相シフト膜22の露光光に対する透過率は
4%とした。なおここでは半透明膜にCrON膜を使用した
がこれに限らない。CrO、CrN、MoSiO、MoSiONなど、あ
るいはSiO2等の透明膜との多層膜など、半透明部と透明
部と通過する光の位相がほぼ反転していればよく、通常
の半透明位相シフトマスク構造で良い。図2(c)は非
連続方向A−A‘の光強度分布、図2(e)は連続方向
B−B’の光強度分布である。非連続方向では周期性が
なく、孤立に近いことから半透明位相シフトマスクの効
果が十分得られ、良好な光強度のプロファイルが得られ
る。しかし図2(d)に示す連続方向の光強度分布では
小さいピッチでパタンが配置されていることから、半透
明位相シフトマスクの効果が十分得られず、光強度のプ
ロファイルが劣化しており問題である。この条件で主パ
タン23の連続方向の転写パタン寸法を0.24μmとした時
の、主パタン23のピッチPと転写パタンの非連続方向寸
法の関係を図3に示す。ここでパタンの転写には、露光
波長λ=0.248μm、レンズの開口数NA=0.55のステッ
パを用い、照明条件は図3(b)に示す様なσ0.3の通
常照明を用いた。また半透明膜の透過率は透明部の透過
率を100%とした時4%、透明部と半透明部の位相差が1
80°、転写する主パタン23に該る光透過部の設計寸法W
を0.30μm角(投影露光光学系の倍率が1/5なので、
マスク上では1.5μm角)とした。主パタン23のピッチP
がほぼP≧0.75μmの範囲では、十分主パタン同士が離
れているため、転写パタンの非連続方向寸法と連続方向
の寸法差は十分小さい。主パタン同士の干渉効果により
主パタン23のピッチPがほぼ0.52<P<0.75μmの範囲
で転写パタンの非連続方向寸法が大きくなり、また主パ
タン23のピッチPがほぼP<0.52μmの範囲で転写パタ
ンの連続方向寸法が大きくなる楕円形状となってしまい
問題である。主パタン23のピッチP=0.48μmパタン
の、転写パタンの焦点深度を図4に示す。非連続方向と
連続方向の寸法差は約0.03μmと大きく、目標パタン寸
法の約13%の寸法差であり問題である。また寸法変動許
容量を目標寸法0.24μm±10%とすると、焦点深度は幅
で約0.6μmしか得られない。
A conventional method will be described with reference to FIGS. FIG. 2A is a plan view of a conventional mask, and FIG.
2B is a cross-sectional view of the mask in the discontinuous direction AA ′, and FIG. 2D is a cross-sectional view of the mask in the continuous direction BB ′. 21 is a glass substrate, 22 is a translucent phase shift film, and 23 is a main pattern formed in a transparent region. As the translucent phase shift film 22, a CrON film was used.
The transmissivity of the translucent phase shift film 22 to the exposure light was 4%. In this case, the CrON film is used as the translucent film, but it is not limited to this. Normal translucent phase shift mask structure, as long as the phase of light passing through the translucent part and the transparent part, such as a multilayer film of a transparent film such as CrO, CrN, MoSiO, MoSiON, or SiO2, is almost reversed. Is good. FIG. 2C shows the light intensity distribution in the discontinuous direction AA ′, and FIG. 2E shows the light intensity distribution in the continuous direction BB ′. Since there is no periodicity in the non-continuous direction and it is almost isolated, the effect of the translucent phase shift mask can be sufficiently obtained, and a good light intensity profile can be obtained. However, in the light intensity distribution in the continuous direction shown in FIG. 2D, since the patterns are arranged at a small pitch, the effect of the translucent phase shift mask cannot be sufficiently obtained, and the light intensity profile is deteriorated. It is. FIG. 3 shows the relationship between the pitch P of the main pattern 23 and the non-continuous dimension of the transfer pattern when the transfer pattern size in the continuous direction of the main pattern 23 is 0.24 μm under these conditions. Here, the pattern was transferred by using a stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA = 0.55 of the lens, and using the normal illumination of σ0.3 as shown in FIG. 3B. The transmittance of the translucent film is 4% when the transmittance of the transparent portion is 100%, and the phase difference between the transparent portion and the translucent portion is 1%.
80 °, design dimension W of light transmitting portion corresponding to main pattern 23 to be transferred
To 0.30 μm square (because the magnification of the projection exposure optical system is 1/5,
1.5 μm square on a mask). Pitch P of main pattern 23
In the range of approximately P ≧ 0.75 μm, the main patterns are sufficiently separated from each other, so that the difference between the non-continuous direction and the continuous direction of the transfer pattern is sufficiently small. Due to the interference effect between the main patterns, the dimension of the transfer pattern in the discontinuous direction increases when the pitch P of the main pattern 23 is approximately 0.52 <P <0.75 μm, and the pitch P of the main pattern 23 is approximately P <0.52 μm. Thus, the transfer pattern becomes an elliptical shape in which the dimension in the continuous direction becomes large, which is a problem. FIG. 4 shows the focal depth of the transfer pattern when the pitch P of the main pattern 23 is 0.48 μm. The dimension difference between the discontinuous direction and the continuous direction is as large as about 0.03 μm, which is a problem because it is about 13% of the target pattern dimension. Further, when the allowable size variation is set to the target size of 0.24 μm ± 10%, the depth of focus can be obtained only about 0.6 μm in width.

【0012】一方向に小さいピッチで配置してあるパタ
ンを形成する従来の方法を、図5及び図6に示す。図5
に周期パタンで焦点深度向上効果のある、斜入射照明法
を併用した場合を説明する。図5(a)はマスクの平面
図であり、図5(b)は非連続方向A−A’の、図5
(d)は連続方向B−B‘のマスク断面図である。51は
ガラス基板、52は半透明位相シフト膜、53は透明領域で
形成される主パタンである。半透明位相シフト膜52は、
CrON膜を用いた。また、半透明位相シフト膜22の露光光
に対する透過率は4%とした。なおここでは半透明膜に
CrON膜を使用したがこれに限らない。CrO、CrN、MoSi
O、MoSiONなど、あるいはSiO2等の透明膜との多層膜な
ど、半透明部と透明部と通過する光の位相がほぼ反転し
ていればよく、通常の半透明位相シフトマスク構造で良
い。図5(c)は非連続方向A−A‘の光強度分布、図
5(e)は連続方向B−B’の光強度分布である。非連
続方向では周期性がなく斜入射照明法の効果が得られな
いため、光強度のプロファイルは劣下している。しかし
図5(d)に示す連続方向の光強度分布では、周期性を
持ってパタンが配置されていることから、斜入射照明法
の効果によって良好な光強度コントラストが得られる。
この条件で得られる主パタン53のピッチP=0.48μmパ
タンの、転写パタンの焦点深度を図6(a)に示す。図
6(b)に示すような斜入射照明法の1つである輪帯照
明法を用いた場合にも連続方向に長いパタンが形成さ
れ、転写パタンの連続方向と非連続方向の寸法差は約0.
01μmで形成される。この寸法差は通常照明法を用いた
場合の1/3程度であり小さいが、目標寸法の約4%の
変動であり、プロセス裕度を低下させている。また寸法
変動許容量を目標寸法0.24μm±10%とすると、焦点深
度は幅で約1.05μmが得られ、通常照明法を用いた場合
の約1.8倍の焦点深度が得られる。なお、光源形状を四
重極形状の照明法を用いた場合においても、ほぼ同様の
結果が得られた。
A conventional method for forming patterns arranged at a small pitch in one direction is shown in FIGS. FIG.
The case where the oblique incidence illumination method, which has a periodic pattern and has the effect of improving the depth of focus, is used together will be described. FIG. 5A is a plan view of the mask, and FIG. 5B is a plan view of the mask in the discontinuous direction AA ′.
(D) is a cross-sectional view of the mask in the continuous direction BB '. 51 is a glass substrate, 52 is a translucent phase shift film, and 53 is a main pattern formed in a transparent region. The translucent phase shift film 52
A CrON film was used. The transmissivity of the translucent phase shift film 22 to the exposure light was 4%. In this case, the translucent film
Although a CrON film was used, it is not limited to this. CrO, CrN, MoSi
It is only necessary that the phase of light passing through the translucent portion and the transparent portion, such as a multilayer film of a transparent film such as O, MoSiON, or SiO2, be substantially inverted, and a normal translucent phase shift mask structure may be used. FIG. 5C shows the light intensity distribution in the discontinuous direction AA ′, and FIG. 5E shows the light intensity distribution in the continuous direction BB ′. In the discontinuous direction, since there is no periodicity and the effect of the oblique incidence illumination method cannot be obtained, the light intensity profile is inferior. However, in the light intensity distribution in the continuous direction shown in FIG. 5D, since the patterns are arranged with periodicity, good light intensity contrast can be obtained by the effect of the oblique illumination method.
FIG. 6A shows the depth of focus of the transfer pattern when the pitch P of the main pattern 53 obtained under this condition is 0.48 μm. Even when the annular illumination method, which is one of the oblique incident illumination methods as shown in FIG. 6B, is used, a long pattern is formed in the continuous direction, and the dimensional difference between the continuous direction and the discontinuous direction of the transfer pattern is small. About 0.
It is formed at 01 μm. This dimensional difference is as small as about 1/3 of the case where the normal illumination method is used, but it is a fluctuation of about 4% of the target dimension, which lowers the process margin. When the allowable size variation is set to the target dimension of 0.24 μm ± 10%, the depth of focus is about 1.05 μm in width, and the depth of focus is about 1.8 times as large as that obtained by using the normal illumination method. It should be noted that substantially the same results were obtained when the quadrupole illumination method was used as the light source shape.

【0013】本発明の原理の説明を図7に、実施例を図
8及び図9に示す。本発明では図7(a)に示すよう
に、主パタン73の配置ピッチが大きな非連続方向に、ウ
エハ上に転写しない主パタンと同じ位相差の透明補助パ
タン74を配置した。図7(b)は非連続方向A−A‘の
マスク断面図であり、図7(d)は連続方向B−B’の
マスク断面図である。71はガラス基板、72は半透明位相
シフト膜、73は透明領域で形成される主パタンである。
半透明位相シフト膜72は、CrON膜を用いた。また、半透
明位相シフト膜72の露光光に対する透過率は4%とし
た。なおここでは半透明膜にCrON膜を使用したがこれに
限らない。CrO、CrN、MoSiO、MoSiONなど、あるいはSiO
2等の透明膜との多層膜など、半透明部と透明部と通過
する光の位相がほぼ反転していればよく、通常の半透明
位相シフトマスク構造で良い。図7(c)は非連続方向
の光強度分布、図7(e)は連続方向の光強度分布であ
る。非連続方向においても補助パタンを配置することに
より、パタンは周期的に配置されたことになり斜入射照
明法による効果が得られ、光強度は急峻なプロファイル
が得られる。図7(d)に示す連続方向の光強度分布で
は周期性をもってパタンが配置されていることから、斜
入射照明法の効果によって良好な光強度コントラストが
得られる。この条件でパタンを形成する事により、連続
方向と非連続方向の両方向で、良好なコントラストが得
られる。また主パタンの配置ピッチは、図3に示したよ
うに干渉の効果が得られる、転写パタン寸法の約3.2倍
以下の場合に本発明の効果が得られる。
FIG. 7 shows the principle of the present invention, and FIGS. 8 and 9 show embodiments thereof. In the present invention, as shown in FIG. 7A, a transparent auxiliary pattern 74 having the same phase difference as the main pattern not transferred onto the wafer is arranged in a discontinuous direction in which the arrangement pitch of the main pattern 73 is large. FIG. 7B is a cross-sectional view of the mask in the discontinuous direction AA ′, and FIG. 7D is a cross-sectional view of the mask in the continuous direction BB ′. 71 is a glass substrate, 72 is a translucent phase shift film, and 73 is a main pattern formed in a transparent region.
As the translucent phase shift film 72, a CrON film was used. The transmissivity of the translucent phase shift film 72 to the exposure light was 4%. In this case, the CrON film is used as the translucent film, but it is not limited to this. CrO, CrN, MoSiO, MoSiON, etc., or SiO
It is sufficient that the phase of light passing through the translucent portion and the transparent portion, such as a multilayer film of a transparent film such as a second, is substantially inverted, and a normal translucent phase shift mask structure may be used. FIG. 7C shows a light intensity distribution in a discontinuous direction, and FIG. 7E shows a light intensity distribution in a continuous direction. By arranging the auxiliary patterns even in the non-continuous direction, the patterns are periodically arranged, the effect of the oblique incidence illumination method is obtained, and a steep light intensity profile is obtained. In the light intensity distribution in the continuous direction shown in FIG. 7D, since the patterns are arranged with a periodicity, a good light intensity contrast can be obtained by the effect of the oblique illumination method. By forming a pattern under these conditions, good contrast can be obtained in both the continuous direction and the discontinuous direction. The effect of the present invention can be obtained when the arrangement pitch of the main pattern is not more than about 3.2 times the transfer pattern dimension where the effect of interference is obtained as shown in FIG.

【0014】図8(a)は転写した主パタンの最大寸法
を0.24μmとしたときの、連続方向と非連続方向の寸法
と補助パタンの配置位置Rの関係を示している。補助パ
タンの配置位置Rは、補助パタン74と主パタン73のパタ
ンエッジ間距離である。ここでパタンの転写には、露光
波長λ=0.248μm、レンズの開口数NA=0.55のステッ
パを用い、照明条件は図8(b)に示す様な外径σ0.
7、内径σ0.4の輪帯照明を用いた。また半透明膜の透過
率は透明部の透過率を100%とした時4%、透明部と半
透明部の位相差が180°、転写する主パタン73に該る光
透過部の設計寸法Wを0.28μm角(投影露光光学系の倍
率が1/5なので、マスク上では1.4μm角)、主パタン
73の配置ピッチPは0.48μm(投影露光光学系の倍率が
1/5なので、マスク上では2.4μm)のマスクを用い
た。補助透明パタン74の幅Gは解像限界以下にする事が
望ましく、G=b×λ/NA(ただし露光波長をλ、レ
ンズの開口数をNA、0.05≦b≦0.25)で表わされ、こ
こではGは0.10μmとした。図8(a)に示すように、
ピッチの小さい連続方向と非連続方向の転写パタン寸法
は、補助パタンの配置位置Rが約0.225μmを中心として
逆転する。また補助パタンの配置位置Rが約0.28μm以
上或いは約0.24μm以下では、補助パタンを配置しない
場合よりも寸法差が大きくなるため、逆効果となる。補
助パタン74の配置位置Rが約0.225μmで連続方向と非連
続方向の転写パタン寸法がほぼ同じになる。よって補助
透明パタンと主パタンの中心間距離Rは、寸法補正の効
果からR=a×λ/NA(ただし露光波長をλ、レンズ
の開口数をNA、0.53≦a≦0.62)で配置すれば、目標
を達成できる。
FIG. 8A shows the relationship between the dimension in the continuous direction and the discontinuous direction and the arrangement position R of the auxiliary pattern when the maximum dimension of the transferred main pattern is 0.24 μm. The arrangement position R of the auxiliary pattern is the distance between the pattern edges of the auxiliary pattern 74 and the main pattern 73. Here, the pattern is transferred by using a stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA = 0.55 of the lens, and the illumination condition is an outer diameter σ 0 .0 as shown in FIG.
7. Ring illumination with an inner diameter of σ0.4 was used. The transmittance of the translucent film is 4% when the transmittance of the transparent portion is 100%, the phase difference between the transparent portion and the translucent portion is 180 °, the design dimension W of the light transmitting portion corresponding to the main pattern 73 to be transferred. 0.28 μm square (1.4 μm square on the mask because the magnification of the projection exposure optical system is 1/5), the main pattern
A mask having an arrangement pitch P of 0.48 μm (2.4 μm on the mask because the magnification of the projection exposure optical system is 1/5) was used. The width G of the auxiliary transparent pattern 74 is desirably equal to or less than the resolution limit, and is represented by G = b × λ / NA (where the exposure wavelength is λ, the numerical aperture of the lens is NA, and 0.05 ≦ b ≦ 0.25) Here, G was set to 0.10 μm. As shown in FIG.
The transfer pattern dimension in the continuous direction and the discontinuous direction with a small pitch is reversed with the auxiliary pattern arrangement position R centered at about 0.225 μm. Further, when the arrangement position R of the auxiliary pattern is about 0.28 μm or more or about 0.24 μm or less, the dimensional difference becomes larger than when the auxiliary pattern is not arranged, so that the opposite effect is obtained. When the arrangement position R of the auxiliary pattern 74 is about 0.225 μm, the transfer pattern dimensions in the continuous direction and the discontinuous direction become almost the same. Therefore, the distance R between the center of the auxiliary transparent pattern and the center of the main pattern is determined by R = a × λ / NA (where the exposure wavelength is λ, the numerical aperture of the lens is NA, and 0.53 ≦ a ≦ 0.62) from the effect of dimensional correction. , Can achieve the goal.

【0015】図9は補助パタン位置R=0.26μmで形成
した転写パタンの焦点深度を示している。補助パタン74
を配置することにより、連続方向と非連続方向の転写パ
タン寸法差は、約0.001μmとほぼ真円に近い値まで低減
することができた。また、連続方向と非連続方向の転写
パタン寸法差を小さくしたことにより、焦点深度は約1.
35μmが得られ、焦点深度も同時に向上した。ここでは
照明形状に図8(b)に示すような斜入射照明法の一つ
である輪帯照明法を用いたが、光源形状を四重極形状の
照明法を用いた場合にも、補助パタンを最適な位置に配
置することによりほぼ同様の結果が得られた。
FIG. 9 shows the depth of focus of the transfer pattern formed at the auxiliary pattern position R = 0.26 μm. Auxiliary pattern 74
By arranging, the difference in transfer pattern dimension between the continuous direction and the non-continuous direction could be reduced to about 0.001 μm, a value close to a perfect circle. The depth of focus is approximately 1.
35 μm was obtained, and the depth of focus was also improved. Here, the annular illumination method, which is one of the oblique incidence illumination methods as shown in FIG. 8B, is used as the illumination shape. Almost the same results were obtained by arranging the patterns at the optimum positions.

【0016】なお、主パタンの配置ピッチや補助パタン
の寸法及び係数を上記のように限定したが、主パタン及
び補助パタンの大きさや形状、配置位置は半透明領域の
透過率及び光源形状によって最適値は異なる。例えば透
過率が変わることによって、半透明領域を通過する光強
度が変化する。例えば透過率を6%に変更する場合、半
透明領域を通過する光強度は大きくなる。これによっ
て、主パタン寸法及び補助パタンの寸法等変更するが、
各々最適化すればほぼ問題なくパタンの形状を補正で
き、その結果形状の良いパタンがより大きな焦点深度が
得られる。また光源の形状を変えることにより配置ピッ
チの最適値が変わることから、補助パタンを配置する最
適位置が変わる。例えば、四重極照明を用いた場合、光
源の開口位置によってパタンピッチの最適値が変わって
しまい、ピッチによっては従来よりも焦点深度が低下す
る。これによって、補助パタンの寸法及び配置位置等変
更するが、各々最適化すればほぼ問題なくパタンの形状
を補正でき、その結果より大きな焦点深度が得られる。
したがって、半透明領域の透過率及び光源形状に合わせ
て補助パタンの配置位置等の最適化が必要である。主パ
タンの形状は、正方形ホールパタンに限らない。長方形
パタン等でも、小さいピッチで連続して配置されている
場合は適用可能である。また補助パタンの形状は長方形
のスリットパタンに限らない。正方形パタン等でも、主
パタンが小さいピッチで連続して配置されており、かつ
大きなピッチでパタンが配置されている部分に形状を補
正することを目的とするパタンがあれば適用可能であ
る。半透明領域の透過率も本実施例に限らず、透過率に
適した係数を使用する事によって適用できる。また、マ
スクの構造及び材料は本実施例で用いた材料に限らな
い。すなわち、本発明では使用するマスクの構造が透明
領域と半透明領域を含み、かつ透明領域と半透明領域を
通過する光の位相差がほぼ180°であって、投影する主
パタンが少なくとも一方向に連続して配置されており、
且つ大きいピッチで配置されている部分に主パタンと同
じ位相でかつ解像しない透明パタンが配置されていれば
目的を達成できる。また光源形状は、本文中では輪帯照
明法を用いたが、これに限らない。斜入射照明法であれ
ば、四重極等各々の光源に合わせて補助パタンの位置等
を変更することにより適用できる。
Although the arrangement pitch of the main pattern and the size and coefficient of the auxiliary pattern are limited as described above, the size, shape, and arrangement position of the main pattern and the auxiliary pattern are optimal depending on the transmittance of the translucent region and the light source shape. The values are different. For example, when the transmittance changes, the light intensity passing through the translucent region changes. For example, when the transmittance is changed to 6%, the light intensity passing through the translucent region becomes large. As a result, the dimensions of the main pattern and the dimensions of the auxiliary pattern are changed.
By optimizing each of them, the shape of the pattern can be corrected with almost no problem. As a result, a pattern having a good shape can obtain a larger depth of focus. Further, since the optimum value of the arrangement pitch changes by changing the shape of the light source, the optimum position at which the auxiliary pattern is arranged changes. For example, when quadrupole illumination is used, the optimum value of the pattern pitch changes depending on the opening position of the light source, and the depth of focus is lower than before depending on the pitch. As a result, the size, arrangement position, etc. of the auxiliary pattern are changed, but if each is optimized, the shape of the pattern can be corrected with almost no problem, and as a result, a larger depth of focus can be obtained.
Therefore, it is necessary to optimize the arrangement position of the auxiliary pattern and the like according to the transmittance of the translucent region and the shape of the light source. The shape of the main pattern is not limited to a square hole pattern. Even in the case of a rectangular pattern or the like, the present invention can be applied to the case where they are continuously arranged at a small pitch. The shape of the auxiliary pattern is not limited to a rectangular slit pattern. Even a square pattern or the like can be applied as long as the main pattern is continuously arranged at a small pitch and there is a pattern intended to correct the shape at a portion where the pattern is arranged at a large pitch. The transmissivity of the translucent region is not limited to this embodiment, but can be applied by using a coefficient suitable for the transmissivity. Further, the structure and material of the mask are not limited to the materials used in this embodiment. That is, in the present invention, the structure of the mask used includes a transparent region and a translucent region, and the phase difference of light passing through the transparent region and the translucent region is approximately 180 °, and the main pattern to be projected is at least one direction. Are arranged continuously in
In addition, the object can be achieved if a transparent pattern having the same phase as the main pattern and not resolving is arranged in a portion arranged at a large pitch. In addition, although the annular illumination method is used in the text, the shape of the light source is not limited to this. The oblique incidence illumination method can be applied by changing the position and the like of the auxiliary pattern according to each light source such as a quadrupole.

【0017】本マスクをダイナミックRAMの電極接続
孔パタンの形成に適用した例を図10及び図11を用い
て説明する。図10は複数個のメモリセルを配置したメモ
リセル群の平面図である。同図で、ワード線WL1〜W
L4がY方向に、データ線BL1〜BL3がX方向に配
されており、王冠型のキャパシタの下部電極101がこれ
らワード線とデータ線の上部に形成されている。ワード
線WL1〜WL4の隙間の活性領域102上には、平面形
状の長手方向がY方向となるプラグ電極103が該活性領
域102に接して、かつ活性領域以外の領域に延在する様
にして配されており、該プラグ電極103にはデータ線B
L1〜BL3が一部で重なるように配されている。さら
に、活性領域102上には開孔部104が形成されており、該
開孔部介してキャパシタの下部電極101が接続されてい
る。ここで、開孔部104の形成に用いたホトマスクの形
状を図11に示す。111は開孔部104の主パタンであり、主
パタンの形状を補正することを目的とした補助パタン11
2を配置した。なおここではパタンの転写に、露光波長
λ=0.248μm、レンズの開口数NA=0.55のステッパを
用い、照明条件は斜入射照明の一つである外径σ0.7、
内径σ0.4の輪帯照明を用いた。また半透明膜の透過率
は透明部の透過率を100%とした時4%、透明部と半透
明部の位相差が180°、転写する開孔部104に該る主パタ
ン111の設計寸法が0.28μm角(投影露光光学系の倍率が
1/5なので、マスク上では1.4μm角)、補助パタン11
2の巾が0.10μmのマスクを用いた。目標の寸法規格を
満たす焦点深度は、補助パタンを用いない場合は約0.9
μmであったが、本発明の適用の場合は約1.4μmとな
り、約1.5倍の焦点裕度が実現でき、素子の良品歩留り
を約10%向上できた。
An example in which the present mask is applied to the formation of an electrode connection hole pattern of a dynamic RAM will be described with reference to FIGS. FIG. 10 is a plan view of a memory cell group in which a plurality of memory cells are arranged. In the figure, word lines WL1 to WL
L4 is arranged in the Y direction, and data lines BL1 to BL3 are arranged in the X direction. The lower electrode 101 of the crown-shaped capacitor is formed above these word lines and data lines. On the active region 102 in the gap between the word lines WL1 to WL4, a plug electrode 103 whose planar shape is in the Y direction is in contact with the active region 102 and extends to a region other than the active region. The plug electrode 103 has a data line B
L1 to BL3 are arranged so as to partially overlap. Further, an opening 104 is formed on the active region 102, and the lower electrode 101 of the capacitor is connected through the opening. Here, FIG. 11 shows the shape of the photomask used to form the opening 104. Reference numeral 111 denotes a main pattern of the opening 104, and an auxiliary pattern 11 for correcting the shape of the main pattern.
2 was arranged. In this case, a stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA = 0.55 of the lens is used for pattern transfer, and the illumination condition is an outer diameter σ0.7 which is one of the oblique incident illumination.
Ring illumination with an inner diameter of σ 0.4 was used. The transmittance of the translucent film is 4% when the transmittance of the transparent portion is 100%, the phase difference between the transparent portion and the translucent portion is 180 °, the design size of the main pattern 111 corresponding to the aperture 104 to be transferred. Is 0.28 μm square (1.4 μm square on the mask because the magnification of the projection exposure optical system is 5), the auxiliary pattern 11
A mask having a width of 0.10 μm was used. Depth of focus that satisfies the target dimensional standard is about 0.9 when no auxiliary pattern is used.
However, in the case of applying the present invention, the thickness is about 1.4 μm, and the focus latitude of about 1.5 times can be realized, and the yield of good devices can be improved by about 10%.

【0018】[0018]

【発明の効果】本発明の適用により、微細パタンを2度
露光等工程の増加することなく、穴パタンを十分な余裕
をもって密配置できる。特に微細化が困難な超LSIの
電極取り出し用穴パタンの微細化及び微細配置が実現で
き、また微小ピッチの配置でも十分な焦点深度が確保で
きるので超LSIの製造を光リソグラフィを用いて実現
する事が可能となる。また、超LSI製品の不良率の低
減が可能となり、工業的に極めて有利である。
According to the present invention, the hole pattern can be densely arranged with a sufficient margin without increasing the number of steps such as exposure of the fine pattern twice. Particularly, it is possible to realize a finer pattern and a fine arrangement of an electrode extraction hole pattern of a super LSI, which is difficult to miniaturize, and a sufficient depth of focus can be ensured even with a fine pitch arrangement, thereby realizing the manufacture of the ultra LSI using optical lithography. Things become possible. Further, the defect rate of the VLSI product can be reduced, which is extremely industrially advantageous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法の原理の説明図。FIG. 1 is a diagram illustrating the principle of a conventional method.

【図2】従来法の原理の説明図。FIG. 2 is an explanatory diagram of the principle of a conventional method.

【図3】従来法の主たる実施例の説明図。FIG. 3 is an explanatory view of a main example of a conventional method.

【図4】従来法の主たる実施例の説明図。FIG. 4 is an explanatory view of a main example of a conventional method.

【図5】従来法の原理の説明図。FIG. 5 is an explanatory diagram of the principle of a conventional method.

【図6】従来法の主たる実施例の説明図。FIG. 6 is an explanatory view of a main example of a conventional method.

【図7】本発明の原理の説明図。FIG. 7 is an explanatory diagram of the principle of the present invention.

【図8】本発明の主たる実施例の説明図。FIG. 8 is an explanatory diagram of a main embodiment of the present invention.

【図9】本発明の主たる実施例の説明図。FIG. 9 is an explanatory view of a main embodiment of the present invention.

【図10】本発明の主たる実施例の説明図。FIG. 10 is an explanatory diagram of a main embodiment of the present invention.

【図11】本発明の主たる実施例の説明図。FIG. 11 is an explanatory view of a main embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11、21、51、71…ガラス基板、12、22、52、72…半透明
位相シフト膜、13、23、53、73…透明主パタン、14、2
4、54、75…透明主パタンの光強度ピーク、15、25……
透明主パタンの第2の光強度ピーク所謂サブピーク、74
…透明補助パタン。
11, 21, 51, 71: glass substrate, 12, 22, 52, 72: translucent phase shift film, 13, 23, 53, 73: transparent main pattern, 14, 2
4, 54, 75… Transparent main pattern light intensity peak, 15, 25 ……
The second light intensity peak of the transparent main pattern, the so-called sub-peak, 74
… Transparent auxiliary pattern.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】斜入射照明光学系を有する投影露光装置を
用いてホトマスクに設けられたパタンを基板上に転写す
る方法において、 前記ホトマスクは少なくとも露光光に対して半透明な領
域と主パタンとなる透明な領域を含み、 前記半透明な領域は前記半透明な領域と前記透明な領域
を通過する光の位相差が180度となるように調整さ
れ、 前記主パタンは繰り返し配置されており、 前記主パタンの繰り返しピッチは前記ホトマスク主面上
の水平方向と垂直方向で異なっており、何れかの方向の
繰り返しピッチが前記主パタンの大きさの3.2倍以下に
配置され、前記基板に転写される前記主パタンの形状を
補正するために少なくとも一辺の大きさが前記投影露光
装置の投影光学系の解像限界以下の透明な補助開孔部が
配置されていることを特徴とするパタン形成方法。
1. A method of transferring a pattern provided on a photomask onto a substrate by using a projection exposure apparatus having an oblique incidence illumination optical system, wherein the photomask has at least a translucent area and a main pattern with respect to exposure light. Including a transparent region, wherein the translucent region is adjusted so that the phase difference of light passing through the translucent region and the transparent region is 180 degrees, the main pattern is repeatedly arranged, The repetition pitch of the main pattern is different in the horizontal direction and the vertical direction on the photomask main surface, and the repetition pitch in any direction is arranged to be 3.2 times or less the size of the main pattern, and is transferred to the substrate. In order to correct the shape of the main pattern, a transparent auxiliary opening having a size of at least one side smaller than the resolution limit of the projection optical system of the projection exposure apparatus is arranged. A pattern forming method.
【請求項2】上記斜入射照明は輪帯照明であることを特
徴とする請求項1記載のパタン形成方法。
2. The pattern forming method according to claim 1, wherein said oblique incidence illumination is annular illumination.
【請求項3】上記斜入射照明は4重極照明であることを
特徴とする請求項1記載のパタン形成方法。
3. The pattern forming method according to claim 1, wherein said oblique incidence illumination is quadrupole illumination.
【請求項4】上記補助開孔部は、少なくとも一辺の寸法
Gが、G=b×λ/NAの関係を満たす(ただし、NA
は前記投影露光光学系の開口数、λは露光光の波長、b
は0.05≦b≦0.25の範囲の値)であることを特徴とする
請求項1乃至3の何れかに記載のパタン形成方法。
4. The auxiliary opening has at least one side dimension G satisfying the following relationship: G = b × λ / NA
Is the numerical aperture of the projection exposure optical system, λ is the wavelength of the exposure light, b
Is a value in the range of 0.05 ≦ b ≦ 0.25), the pattern forming method according to any one of claims 1 to 3.
【請求項5】上記補助開孔部と透明領域からなる前記主
パタンのパタンエッジ間距離Rは、R=a×λ/NAの
関係を満たす(ただし、NAは投影露光光学系の開口
数、λは露光光の波長、aは0.53≦a≦0.62の範囲の
値)ことを特徴とする請求項1乃至4の何れかに記載の
パタン形成方法。
5. The distance R between pattern edges of the main pattern comprising the auxiliary aperture and the transparent region satisfies the relationship of R = a × λ / NA (where NA is the numerical aperture of the projection exposure optical system, λ 5. The pattern forming method according to claim 1, wherein a is a wavelength of exposure light, and a is a value in a range of 0.53 ≦ a ≦ 0.62.
【請求項6】少なくとも露光光に対して半透明な領域と
主パタンとなる透明な領域を含み、 前記半透明な領域は前記半透明な領域と前記透明な領域
を通過する光の位相差が180度となるように調整さ
れ、 前記主パタンは繰り返し配置されており、 前記主パタンの繰り返しピッチは前記ホトマスク主面上
の水平方向と垂直方向で異なっており、何れかの方向の
繰り返しピッチが前記主パタンの大きさの3.2倍以下に
配置され、前記基板に転写される前記主パタンの形状を
補正するために少なくとも一辺の大きさが前記投影露光
装置の投影光学系の解像限界以下の透明な補助開孔部が
配置されていることを特徴とするホトマスク。
6. A translucent area including at least a translucent area and a transparent area serving as a main pattern with respect to exposure light, wherein the translucent area has a phase difference between light passing through the translucent area and the transparent area. The main pattern is adjusted so as to be 180 degrees, the main pattern is repeatedly arranged, and the repetition pitch of the main pattern is different in a horizontal direction and a vertical direction on the main surface of the photomask, and the repetition pitch in any direction is different. Arranged at 3.2 times or less the size of the main pattern, the size of at least one side is equal to or less than the resolution limit of the projection optical system of the projection exposure apparatus to correct the shape of the main pattern transferred to the substrate. A photomask, wherein a transparent auxiliary opening is arranged.
【請求項7】上記補助開孔部は、少なくとも一辺の寸法
Gが、G=b×λ/NAの関係を満たす(ただし、NA
は前記投影露光光学系の開口数、λは露光光の波長、b
は0.05≦b≦0.25の範囲の値)であることを特徴とする
請求項6記載のホトマスク。
7. The auxiliary opening has at least one side dimension G satisfying the following relationship: G = b × λ / NA
Is the numerical aperture of the projection exposure optical system, λ is the wavelength of the exposure light, b
Is a value in the range of 0.05 ≦ b ≦ 0.25).
【請求項8】上記補助開孔部と透明領域からなる前記主
パタンのパタンエッジ間距離Rは、R=a×λ/NAの
関係を満たす(ただし、NAは投影露光光学系の開口
数、λは露光光の波長、aは0.53≦a≦0.62の範囲の
値)ことを特徴とする請求項6又は7記載のホトマス
ク。
8. The distance R between pattern edges of the main pattern comprising the auxiliary aperture and the transparent region satisfies the relationship of R = a × λ / NA (where NA is the numerical aperture of the projection exposure optical system, λ 8. The photomask according to claim 6, wherein a is a wavelength of the exposure light, and a is a value in a range of 0.53 ≦ a ≦ 0.62).
JP9159496A 1997-06-17 1997-06-17 Pattern forming method Pending JPH118179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9159496A JPH118179A (en) 1997-06-17 1997-06-17 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9159496A JPH118179A (en) 1997-06-17 1997-06-17 Pattern forming method

Publications (1)

Publication Number Publication Date
JPH118179A true JPH118179A (en) 1999-01-12

Family

ID=15695045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9159496A Pending JPH118179A (en) 1997-06-17 1997-06-17 Pattern forming method

Country Status (1)

Country Link
JP (1) JPH118179A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605411B2 (en) 2000-08-25 2003-08-12 Mitsubishi Denki Kabushiki Kaisha Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask
JP2005055878A (en) * 2003-07-23 2005-03-03 Canon Inc Mask and manufacturing method therefor, and exposure method
US9329490B2 (en) 2013-08-20 2016-05-03 Kabushiki Kaisha Toshiba Pattern formation method, mask for exposure, and exposure apparatus
CN113608406A (en) * 2021-05-27 2021-11-05 联芯集成电路制造(厦门)有限公司 Photomask structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605411B2 (en) 2000-08-25 2003-08-12 Mitsubishi Denki Kabushiki Kaisha Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask
US6706453B2 (en) 2000-08-25 2004-03-16 Renesas Technology Corp. Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask
US6709792B2 (en) 2000-08-25 2004-03-23 Renesas Technology Corp. Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask
JP2005055878A (en) * 2003-07-23 2005-03-03 Canon Inc Mask and manufacturing method therefor, and exposure method
JP4684584B2 (en) * 2003-07-23 2011-05-18 キヤノン株式会社 Mask, manufacturing method thereof, and exposure method
US9329490B2 (en) 2013-08-20 2016-05-03 Kabushiki Kaisha Toshiba Pattern formation method, mask for exposure, and exposure apparatus
CN113608406A (en) * 2021-05-27 2021-11-05 联芯集成电路制造(厦门)有限公司 Photomask structure

Similar Documents

Publication Publication Date Title
US6004699A (en) Photomask used for projection exposure with phase shifted auxiliary pattern
JP3105234B2 (en) Method for manufacturing semiconductor device
US5723236A (en) Photomasks and a manufacturing method thereof
KR100386231B1 (en) Method for formation of semiconductor device pattern, method for designing photo mask pattern, photo mask and process for photo mask
US5698348A (en) Phase shifting mask, manufacturing method thereof, and exposure method using such a phase shifting mask
JPH1032156A (en) Aligner and its pattern-forming method using phase shift mask
US5642183A (en) Spatial filter used in a reduction-type projection printing apparatus
US6013395A (en) Photomask for use in exposure and method for producing same
US5698347A (en) Reticle for off-axis illumination
US5888678A (en) Mask and simplified method of forming a mask integrating attenuating phase shifting mask patterns and binary mask patterns on the same mask substrate
US6150058A (en) Method of making attenuating phase-shifting mask using different exposure doses
US20080090157A1 (en) Photo mask with improved contrast and method of fabricating the same
US20070148558A1 (en) Double metal collimated photo masks, diffraction gratings, optics system, and method related thereto
JPH11143047A (en) Photomask and its production
US6451488B1 (en) Single-level masking with partial use of attenuated phase-shift technology
JP2972528B2 (en) Exposure method
JPH118179A (en) Pattern forming method
JP2810061B2 (en) Method for manufacturing semiconductor device
US7026106B2 (en) Exposure method for the contact hole
US5432588A (en) Semiconductor device and method of making the semiconductor device
JPH05281698A (en) Photomask and pattern transfer method
US5593801A (en) Attenuating type phase shifting mask, method of manufacturing thereof and semiconductor device manufactured by using the mask
JPH1115133A (en) Pattern forming method
JPH08106151A (en) Phase shift mask and its production
JPH03156459A (en) Memory semiconductor structure and phase shifting mask

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817