WO2023120427A1 - Depolymerization method - Google Patents

Depolymerization method Download PDF

Info

Publication number
WO2023120427A1
WO2023120427A1 PCT/JP2022/046452 JP2022046452W WO2023120427A1 WO 2023120427 A1 WO2023120427 A1 WO 2023120427A1 JP 2022046452 W JP2022046452 W JP 2022046452W WO 2023120427 A1 WO2023120427 A1 WO 2023120427A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
mass
depolymerization
polyamide
solvent
Prior art date
Application number
PCT/JP2022/046452
Other languages
French (fr)
Japanese (ja)
Inventor
靖久 市橋
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023120427A1 publication Critical patent/WO2023120427A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a depolymerization method.
  • Polyamide resins have excellent mechanical properties such as mechanical strength, rigidity and impact resistance, as well as excellent heat resistance and chemical resistance. , and other industrial products.
  • plastic industry is also required to respond to a resource recycling society, and the establishment of recycling technology is also required for polyamide resins.
  • polyamide resin compositions and molded articles for automotive applications contain, in addition to polyamide resins, inorganic fillers such as glass fibers, various additives such as heat stabilizers, pigments, dyes, etc.
  • in material recycling it is difficult to maintain practically sufficient mechanical properties after recycling. Therefore, chemical recycling, in which polyamide resin is depolymerized to decompose it into monomers such as diamine and dicarboxylic acid, and these monomers are polymerized again for recycling, is considered promising, and research and development is underway. .
  • Patent Document 1 proposes a technology for producing monomers by decomposing a polyamide resin by ammonolysis using a Lewis acid catalyst.
  • Patent Document 2 proposes a method of separating a polyamide resin and glass fibers from a molded article of a glass fiber-containing polyamide resin composition using an aqueous solution of phosphoric acid, and further decomposing the polyamide resin into monomers.
  • Patent Document 1 has a problem of low monomer yield.
  • the method described in Patent Document 2 requires as much as 200 minutes to dissolve the polyamide resin and the glass fiber in a specific example using polyamide 66.
  • Patent Document 2 there is no specific description of the depolymerization method, and furthermore, it takes as long as 200 minutes to dissolve the polyamide resin and the glass fiber. Assuming that the polyamide resin is further depolymerized later, the total time becomes even longer, resulting in a problem of lack of practicality.
  • Patent Documents 1 and 2 have the problem that the yield of the monomer is low and the time including recovery and depolymerization of the monomer lacks practicality.
  • the process is performed under conditions such as high temperature and high pressure in order to shorten the time, the energy required for the process increases, and it is not practical from the viewpoint of reducing greenhouse gas (GHG) emissions. have.
  • GFG greenhouse gas
  • a polyamide resin, a polyamide resin composition, and a method for depolymerizing a molded article, which have a high monomer yield and excellent energy efficiency for depolymerization are provided.
  • the present inventors have made intensive studies to solve the above-described problems of the prior art, and found that a polyamide resin, a polyamide resin composition, and a molded article thereof are heated and depolymerized in a predetermined solvent. As a result, the inventors have found that the above problems can be effectively solved, and have completed the present invention. That is, the present invention is as follows.
  • the present invention it is possible to provide a depolymerization method capable of monomerizing a polyamide resin, a polyamide resin composition, and a molded article thereof at a high yield with low energy.
  • the inorganic salt is 1% by mass or more and 25% by mass or less with respect to 100% by mass of the solvent, and the water is 30% by mass or more and 99% by mass with respect to 100% by mass of the solvent.
  • polyamide resin used in the depolymerization method of this embodiment means a polymer having an amide bond (--NHCO--) in the main chain.
  • the polyamide resin composition used in the depolymerization method of the present embodiment includes the polyamide resin, and, if necessary, an inorganic filler such as glass fiber, a lubricant, and other additives such as a heat stabilizer, a flame retardant, a pigment, It is a resin composition containing components such as dyes.
  • the molded article used in the depolymerization method of the present embodiment is a molded article of the polyamide resin or the polyamide resin composition, and can be produced by molding using various known methods such as injection molding.
  • the molded article used in the depolymerization method of the present embodiment may be fibers of a polyamide resin or a polyamide resin composition.
  • the polyamide resin, the polyamide resin composition, and the constituent materials of their molded articles used in the depolymerization method of the present embodiment are specifically shown below.
  • polyamide resins include, but are not limited to, polyamide 4 (poly ⁇ -pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecaneamide), polyamide 12 (polydodecanamide), polyamide 46 (poly tetramethylene adipamide), polyamide 56 (polypentamethylene adipamide), polyamide 66 (polyhexamethylene adipamide), polyamide 410 (polytetramethylene sebacamide), polyamide 412 (polytetramethylene dodecamide), Polyamide 610 (polyhexamethylene sebacamide), polyamide 612 (polyhexamethylene dodecamide), polyamide 1010 (polydecamethylene sebacamide), polyamide 1012 (polydecamethylene dodecamide), polyamide 6T (polyhexamethylene terephthalamide ), polyamide 9T (polynonanemethylene terephthalamide), polyamide 6I (polyhexamethylene terephthalamide),
  • the polyamide resin is preferably one or more selected from the group consisting of polyamide 66, polyamide 66/6I, polyamide 610, polyamide 612, polyamide 6I, and polyamide 6, and polyamide 66, polyamide 66/6I, or polyamide 66. and polyamide 6I are more preferred.
  • Polyamide 66 is a polyamide obtained by polycondensation of hexamethylenediamine and adipic acid, and is excellent in heat resistance, mechanical strength, and creep properties, so it is suitably used as a material for functional parts of automobiles, machines, and electrical products.
  • the polyamide resin composition and molded article used in the depolymerization method of the present embodiment may contain an inorganic filler.
  • polyamide resin compositions and molded articles tend to have excellent mechanical strength and rigidity.
  • inorganic fillers include, but are not limited to, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate, aluminum borate, glass flakes, glass beads, talc, kaolin, mica, hydrotalcite, carbonate Calcium, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, titanium oxide, silicon oxide, magnesium oxide, calcium silicate, sodium aluminosilicate, magnesium silicate , ketjen black, acetylene black, furnace black, carbon nanotubes, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, mica, montmorillonite, swelling fluoromica, apatite and the like. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyamide resin composition and molded article used in the depolymerization method of the present embodiment may contain a lubricant in addition to the polyamide resin and the inorganic filler.
  • a lubricant in addition to the polyamide resin and the inorganic filler.
  • the polyamide resin composition and molded article used in the depolymerization method of the present embodiment may contain other additives in addition to the polyamide resin, inorganic filler, and lubricant component.
  • Other additives include, for example, antioxidants, ultraviolet absorbers, heat stabilizers, photodegradation inhibitors, plasticizers, release agents, nucleating agents, flame retardants, colorants, and other thermoplastic resins. .
  • the polyamide resin in the solvent containing 1% by mass or more and 25% by mass of an inorganic salt and a polyhydric alcohol with respect to 100% by mass of the solvent, the polyamide resin, the polyamide It has a step of heating and depolymerizing at least one selected from the group consisting of resin compositions and molded articles thereof.
  • the inorganic salt is 1% by mass or more and 25% by mass or less with respect to 100% by mass of the solvent, and the water is 30% by mass or more with respect to 100% by mass of the solvent.
  • a step of heating at least one selected from the group consisting of a polyamide resin, a polyamide resin composition, and molded articles thereof in the solvent containing 99% by mass or less to depolymerize.
  • the solvent used in the first mode of the depolymerization method of the present embodiment contains 1% by mass or more and 25% by mass of an inorganic salt and a polyhydric alcohol with respect to 100% by mass of the solvent. Further, the solvent used in the second mode of the depolymerization method of the present embodiment is 1% by mass or more and 25% by mass or less of an inorganic salt with respect to 100% by mass of the solvent, and 30% by mass of water with respect to 100% by mass of the solvent. 99% by mass or less is included.
  • the content of water in the solvent is 30% by mass or more and 99% by mass or less, preferably 35% by mass or more and 90% by mass or less, More preferably, it is 40% by mass or more and 80% by mass or less.
  • Inorganic salt is a general term for salts composed only of inorganic components, and includes, for example, metal salts, which are compounds in which hydrogen atoms of acids are replaced with metal ions.
  • metal salts include, but are not limited to, halides of calcium, zinc, and lithium from the viewpoint of being suitable for depolymerization.
  • calcium chloride, zinc chloride, zinc bromide, Chromium bromide, iron bromide, lithium chloride, lithium bromide, cobalt chloride and the like From the viewpoint of availability and safety, calcium chloride, zinc chloride and lithium chloride are preferred.
  • the amount of the metal salt used in the depolymerization step is 1% by mass or more and 25% by mass or less, preferably 5% by mass or more and 20% by mass or less, and 10% by mass or more and 15% by mass or less with respect to 100% by mass of the solvent. The following are more preferred.
  • the use of a solvent containing an inorganic salt has the effect of weakening the hydrogen bonds between the polymer chains of the polyamide to facilitate depolymerization.
  • the amount of the inorganic salt is 1% by mass or more in the solvent from the viewpoint of the amount necessary to weaken the hydrogen bond, and from the viewpoint of suppressing the generation of by-products during depolymerization separation and purification. , 25% by mass or less in the solvent.
  • Polyhydric alcohols include, but are not limited to, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, hexanediol, glycerin, diglycerin, triglycerin, threitol, Erythritol, pentaerythritol, arabitol, ribitol, xylitol, sorbite, sorbitan, sorbitol, mannitol and the like.
  • Ethylene glycol is particularly preferred from the viewpoint of solubility.
  • the solvent used in the depolymerization method of the present embodiment may contain polyhydric alcohol, inorganic salt, and water as constituent components, and may further contain other components as necessary.
  • a mixed solvent in which other solvents are used together may be used.
  • water or methanol may be mixed as a poor solvent.
  • the mixing ratio is preferably 1 to 9 of the poor solvent per 1 of the polyhydric alcohol.
  • a mixed solvent containing 1 to 9 parts by mass of methanol or water to 1 part of ethylene glycol can be used.
  • it is a mixed solvent containing a poor solvent to 1 polyhydric alcohol at a mass ratio of 1 to 3, and more preferably a poor solvent to 1 polyhydric alcohol at a mass ratio of 1 to 2.
  • It is a mixed solvent containing
  • the polyamide resin does not need to be completely dissolved at the start of heating, and dissolution and decomposition due to depolymerization may proceed in parallel. That is, the dissolved polyamide resin may be sequentially depolymerized and decomposed into monomers.
  • an acid such as formic acid, phosphoric acid, sulfuric acid, or hydrochloric acid may be further added to the solvent.
  • the depolymerization method of the present embodiment at least one selected from the group consisting of polyamide resins, polyamide resin compositions, and molded articles thereof is heated in the solvent described above.
  • the temperature in the system during heating is preferably 210°C or less, more preferably 70 to 200°C, and even more preferably 100 to 190°C.
  • any known method such as steam or an electric heater can be applied.
  • the residual rate of the polyamide resin is set to 10% by mass or less, and dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, are added to the above-mentioned
  • the amount is 70% by mass or more with respect to 100% by mass of the polyamide resin before the depolymerization step.
  • the residual rate of the polyamide resin is more preferably 7% by mass or less, and even more preferably 5% by mass or less.
  • the amount of the decomposition product is preferably 75% by mass or more, more preferably 80% by mass, based on 100% by mass of the polyamide resin before the depolymerization step.
  • the residual ratio of the polyamide resin can be controlled within the above numerical range by adjusting the reaction time and temperature.
  • the amount of the decomposition products can be controlled within the above numerical range by adjusting the reaction time and temperature.
  • the residual ratio of the polyamide resin in the reaction solution after the depolymerization step, and the quantification of dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products, can be determined by GPC, NMR, liquid chromatography, gas chromatography, and FT. It can be carried out by a known method such as -IR. For example, the method described in Non-Patent Document 1 below can be used.
  • a known method can be used to purify the decomposition products.
  • adipic acid can be purified by a method of precipitation and recrystallization
  • hexamethylenediamine can be purified by a method such as distillation.
  • Polyamide resin Polyamide resin composition, molded article used in depolymerization step
  • polyamide resin A: Polyamide 66 (manufactured by Asahi Kasei Corporation, model number: Leona 1300)
  • Polyamide resin composition B Polyamide 66 resin composition (manufactured by Asahi Kasei Corporation, model number: Leona 14G33, glass fiber ratio 33%)
  • (Molded article of polyamide resin composition) C A molded article of a polyamide 66 resin composition was produced as follows. The Leona 14G33 (manufactured by Asahi Kasei) was dried in a nitrogen stream to reduce the water content in the polyamide resin composition to 500 ppm or less to obtain pellets of the polyamide resin composition. Next, using pellets of the polyamide resin composition with adjusted moisture content, using an injection molding machine (SE-50D manufactured by Sumitomo Heavy Industries, Ltd.), in accordance with ISO 3167, a multi-purpose test piece (A type, dumbbell shape A tensile test piece) was molded.
  • SE-50D manufactured by Sumitomo Heavy Industries, Ltd.
  • the dimensions of the multi-purpose test piece were as follows: total length ⁇ 170 mm, distance between tabs 109.3 ⁇ 3.2 mm, length of parallel portion 80 ⁇ 2 mm, radius of shoulder 24 ⁇ 1 mm, width of end 20 ⁇ 0.2 mm. 2 mm, the width of the central parallel portion was 10 ⁇ 0.2 mm, and the thickness was 4 ⁇ 0.2 mm.
  • the conditions for injection molding were as follows: injection speed: 100 mm/sec (controlled by injection speed), injection time: 1 second, cooling time: 14 seconds, mold temperature: 80°C, cylinder temperature: 290°C.
  • the resulting multipurpose test piece was used as a molded article of the polyamide resin composition.
  • HMD hexamethylenediamine
  • ADA adipic acid
  • the reaction solution after depolymerization was measured using liquid chromatography (Agilent 1100, manufactured by Agilent Technologies), and a calibration curve prepared using a reference HMD (or derivative such as HMD hydrochloride) and ADA was used to determine the The amounts of HMD, ADA and derivatives thereof were determined with respect to the polyamide resin before polymerization.
  • Tables 1 and 2 show the depolymerization conditions of the polyamide resins, the polyamide resin compositions, and the molded articles of Examples 1 to 10 and Comparative Examples 1 to 4, and the quantitative results of decomposition products resulting from the depolymerization.
  • any solution selected from the group consisting of polyamide resins, polyamide resin compositions, and molded articles thereof in a solvent containing 1 to 25% by mass of a metal salt and containing a polyhydric alcohol By performing polymerization, a decomposition product containing a residual rate of polyamide resin of 10% by mass or less in a short time and a total of 70% by mass or more of dicarboxylic acid and diamine and their derivatives is obtained, and monomerized at a high yield. was able to achieve
  • the depolymerization method of the present invention has industrial applicability as an efficient recycling method for polyamide resins, polyamide resin compositions, and molded articles used in automobile parts and various industrial parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The present invention provides a depolymerization method comprising a depolymerization step in which at least one item selected from the group consisting of a polyamide resin, a polyamide resin composition containing the polyamide resin, and an article molded from the polyamide resin or polyamide resin composition is heated in a solvent containing a polyhydric alcohol and from 1 mass% to 25 mass% of an inorganic salt relative to 100 mass% of the solvent and depolymerized. The amount of polyamide resin remaining after the depolymerization step is 10 mass% or less, and the amount of dicarboxylic acids, diamines, and lactams that are the degradation products of the polyamide resin, as well as derivatives of these degradation products, is 70 mass% or more relative to 100 mass% of the polyamide resin before the depolymerization step.

Description

解重合方法Depolymerization method
 本発明は、解重合方法に関する。 The present invention relates to a depolymerization method.
 ポリアミド樹脂は、機械的特性、すなわち機械的強度、剛性や耐衝撃性等に優れ、かつ耐熱性、耐薬品性にも優れているため、従来から、衣料、産業資材、自動車、電気及び電子部品、その他の工業製品等の様々な産業分野で利用されている。
 一方、近年は、プラスティック業界においても資源循環社会への対応が求められており、ポリアミド樹脂にもリサイクル技術の確立が求められている。
Polyamide resins have excellent mechanical properties such as mechanical strength, rigidity and impact resistance, as well as excellent heat resistance and chemical resistance. , and other industrial products.
On the other hand, in recent years, the plastic industry is also required to respond to a resource recycling society, and the establishment of recycling technology is also required for polyamide resins.
 リサイクルには、一般にマテリアルリサイクル、ケミカルリサイクル、サーマルリサイクルの3つがある。現状、ポリアミド樹脂の利用の大半を占める自動車用途においては、廃自動車中のポリアミド樹脂は、そのほとんどがサーマルリサイクルとして燃やされており、資源として有効活用されておらず、前記ポリアミド樹脂を前記マテリアルリサイクルやケミカルリサイクルにより有効活用することが求められている。
 また、GHG(温室効果ガス)排出量の削減の観点からも、ポリアミド樹脂に対し、マテリアルリサイクル、ケミカルリサイクルが求められている。
There are generally three types of recycling: material recycling, chemical recycling, and thermal recycling. Currently, in automobile applications, which account for the majority of the use of polyamide resin, most of the polyamide resin in end-of-life vehicles is burned for thermal recycling and is not effectively used as a resource. There is a demand for effective utilization through chemical recycling and chemical recycling.
Also, from the viewpoint of reducing GHG (greenhouse gas) emissions, polyamide resins are required to undergo material recycling and chemical recycling.
 しかしながら、自動車用途のポリアミド樹脂組成物や成形品は、ポリアミド樹脂の他にも、例えば、ガラス繊維等の無機充填材、熱安定剤等の種々の添加剤、顔料、染料等を含んでいるため、マテリアルリサイクルにおいては、リサイクル後に実用上十分な機械物性を維持することが困難であるという問題点を有している。そのため、ポリアミド樹脂の解重合を行うことにより、モノマーであるジアミン、ジカルボン酸に分解し、これらのモノマーを再度重合することによりリサイクルするケミカルリサイクルが有望視されており、研究開発が進められている。 However, polyamide resin compositions and molded articles for automotive applications contain, in addition to polyamide resins, inorganic fillers such as glass fibers, various additives such as heat stabilizers, pigments, dyes, etc. However, in material recycling, it is difficult to maintain practically sufficient mechanical properties after recycling. Therefore, chemical recycling, in which polyamide resin is depolymerized to decompose it into monomers such as diamine and dicarboxylic acid, and these monomers are polymerized again for recycling, is considered promising, and research and development is underway. .
 前記ケミカルリサイクルに関する技術として、特許文献1には、ルイス酸触媒を用いてポリアミド樹脂をアンモノリシスにより分解してモノマーを製造する技術が提案されている。また、特許文献2には、リン酸水溶液を用いて、ガラス繊維含有ポリアミド樹脂組成物の成形品から、ポリアミド樹脂とガラス繊維とを分離し、さらにポリアミド樹脂をモノマーに分解する方法が提案されている。 As a technology related to chemical recycling, Patent Document 1 proposes a technology for producing monomers by decomposing a polyamide resin by ammonolysis using a Lewis acid catalyst. Further, Patent Document 2 proposes a method of separating a polyamide resin and glass fibers from a molded article of a glass fiber-containing polyamide resin composition using an aqueous solution of phosphoric acid, and further decomposing the polyamide resin into monomers. there is
特許第3571723号公報Japanese Patent No. 3571723 特開2000-80199号公報JP-A-2000-80199
 しかしながら、特許文献1に記載されている方法は、モノマー収率が低いという問題点を有している。
 また、特許文献2に記載されている方法は、ポリアミド66を用いた具体例ではポリアミド樹脂及びガラス繊維の溶解に200分もの時間を要している。さらに特許文献2には解重合方法に関する具体的な記述はなされておらず、さらにまた、前記ポリアミド樹脂とガラス繊維の溶解に200分もの時間がかかることから、ポリアミド樹脂組成物の成形品の溶解後に、さらにポリアミド樹脂の解重合を行うことを想定するとトータルの時間はさらに長くなり、実用性に欠けるという問題点を有している。
However, the method described in Patent Document 1 has a problem of low monomer yield.
Further, the method described in Patent Document 2 requires as much as 200 minutes to dissolve the polyamide resin and the glass fiber in a specific example using polyamide 66. Furthermore, in Patent Document 2, there is no specific description of the depolymerization method, and furthermore, it takes as long as 200 minutes to dissolve the polyamide resin and the glass fiber. Assuming that the polyamide resin is further depolymerized later, the total time becomes even longer, resulting in a problem of lack of practicality.
 上述したように、特許文献1、2に記載されている方法では、モノマー収率が低く、モノマーの回収や解重合を含めた時間が実用性に欠けるという問題点を有している。また、前記時間を短縮させるために高温、高圧等の条件で行うと、プロセスにかかるエネルギーが大きくなり、温室効果ガス(GHG)排出量の削減の観点からも実用的ではない、という問題点を有している。 As described above, the methods described in Patent Documents 1 and 2 have the problem that the yield of the monomer is low and the time including recovery and depolymerization of the monomer lacks practicality. In addition, if the process is performed under conditions such as high temperature and high pressure in order to shorten the time, the energy required for the process increases, and it is not practical from the viewpoint of reducing greenhouse gas (GHG) emissions. have.
 そこで本発明においては、上述した従来技術の問題点に鑑み、モノマー収率が高く、解重合にかかるエネルギー効率に優れた、ポリアミド樹脂、ポリアミド樹脂組成物及び成形品の解重合方法を提供することを目的とする。 Therefore, in the present invention, in view of the above-described problems of the prior art, a polyamide resin, a polyamide resin composition, and a method for depolymerizing a molded article, which have a high monomer yield and excellent energy efficiency for depolymerization are provided. With the goal.
 本発明者は、上述した従来技術の課題を解決するために鋭意検討を重ねた結果、所定の溶媒中で、ポリアミド樹脂、ポリアミド樹脂組成物、及びそれらの成形品を加熱して解重合することにより、上記課題を効果的に解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
The present inventors have made intensive studies to solve the above-described problems of the prior art, and found that a polyamide resin, a polyamide resin composition, and a molded article thereof are heated and depolymerized in a predetermined solvent. As a result, the inventors have found that the above problems can be effectively solved, and have completed the present invention.
That is, the present invention is as follows.
〔1〕
 溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、多価アルコールとを含有する前記溶媒中で、ポリアミド樹脂、前記ポリアミド樹脂を含むポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する、解重合工程を有し、
 前記解重合工程の後の、ポリアミド樹脂の残存率を10質量%以下とし、
 前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする、解重合方法。
〔2〕
 前記無機塩が金属塩である、前記〔1〕に記載の解重合方法。
〔3〕
 前記無機塩が、カルシウム、亜鉛、リチウムからなる群より選ばれる少なくとも1種の金属のハロゲン塩である、前記〔1〕又は〔2〕に記載の解重合方法。
〔4〕
 前記無機塩が、塩化カルシウム又は塩化亜鉛である、前記〔1〕乃至〔3〕のいずれか一に記載の解重合方法。
〔5〕
 前記ポリアミド樹脂が、ポリアミド66である、前記〔1〕乃至〔4〕のいずれか一に記載の解重合方法。
〔6〕
 前記多価アルコールが、エチレングリコールである、前記〔1〕乃至〔5〕のいずれか一に記載の解重合方法。
〔7〕
 前記溶媒が、エチレングリコール1に対して、メタノール又は水を、質量比で1~9を含む混合溶媒である、前記〔1〕乃至〔6〕のいずれか一に記載の解重合方法。
〔8〕
 前記加熱時の系内の温度が210℃以下である、前記〔1〕乃至〔7〕のいずれか一に記載の解重合方法。
〔9〕
 溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、水を前記溶媒100質量%に対し30質量%以上99質量%以下含む前記溶媒中で、
 ポリアミド樹脂、前記ポリアミド樹脂を含むポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する、解重合工程を有し、
 前記解重合工程の後の、ポリアミド樹脂の残存率を10質量%以下とし、
 前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする、解重合方法。
〔10〕
 前記無機塩が金属塩である、前記〔9〕に記載の解重合方法。
〔11〕
 前記無機塩が、カルシウム、亜鉛、リチウムからなる群より選ばれる少なくとも1種の金属のハロゲン塩である、前記〔9〕又は〔10〕に記載の解重合方法。
〔12〕
 前記無機塩が、塩化カルシウム又は塩化亜鉛である、前記〔9〕乃至〔11〕のいずれか一に記載の解重合方法。
〔13〕
 前記ポリアミド樹脂が、ポリアミド66である、前記〔9〕乃至〔12〕のいずれか一に記載の解重合方法。
〔14〕
 前記加熱時の系内の温度が210℃以下である、前記〔9〕乃至〔13〕のいずれか一に記載の解重合方法。
[1]
With respect to 100% by mass of the solvent, in the solvent containing 1% by mass or more and 25% by mass or less of an inorganic salt and a polyhydric alcohol, a polyamide resin, a polyamide resin composition containing the polyamide resin, and molded articles thereof Having a depolymerization step of heating and depolymerizing at least one selected from the group consisting of
After the depolymerization step, the residual rate of the polyamide resin is 10% by mass or less,
A depolymerization method, wherein the content of dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, is 70% by mass or more with respect to 100% by mass of the polyamide resin before the depolymerization step.
[2]
The depolymerization method according to [1] above, wherein the inorganic salt is a metal salt.
[3]
The depolymerization method according to the above [1] or [2], wherein the inorganic salt is a halogen salt of at least one metal selected from the group consisting of calcium, zinc and lithium.
[4]
The depolymerization method according to any one of [1] to [3], wherein the inorganic salt is calcium chloride or zinc chloride.
[5]
The depolymerization method according to any one of [1] to [4], wherein the polyamide resin is polyamide 66.
[6]
The depolymerization method according to any one of [1] to [5], wherein the polyhydric alcohol is ethylene glycol.
[7]
The depolymerization method according to any one of the above [1] to [6], wherein the solvent is a mixed solvent containing 1 to 9 parts by mass of methanol or water to 1 part of ethylene glycol.
[8]
The depolymerization method according to any one of the above [1] to [7], wherein the temperature in the system during heating is 210°C or less.
[9]
In the solvent containing 1% by mass to 25% by mass of an inorganic salt and 30% by mass to 99% by mass of water relative to 100% by mass of the solvent,
A depolymerization step of heating and depolymerizing at least one selected from the group consisting of a polyamide resin, a polyamide resin composition containing the polyamide resin, and molded articles thereof,
After the depolymerization step, the residual rate of the polyamide resin is 10% by mass or less,
A depolymerization method, wherein the content of dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, is 70% by mass or more with respect to 100% by mass of the polyamide resin before the depolymerization step.
[10]
The depolymerization method according to [9] above, wherein the inorganic salt is a metal salt.
[11]
The depolymerization method according to [9] or [10] above, wherein the inorganic salt is a halogen salt of at least one metal selected from the group consisting of calcium, zinc and lithium.
[12]
The depolymerization method according to any one of [9] to [11] above, wherein the inorganic salt is calcium chloride or zinc chloride.
[13]
The depolymerization method according to any one of the above [9] to [12], wherein the polyamide resin is polyamide 66.
[14]
The depolymerization method according to any one of [9] to [13], wherein the temperature in the system during heating is 210°C or lower.
 本発明によれば、低エネルギーで、ポリアミド樹脂、ポリアミド樹脂組成物、及びその成形品を高収率でモノマー化できる解重合方法を提供できる。 According to the present invention, it is possible to provide a depolymerization method capable of monomerizing a polyamide resin, a polyamide resin composition, and a molded article thereof at a high yield with low energy.
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。
 以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜変形して実施することができる。
EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "this embodiment") for implementing this invention is demonstrated in detail.
The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist thereof.
〔解重合方法〕
 本実施形態の解重合方法の第一の形態は、溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、多価アルコールとを含有する前記溶媒中で、ポリアミド樹脂、前記ポリアミド樹脂を含むポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する解重合工程を有し、前記解重合工程の後の、ポリアミド樹脂の残存率を10質量%以下とし、前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする。
 また、本実施形態の解重合方法の第二の形態は、溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、水を前記溶媒100質量%に対し30質量%以上99質量%以下含む前記溶媒中で、ポリアミド樹脂、前記ポリアミド樹脂を含むポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する解重合工程を有し、前記解重合工程の後の、ポリアミド樹脂の残存率を10質量%以下とし、前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする。
 上述した本実施形態の解重合方法によれば、低エネルギーでポリアミド樹脂、ポリアミド樹脂組成物、及びそれらの成形品を高収率でモノマー化でき、リサイクルすることができる。
[Depolymerization method]
In the first form of the depolymerization method of the present embodiment, the solvent containing 1% by mass or more and 25% by mass or less of an inorganic salt and a polyhydric alcohol with respect to 100% by mass of the solvent, the polyamide resin, the above A polyamide resin composition containing a polyamide resin, and a depolymerization step of heating at least one selected from the group consisting of molded articles thereof to depolymerize, and the residual rate of the polyamide resin after the depolymerization step is 10% by mass or less, and dicarboxylic acid, diamine, and derivatives thereof, which are decomposition products of the polyamide resin, are 70% by mass or more based on 100% by mass of the polyamide resin before the depolymerization step.
In addition, in the second form of the depolymerization method of the present embodiment, the inorganic salt is 1% by mass or more and 25% by mass or less with respect to 100% by mass of the solvent, and the water is 30% by mass or more and 99% by mass with respect to 100% by mass of the solvent. A depolymerization step of heating and depolymerizing at least one selected from the group consisting of a polyamide resin, a polyamide resin composition containing the polyamide resin, and molded articles thereof in the solvent containing at most% by mass, After the depolymerization step, the residual rate of the polyamide resin is set to 10% by mass or less, and dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, are added to the polyamide resin before the depolymerization step. It should be 70% by mass or more with respect to 100% by mass.
According to the above-described depolymerization method of the present embodiment, the polyamide resin, the polyamide resin composition, and the molded articles thereof can be monomerized at a high yield with low energy, and can be recycled.
(ポリアミド樹脂)
 本実施形態の解重合方法に用いるポリアミド樹脂とは、主鎖中にアミド結合(-NHCO-)を有する重合体を意味する。
(polyamide resin)
The polyamide resin used in the depolymerization method of this embodiment means a polymer having an amide bond (--NHCO--) in the main chain.
(ポリアミド樹脂組成物)
 本実施形態の解重合方法に用いるポリアミド樹脂組成物とは、前記ポリアミド樹脂と、その他必要に応じてガラス繊維等の無機充填材、滑剤、その他添加剤として、熱安定剤、難燃剤、顔料、染料等の成分を含む樹脂組成物である。
(Polyamide resin composition)
The polyamide resin composition used in the depolymerization method of the present embodiment includes the polyamide resin, and, if necessary, an inorganic filler such as glass fiber, a lubricant, and other additives such as a heat stabilizer, a flame retardant, a pigment, It is a resin composition containing components such as dyes.
(ポリアミド樹脂、ポリアミド樹脂組成物の成形品)
 本実施形態の解重合方法に用いる成形品は、前記ポリアミド樹脂、ポリアミド樹脂組成物の成形品であり、公知の種々の方法、例えば、射出成形等により成形して製造できる。本実施形態の解重合方法に用いる成形品は、ポリアミド樹脂又はポリアミド樹脂組成物の繊維であってもよい。
(Polyamide resin, molded article of polyamide resin composition)
The molded article used in the depolymerization method of the present embodiment is a molded article of the polyamide resin or the polyamide resin composition, and can be produced by molding using various known methods such as injection molding. The molded article used in the depolymerization method of the present embodiment may be fibers of a polyamide resin or a polyamide resin composition.
 本実施形態の解重合方法に用いられるポリアミド樹脂、ポリアミド樹脂組成物、それらの成形品の構成材料について、以下、具体的に示す。 The polyamide resin, the polyamide resin composition, and the constituent materials of their molded articles used in the depolymerization method of the present embodiment are specifically shown below.
<ポリアミド樹脂>
 ポリアミド樹脂としては、以下に限定されないが、例えば、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド56(ポリペンタメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド410(ポリテトラメチレンセバカミド)、ポリアミド412(ポリテトラメチレンドデカミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、ポリアミド612(ポリヘキサメチレンドデカミド)、ポリアミド1010(ポリデカメチレンセバカミド)、ポリアミド1012(ポリデカメチレンドデカミド)、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナンメチレンテレフタルアミド)、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、及びこれらの共重合体又は混合物等が挙げられる。
<Polyamide resin>
Examples of polyamide resins include, but are not limited to, polyamide 4 (polyα-pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecaneamide), polyamide 12 (polydodecanamide), polyamide 46 (poly tetramethylene adipamide), polyamide 56 (polypentamethylene adipamide), polyamide 66 (polyhexamethylene adipamide), polyamide 410 (polytetramethylene sebacamide), polyamide 412 (polytetramethylene dodecamide), Polyamide 610 (polyhexamethylene sebacamide), polyamide 612 (polyhexamethylene dodecamide), polyamide 1010 (polydecamethylene sebacamide), polyamide 1012 (polydecamethylene dodecamide), polyamide 6T (polyhexamethylene terephthalamide ), polyamide 9T (polynonanemethylene terephthalamide), polyamide 6I (polyhexamethyleneisophthalamide), and copolymers or mixtures thereof.
 特に、ポリアミド樹脂としては、ポリアミド66、ポリアミド66/6I、ポリアミド610、ポリアミド612、ポリアミド6I、及びポリアミド6からなる群より選ばれる1種以上が好ましく、ポリアミド66、ポリアミド66/6I、又はポリアミド66とポリアミド6Iの混合物がより好ましい。
 ポリアミド66は、ヘキサメチレンジアミンとアジピン酸の縮重合によって得られるポリアミドであり、耐熱性、機械強度、クリープ特性に優れるため、自動車、機械、電気製品の機能部品の材料として好適に用いられる。
In particular, the polyamide resin is preferably one or more selected from the group consisting of polyamide 66, polyamide 66/6I, polyamide 610, polyamide 612, polyamide 6I, and polyamide 6, and polyamide 66, polyamide 66/6I, or polyamide 66. and polyamide 6I are more preferred.
Polyamide 66 is a polyamide obtained by polycondensation of hexamethylenediamine and adipic acid, and is excellent in heat resistance, mechanical strength, and creep properties, so it is suitably used as a material for functional parts of automobiles, machines, and electrical products.
<無機充填材>
 本実施形態の解重合方法に用いるポリアミド樹脂組成物及び成形品は、無機充填材を含有してもよい。これにより、ポリアミド樹脂組成物及び成形品は優れた機械的強度と剛性を有する傾向にある。
<Inorganic filler>
The polyamide resin composition and molded article used in the depolymerization method of the present embodiment may contain an inorganic filler. As a result, polyamide resin compositions and molded articles tend to have excellent mechanical strength and rigidity.
 無機充填材としては、以下に限定されないが、例えば、ガラス繊維、炭素繊維、ケイ酸カルシウム繊維、チタン酸カリウム、ホウ酸アルミニウム、ガラスフレーク、ガラスビーズ、タルク、カオリン、マイカ、ハイドロタルサイト、炭酸カルシウム、炭酸亜鉛、酸化亜鉛、リン酸一水素カルシウム、ワラストナイト、シリカ、ゼオライト、アルミナ、ベーマイト、水酸化アルミニウム、酸化チタン、酸化ケイ素、酸化マグネシウム、ケイ酸カルシウム、アルミノケイ酸ナトリウム、ケイ酸マグネシウム、ケッチェンブラック、アセチレンブラック、ファーネスブラック、カーボンナノチューブ、グラファイト、黄銅、銅、銀、アルミニウム、ニッケル、鉄、フッ化カルシウム、雲母、モンモリロナイト、膨潤性フッ素雲母、アパタイト等が挙げられる。
 これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of inorganic fillers include, but are not limited to, glass fiber, carbon fiber, calcium silicate fiber, potassium titanate, aluminum borate, glass flakes, glass beads, talc, kaolin, mica, hydrotalcite, carbonate Calcium, zinc carbonate, zinc oxide, calcium monohydrogen phosphate, wollastonite, silica, zeolite, alumina, boehmite, aluminum hydroxide, titanium oxide, silicon oxide, magnesium oxide, calcium silicate, sodium aluminosilicate, magnesium silicate , ketjen black, acetylene black, furnace black, carbon nanotubes, graphite, brass, copper, silver, aluminum, nickel, iron, calcium fluoride, mica, montmorillonite, swelling fluoromica, apatite and the like.
These may be used individually by 1 type, and may be used in combination of 2 or more type.
<滑剤>
 本実施形態の解重合方法に用いるポリアミド樹脂組成物及び成形品は、ポリアミド樹脂、無機充填材に加えて、滑剤を含有してもよい。これにより、ポリアミド樹脂組成物及び成形品は、優れた流動性や外観を有する傾向にある。
<Lubricant>
The polyamide resin composition and molded article used in the depolymerization method of the present embodiment may contain a lubricant in addition to the polyamide resin and the inorganic filler. As a result, polyamide resin compositions and molded articles tend to have excellent fluidity and appearance.
<その他添加剤>
 本実施形態の解重合方法に用いるポリアミド樹脂組成物及び成形品は、ポリアミド樹脂、無機充填材、滑剤成分に加えて、その他添加剤を含有してもよい。その他添加剤としては、例えば、酸化防止剤、紫外線吸収剤、熱安定剤、光劣化防止剤、可塑剤、離型剤、核剤、難燃剤、着色剤、他の熱可塑性樹脂等が挙げられる。
<Other additives>
The polyamide resin composition and molded article used in the depolymerization method of the present embodiment may contain other additives in addition to the polyamide resin, inorganic filler, and lubricant component. Other additives include, for example, antioxidants, ultraviolet absorbers, heat stabilizers, photodegradation inhibitors, plasticizers, release agents, nucleating agents, flame retardants, colorants, and other thermoplastic resins. .
(解重合工程)
 本実施形態の解重合方法の第一の形態においては、溶媒100質量%に対し、無機塩を1質量%以上25質量%と、多価アルコールとを含有する前記溶媒中で、ポリアミド樹脂、ポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する工程を有する。
 また、本実施形態の解重合方法の第二の形態においては、溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、水を前記溶媒100質量%に対し30質量%以上99質量%以下含む前記溶媒中で、ポリアミド樹脂、ポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する工程を有する。
(Depolymerization step)
In the first form of the depolymerization method of the present embodiment, in the solvent containing 1% by mass or more and 25% by mass of an inorganic salt and a polyhydric alcohol with respect to 100% by mass of the solvent, the polyamide resin, the polyamide It has a step of heating and depolymerizing at least one selected from the group consisting of resin compositions and molded articles thereof.
Further, in the second form of the depolymerization method of the present embodiment, the inorganic salt is 1% by mass or more and 25% by mass or less with respect to 100% by mass of the solvent, and the water is 30% by mass or more with respect to 100% by mass of the solvent. A step of heating at least one selected from the group consisting of a polyamide resin, a polyamide resin composition, and molded articles thereof in the solvent containing 99% by mass or less to depolymerize.
<溶媒>
 本実施形態の解重合方法の第一の形態に用いる溶媒は、前記溶媒100質量%に対し、無機塩を1質量%以上25質量%と、多価アルコールとを含有する。
 また、本実施形態の解重合方法の第二の形態に用いる溶媒は、前記溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、水を前記溶媒100質量%に対し30質量%以上99質量%以下含む。
 本実施形態の解重合方法の第二の形態において、前記溶媒中の水の含有量は、30質量%以上99質量%以下であるものとし、好ましくは35質量%以上90質量%以下であり、より好ましくは40質量%以上80質量%以下である。
<Solvent>
The solvent used in the first mode of the depolymerization method of the present embodiment contains 1% by mass or more and 25% by mass of an inorganic salt and a polyhydric alcohol with respect to 100% by mass of the solvent.
Further, the solvent used in the second mode of the depolymerization method of the present embodiment is 1% by mass or more and 25% by mass or less of an inorganic salt with respect to 100% by mass of the solvent, and 30% by mass of water with respect to 100% by mass of the solvent. 99% by mass or less is included.
In the second form of the depolymerization method of the present embodiment, the content of water in the solvent is 30% by mass or more and 99% by mass or less, preferably 35% by mass or more and 90% by mass or less, More preferably, it is 40% by mass or more and 80% by mass or less.
<無機塩>
 無機塩は、無機成分のみから構成される塩の総称であり、例えば、酸の水素原子を金属イオンと置換した化合物である金属塩が挙げられる。
 前記金属塩としては、以下に限定されないが、例えば、解重合に好適である観点から、カルシウム、亜鉛、リチウムのハロゲン化物が挙げられ、具体的には、塩化カルシウム、塩化亜鉛、臭化亜鉛、臭化クロム、臭化鉄、塩化リチウム、臭化リチウム、塩化コバルト等が挙げられる。入手性、安全の観点から塩化カルシウム、塩化亜鉛、塩化リチウムが好ましい。
 解重合工程で用いる金属塩の量は、溶媒100質量%に対し、1質量%以上25質量%以下であり、5質量%以上20質量%以下であることが好ましく、10質量%以上15質量%以下がより好ましい。
 本実施形態の解重合方法において、無機塩を含有する溶媒を用いることにより、ポリアミドのポリマー鎖間の水素結合を弱めてより解重合しやすくする効果が得られる。
 また、無機塩の量は、水素結合を弱めるために必要な量とする観点から、溶媒中1質量%以上であるものとし、解重合の分離、精製時の副生成物の生成を抑える観点から、溶媒中25質量%以下であるものとする。
<Inorganic salt>
Inorganic salt is a general term for salts composed only of inorganic components, and includes, for example, metal salts, which are compounds in which hydrogen atoms of acids are replaced with metal ions.
Examples of the metal salt include, but are not limited to, halides of calcium, zinc, and lithium from the viewpoint of being suitable for depolymerization. Specifically, calcium chloride, zinc chloride, zinc bromide, Chromium bromide, iron bromide, lithium chloride, lithium bromide, cobalt chloride and the like. From the viewpoint of availability and safety, calcium chloride, zinc chloride and lithium chloride are preferred.
The amount of the metal salt used in the depolymerization step is 1% by mass or more and 25% by mass or less, preferably 5% by mass or more and 20% by mass or less, and 10% by mass or more and 15% by mass or less with respect to 100% by mass of the solvent. The following are more preferred.
In the depolymerization method of the present embodiment, the use of a solvent containing an inorganic salt has the effect of weakening the hydrogen bonds between the polymer chains of the polyamide to facilitate depolymerization.
In addition, the amount of the inorganic salt is 1% by mass or more in the solvent from the viewpoint of the amount necessary to weaken the hydrogen bond, and from the viewpoint of suppressing the generation of by-products during depolymerization separation and purification. , 25% by mass or less in the solvent.
<多価アルコール>
 多価アルコールとしては、以下に限定されないが、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、グリセリン、ジグリセリン、トリグリセリン、トレイトール、エリスリトール、ペンタエリスリトール、アラビトール、リビトール、キシリトール、ソルバイト、ソルビタン、ソルビトール、マンニトール等が挙げられる。
 特に、溶解性の観点から、エチレングリコールが好ましい。
<Polyhydric alcohol>
Polyhydric alcohols include, but are not limited to, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, hexanediol, glycerin, diglycerin, triglycerin, threitol, Erythritol, pentaerythritol, arabitol, ribitol, xylitol, sorbite, sorbitan, sorbitol, mannitol and the like.
Ethylene glycol is particularly preferred from the viewpoint of solubility.
<多価アルコール、無機塩、水、及びその他の成分>
 本実施形態の解重合方法に用いる溶媒は、構成成分として、多価アルコール、無機塩、水を用いることができ、さらには、必要に応じて他の成分を含有してもよい。
 例えば、他の溶媒を併用した混合溶媒としてもよい。
 解重合工程後の精製工程を考慮して、貧溶媒として、例えば、水又はメタノールを混合してもよい。
 溶媒中に多価アルコール以外の貧溶媒を含有する場合、混合比率としては、多価アルコールを1に対して、貧溶媒を1~9の比率で混合することが好ましい。例えば、エチレングリコール1に対して、メタノール又は水を質量比で1~9含む混合溶媒とすることができる。より好ましくは、多価アルコールを1に対して貧溶媒を1~3の質量比率で含有する混合溶媒であり、さらに好ましくは多価アルコールを1に対して貧溶媒を1~2の質量比率で含有する混合溶媒である。
 なお、解重合を行う際には、加熱開始時にポリアミド樹脂が完全溶解している必要はなく、溶解と解重合による分解が並行して進行してもよい。すなわち、溶解したポリアミド樹脂から順次、解重合してモノマーへの分解が進行してもよい。
 さらに、解重合、すなわちアミド結合の加水分解を促進する観点から、前記溶媒には、ギ酸、リン酸、硫酸、塩酸等の酸をさらに添加してもよい。
<Polyhydric alcohol, inorganic salt, water, and other components>
The solvent used in the depolymerization method of the present embodiment may contain polyhydric alcohol, inorganic salt, and water as constituent components, and may further contain other components as necessary.
For example, a mixed solvent in which other solvents are used together may be used.
Considering the purification step after the depolymerization step, for example, water or methanol may be mixed as a poor solvent.
When the solvent contains a poor solvent other than a polyhydric alcohol, the mixing ratio is preferably 1 to 9 of the poor solvent per 1 of the polyhydric alcohol. For example, a mixed solvent containing 1 to 9 parts by mass of methanol or water to 1 part of ethylene glycol can be used. More preferably, it is a mixed solvent containing a poor solvent to 1 polyhydric alcohol at a mass ratio of 1 to 3, and more preferably a poor solvent to 1 polyhydric alcohol at a mass ratio of 1 to 2. It is a mixed solvent containing
When performing depolymerization, the polyamide resin does not need to be completely dissolved at the start of heating, and dissolution and decomposition due to depolymerization may proceed in parallel. That is, the dissolved polyamide resin may be sequentially depolymerized and decomposed into monomers.
Furthermore, from the viewpoint of promoting depolymerization, that is, hydrolysis of amide bonds, an acid such as formic acid, phosphoric acid, sulfuric acid, or hydrochloric acid may be further added to the solvent.
<加熱>
 本実施形態の解重合方法においては、上述した溶媒中で、ポリアミド樹脂、ポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱する。
 加熱時の系内の温度は、副反応を抑える観点から、210℃以下が好ましく、70~200℃がより好ましく、100~190℃がさらに好ましい。
 解重合のための加熱方法は、スチーム、電熱ヒーター等の公知の方法を、いずれも適用できる。
<Heating>
In the depolymerization method of the present embodiment, at least one selected from the group consisting of polyamide resins, polyamide resin compositions, and molded articles thereof is heated in the solvent described above.
From the viewpoint of suppressing side reactions, the temperature in the system during heating is preferably 210°C or less, more preferably 70 to 200°C, and even more preferably 100 to 190°C.
As a heating method for depolymerization, any known method such as steam or an electric heater can be applied.
(解重合工程後のポリアミド樹脂の残存率、及び生成物の定量)
 本実施形態の解重合方法においては、解重合工程後、ポリアミド樹脂の残存率を10質量%以下とし、前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする。
 ポリアミド樹脂の残存率は、7質量%以下がより好ましく、5質量%以下がさらに好ましい。
 前記分解生成物の量は、前記解重合工程前のポリアミド樹脂100質量%に対して、75質量%以上が好ましく、80質量%がさらに好ましい。
 ポリアミド樹脂の残存率は、反応時間と温度を調整することにより、上記数値範囲に制御することができる。
 前記分解生成物の量は、反応時間と温度を調整することにより、上記数値範囲に制御することができる。
(Residual rate of polyamide resin after depolymerization step and quantitative determination of product)
In the depolymerization method of the present embodiment, after the depolymerization step, the residual rate of the polyamide resin is set to 10% by mass or less, and dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, are added to the above-mentioned The amount is 70% by mass or more with respect to 100% by mass of the polyamide resin before the depolymerization step.
The residual rate of the polyamide resin is more preferably 7% by mass or less, and even more preferably 5% by mass or less.
The amount of the decomposition product is preferably 75% by mass or more, more preferably 80% by mass, based on 100% by mass of the polyamide resin before the depolymerization step.
The residual ratio of the polyamide resin can be controlled within the above numerical range by adjusting the reaction time and temperature.
The amount of the decomposition products can be controlled within the above numerical range by adjusting the reaction time and temperature.
 解重合工程後の反応溶液中の、ポリアミド樹脂の残存率、及び分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体の定量は、GPC、NMR、液体クロマトグラフィー、ガスクロマトグラフィー、FT-IR等の公知の方法により行うことができる。
 例えば、下記の非特許文献1に記載されている方法を用いることができる。
 <非特許文献1>
 Ema Zagar et al. “Quantitative Determination of PA6 and/or PA66 Content in Polyamide-Containing Waste” ACS Sustainable Chem. Eng. 2020,8 11818-11826
The residual ratio of the polyamide resin in the reaction solution after the depolymerization step, and the quantification of dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products, can be determined by GPC, NMR, liquid chromatography, gas chromatography, and FT. It can be carried out by a known method such as -IR.
For example, the method described in Non-Patent Document 1 below can be used.
<Non-Patent Document 1>
Ema Zagar et al. "Quantitative Determination of PA6 and/or PA66 Content in Polyamide-Containing Waste" ACS Sustainable Chem. Eng. 2020, 8 11818-11826
 分解生成物の精製方法は、公知の方法を用いることができる。以下に限定されないが、例えば、アジピン酸は、沈殿させて再結晶させる方法、ヘキサメチレンジアミンは、蒸留等の方法により精製することができる。 A known method can be used to purify the decomposition products. Although not limited to the following, for example, adipic acid can be purified by a method of precipitation and recrystallization, and hexamethylenediamine can be purified by a method such as distillation.
 成形品の解重合の際には、あらかじめ公知の方法を用いて、成形品を破砕、粉砕してから解重合を行うことが、高い効率でモノマー化を行う観点から好ましい。 When depolymerizing the molded article, it is preferable to crush and pulverize the molded article in advance using a known method, and then perform depolymerization from the viewpoint of highly efficient monomerization.
 以下、具体的な実施例と比較例を挙げて、本発明をさらに詳細に説明するが、本発明は、以下の実施例及び比較例により何ら限定されるものではない。
 なお、実施例及び比較例において、重合体の物性の測定、及び特性の評価は、下記の方法により行った。
EXAMPLES The present invention will be described in more detail below with reference to specific examples and comparative examples, but the present invention is in no way limited by the following examples and comparative examples.
In the examples and comparative examples, the physical properties of the polymer were measured and the properties were evaluated by the following methods.
〔解重合する工程に用いるポリアミド樹脂、ポリアミド樹脂組成物、成形品〕
(ポリアミド樹脂)
 A:ポリアミド66(旭化成社製、型番:レオナ1300)
[Polyamide resin, polyamide resin composition, molded article used in depolymerization step]
(polyamide resin)
A: Polyamide 66 (manufactured by Asahi Kasei Corporation, model number: Leona 1300)
(ポリアミド樹脂組成物)
 B:ポリアミド66樹脂組成物(旭化成社製、型番:レオナ14G33、ガラス繊維比率33%)
(Polyamide resin composition)
B: Polyamide 66 resin composition (manufactured by Asahi Kasei Corporation, model number: Leona 14G33, glass fiber ratio 33%)
(ポリアミド樹脂組成物の成形品)
 C:ポリアミド66樹脂組成物の成形品を、以下のようにして作製した。
 前記レオナ14G33(旭化成製)を窒素気流中で乾燥し、このポリアミド樹脂組成物中の水分量を500ppm以下にし、ポリアミド樹脂組成物のペレットを得た。
 次いで、水分量を調整したポリアミド樹脂組成物のペレットを用い、射出成形機(住友重機械工業株式会社製 SE-50D)を用いて、ISO3167に準拠して、多目的試験片(A型、ダンベル形引張試験片)を成形した。
 なお、多目的試験片の寸法は、全長≧170mm、タブ部間距離109.3±3.2mm、平行部の長さ80±2mm、肩部の半径24±1mm、端部の幅20±0.2mm、中央の平行部の幅10±0.2mm、厚さ4±0.2mmとした。
 射出成形時の条件は、射出速度:100mm/sec(射出速度でコントロール)、射出時間:1秒間 冷却時間:14秒間、金型温度:80℃、シリンダー温度:290℃に設定した。
 得られた多目的試験片をポリアミド樹脂組成物の成形品とした。
(Molded article of polyamide resin composition)
C: A molded article of a polyamide 66 resin composition was produced as follows.
The Leona 14G33 (manufactured by Asahi Kasei) was dried in a nitrogen stream to reduce the water content in the polyamide resin composition to 500 ppm or less to obtain pellets of the polyamide resin composition.
Next, using pellets of the polyamide resin composition with adjusted moisture content, using an injection molding machine (SE-50D manufactured by Sumitomo Heavy Industries, Ltd.), in accordance with ISO 3167, a multi-purpose test piece (A type, dumbbell shape A tensile test piece) was molded.
The dimensions of the multi-purpose test piece were as follows: total length ≧170 mm, distance between tabs 109.3±3.2 mm, length of parallel portion 80±2 mm, radius of shoulder 24±1 mm, width of end 20±0.2 mm. 2 mm, the width of the central parallel portion was 10±0.2 mm, and the thickness was 4±0.2 mm.
The conditions for injection molding were as follows: injection speed: 100 mm/sec (controlled by injection speed), injection time: 1 second, cooling time: 14 seconds, mold temperature: 80°C, cylinder temperature: 290°C.
The resulting multipurpose test piece was used as a molded article of the polyamide resin composition.
<ポリアミド樹脂組成物の成形品の粉砕>
 日本シーム製粉砕機「PFS-40」を用いて、ポリアミド樹脂組成物の成形品を粉砕した。粉砕後は、3~6mmの長さの不定形の樹脂片となった。
<Pulverization of moldings of polyamide resin composition>
A molded product of the polyamide resin composition was pulverized using a pulverizer “PFS-40” manufactured by Nippon Seam. After pulverization, irregular-shaped resin pieces with a length of 3 to 6 mm were obtained.
〔解重合工程で用いる溶媒の調製方法〕
 20mLのガラス製の反応管に、エチレングリコールを、下記表1、表2に示す量秤量し、さらにメタノール、水を所定量秤量した。
[Method for preparing solvent used in depolymerization step]
Into a 20 mL glass reaction tube, ethylene glycol was weighed in the amounts shown in Tables 1 and 2 below, and predetermined amounts of methanol and water were also weighed.
〔解重合工程〕
(実施例1~10)、(比較例1~4)
 実施例1~10、比較例1~4において、下記表1及び表2に示す溶媒組成、反応条件に従って解重合工程を実施した。
 解重合は、ガラス製反応管を密栓し、電熱ヒーターで周囲を巻き、反応管内の温度計の温度を見ながら、スライダックで電圧を調整し所定の温度に保ち、一定時間加熱した。
 なお、加熱温度は、各溶媒の沸点以下となる温度とし、加熱時間は、目視でペレットまたは、樹脂分がほとんど見えなくなるまで加熱した。なお、樹脂分が残っていても150分で終了とした。
[Depolymerization step]
(Examples 1 to 10), (Comparative Examples 1 to 4)
In Examples 1 to 10 and Comparative Examples 1 to 4, the depolymerization step was carried out according to the solvent compositions and reaction conditions shown in Tables 1 and 2 below.
Depolymerization was carried out by sealing the glass reaction tube, wrapping it around with an electric heater, adjusting the voltage with a slidac while observing the temperature of the thermometer inside the reaction tube, keeping it at a predetermined temperature, and heating for a certain period of time.
The heating temperature was set to a temperature lower than the boiling point of each solvent, and the heating time was such that the pellets or the resin component could hardly be seen visually. In addition, even if the resin content remained, it was set as completion|finish in 150 minutes.
〔評価方法〕
(ポリアミド樹脂の残存量の評価)
 ポリアミド樹脂の残存量を以下のようにして測定した。
 解重合終了後の反応液を室温に戻し、不溶分を濾過し回収し、室温で6時間乾燥させ、次に、10mLのヘキサフルオロイソプロパノール中に不溶分を投入し、24時間常温で攪拌し、濾過して不溶分を除去し、ヘキサフルオロイソプロパノールを回収してロータリーエバポレーターにて溶媒を除去し、残った残留物をポリアミド樹脂の残存量とした。
〔Evaluation methods〕
(Evaluation of residual amount of polyamide resin)
The residual amount of polyamide resin was measured as follows.
After the depolymerization is completed, the reaction solution is returned to room temperature, and the insoluble matter is collected by filtration and dried at room temperature for 6 hours. Insoluble matter was removed by filtration, hexafluoroisopropanol was recovered, the solvent was removed with a rotary evaporator, and the remaining residue was used as the residual amount of the polyamide resin.
(解重合前のポリアミド樹脂に対するヘキサメチレンジアミン(HMD)及び誘導体量の評価、及び解重合前のポリアミド樹脂に対するアジピン酸(ADA)及び誘導体量の評価)
 解重合後の反応液を、液体クロマトグラフィー(Agilent 1100, Agilent Technologies社製)を用いて測定し、リファレンスのHMD(あるいはHMD塩酸塩などの誘導体)及びADAを用いて作成した検量線から、解重合前のポリアミド樹脂に対するHMD、ADA及びこれらの誘導体の量を定量した。
(Evaluation of hexamethylenediamine (HMD) and derivative amount for polyamide resin before depolymerization, and evaluation of adipic acid (ADA) and derivative amount for polyamide resin before depolymerization)
The reaction solution after depolymerization was measured using liquid chromatography (Agilent 1100, manufactured by Agilent Technologies), and a calibration curve prepared using a reference HMD (or derivative such as HMD hydrochloride) and ADA was used to determine the The amounts of HMD, ADA and derivatives thereof were determined with respect to the polyamide resin before polymerization.
 実施例1~10、比較例1~4の、ポリアミド樹脂、ポリアミド樹脂組成物、成形品の解重合の条件及び解重合による分解生成物の定量結果を表1及び表2に示す。 Tables 1 and 2 show the depolymerization conditions of the polyamide resins, the polyamide resin compositions, and the molded articles of Examples 1 to 10 and Comparative Examples 1 to 4, and the quantitative results of decomposition products resulting from the depolymerization.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 実施例1~10においては、金属塩を1~25質量%含み、多価アルコールを含む溶媒中で、ポリアミド樹脂、ポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれるいずれかの解重合を行ったことにより、短時間でポリアミド樹脂の残存率が10質量%以下、ジカルボン酸とジアミン及びそれらの誘導体を合計で70質量%以上含む分解生成物が得られ、高収率でモノマー化を達成できた。 In Examples 1 to 10, any solution selected from the group consisting of polyamide resins, polyamide resin compositions, and molded articles thereof in a solvent containing 1 to 25% by mass of a metal salt and containing a polyhydric alcohol By performing polymerization, a decomposition product containing a residual rate of polyamide resin of 10% by mass or less in a short time and a total of 70% by mass or more of dicarboxylic acid and diamine and their derivatives is obtained, and monomerized at a high yield. was able to achieve
 本出願は、2021年12月23日に日本国特許庁に出願された日本特許出願(特願2021-209125)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-209125) filed with the Japan Patent Office on December 23, 2021, the contents of which are incorporated herein by reference.
 本発明の解重合方法は、自動車部品や各種工業用部品に用いられているポリアミド樹脂、ポリアミド樹脂組成物、及び成形品の効率の良いリサイクル方法として、産業上の利用可能性を有する。 The depolymerization method of the present invention has industrial applicability as an efficient recycling method for polyamide resins, polyamide resin compositions, and molded articles used in automobile parts and various industrial parts.

Claims (14)

  1.  溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、多価アルコールとを含有する前記溶媒中で、ポリアミド樹脂、前記ポリアミド樹脂を含むポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する、解重合工程を有し、
     前記解重合工程の後の、ポリアミド樹脂の残存率を10質量%以下とし、
     前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする、
     解重合方法。
    With respect to 100% by mass of the solvent, in the solvent containing 1% by mass or more and 25% by mass or less of an inorganic salt and a polyhydric alcohol, a polyamide resin, a polyamide resin composition containing the polyamide resin, and molded articles thereof Having a depolymerization step of heating and depolymerizing at least one selected from the group consisting of
    After the depolymerization step, the residual rate of the polyamide resin is 10% by mass or less,
    Dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, are 70% by mass or more with respect to 100% by mass of the polyamide resin before the depolymerization step,
    Depolymerization method.
  2.  前記無機塩が金属塩である、請求項1に記載の解重合方法。 The depolymerization method according to claim 1, wherein the inorganic salt is a metal salt.
  3.  前記無機塩が、カルシウム、亜鉛、リチウムからなる群より選ばれる少なくとも1種の金属のハロゲン塩である、
     請求項1に記載の解重合方法。
    The inorganic salt is a halogen salt of at least one metal selected from the group consisting of calcium, zinc, and lithium.
    The depolymerization method according to claim 1.
  4.  前記無機塩が、塩化カルシウム又は塩化亜鉛である、
     請求項1に記載の解重合方法。
    wherein the inorganic salt is calcium chloride or zinc chloride;
    The depolymerization method according to claim 1.
  5.  前記ポリアミド樹脂が、ポリアミド66である、
     請求項1に記載の解重合方法。
    The polyamide resin is polyamide 66,
    The depolymerization method according to claim 1.
  6.  前記多価アルコールが、エチレングリコールである、
     請求項1に記載の解重合方法。
    The polyhydric alcohol is ethylene glycol,
    The depolymerization method according to claim 1.
  7.  前記溶媒が、エチレングリコール1に対して、メタノール又は水を、質量比で1~9を含む混合溶媒である、
     請求項1に記載の解重合方法。
    The solvent is a mixed solvent containing methanol or water in a mass ratio of 1 to 9 with respect to 1 part of ethylene glycol.
    The depolymerization method according to claim 1.
  8.  前記加熱時の系内の温度が210℃以下である、
     請求項1に記載の解重合方法。
    The temperature in the system during the heating is 210 ° C. or less,
    The depolymerization method according to claim 1.
  9.  溶媒100質量%に対し、無機塩を1質量%以上25質量%以下と、水を前記溶媒100質量%に対し30質量%以上99質量%以下含む前記溶媒中で、
     ポリアミド樹脂、前記ポリアミド樹脂を含むポリアミド樹脂組成物、及びそれらの成形品からなる群より選ばれる少なくともいずれかを加熱し、解重合する、解重合工程を有し、
     前記解重合工程の後の、ポリアミド樹脂の残存率を10質量%以下とし、
     前記ポリアミド樹脂の分解生成物であるジカルボン酸、ジアミン、ラクタム、及びそれらの誘導体を、前記解重合工程前のポリアミド樹脂100質量%に対し、70質量%以上とする、
     解重合方法。
    In the solvent containing 1% by mass to 25% by mass of an inorganic salt and 30% by mass to 99% by mass of water relative to 100% by mass of the solvent,
    A depolymerization step of heating and depolymerizing at least one selected from the group consisting of a polyamide resin, a polyamide resin composition containing the polyamide resin, and molded articles thereof,
    After the depolymerization step, the residual rate of the polyamide resin is 10% by mass or less,
    Dicarboxylic acids, diamines, lactams, and derivatives thereof, which are decomposition products of the polyamide resin, are 70% by mass or more with respect to 100% by mass of the polyamide resin before the depolymerization step,
    Depolymerization method.
  10.  前記無機塩が金属塩である、請求項9に記載の解重合方法。 The depolymerization method according to claim 9, wherein the inorganic salt is a metal salt.
  11.  前記無機塩が、カルシウム、亜鉛、リチウムからなる群より選ばれる少なくとも1種の金属のハロゲン塩である、
     請求項9に記載の解重合方法。
    The inorganic salt is a halogen salt of at least one metal selected from the group consisting of calcium, zinc, and lithium.
    The depolymerization method according to claim 9.
  12.  前記無機塩が、塩化カルシウム又は塩化亜鉛である、
     請求項9に記載の解重合方法。
    wherein the inorganic salt is calcium chloride or zinc chloride;
    The depolymerization method according to claim 9.
  13.  前記ポリアミド樹脂が、ポリアミド66である、
     請求項9に記載の解重合方法。
    The polyamide resin is polyamide 66,
    The depolymerization method according to claim 9.
  14.  前記加熱時の系内の温度が210℃以下である、
     請求項9に記載の解重合方法。
    The temperature in the system during the heating is 210 ° C. or less,
    The depolymerization method according to claim 9.
PCT/JP2022/046452 2021-12-23 2022-12-16 Depolymerization method WO2023120427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209125 2021-12-23
JP2021-209125 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120427A1 true WO2023120427A1 (en) 2023-06-29

Family

ID=86902691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046452 WO2023120427A1 (en) 2021-12-23 2022-12-16 Depolymerization method

Country Status (1)

Country Link
WO (1) WO2023120427A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152266A (en) * 1997-07-14 1999-06-08 Dsm Nv Depolymerization of polyamide
JP2000034362A (en) * 1998-07-21 2000-02-02 Toray Ind Inc Recycling of nylon 6 products
WO2007060828A1 (en) * 2005-11-25 2007-05-31 Ube Industries, Ltd. Method for depolymerizing polyamide and method for producing monomer of polyamide
CN104017205A (en) * 2014-06-11 2014-09-03 李兆顺 Method for regenerating nylon
JP2018534184A (en) * 2015-11-09 2018-11-22 イオニカ・テクノロジーズ・ベー・フェー PA / PET separation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152266A (en) * 1997-07-14 1999-06-08 Dsm Nv Depolymerization of polyamide
JP2000034362A (en) * 1998-07-21 2000-02-02 Toray Ind Inc Recycling of nylon 6 products
WO2007060828A1 (en) * 2005-11-25 2007-05-31 Ube Industries, Ltd. Method for depolymerizing polyamide and method for producing monomer of polyamide
CN104017205A (en) * 2014-06-11 2014-09-03 李兆顺 Method for regenerating nylon
JP2018534184A (en) * 2015-11-09 2018-11-22 イオニカ・テクノロジーズ・ベー・フェー PA / PET separation method

Similar Documents

Publication Publication Date Title
CN111183184B (en) Thermoplastic powder composition and reinforced three-dimensional object produced by 3D printing of such composition
Page Polyamides as engineering thermoplastic materials
CN101570612B (en) Preparation method of PP composite material of low VOC interior trim parts for automobiles
WO2007132733A1 (en) Polyamide resin
JP5042541B2 (en) Method for producing polyamide resin composition, and polyamide resin composition
CN110072934B (en) Additives for controlling viscosity modification of polymers
CN107250233A (en) The manufacture method of polyamide series resin expanded moldings and polyamide series resin expanded moldings
US20160177060A1 (en) Polyamide compositions
JPWO2014185371A1 (en) Polyamide resin composition for foam molded article and polyamide resin foam molded article comprising the same
KR20160021180A (en) Composition made from polyamide mxd.10
CN111770965B (en) Polyamide resin composition, molded article thereof, and method for producing laser welded body
PL189334B1 (en) Method of obtaining caprolactam by electrolytic splitting of fused polycaprolactam
US5412017A (en) Flameproofed theroplastic molding materials based on polyamides
JP6679987B2 (en) Resin composition and molded article thereof
JP2023533293A (en) Single layer structure based on recycled polyamide
JP4693435B2 (en) Polyamide resin composition and method for producing the same
WO2023120427A1 (en) Depolymerization method
WO2009095440A1 (en) Transparent polyamide[5,10] molding compounds
JP2010070580A (en) Polyamide resin composition and molded article obtained by molding the same
JPH06248176A (en) Reinforced polyamide resin composition and its production
CN113024953A (en) Low-shrinkage low-linear-expansion-coefficient modified polypropylene material and preparation method thereof
JP6155661B2 (en) Semi-aromatic polyamide resin composition
JP2004269784A (en) Polyamide resin composition
JP2001226579A (en) Reinforced polyamide resin composition
TW450959B (en) Obtaining caprolactam by cleavage of molten polycaprolactam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569402

Country of ref document: JP

Kind code of ref document: A