WO2023120284A1 - High-frequency module and communication device - Google Patents

High-frequency module and communication device Download PDF

Info

Publication number
WO2023120284A1
WO2023120284A1 PCT/JP2022/045730 JP2022045730W WO2023120284A1 WO 2023120284 A1 WO2023120284 A1 WO 2023120284A1 JP 2022045730 W JP2022045730 W JP 2022045730W WO 2023120284 A1 WO2023120284 A1 WO 2023120284A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
wave filter
band
elastic wave
inductor
Prior art date
Application number
PCT/JP2022/045730
Other languages
French (fr)
Japanese (ja)
Inventor
穣 岩永
敬 渡辺
真一郎 ▲高▼柳
正英 武部
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023120284A1 publication Critical patent/WO2023120284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/46Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving

Definitions

  • the present invention relates to high frequency modules and communication devices.
  • Patent Document 1 discloses a multiplexer (high frequency module) having a configuration in which three filters (first filter, second filter and third filter) are each connected to a common terminal. An inductor connected in series with the first filter is arranged between the first filter and the common terminal, and the second filter and the third filter are directly connected to the common terminal without the inductor. With this configuration, by demultiplexing and/or combining three signals having different frequency bands with the first filter, the second filter, and the third filter, the three signals can be transmitted simultaneously.
  • the present invention has been made to solve the above-described problems, and provides a high-frequency module and a communication device having four or more commonly-connected elastic wave filters and having reduced insertion loss. aim.
  • a high-frequency module can simultaneously transmit a signal of a first band, a signal of a second band, a signal of a third band, and a signal of a fourth band.
  • a high-frequency module having a first terminal, a second terminal, and a third terminal, switching connection and disconnection between the first terminal and the second terminal, and connecting and disconnecting the first terminal and the third terminal; a switch circuit for switching connections; an inductor having one end connected to a second terminal; a first acoustic wave filter connected to the other end of the inductor and having a first passband including at least part of a first band; and a second acoustic wave filter having a second passband including at least part of the second band connected to the other end of the second band and connected to the second terminal without an inductor and including at least part of the third band A third acoustic wave filter having a third passband, and a fourth acoustic wave filter connected to the
  • the present invention it is possible to provide a high frequency module and a communication device having four or more commonly connected elastic wave filters and reduced insertion loss.
  • FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
  • FIG. 2A is a diagram showing a first example of a circuit configuration of an acoustic wave filter that constitutes the high frequency module according to the embodiment.
  • FIG. 2B is a diagram showing a second example of the circuit configuration of the elastic wave filter that constitutes the high frequency module according to the embodiment.
  • FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of an elastic wave resonator that constitutes the elastic wave filter according to the embodiment.
  • FIG. 3B is a cross-sectional view schematically showing a second example of the elastic wave resonator that constitutes the elastic wave filter according to the embodiment.
  • FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
  • FIG. 2A is a diagram showing a first example of a circuit configuration of an acoustic wave filter that constitutes the high frequency module according to
  • FIG. 3C is a cross-sectional view schematically showing a third example of the elastic wave resonator that constitutes the elastic wave filter according to the embodiment.
  • FIG. 4 is a circuit configuration diagram of a high frequency module according to a comparative example.
  • FIG. 5A is a Smith chart showing impedance characteristics of each filter according to the embodiment.
  • FIG. 5B is a Smith chart showing impedance characteristics of each filter according to the comparative example.
  • FIG. 6 is a circuit configuration diagram of a high frequency module according to a modification.
  • FIG. 7 is a Smith chart showing impedance characteristics of each filter according to the modification.
  • FIG. 8 is a plan view of the high frequency module according to the embodiment.
  • FIG. 9 is a cross-sectional view of a high frequency module according to an example.
  • connection means not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements. Also, “connected between A and B” and “connected between A and B” mean being connected to A and B on a path connecting A and B.
  • path refers to a transmission line composed of a wire through which a high-frequency signal propagates, an electrode directly connected to the wire, and a terminal directly connected to the wire or the electrode.
  • planar view means viewing an object by orthographic projection from the positive side of the z-axis onto the xy plane.
  • a overlaps B in plan view means that the area of A orthogonally projected onto the xy plane overlaps the area of B orthogonally projected onto the xy plane.
  • a is located between B and C means that at least one of a plurality of line segments connecting any point in B and any point in C passes through A.
  • a is closer to C than B” means that the shortest distance between A and C is less than the shortest distance between B and C.
  • the passband of a filter is defined as the frequency band between two frequencies that are 3 dB greater than the minimum value of insertion loss within the passband.
  • FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 4 according to an embodiment.
  • the communication device 4 includes a high frequency module 1, an antenna 5, and an RF signal processing circuit (RFIC) 3.
  • RFIC RF signal processing circuit
  • the high frequency module 1 transmits high frequency signals between the antenna 5 and the RFIC 3 .
  • a detailed circuit configuration of the high frequency module 1 will be described later.
  • the antenna 5 is connected to the antenna connection terminal 100 of the high frequency module 1, transmits a high frequency signal output from the high frequency module 1, and receives a high frequency signal from the outside and outputs it to the high frequency module 1.
  • the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as down-conversion on the received signal input via the receiving path of the high-frequency module 1, and converts the received signal generated by the signal processing into a baseband signal processing circuit (BBIC, not shown). Further, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC, and outputs the transmission signal generated by the signal processing to the transmission path of the high frequency module 1 .
  • the RFIC 3 also has a control section that controls the switches and amplifier elements of the high-frequency module 1 . Some or all of the functions of the RFIC 3 as a control unit may be implemented outside the RFIC 3, for example, in the BBIC or the high frequency module 1. FIG.
  • the RFIC 3 also has a function as a control unit that controls the connection of the switch 70 of the high frequency module 1 based on the band (frequency band) used.
  • the antenna 5 is not an essential component in the communication device 4 according to the present embodiment.
  • the high frequency module 1 includes filters 11, 12, 13, 21 and 22, inductors 30, 31, 32 and 33, a capacitor 35, a switch 70, low noise amplifiers 41, 42 and 43. , 44 and 45 , an antenna connection terminal 100 , and output terminals 110 , 120 , 130 , 140 and 150 .
  • the antenna connection terminal 100 is connected to the antenna 5.
  • the switch 70 is an example of a switch circuit, and has a terminal 70a (first terminal (common terminal)), a terminal 70b (second terminal), a terminal 70c (third terminal), and a terminal 70d. It switches between connection and disconnection with 70b, switches between connection and disconnection between terminals 70a and 70c, and switches between connection and disconnection between terminals 70a and 70d.
  • the switch 70 includes, for example, an SPST (Single Pole Single Throw) switch element 71 having terminals 70a and 70b, an SPST switch element 72 having terminals 70a and 70c, and terminals 70a and 70d. This is a multi-connection type switch circuit composed of SPST type switch elements 73 having .
  • the SPST-type switch element 71 includes a series FET (Field Effect Transistor) arranged in series in a signal path connecting the terminals 70a and 70b, and one end of the series FET and the terminal 70b. and a shunt FET placed between the signal path between and ground.
  • the switch 70 has a control terminal to which a signal from the control unit of the RFIC 3 is input, and the switch 70 includes a control circuit for controlling switching of each SPST type switch element based on the control signal. may be provided.
  • the inductor 30 has one end connected to the terminal 70 b and the other end connected to the input end of the filter 11 and the input end of the filter 12 .
  • the filter 11 is an example of a first acoustic wave filter, has an input end connected to the other end of the inductor 30, and has a first passband including at least part of band A (first band).
  • Filter 11 has one or more elastic wave resonators.
  • the filter 12 is an example of a second acoustic wave filter, has an input end connected to the other end of the inductor 30, and has a second passband including at least part of the band B (second band).
  • Filter 12 has one or more elastic wave resonators.
  • the filter 13 is an example of a third acoustic wave filter, has an input end connected to the terminal 70b without passing through the inductor 30, and has a third passband including at least part of the band C (third band).
  • Filter 13 has one or more elastic wave resonators.
  • the filter 21 is an example of a fourth acoustic wave filter, has an input terminal connected to the terminal 70c without the inductor 30, and has a fourth passband including at least part of the band D (fourth band).
  • Filter 21 has one or more elastic wave resonators.
  • the filter 22 is an example of a fifth acoustic wave filter, has an input terminal connected to the terminal 70d without passing through the inductor 30, and has a fifth passband including at least part of the band E (fifth band).
  • Filter 22 has one or more elastic wave resonators.
  • the first passband and the second passband are located on the lower frequency side than the third passband.
  • the center frequency of the fifth passband is located on the higher frequency side than the center frequency of the fourth passband.
  • band A to band E are used for communication systems built using radio access technology (RAT: Radio Access Technology), such as standardization organizations (eg 3GPP (registered trademark), IEEE (Institute of Electrical and Electronics Engineers ) etc.).
  • RAT Radio Access Technology
  • standardization organizations eg 3GPP (registered trademark), IEEE (Institute of Electrical and Electronics Engineers ) etc.
  • 4G (4th Generation)-LTE (Long Term Evolution) system Long Term Evolution) system
  • WLAN Wireless Local Area Network
  • the capacitor 35 is connected between the other end of the inductor 30 and ground. Note that the capacitor 35 may be connected to one end of the inductor 30 instead of being connected between the other end of the inductor 30 and the ground. Also, the capacitor 35 may have one end connected to the other end of the inductor 30 and the other end connected to the filter 12 .
  • the inductor 31 is connected between the terminal 70c and ground, and the inductor 32 is connected between the terminal 70d and ground.
  • One end of the inductor 33 is connected to the antenna connection terminal 100, and the other end is connected to the terminal 70a.
  • the low noise amplifier 41 has an input terminal connected to the output terminal of the filter 11 and an output terminal connected to the output terminal 110, and amplifies the received band A signal.
  • the low noise amplifier 42 has an input terminal connected to the output terminal of the filter 12 and an output terminal connected to the output terminal 120, and amplifies the received band B signal.
  • the low-noise amplifier 43 has an input terminal connected to the output terminal of the filter 13 and an output terminal connected to the output terminal 130, and amplifies the received band C signal.
  • the low-noise amplifier 44 has an input terminal connected to the output terminal of the filter 21 and an output terminal connected to the output terminal 140, and amplifies the received band D signal.
  • the low noise amplifier 45 has an input terminal connected to the output terminal of the filter 22 and an output terminal connected to the output terminal 150, and amplifies the received band E signal.
  • the high-frequency module 1 can receive a band A signal, a band B signal, a band C signal, a band D signal, and a band E signal at the same time.
  • the terminals 70a and 70b are connected in the switch 70, and the terminals 70a and 70c are connected. Connected. Further, for example, when a signal of band A, a signal of band B, a signal of band C, a signal of band D, and a signal of band E are simultaneously received, the terminal 70a and the terminal 70b are connected in the switch 70, and the terminal The terminals 70a and 70c are connected, and the terminals 70a and 70d are connected. Further, for example, when a signal of band D and a signal of band E are to be received at the same time, the terminals 70a and 70c of the switch 70 are connected, and the terminals 70a and 70d are connected.
  • the high-frequency module 1 does not have to include the filter 22, the low-noise amplifiers 41-45, the capacitor 35, the inductors 31, 32 and 33, and the switch element 73.
  • band A for example, LTE Band 3 (uplink operation band: 1710-1785 MHz, downlink operation band: 1805-1880 MHz), or LTE Band 25 (uplink operation band: 1850-1915 MHz, downlink operation band: 1930-1995 MHz) applies.
  • band B for example, LTE Band 1 (uplink operation band: 1920-1980 MHz, downlink operation band: 2110-2170 MHz), or LTE Band 4 (uplink operation band: 1710-1755 MHz, downlink operation band: 2110-2155 MHz) or Band66 (uplink operating band: 1710-1780 MHz, downlink operating band: 2110-2200 MHz).
  • band C for example, LTE Band 40 (2300-2400 MHz) or LTE Band 30 (uplink operating band: 2305-2315 MHz, downlink operating band: 2350-2360 MHz) is applied.
  • Band 41 (2496-2690 MHz) of LTE is applied as band D, for example.
  • band E for example, Band 7 of LTE (uplink operating band: 2500-2570 MHz, downlink operating band: 2620-2690 MHz) is applied.
  • the uplink operating band means the frequency range designated for the uplink among the above bands.
  • the downlink operating band means the frequency range designated for the downlink among the above bands.
  • the number of filters connected to the other end of the inductor 30 may be three or more. Also, the number of filters connected to the terminal 70b without going through the inductor 30 should be smaller than the number of filters connected to the other end of the inductor 30.
  • the antenna connection terminal 100 and the output terminals 110, 120, 130, 140 and 150 may not be included in the high frequency module 1.
  • FIG. 2A is a diagram showing a first example of the circuit configuration of the elastic wave filter according to the embodiment.
  • FIG. 2B is a diagram showing a second example of the circuit configuration of the elastic wave filter according to the embodiment.
  • Each of filters 11, 12, 13, 21 and 22 according to the present embodiment has, for example, the circuit configuration of elastic wave filter 10A shown in FIG. 2A or elastic wave filter 10B shown in FIG. 2B. .
  • the acoustic wave filter 10A shown in FIG. 2A includes series arm resonators 101 to 105, parallel arm resonators 151 to 154, and an inductor 161.
  • the series arm resonators 101 to 105 are arranged on a series arm path connecting the input/output terminals 10a and 10b.
  • Each of the parallel arm resonators 151-154 is connected between each connection point of the series arm resonators 101-105 and the ground.
  • the acoustic wave filter 10A constitutes a ladder-type bandpass filter.
  • Inductor 161 is connected between the connection point of parallel arm resonators 151, 152 and 153 and the ground, and adjusts the attenuation pole in the filter pass characteristics.
  • the number of series arm resonators and parallel arm resonators is arbitrary, and inductor 161 may be omitted.
  • the elastic wave filter 10B shown in FIG. 2B includes a longitudinal coupling filter section 203, series arm resonators 201 and 202, and parallel arm resonators 251 and 253.
  • the longitudinal coupling filter unit 203 has, for example, nine IDTs, each of which is composed of a pair of IDT electrodes facing each other.
  • Series arm resonators 201 and 202 and parallel arm resonator 251 constitute a ladder filter section.
  • the acoustic wave filter 10B constitutes a bandpass filter.
  • the number of series arm resonators and parallel arm resonators and the number of IDTs constituting longitudinally coupled filter section 203 are arbitrary.
  • FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of an elastic wave resonator included in the elastic wave filter according to the embodiment.
  • the figure illustrates the basic structure of elastic wave resonators forming the filters 11, 12, 13, 21 and 22.
  • the elastic wave resonator 60 shown in FIG. 3A is for explaining a typical structure of an elastic wave resonator, and the number and length of the electrode fingers constituting the electrodes are Not limited.
  • the elastic wave resonator 60 is composed of a piezoelectric substrate 50 and comb electrodes 60a and 60b.
  • a pair of comb electrodes 60a and 60b facing each other are formed on the substrate 50.
  • the comb-shaped electrode 60a is composed of a plurality of parallel electrode fingers 61a and busbar electrodes 62a connecting the plurality of electrode fingers 61a.
  • the comb-shaped electrode 60b is composed of a plurality of parallel electrode fingers 61b and a busbar electrode 62b connecting the plurality of electrode fingers 61b.
  • the plurality of electrode fingers 61a and 61b are formed along a direction orthogonal to the elastic wave propagation direction (X-axis direction).
  • the IDT electrode 54 which is composed of a plurality of electrode fingers 61a and 61b and busbar electrodes 62a and 62b, has a laminated structure of an adhesion layer 540 and a main electrode layer 542, as shown in (b) of FIG. 3A. It's becoming
  • the adhesion layer 540 is a layer for improving adhesion between the substrate 50 and the main electrode layer 542, and is made of Ti, for example.
  • the material of the main electrode layer 542 is, for example, Al containing 1% Cu.
  • Protective layer 55 is formed to cover comb electrodes 60a and 60b.
  • the protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting frequency temperature characteristics, and increasing moisture resistance. is.
  • the materials forming the adhesion layer 540, the main electrode layer 542 and the protective layer 55 are not limited to the materials described above.
  • the IDT electrode 54 may not have the laminated structure described above.
  • the IDT electrode 54 may be composed of, for example, metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, and Pd, and may be composed of a plurality of laminates composed of the above metals or alloys. may Also, the protective layer 55 may not be formed.
  • the substrate 50 includes a high acoustic velocity supporting substrate 51, a low acoustic velocity film 52, and a piezoelectric film 53.
  • the high acoustic velocity supporting substrate 51, the low acoustic velocity film 52, and the piezoelectric film 53 are It has a structure laminated in this order.
  • the piezoelectric film 53 is, for example, a ⁇ ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (lithium tantalate single crystal cut along a plane normal to an axis rotated ⁇ ° from the Y axis with the X axis as the central axis, (or ceramics, single crystal or ceramics in which surface acoustic waves propagate in the X-axis direction). Note that the material of the piezoelectric single crystal used as the piezoelectric film 53 and the cut angle ⁇ are appropriately selected according to the required specifications of each filter.
  • the high acoustic velocity support substrate 51 is a substrate that supports the low acoustic velocity film 52 , the piezoelectric film 53 and the IDT electrodes 54 .
  • the high acoustic velocity support substrate 51 is a substrate in which the acoustic velocity of bulk waves in the high acoustic velocity support substrate 51 is faster than acoustic waves such as surface waves and boundary waves propagating through the piezoelectric film 53, and surface acoustic waves are generated. It functions so that it is confined in the portion where the piezoelectric film 53 and the low sound velocity film 52 are laminated and does not leak below the high sound velocity support substrate 51 .
  • the high acoustic velocity support substrate 51 is, for example, a silicon substrate.
  • the low sound velocity film 52 is a film in which the sound velocity of the bulk wave in the low sound velocity film 52 is lower than that of the bulk wave propagating through the piezoelectric film 53 , and is arranged between the piezoelectric film 53 and the high sound velocity support substrate 51 . be.
  • This structure and the nature of the elastic wave to concentrate its energy in a low-temperature medium suppresses leakage of the surface acoustic wave energy to the outside of the IDT electrode.
  • the low-temperature velocity film 52 is, for example, a film whose main component is silicon dioxide.
  • the laminated structure of the substrate 50 it is possible to significantly increase the Q value at the resonance frequency and anti-resonance frequency compared to the conventional structure using a single layer piezoelectric substrate. That is, since an acoustic wave resonator with a high Q value can be configured, it is possible to configure a filter with a small insertion loss using the acoustic wave resonator.
  • the high acoustic velocity support substrate 51 has a structure in which a support substrate and a high acoustic velocity film having a higher acoustic velocity than elastic waves such as surface waves and boundary waves propagating through the piezoelectric film 53 are laminated.
  • the support substrate includes piezoelectric materials such as sapphire, lithium tantalate, lithium niobate, and quartz, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and fort.
  • the high acoustic velocity film includes aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film, diamond, media containing these materials as main components, and media containing mixtures of these materials as main components. etc., various high acoustic velocity materials can be used.
  • FIG. 3B is a cross-sectional view schematically showing a second example of elastic wave resonators forming filters 11, 12, 13, 21 and 22 according to the embodiment.
  • the elastic wave resonator 60 shown in FIG. 3A shows an example in which the IDT electrodes 54 are formed on the substrate 50 having the piezoelectric film 53.
  • the substrate on which the IDT electrodes 54 are formed is shown in FIG. 3B.
  • the piezoelectric single crystal substrate 57 may be a single piezoelectric layer.
  • the piezoelectric single crystal substrate 57 is composed of, for example, a piezoelectric single crystal of LiNbO 3 .
  • the acoustic wave resonator according to this example is composed of a piezoelectric single crystal substrate 57 of LiNbO 3 , an IDT electrode 54 , and a protective layer 58 formed on the piezoelectric single crystal substrate 57 and the IDT electrode 54 . .
  • the piezoelectric film 53 and the piezoelectric single crystal substrate 57 described above may be appropriately changed in laminated structure, material, cut angle, and thickness according to the required transmission characteristics of the elastic wave filter device. Even an elastic wave resonator using a LiTaO 3 piezoelectric substrate having a cut angle other than the cut angle described above can produce the same effects as the elastic wave resonator 60 using the piezoelectric film 53 described above.
  • the substrate on which the IDT electrodes 54 are formed may have a structure in which a supporting substrate, an energy trapping layer, and a piezoelectric film are laminated in this order.
  • An IDT electrode 54 is formed on the piezoelectric film.
  • the piezoelectric film is, for example, LiTaO 3 piezoelectric single crystal or piezoelectric ceramics.
  • the support substrate is the substrate that supports the piezoelectric film, the energy confinement layer, and the IDT electrodes 54 .
  • the energy confinement layer consists of one or more layers, and the velocity of the bulk acoustic wave propagating through at least one layer is greater than the velocity of the elastic wave propagating near the piezoelectric film.
  • the energy trapping layer may have a laminated structure of a low acoustic velocity layer and a high acoustic velocity layer.
  • the sound velocity layer is a film in which the sound velocity of bulk waves in the sound velocity layer is lower than the sound velocity of elastic waves propagating through the piezoelectric film.
  • the high acoustic velocity layer is a film in which the acoustic velocity of bulk waves in the high acoustic velocity layer is higher than the acoustic velocity of elastic waves propagating through the piezoelectric film.
  • the support substrate may be a high acoustic velocity layer.
  • the energy trapping layer may be an acoustic impedance layer having a configuration in which a low acoustic impedance layer with a relatively low acoustic impedance and a high acoustic impedance layer with a relatively high acoustic impedance are alternately laminated. .
  • the wavelength of the elastic wave resonator is defined by the wavelength ⁇ which is the repetition period of the plurality of electrode fingers 61a or 61b forming the IDT electrode 54 shown in (b) of FIG. 3A.
  • the electrode finger pitch is 1/2 of the wavelength ⁇
  • the line width of the electrode fingers 61a and 61b constituting the comb-shaped electrodes 60a and 60b is W
  • the distance between the adjacent electrode fingers 61a and 61b is When the space width is S, it is defined as (W+S).
  • S space width
  • the intersecting width L of the pair of comb-shaped electrodes 60a and 60b is the overlap of the electrode fingers 61a and 61b when viewed from the elastic wave propagation direction (X-axis direction). is the length of the electrode finger that
  • the electrode duty of each acoustic wave resonator is the line width occupation ratio of the plurality of electrode fingers 61a and 61b, and is the ratio of the line width to the sum of the line width and space width of the plurality of electrode fingers 61a and 61b. and is defined as W/(W+S).
  • the height of the comb electrodes 60a and 60b is h.
  • electrode parameters related to the shape of the IDT electrodes of the acoustic wave resonator such as the wavelength ⁇ , the electrode finger pitch, the crossing width L, the electrode duty, and the height h of the IDT electrodes 54, are defined as electrode parameters.
  • the electrode finger pitch of the IDT electrodes 54 is defined by the average electrode finger pitch of the IDT electrodes 54 .
  • the average electrode finger pitch of the IDT electrode 54 is defined by the total number of the electrode fingers 61a and 61b included in the IDT electrode 54 being Ni, and the electrode finger positioned at one end of the IDT electrode 54 in the elastic wave propagation direction and It is defined as Di/(Ni-1), where Di is the center-to-center distance from the positioned electrode finger.
  • the resonance frequency and antiresonance frequency of the surface acoustic wave resonator shift to the lower frequency side as the electrode finger pitch of the IDT electrode increases. shift.
  • FIG. 3C is a cross-sectional view schematically showing a third example of elastic wave resonators forming filters 11, 12, 13, 21 and 22 according to the embodiment.
  • Bulk acoustic wave resonators are shown as acoustic wave resonators of filters 11, 12, 13, 21 and 22 in FIG. 3C.
  • the bulk acoustic wave resonator has, for example, a support substrate 65, a lower electrode 66, a piezoelectric layer 67, and an upper electrode 68. , a piezoelectric layer 67, and an upper electrode 68 are laminated in this order.
  • the support substrate 65 is a substrate for supporting the lower electrode 66, the piezoelectric layer 67, and the upper electrode 68, and is, for example, a silicon substrate.
  • the support substrate 65 is provided with a cavity in a region in contact with the lower electrode 66 . This allows the piezoelectric layer 67 to vibrate freely.
  • the lower electrode 66 is an example of a first electrode and is formed on one surface of the support substrate 65 .
  • the upper electrode 68 is an example of a second electrode and is formed on one surface of the support substrate 65 .
  • the lower electrode 66 and the upper electrode 68 are made of Al containing 1% Cu, for example.
  • the piezoelectric layer 67 is formed between the lower electrode 66 and the upper electrode 68 .
  • the piezoelectric layer 67 is made of, for example, ZnO (zinc oxide), AlN (aluminum nitride), PZT (lead zirconate titanate), KN (potassium niobate), LN (lithium niobate), LT (lithium tantalate),
  • the main component is at least one of quartz and LiBO (lithium borate).
  • the bulk acoustic wave resonator having the above laminated structure induces a bulk acoustic wave in the piezoelectric layer 67 by applying electrical energy between the lower electrode 66 and the upper electrode 68 to generate resonance. It is.
  • a bulk acoustic wave generated by this bulk acoustic wave resonator propagates between the lower electrode 66 and the upper electrode 68 in a direction perpendicular to the film surface of the piezoelectric layer 67 . That is, the bulk acoustic wave resonator is a resonator that utilizes bulk acoustic waves.
  • the resonance frequency and anti-resonance frequency of the bulk acoustic wave resonator shift to the low frequency side.
  • each of the filters 11, 12 and 13 is composed of one or more surface acoustic wave resonators having the IDT electrodes 54, and each of the filters 11, 12 and 13 A series arm resonator arranged on a series arm path connecting the input end and the output end may be included.
  • a series arm resonator arranged on a series arm path connecting the input end and the output end may be included.
  • the electrode finger pitch of the IDT electrodes 54 forming the series arm resonators included in the filters 11 and 12 is larger than the electrode finger pitch of the IDT electrodes 54 forming the series arm resonators included in the filter 13, good.
  • the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
  • each of the filters 11, 12 and 13 includes a support substrate 65, lower electrodes 66 and 68 formed on one surface of the support substrate 65, and lower electrodes 66 and 68 formed on one surface of the support substrate 65. 66 and a piezoelectric layer 67 formed between the upper electrode 68.
  • Each of the filters 11, 12 and 13 connects an input end and an output end.
  • a series arm resonator arranged on the series arm path may be included.
  • the piezoelectric layers 67 forming the series arm resonators included in the filters 11 and 12 may be thicker than the piezoelectric layers 67 forming the series arm resonators included in the filter 13 .
  • the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
  • FIG. 4 is a circuit configuration diagram of a high frequency module 500 according to a comparative example.
  • high frequency module 500 includes filters 11, 12, 13, 21 and 22, inductors 30, 31, 32 and 33, switch 70, low noise amplifiers 41, 42, 43, 44 and 45 , an antenna connection terminal 100 , and output terminals 110 , 120 , 130 , 140 and 150 .
  • a high frequency module 500 according to the comparative example differs from the high frequency module 1 according to the embodiment mainly in the connection configuration between the filters 11 , 12 and 13 and the inductor 30 .
  • the description of the same configuration as that of the high-frequency module 1 according to the embodiment will be omitted, and the description will focus on the different configuration.
  • the inductor 30 has one end connected to the terminal 70 b and the other end connected to the input end of the filter 11 .
  • the filter 11 has an input end connected to the other end of the inductor 30 and has a first passband including at least part of band A (first band).
  • Filter 11 has one or more elastic wave resonators.
  • the filter 12 has an input end connected to the terminal 70b without passing through the inductor 30, and has a second passband including at least part of the band B (second band).
  • Filter 12 has one or more elastic wave resonators.
  • the filter 13 has an input end connected to the terminal 70b without passing through the inductor 30, and has a third passband including at least part of the band C (third band).
  • Filter 13 has one or more elastic wave resonators.
  • the filter 21 has an input end connected to the terminal 70c without passing through the inductor 30, and has a fourth passband including at least part of the band D (fourth band).
  • Filter 21 has one or more elastic wave resonators.
  • the filter 22 has an input end connected to the terminal 70d without passing through the inductor 30, and has a fifth passband including at least part of the band E (fifth band).
  • Filter 22 has one or more elastic wave resonators.
  • the filters 11 and 12 are connected to the terminal 70b via the inductor 30, and the filter 13 is connected to the terminal 70b without the inductor 30.
  • the filter 11 is connected to the terminal 70b via the inductor 30, and the filters 12 and 13 are connected to the terminal 70b without the inductor 30.
  • the relationship between the frequencies of the first passband, the second passband, and the third passband and the relationship between the frequencies of the fourth passband and the fifth passband are not limited.
  • the high-frequency module 500 can receive a band A signal, a band B signal, a band C signal, a band D signal, and a band E signal at the same time.
  • FIG. 5A is a Smith chart showing impedance characteristics of each filter according to the embodiment.
  • the impedance in the band D when the filters 11, 12 and 13 are viewed from the terminal 70b side of the high frequency module 1 is shown on the Smith chart.
  • FIG. 5B is a Smith chart showing the impedance characteristics of each filter according to the comparative example.
  • the impedance in the band D when the filters 11, 12 and 13 are viewed from the terminal 70b side of the high frequency module 500 is shown on the Smith chart.
  • the impedance in band E when the filters 11, 12 and 13 are viewed from the terminal 70b side is also the impedance of the filters 11, 12 and 13 from the terminal 70b side shown in FIGS. 5A and 5B. It exhibits characteristics similar to the impedance in band D when viewed.
  • the passband of another filter not the passband (own band) of the filter itself, will be referred to as the other band.
  • the own band of filter 11 is band A
  • the partner bands of filter 11 are band B, band C, band D and band E.
  • the filters 12 and 13 are commonly connected to the terminal 70b without the inductor 30 interposed. Since filters 12 and 13 are acoustic wave filters, the impedance of each unit exhibits capacitiveness. On the other hand, the combined impedance seen from the terminal 70b of the filters 12 and 13 commonly connected to the terminal 70b has an even larger capacitance value.
  • the impedance in the other band (for example, band D) is For example, compared to the impedance in band D), it is located in the capacitive region farther from the open point (a in FIG. 5B). As a result, signals in the other band (for example, band D) are likely to leak to the filters 12 and 13, increasing the insertion loss of the filter (filter 21) having the other band as the passband.
  • the impedance (b in FIG. 5B) in the other band (for example, band D) when the filter 11 alone is viewed from the terminal 70b is induced clockwise. (c in FIG. 5B).
  • the capacitive impedance (a in FIG. 5B) in the other band (for example, band D) and the filter 11 to which the inductor 30 is connected in series When viewing the filters 11, 12 and 13 from the terminal 70b, the inductive impedance (c in FIG.
  • the impedance in the other band (for example, band D) when viewed from the terminal 70b is a complex conjugate relationship. It is possible to place the impedance in the counterpart band (eg, band D) in the open region. However, when the filters 12 and 13 commonly connected to the terminal 70b are viewed from the terminal 70b, the capacitiveness of the impedance in the partner band (for example, band D) is large. It is difficult to position the impedance (d in FIG. 5B) in the opposite band (for example, band D) in the open region with high accuracy.
  • the inductance value of the inductor 30 is reduced, and the partner band (for example, band D) when the filter 11 in which the inductor 30 is connected in series is viewed from the terminal 70b It is conceivable to adjust the amount of impedance shift in .
  • the impedance approaches a short circuit from an open circuit, so that the signal in the other band (for example, band D) is likely to leak to the filter 11, and the insertion loss of the filter (21) having the other band as the passband increases. increase.
  • the filter 13 is commonly connected to the terminal 70b without the inductor 30 interposed. Since the filter 13 is an acoustic wave filter, the impedance of a single unit exhibits capacitiveness.
  • the impedance in the other band for example, band D
  • band D the impedance in the other band
  • the impedance in the other band for example, band D
  • the impedance in the other band is It is located in a capacitive region close to the open point (a in FIG. 5A) compared to the impedance (a in FIG. 5B) in (eg band D). Therefore, it is possible to suppress the signal of the other band (for example, band D) from leaking to the filter 13, so that the insertion loss of the filter (filter 21) having the passband of the other band can be reduced.
  • the impedance in the other band (for example, band D) when the commonly connected filters 11 and 12 are viewed from the terminal 70b is (Fig. 5A b) is shifted clockwise into the inducible region (Fig. 5A c).
  • the capacitive impedance (a in FIG. 5A) in the other band (for example, band D) and the filters 11 and 12 to which the inductor 30 is connected in series is shifted clockwise into the inducible region (Fig. 5A c).
  • the impedance in the other band (for example, band D) when viewed from the terminal 70b can have a complex conjugate relationship with high precision.
  • the other band (for example, band D) and the impedance when the filter 13 alone is seen from the terminal 70b in a state in which the terminals 70a and 70b are disconnected and the inductor 30 and the filters 11 and 12 are not connected to the terminal 70b.
  • the impedance in the other band (for example, band D) satisfies a complex conjugate relationship. As a result, the impedance (d in FIG.
  • the impedance of the commonly connected filters 11 and 12 is in the capacitive region, and is located close to the open to short, so the inductance value of the inductor 30 for shifting the impedance to the inductive region can be reduced. . Therefore, the transmission loss of filters 11 and 12 due to inductor 30 can be reduced.
  • the band A and the band B are located on the lower frequency side than the band C. That is, the passbands of filters 11 and 12 to which inductor 30 is connected in series are located on the lower frequency side than the passband of filter 13 to which inductor 30 is not connected. Since the inductor 30 connected to the filters 11 and 12 functions as a low-pass filter, the passbands of the filters 11 and 12 are separated from the cutoff frequency of the low-pass filter formed by the inductor 30 to the lower frequency side. preferably.
  • the passbands of filters 11 and 12 are positioned on the lower frequency side than the passband of filter 13
  • the passbands of filters 11 and 12 are positioned on the lower frequency side than the cutoff frequency. Because of the position, an increase in insertion loss of filters 11 and 12 can be suppressed.
  • the capacitor 35 By adding the capacitor 35, the low-pass filter function formed by the inductor 30 is enhanced, and the increase in the insertion loss of the filters 11 and 12 can be further suppressed.
  • FIG. 6 is a circuit configuration diagram of a high frequency module 2 according to a modification.
  • the high frequency module 2 according to this modification includes filters 11, 12, 13, 14, 21 and 22, inductors 31, 32, 33 and 34, a switch 70, a low noise amplifier 41, 42 , 43 , 44 , 45 and 46 , an antenna connection terminal 100 , and output terminals 110 , 120 , 130 , 140 , 150 and 160 .
  • a high-frequency module 2 according to this modification differs from the high-frequency module 1 according to the embodiment mainly in that a filter 14 and a low-noise amplifier 46 are added.
  • a filter 14 and a low-noise amplifier 46 are added.
  • the description of the same configuration as that of the high-frequency module 1 according to the embodiment will be omitted, and the description will focus on the different configuration.
  • the inductor 34 has one end connected to the terminal 70b and the other end connected to the input end of the filter 11, the input end of the filter 12, and the input end of the filter 14.
  • the filter 11 is an example of a first acoustic wave filter, has an input end connected to the other end of the inductor 34, and has a first passband including at least part of band A (first band).
  • Filter 11 has one or more elastic wave resonators.
  • the filter 12 is an example of a second acoustic wave filter, has an input end connected to the other end of the inductor 34, and has a second passband including at least part of the band B (second band).
  • Filter 12 has one or more elastic wave resonators.
  • the filter 14 is an example of a sixth acoustic wave filter, has an input end connected to the other end of the inductor 34, and has a sixth passband including at least part of the band F (sixth band).
  • Filter 14 has one or more elastic wave resonators.
  • the filter 13 is an example of a third acoustic wave filter, has an input end connected to the terminal 70b without passing through the inductor 34, and has a third passband including at least part of the band C (third band).
  • Filter 13 has one or more elastic wave resonators.
  • the filter 21 is an example of a fourth acoustic wave filter, has an input terminal connected to the terminal 70c without the inductor 34, and has a fourth passband including at least part of the band D (fourth band).
  • Filter 21 has one or more elastic wave resonators.
  • the filter 22 is an example of a fifth acoustic wave filter, has an input terminal connected to the terminal 70d without the inductor 34, and has a fifth passband including at least part of the band E (fifth band). Filter 22 has one or more elastic wave resonators.
  • the first passband, the second passband and the sixth passband are located on the lower frequency side than the third passband.
  • the capacitor 35 is connected between the other end of the inductor 34 and the ground.
  • the low-noise amplifier 46 has an input terminal connected to the output terminal of the filter 14 and an output terminal connected to the output terminal 160, and amplifies the received band F signal.
  • the high-frequency module 2 can simultaneously receive a signal of band A, a signal of band B, a signal of band C, a signal of band D, a signal of band E, and a signal of band F. .
  • the terminal 70a and the terminal 70b are connected in the switch 70, and the terminal 70a and the terminal 70c are connected.
  • the state of impedance matching at the time of simultaneous reception can be improved. Characteristics such as return loss of received signals can be improved.
  • this capacitor may be formed integrally with an FET or the like inside the switch 70 . With such a configuration, the high-frequency module 2 can be miniaturized. In that case, a capacitor may be placed between the series FET and the shunt FET in the signal path.
  • the capacitor 35 may not be arranged in series with the filter 12, and the high-frequency module 2 includes the filter 22, the low noise amplifiers 41 to 46, the capacitor 35, the inductor 31, 32 and 33 and switch element 73 may be omitted.
  • FIG. 7 is a Smith chart showing the impedance characteristics of each filter according to the modification.
  • the impedance in the band D when the filters 11, 12 and 13 are viewed from the terminal 70b side of the high frequency module 2 is shown on the Smith chart.
  • the filter 13 is commonly connected to the terminal 70b without the inductor 34 interposed therebetween. Since the filter 13 is an acoustic wave filter, the impedance of a single unit exhibits capacitiveness.
  • the impedance in the other band for example, band D
  • the impedance in the other band for example, band D
  • the common-connected filters 11, 12, and 14 are connected in series with the inductor 34, so that the common-connected filters 11, 12, and 14 are in the opposite band (for example, band D) (Fig. 7b) is shifted clockwise into the inductive region (Fig. 7c).
  • the capacitive impedance (a in FIG. 7) in the other band (for example, band D) and the filters 11 and 12 to which the inductor 34 is connected in series , and 14 with the inductive impedance (c in FIG. 7) in the other band (for example, band D) when viewed from the terminal 70b can have a complex conjugate relationship with high precision.
  • the filter 13 when the terminals 70a and 70b are unconnected and the filter 13 is not connected to one end of the inductor 34, when the filters 11, 12 and 14 are viewed from the terminal 70b, For example, in a state where the impedance in band D), the terminals 70a and 70b are disconnected, and the inductor 34 and the filters 11, 12 and 14 are not connected to the terminal 70b, the filter 13 alone is removed from the terminal 70b.
  • the impedance in the other band for example, band D
  • the impedance (d in FIG.
  • band A, band B, and band F are located on the lower frequency side than band C. That is, the passbands of filters 11, 12 and 14 to which inductor 34 is connected in series are located on the lower frequency side than the passband of filter 13 to which inductor 34 is not connected. Since inductor 34 connected to filters 11, 12 and 14 functions as a low-pass filter, the passbands of filters 11, 12 and 14 are lower than the cutoff frequency of the low-pass filter formed by inductor 34. It is preferable to keep them away from each other.
  • the passbands of filters 11, 12 and 14 are located on the lower frequency side than the passband of filter 13, the passbands of filters 11, 12 and 14 are lower than the cutoff frequency. Since it is located on the low frequency side, an increase in insertion loss of filters 11, 12 and 14 can be suppressed.
  • FIG. 8 A mounting configuration of the high-frequency module 1 according to the present embodiment will be described with reference to FIGS. 8 and 9.
  • FIG. 8 A mounting configuration of the high-frequency module 1 according to the present embodiment will be described with reference to FIGS. 8 and 9.
  • FIG. 8 is a plan view of the high frequency module 1 according to the embodiment.
  • FIG. 9 is a cross-sectional view of the high-frequency module 1 according to the embodiment.
  • 8A is a view of the main surface 90a side of the module substrate 90 viewed from the z-axis positive side
  • FIG. 8B is a view of the main surface 90b side of the module substrate 90 viewed from the z-axis positive side. It is a perspective view.
  • the cross section of the high frequency module 1 in FIG. 9 is taken along line IX-IX in (a) and (b) of FIG.
  • each part may have a symbol representing it so that the arrangement relationship of each part can be easily understood.
  • not 8 and 9 omit the illustration of wiring that connects a plurality of electronic components arranged on the module substrate 90.
  • the high-frequency module 1 includes a module substrate 90, resin members 91 and 92, external connection terminals 95, and a shield electrode layer 96, in addition to the plurality of electronic components included in the high-frequency module 1 shown in FIG. Prepare.
  • the module substrate 90 has main surfaces 90a and 90b facing each other. Principal surfaces 90a and 90b are examples of a first principal surface and a second principal surface, respectively. Note that in FIG. 8, the module substrate 90 has a rectangular shape in plan view, but is not limited to this shape.
  • LTCC low temperature co-fired ceramics
  • HTCC high temperature co-fired ceramics
  • a component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like can be used, but is not limited to these.
  • the resin member 91 is arranged on the main surface 90a, covers a part of the plurality of circuit components and the main surface 90a, and provides reliability such as mechanical strength and moisture resistance of the plurality of circuit components. It has a function to ensure The resin member 91 is arranged on the main surface 90b, covers part of the circuit component and the main surface 90b, and has a function of ensuring reliability such as mechanical strength and moisture resistance of the circuit component.
  • the plurality of external connection terminals 95 are arranged on the main surface 90b.
  • the high-frequency module 1 exchanges electric signals with an external substrate arranged on the z-axis negative direction side of the high-frequency module 1 via a plurality of external connection terminals 95 . Also, some of the plurality of external connection terminals 95 are set to the ground potential of the external substrate.
  • the high frequency module 1 may further include a shield electrode layer 96 that covers the surface and side surfaces of the resin member 91 and the side surface of the resin member 92 and that is set to the ground potential. This improves the electromagnetic field shielding function of the high-frequency module 1 from external circuits.
  • the resin members 91 and 92, the external connection terminals 95, and the shield electrode layer 96 are not essential components of the high frequency module according to the present invention.
  • the filters 11, 12, 13, 21 and 22 and the inductor 30 are arranged on the main surface 90a.
  • Filters 11 and 12 are configured by being integrated on chip part 81 .
  • the filter 13 is composed of chip parts 82 .
  • Filters 21 and 22 are integrated on chip component 83 .
  • Each of the chip components 81, 82 and 83 is constructed using, for example, a Si substrate or a piezoelectric substrate.
  • Each of the filters 11, 12, 13, 21 and 22 may not be included in any one of the chip components 81 to 83, and may be arranged alone on the main surface 90a.
  • a semiconductor IC 80 is arranged on the main surface 90b.
  • Semiconductor IC 80 includes a switch region 80a in which switch 70 (switch elements 71-73) is formed, and an amplification region 80b in which low-noise amplifiers 41-45 are formed.
  • the semiconductor IC 80 is configured using CMOS, for example, and is specifically manufactured by an SOI (Silicon On Insulator) process.
  • the semiconductor IC 80 may be composed of at least one of GaAs, SiGe, and GaN, but the semiconductor material that constitutes the semiconductor IC 80 is not limited to the materials described above.
  • the semiconductor IC 80 may have at least the switch region 80a, and the amplification region 80b may be included in a semiconductor IC different from the semiconductor IC 80.
  • the inductors 31 to 33 are not shown in FIG. 8, they may be arranged on the main surfaces 90a, 90b and inside the module substrate 90.
  • the circuit components constituting the high-frequency module 1 are arranged separately on the main surfaces 90a and 90b, so that the high-frequency module 1 can be miniaturized.
  • the capacitor 35 is composed of a planar conductor formed on at least one of the surface and inside of the module substrate 90 .
  • the capacitor 35 is composed of planar conductors formed in the first layer arranged on the main surface 90a of the module substrate 90, the second layer arranged inside the module substrate 90, and the third layer.
  • the planar conductors formed on the first layer may be ground electrodes of the filters 11 and 12 .
  • the capacitor 35 is arranged inside the module substrate 90, so that the high frequency module 1 can be made more compact.
  • the inductor 30 and the semiconductor IC 80 at least partially overlap each other, and the filter 21 and the semiconductor IC 80 at least partially overlap each other.
  • the wiring connecting the inductor 30 and the switch 70 and the wiring connecting the filter 21 and the switch 70 can be shortened, so that the transmission loss of the two wirings can be reduced. Therefore, the loss of the high frequency module 1 can be reduced.
  • the module substrate 90 when the module substrate 90 is viewed from above, it is desirable that at least a portion of the inductor 30 and the switch region 80a overlap.
  • the wiring connecting the inductor 30 and the switch 70 can be made shorter, so that the transmission loss of the wiring can be further reduced.
  • the module substrate 90 when the module substrate 90 is viewed in plan, at least one of the filters 11 and 12 and the capacitor 35 overlap at least partially.
  • the wiring connecting at least one of the filters 11 and 12 and the capacitor 35 can be shortened, the transmission loss of the wiring can be reduced.
  • the filter 22 is arranged closer to the semiconductor IC 80 than the filter 21 is. Furthermore, when viewed from above, it is desirable that the filter 22 be arranged closer to the switch region 80a than the filter 21 is.
  • the passband of the filter 22 is located on the higher frequency side than the passband of the filter 21. Therefore, the filter 22 is more affected than the filter 21 by the phase change due to the wiring length connecting the switch 70 and the filter.
  • the other band for example, band E
  • the other band can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 22 having the passband of the other band can be reduced.
  • the high-frequency module 1 can simultaneously transmit a signal of the band A, a signal of the band B, a signal of the band C and a signal of the band D, and the terminals 70a, 70b and 70c a switch 70 that switches connection and disconnection between the terminals 70a and 70b and switches connection and disconnection between the terminals 70a and 70c; an inductor 30 having one end connected to the terminal 70b; A filter 11 connected to the other end and having a first passband including at least part of band A, and a filter 12 connected to the other end of inductor 30 and having a second passband including at least part of band B.
  • a filter 13 connected to terminal 70b without inductor 30 and having a third passband including at least part of band C, and a filter 13 connected to terminal 70c without inductor 30 and including at least part of band D. and a filter 21 having a fourth passband comprising the first passband and the second passband located on the lower frequency side than the third passband.
  • the filter 13 is commonly connected to the terminal 70b without the inductor 30 interposed. Since the filter 13 is an acoustic wave filter, the impedance of a single unit exhibits capacitiveness.
  • the impedance in the other band (for example, band D) is the same as the impedance in the other band (for example, band D) when the filters 12 and 13 directly connected to the terminal 70b are viewed from the terminal 70b. It lies in the capacitive region close to the open point compared to the impedance in eg band D). Therefore, it is possible to suppress the signal of the other band (for example, band D) from leaking to the filter 13, so that the insertion loss of the filter (filter 21) having the passband of the other band can be reduced.
  • the impedance in the other band (for example, band D) when the commonly connected filters 11 and 12 are viewed from the terminal 70b is is shifted clockwise to the inducible region.
  • the capacitive impedance in the other band (for example, band D) when the filter 13 alone connected to the terminal 70b is viewed from the terminal 70b, and the filters 11 and 12 to which the inductor 30 is connected in series are viewed from the terminal 70b.
  • the inductive impedance in the other band (for example, band D) in the case can be made into a complex conjugate relationship with high accuracy.
  • the impedance in the other band (for example, band D) when the filters 11, 12 and 13 are viewed from the terminal 70b can be positioned in the open region with higher accuracy.
  • the passbands of filters 11 and 12 are located on the lower frequency side than the passband of filter 13, the passbands of filters 11 and 12 are lower than the cutoff frequency of the low-pass filter composed of inductor 30. Since it is positioned on the lower frequency side, an increase in insertion loss of filters 11 and 12 can be suppressed.
  • the terminals 70a and 70b when simultaneously transmitting a signal of band A, a signal of band B, a signal of band C and a signal of band D, the terminals 70a and 70b are connected, and the terminals 70a and 70c are connected. may be connected.
  • the filters 11 and 12 are viewed from the terminal 70b.
  • Impedance in the fourth passband a state in which the terminals 70a and 70b are disconnected, and a state in which the inductor 30 and the filters 11 and 12 are not connected to the terminal 70b, as viewed from the terminal 70b
  • the impedance in the fourth passband in the case may satisfy a complex conjugate relationship.
  • the high-frequency module 1 further includes a module substrate 90 having main surfaces 90a and 90b facing each other, filters 11, 12, 13, 21 and inductor 30 are arranged on main surface 90a, and switch 70 may be included in the semiconductor IC 80 arranged on the main surface 90b.
  • the high frequency module 1 since the circuit components constituting the high frequency module 1 are arranged separately on the main surfaces 90a and 90b, the high frequency module 1 can be miniaturized.
  • the inductor 30 and the semiconductor IC 80 may at least partially overlap, and the filter 21 and the semiconductor IC 80 may at least partially overlap.
  • the wiring connecting the inductor 30 and the switch 70 and the wiring connecting the filter 21 and the switch 70 can be shortened, so that the transmission loss of the two wirings can be reduced. Therefore, the loss of the high frequency module 1 can be reduced.
  • the high-frequency module 1 further includes an amplifier connected to at least one of the filters 11, 12, 13 and 21, and the semiconductor IC 80 includes a switch region 80a formed with a switch 70 and an amplifier formed with an amplifier.
  • the inductor 30 and the switch region 80a may at least partially overlap each other, and the filter 21 and the switch region 80a may at least partially overlap each other. .
  • the wiring connecting the inductor 30 and the switch 70 and the wiring connecting the filter 21 and the switch 70 can be made shorter, so that the transmission loss of the two wirings can be further reduced.
  • the high-frequency module 1 may further include a capacitor connected to at least one of one end and the other end of the inductor 30 .
  • the high-frequency module 1 may include a capacitor 35 connected between the other end of the inductor 30 and the ground.
  • the low-pass filter function formed by the inductor 30 is enhanced, and the increase in insertion loss of the filters 11 and 12 can be further suppressed.
  • the capacitor 35 may be composed of a planar conductor formed on at least one of the surface and inside of the module substrate 90.
  • the capacitor 35 is formed inside the module substrate 90, so the high frequency module 1 can be miniaturized.
  • At least one of the filters 11 and 12 and the capacitor 35 may at least partially overlap when the module substrate 90 is viewed from above.
  • the wiring connecting at least one of the filters 11 and 12 and the capacitor 35 can be shortened, the transmission loss of the wiring can be reduced.
  • the switch 70 further has a terminal 70d for switching between connection and disconnection between the terminals 70a and 70b, for switching between connection and disconnection between the terminals 70a and 70c, and for switching between the terminal 70a and the terminal 70c.
  • the high-frequency module 1 further includes a filter 22 connected to the terminal 70d without the inductor 30 and having a fifth passband including at least part of the band E, The center frequency of the fifth passband may be positioned on the higher frequency side than the center frequency of the fourth passband, and filter 22 may be arranged closer to IC 80 than filter 21 .
  • the passband of the filter 22 is located on the higher frequency side than the passband of the filter 21. Therefore, the filter 22 is more affected than the filter 21 by the phase change due to the wiring length connecting the switch 70 and the filter.
  • the other band for example, band E
  • the other band can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 22 having the passband of the other band can be reduced.
  • the high-frequency module 2 further includes a filter 14 connected to the other end of the inductor 30 and having a sixth passband including at least part of the band F, the sixth passband being the third passband. It may be positioned on the lower frequency side than the band.
  • the filter 11, 12, 13 and 14 it is possible to suppress the leakage of the signals of the other band (for example, band D) to the filters 11, 12, 13 and 14, so that the insertion loss of the filter 21 having the passband of the other band can be reduced.
  • the impedance of the commonly connected filters 11, 12 and 14 is in a capacitive region and positioned close to open to short, the inductance value of the inductor 34 can be reduced. Therefore, the transmission loss of the filters 11, 12 and 14 due to the inductor 34 can be reduced.
  • band A, band B, and band F are located on the lower frequency side than band C. Since the passbands of filters 11, 12 and 14 are located on the lower frequency side than the cutoff frequency of the low-pass filter formed by inductor 34, an increase in insertion loss of filters 11, 12 and 14 can be suppressed.
  • the filters 11, 12 and 14 are viewed from the terminal 70b in a state in which the terminals 70a and 70b are disconnected and the filter 13 is not connected to one end of the inductor 34.
  • the terminal 70b to the filter 13 The impedance in the fourth passband when viewed as a single unit may satisfy a complex conjugate relationship.
  • each of the filters 11, 12 and 13 is composed of one or more surface acoustic wave resonators having an IDT electrode 54, and each of the filters 11, 12 and 13 has an input end and an output end.
  • the electrode finger pitch of the IDT electrodes 54 constituting the series arm resonators included in the filters 11 and 12, including the series arm resonators arranged on the series arm paths connecting the may be larger than the electrode finger pitch of the IDT electrodes 54 constituting the .
  • the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
  • each of the filters 11, 12 and 13 includes a support substrate 65, a lower electrode 66 and an upper electrode 68 formed on one surface of the support substrate 65, and a lower electrode 66 and an upper electrode 68.
  • Each of the filters 11, 12 and 13 is arranged on a series arm path connecting the input terminal and the output terminal.
  • the piezoelectric layer 67 that includes the arranged series arm resonators and that constitutes the series arm resonators included in the filters 11 and 12 is thicker than the piezoelectric layer 67 that constitutes the series arm resonators included in the filter 13. good too.
  • the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
  • the communication device 4 includes an RFIC 3 that processes high frequency signals, and a high frequency module 1 that transmits high frequency signals between the RFIC 3 and the antenna 5 .
  • the effect of the high-frequency module 1 can be realized by the communication device 4.
  • matching elements such as inductors and capacitors, and switch circuits may be connected between the constituent elements.
  • the inductor may include a wiring inductor that is a wiring that connects each component.
  • the present invention can be widely used in communication equipment such as mobile phones as a low-loss multiplexer applicable to multi-band and multi-mode frequency standards.
  • RFIC radio frequency identification circuit
  • antenna 10a, 10b input/output terminal 10A, 10B acoustic wave filter 11, 12, 13, 14, 21, 22 filter 30, 31, 32, 33, 34, 161 inductor 35 capacitor 41, 42, 43, 44 , 45, 46 low noise amplifier 50 substrate 51 high acoustic velocity support substrate 52 low acoustic velocity film 53 piezoelectric film 54 IDT electrodes 55, 58 protective layer 57 piezoelectric single crystal substrate 60 elastic wave resonators 60a, 60b comb electrodes 61a, 61b electrode fingers 62a , 62b busbar electrode 65 support substrate 66 lower electrode 67 piezoelectric layer 68 upper electrode 70 switch 70a, 70b, 70c, 70d terminal 71, 72, 73 switch element 80 semiconductor IC 80a switch region 80b amplification region 81, 82, 83 chip component 90 module substrate 90a, 90b main surface 91, 92 resin member 95 external connection terminal 96 shield electrode layer 100

Abstract

A high-frequency module (1) comprises: a switch (70) for switching connection and disconnection of a terminal (70a) and a terminal (70b), and switching connection and disconnection of the terminal (70a) and a terminal (70c); an inductor (30) having one end connected to the terminal (70b); a filter (11) connected to the other end of the inductor (30) and having a first pass band including a part of a band A; a filter (12) connected to the other end of the inductor (30) and having a second pass band including a part of a band B; a filter (13) connected to the terminal (70b) without the inductor (30) therebetween, and having a third pass band including a part of a band C; and a filter (21) connected to the terminal (70c) without the inductor (30) therebetween, and having a fourth pass band including a part of a band D. The first pass band and the second pass band are on the lower frequency side of the third pass band.

Description

高周波モジュールおよび通信装置High frequency module and communication equipment
 本発明は、高周波モジュールおよび通信装置に関する。 The present invention relates to high frequency modules and communication devices.
 特許文献1には、3つのフィルタ(第1フィルタ、第2フィルタおよび第3フィルタ)のそれぞれが共通端子に接続された構成を有するマルチプレクサ(高周波モジュール)が開示されている。第1フィルタと共通端子との間には第1フィルタと直列接続されるインダクタが配置され、第2フィルタおよび第3フィルタは上記インダクタを介さずに共通端子と直接接続されている。この構成により、異なる周波数帯域を有する3つの信号を第1フィルタ、第2フィルタおよび第3フィルタで分波および/または合波することで、当該3つの信号を同時に伝送することが可能となる。 Patent Document 1 discloses a multiplexer (high frequency module) having a configuration in which three filters (first filter, second filter and third filter) are each connected to a common terminal. An inductor connected in series with the first filter is arranged between the first filter and the common terminal, and the second filter and the third filter are directly connected to the common terminal without the inductor. With this configuration, by demultiplexing and/or combining three signals having different frequency bands with the first filter, the second filter, and the third filter, the three signals can be transmitted simultaneously.
米国特許出願公開第2016/0182119号明細書U.S. Patent Application Publication No. 2016/0182119
 しかしながら、特許文献1に開示された高周波モジュールにおいて、さらに、共通端子に第4フィルタが接続された高周波モジュールを想定する。この場合、隣接する周波数帯域間での減衰量を確保すべく上記4つのフィルタのそれぞれを弾性波フィルタで構成した場合、各弾性波フィルタが容量性のインピーダンスを有することに起因して、インダクタが接続された第1フィルタの第4フィルタ通過帯域におけるインピーダンスと、インダクタが接続されていない第2弾性波フィルタおよび第3弾性波フィルタの第4フィルタ通過帯域における合成インピーダンスとを、高精度にインピーダンス整合できないという問題が発生する。 However, in the high-frequency module disclosed in Patent Document 1, a high-frequency module in which a fourth filter is further connected to the common terminal is assumed. In this case, when each of the above four filters is composed of an acoustic wave filter in order to ensure attenuation between adjacent frequency bands, the inductor is caused by the capacitive impedance of each acoustic wave filter Impedance matching with high accuracy between the impedance in the fourth filter passband of the connected first filter and the combined impedance in the fourth filter passband of the second and third acoustic wave filters to which the inductor is not connected The problem arises that you can't.
 そこで、本発明は、上記課題を解決するためになされたものであって、共通接続された4以上の弾性波フィルタを有し、挿入損失が低減された高周波モジュールおよび通信装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-described problems, and provides a high-frequency module and a communication device having four or more commonly-connected elastic wave filters and having reduced insertion loss. aim.
 上記目的を達成するために、本発明の一態様に係る高周波モジュールは、第1バンドの信号、第2バンドの信号、第3バンドの信号、および第4バンドの信号を同時に伝送することが可能な高周波モジュールであって、第1端子、第2端子および第3端子を有し、第1端子と第2端子との接続および非接続を切り替え、第1端子と第3端子との接続および非接続を切り替えるスイッチ回路と、一端が第2端子に接続されたインダクタと、インダクタの他端に接続され、第1バンドの少なくとも一部を含む第1通過帯域を有する第1弾性波フィルタと、インダクタの他端に接続され、第2バンドの少なくとも一部を含む第2通過帯域を有する第2弾性波フィルタと、インダクタを介さずに第2端子に接続され、第3バンドの少なくとも一部を含む第3通過帯域を有する第3弾性波フィルタと、インダクタを介さずに第3端子に接続され、第4バンドの少なくとも一部を含む第4通過帯域を有する第4弾性波フィルタと、を備え、第1通過帯域および第2通過帯域は、第3通過帯域よりも低周波側に位置する。 In order to achieve the above object, a high-frequency module according to an aspect of the present invention can simultaneously transmit a signal of a first band, a signal of a second band, a signal of a third band, and a signal of a fourth band. a high-frequency module having a first terminal, a second terminal, and a third terminal, switching connection and disconnection between the first terminal and the second terminal, and connecting and disconnecting the first terminal and the third terminal; a switch circuit for switching connections; an inductor having one end connected to a second terminal; a first acoustic wave filter connected to the other end of the inductor and having a first passband including at least part of a first band; and a second acoustic wave filter having a second passband including at least part of the second band connected to the other end of the second band and connected to the second terminal without an inductor and including at least part of the third band A third acoustic wave filter having a third passband, and a fourth acoustic wave filter connected to the third terminal without an inductor and having a fourth passband including at least part of the fourth band, The first passband and the second passband are located on the lower frequency side than the third passband.
 本発明によれば、共通接続された4以上の弾性波フィルタを有し、挿入損失が低減された高周波モジュールおよび通信装置を提供することが可能となる。 According to the present invention, it is possible to provide a high frequency module and a communication device having four or more commonly connected elastic wave filters and reduced insertion loss.
図1は、実施の形態に係る高周波モジュールおよび通信装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment. 図2Aは、実施の形態に係る高周波モジュールを構成する弾性波フィルタの回路構成の第1例を示す図である。FIG. 2A is a diagram showing a first example of a circuit configuration of an acoustic wave filter that constitutes the high frequency module according to the embodiment. 図2Bは、実施の形態に係る高周波モジュールを構成する弾性波フィルタの回路構成の第2例を示す図である。FIG. 2B is a diagram showing a second example of the circuit configuration of the elastic wave filter that constitutes the high frequency module according to the embodiment. 図3Aは、実施の形態に係る弾性波フィルタを構成する弾性波共振子の第1例を模式的に表す平面図および断面図である。FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of an elastic wave resonator that constitutes the elastic wave filter according to the embodiment. 図3Bは、実施の形態に係る弾性波フィルタを構成する弾性波共振子の第2例を模式的に表す断面図である。FIG. 3B is a cross-sectional view schematically showing a second example of the elastic wave resonator that constitutes the elastic wave filter according to the embodiment. 図3Cは、実施の形態に係る弾性波フィルタを構成する弾性波共振子の第3例を模式的に表す断面図である。FIG. 3C is a cross-sectional view schematically showing a third example of the elastic wave resonator that constitutes the elastic wave filter according to the embodiment. 図4は、比較例に係る高周波モジュールの回路構成図である。FIG. 4 is a circuit configuration diagram of a high frequency module according to a comparative example. 図5Aは、実施の形態に係る各フィルタのインピーダンス特性を示すスミスチャートである。FIG. 5A is a Smith chart showing impedance characteristics of each filter according to the embodiment. 図5Bは、比較例に係る各フィルタのインピーダンス特性を示すスミスチャートである。FIG. 5B is a Smith chart showing impedance characteristics of each filter according to the comparative example. 図6は、変形例に係る高周波モジュールの回路構成図である。FIG. 6 is a circuit configuration diagram of a high frequency module according to a modification. 図7は、変形例に係る各フィルタのインピーダンス特性を示すスミスチャートである。FIG. 7 is a Smith chart showing impedance characteristics of each filter according to the modification. 図8は、実施例に係る高周波モジュールの平面図である。FIG. 8 is a plan view of the high frequency module according to the embodiment. 図9は、実施例に係る高周波モジュールの断面図である。FIG. 9 is a cross-sectional view of a high frequency module according to an example.
 以下、本発明の実施の形態について、実施例、変形例および図面を用いて詳細に説明する。なお、以下で説明する実施例および変形例は、いずれも包括的または具体的な例を示すものである。以下の実施例および変形例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。 Hereinafter, embodiments of the present invention will be described in detail using examples, modifications, and drawings. It should be noted that the embodiments and modifications described below are all comprehensive or specific examples. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, connection forms, and the like shown in the following examples and modifications are examples, and are not intended to limit the present invention. Among components in the following examples and modifications, components not described in independent claims will be described as optional components. Also, the sizes or size ratios of components shown in the drawings are not necessarily exact.
 本開示において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含むことを意味する。また、「AとBとの間に接続される」、「AおよびBの間に接続される」とは、AおよびBを結ぶ経路上でAおよびBと接続されることを意味する。 In the present disclosure, "connected" means not only direct connection with connection terminals and/or wiring conductors, but also electrical connection via other circuit elements. Also, "connected between A and B" and "connected between A and B" mean being connected to A and B on a path connecting A and B.
 また、本開示において、「経路」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。 In addition, in the present disclosure, the term “path” refers to a transmission line composed of a wire through which a high-frequency signal propagates, an electrode directly connected to the wire, and a terminal directly connected to the wire or the electrode. means
 本発明の部品配置において、「平面視」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。「Aは平面視においてBと重なる」とは、xy平面に正投影されたAの領域が、xy平面に正投影されたBの領域と重なることを意味する。「AがBおよびCの間に配置される」とは、B内の任意の点とC内の任意の点とを結ぶ複数の線分のうちの少なくとも1つがAを通ることを意味する。「BよりもAの方がCの近くに配置される」とは、AおよびCの間の最短距離が、BおよびCの間の最短距離よりも短いことを意味する。また、「平行」および「直交」などの要素間の関係性を示す用語、および、「矩形」などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。 In the component arrangement of the present invention, "planar view" means viewing an object by orthographic projection from the positive side of the z-axis onto the xy plane. “A overlaps B in plan view” means that the area of A orthogonally projected onto the xy plane overlaps the area of B orthogonally projected onto the xy plane. "A is located between B and C" means that at least one of a plurality of line segments connecting any point in B and any point in C passes through A. "A is closer to C than B" means that the shortest distance between A and C is less than the shortest distance between B and C. In addition, terms such as "parallel" and "perpendicular" that indicate the relationship between elements, terms that indicate the shape of elements such as "rectangular", and numerical ranges do not represent only strict meanings, It means that an error of a substantially equivalent range, for example, several percent, is also included.
 また、本開示において、フィルタの通過帯域は、当該通過帯域内における挿入損失の最小値から3dB大きい2つの周波数間の周波数帯域と定義される。 Also, in this disclosure, the passband of a filter is defined as the frequency band between two frequencies that are 3 dB greater than the minimum value of insertion loss within the passband.
 (実施の形態)
 [1 高周波モジュール1の回路構成]
 本実施の形態に係る高周波モジュール1および通信装置4の回路構成について、図1を参照しながら説明する。図1は、実施の形態に係る高周波モジュール1および通信装置4の回路構成図である。
(Embodiment)
[1 Circuit Configuration of High-Frequency Module 1]
Circuit configurations of a high-frequency module 1 and a communication device 4 according to this embodiment will be described with reference to FIG. FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 4 according to an embodiment.
 [1.1 通信装置4の回路構成]
 まず、通信装置4の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置4は、高周波モジュール1と、アンテナ5と、RF信号処理回路(RFIC)3と、を備える。
[1.1 Circuit Configuration of Communication Device 4]
First, the circuit configuration of the communication device 4 will be described. As shown in FIG. 1, the communication device 4 according to the present embodiment includes a high frequency module 1, an antenna 5, and an RF signal processing circuit (RFIC) 3.
 高周波モジュール1は、アンテナ5とRFIC3との間で高周波信号を伝送する。高周波モジュール1の詳細な回路構成については後述する。 The high frequency module 1 transmits high frequency signals between the antenna 5 and the RFIC 3 . A detailed circuit configuration of the high frequency module 1 will be described later.
 アンテナ5は、高周波モジュール1のアンテナ接続端子100に接続され、高周波モジュール1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波モジュール1へ出力する。 The antenna 5 is connected to the antenna connection terminal 100 of the high frequency module 1, transmits a high frequency signal output from the high frequency module 1, and receives a high frequency signal from the outside and outputs it to the high frequency module 1.
 RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波モジュール1の受信経路を介して入力された受信信号をダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC、図示せず)へ出力する。また、RFIC3は、BBICから入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された送信信号を、高周波モジュール1の送信経路に出力する。また、RFIC3は、高周波モジュール1が有するスイッチおよび増幅素子等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部または全部は、RFIC3の外部に実装されてもよく、例えば、BBICまたは高周波モジュール1に実装されてもよい。 The RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 performs signal processing such as down-conversion on the received signal input via the receiving path of the high-frequency module 1, and converts the received signal generated by the signal processing into a baseband signal processing circuit (BBIC, not shown). Further, the RFIC 3 performs signal processing such as up-conversion on the transmission signal input from the BBIC, and outputs the transmission signal generated by the signal processing to the transmission path of the high frequency module 1 . The RFIC 3 also has a control section that controls the switches and amplifier elements of the high-frequency module 1 . Some or all of the functions of the RFIC 3 as a control unit may be implemented outside the RFIC 3, for example, in the BBIC or the high frequency module 1. FIG.
 また、RFIC3は、使用されるバンド(周波数帯域)に基づいて、高周波モジュール1が有するスイッチ70の接続を制御する制御部としての機能を有する。 The RFIC 3 also has a function as a control unit that controls the connection of the switch 70 of the high frequency module 1 based on the band (frequency band) used.
 なお、本実施の形態に係る通信装置4において、アンテナ5は、必須の構成要素ではない。 Note that the antenna 5 is not an essential component in the communication device 4 according to the present embodiment.
 [1.2 高周波モジュール1の回路構成]
 次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、フィルタ11、12、13、21および22と、インダクタ30、31、32および33と、キャパシタ35と、スイッチ70と、低雑音増幅器41、42、43、44および45と、アンテナ接続端子100と、出力端子110、120、130、140および150と、を備える。
[1.2 Circuit Configuration of High-Frequency Module 1]
Next, the circuit configuration of the high frequency module 1 will be described. As shown in FIG. 1, the high frequency module 1 includes filters 11, 12, 13, 21 and 22, inductors 30, 31, 32 and 33, a capacitor 35, a switch 70, low noise amplifiers 41, 42 and 43. , 44 and 45 , an antenna connection terminal 100 , and output terminals 110 , 120 , 130 , 140 and 150 .
 アンテナ接続端子100は、アンテナ5に接続される。 The antenna connection terminal 100 is connected to the antenna 5.
 スイッチ70は、スイッチ回路の一例であり、端子70a(第1端子(共通端子))、端子70b(第2端子)、端子70c(第3端子)、および端子70dを有し、端子70aと端子70bとの接続および非接続を切り替え、端子70aと端子70cとの接続および非接続を切り替え、端子70aと端子70dとの接続および非接続を切り替える。スイッチ70は、例えば、端子70aと端子70bとを有するSPST(Single Pole Single Throw)型のスイッチ素子71、端子70aと端子70cとを有するSPST型のスイッチ素子72、および端子70aと端子70dとを有するSPST型のスイッチ素子73で構成された、マルチ接続型のスイッチ回路である。より具体的には、SPST型のスイッチ素子71は、端子70aと端子70bとを接続する信号経路に直列に配置されたシリーズFET(Field Effect Transistor)と、当該シリーズFETの一方端および端子70bの間の信号経路とグランドとの間に配置されたシャントFETと、で構成される。なお、スイッチ70は、RFIC3の制御部からの信号が入力される制御端子を備え、スイッチ70の内部にはその制御信号に基づいてSPST型の各スイッチ素子の切り替えを制御するための制御回路を備えていてもよい。 The switch 70 is an example of a switch circuit, and has a terminal 70a (first terminal (common terminal)), a terminal 70b (second terminal), a terminal 70c (third terminal), and a terminal 70d. It switches between connection and disconnection with 70b, switches between connection and disconnection between terminals 70a and 70c, and switches between connection and disconnection between terminals 70a and 70d. The switch 70 includes, for example, an SPST (Single Pole Single Throw) switch element 71 having terminals 70a and 70b, an SPST switch element 72 having terminals 70a and 70c, and terminals 70a and 70d. This is a multi-connection type switch circuit composed of SPST type switch elements 73 having . More specifically, the SPST-type switch element 71 includes a series FET (Field Effect Transistor) arranged in series in a signal path connecting the terminals 70a and 70b, and one end of the series FET and the terminal 70b. and a shunt FET placed between the signal path between and ground. The switch 70 has a control terminal to which a signal from the control unit of the RFIC 3 is input, and the switch 70 includes a control circuit for controlling switching of each SPST type switch element based on the control signal. may be provided.
 インダクタ30は、一端が端子70bに接続され、他端がフィルタ11の入力端およびフィルタ12の入力端に接続されている。 The inductor 30 has one end connected to the terminal 70 b and the other end connected to the input end of the filter 11 and the input end of the filter 12 .
 フィルタ11は、第1弾性波フィルタの一例であり、入力端がインダクタ30の他端に接続され、バンドA(第1バンド)の少なくとも一部を含む第1通過帯域を有する。フィルタ11は、1以上の弾性波共振子を有する。 The filter 11 is an example of a first acoustic wave filter, has an input end connected to the other end of the inductor 30, and has a first passband including at least part of band A (first band). Filter 11 has one or more elastic wave resonators.
 フィルタ12は、第2弾性波フィルタの一例であり、入力端がインダクタ30の他端に接続され、バンドB(第2バンド)の少なくとも一部を含む第2通過帯域を有する。フィルタ12は、1以上の弾性波共振子を有する。 The filter 12 is an example of a second acoustic wave filter, has an input end connected to the other end of the inductor 30, and has a second passband including at least part of the band B (second band). Filter 12 has one or more elastic wave resonators.
 フィルタ13は、第3弾性波フィルタの一例であり、入力端がインダクタ30を介さずに端子70bに接続され、バンドC(第3バンド)の少なくとも一部を含む第3通過帯域を有する。フィルタ13は、1以上の弾性波共振子を有する。 The filter 13 is an example of a third acoustic wave filter, has an input end connected to the terminal 70b without passing through the inductor 30, and has a third passband including at least part of the band C (third band). Filter 13 has one or more elastic wave resonators.
 フィルタ21は、第4弾性波フィルタの一例であり、入力端がインダクタ30を介さずに端子70cに接続され、バンドD(第4バンド)の少なくとも一部を含む第4通過帯域を有する。フィルタ21は、1以上の弾性波共振子を有する。 The filter 21 is an example of a fourth acoustic wave filter, has an input terminal connected to the terminal 70c without the inductor 30, and has a fourth passband including at least part of the band D (fourth band). Filter 21 has one or more elastic wave resonators.
 フィルタ22は、第5弾性波フィルタの一例であり、入力端がインダクタ30を介さずに端子70dに接続され、バンドE(第5バンド)の少なくとも一部を含む第5通過帯域を有する。フィルタ22は、1以上の弾性波共振子を有する。 The filter 22 is an example of a fifth acoustic wave filter, has an input terminal connected to the terminal 70d without passing through the inductor 30, and has a fifth passband including at least part of the band E (fifth band). Filter 22 has one or more elastic wave resonators.
 第1通過帯域および第2通過帯域は、第3通過帯域よりも低周波側に位置している。第5通過帯域の中心周波数は、第4通過帯域の中心周波数よりも高周波側に位置している。 The first passband and the second passband are located on the lower frequency side than the third passband. The center frequency of the fifth passband is located on the higher frequency side than the center frequency of the fourth passband.
 なお、バンドA~バンドEは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのために、標準化団体など(例えば3GPP(登録商標)、IEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。本実施の形態では、通信システムとしては、例えば4G(4th Generation)-LTE(Long Term Evolution)システム、5G(5th Generation)-NR(New Radio)システム、およびWLAN(Wireless Local Area Network)システム等を用いることができるが、これらに限定されない。 In addition, band A to band E are used for communication systems built using radio access technology (RAT: Radio Access Technology), such as standardization organizations (eg 3GPP (registered trademark), IEEE (Institute of Electrical and Electronics Engineers ) etc.). In this embodiment, as a communication system, for example, 4G (4th Generation)-LTE (Long Term Evolution) system, 5G (5th Generation)-NR (New Radio) system, WLAN (Wireless Local Area Network) system, etc. can be used, but is not limited to these.
 キャパシタ35は、インダクタ30の他端とグランドとの間に接続されている。なお、キャパシタ35は、インダクタ30の他端とグランドとの間に接続されている代わりに、インダクタ30の一端に接続されていてもよい。また、キャパシタ35は、その一端がインダクタ30の他端に接続され、その他端およびフィルタ12に接続されていてもよい。 The capacitor 35 is connected between the other end of the inductor 30 and ground. Note that the capacitor 35 may be connected to one end of the inductor 30 instead of being connected between the other end of the inductor 30 and the ground. Also, the capacitor 35 may have one end connected to the other end of the inductor 30 and the other end connected to the filter 12 .
 インダクタ31は、端子70cとグランドとの間に接続されており、インダクタ32は、端子70dとグランドとの間に接続されている。インダクタ33の一端はアンテナ接続端子100に接続され、他端は端子70aに接続されている。 The inductor 31 is connected between the terminal 70c and ground, and the inductor 32 is connected between the terminal 70d and ground. One end of the inductor 33 is connected to the antenna connection terminal 100, and the other end is connected to the terminal 70a.
 低雑音増幅器41は、入力端がフィルタ11の出力端に接続され、出力端が出力端子110に接続されており、バンドAの受信信号を増幅する。低雑音増幅器42は、入力端がフィルタ12の出力端に接続され、出力端が出力端子120に接続されており、バンドBの受信信号を増幅する。低雑音増幅器43は、入力端がフィルタ13の出力端に接続され、出力端が出力端子130に接続されており、バンドCの受信信号を増幅する。低雑音増幅器44は、入力端がフィルタ21の出力端に接続され、出力端が出力端子140に接続されており、バンドDの受信信号を増幅する。低雑音増幅器45は、入力端がフィルタ22の出力端に接続され、出力端が出力端子150に接続されており、バンドEの受信信号を増幅する。 The low noise amplifier 41 has an input terminal connected to the output terminal of the filter 11 and an output terminal connected to the output terminal 110, and amplifies the received band A signal. The low noise amplifier 42 has an input terminal connected to the output terminal of the filter 12 and an output terminal connected to the output terminal 120, and amplifies the received band B signal. The low-noise amplifier 43 has an input terminal connected to the output terminal of the filter 13 and an output terminal connected to the output terminal 130, and amplifies the received band C signal. The low-noise amplifier 44 has an input terminal connected to the output terminal of the filter 21 and an output terminal connected to the output terminal 140, and amplifies the received band D signal. The low noise amplifier 45 has an input terminal connected to the output terminal of the filter 22 and an output terminal connected to the output terminal 150, and amplifies the received band E signal.
 上記構成によれば、高周波モジュール1は、バンドAの信号、バンドBの信号、バンドCの信号、バンドDの信号、およびバンドEの信号を同時に受信することが可能である。 According to the above configuration, the high-frequency module 1 can receive a band A signal, a band B signal, a band C signal, a band D signal, and a band E signal at the same time.
 例えば、バンドAの信号、バンドBの信号、バンドCの信号、およびバンドDの信号を同時に受信する場合、スイッチ70において端子70aと端子70bとが接続され、かつ、端子70aと端子70cとが接続される。また例えば、バンドAの信号、バンドBの信号、バンドCの信号、バンドDの信号、およびバンドEの信号を同時に受信する場合、スイッチ70において端子70aと端子70bとが接続され、かつ、端子70aと端子70cとが接続され、かつ、端子70aと端子70dとが接続される。また例えば、バンドDの信号およびバンドEの信号を同時に受信する場合、スイッチ70において端子70aと端子70cとが接続され、かつ、端子70aと端子70dとが接続される。 For example, when a signal of band A, a signal of band B, a signal of band C, and a signal of band D are simultaneously received, the terminals 70a and 70b are connected in the switch 70, and the terminals 70a and 70c are connected. Connected. Further, for example, when a signal of band A, a signal of band B, a signal of band C, a signal of band D, and a signal of band E are simultaneously received, the terminal 70a and the terminal 70b are connected in the switch 70, and the terminal The terminals 70a and 70c are connected, and the terminals 70a and 70d are connected. Further, for example, when a signal of band D and a signal of band E are to be received at the same time, the terminals 70a and 70c of the switch 70 are connected, and the terminals 70a and 70d are connected.
 なお、本実施の形態に係る高周波モジュール1は、フィルタ22、低雑音増幅器41~45、キャパシタ35、インダクタ31、32および33、ならびにスイッチ素子73を備えていなくてもよい。 Note that the high-frequency module 1 according to the present embodiment does not have to include the filter 22, the low-noise amplifiers 41-45, the capacitor 35, the inductors 31, 32 and 33, and the switch element 73.
 なお、バンドAとしては、例えば、LTEのBand3(アップリンク動作バンド:1710-1785MHz、ダウンリンク動作バンド:1805-1880MHz)、または、LTEのBand25(アップリンク動作バンド:1850-1915MHz、ダウンリンク動作バンド:1930-1995MHz)が適用される。また、バンドBとしては、例えば、LTEのBand1(アップリンク動作バンド:1920-1980MHz、ダウンリンク動作バンド:2110-2170MHz)、または、LTEのBand4(アップリンク動作バンド:1710-1755MHz、ダウンリンク動作バンド:2110-2155MHz)、または、Band66(アップリンク動作バンド:1710-1780MHz、ダウンリンク動作バンド:2110-2200MHz)が適用される。また、バンドCとしては、例えば、LTEのBand40(2300-2400MHz)、または、LTEのBand30(アップリンク動作バンド:2305-2315MHz、ダウンリンク動作バンド:2350-2360MHz)が適用される。また、バンドDとしては、例えば、LTEのBand41(2496-2690MHz)が適用される。また、バンドEとしては、例えば、LTEのBand7(アップリンク動作バンド:2500-2570MHz、ダウンリンク動作バンド:2620-2690MHz)が適用される。 As band A, for example, LTE Band 3 (uplink operation band: 1710-1785 MHz, downlink operation band: 1805-1880 MHz), or LTE Band 25 (uplink operation band: 1850-1915 MHz, downlink operation band: 1930-1995 MHz) applies. Further, as band B, for example, LTE Band 1 (uplink operation band: 1920-1980 MHz, downlink operation band: 2110-2170 MHz), or LTE Band 4 (uplink operation band: 1710-1755 MHz, downlink operation band: 2110-2155 MHz) or Band66 (uplink operating band: 1710-1780 MHz, downlink operating band: 2110-2200 MHz). As band C, for example, LTE Band 40 (2300-2400 MHz) or LTE Band 30 (uplink operating band: 2305-2315 MHz, downlink operating band: 2350-2360 MHz) is applied. Band 41 (2496-2690 MHz) of LTE is applied as band D, for example. As band E, for example, Band 7 of LTE (uplink operating band: 2500-2570 MHz, downlink operating band: 2620-2690 MHz) is applied.
 なお、アップリンク動作バンドとは、上記バンドのうちのアップリンク用に指定された周波数範囲を意味する。また、ダウンリンク動作バンドとは、上記バンドのうちのダウンリンク用に指定された周波数範囲を意味する。 It should be noted that the uplink operating band means the frequency range designated for the uplink among the above bands. Also, the downlink operating band means the frequency range designated for the downlink among the above bands.
 なお、本実施の形態に係る高周波モジュール1において、インダクタ30の他端に接続されるフィルタの数は3以上であってもよい。また、インダクタ30を介さずに端子70bに接続されるフィルタの数は、インダクタ30の他端に接続されるフィルタの数よりも小さければよい。 In addition, in the high-frequency module 1 according to the present embodiment, the number of filters connected to the other end of the inductor 30 may be three or more. Also, the number of filters connected to the terminal 70b without going through the inductor 30 should be smaller than the number of filters connected to the other end of the inductor 30. FIG.
 また、アンテナ接続端子100、出力端子110、120、130、140および150は、高周波モジュール1が備えていなくてもよい。 Also, the antenna connection terminal 100 and the output terminals 110, 120, 130, 140 and 150 may not be included in the high frequency module 1.
 [2 弾性波フィルタの構造]
 ここで、高周波モジュール1を構成するフィルタ11、12、13、21および22の回路構成、および、各フィルタを構成する弾性波共振子の構造について例示する。
[2 Structure of elastic wave filter]
Here, the circuit configurations of the filters 11, 12, 13, 21 and 22 forming the high frequency module 1 and the structure of the elastic wave resonators forming each filter will be illustrated.
 図2Aは、実施の形態に係る弾性波フィルタの回路構成の第1例を示す図である。また、図2Bは、実施の形態に係る弾性波フィルタの回路構成の第2例を示す図である。 FIG. 2A is a diagram showing a first example of the circuit configuration of the elastic wave filter according to the embodiment. Moreover, FIG. 2B is a diagram showing a second example of the circuit configuration of the elastic wave filter according to the embodiment.
 本実施の形態に係るフィルタ11、12、13、21および22のそれぞれは、例えば、図2Aに示された弾性波フィルタ10A、または、図2Bに示された弾性波フィルタ10Bの回路構成を有する。 Each of filters 11, 12, 13, 21 and 22 according to the present embodiment has, for example, the circuit configuration of elastic wave filter 10A shown in FIG. 2A or elastic wave filter 10B shown in FIG. 2B. .
 図2Aに示された弾性波フィルタ10Aは、直列腕共振子101~105と、並列腕共振子151~154と、インダクタ161と、を備える。 The acoustic wave filter 10A shown in FIG. 2A includes series arm resonators 101 to 105, parallel arm resonators 151 to 154, and an inductor 161.
 直列腕共振子101~105は、入出力端子10aおよび10bを結ぶ直列腕経路上に配置されている。また、並列腕共振子151~154のそれぞれは、直列腕共振子101~105の各接続点とグランドとの間に接続されている。上記接続構成により、弾性波フィルタ10Aは、ラダー型のバンドパスフィルタを構成している。また、インダクタ161は、並列腕共振子151、152および153の接続点とグランドとの間に接続され、フィルタ通過特性における減衰極を調整する。なお、弾性波フィルタ10Aにおいて、直列腕共振子および並列腕共振子の数は任意であり、また、インダクタ161はなくてもよい。 The series arm resonators 101 to 105 are arranged on a series arm path connecting the input/ output terminals 10a and 10b. Each of the parallel arm resonators 151-154 is connected between each connection point of the series arm resonators 101-105 and the ground. With the connection configuration described above, the acoustic wave filter 10A constitutes a ladder-type bandpass filter. Inductor 161 is connected between the connection point of parallel arm resonators 151, 152 and 153 and the ground, and adjusts the attenuation pole in the filter pass characteristics. In acoustic wave filter 10A, the number of series arm resonators and parallel arm resonators is arbitrary, and inductor 161 may be omitted.
 図2Bに示された弾性波フィルタ10Bは、縦結合型フィルタ部203と、直列腕共振子201および202と、並列腕共振子251および253と、を備える。 The elastic wave filter 10B shown in FIG. 2B includes a longitudinal coupling filter section 203, series arm resonators 201 and 202, and parallel arm resonators 251 and 253.
 縦結合型フィルタ部203は、例えば、9個のIDTを有し、当該9個のIDTのそれぞれは、互いに対向する一対のIDT電極で構成されている。直列腕共振子201および202、ならびに、並列腕共振子251は、ラダー型フィルタ部を構成している。上記接続構成により、弾性波フィルタ10Bは、バンドパスフィルタを構成する。なお、弾性波フィルタ10Bにおいて、直列腕共振子および並列腕共振子の数、および、縦結合型フィルタ部203を構成するIDTの数は任意である。 The longitudinal coupling filter unit 203 has, for example, nine IDTs, each of which is composed of a pair of IDT electrodes facing each other. Series arm resonators 201 and 202 and parallel arm resonator 251 constitute a ladder filter section. With the above connection configuration, the acoustic wave filter 10B constitutes a bandpass filter. In acoustic wave filter 10B, the number of series arm resonators and parallel arm resonators and the number of IDTs constituting longitudinally coupled filter section 203 are arbitrary.
 図3Aは、実施の形態に係る弾性波フィルタが有する弾性波共振子の第1例を模式的に表す平面図および断面図である。同図には、フィルタ11、12、13、21および22を構成する弾性波共振子の基本構造が例示されている。なお、図3Aに示された弾性波共振子60は、弾性波共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数および長さなどは、これに限定されない。 FIG. 3A is a plan view and a cross-sectional view schematically showing a first example of an elastic wave resonator included in the elastic wave filter according to the embodiment. The figure illustrates the basic structure of elastic wave resonators forming the filters 11, 12, 13, 21 and 22. As shown in FIG. Note that the elastic wave resonator 60 shown in FIG. 3A is for explaining a typical structure of an elastic wave resonator, and the number and length of the electrode fingers constituting the electrodes are Not limited.
 弾性波共振子60は、圧電性を有する基板50と、櫛形電極60aおよび60bとで構成されている。 The elastic wave resonator 60 is composed of a piezoelectric substrate 50 and comb electrodes 60a and 60b.
 図3Aの(a)に示すように、基板50の上には、互いに対向する一対の櫛形電極60aおよび60bが形成されている。櫛形電極60aは、互いに平行な複数の電極指61aと、複数の電極指61aを接続するバスバー電極62aとで構成されている。また、櫛形電極60bは、互いに平行な複数の電極指61bと、複数の電極指61bを接続するバスバー電極62bとで構成されている。複数の電極指61aおよび61bは、弾性波伝搬方向(X軸方向)と直交する方向に沿って形成されている。 As shown in (a) of FIG. 3A, a pair of comb electrodes 60a and 60b facing each other are formed on the substrate 50. As shown in FIG. The comb-shaped electrode 60a is composed of a plurality of parallel electrode fingers 61a and busbar electrodes 62a connecting the plurality of electrode fingers 61a. The comb-shaped electrode 60b is composed of a plurality of parallel electrode fingers 61b and a busbar electrode 62b connecting the plurality of electrode fingers 61b. The plurality of electrode fingers 61a and 61b are formed along a direction orthogonal to the elastic wave propagation direction (X-axis direction).
 また、複数の電極指61aおよび61b、ならびに、バスバー電極62aおよび62bで構成されるIDT電極54は、図3Aの(b)に示すように、密着層540と主電極層542との積層構造となっている。 The IDT electrode 54, which is composed of a plurality of electrode fingers 61a and 61b and busbar electrodes 62a and 62b, has a laminated structure of an adhesion layer 540 and a main electrode layer 542, as shown in (b) of FIG. 3A. It's becoming
 密着層540は、基板50と主電極層542との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。主電極層542は、材料として、例えば、Cuを1%含有したAlが用いられる。保護層55は、櫛形電極60aおよび60bを覆うように形成されている。保護層55は、主電極層542を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする誘電体膜である。 The adhesion layer 540 is a layer for improving adhesion between the substrate 50 and the main electrode layer 542, and is made of Ti, for example. The material of the main electrode layer 542 is, for example, Al containing 1% Cu. Protective layer 55 is formed to cover comb electrodes 60a and 60b. The protective layer 55 is a layer for the purpose of protecting the main electrode layer 542 from the external environment, adjusting frequency temperature characteristics, and increasing moisture resistance. is.
 なお、密着層540、主電極層542および保護層55を構成する材料は、上述した材料に限定されない。さらに、IDT電極54は、上記積層構造でなくてもよい。IDT電極54は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護層55は、形成されていなくてもよい。 It should be noted that the materials forming the adhesion layer 540, the main electrode layer 542 and the protective layer 55 are not limited to the materials described above. Furthermore, the IDT electrode 54 may not have the laminated structure described above. The IDT electrode 54 may be composed of, for example, metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, and Pd, and may be composed of a plurality of laminates composed of the above metals or alloys. may Also, the protective layer 55 may not be formed.
 次に、基板50の積層構造について説明する。 Next, the laminated structure of the substrate 50 will be described.
 図3Aの(c)に示すように、基板50は、高音速支持基板51と、低音速膜52と、圧電膜53とを備え、高音速支持基板51、低音速膜52および圧電膜53がこの順で積層された構造を有している。 As shown in (c) of FIG. 3A, the substrate 50 includes a high acoustic velocity supporting substrate 51, a low acoustic velocity film 52, and a piezoelectric film 53. The high acoustic velocity supporting substrate 51, the low acoustic velocity film 52, and the piezoelectric film 53 are It has a structure laminated in this order.
 圧電膜53は、例えばθ°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸からθ°回転した軸を法線とする面で切断したリチウムタンタレート単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。なお、各フィルタの要求仕様により、圧電膜53として使用される圧電単結晶の材料およびカット角θが適宜選択される。 The piezoelectric film 53 is, for example, a θ° Y-cut X-propagation LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (lithium tantalate single crystal cut along a plane normal to an axis rotated θ° from the Y axis with the X axis as the central axis, (or ceramics, single crystal or ceramics in which surface acoustic waves propagate in the X-axis direction). Note that the material of the piezoelectric single crystal used as the piezoelectric film 53 and the cut angle θ are appropriately selected according to the required specifications of each filter.
 高音速支持基板51は、低音速膜52、圧電膜53ならびにIDT電極54を支持する基板である。高音速支持基板51は、さらに、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、高音速支持基板51中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜53および低音速膜52が積層されている部分に閉じ込め、高音速支持基板51より下方に漏れないように機能する。高音速支持基板51は、例えば、シリコン基板である。 The high acoustic velocity support substrate 51 is a substrate that supports the low acoustic velocity film 52 , the piezoelectric film 53 and the IDT electrodes 54 . The high acoustic velocity support substrate 51 is a substrate in which the acoustic velocity of bulk waves in the high acoustic velocity support substrate 51 is faster than acoustic waves such as surface waves and boundary waves propagating through the piezoelectric film 53, and surface acoustic waves are generated. It functions so that it is confined in the portion where the piezoelectric film 53 and the low sound velocity film 52 are laminated and does not leak below the high sound velocity support substrate 51 . The high acoustic velocity support substrate 51 is, for example, a silicon substrate.
 低音速膜52は、圧電膜53を伝搬するバルク波よりも、低音速膜52中のバルク波の音速が低速となる膜であり、圧電膜53と高音速支持基板51との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜52は、例えば、二酸化ケイ素を主成分とする膜である。 The low sound velocity film 52 is a film in which the sound velocity of the bulk wave in the low sound velocity film 52 is lower than that of the bulk wave propagating through the piezoelectric film 53 , and is arranged between the piezoelectric film 53 and the high sound velocity support substrate 51 . be. This structure and the nature of the elastic wave to concentrate its energy in a low-temperature medium suppresses leakage of the surface acoustic wave energy to the outside of the IDT electrode. The low-temperature velocity film 52 is, for example, a film whose main component is silicon dioxide.
 なお、基板50の上記積層構造によれば、圧電基板を単層で使用している従来の構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性波共振子を構成し得るので、当該弾性波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。 In addition, according to the laminated structure of the substrate 50, it is possible to significantly increase the Q value at the resonance frequency and anti-resonance frequency compared to the conventional structure using a single layer piezoelectric substrate. That is, since an acoustic wave resonator with a high Q value can be configured, it is possible to configure a filter with a small insertion loss using the acoustic wave resonator.
 なお、高音速支持基板51は、支持基板と、圧電膜53を伝搬する表面波および境界波などの弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板には、サファイア、リチウムタンタレート、リチウムニオベイト、および水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、およびフォルステライト等の各種セラミック、ガラス等の誘電体、シリコンおよび窒化ガリウム等の半導体、ならびに樹脂基板等を用いることができる。また、高音速膜には、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜、ダイヤモンド、これらの材料を主成分とする媒質、これらの材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。 The high acoustic velocity support substrate 51 has a structure in which a support substrate and a high acoustic velocity film having a higher acoustic velocity than elastic waves such as surface waves and boundary waves propagating through the piezoelectric film 53 are laminated. may have In this case, the support substrate includes piezoelectric materials such as sapphire, lithium tantalate, lithium niobate, and quartz, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, and fort. Various ceramics such as stellite, dielectrics such as glass, semiconductors such as silicon and gallium nitride, and resin substrates can be used. The high acoustic velocity film includes aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film, diamond, media containing these materials as main components, and media containing mixtures of these materials as main components. etc., various high acoustic velocity materials can be used.
 また、図3Bは、実施の形態に係るフィルタ11、12、13、21および22を構成する弾性波共振子の第2例を模式的に表す断面図である。図3Aに示した弾性波共振子60では、IDT電極54が、圧電膜53を有する基板50上に形成された例を示したが、当該IDT電極54が形成される基板は、図3Bに示すように、圧電体層の単層からなる圧電単結晶基板57であってもよい。圧電単結晶基板57は、例えば、LiNbOの圧電単結晶で構成されている。本例に係る弾性波共振子は、LiNbOの圧電単結晶基板57と、IDT電極54と、圧電単結晶基板57上およびIDT電極54上に形成された保護層58と、で構成されている。 FIG. 3B is a cross-sectional view schematically showing a second example of elastic wave resonators forming filters 11, 12, 13, 21 and 22 according to the embodiment. The elastic wave resonator 60 shown in FIG. 3A shows an example in which the IDT electrodes 54 are formed on the substrate 50 having the piezoelectric film 53. The substrate on which the IDT electrodes 54 are formed is shown in FIG. 3B. Thus, the piezoelectric single crystal substrate 57 may be a single piezoelectric layer. The piezoelectric single crystal substrate 57 is composed of, for example, a piezoelectric single crystal of LiNbO 3 . The acoustic wave resonator according to this example is composed of a piezoelectric single crystal substrate 57 of LiNbO 3 , an IDT electrode 54 , and a protective layer 58 formed on the piezoelectric single crystal substrate 57 and the IDT electrode 54 . .
 上述した圧電膜53および圧電単結晶基板57は、弾性波フィルタ装置の要求通過特性などに応じて、適宜、積層構造、材料、カット角、および、厚みを変更してもよい。上述したカット角以外のカット角を有するLiTaO圧電基板などを用いた弾性波共振子であっても、上述した圧電膜53を用いた弾性波共振子60と同様の効果を奏することができる。 The piezoelectric film 53 and the piezoelectric single crystal substrate 57 described above may be appropriately changed in laminated structure, material, cut angle, and thickness according to the required transmission characteristics of the elastic wave filter device. Even an elastic wave resonator using a LiTaO 3 piezoelectric substrate having a cut angle other than the cut angle described above can produce the same effects as the elastic wave resonator 60 using the piezoelectric film 53 described above.
 また、IDT電極54が形成される基板は、支持基板と、エネルギー閉じ込め層と、圧電膜がこの順で積層された構造を有していてもよい。圧電膜上にIDT電極54が形成される。圧電膜は、例えば、LiTaO圧電単結晶または圧電セラミックスが用いられる。支持基板は、圧電膜、エネルギー閉じ込め層、およびIDT電極54を支持する基板である。 Also, the substrate on which the IDT electrodes 54 are formed may have a structure in which a supporting substrate, an energy trapping layer, and a piezoelectric film are laminated in this order. An IDT electrode 54 is formed on the piezoelectric film. The piezoelectric film is, for example, LiTaO 3 piezoelectric single crystal or piezoelectric ceramics. The support substrate is the substrate that supports the piezoelectric film, the energy confinement layer, and the IDT electrodes 54 .
 エネルギー閉じ込め層は1層または複数の層からなり、その少なくとも1つの層を伝搬するバルク弾性波の速度は、圧電膜近傍を伝搬する弾性波の速度よりも大きい。例えば、エネルギー閉じ込め層は、低音速層と、高音速層との積層構造となっていてもよい。低音速層は、圧電膜を伝搬する弾性波の音速よりも、低音速層中のバルク波の音速が低速となる膜である。高音速層は、圧電膜を伝搬する弾性波の音速よりも、高音速層中のバルク波の音速が高速となる膜である。なお、支持基板を高音速層としてもよい。 The energy confinement layer consists of one or more layers, and the velocity of the bulk acoustic wave propagating through at least one layer is greater than the velocity of the elastic wave propagating near the piezoelectric film. For example, the energy trapping layer may have a laminated structure of a low acoustic velocity layer and a high acoustic velocity layer. The sound velocity layer is a film in which the sound velocity of bulk waves in the sound velocity layer is lower than the sound velocity of elastic waves propagating through the piezoelectric film. The high acoustic velocity layer is a film in which the acoustic velocity of bulk waves in the high acoustic velocity layer is higher than the acoustic velocity of elastic waves propagating through the piezoelectric film. Note that the support substrate may be a high acoustic velocity layer.
 また、エネルギー閉じ込め層は、音響インピーダンスが相対的に低い低音響インピーダンス層と、音響インピーダンスが相対的に高い高音響インピーダンス層とが、交互に積層された構成を有する音響インピーダンス層であってもよい。 Also, the energy trapping layer may be an acoustic impedance layer having a configuration in which a low acoustic impedance layer with a relatively low acoustic impedance and a high acoustic impedance layer with a relatively high acoustic impedance are alternately laminated. .
 ここで、弾性波共振子60を構成するIDT電極の電極パラメータの一例(実施例)について説明する。 Here, an example (working example) of the electrode parameters of the IDT electrodes forming the acoustic wave resonator 60 will be described.
 弾性波共振子の波長とは、図3Aの(b)に示すIDT電極54を構成する複数の電極指61aまたは61bの繰り返し周期である波長λで規定される。また、電極指ピッチは、波長λの1/2であり、櫛形電極60aおよび60bをそれぞれ構成する電極指61aおよび61bのライン幅をWとし、隣り合う電極指61aと電極指61bとの間のスペース幅をSとした場合、(W+S)で定義される。また、一対の櫛形電極60aおよび60bの交叉幅Lは、図3Aの(a)に示すように、電極指61aと電極指61bとの弾性波伝搬方向(X軸方向)から見た場合の重複する電極指の長さである。また、各弾性波共振子の電極デューティーは、複数の電極指61aおよび61bのライン幅占有率であり、複数の電極指61aおよび61bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。また、櫛形電極60aおよび60bの高さをhとしている。以降では、波長λ、電極指ピッチ、交叉幅L、電極デューティー、IDT電極54の高さh等、弾性波共振子のIDT電極の形状に関するパラメータは、電極パラメータと定義される。 The wavelength of the elastic wave resonator is defined by the wavelength λ which is the repetition period of the plurality of electrode fingers 61a or 61b forming the IDT electrode 54 shown in (b) of FIG. 3A. The electrode finger pitch is 1/2 of the wavelength λ, the line width of the electrode fingers 61a and 61b constituting the comb-shaped electrodes 60a and 60b is W, and the distance between the adjacent electrode fingers 61a and 61b is When the space width is S, it is defined as (W+S). Moreover, as shown in (a) of FIG. 3A, the intersecting width L of the pair of comb-shaped electrodes 60a and 60b is the overlap of the electrode fingers 61a and 61b when viewed from the elastic wave propagation direction (X-axis direction). is the length of the electrode finger that The electrode duty of each acoustic wave resonator is the line width occupation ratio of the plurality of electrode fingers 61a and 61b, and is the ratio of the line width to the sum of the line width and space width of the plurality of electrode fingers 61a and 61b. and is defined as W/(W+S). Also, the height of the comb electrodes 60a and 60b is h. Hereinafter, parameters related to the shape of the IDT electrodes of the acoustic wave resonator, such as the wavelength λ, the electrode finger pitch, the crossing width L, the electrode duty, and the height h of the IDT electrodes 54, are defined as electrode parameters.
 なお、IDT電極54において、隣り合う電極指間の間隔が一定でない場合には、IDT電極54の電極指ピッチは、IDT電極54の平均電極指ピッチで定義される。IDT電極54の平均電極指ピッチは、IDT電極54に含まれる電極指61a、61bの総本数をNi本とし、IDT電極54の、弾性波伝搬方向における一方端に位置する電極指と他方端に位置する電極指との中心間距離をDiとすると、Di/(Ni-1)と定義される。 In the IDT electrodes 54 , if the intervals between adjacent electrode fingers are not constant, the electrode finger pitch of the IDT electrodes 54 is defined by the average electrode finger pitch of the IDT electrodes 54 . The average electrode finger pitch of the IDT electrode 54 is defined by the total number of the electrode fingers 61a and 61b included in the IDT electrode 54 being Ni, and the electrode finger positioned at one end of the IDT electrode 54 in the elastic wave propagation direction and It is defined as Di/(Ni-1), where Di is the center-to-center distance from the positioned electrode finger.
 例えば、IDT電極の膜厚、保護層の膜厚、および電極デューティーが一定である場合、IDT電極の電極指ピッチが大きいほど、弾性表面波共振子の共振周波数および反共振周波数は低周波側へシフトする。 For example, when the film thickness of the IDT electrode, the film thickness of the protective layer, and the electrode duty are constant, the resonance frequency and antiresonance frequency of the surface acoustic wave resonator shift to the lower frequency side as the electrode finger pitch of the IDT electrode increases. shift.
 また、図3Cは、実施の形態に係るフィルタ11、12、13、21および22を構成する弾性波共振子の第3例を模式的に表す断面図である。図3Cには、フィルタ11、12、13、21および22の弾性波共振子として、バルク弾性波共振子が示されている。同図に示すように、バルク弾性波共振子は、例えば、支持基板65と、下部電極66と、圧電体層67と、上部電極68と、を有しており、支持基板65、下部電極66、圧電体層67、および上部電極68がこの順で積層された構成となっている。 FIG. 3C is a cross-sectional view schematically showing a third example of elastic wave resonators forming filters 11, 12, 13, 21 and 22 according to the embodiment. Bulk acoustic wave resonators are shown as acoustic wave resonators of filters 11, 12, 13, 21 and 22 in FIG. 3C. As shown in the figure, the bulk acoustic wave resonator has, for example, a support substrate 65, a lower electrode 66, a piezoelectric layer 67, and an upper electrode 68. , a piezoelectric layer 67, and an upper electrode 68 are laminated in this order.
 支持基板65は、下部電極66、圧電体層67、および上部電極68を支持するための基板であり、例えば、シリコン基板である。なお、支持基板65は、下部電極66と接触する領域に、空洞が設けられている。これにより、圧電体層67を自由に振動させることが可能となる。 The support substrate 65 is a substrate for supporting the lower electrode 66, the piezoelectric layer 67, and the upper electrode 68, and is, for example, a silicon substrate. The support substrate 65 is provided with a cavity in a region in contact with the lower electrode 66 . This allows the piezoelectric layer 67 to vibrate freely.
 下部電極66は、第1電極の一例であり、支持基板65の一方面上に形成されている。上部電極68は、第2電極の一例であり、支持基板65の一方面上に形成されている。下部電極66および上部電極68は、材料として、例えば、Cuを1%含有したAlが用いられる。 The lower electrode 66 is an example of a first electrode and is formed on one surface of the support substrate 65 . The upper electrode 68 is an example of a second electrode and is formed on one surface of the support substrate 65 . The lower electrode 66 and the upper electrode 68 are made of Al containing 1% Cu, for example.
 圧電体層67は、下部電極66と上部電極68との間に形成されている。圧電体層67は、例えば、ZnO(酸化亜鉛)、AlN(窒化アルミニウム)、PZT(チタン酸ジルコン酸鉛)、KN(ニオブ酸カリウム)、LN(リチウムニオベイト)、LT(リチウムタンタレート)、水晶、およびLiBO(ホウ酸リチウム)の少なくとも1つを主成分とする。 The piezoelectric layer 67 is formed between the lower electrode 66 and the upper electrode 68 . The piezoelectric layer 67 is made of, for example, ZnO (zinc oxide), AlN (aluminum nitride), PZT (lead zirconate titanate), KN (potassium niobate), LN (lithium niobate), LT (lithium tantalate), The main component is at least one of quartz and LiBO (lithium borate).
 上記積層構成を有するバルク弾性波共振子は、下部電極66と上部電極68との間に電気的なエネルギーを印加することで圧電体層67内にてバルク弾性波を誘発して共振を発生させるものである。このバルク弾性波共振子により生成されるバルク弾性波は、下部電極66と上部電極68との間を、圧電体層67の膜面に垂直な方向に伝搬する。つまり、バルク弾性波共振子は、バルク弾性波を利用した共振子である。 The bulk acoustic wave resonator having the above laminated structure induces a bulk acoustic wave in the piezoelectric layer 67 by applying electrical energy between the lower electrode 66 and the upper electrode 68 to generate resonance. It is. A bulk acoustic wave generated by this bulk acoustic wave resonator propagates between the lower electrode 66 and the upper electrode 68 in a direction perpendicular to the film surface of the piezoelectric layer 67 . That is, the bulk acoustic wave resonator is a resonator that utilizes bulk acoustic waves.
 例えば、圧電体層67の膜厚が大きいほど、バルク弾性波共振子の共振周波数および反共振周波数は低周波側へシフトする。 For example, as the film thickness of the piezoelectric layer 67 increases, the resonance frequency and anti-resonance frequency of the bulk acoustic wave resonator shift to the low frequency side.
 なお、本実施の形態に係る高周波モジュール1において、フィルタ11、12および13のそれぞれが、IDT電極54を有する1以上の弾性表面波共振子で構成され、フィルタ11、12および13のそれぞれは、入力端と出力端とを結ぶ直列腕経路上に配置された直列腕共振子を含んでもよい。この場合、フィルタ11および12に含まれる直列腕共振子を構成するIDT電極54の電極指ピッチは、フィルタ13に含まれる直列腕共振子を構成するIDT電極54の電極指ピッチよりも大きくてもよい。 In the high frequency module 1 according to the present embodiment, each of the filters 11, 12 and 13 is composed of one or more surface acoustic wave resonators having the IDT electrodes 54, and each of the filters 11, 12 and 13 A series arm resonator arranged on a series arm path connecting the input end and the output end may be included. In this case, even if the electrode finger pitch of the IDT electrodes 54 forming the series arm resonators included in the filters 11 and 12 is larger than the electrode finger pitch of the IDT electrodes 54 forming the series arm resonators included in the filter 13, good.
 これによれば、インダクタ30の他端に接続されたフィルタ11および12の通過帯域は、フィルタ13の通過帯域よりも低周波側に位置することとなる。 According to this, the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
 また、本実施の形態に係る高周波モジュール1において、フィルタ11、12および13のそれぞれが、支持基板65と、支持基板65の一方面上に形成された下部電極66および上部電極68と、下部電極66と上部電極68との間に形成された圧電体層67と、を有する1以上のバルク弾性波共振子で構成され、フィルタ11、12および13のそれぞれは、入力端と出力端とを結ぶ直列腕経路上に配置された直列腕共振子を含んでもよい。この場合、フィルタ11および12に含まれる直列腕共振子を構成する圧電体層67は、フィルタ13に含まれる直列腕共振子を構成する圧電体層67よりも厚くてもよい。 Further, in the high-frequency module 1 according to the present embodiment, each of the filters 11, 12 and 13 includes a support substrate 65, lower electrodes 66 and 68 formed on one surface of the support substrate 65, and lower electrodes 66 and 68 formed on one surface of the support substrate 65. 66 and a piezoelectric layer 67 formed between the upper electrode 68. Each of the filters 11, 12 and 13 connects an input end and an output end. A series arm resonator arranged on the series arm path may be included. In this case, the piezoelectric layers 67 forming the series arm resonators included in the filters 11 and 12 may be thicker than the piezoelectric layers 67 forming the series arm resonators included in the filter 13 .
 これによれば、インダクタ30の他端に接続されたフィルタ11および12の通過帯域は、フィルタ13の通過帯域よりも低周波側に位置することとなる。 According to this, the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
 [3 比較例に係る高周波モジュール500の回路構成]
 次に、従来の高周波モジュール500について回路構成を説明しておく。図4は、比較例に係る高周波モジュール500の回路構成図である。同図に示すように、高周波モジュール500は、フィルタ11、12、13、21および22と、インダクタ30、31、32および33と、スイッチ70と、低雑音増幅器41、42、43、44および45と、アンテナ接続端子100と、出力端子110、120、130、140および150と、を備える。比較例に係る高周波モジュール500は、実施の形態に係る高周波モジュール1と比較して、フィルタ11、12および13とインダクタ30との接続構成が主として異なる。以下、比較例に係る高周波モジュール500について、実施の形態に係る高周波モジュール1と同じ構成については説明を省略し、異なる構成を中心に説明する。
[3 Circuit Configuration of High-Frequency Module 500 According to Comparative Example]
Next, the circuit configuration of the conventional high frequency module 500 will be described. FIG. 4 is a circuit configuration diagram of a high frequency module 500 according to a comparative example. As shown in the figure, high frequency module 500 includes filters 11, 12, 13, 21 and 22, inductors 30, 31, 32 and 33, switch 70, low noise amplifiers 41, 42, 43, 44 and 45 , an antenna connection terminal 100 , and output terminals 110 , 120 , 130 , 140 and 150 . A high frequency module 500 according to the comparative example differs from the high frequency module 1 according to the embodiment mainly in the connection configuration between the filters 11 , 12 and 13 and the inductor 30 . Hereinafter, regarding the high-frequency module 500 according to the comparative example, the description of the same configuration as that of the high-frequency module 1 according to the embodiment will be omitted, and the description will focus on the different configuration.
 インダクタ30は、一端が端子70bに接続され、他端がフィルタ11の入力端に接続されている。 The inductor 30 has one end connected to the terminal 70 b and the other end connected to the input end of the filter 11 .
 フィルタ11は、入力端がインダクタ30の他端に接続され、バンドA(第1バンド)の少なくとも一部を含む第1通過帯域を有する。フィルタ11は、1以上の弾性波共振子を有する。 The filter 11 has an input end connected to the other end of the inductor 30 and has a first passband including at least part of band A (first band). Filter 11 has one or more elastic wave resonators.
 フィルタ12は、入力端がインダクタ30を介さずに端子70bに接続され、バンドB(第2バンド)の少なくとも一部を含む第2通過帯域を有する。フィルタ12は、1以上の弾性波共振子を有する。 The filter 12 has an input end connected to the terminal 70b without passing through the inductor 30, and has a second passband including at least part of the band B (second band). Filter 12 has one or more elastic wave resonators.
 フィルタ13は、入力端がインダクタ30を介さずに端子70bに接続され、バンドC(第3バンド)の少なくとも一部を含む第3通過帯域を有する。フィルタ13は、1以上の弾性波共振子を有する。 The filter 13 has an input end connected to the terminal 70b without passing through the inductor 30, and has a third passband including at least part of the band C (third band). Filter 13 has one or more elastic wave resonators.
 フィルタ21は、入力端がインダクタ30を介さずに端子70cに接続され、バンドD(第4バンド)の少なくとも一部を含む第4通過帯域を有する。フィルタ21は、1以上の弾性波共振子を有する。 The filter 21 has an input end connected to the terminal 70c without passing through the inductor 30, and has a fourth passband including at least part of the band D (fourth band). Filter 21 has one or more elastic wave resonators.
 フィルタ22は、入力端がインダクタ30を介さずに端子70dに接続され、バンドE(第5バンド)の少なくとも一部を含む第5通過帯域を有する。フィルタ22は、1以上の弾性波共振子を有する。 The filter 22 has an input end connected to the terminal 70d without passing through the inductor 30, and has a fifth passband including at least part of the band E (fifth band). Filter 22 has one or more elastic wave resonators.
 つまり、実施の形態に係る高周波モジュール1は、インダクタ30を介して端子70bにフィルタ11および12が接続され、インダクタ30を介さずに端子70bにフィルタ13が接続されているのに対して、比較例に係る高周波モジュール500は、インダクタ30を介して端子70bにフィルタ11が接続され、インダクタ30を介さずに端子70bにフィルタ12および13が接続されている。 That is, in the high-frequency module 1 according to the embodiment, the filters 11 and 12 are connected to the terminal 70b via the inductor 30, and the filter 13 is connected to the terminal 70b without the inductor 30. In the high-frequency module 500 according to the example, the filter 11 is connected to the terminal 70b via the inductor 30, and the filters 12 and 13 are connected to the terminal 70b without the inductor 30. FIG.
 また、比較例に係る高周波モジュール500において、第1通過帯域、第2通過帯域および第3通過帯域の周波数の高低関係、ならびに第4通過帯域および第5通過帯域の周波数の高低関係は限定されない。 Also, in the high-frequency module 500 according to the comparative example, the relationship between the frequencies of the first passband, the second passband, and the third passband and the relationship between the frequencies of the fourth passband and the fifth passband are not limited.
 上記構成によれば、高周波モジュール500は、バンドAの信号、バンドBの信号、バンドCの信号、バンドDの信号、およびバンドEの信号を同時に受信することが可能である。 According to the above configuration, the high-frequency module 500 can receive a band A signal, a band B signal, a band C signal, a band D signal, and a band E signal at the same time.
 [4 高周波モジュール1および高周波モジュール500のインピーダンス特性]
 図5Aは、実施の形態に係る各フィルタのインピーダンス特性を示すスミスチャートである。同図には、高周波モジュール1の端子70b側からフィルタ11、12および13を見た場合のバンドDにおけるインピーダンスが、スミスチャート上に示されている。
[4 Impedance Characteristics of High-Frequency Module 1 and High-Frequency Module 500]
FIG. 5A is a Smith chart showing impedance characteristics of each filter according to the embodiment. In the figure, the impedance in the band D when the filters 11, 12 and 13 are viewed from the terminal 70b side of the high frequency module 1 is shown on the Smith chart.
 また、図5Bは、比較例に係る各フィルタのインピーダンス特性を示すスミスチャートである。同図には、高周波モジュール500の端子70b側からフィルタ11、12および13を見た場合のバンドDにおけるインピーダンスが、スミスチャート上に示されている。 Also, FIG. 5B is a Smith chart showing the impedance characteristics of each filter according to the comparative example. In the figure, the impedance in the band D when the filters 11, 12 and 13 are viewed from the terminal 70b side of the high frequency module 500 is shown on the Smith chart.
 なお、図示していないが、端子70b側からフィルタ11、12および13を見た場合のバンドEにおけるインピーダンスも、図5Aおよび図5Bに示された、端子70b側からフィルタ11、12および13を見た場合のバンドDにおけるインピーダンスと同様の特性を示す。 Although not shown, the impedance in band E when the filters 11, 12 and 13 are viewed from the terminal 70b side is also the impedance of the filters 11, 12 and 13 from the terminal 70b side shown in FIGS. 5A and 5B. It exhibits characteristics similar to the impedance in band D when viewed.
 なお、以下では、フィルタ自体の通過帯域(自帯域)でなく他のフィルタの通過帯域を相手帯域と記す。例えば、フィルタ11の自帯域はバンドAであり、フィルタ11の相手帯域はバンドB、バンドC、バンドDおよびバンドEである。 In the following, the passband of another filter, not the passband (own band) of the filter itself, will be referred to as the other band. For example, the own band of filter 11 is band A, and the partner bands of filter 11 are band B, band C, band D and band E.
 まず、図5Bに示された高周波モジュール500のインピーダンス特性について説明する。比較例に係る高周波モジュール500では、フィルタ12および13がインダクタ30を介さないで端子70bに共通接続されている。フィルタ12および13は弾性波フィルタであるため、各単体のインピーダンスは容量性を示す。これに対して、端子70bに共通接続されたフィルタ12および13の端子70bから見た合成インピーダンスはさらに大きな容量値を有するインピーダンスとなる。例えば、端子70bに共通接続されたフィルタ12および13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスは、フィルタ12単体またはフィルタ13単体を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスと比べて、オープン点からより離れた容量性領域に位置する(図5Bのa)。このため、相手帯域(例えばバンドD)の信号がフィルタ12および13に漏洩し易くなり、当該相手帯域を通過帯域とするフィルタ(フィルタ21)の挿入損失が増大してしまう。 First, the impedance characteristics of the high frequency module 500 shown in FIG. 5B will be described. In the high frequency module 500 according to the comparative example, the filters 12 and 13 are commonly connected to the terminal 70b without the inductor 30 interposed. Since filters 12 and 13 are acoustic wave filters, the impedance of each unit exhibits capacitiveness. On the other hand, the combined impedance seen from the terminal 70b of the filters 12 and 13 commonly connected to the terminal 70b has an even larger capacitance value. For example, when the filters 12 and 13 commonly connected to the terminal 70b are viewed from the terminal 70b, the impedance in the other band (for example, band D) is For example, compared to the impedance in band D), it is located in the capacitive region farther from the open point (a in FIG. 5B). As a result, signals in the other band (for example, band D) are likely to leak to the filters 12 and 13, increasing the insertion loss of the filter (filter 21) having the other band as the passband.
 また、高周波モジュール500では、フィルタ11にインダクタ30を直列接続することで、フィルタ11単体を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図5Bのb)を時計回りに誘導性領域へとシフトさせている(図5Bのc)。これにより、端子70bに共通接続されたフィルタ12および13を端子70bから見た場合の相手帯域(例えばバンドD)における容量性インピーダンス(図5Bのa)と、インダクタ30が直列接続されたフィルタ11を端子70bから見た場合の相手帯域(例えばバンドD)における誘導性インピーダンス(図5Bのc)とを、複素共役の関係とすることで、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドD)におけるインピーダンスをオープン領域に位置させることが可能である。しかしながら、端子70bに共通接続されたフィルタ12および13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスの容量性が大きいため、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図5Bのd)を高精度にオープン領域に位置させることが困難となっている。 Further, in the high-frequency module 500, by connecting the inductor 30 in series with the filter 11, the impedance (b in FIG. 5B) in the other band (for example, band D) when the filter 11 alone is viewed from the terminal 70b is induced clockwise. (c in FIG. 5B). As a result, when the filters 12 and 13 commonly connected to the terminal 70b are viewed from the terminal 70b, the capacitive impedance (a in FIG. 5B) in the other band (for example, band D) and the filter 11 to which the inductor 30 is connected in series When viewing the filters 11, 12 and 13 from the terminal 70b, the inductive impedance (c in FIG. 5B) in the other band (for example, band D) when viewed from the terminal 70b is a complex conjugate relationship. It is possible to place the impedance in the counterpart band (eg, band D) in the open region. However, when the filters 12 and 13 commonly connected to the terminal 70b are viewed from the terminal 70b, the capacitiveness of the impedance in the partner band (for example, band D) is large. It is difficult to position the impedance (d in FIG. 5B) in the opposite band (for example, band D) in the open region with high accuracy.
 これを改善して高精度な複素共役の関係とすべく、インダクタ30のインダクタンス値を小さくして、インダクタ30が直列接続されたフィルタ11を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスのシフト量を調整することが考えられる。しかしながらこれにより、上記インピーダンスがオープンからショートに近づいてしまうため、相手帯域(例えばバンドD)の信号がフィルタ11に漏洩し易くなり、当該相手帯域を通過帯域とするフィルタ(21)の挿入損失が増大してしまう。 In order to improve this and achieve a highly accurate complex conjugate relationship, the inductance value of the inductor 30 is reduced, and the partner band (for example, band D) when the filter 11 in which the inductor 30 is connected in series is viewed from the terminal 70b It is conceivable to adjust the amount of impedance shift in . However, as a result, the impedance approaches a short circuit from an open circuit, so that the signal in the other band (for example, band D) is likely to leak to the filter 11, and the insertion loss of the filter (21) having the other band as the passband increases. increase.
 次に、図5Aに示された高周波モジュール1のインピーダンス特性について説明する。実施の形態に係る高周波モジュール1では、フィルタ13がインダクタ30を介さないで端子70bに共通接続されている。フィルタ13は弾性波フィルタであるため、単体のインピーダンスは容量性を示す。例えば、端子70bに接続されたフィルタ13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスは、端子70bに共通接続されたフィルタ12および13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図5Bのa)と比べて、オープン点に近い容量性領域に位置する(図5Aのa)。このため、相手帯域(例えばバンドD)の信号がフィルタ13に漏洩することを抑制できるので、当該相手帯域を通過帯域とするフィルタ(フィルタ21)の挿入損失を低減できる。 Next, the impedance characteristics of the high frequency module 1 shown in FIG. 5A will be described. In the high frequency module 1 according to the embodiment, the filter 13 is commonly connected to the terminal 70b without the inductor 30 interposed. Since the filter 13 is an acoustic wave filter, the impedance of a single unit exhibits capacitiveness. For example, when the filter 13 connected to the terminal 70b is viewed from the terminal 70b, the impedance in the other band (for example, band D) is It is located in a capacitive region close to the open point (a in FIG. 5A) compared to the impedance (a in FIG. 5B) in (eg band D). Therefore, it is possible to suppress the signal of the other band (for example, band D) from leaking to the filter 13, so that the insertion loss of the filter (filter 21) having the passband of the other band can be reduced.
 また、高周波モジュール1は、共通接続されたフィルタ11および12にインダクタ30を直列接続することで、共通接続されたフィルタ11および12を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図5Aのb)を時計回りに誘導性領域へとシフトさせている(図5Aのc)。これにより、端子70bに接続されたフィルタ13単体を端子70bから見た場合の相手帯域(例えばバンドD)における容量性インピーダンス(図5Aのa)と、インダクタ30が直列接続されたフィルタ11および12を端子70bから見た場合の相手帯域(例えばバンドD)における誘導性インピーダンス(図5Aのc)とを、高精度に複素共役の関係とできる。言い換えると、端子70aと端子70bとが非接続である状態、かつ、フィルタ13がインダクタ30の一端に接続されていない状態で、端子70bからフィルタ11および12を見た場合の相手帯域(例えばバンドD)におけるインピーダンスと、端子70aと端子70bとが非接続である状態、かつ、インダクタ30、フィルタ11および12が端子70bに接続されていない状態で、端子70bからフィルタ13単体を見た場合の相手帯域(例えばバンドD)におけるインピーダンスとは、複素共役の関係を満たしている。これにより、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図5Aのd)をより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12および13に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ21の挿入損失を低減できる。なお、共通接続されたフィルタ11および12のインピーダンスは容量性領域であって、オープンからショートに近く位置しているため、当該インピーダンスを誘導性領域にシフトするためのインダクタ30のインダクタンス値を小さくできる。このため、インダクタ30によるフィルタ11および12の伝送損失を低減できる。 Further, in the high-frequency module 1, by connecting the inductor 30 to the commonly connected filters 11 and 12 in series, the impedance in the other band (for example, band D) when the commonly connected filters 11 and 12 are viewed from the terminal 70b is (Fig. 5A b) is shifted clockwise into the inducible region (Fig. 5A c). As a result, when the filter 13 alone connected to the terminal 70b is viewed from the terminal 70b, the capacitive impedance (a in FIG. 5A) in the other band (for example, band D) and the filters 11 and 12 to which the inductor 30 is connected in series and the inductive impedance (c in FIG. 5A) in the other band (for example, band D) when viewed from the terminal 70b can have a complex conjugate relationship with high precision. In other words, in a state in which the terminals 70a and 70b are disconnected and the filter 13 is not connected to one end of the inductor 30, when the filters 11 and 12 are viewed from the terminal 70b, the other band (for example, band D) and the impedance when the filter 13 alone is seen from the terminal 70b in a state in which the terminals 70a and 70b are disconnected and the inductor 30 and the filters 11 and 12 are not connected to the terminal 70b. The impedance in the other band (for example, band D) satisfies a complex conjugate relationship. As a result, the impedance (d in FIG. 5A) in the other band (for example, band D) when the filters 11, 12 and 13 are viewed from the terminal 70b can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 21 having the pass band of the other band can be reduced. Note that the impedance of the commonly connected filters 11 and 12 is in the capacitive region, and is located close to the open to short, so the inductance value of the inductor 30 for shifting the impedance to the inductive region can be reduced. . Therefore, the transmission loss of filters 11 and 12 due to inductor 30 can be reduced.
 なお、本開示において、「2つのインピーダンスが複素共役の関係となる」とは、2つのインピーダンスの複素成分が0に近づくようにキャンセルされることを意味する。すなわち、一方のインピーダンスをR+jXとし、他方のインピーダンスをR+jXとした場合に、X>0かつX<0を満たす(一方のインピーダンスが誘導性であり、かつ、他方のインピーダンスが容量性である)ことを意味し、特定的にはX+X=0を満たすことを意味する。 In the present disclosure, “two impedances have a complex conjugate relationship” means that the complex components of the two impedances are canceled so as to approach zero. That is, when one impedance is R 1 +jX 1 and the other impedance is R 2 +jX 2 , X 1 >0 and X 2 <0 are satisfied (one impedance is inductive and the other impedance is Impedance is capacitive), specifically means that X 1 +X 2 =0.
 さらに、実施の形態に係る高周波モジュール1では、バンドAおよびバンドBは、バンドCよりも低周波側に位置している。つまり、インダクタ30が直列接続されたフィルタ11および12の通過帯域は、インダクタ30が接続されていないフィルタ13の通過帯域よりも低周波側に位置している。フィルタ11および12に接続されたインダクタ30はローパスフィルタとして機能しているため、フィルタ11および12の通過帯域は、インダクタ30で形成されるローパスフィルタのカットオフ周波数から、より低周波側に離れていることが好ましい。これに対して、フィルタ11および12の通過帯域がフィルタ13の通過帯域よりも低周波側に位置しているので、フィルタ11および12の通過帯域が上記カットオフ周波数よりも、より低周波側に位置するので、フィルタ11および12の挿入損失の増大を抑制できる。 Furthermore, in the high-frequency module 1 according to the embodiment, the band A and the band B are located on the lower frequency side than the band C. That is, the passbands of filters 11 and 12 to which inductor 30 is connected in series are located on the lower frequency side than the passband of filter 13 to which inductor 30 is not connected. Since the inductor 30 connected to the filters 11 and 12 functions as a low-pass filter, the passbands of the filters 11 and 12 are separated from the cutoff frequency of the low-pass filter formed by the inductor 30 to the lower frequency side. preferably. On the other hand, since the passbands of filters 11 and 12 are positioned on the lower frequency side than the passband of filter 13, the passbands of filters 11 and 12 are positioned on the lower frequency side than the cutoff frequency. Because of the position, an increase in insertion loss of filters 11 and 12 can be suppressed.
 なお、キャパシタ35が付加されていることにより、インダクタ30で形成されるローパスフィルタ機能が強化され、フィルタ11および12の挿入損失の増大を、より一層抑制できる。 By adding the capacitor 35, the low-pass filter function formed by the inductor 30 is enhanced, and the increase in the insertion loss of the filters 11 and 12 can be further suppressed.
 [5 変形例に係る高周波モジュール2の回路構成およびインピーダンス特性]
 次に、変形例に係る高周波モジュール2について、回路構成およびインピーダンス特性を説明する。図6は、変形例に係る高周波モジュール2の回路構成図である。同図に示すように、本変形例に係る高周波モジュール2は、フィルタ11、12、13、14、21および22と、インダクタ31、32、33および34と、スイッチ70と、低雑音増幅器41、42、43、44、45および46と、アンテナ接続端子100と、出力端子110、120、130、140、150および160と、を備える。本変形例に係る高周波モジュール2は、実施の形態に係る高周波モジュール1と比較して、フィルタ14および低雑音増幅器46が付加されている点が主として異なる。以下、本変形例に係る高周波モジュール2について、実施の形態に係る高周波モジュール1と同じ構成については説明を省略し、異なる構成を中心に説明する。
[5 Circuit Configuration and Impedance Characteristics of High-Frequency Module 2 According to Modification]
Next, the circuit configuration and impedance characteristics of the high-frequency module 2 according to the modified example will be described. FIG. 6 is a circuit configuration diagram of a high frequency module 2 according to a modification. As shown in the figure, the high frequency module 2 according to this modification includes filters 11, 12, 13, 14, 21 and 22, inductors 31, 32, 33 and 34, a switch 70, a low noise amplifier 41, 42 , 43 , 44 , 45 and 46 , an antenna connection terminal 100 , and output terminals 110 , 120 , 130 , 140 , 150 and 160 . A high-frequency module 2 according to this modification differs from the high-frequency module 1 according to the embodiment mainly in that a filter 14 and a low-noise amplifier 46 are added. Hereinafter, regarding the high-frequency module 2 according to the present modification, the description of the same configuration as that of the high-frequency module 1 according to the embodiment will be omitted, and the description will focus on the different configuration.
 インダクタ34は、一端が端子70bに接続され、他端がフィルタ11の入力端、フィルタ12の入力端、およびフィルタ14の入力端に接続されている。 The inductor 34 has one end connected to the terminal 70b and the other end connected to the input end of the filter 11, the input end of the filter 12, and the input end of the filter 14.
 フィルタ11は、第1弾性波フィルタの一例であり、入力端がインダクタ34の他端に接続され、バンドA(第1バンド)の少なくとも一部を含む第1通過帯域を有する。フィルタ11は、1以上の弾性波共振子を有する。 The filter 11 is an example of a first acoustic wave filter, has an input end connected to the other end of the inductor 34, and has a first passband including at least part of band A (first band). Filter 11 has one or more elastic wave resonators.
 フィルタ12は、第2弾性波フィルタの一例であり、入力端がインダクタ34の他端に接続され、バンドB(第2バンド)の少なくとも一部を含む第2通過帯域を有する。フィルタ12は、1以上の弾性波共振子を有する。 The filter 12 is an example of a second acoustic wave filter, has an input end connected to the other end of the inductor 34, and has a second passband including at least part of the band B (second band). Filter 12 has one or more elastic wave resonators.
 フィルタ14は、第6弾性波フィルタの一例であり、入力端がインダクタ34の他端に接続され、バンドF(第6バンド)の少なくとも一部を含む第6通過帯域を有する。フィルタ14は、1以上の弾性波共振子を有する。 The filter 14 is an example of a sixth acoustic wave filter, has an input end connected to the other end of the inductor 34, and has a sixth passband including at least part of the band F (sixth band). Filter 14 has one or more elastic wave resonators.
 フィルタ13は、第3弾性波フィルタの一例であり、入力端がインダクタ34を介さずに端子70bに接続され、バンドC(第3バンド)の少なくとも一部を含む第3通過帯域を有する。フィルタ13は、1以上の弾性波共振子を有する。 The filter 13 is an example of a third acoustic wave filter, has an input end connected to the terminal 70b without passing through the inductor 34, and has a third passband including at least part of the band C (third band). Filter 13 has one or more elastic wave resonators.
 フィルタ21は、第4弾性波フィルタの一例であり、入力端がインダクタ34を介さずに端子70cに接続され、バンドD(第4バンド)の少なくとも一部を含む第4通過帯域を有する。フィルタ21は、1以上の弾性波共振子を有する。 The filter 21 is an example of a fourth acoustic wave filter, has an input terminal connected to the terminal 70c without the inductor 34, and has a fourth passband including at least part of the band D (fourth band). Filter 21 has one or more elastic wave resonators.
 フィルタ22は、第5弾性波フィルタの一例であり、入力端がインダクタ34を介さずに端子70dに接続され、バンドE(第5バンド)の少なくとも一部を含む第5通過帯域を有する。フィルタ22は、1以上の弾性波共振子を有する。 The filter 22 is an example of a fifth acoustic wave filter, has an input terminal connected to the terminal 70d without the inductor 34, and has a fifth passband including at least part of the band E (fifth band). Filter 22 has one or more elastic wave resonators.
 第1通過帯域、第2通過帯域および第6通過帯域は、第3通過帯域よりも低周波側に位置している。 The first passband, the second passband and the sixth passband are located on the lower frequency side than the third passband.
 キャパシタ35は、インダクタ34の他端とグランドとの間に接続されている。 The capacitor 35 is connected between the other end of the inductor 34 and the ground.
 低雑音増幅器46は、入力端がフィルタ14の出力端に接続され、出力端が出力端子160に接続されており、バンドFの受信信号を増幅する。 The low-noise amplifier 46 has an input terminal connected to the output terminal of the filter 14 and an output terminal connected to the output terminal 160, and amplifies the received band F signal.
 上記構成によれば、高周波モジュール2は、バンドAの信号、バンドBの信号、バンドCの信号、バンドDの信号、バンドEの信号、およびバンドFの信号を同時に受信することが可能である。 According to the above configuration, the high-frequency module 2 can simultaneously receive a signal of band A, a signal of band B, a signal of band C, a signal of band D, a signal of band E, and a signal of band F. .
 例えば、バンドAの信号、バンドBの信号、バンドCの信号、バンドDの信号、およびバンドFの信号を同時に受信する場合、スイッチ70において端子70aと端子70bとが接続され、かつ、端子70aと端子70cとが接続される。 For example, when a signal of band A, a signal of band B, a signal of band C, a signal of band D, and a signal of band F are simultaneously received, the terminal 70a and the terminal 70b are connected in the switch 70, and the terminal 70a and the terminal 70c are connected.
 このように、複数の信号を同時に受信する場合、例えば、端子70aおよびインダクタ34の間の信号経路にキャパシタを直列に配置することにより、同時受信時のインピーダンス整合の状態を改善することができ、受信信号の反射損失などの特性を改善することができる。なお、このキャパシタは、スイッチ70の内部において、FETなどと一体で形成されても構わない。このような構成にすることにより、高周波モジュール2を小型化できる。また、その場合、信号経路において、キャパシタをシリーズFETおよびシャントFETの間に配置しても構わない。 Thus, when receiving a plurality of signals at the same time, for example, by arranging a capacitor in series in the signal path between the terminal 70a and the inductor 34, the state of impedance matching at the time of simultaneous reception can be improved. Characteristics such as return loss of received signals can be improved. Note that this capacitor may be formed integrally with an FET or the like inside the switch 70 . With such a configuration, the high-frequency module 2 can be miniaturized. In that case, a capacitor may be placed between the series FET and the shunt FET in the signal path.
 なお、本実施の形態に係る高周波モジュール2において、キャパシタ35はフィルタ12に対して直列に配置されていなくてもよく、高周波モジュール2は、フィルタ22、低雑音増幅器41~46、キャパシタ35、インダクタ31、32および33、ならびにスイッチ素子73を備えていなくてもよい。 Note that in the high-frequency module 2 according to the present embodiment, the capacitor 35 may not be arranged in series with the filter 12, and the high-frequency module 2 includes the filter 22, the low noise amplifiers 41 to 46, the capacitor 35, the inductor 31, 32 and 33 and switch element 73 may be omitted.
 図7は、変形例に係る各フィルタのインピーダンス特性を示すスミスチャートである。同図には、高周波モジュール2の端子70b側からフィルタ11、12および13を見た場合のバンドDにおけるインピーダンスが、スミスチャート上に示されている。変形例に係る高周波モジュール2では、フィルタ13がインダクタ34を介さないで端子70bに共通接続されている。フィルタ13は弾性波フィルタであるため、単体のインピーダンスは容量性を示す。例えば、端子70bに接続されたフィルタ13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスは、端子70bに共通接続されたフィルタ12および13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図5Bのa)と比べて、オープン点に近い容量性領域に位置する(図7のa)。このため、相手帯域(例えばバンドD)の信号がフィルタ13に漏洩することを抑制できるので、当該相手帯域を通過帯域とするフィルタ(フィルタ21)の挿入損失を低減できる。 FIG. 7 is a Smith chart showing the impedance characteristics of each filter according to the modification. In the figure, the impedance in the band D when the filters 11, 12 and 13 are viewed from the terminal 70b side of the high frequency module 2 is shown on the Smith chart. In the high frequency module 2 according to the modified example, the filter 13 is commonly connected to the terminal 70b without the inductor 34 interposed therebetween. Since the filter 13 is an acoustic wave filter, the impedance of a single unit exhibits capacitiveness. For example, when the filter 13 connected to the terminal 70b is viewed from the terminal 70b, the impedance in the other band (for example, band D) is It is located in the capacitive region (Fig. 7a) close to the open point compared to the impedance (Fig. 5B a) in (e.g. band D). Therefore, it is possible to suppress the signal of the other band (for example, band D) from leaking to the filter 13, so that the insertion loss of the filter (filter 21) having the passband of the other band can be reduced.
 また、高周波モジュール2は、共通接続されたフィルタ11、12および14にインダクタ34を直列接続することで、共通接続されたフィルタ11、12および14を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図7のb)を時計回りに誘導性領域へとシフトさせている(図7のc)。これにより、端子70bに接続されたフィルタ13単体を端子70bから見た場合の相手帯域(例えばバンドD)における容量性インピーダンス(図7のa)と、インダクタ34が直列接続されたフィルタ11、12および14を端子70bから見た場合の相手帯域(例えばバンドD)における誘導性インピーダンス(図7のc)とを、高精度に複素共役の関係とできる。言い換えると、端子70aと端子70bとが非接続である状態、かつ、フィルタ13がインダクタ34の一端に接続されていない状態で、端子70bからフィルタ11、12および14を見た場合の相手帯域(例えばバンドD)におけるインピーダンスと、端子70aと端子70bとが非接続である状態、かつ、インダクタ34、フィルタ11、12および14が端子70bに接続されていない状態で、端子70bからフィルタ13単体を見た場合の相手帯域(例えばバンドD)におけるインピーダンスとは、複素共役の関係を満たしている。これにより、端子70bからフィルタ11、12、13および14を見た場合の相手帯域(例えばバンドD)におけるインピーダンス(図7のd)をより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12、13および14に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ21の挿入損失を低減できる。なお、共通接続されたフィルタ11、12および14のインピーダンスは容量性領域であって、オープンからショートに近く位置しているため、当該インピーダンスを誘導性領域にシフトするためのインダクタ34のインダクタンス値を小さくできる。このため、インダクタ34によるフィルタ11、12および14の伝送損失を低減できる。 In the high-frequency module 2, the common-connected filters 11, 12, and 14 are connected in series with the inductor 34, so that the common-connected filters 11, 12, and 14 are in the opposite band (for example, band D) (Fig. 7b) is shifted clockwise into the inductive region (Fig. 7c). As a result, when the filter 13 alone connected to the terminal 70b is viewed from the terminal 70b, the capacitive impedance (a in FIG. 7) in the other band (for example, band D) and the filters 11 and 12 to which the inductor 34 is connected in series , and 14 with the inductive impedance (c in FIG. 7) in the other band (for example, band D) when viewed from the terminal 70b can have a complex conjugate relationship with high precision. In other words, when the terminals 70a and 70b are unconnected and the filter 13 is not connected to one end of the inductor 34, when the filters 11, 12 and 14 are viewed from the terminal 70b, For example, in a state where the impedance in band D), the terminals 70a and 70b are disconnected, and the inductor 34 and the filters 11, 12 and 14 are not connected to the terminal 70b, the filter 13 alone is removed from the terminal 70b. The impedance in the other band (for example, band D) when viewed satisfies a complex conjugate relationship. As a result, the impedance (d in FIG. 7) in the other band (for example, band D) when the filters 11, 12, 13 and 14 are viewed from the terminal 70b can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the signals of the other band from leaking to the filters 11, 12, 13 and 14, so that the insertion loss of the filter 21 having the pass band of the other band can be reduced. Note that the impedance of the commonly connected filters 11, 12 and 14 is in the capacitive region and is located close to the open to short, so the inductance value of inductor 34 for shifting the impedance to the inductive region is can be made smaller. Therefore, the transmission loss of the filters 11, 12 and 14 due to the inductor 34 can be reduced.
 さらに、変形例に係る高周波モジュール2では、バンドA、バンドBおよびバンドFは、バンドCよりも低周波側に位置している。つまり、インダクタ34が直列接続されたフィルタ11、12および14の通過帯域は、インダクタ34が接続されていないフィルタ13の通過帯域よりも低周波側に位置している。フィルタ11、12および14に接続されたインダクタ34はローパスフィルタとして機能しているため、フィルタ11、12および14の通過帯域は、インダクタ34で形成されるローパスフィルタのカットオフ周波数から、より低周波側に離れていることが好ましい。これに対して、フィルタ11、12および14の通過帯域がフィルタ13の通過帯域よりも低周波側に位置しているので、フィルタ11、12および14の通過帯域が上記カットオフ周波数よりも、より低周波側に位置するので、フィルタ11、12および14の挿入損失の増大を抑制できる。 Furthermore, in the high-frequency module 2 according to the modified example, band A, band B, and band F are located on the lower frequency side than band C. That is, the passbands of filters 11, 12 and 14 to which inductor 34 is connected in series are located on the lower frequency side than the passband of filter 13 to which inductor 34 is not connected. Since inductor 34 connected to filters 11, 12 and 14 functions as a low-pass filter, the passbands of filters 11, 12 and 14 are lower than the cutoff frequency of the low-pass filter formed by inductor 34. It is preferable to keep them away from each other. On the other hand, since the passbands of filters 11, 12 and 14 are located on the lower frequency side than the passband of filter 13, the passbands of filters 11, 12 and 14 are lower than the cutoff frequency. Since it is located on the low frequency side, an increase in insertion loss of filters 11, 12 and 14 can be suppressed.
 [6 高周波モジュール1の実装構成]
 本実施の形態に係る高周波モジュール1の実装構成について、図8および図9を参照しながら説明する。
[6 Mounting Configuration of High-Frequency Module 1]
A mounting configuration of the high-frequency module 1 according to the present embodiment will be described with reference to FIGS. 8 and 9. FIG.
 図8は、実施例に係る高周波モジュール1の平面図である。また、図9は、実施例に係る高周波モジュール1の断面図である。図8の(a)は、z軸正側からモジュール基板90の主面90a側を見た図であり、図8の(b)は、z軸正側からモジュール基板90の主面90b側を透視した図である。図9における高周波モジュール1の断面は、図8の(a)および(b)のIX-IX線における断面である。 FIG. 8 is a plan view of the high frequency module 1 according to the embodiment. Also, FIG. 9 is a cross-sectional view of the high-frequency module 1 according to the embodiment. 8A is a view of the main surface 90a side of the module substrate 90 viewed from the z-axis positive side, and FIG. 8B is a view of the main surface 90b side of the module substrate 90 viewed from the z-axis positive side. It is a perspective view. The cross section of the high frequency module 1 in FIG. 9 is taken along line IX-IX in (a) and (b) of FIG.
 なお、図8において、各部品の配置関係が容易に理解されるように、各部品にはそれを表す記号が付されている場合があるが、実際の各部品には、当該記号は付されていない。また、図8および図9において、モジュール基板90に配置された複数の電子部品を接続する配線の図示が省略されている。 In FIG. 8, each part may have a symbol representing it so that the arrangement relationship of each part can be easily understood. not 8 and 9 omit the illustration of wiring that connects a plurality of electronic components arranged on the module substrate 90. FIG.
 高周波モジュール1は、図1に示された高周波モジュール1に含まれる複数の電子部品に加えて、モジュール基板90と、樹脂部材91および92と、外部接続端子95と、シールド電極層96と、を備える。 The high-frequency module 1 includes a module substrate 90, resin members 91 and 92, external connection terminals 95, and a shield electrode layer 96, in addition to the plurality of electronic components included in the high-frequency module 1 shown in FIG. Prepare.
 モジュール基板90は、互いに対向する主面90aおよび90bを有する。主面90aおよび90bは、それぞれ第1主面および第2主面の一例である。なお、図8において、モジュール基板90は、平面視において矩形状を有するが、この形状に限定されない。 The module substrate 90 has main surfaces 90a and 90b facing each other. Principal surfaces 90a and 90b are examples of a first principal surface and a second principal surface, respectively. Note that in FIG. 8, the module substrate 90 has a rectangular shape in plan view, but is not limited to this shape.
 モジュール基板90としては、例えば、複数の誘電体層の積層構造を有する低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)基板もしくは高温同時焼成セラミックス(HTCC:High Temperature Co-fired Ceramics)基板、部品内蔵基板、再配線層(RDL:Redistribution Layer)を有する基板、または、プリント基板等を用いることができるが、これらに限定されない。 As the module substrate 90, for example, a low temperature co-fired ceramics (LTCC) substrate or a high temperature co-fired ceramics (HTCC) substrate having a laminated structure of a plurality of dielectric layers, A component-embedded substrate, a substrate having a redistribution layer (RDL), a printed substrate, or the like can be used, but is not limited to these.
 図9に示すように、樹脂部材91は、主面90aに配置され、複数の回路部品の一部および主面90aを覆っており、上記複数の回路部品の機械強度および耐湿性などの信頼性を確保する機能を有している。樹脂部材91は、主面90bに配置され、回路部品の一部および主面90bを覆っており、上記回路部品の機械強度および耐湿性などの信頼性を確保する機能を有している。 As shown in FIG. 9, the resin member 91 is arranged on the main surface 90a, covers a part of the plurality of circuit components and the main surface 90a, and provides reliability such as mechanical strength and moisture resistance of the plurality of circuit components. It has a function to ensure The resin member 91 is arranged on the main surface 90b, covers part of the circuit component and the main surface 90b, and has a function of ensuring reliability such as mechanical strength and moisture resistance of the circuit component.
 また、複数の外部接続端子95は、主面90bに配置されている。高周波モジュール1は、高周波モジュール1のz軸負方向側に配置される外部基板と、複数の外部接続端子95を経由して、電気信号のやりとりを行う。また、複数の外部接続端子95のいくつかは外部基板のグランド電位に設定されている。 Also, the plurality of external connection terminals 95 are arranged on the main surface 90b. The high-frequency module 1 exchanges electric signals with an external substrate arranged on the z-axis negative direction side of the high-frequency module 1 via a plurality of external connection terminals 95 . Also, some of the plurality of external connection terminals 95 are set to the ground potential of the external substrate.
 また、図9に示すように、高周波モジュール1は、さらに、樹脂部材91の表面および側面ならびに樹脂部材92の側面を覆い、かつ、グランド電位に設定されたシールド電極層96を備えてもよい。これにより、高周波モジュール1の外部回路との電磁界遮蔽機能が向上する。 Further, as shown in FIG. 9, the high frequency module 1 may further include a shield electrode layer 96 that covers the surface and side surfaces of the resin member 91 and the side surface of the resin member 92 and that is set to the ground potential. This improves the electromagnetic field shielding function of the high-frequency module 1 from external circuits.
 なお、樹脂部材91および92、外部接続端子95、ならびにシールド電極層96は、本発明に係る高周波モジュールに必須の構成要素ではない。 The resin members 91 and 92, the external connection terminals 95, and the shield electrode layer 96 are not essential components of the high frequency module according to the present invention.
 主面90aには、フィルタ11、12、13、21および22と、インダクタ30とが配置されている。フィルタ11および12は、チップ部品81に集積して構成されている。フィルタ13は、チップ部品82で構成されている。フィルタ21および22は、チップ部品83に集積して構成されている。チップ部品81、82および83のそれぞれは、例えばSi基板または圧電基板を用いて構成されている。なお、フィルタ11、12、13、21および22のそれぞれは、チップ部品81~83のいずれかに含まれていなくてもよく、単体で主面90aに配置されていてもよい。 The filters 11, 12, 13, 21 and 22 and the inductor 30 are arranged on the main surface 90a. Filters 11 and 12 are configured by being integrated on chip part 81 . The filter 13 is composed of chip parts 82 . Filters 21 and 22 are integrated on chip component 83 . Each of the chip components 81, 82 and 83 is constructed using, for example, a Si substrate or a piezoelectric substrate. Each of the filters 11, 12, 13, 21 and 22 may not be included in any one of the chip components 81 to 83, and may be arranged alone on the main surface 90a.
 主面90bには、半導体IC80が配置されている。半導体IC80は、スイッチ70(スイッチ素子71~73)が形成されたスイッチ領域80aと、低雑音増幅器41~45が形成された増幅領域80bとを含む。 A semiconductor IC 80 is arranged on the main surface 90b. Semiconductor IC 80 includes a switch region 80a in which switch 70 (switch elements 71-73) is formed, and an amplification region 80b in which low-noise amplifiers 41-45 are formed.
 半導体IC80は、例えばCMOSを用いて構成され、具体的にはSOI(Silicon On Insulator)プロセスにより製造される。なお、半導体IC80は、GaAs、SiGeおよびGaNのうちの少なくとも1つで構成されてもよいが、半導体IC80を構成する半導体材料は、上述した材料に限定されない。 The semiconductor IC 80 is configured using CMOS, for example, and is specifically manufactured by an SOI (Silicon On Insulator) process. The semiconductor IC 80 may be composed of at least one of GaAs, SiGe, and GaN, but the semiconductor material that constitutes the semiconductor IC 80 is not limited to the materials described above.
 なお、半導体IC80は、少なくともスイッチ領域80aを有していればよく、増幅領域80bは、半導体IC80と異なる半導体ICに含まれていてもよい。 The semiconductor IC 80 may have at least the switch region 80a, and the amplification region 80b may be included in a semiconductor IC different from the semiconductor IC 80.
 なお、インダクタ31~33は、図8には図示されていないが、主面90a、90bおよびモジュール基板90の内部のいずれに配置されていてもよい。 Although the inductors 31 to 33 are not shown in FIG. 8, they may be arranged on the main surfaces 90a, 90b and inside the module substrate 90.
 上記構成によれば、高周波モジュール1を構成する回路部品が、主面90aおよび90bに振り分けて配置されているので、高周波モジュール1を小型化できる。 According to the above configuration, the circuit components constituting the high-frequency module 1 are arranged separately on the main surfaces 90a and 90b, so that the high-frequency module 1 can be miniaturized.
 また、キャパシタ35は、モジュール基板90の表面および内部の少なくとも一方に形成された平面導体で構成されている。本実施例では、キャパシタ35は、モジュール基板90の主面90aに配置された第1層、モジュール基板90の内部に配置された第2層および第3層に形成された平面導体で構成されている。なお、第1層に形成された平面導体は、フィルタ11および12のグランド電極であってもよい。 Also, the capacitor 35 is composed of a planar conductor formed on at least one of the surface and inside of the module substrate 90 . In this embodiment, the capacitor 35 is composed of planar conductors formed in the first layer arranged on the main surface 90a of the module substrate 90, the second layer arranged inside the module substrate 90, and the third layer. there is The planar conductors formed on the first layer may be ground electrodes of the filters 11 and 12 .
 これによれば、キャパシタ35が、モジュール基板90の内部に配置されるので、高周波モジュール1を、より小型化できる。 According to this, the capacitor 35 is arranged inside the module substrate 90, so that the high frequency module 1 can be made more compact.
 ここで、モジュール基板90を平面視した場合、インダクタ30と半導体IC80とは、少なくとも一部が重なっており、かつ、フィルタ21と半導体IC80とは、少なくとも一部が重なっている。 Here, when the module substrate 90 is viewed in plan, the inductor 30 and the semiconductor IC 80 at least partially overlap each other, and the filter 21 and the semiconductor IC 80 at least partially overlap each other.
 これによれば、インダクタ30とスイッチ70とを結ぶ配線、および、フィルタ21とスイッチ70とを結ぶ配線を短くできるので、上記2配線の伝送損失を低減できる。よって、高周波モジュール1を低損失化できる。 According to this, the wiring connecting the inductor 30 and the switch 70 and the wiring connecting the filter 21 and the switch 70 can be shortened, so that the transmission loss of the two wirings can be reduced. Therefore, the loss of the high frequency module 1 can be reduced.
 さらに、モジュール基板90を平面視した場合、インダクタ30とスイッチ領域80aとは、少なくとも一部が重なっていることが望ましい。 Furthermore, when the module substrate 90 is viewed from above, it is desirable that at least a portion of the inductor 30 and the switch region 80a overlap.
 これによれば、インダクタ30とスイッチ70とを結ぶ配線を、より短くできるので、当該配線の伝送損失を、より低減できる。 According to this, the wiring connecting the inductor 30 and the switch 70 can be made shorter, so that the transmission loss of the wiring can be further reduced.
 また、モジュール基板90を平面視した場合、フィルタ11および12の少なくとも一方とキャパシタ35とは、少なくとも一部が重なっている。 Also, when the module substrate 90 is viewed in plan, at least one of the filters 11 and 12 and the capacitor 35 overlap at least partially.
 これによれば、フィルタ11および12の少なくとも一方とキャパシタ35と結ぶ配線を短くできるので、上記配線の伝送損失を低減できる。 According to this, since the wiring connecting at least one of the filters 11 and 12 and the capacitor 35 can be shortened, the transmission loss of the wiring can be reduced.
 また、図8に示すように、フィルタ22は、フィルタ21よりも半導体IC80に近く配置されている。さらに、を平面視した場合、フィルタ22は、フィルタ21よりスイッチ領域80aに近く配置されていることが望ましい。 Also, as shown in FIG. 8, the filter 22 is arranged closer to the semiconductor IC 80 than the filter 21 is. Furthermore, when viewed from above, it is desirable that the filter 22 be arranged closer to the switch region 80a than the filter 21 is.
 フィルタ22の通過帯域はフィルタ21の通過帯域よりも高周波側に位置する。よって、スイッチ70とフィルタとを結ぶ配線長による位相変化の影響は、フィルタ21よりもフィルタ22の方が大きい。これに対して、上記構成によれば、高周波側に位置するフィルタ22と半導体IC80との配線長を短くできるので、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドE)におけるインピーダンスをより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12および13に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ22の挿入損失を低減できる。 The passband of the filter 22 is located on the higher frequency side than the passband of the filter 21. Therefore, the filter 22 is more affected than the filter 21 by the phase change due to the wiring length connecting the switch 70 and the filter. On the other hand, according to the above configuration, since the wiring length between the filter 22 located on the high frequency side and the semiconductor IC 80 can be shortened, the other band (for example, band E ) can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 22 having the passband of the other band can be reduced.
 [7 効果など]
 以上のように、実施の形態に係る高周波モジュール1は、バンドAの信号、バンドBの信号、バンドCの信号およびバンドDの信号を同時に伝送することが可能であり、端子70a、70bおよび70cを有し、端子70aと端子70bとの接続および非接続を切り替え、端子70aと端子70cとの接続および非接続を切り替えるスイッチ70と、一端が端子70bに接続されたインダクタ30と、インダクタ30の他端に接続され、バンドAの少なくとも一部を含む第1通過帯域を有するフィルタ11と、インダクタ30の他端に接続され、バンドBの少なくとも一部を含む第2通過帯域を有するフィルタ12と、インダクタ30を介さずに端子70bに接続され、バンドCの少なくとも一部を含む第3通過帯域を有するフィルタ13と、インダクタ30を介さずに端子70cに接続され、バンドDの少なくとも一部を含む第4通過帯域を有するフィルタ21と、を備え、第1通過帯域および第2通過帯域は第3通過帯域よりも低周波側に位置する。
[7 Effects, etc.]
As described above, the high-frequency module 1 according to the embodiment can simultaneously transmit a signal of the band A, a signal of the band B, a signal of the band C and a signal of the band D, and the terminals 70a, 70b and 70c a switch 70 that switches connection and disconnection between the terminals 70a and 70b and switches connection and disconnection between the terminals 70a and 70c; an inductor 30 having one end connected to the terminal 70b; A filter 11 connected to the other end and having a first passband including at least part of band A, and a filter 12 connected to the other end of inductor 30 and having a second passband including at least part of band B. , a filter 13 connected to terminal 70b without inductor 30 and having a third passband including at least part of band C, and a filter 13 connected to terminal 70c without inductor 30 and including at least part of band D. and a filter 21 having a fourth passband comprising the first passband and the second passband located on the lower frequency side than the third passband.
 これによれば、高周波モジュール1では、フィルタ13がインダクタ30を介さないで端子70bに共通接続されている。フィルタ13は弾性波フィルタであるため、単体のインピーダンスは容量性を示す。端子70bに直接接続されたフィルタ13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスは、端子70bに直接接続されたフィルタ12および13を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスと比べて、オープン点に近い容量性領域に位置する。このため、相手帯域(例えばバンドD)の信号がフィルタ13に漏洩することを抑制できるので、当該相手帯域を通過帯域とするフィルタ(フィルタ21)の挿入損失を低減できる。 According to this, in the high frequency module 1, the filter 13 is commonly connected to the terminal 70b without the inductor 30 interposed. Since the filter 13 is an acoustic wave filter, the impedance of a single unit exhibits capacitiveness. When the filter 13 directly connected to the terminal 70b is viewed from the terminal 70b, the impedance in the other band (for example, band D) is the same as the impedance in the other band (for example, band D) when the filters 12 and 13 directly connected to the terminal 70b are viewed from the terminal 70b. It lies in the capacitive region close to the open point compared to the impedance in eg band D). Therefore, it is possible to suppress the signal of the other band (for example, band D) from leaking to the filter 13, so that the insertion loss of the filter (filter 21) having the passband of the other band can be reduced.
 また、高周波モジュール1は、共通接続されたフィルタ11および12にインダクタ30を直列接続することで、共通接続されたフィルタ11および12を端子70bから見た場合の相手帯域(例えばバンドD)におけるインピーダンスを時計回りに誘導性領域へとシフトさせている。これにより、端子70bに接続されたフィルタ13単体を端子70bから見た場合の相手帯域(例えばバンドD)における容量性インピーダンスと、インダクタ30が直列接続されたフィルタ11および12を端子70bから見た場合の相手帯域(例えばバンドD)における誘導性インピーダンスとを、高精度に複素共役の関係とできる。これにより、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドD)におけるインピーダンスをより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12および13に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ21の挿入損失を低減できる。 Further, in the high-frequency module 1, by connecting the inductor 30 to the commonly connected filters 11 and 12 in series, the impedance in the other band (for example, band D) when the commonly connected filters 11 and 12 are viewed from the terminal 70b is is shifted clockwise to the inducible region. As a result, the capacitive impedance in the other band (for example, band D) when the filter 13 alone connected to the terminal 70b is viewed from the terminal 70b, and the filters 11 and 12 to which the inductor 30 is connected in series are viewed from the terminal 70b. The inductive impedance in the other band (for example, band D) in the case can be made into a complex conjugate relationship with high accuracy. As a result, the impedance in the other band (for example, band D) when the filters 11, 12 and 13 are viewed from the terminal 70b can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 21 having the pass band of the other band can be reduced.
 さらに、フィルタ11および12の通過帯域はフィルタ13の通過帯域よりも低周波側に位置しているので、フィルタ11および12の通過帯域がインダクタ30で構成されるローパスフィルタのカットオフ周波数よりも、より低周波側に位置するので、フィルタ11および12の挿入損失の増大を抑制できる。 Furthermore, since the passbands of filters 11 and 12 are located on the lower frequency side than the passband of filter 13, the passbands of filters 11 and 12 are lower than the cutoff frequency of the low-pass filter composed of inductor 30. Since it is positioned on the lower frequency side, an increase in insertion loss of filters 11 and 12 can be suppressed.
 よって、共通接続された4以上の弾性波フィルタを有し、挿入損失が低減された高周波モジュール1を提供できる。 Therefore, it is possible to provide a high frequency module 1 having four or more commonly connected acoustic wave filters and having reduced insertion loss.
 また例えば、高周波モジュール1において、バンドAの信号、バンドBの信号、バンドCの信号およびバンドDの信号を同時に伝送する場合、端子70aと端子70bとが接続され、かつ、端子70aと端子70cとが接続されてもよい。 Further, for example, in the high-frequency module 1, when simultaneously transmitting a signal of band A, a signal of band B, a signal of band C and a signal of band D, the terminals 70a and 70b are connected, and the terminals 70a and 70c are connected. may be connected.
 また例えば、高周波モジュール1において、端子70aと端子70bとが非接続である状態、かつ、フィルタ13がインダクタ30の一端に接続されていない状態で、端子70bからフィルタ11および12を見た場合の第4通過帯域におけるインピーダンスと、端子70aと端子70bとが非接続である状態、かつ、インダクタ30、フィルタ11および12が端子70bに接続されていない状態で、端子70bからフィルタ13単体を見た場合の第4通過帯域におけるインピーダンスとは、複素共役の関係を満たしてもよい。 Further, for example, in the high-frequency module 1, when the terminals 70a and 70b are disconnected and the filter 13 is not connected to one end of the inductor 30, the filters 11 and 12 are viewed from the terminal 70b. Impedance in the fourth passband, a state in which the terminals 70a and 70b are disconnected, and a state in which the inductor 30 and the filters 11 and 12 are not connected to the terminal 70b, as viewed from the terminal 70b The impedance in the fourth passband in the case may satisfy a complex conjugate relationship.
 これにより、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドD)におけるインピーダンスをより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12および13に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ21の挿入損失を低減できる。 As a result, it becomes possible to locate the impedance in the partner band (for example, band D) when viewing the filters 11, 12 and 13 from the terminal 70b in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 21 having the pass band of the other band can be reduced.
 また例えば、高周波モジュール1は、さらに、互いに対向する主面90aおよび90bを有するモジュール基板90を備え、フィルタ11、12、13、21、およびインダクタ30は主面90aに配置されており、スイッチ70は主面90bに配置された半導体IC80に含まれていてもよい。 Further, for example, the high-frequency module 1 further includes a module substrate 90 having main surfaces 90a and 90b facing each other, filters 11, 12, 13, 21 and inductor 30 are arranged on main surface 90a, and switch 70 may be included in the semiconductor IC 80 arranged on the main surface 90b.
 これによれば、高周波モジュール1を構成する回路部品が、主面90aおよび90bに振り分けて配置されているので、高周波モジュール1を小型化できる。 According to this, since the circuit components constituting the high frequency module 1 are arranged separately on the main surfaces 90a and 90b, the high frequency module 1 can be miniaturized.
 また例えば、高周波モジュール1において、モジュール基板90を平面視した場合、インダクタ30と半導体IC80とは少なくとも一部が重なっており、かつ、フィルタ21と半導体IC80とは少なくとも一部が重なっていてもよい。 Further, for example, in the high-frequency module 1, when the module substrate 90 is viewed from above, the inductor 30 and the semiconductor IC 80 may at least partially overlap, and the filter 21 and the semiconductor IC 80 may at least partially overlap. .
 これによれば、インダクタ30とスイッチ70とを結ぶ配線、および、フィルタ21とスイッチ70とを結ぶ配線を短くできるので、上記2配線の伝送損失を低減できる。よって、高周波モジュール1を低損失化できる。 According to this, the wiring connecting the inductor 30 and the switch 70 and the wiring connecting the filter 21 and the switch 70 can be shortened, so that the transmission loss of the two wirings can be reduced. Therefore, the loss of the high frequency module 1 can be reduced.
 また例えば、高周波モジュール1は、さらに、フィルタ11、12、13および21の少なくとも1つに接続された増幅器を備え、半導体IC80は、スイッチ70が形成されたスイッチ領域80aと増幅器が形成された増幅領域80bとを含み、モジュール基板90を平面視した場合、インダクタ30とスイッチ領域80aとは少なくとも一部が重なっており、かつ、フィルタ21とスイッチ領域80aとは少なくとも一部が重なっていてもよい。 Further, for example, the high-frequency module 1 further includes an amplifier connected to at least one of the filters 11, 12, 13 and 21, and the semiconductor IC 80 includes a switch region 80a formed with a switch 70 and an amplifier formed with an amplifier. When the module substrate 90 is viewed from above, the inductor 30 and the switch region 80a may at least partially overlap each other, and the filter 21 and the switch region 80a may at least partially overlap each other. .
 これによれば、インダクタ30とスイッチ70とを結ぶ配線、および、フィルタ21とスイッチ70とを結ぶ配線を、より短くできるので、上記2配線の伝送損失を、より低減できる。 According to this, the wiring connecting the inductor 30 and the switch 70 and the wiring connecting the filter 21 and the switch 70 can be made shorter, so that the transmission loss of the two wirings can be further reduced.
 また例えば、高周波モジュール1は、さらに、インダクタ30の一端および他端の少なくとも一方に接続されたキャパシタを備えてもよい。 Also, for example, the high-frequency module 1 may further include a capacitor connected to at least one of one end and the other end of the inductor 30 .
 また例えば、高周波モジュール1において、インダクタ30の他端とグランドとの間に接続されたキャパシタ35を備えてもよい。 Also, for example, the high-frequency module 1 may include a capacitor 35 connected between the other end of the inductor 30 and the ground.
 これによれば、インダクタ30で形成されるローパスフィルタ機能が強化され、フィルタ11および12の挿入損失の増大を、より一層抑制できる。 With this, the low-pass filter function formed by the inductor 30 is enhanced, and the increase in insertion loss of the filters 11 and 12 can be further suppressed.
 また例えば、高周波モジュール1において、キャパシタ35はモジュール基板90の表面および内部の少なくとも一方に形成された平面導体で構成されていてもよい。 Also, for example, in the high-frequency module 1, the capacitor 35 may be composed of a planar conductor formed on at least one of the surface and inside of the module substrate 90.
 これによれば、キャパシタ35が、モジュール基板90の内部に形成されるので、高周波モジュール1を小型化できる。 According to this, the capacitor 35 is formed inside the module substrate 90, so the high frequency module 1 can be miniaturized.
 また例えば、高周波モジュール1において、モジュール基板90を平面視した場合、フィルタ11および12の少なくとも一方とキャパシタ35とは、少なくとも一部が重なっていてもよい。 Further, for example, in the high-frequency module 1, at least one of the filters 11 and 12 and the capacitor 35 may at least partially overlap when the module substrate 90 is viewed from above.
 これによれば、フィルタ11および12の少なくとも一方とキャパシタ35と結ぶ配線を短くできるので、上記配線の伝送損失を低減できる。 According to this, since the wiring connecting at least one of the filters 11 and 12 and the capacitor 35 can be shortened, the transmission loss of the wiring can be reduced.
 また例えば、高周波モジュール1において、スイッチ70は、さらに、端子70dを有し、端子70aと端子70bとの接続および非接続を切り替え、端子70aと端子70cとの接続および非接続を切り替え、端子70aと端子70dとの接続および非接続を切り替え、高周波モジュール1は、さらに、インダクタ30を介さずに端子70dに接続され、バンドEの少なくとも一部を含む第5通過帯域を有するフィルタ22を備え、第5通過帯域の中心周波数は第4通過帯域の中心周波数よりも高周波側に位置し、フィルタ22は、フィルタ21よりもIC80に近く配置されていてもよい。 Further, for example, in the high-frequency module 1, the switch 70 further has a terminal 70d for switching between connection and disconnection between the terminals 70a and 70b, for switching between connection and disconnection between the terminals 70a and 70c, and for switching between the terminal 70a and the terminal 70c. and the terminal 70d, the high-frequency module 1 further includes a filter 22 connected to the terminal 70d without the inductor 30 and having a fifth passband including at least part of the band E, The center frequency of the fifth passband may be positioned on the higher frequency side than the center frequency of the fourth passband, and filter 22 may be arranged closer to IC 80 than filter 21 .
 フィルタ22の通過帯域はフィルタ21の通過帯域よりも高周波側に位置する。よって、スイッチ70とフィルタとを結ぶ配線長による位相変化の影響は、フィルタ21よりもフィルタ22の方が大きい。これに対して、上記構成によれば、高周波側に位置するフィルタ22と半導体IC80との配線長を短くできるので、端子70bからフィルタ11、12および13を見た場合の相手帯域(例えばバンドE)におけるインピーダンスをより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12および13に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ22の挿入損失を低減できる。 The passband of the filter 22 is located on the higher frequency side than the passband of the filter 21. Therefore, the filter 22 is more affected than the filter 21 by the phase change due to the wiring length connecting the switch 70 and the filter. On the other hand, according to the above configuration, since the wiring length between the filter 22 located on the high frequency side and the semiconductor IC 80 can be shortened, the other band (for example, band E ) can be positioned in the open region with higher accuracy. As a result, it is possible to suppress the leakage of the signals of the other band to the filters 11, 12 and 13, so that the insertion loss of the filter 22 having the passband of the other band can be reduced.
 また例えば、変形例に係る高周波モジュール2は、さらに、インダクタ30の他端に接続され、バンドFの少なくとも一部を含む第6通過帯域を有するフィルタ14を備え、第6通過帯域は第3通過帯域よりも低周波側に位置してもよい。 Further, for example, the high-frequency module 2 according to the modification further includes a filter 14 connected to the other end of the inductor 30 and having a sixth passband including at least part of the band F, the sixth passband being the third passband. It may be positioned on the lower frequency side than the band.
 これによれば、相手帯域(例えばバンドD)の信号がフィルタ11、12、13および14に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ21の挿入損失を低減できる。また、共通接続されたフィルタ11、12および14のインピーダンスは容量性領域であって、オープンからショートに近く位置しているため、インダクタ34のインダクタンス値を小さくできる。このため、インダクタ34によるフィルタ11、12および14の伝送損失を低減できる。 According to this, it is possible to suppress the leakage of the signals of the other band (for example, band D) to the filters 11, 12, 13 and 14, so that the insertion loss of the filter 21 having the passband of the other band can be reduced. In addition, since the impedance of the commonly connected filters 11, 12 and 14 is in a capacitive region and positioned close to open to short, the inductance value of the inductor 34 can be reduced. Therefore, the transmission loss of the filters 11, 12 and 14 due to the inductor 34 can be reduced.
 さらに、変形例に係る高周波モジュール2では、バンドA、バンドBおよびバンドFは、バンドCよりも低周波側に位置している。フィルタ11、12および14の通過帯域がインダクタ34で構成されるローパスフィルタのカットオフ周波数よりも、より低周波側に位置するので、フィルタ11、12および14の挿入損失の増大を抑制できる。 Furthermore, in the high-frequency module 2 according to the modified example, band A, band B, and band F are located on the lower frequency side than band C. Since the passbands of filters 11, 12 and 14 are located on the lower frequency side than the cutoff frequency of the low-pass filter formed by inductor 34, an increase in insertion loss of filters 11, 12 and 14 can be suppressed.
 よって、共通接続された5以上の弾性波フィルタを有し、挿入損失が低減された高周波モジュール2を提供できる。 Therefore, it is possible to provide a high frequency module 2 having five or more commonly connected elastic wave filters and having reduced insertion loss.
 また例えば、高周波モジュール2において、端子70aと端子70bとが非接続である状態、かつ、フィルタ13がインダクタ34の一端に接続されていない状態で、端子70bからフィルタ11、12および14を見た場合の第4通過帯域におけるインピーダンスと、端子70aと端子70bとが非接続である状態、かつ、インダクタ34、フィルタ11、12および14が端子70bに接続されていない状態で、端子70bからフィルタ13単体を見た場合の第4通過帯域におけるインピーダンスとは、複素共役の関係を満たしてもよい。 Further, for example, in the high-frequency module 2, the filters 11, 12 and 14 are viewed from the terminal 70b in a state in which the terminals 70a and 70b are disconnected and the filter 13 is not connected to one end of the inductor 34. When the impedance in the fourth passband of the case and the state in which the terminals 70a and 70b are disconnected and the inductor 34 and the filters 11, 12 and 14 are not connected to the terminal 70b, the terminal 70b to the filter 13 The impedance in the fourth passband when viewed as a single unit may satisfy a complex conjugate relationship.
 これにより、端子70bからフィルタ11、12、13および14を見た場合の相手帯域(例えばバンドD)におけるインピーダンスをより高精度にオープン領域に位置させることが可能となる。これにより、上記相手帯域の信号がフィルタ11、12、13および14に漏洩することを抑制できるので、上記相手帯域を通過帯域とするフィルタ21の挿入損失を低減できる。 As a result, it becomes possible to position the impedance in the corresponding band (for example, band D) when the filters 11, 12, 13 and 14 are viewed from the terminal 70b in the open region with higher accuracy. As a result, it is possible to suppress the signals of the other band from leaking to the filters 11, 12, 13 and 14, so that the insertion loss of the filter 21 having the pass band of the other band can be reduced.
 また例えば、高周波モジュール1において、フィルタ11、12および13のそれぞれが、IDT電極54を有する1以上の弾性表面波共振子で構成され、フィルタ11、12および13のそれぞれは、入力端と出力端とを結ぶ直列腕経路上に配置された直列腕共振子を含む、フィルタ11および12に含まれる直列腕共振子を構成するIDT電極54の電極指ピッチは、フィルタ13に含まれる直列腕共振子を構成するIDT電極54の電極指ピッチよりも大きくてもよい。 Further, for example, in the high-frequency module 1, each of the filters 11, 12 and 13 is composed of one or more surface acoustic wave resonators having an IDT electrode 54, and each of the filters 11, 12 and 13 has an input end and an output end. The electrode finger pitch of the IDT electrodes 54 constituting the series arm resonators included in the filters 11 and 12, including the series arm resonators arranged on the series arm paths connecting the may be larger than the electrode finger pitch of the IDT electrodes 54 constituting the .
 これによれば、インダクタ30の他端に接続されたフィルタ11および12の通過帯域は、フィルタ13の通過帯域よりも低周波側に位置することとなる。 According to this, the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
 また例えば、高周波モジュール1において、フィルタ11、12および13のそれぞれが、支持基板65と、支持基板65の一方面上に形成された下部電極66および上部電極68と、下部電極66と上部電極68との間に形成された圧電体層67と、を有する1以上のバルク弾性波共振子で構成され、フィルタ11、12および13のそれぞれは、入力端と出力端とを結ぶ直列腕経路上に配置された直列腕共振子を含み、フィルタ11および12に含まれる直列腕共振子を構成する圧電体層67は、フィルタ13に含まれる直列腕共振子を構成する圧電体層67よりも厚くてもよい。 Further, for example, in the high-frequency module 1, each of the filters 11, 12 and 13 includes a support substrate 65, a lower electrode 66 and an upper electrode 68 formed on one surface of the support substrate 65, and a lower electrode 66 and an upper electrode 68. Each of the filters 11, 12 and 13 is arranged on a series arm path connecting the input terminal and the output terminal. The piezoelectric layer 67 that includes the arranged series arm resonators and that constitutes the series arm resonators included in the filters 11 and 12 is thicker than the piezoelectric layer 67 that constitutes the series arm resonators included in the filter 13. good too.
 これによれば、インダクタ30の他端に接続されたフィルタ11および12の通過帯域は、フィルタ13の通過帯域よりも低周波側に位置することとなる。 According to this, the passbands of filters 11 and 12 connected to the other end of inductor 30 are located on the lower frequency side than the passband of filter 13 .
 また、実施の形態に係る通信装置4は、高周波信号を処理するRFIC3と、RFIC3とアンテナ5との間で高周波信号を伝送する高周波モジュール1と、を備える。 Further, the communication device 4 according to the embodiment includes an RFIC 3 that processes high frequency signals, and a high frequency module 1 that transmits high frequency signals between the RFIC 3 and the antenna 5 .
 これによれば、高周波モジュール1の効果を通信装置4で実現することができる。 According to this, the effect of the high-frequency module 1 can be realized by the communication device 4.
 (その他の実施の形態)
 以上、本発明に係る高周波モジュールおよび通信装置について、実施の形態、実施例および変形例を挙げて説明したが、本発明は、上記実施の形態、実施例および変形例に限定されるものではない。上記実施の形態、実施例および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波モジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
(Other embodiments)
Although the high-frequency module and the communication device according to the present invention have been described above with reference to the embodiments, examples, and modifications, the present invention is not limited to the above-described embodiments, examples, and modifications. . Modifications that can be made by those skilled in the art without departing from the scope of the present invention with respect to the above-described embodiments, examples, and modifications, and various modifications incorporating the high-frequency module and communication device according to the present invention. Devices are also included in the invention.
 また、例えば、上記実施の形態、実施例および変形例に係る高周波モジュールおよび通信装置において、各構成要素の間に、インダクタおよびキャパシタなどの整合素子、ならびにスイッチ回路が接続されていてもかまわない。なお、インダクタには、各構成要素間を繋ぐ配線による配線インダクタが含まれてもよい。 Also, for example, in the high-frequency modules and communication devices according to the above-described embodiments, examples, and modifications, matching elements such as inductors and capacitors, and switch circuits may be connected between the constituent elements. Note that the inductor may include a wiring inductor that is a wiring that connects each component.
 本発明は、マルチバンド化およびマルチモード化された周波数規格に適用できる低損失のマルチプレクサとして、携帯電話などの通信機器に広く利用できる。 The present invention can be widely used in communication equipment such as mobile phones as a low-loss multiplexer applicable to multi-band and multi-mode frequency standards.
 1、2、500  高周波モジュール
 3  RF信号処理回路(RFIC)
 4  通信装置
 5  アンテナ
 10a、10b  入出力端子
 10A、10B  弾性波フィルタ
 11、12、13、14、21、22  フィルタ
 30、31、32、33、34、161  インダクタ
 35  キャパシタ
 41、42、43、44、45、46  低雑音増幅器
 50  基板
 51  高音速支持基板
 52  低音速膜
 53  圧電膜
 54  IDT電極
 55、58  保護層
 57  圧電単結晶基板
 60  弾性波共振子
 60a、60b  櫛形電極
 61a、61b  電極指
 62a、62b  バスバー電極
 65  支持基板
 66  下部電極
 67  圧電体層
 68  上部電極
 70  スイッチ
 70a、70b、70c、70d  端子
 71、72、73  スイッチ素子
 80  半導体IC
 80a  スイッチ領域
 80b  増幅領域
 81、82、83  チップ部品
 90  モジュール基板
 90a、90b  主面
 91、92  樹脂部材
 95  外部接続端子
 96  シールド電極層
 100  アンテナ接続端子
 101、102、103、104、105、201、202  直列腕共振子
 110、120、130、140、150、160  出力端子
 151、152、153、154、251、253  並列腕共振子
 203  縦結合型フィルタ部
 540  密着層
 542  主電極層
1, 2, 500 high frequency module 3 RF signal processing circuit (RFIC)
4 communication device 5 antenna 10a, 10b input/ output terminal 10A, 10B acoustic wave filter 11, 12, 13, 14, 21, 22 filter 30, 31, 32, 33, 34, 161 inductor 35 capacitor 41, 42, 43, 44 , 45, 46 low noise amplifier 50 substrate 51 high acoustic velocity support substrate 52 low acoustic velocity film 53 piezoelectric film 54 IDT electrodes 55, 58 protective layer 57 piezoelectric single crystal substrate 60 elastic wave resonators 60a, 60b comb electrodes 61a, 61b electrode fingers 62a , 62b busbar electrode 65 support substrate 66 lower electrode 67 piezoelectric layer 68 upper electrode 70 switch 70a, 70b, 70c, 70d terminal 71, 72, 73 switch element 80 semiconductor IC
80a switch region 80b amplification region 81, 82, 83 chip component 90 module substrate 90a, 90b main surface 91, 92 resin member 95 external connection terminal 96 shield electrode layer 100 antenna connection terminal 101, 102, 103, 104, 105, 201, 202 Series arm resonators 110, 120, 130, 140, 150, 160 Output terminals 151, 152, 153, 154, 251, 253 Parallel arm resonators 203 Longitudinal coupling filter section 540 Adhesion layer 542 Main electrode layer

Claims (16)

  1.  第1バンドの信号、第2バンドの信号、第3バンドの信号、および第4バンドの信号を同時に伝送することが可能な高周波モジュールであって、
     第1端子、第2端子および第3端子を有し、前記第1端子と前記第2端子との接続および非接続を切り替え、前記第1端子と前記第3端子との接続および非接続を切り替えるスイッチ回路と、
     一端が前記第2端子に接続されたインダクタと、
     前記インダクタの他端に接続され、前記第1バンドの少なくとも一部を含む第1通過帯域を有する第1弾性波フィルタと、
     前記インダクタの前記他端に接続され、前記第2バンドの少なくとも一部を含む第2通過帯域を有する第2弾性波フィルタと、
     前記インダクタを介さずに前記第2端子に接続され、前記第3バンドの少なくとも一部を含む第3通過帯域を有する第3弾性波フィルタと、
     前記インダクタを介さずに前記第3端子に接続され、前記第4バンドの少なくとも一部を含む第4通過帯域を有する第4弾性波フィルタと、を備え、
     前記第1通過帯域および前記第2通過帯域は、前記第3通過帯域よりも低周波側に位置する、
     高周波モジュール。
    A high-frequency module capable of simultaneously transmitting a signal of a first band, a signal of a second band, a signal of a third band, and a signal of a fourth band,
    having a first terminal, a second terminal and a third terminal, switching connection and disconnection between the first terminal and the second terminal, and switching connection and disconnection between the first terminal and the third terminal a switch circuit;
    an inductor having one end connected to the second terminal;
    a first elastic wave filter connected to the other end of the inductor and having a first passband including at least part of the first band;
    a second elastic wave filter connected to the other end of the inductor and having a second passband including at least part of the second band;
    a third acoustic wave filter connected to the second terminal without the inductor and having a third passband including at least part of the third band;
    a fourth acoustic wave filter connected to the third terminal without the inductor and having a fourth passband including at least part of the fourth band;
    The first passband and the second passband are located on the lower frequency side than the third passband,
    high frequency module.
  2.  前記第1バンドの信号、前記第2バンドの信号、前記第3バンドの信号、および前記第4バンドの信号を同時に伝送する場合、前記第1端子と前記第2端子とが接続され、かつ、前記第1端子と前記第3端子とが接続される、
     請求項1に記載の高周波モジュール。
    When simultaneously transmitting the signal of the first band, the signal of the second band, the signal of the third band, and the signal of the fourth band, the first terminal and the second terminal are connected, and the first terminal and the third terminal are connected,
    The high frequency module according to claim 1.
  3.  前記第1端子と前記第2端子とが非接続である状態、かつ、前記第3弾性波フィルタが前記インダクタの前記一端に接続されていない状態で、前記第2端子から前記第1弾性波フィルタおよび前記第2弾性波フィルタを見た場合の前記第4通過帯域におけるインピーダンスと、前記第1端子と前記第2端子とが非接続である状態、かつ、前記インダクタ、前記第1弾性波フィルタおよび前記第2弾性波フィルタが前記第2端子に接続されていない状態で、前記第2端子から前記第3弾性波フィルタ単体を見た場合の前記第4通過帯域におけるインピーダンスとは、複素共役の関係を満たす、
     請求項1または2に記載の高周波モジュール。
    In a state in which the first terminal and the second terminal are not connected and in a state in which the third elastic wave filter is not connected to the one end of the inductor, from the second terminal to the first elastic wave filter and the impedance in the fourth passband when looking at the second elastic wave filter, the state in which the first terminal and the second terminal are not connected, and the inductor, the first elastic wave filter and With the second elastic wave filter not connected to the second terminal, the impedance in the fourth passband when the third elastic wave filter alone is viewed from the second terminal has a complex conjugate relationship. satisfy the
    The high frequency module according to claim 1 or 2.
  4.  さらに、互いに対向する第1主面および第2主面を有するモジュール基板を備え、
     前記第1弾性波フィルタ、前記第2弾性波フィルタ、前記第3弾性波フィルタ、前記第4弾性波フィルタ、および前記インダクタは、前記第1主面に配置されており、
     前記スイッチ回路は、前記第2主面に配置された半導体ICに含まれている、
     請求項1~3のいずれか1項に記載の高周波モジュール。
    further comprising a module substrate having a first main surface and a second main surface facing each other;
    The first elastic wave filter, the second elastic wave filter, the third elastic wave filter, the fourth elastic wave filter, and the inductor are arranged on the first main surface,
    The switch circuit is included in a semiconductor IC arranged on the second main surface,
    A high-frequency module according to any one of claims 1 to 3.
  5.  前記モジュール基板を平面視した場合、前記インダクタと前記半導体ICとは、少なくとも一部が重なっており、かつ、前記第4弾性波フィルタと前記半導体ICとは、少なくとも一部が重なっている、
     請求項4に記載の高周波モジュール。
    When the module substrate is viewed in plan, the inductor and the semiconductor IC are at least partially overlapped, and the fourth acoustic wave filter and the semiconductor IC are at least partially overlapped.
    The high frequency module according to claim 4.
  6.  さらに、前記第1弾性波フィルタ、前記第2弾性波フィルタ、前記第3弾性波フィルタおよび前記第4弾性波フィルタの少なくとも1つに接続された増幅器を備え、
     前記半導体ICは、前記スイッチ回路が形成されたスイッチ領域と、前記増幅器が形成された増幅領域と、を含み、
     前記モジュール基板を平面視した場合、前記インダクタと前記スイッチ領域とは、少なくとも一部が重なっており、かつ、前記第4弾性波フィルタと前記スイッチ領域とは、少なくとも一部が重なっている、
     請求項5に記載の高周波モジュール。
    Further comprising an amplifier connected to at least one of the first elastic wave filter, the second elastic wave filter, the third elastic wave filter and the fourth elastic wave filter,
    The semiconductor IC includes a switch region in which the switch circuit is formed and an amplification region in which the amplifier is formed,
    When the module substrate is viewed in plan, the inductor and the switch region at least partially overlap, and the fourth acoustic wave filter and the switch region at least partially overlap,
    The high frequency module according to claim 5.
  7.  さらに、前記インダクタの前記一端および前記他端の少なくとも一方に接続されたキャパシタを備える、
     請求項1~3のいずれか1項に記載の高周波モジュール。
    Further comprising a capacitor connected to at least one of the one end and the other end of the inductor,
    A high-frequency module according to any one of claims 1 to 3.
  8.  前記キャパシタは、前記インダクタの前記他端とグランドとの間に接続されている、
     請求項7に記載の高周波モジュール。
    the capacitor is connected between the other end of the inductor and ground;
    The high frequency module according to claim 7.
  9.  さらに、互いに対向する第1主面および第2主面を有するモジュール基板を備え、
     前記第1弾性波フィルタ、前記第2弾性波フィルタ、前記第3弾性波フィルタ、前記第4弾性波フィルタ、および前記インダクタは、前記第1主面に配置されており、
     前記キャパシタは、前記モジュール基板の表面および内部の少なくとも一方に形成された平面導体で構成されており、
     前記スイッチ回路は、前記第2主面に配置された半導体ICに含まれている、
     請求項8に記載の高周波モジュール。
    further comprising a module substrate having a first main surface and a second main surface facing each other;
    The first elastic wave filter, the second elastic wave filter, the third elastic wave filter, the fourth elastic wave filter, and the inductor are arranged on the first main surface,
    The capacitor is composed of a planar conductor formed on at least one of the surface and the inside of the module substrate,
    The switch circuit is included in a semiconductor IC arranged on the second main surface,
    The high frequency module according to claim 8.
  10.  前記モジュール基板を平面視した場合、前記第1弾性波フィルタおよび前記第2弾性波フィルタの少なくとも一方と前記キャパシタとは、少なくとも一部が重なっている、
     請求項9に記載の高周波モジュール。
    When the module substrate is viewed from above, at least one of the first elastic wave filter and the second elastic wave filter overlaps with the capacitor at least partially.
    The high frequency module according to claim 9.
  11.  前記スイッチ回路は、さらに、第4端子を有し、前記第1端子と前記第2端子との接続および非接続を切り替え、前記第1端子と前記第3端子との接続および非接続を切り替え、前記第1端子と前記第4端子との接続および非接続を切り替え、
     前記高周波モジュールは、さらに、
     前記インダクタを介さずに前記第4端子に接続され、第5バンドの少なくとも一部を含む第5通過帯域を有する第5弾性波フィルタを備え、
     前記第5通過帯域の中心周波数は、前記第4通過帯域の中心周波数よりも高周波側に位置し、
     前記第5弾性波フィルタは、前記第1主面に配置され、前記第4弾性波フィルタよりも前記半導体ICに近く配置されている、
     請求項9または10に記載の高周波モジュール。
    The switch circuit further has a fourth terminal, switches connection and disconnection between the first terminal and the second terminal, switches connection and disconnection between the first terminal and the third terminal, switching between connection and non-connection between the first terminal and the fourth terminal;
    The high-frequency module further comprises:
    A fifth acoustic wave filter connected to the fourth terminal without the inductor and having a fifth passband including at least part of a fifth band,
    The center frequency of the fifth passband is located on the higher frequency side than the center frequency of the fourth passband,
    The fifth elastic wave filter is arranged on the first main surface and is arranged closer to the semiconductor IC than the fourth elastic wave filter,
    The high frequency module according to claim 9 or 10.
  12.  さらに、
     前記インダクタの前記他端に接続され、第6バンドの少なくとも一部を含む第6通過帯域を有する第6弾性波フィルタを備え、
     前記第6通過帯域は、前記第3通過帯域よりも低周波側に位置する、
     請求項1~11のいずれか1項に記載の高周波モジュール。
    moreover,
    A sixth acoustic wave filter connected to the other end of the inductor and having a sixth passband including at least part of a sixth band,
    The sixth passband is located on the lower frequency side than the third passband,
    The high-frequency module according to any one of claims 1-11.
  13.  前記第1端子と前記第2端子とが非接続である状態、かつ、前記第3弾性波フィルタが前記インダクタの前記一端に接続されていない状態で、前記第2端子から前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第6弾性波フィルタを見た場合の前記第4通過帯域におけるインピーダンスと、前記第1端子と前記第2端子とが非接続である状態、かつ、前記インダクタ、前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第6弾性波フィルタが前記第2端子に接続されていない状態で、前記第2端子から前記第3弾性波フィルタ単体を見た場合の前記第4通過帯域におけるインピーダンスとは、複素共役の関係を満たす、
     請求項12に記載の高周波モジュール。
    In a state in which the first terminal and the second terminal are not connected and in a state in which the third elastic wave filter is not connected to the one end of the inductor, from the second terminal to the first elastic wave filter , the impedance in the fourth passband when looking at the second elastic wave filter and the sixth elastic wave filter, the state in which the first terminal and the second terminal are not connected, and the inductor, When the third elastic wave filter alone is viewed from the second terminal in a state in which the first elastic wave filter, the second elastic wave filter, and the sixth elastic wave filter are not connected to the second terminal The impedance in the fourth passband satisfies a complex conjugate relationship,
    The high frequency module according to claim 12.
  14.  前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第3弾性波フィルタのそれぞれは、IDT(InterDigital Transducer)電極を有する1以上の弾性表面波共振子で構成され、
     前記1以上の弾性表面波共振子は、前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第3弾性波フィルタのそれぞれの一端と他端とを結ぶ直列腕経路上に配置された直列腕共振子を含み、
     前記第1弾性波フィルタおよび前記第2弾性波フィルタに含まれる前記直列腕共振子を構成する前記IDT電極の電極指ピッチは、前記第3弾性波フィルタに含まれる前記直列腕共振子を構成する前記IDT電極の電極指ピッチよりも大きい、
     請求項1~13のいずれか1項に記載の高周波モジュール。
    Each of the first elastic wave filter, the second elastic wave filter, and the third elastic wave filter is composed of one or more surface acoustic wave resonators having an IDT (InterDigital Transducer) electrode,
    The one or more surface acoustic wave resonators are arranged in series on a series arm path connecting one end and the other end of each of the first acoustic wave filter, the second acoustic wave filter, and the third acoustic wave filter. including an arm resonator,
    The electrode finger pitches of the IDT electrodes constituting the series arm resonators included in the first elastic wave filter and the second elastic wave filter constitute the series arm resonators included in the third elastic wave filter. larger than the electrode finger pitch of the IDT electrode,
    The high-frequency module according to any one of claims 1-13.
  15.  前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第3弾性波フィルタのそれぞれは、支持基板と、前記支持基板の一方面上に形成された第1電極および第2電極と、前記第1電極と前記第2電極との間に形成された圧電体層と、を有する1以上のバルク弾性波共振子で構成され、
     前記1以上のバルク弾性波共振子は、前記第1弾性波フィルタ、前記第2弾性波フィルタおよび前記第3弾性波フィルタのそれぞれの一端と他端とを結ぶ直列腕経路上に配置された直列腕共振子を含み、
     前記第1弾性波フィルタおよび前記第2弾性波フィルタに含まれる前記直列腕共振子を構成する前記圧電体層は、前記第3弾性波フィルタに含まれる前記直列腕共振子を構成する前記圧電体層よりも厚い、
     請求項1~13のいずれか1項に記載の高周波モジュール。
    Each of the first elastic wave filter, the second elastic wave filter, and the third elastic wave filter includes a supporting substrate, a first electrode and a second electrode formed on one surface of the supporting substrate, and the one or more bulk acoustic wave resonators having a piezoelectric layer formed between one electrode and the second electrode;
    The one or more bulk acoustic wave resonators are arranged in series on a series arm path connecting one end and the other end of each of the first elastic wave filter, the second elastic wave filter, and the third elastic wave filter. including an arm resonator,
    The piezoelectric layers forming the series arm resonators included in the first elastic wave filter and the second elastic wave filter are the piezoelectric layers forming the series arm resonators included in the third elastic wave filter. thicker than a layer,
    The high-frequency module according to any one of claims 1-13.
  16.  高周波信号を処理する信号処理回路と、
     前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、請求項1~15のいずれか1項に記載の高周波モジュールと、を備える、
     通信装置。
    a signal processing circuit that processes high frequency signals;
    a high-frequency module according to any one of claims 1 to 15, which transmits the high-frequency signal between the signal processing circuit and the antenna,
    Communication device.
PCT/JP2022/045730 2021-12-21 2022-12-12 High-frequency module and communication device WO2023120284A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207571 2021-12-21
JP2021207571 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120284A1 true WO2023120284A1 (en) 2023-06-29

Family

ID=86902440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045730 WO2023120284A1 (en) 2021-12-21 2022-12-12 High-frequency module and communication device

Country Status (1)

Country Link
WO (1) WO2023120284A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220877A (en) * 2018-06-21 2019-12-26 株式会社村田製作所 Multiplexer
JP2019220827A (en) * 2018-06-19 2019-12-26 株式会社村田製作所 Multiplexer
JP2020205477A (en) * 2019-06-14 2020-12-24 株式会社村田製作所 Multiplexer and communication device
JP2021106341A (en) * 2019-12-26 2021-07-26 株式会社村田製作所 High frequency module and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019220827A (en) * 2018-06-19 2019-12-26 株式会社村田製作所 Multiplexer
JP2019220877A (en) * 2018-06-21 2019-12-26 株式会社村田製作所 Multiplexer
JP2020205477A (en) * 2019-06-14 2020-12-24 株式会社村田製作所 Multiplexer and communication device
JP2021106341A (en) * 2019-12-26 2021-07-26 株式会社村田製作所 High frequency module and communication device

Similar Documents

Publication Publication Date Title
US10382009B2 (en) Radio frequency front-end circuit and communication device
US11394369B2 (en) Multiplexer, transmission device, reception device, high-frequency front end circuit, communication device and impedance matching method for multiplexer
US10298274B2 (en) Multiplexer, transmission device, and reception device
US10644673B2 (en) Radio frequency filter circuit, duplexer, radio frequency front end circuit, and communication apparatus
KR102011218B1 (en) Multiplexer, high-frequency front end circuit, and communication apparatus
CN109478880B (en) Multiplexer, high-frequency front-end circuit and communication device
US20200195228A1 (en) Multiplexer, transmission apparatus, and reception apparatus
US10812050B2 (en) Multiplexer, radio-frequency (RF) front-end circuit, and communication apparatus
US11115002B2 (en) Multiplexer, radio frequency front-end circuit, and communication device
WO2018052073A1 (en) Surface acoustic wave filter device, multiplexer, high frequency front end circuit and communication device
US11206010B2 (en) Radio frequency module, front end module, and communication device
US10886894B2 (en) Acoustic wave filter, multiplexer, radio frequency front-end circuit, and communication device
JP6489294B1 (en) Multiplexer, transmitter and receiver
US10756768B2 (en) Radio-frequency front-end circuit and communication device
KR20180093795A (en) Multiplexer, transmission apparatus, and reception apparatus
CN111727564A (en) Filter device and multiplexer
US20210159886A1 (en) Multilayer piezoelectric substrate with high density electrode
WO2023120284A1 (en) High-frequency module and communication device
CN116368735A (en) Multiplexer, high frequency module and communication device
WO2023120264A1 (en) High frequency circuit and communication apparatus
WO2018212025A1 (en) Multiplexer, transmission device and reception device
WO2018212105A1 (en) Multiplexer, transmission device and reception device
WO2023149119A1 (en) High frequency circuit and communication device
JP2024047755A (en) Multiplexer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910992

Country of ref document: EP

Kind code of ref document: A1