WO2023120234A1 - Polymeric compound and resin composition containing said compound - Google Patents

Polymeric compound and resin composition containing said compound Download PDF

Info

Publication number
WO2023120234A1
WO2023120234A1 PCT/JP2022/045421 JP2022045421W WO2023120234A1 WO 2023120234 A1 WO2023120234 A1 WO 2023120234A1 JP 2022045421 W JP2022045421 W JP 2022045421W WO 2023120234 A1 WO2023120234 A1 WO 2023120234A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
resin composition
group
present
Prior art date
Application number
PCT/JP2022/045421
Other languages
French (fr)
Japanese (ja)
Inventor
泰昌 赤塚
成生 林本
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2023120234A1 publication Critical patent/WO2023120234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention can be easily formed into a film by a method of casting a solution into a base material, and by using it together with a radical initiator, a heat or photo-curing reaction is possible, and the cured product has dielectric properties. , to a polymer compound having excellent adhesiveness and heat resistance.
  • a phenoxy resin is a polymer compound with a very large molecular weight obtained by polymerizing a bifunctional epoxy resin and a bifunctional phenol compound.
  • general epoxy resin compositions and radically polymerizable compositions can be made into films, so it is used in a wide range of fields as an important component of film adhesives. In the electrical and electronic fields, it is used for interlayer insulating layers of printed wiring boards and resin-coated copper foils.
  • a cured product of a resin composition to which a phenoxy resin is added has excellent adhesiveness and film-forming ability, but has low heat resistance. 03), and it cannot be used for electronic devices with high signal response speed in recent years.
  • Polymer fluorine compounds such as polytetrafluoroethylene (PTFE) (Patent Document 1) and liquid crystal polymers (Patent Document 2) are generally known as resins having excellent dielectric properties, but these resins are different from other resins. compatibility is extremely low, and adhesion is also insufficient.
  • Aromatic bismaleimides are known as compounds with excellent heat resistance and dielectric properties, but they generally have poor solvent solubility and dissolve only in high-boiling aprotic polar solvents such as NMP and DMF. It is difficult to use in the field of electronic materials that use low boiling point solvents such as methyl ethyl ketone. In addition, the cured product is generally rigid and lacks flexibility, making it difficult to use it for film applications.
  • Patent Document 3 discloses a method for improving solvent solubility by subjecting an aromatic bismaleimide to a Michael addition reaction with an aliphatic diamine to increase the molecular weight of the aromatic bismaleimide.
  • Patent Documents 4 and 5 disclose a method of improving stability by reacting secondary amines of adducts of bismaleimide and diamines with acetic anhydride to acetylate the secondary amines.
  • the resin obtained by such a method has a very high coefficient of linear expansion of the cured product, and is not suitable for applications such as electronic devices that require reliability.
  • the present invention has been made in view of the above points, and has a polymer compound that has excellent solubility in a low boiling point solvent such as toluene, and has sufficient flexibility to form a film, and has a low roughness. It is an object of the present invention to provide a cured product of the polymer compound having high adhesiveness to copper foil, low dielectric constant and dielectric loss tangent, and low coefficient of linear expansion.
  • R 1 , R 2 , R 3 and R 4 each independently represent a methyl group, ethyl group, isopropyl group or tertiary butyl group.
  • X each independently represents an acetyl group or the following formula (2)
  • R5 represents a hydrogen atom or a methyl group.
  • At least one of the multiple X's is an acetyl group, and 5% or more of the multiple X's are structures represented by formula (2).
  • Y represents a residue obtained by removing two amino groups from a diamino compound.
  • n is the average number of repeating units and ranges from 1 to 100; ) polymer compound represented by (2) a resin composition comprising the polymer compound according to (1) above and a radical initiator; (3) The resin composition according to (2) above, further comprising a radical-reactive monomer having a radical-reactive functional group; (4) The resin composition according to the preceding item (2), further comprising a radical-reactive polymer having two or more radical-reactive functional groups in one molecule, (5) a film-like adhesive comprising the resin composition according to any one of the preceding items (2) to (4); and (6) the resin according to any one of the preceding items (2) to (4). A cured product of the composition. (7) A cured product of the film adhesive described in (5) above. Regarding.
  • the polymer compound and the resin composition containing it according to the present invention can be cured by applying heat or light energy in combination with a radical initiator, and the cured product of the resin composition has dielectric properties, adhesion It is possible to provide a polymer compound having excellent properties and heat resistance.
  • the polymer compound represented by formula (1) of the present invention is (1) A diamino compound (A) (hereinafter simply referred to as “compound (A)”) and a bismaleimide compound (B) having a specific structure having an excess number of moles relative to compound (A) (hereinafter simply referred to as “compound ( B)”) to synthesize a copolymer (C) with (2) A compound (D) having 5% or more and less than 100% of the secondary amino groups in the copolymer (C) and an isocyanate group and a (meth)acrylic group (hereinafter simply referred to as "compound (D)” to react with the isocyanate group in the (3) A reaction product obtained by reacting a secondary amino group remaining in the reaction product of copolymer (C) and compound (D) with acetic anhydride.
  • the copolymer (C) which is an intermediate raw material for the polymer compound of the present invention, will be described.
  • Copolymer (C) is a copolymerization reaction product (Michael addition reaction product) of compound (A) and compound (B) in a molar excess over compound (A).
  • the compound (A), which is a raw material for the copolymer (C) is not particularly limited as long as it is a compound having two amino groups in one molecule, and specific examples thereof include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 4,4′-methylenebiscyclohexanediamine, 1 ,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(amin
  • the compound (A) is preferably an aliphatic diamino compound having 2 or more carbon atoms, and specific examples thereof include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, 1 ,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 4,4′-methylenebiscyclohexanediamine, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine , 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, isophorone diamine, norbornene diamine and dimer diamine.
  • Y in formula (1) is preferably a residue (a divalent linking group) obtained by removing two amino groups from the above aliphatic di
  • the compound (B) is a bismaleimide compound obtained by a condensation ring-closing reaction of a bis-3,5-dialkyl-4-aminophenylmethane compound and maleic acid, wherein the four alkyl groups in the compound are each independently A bismaleimide compound having a methyl group, an ethyl group, an isopropyl group or a tertiary butyl group is used.
  • compound (B) examples include 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 3,3′,5,5′-tetramethyl-4,4′- diphenylmethanebismaleimide, 3,3',5,5'-tetraisopropyl-4,4'-diphenylmethanebismaleimide and the like.
  • the alkyl group of the compound (B) described above corresponds to R 1 to R 4 in formula (1) described later.
  • the alkyl group of compound (B) is preferably a methyl group or an ethyl group.
  • a bismaleimide compound having a hydrogen atom at the ortho position of the carbon atom on the benzene ring to which the maleimide group is bonded has high reactivity with the secondary amino group. is likely to gel due to the reaction between the ortho-positioned hydrogen atoms and the amino groups of compound (A) during the copolymerization reaction of (A). can prevent gelation during the copolymerization reaction.
  • the amount of the compound (A) and the compound (B) used when synthesizing the copolymer (C) is usually a molar amount in which the compound (A) is less than the compound (B), preferably the compound (B ) is 0.4 to 0.98 mol, more preferably 0.5 to 0.96 mol, per 1 mol of compound (A).
  • the reaction temperature during synthesis is usually 50 to 150° C., preferably 60 to 140° C.
  • the reaction time is usually 0.5 to 30 hours, preferably 1 to 20 hours, and a reaction catalyst may be used.
  • the end point of the reaction may be the time when the molecular weight stops increasing from a certain value by GPC (gel permeation chromatography).
  • the solvent used in the reaction may be distilled off under heating and reduced pressure, or may be used as it is in the solvent-containing resin composition.
  • a solvent for the copolymerization reaction of the compound (A) and the compound (B) includes toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone and propylene glycol monomethyl ether. Acetate etc. are mentioned.
  • the amount of the solvent used is preferably 10 to 300% by mass, more preferably 20 to 200% by mass, based on the solid content of the raw materials used in the copolymerization reaction.
  • the number average molecular weight of the copolymer (C) is generally 1,000 to 100,000, preferably 1,500 to 80,000.
  • the raw material components should be charged in the above ratio.
  • n in formula (1) By measuring this number average molecular weight, the value of n in formula (1) can be calculated.
  • n is the average number of repeating units and ranges from 1 to 100. Within this range, the effect of the polymer compound of the present invention can be exhibited.
  • the molecular weight in this specification means the value calculated by polystyrene conversion based on the measurement result of GPC.
  • the polymer compound of the present invention will be explained.
  • 5% or more and less than 100% of the secondary amino groups present in the copolymer (C) are isocyanate groups in the compound (D) represented by the following formula (3).
  • the secondary amino group remaining in the reactant obtained above is acetylated by reacting it with acetic anhydride.
  • R5 in formula (3) has the same meaning as R5 in formula (2). That is, R 5 in formula (2) is derived from the hydrogen atom or methyl group of compound (D).
  • the compound (D) examples include 2-isocyanatoethyl methacrylate (product name Karenz MOI manufactured by Showa Denko K.K.), 2-isocyanatoethyl acrylate (product name Karenz AOI manufactured by Showa Denko K.K.), and the like. .
  • the amount of the copolymer (C) and the compound (D) to be used when synthesizing the polymer compound of the present invention is such that the amount of the compound (D) per 1 molar equivalent of the secondary amino group in the copolymer (C) is It is preferably 0.05 to 0.9 mol, more preferably 0.1 to 0.8 mol.
  • the reaction temperature is preferably 10 to 90°C, and the reaction time is preferably 30 minutes to 5 hours.
  • acetic anhydride By adding acetic anhydride to the reaction product of the copolymer (C) obtained above and the compound (D), the remaining secondary amino groups can be acetylated.
  • a copolymerization reaction of the compound (A) and the compound (B) is carried out in a solvent, the compound (D) is added to the obtained copolymer (C) solution and reacted, and acetic anhydride is further added to the obtained reaction solution.
  • acetylation is a preferred embodiment of the method for synthesizing the polymer compound of the present invention.
  • the amount of acetic anhydride used when synthesizing the polymer compound of the present invention is equal to or greater than the number of moles of the secondary amine remaining in the reaction product of the copolymer (C) and the compound (D). I wish I had.
  • the reaction temperature is preferably 10 to 90°C, and the reaction time is preferably 30 minutes to 5 hours. Acetic acid produced after the reaction and excess acetic anhydride can be removed by washing with water.
  • the resin composition of the invention contains the polymer compound of the invention and a radical initiator.
  • Preferred thermal radical initiators include, for example, benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butyl peroxide).
  • photoradical initiators examples include benzoin and its alkyl ethers such as benzoin, benzoin methyl ether and benzoin ethyl ether; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone and 1,1-dichloroacetophenone; anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-
  • the content of the radical initiator in the resin composition of the present invention is usually 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of resin components such as a polymer compound and a radical reactive monomer which is an optional component described later. , preferably 0.1 to 8 parts by mass.
  • the resin composition of the present invention may further contain a radical reactive monomer.
  • a radical-reactive monomer By further containing a radical-reactive monomer, the reactivity of the resin composition of the present invention and the heat resistance of the cured product can be improved.
  • the radical-reactive monomer in the present invention is a compound having one or more radical-reactive functional groups in one molecule and having a number-average molecular weight of 500 or less (the lower limit of the number-average molecular weight is approximately 100).
  • radical reactive monomers include acenaphthylene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, neopentyl glycol dimethacrylate, 1,6 -hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, ethylene oxide adduct methacrylate of bisphenol A, trimethylolpropane trimethacrylate, tricyclodecanedimethanol Dimethacrylate, glycerin dimethacrylate, trimethylolpropane trimethacrylate, ethoxylated isocyanuric acid triacrylate, ⁇ -caprolactone-modified tris-(2-acryloxyethyl) isocyanurate,
  • the resin composition of the present invention may further contain a radical reactive polymer.
  • a radical reactive polymer By further containing the radical reactive polymer, the adhesiveness of the resin composition of the present invention and the heat resistance of the cured product can be improved.
  • the term "radical-reactive polymer" as used in the present invention means a compound having one or more, preferably two or more, radical-reactive functional groups in one molecule and having a number average molecular weight of 500 or more.
  • Specific examples of radical-reactive polymers include copolymers of styrene and butadiene, modified polyphenylene ether resins, imide-extended bismaleimides, and polymeric compounds represented by the following formula (4).
  • m in the formula (4) represents the average value of the number of repeating units and represents a real number in the range of 1 to 20.
  • the copolymer of styrene and butadiene which is a radical reactive polymer, may be a random copolymer (commonly known as SBR) or a block copolymer.
  • a block copolymer in which the butadiene-derived double bond is hydrogenated to a saturated hydrocarbon (commonly known as SEBS resin) may also be used.
  • SEBS resin saturated hydrocarbon
  • the ratio of styrene to butadiene in the polymer is typically 10:90 to 90:10 and its number average molecular weight is typically 1,000 to 100,000.
  • Specific product examples of SBR include Clay Valley's Ricon 100, Ricon 181, and Ricon 184
  • specific product examples of SEBS resin include Asahi Kasei Corporation's Tuftec series and Kraton's G Polymer series.
  • the modified polyphenylene ether resin which is a radical reactive polymer, is preferably a compound having methacryloyl groups, acryloyl groups or vinyl groups at both ends of the molecule and having a number average molecular weight of 1,000 to 10,000.
  • Specific examples thereof include a compound represented by the following formula (5) having a methacryloyl group at both ends and a number average molecular weight of about 1,700 (product name SA9000 manufactured by SABIC Japan LLC), or A compound represented by the following formula (6) having a vinyl group and a number average molecular weight of about 1,200 or 2,200 (product name: OPE-2St 1200 or OPE-2St 2200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) mentioned.
  • An imide-extended bismaleimide resin which is a radical-reactive polymer, can be obtained by a known method described in Patent Publication No. 5,328,006. Specifically, an aliphatic diamine and an aromatic or aliphatic tetracarboxylic dianhydride were subjected to a dehydration condensation reaction in an organic solvent at a molar ratio in which the aliphatic diamine was excessive using an acid catalyst. After that, the amino group present at the end of the polymer is dehydrated and condensed with maleic anhydride, and the catalyst is removed by washing with water.
  • aliphatic diamines include 1,10-diaminodecane; 1,12-diaminododecane; dimer diamine; 1,2-diamino-2-methylpropane; 1,2-diaminocyclohexane; 1,3-diaminopropane; 1,4-diaminobutane; 1,5-diaminopentane; 1,7-diaminoheptane; 1,8-diaminomenthane; 3′-diamino-N-methyldipropylamine; diaminomaleonitrile; 1,3-diaminopentane;
  • aromatic or aliphatic tetracarboxylic dianhydrides include pyromellitic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetra Carboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bicyclo(2.2.2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride , diethylenetriaminepentaacetic dianhydride, ethylenediaminetetraacetic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride , 4,4′-oxydiphthalix anhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2′-bis(3,
  • the resin composition of the present invention may further contain an organic solvent.
  • organic solvents include aromatic solvents such as toluene and xylene, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate and propylene glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone, lactones such as ⁇ -butyrolactone and ⁇ -valerolactone, N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), N, Amide solvents such as N-dimethylacetamide and N,N-dimethylimidazolidinone, sulfones such as tetramethylenesulfone, and the like.
  • aromatic solvents
  • the resin composition of the present invention may further contain a polymerization inhibitor in order to improve storage stability.
  • the polymerization inhibitor that can be used in combination is not particularly limited as long as it is generally known, and examples thereof include quinones such as hydroquinone, methylhydroquinone, p-benzoquinone, chloranil and trimethylquinone, aromatic diols, and di-t-butyl. Hydroxytoluene and the like can be mentioned.
  • the resin composition of the present invention can be used by blending fillers and additives in an amount within a range that does not impair the original performance for the purpose of imparting desired performance according to its use.
  • the filler may be fibrous or powdery, and includes silica, carbon black, alumina, talc, mica, glass beads, glass hollow spheres, and the like.
  • the resin composition of the present invention can further contain flame retardant compounds, additives, and the like. These are not particularly limited as long as they are commonly used.
  • flame-retardant compounds include bromine compounds such as 4,4-dibromobiphenyl, phosphate esters, melamine phosphate, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and silicon compounds.
  • Additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, and brighteners. etc., it is also possible to use them in combination as desired.
  • the resin composition of the present invention can be used by coating or impregnating various substrates.
  • a thermal radical initiator when used, it can be used as an interlayer insulating layer of a multilayer printed circuit board by coating it on a PET film, as a coverlay by coating it on a polyimide film, or by coating and drying it on a copper foil. It can be used as an attached copper foil.
  • a thermal radical initiator when used, it can be used as an interlayer insulating layer of a multilayer printed circuit board by coating it on a PET film, as a coverlay by coating it on a polyimide film, or by coating and drying it on a copper foil. It can be used as an attached copper foil.
  • glass cloth, glass paper, carbon fiber, various non-woven fabrics, etc. it can be used as a printed wiring board or CFRP prepreg.
  • it can be used as various resists by using a photoradical initiator.
  • the interlayer insulating layer, coverlay, resin-coated copper foil, prepreg, and the like of the present invention can be cured by heating and pressurizing with a hot press or the like.
  • Example 1 Synthesis of polymer compound of the present invention
  • 3,3'-Dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide product name: BMI-70 Kay ⁇ Ai Kasei Co., Ltd.
  • 22.10 parts 0.05 mol
  • dimer diamine product name Priamine 1074 Croda
  • toluene 20 parts were added, and a nitrogen atmosphere was added.
  • copolymer 1 represented by the following formula (7) (a copolymer corresponding to the copolymer (C), which is an intermediate raw material of the polymer compound of the present invention, is obtained.
  • Y in formula (7) represents a residue obtained by removing two amino groups from dimer diamine.) was obtained as a toluene solution.
  • This copolymer 1 had a number average molecular weight of 2,700 and a weight average molecular weight of 15,100. The value of n in formula (7) is calculated to be 2.5 from the number average molecular weight.
  • To the toluene solution of this copolymer 1.16 parts (0.0075 mol) of Karenz MOI (manufactured by Showa Denko KK) was added and allowed to react at 60°C for 1 hour. mol) was added and further reacted at 60° C. for 1 hour.
  • Comparative Example 1 Synthesis of polymer compound for comparison
  • Example 1 Synthesis of polymer compound for comparison
  • the step of adding Karenz MOI and reacting at 60° C. for 1 hour was not performed and the amount of acetic anhydride added was changed to 7.65 parts (0.075 mol).
  • a 25% by mass toluene solution of the polymer compound was obtained. It is presumed that all of the X's in formula (1) are acetyl groups in the obtained polymer compound.
  • Example 2 Comparative Example 2 (Preparation of resin composition) To 10 parts of the polymer compound solution obtained in Example 1 and Comparative Example 1, 0.05 part of dicumyl peroxide as a radical initiator was added and uniformly mixed to obtain the resin composition of the present invention and the comparative resin composition. A resin composition was obtained, respectively.
  • each of the resin compositions obtained in Example 2 and Comparative Example 2 was applied to a mirror surface of a copper foil having a thickness of 18 ⁇ m to a thickness of 280 ⁇ m, and heated at 90° C. for 10 minutes to dry the solvent. to obtain a film-like adhesive.
  • the film-like adhesive on the copper foil obtained above was cured by heating at 180° C. for 1 hour using a vacuum oven, and then the copper foil was removed by immersion in an etchant.
  • a cured product with a thickness of 70 ⁇ m that can be handled as a film was obtained from both the film-like adhesive of the present invention and the film-like adhesive for comparison, so the dielectric properties of the cured products obtained above were evaluated.
  • Dielectric properties were obtained by measuring dielectric constant and dielectric loss tangent at 10 GHz by cavity resonance method using network analyzer 8719ET (manufactured by Agilent Technologies). Also, the glass transition temperature and linear expansion coefficient ( ⁇ 1) of the cured film adhesive were obtained using a TMA (thermo-mechanical measurement apparatus). Table 1 shows the results.
  • Example 2 Evaluation of adhesive strength and heat resistance of cured product of resin composition
  • the resin compositions obtained in Example 2 and Comparative Example 2 are applied to the matte surface of a 12 ⁇ m thick high-frequency low-roughness copper foil (CF-T4X-SV: manufactured by Fukuda Metal Foil & Powder Co., Ltd.).
  • a copper foil having a film-like adhesive made of the resin composition of the present invention was obtained by coating each layer with a thickness of 50 ⁇ m and drying the solvent by heating at 90° C. for 10 minutes.
  • the matte side of another copper foil was superposed and heat-cured in a vacuum press at a pressure of 3 MPa for 1 hour.
  • the 90° peeling strength (adhesive strength) between the copper foils was measured using Autograph AGX-50 (manufactured by Shimadzu Corporation). A 3 cm square piece of the laminated copper foil was cut out and floated in a solder bath at 288° C., and the time until an abnormality such as swelling or peeling occurred on the copper foil was measured. Table 1 shows the results.
  • Example 3 (Preparation of the resin composition of the present invention) To 10 parts of the polymer compound solution of the present invention obtained in Example 1, 0.05 parts of dicumyl peroxide as a radical initiator and 0.5 parts of butadiene-styrene copolymer LYCON 100 (manufactured by Clay Valley) were added. was added and uniformly mixed to obtain the resin composition of the present invention.
  • Example 4 preparation of the resin composition of the present invention
  • 0.05 part of dicumyl peroxide as a radical initiator and 0.5 part of modified polyphenylene ether resin SA-9000 manufactured by Subic LLC
  • the resin composition of the present invention was obtained by mixing them uniformly.
  • Example 5 preparation of the resin composition of the present invention
  • 0.05 part of dicumyl peroxide as a radical initiator and imide-extended bismaleimide resin BMI-3000 manufactured by Designer Molecules Inc.
  • the polymer compound of the present invention can be made into a flexible film by curing together with a radical initiator, and the cured product has excellent dielectric properties, adhesiveness and heat resistance. showed that.

Abstract

Provided is a polymeric compound represented by formula (1) (in formula (1), R1, R2, R3 and R4 each independently represent a methyl group, an ethyl group, an isopropyl group, or a tertiary butyl group; X's each independently represent an acetyl group or a partial structure represented by formula (2) (in formula (2), R5 represents a hydrogen atom or a methyl group), in which each of 5% or more of the plurality of X's represents the structure represented by formula (2); Y represents a residue having such a structure that two amino groups are removed from a diamino compound; and n represents an average number of repeating units and is within the range from 1 to 100). The polymeric compound represented by formula (1) has excellent solubility in a low-boiling-point solvent such as toluene. By using the polymeric compound represented by formula (1), it is possible to provide a cured article having flexibility sufficient for the formation of a film, having high adhesiveness to a low-roughness copper foil, having a low dielectric constant and a low dielectric loss tangent, and having a low linear expansion coefficient.

Description

高分子化合物、及び該化合物を含む樹脂組成物Polymer compound and resin composition containing the compound
 本発明は、溶液を基材中にキャストする方法で容易にフィルム状に成形することができ、ラジカル開始剤と併用することにより、熱あるいは光硬化反応が可能で、しかもその硬化物は誘電特性、接着性、耐熱性に優れた高分子化合物に関する。 The present invention can be easily formed into a film by a method of casting a solution into a base material, and by using it together with a radical initiator, a heat or photo-curing reaction is possible, and the cured product has dielectric properties. , to a polymer compound having excellent adhesiveness and heat resistance.
 フェノキシ樹脂は二官能のエポキシ樹脂と二官能のフェノール化合物を重合することにより得られる分子量の非常に大きな高分子化合物である。このフェノキシ樹脂を添加することにより、一般的なエポキシ樹脂組成物やラジカル重合性組成物をフィルム形状にすることができるため、フィルム状接着剤の重要な成分として幅広い分野で使用されており、特に電気・電子分野においてはプリント配線基板の層間絶縁層や樹脂付き銅箔などに用いられている。 A phenoxy resin is a polymer compound with a very large molecular weight obtained by polymerizing a bifunctional epoxy resin and a bifunctional phenol compound. By adding this phenoxy resin, general epoxy resin compositions and radically polymerizable compositions can be made into films, so it is used in a wide range of fields as an important component of film adhesives. In the electrical and electronic fields, it is used for interlayer insulating layers of printed wiring boards and resin-coated copper foils.
 フェノキシ樹脂を添加した樹脂組成物の硬化物は接着性に優れフィルム形成能は有するものの耐熱性が低く、しかも誘電率及び誘電正接が高いため(周波数1GHzで誘電率3.5、誘電正接0.03程度である。)、近年の信号応答速度が高速化した電子機器用途には使用できないのが実情である。誘電特性に優れた樹脂としてはポリテトラフルオロエチレン(PTFE)などの高分子フッ素化合物(特許文献1)や液晶ポリマー(特許文献2)が一般に知られているが、これらの樹脂は他の樹脂との相溶性が極めて低く、接着性も不充分である。 A cured product of a resin composition to which a phenoxy resin is added has excellent adhesiveness and film-forming ability, but has low heat resistance. 03), and it cannot be used for electronic devices with high signal response speed in recent years. Polymer fluorine compounds such as polytetrafluoroethylene (PTFE) (Patent Document 1) and liquid crystal polymers (Patent Document 2) are generally known as resins having excellent dielectric properties, but these resins are different from other resins. compatibility is extremely low, and adhesion is also insufficient.
 芳香族ビスマレイミドは耐熱性及び誘電特性に優れた化合物として知られているが、一般的に溶剤溶解性が悪く、NMPやDMFといった高沸点の非プロトン性極性溶媒にしか溶解しないため、トルエンやメチルエチルケトンといった低沸点溶媒を使用する電子材料分野に使用することは困難である。またその硬化物は一般に強直でフレキシビリティーがないためフィルム用途に使用することは困難であった。特許文献3には、芳香族ビスマレイミドを脂肪族のジアミンとマイケル付加反応させて高分子量化することにより溶剤溶解性を向上させる方法が開示されているが、このビスマレイミド化合物とジアミン化合物からなる高分子化合物は、その構造中に残存する2級アミンが分子末端のマレイミド基との反応性を有するために安定性が悪く、ゲル化しやすいことが問題であった。特許文献4や5には、ビスマレイミドとジアミンとの付加反応物が有する2級アミンに無水酢酸を反応させてアセチル化することにより、安定性を向上させる方法が開示されている。しかしながら、このような手法で得られた樹脂はその硬化物の線膨張率が極めて高く、信頼性が要求される電子機器などの用途には適していない。 Aromatic bismaleimides are known as compounds with excellent heat resistance and dielectric properties, but they generally have poor solvent solubility and dissolve only in high-boiling aprotic polar solvents such as NMP and DMF. It is difficult to use in the field of electronic materials that use low boiling point solvents such as methyl ethyl ketone. In addition, the cured product is generally rigid and lacks flexibility, making it difficult to use it for film applications. Patent Document 3 discloses a method for improving solvent solubility by subjecting an aromatic bismaleimide to a Michael addition reaction with an aliphatic diamine to increase the molecular weight of the aromatic bismaleimide. The problem with polymer compounds is that the secondary amines remaining in the structure thereof have reactivity with maleimide groups at the ends of the molecules, resulting in poor stability and a tendency to gel. Patent Documents 4 and 5 disclose a method of improving stability by reacting secondary amines of adducts of bismaleimide and diamines with acetic anhydride to acetylate the secondary amines. However, the resin obtained by such a method has a very high coefficient of linear expansion of the cured product, and is not suitable for applications such as electronic devices that require reliability.
特開2005-001274号公報JP 2005-001274 A 特開2014-060449号公報JP 2014-060449 A 特開2006-241300号公報Japanese Patent Application Laid-Open No. 2006-241300 特許6948907号公報Japanese Patent No. 6948907 US8,637,611号公報US Pat. No. 8,637,611
 本発明は、上記の点に鑑みてなされたものであり、トルエンなどの低沸点溶剤への溶解性に優れた高分子化合物、及びフィルム化できるだけの十分なフレキシビリティーを有し、低粗度銅箔に対する接着性が高く、誘電率及び誘電正接が低く、かつ線膨張率が低い該高分子化合物の硬化物を提供することを目的とするものである。 The present invention has been made in view of the above points, and has a polymer compound that has excellent solubility in a low boiling point solvent such as toluene, and has sufficient flexibility to form a film, and has a low roughness. It is an object of the present invention to provide a cured product of the polymer compound having high adhesiveness to copper foil, low dielectric constant and dielectric loss tangent, and low coefficient of linear expansion.
 本発明者らは鋭意検討を行った結果、特定構造の高分子化合物を含む樹脂組成物を用いることにより上記の課題が解決することを見出し、本発明を完成させた。
 即ち本発明は、
(1)下記式(1)
As a result of intensive studies, the present inventors have found that the above problems can be solved by using a resin composition containing a polymer compound having a specific structure, and have completed the present invention.
That is, the present invention
(1) Formula (1) below
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R、R、R及びRは、それぞれ独立にメチル基、エチル基、イソプロピル基又はターシャリーブチル基を表す。Xは、それぞれ独立にアセチル基又は下記式(2) (In formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a methyl group, ethyl group, isopropyl group or tertiary butyl group. X each independently represents an acetyl group or the following formula (2)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Rは水素原子又はメチル基を表す。)
で表される部分構造を表すが、複数存在するXの少なくとも一つはアセチル基であり、複数存在するXの5%以上は式(2)で表される構造である。Yはジアミノ化合物から二つのアミノ基を除いた残基を表す。nは繰り返し単位数の平均値であって1乃至100の範囲にある。)で表される高分子化合物、
(2)前項(1)に記載の高分子化合物及びラジカル開始剤を含む樹脂組成物、
(3)ラジカル反応性の官能基を有するラジカル反応性モノマーをさらに含む前項(2)に記載の樹脂組成物、
(4)一分子中に二つ以上ラジカル反応性の官能基を有するラジカル反応性ポリマーをさらに含む前項(2)に記載の樹脂組成物、
(5)前項(2)乃至(4)のいずれか一項に記載の樹脂組成物からなるフィルム状接着剤、及び
(6)前項(2)乃至(4)のいずれか一項に記載の樹脂組成物の硬化物。
(7)前項(5)に記載のフィルム状接着剤の硬化物。
に関する。
(In formula (2), R5 represents a hydrogen atom or a methyl group.)
At least one of the multiple X's is an acetyl group, and 5% or more of the multiple X's are structures represented by formula (2). Y represents a residue obtained by removing two amino groups from a diamino compound. n is the average number of repeating units and ranges from 1 to 100; ) polymer compound represented by
(2) a resin composition comprising the polymer compound according to (1) above and a radical initiator;
(3) The resin composition according to (2) above, further comprising a radical-reactive monomer having a radical-reactive functional group;
(4) The resin composition according to the preceding item (2), further comprising a radical-reactive polymer having two or more radical-reactive functional groups in one molecule,
(5) a film-like adhesive comprising the resin composition according to any one of the preceding items (2) to (4); and (6) the resin according to any one of the preceding items (2) to (4). A cured product of the composition.
(7) A cured product of the film adhesive described in (5) above.
Regarding.
 本発明による高分子化合物及びそれを含む樹脂組成物は、ラジカル開始剤を併用し熱或いは光エネルギーを加えることにより硬化物とすることが可能で、該樹脂組成物の硬化物は誘電特性、接着性、耐熱性に優れる高分子化合物を提供することができる。 The polymer compound and the resin composition containing it according to the present invention can be cured by applying heat or light energy in combination with a radical initiator, and the cured product of the resin composition has dielectric properties, adhesion It is possible to provide a polymer compound having excellent properties and heat resistance.
 以下に、本発明の実施形態について説明する。
 本発明の式(1)で表わされる高分子化合物は、
 (1)ジアミノ化合物(A)(以下、単に「化合物(A)」と記載する)と化合物(A)よりも過剰なモル数の特定構造のビスマレイミド化合物(B)(以下、単に「化合物(B)」と記載する)との共重合物(C)を合成し、
 (2)共重合物(C)中の2級アミノ基の5%以上100%未満と、イソシアネート基及び(メタ)アクリル基を有する化合物(D)(以下、単に「化合物(D)」と記載する)中のイソシアネート基とを反応させ、
 (3)共重合物(C)と化合物(D)との反応物中に残存する2級アミノ基と、無水酢酸とを反応させることにより得られる反応物である。
 先ず、本発明の高分子化合物の中間原料である共重合物(C)について説明する。
Embodiments of the present invention are described below.
The polymer compound represented by formula (1) of the present invention is
(1) A diamino compound (A) (hereinafter simply referred to as “compound (A)”) and a bismaleimide compound (B) having a specific structure having an excess number of moles relative to compound (A) (hereinafter simply referred to as “compound ( B)”) to synthesize a copolymer (C) with
(2) A compound (D) having 5% or more and less than 100% of the secondary amino groups in the copolymer (C) and an isocyanate group and a (meth)acrylic group (hereinafter simply referred to as "compound (D)" to react with the isocyanate group in the
(3) A reaction product obtained by reacting a secondary amino group remaining in the reaction product of copolymer (C) and compound (D) with acetic anhydride.
First, the copolymer (C), which is an intermediate raw material for the polymer compound of the present invention, will be described.
 共重合物(C)は、化合物(A)と、化合物(A)よりも過剰なモル数の化合物(B)との共重合反応物(マイケル付加反応物)である。
 共重合体(C)の原料となる化合物(A)は、一分子中にアミノ基を二つ有する化合物でありさえすれば特に限定されず、その具体例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、4,4’-メチレンビスシクロヘキサンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ノルボルネンジアミン、ダイマージアミン、3,3’-ジアミノ-N-メチルジプロピルアミン、ジアミノマレオニトリル、1,3-ジアミノペンタン、9,10-ジアミノフェナントレン、4,4’-ジアミノオクタフルオロビフェニル、3,5-ジアミノ安息香酸、3,7-ジアミノ-2-メトキシフルオレン、4,4’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン、3,4-ジアミノトルエン、2,6-ジアミノアントラキノン、2,6-ジアミノトルエン、2,3-ジアミノトルエン、1,8-ジアミノナフタレン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、1,5-ジアミノナフタレン、1,2-ジアミノアントラキノン、2,4-クメンジアミン、1,3-ビスアミノメチルベンゼン、1,3-ビスアミノメチルシクロヘキサン、2-クロロ-1,4-ジアミノベンゼン、1,4-ジアミノ-2,5-ジクロロベンゼン、1,4-ジアミノ-2,5-ジメチルベンゼン、4,4’-ジアミノ-2,2’-ビストリフルオロメチルビフェニル、ビス(アミノ-3-クロロフェニ)エタン、ビス(4-アミノ-3,5-ジメチルフェニル)メタン、ビス(4-アミノ-3,5-ジエチルフェニル)メタン、2,3-ジアミノナフタレン、ビス(4-アミノ-3-メチルフェニル)メタン、ビス(4-アミノ-3-エチルフェニル)メタン、4,4’-ジアミノフェニルスルホン、3,3’-ジアミノフェニルスルホン、2,2-ビス(4,(4アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(3-アミノフェノキシ)フェニル)スルホン、4,4’―オキシジアニリン、4,4’-ジアミノジフェニルスルフィド、3,4’-オキシジアニリン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’―ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメトキシビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ブタン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン;3,3’,5,5’-テトラメチルベンジジン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、m-キシリレンジアミン、p-キシリレンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、1,2-ビス(2-アミノエトキシ)エタン等が挙げられる。
 なお、化合物(A)の二つのアミノ基を除いた残基(二価の連結基)は、式(1)中のYに相当する。
Copolymer (C) is a copolymerization reaction product (Michael addition reaction product) of compound (A) and compound (B) in a molar excess over compound (A).
The compound (A), which is a raw material for the copolymer (C), is not particularly limited as long as it is a compound having two amino groups in one molecule, and specific examples thereof include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 4,4′-methylenebiscyclohexanediamine, 1 ,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, isophoronediamine, norbornenediamine, dimer diamine , 3,3′-diamino-N-methyldipropylamine, diaminomaleonitrile, 1,3-diaminopentane, 9,10-diaminophenanthrene, 4,4′-diaminooctafluorobiphenyl, 3,5-diaminobenzoic acid , 3,7-diamino-2-methoxyfluorene, 4,4′-diaminobenzophenone, 3,4-diaminobenzophenone, 3,4-diaminotoluene, 2,6-diaminoanthraquinone, 2,6-diaminotoluene, 2, 3-diaminotoluene, 1,8-diaminonaphthalene, 2,4-diaminotoluene, 2,5-diaminotoluene, 1,4-diaminoanthraquinone, 1,5-diaminoanthraquinone, 1,5-diaminonaphthalene, 1,2 -diaminoanthraquinone, 2,4-cumenediamine, 1,3-bisaminomethylbenzene, 1,3-bisaminomethylcyclohexane, 2-chloro-1,4-diaminobenzene, 1,4-diamino-2,5- Dichlorobenzene, 1,4-diamino-2,5-dimethylbenzene, 4,4'-diamino-2,2'-bistrifluoromethylbiphenyl, bis(amino-3-chlorophenyl)ethane, bis(4-amino-3 ,5-dimethylphenyl)methane, bis(4-amino-3,5-diethylphenyl)methane, 2,3-diaminonaphthalene, bis(4-amino-3-methylphenyl)methane, bis(4-amino-3 -ethylphenyl)methane, 4,4'-diaminophenylsulfone, 3,3'-diaminophenylsulfone, 2,2-bis(4,(4aminophenoxy)phenyl)sulfone, 2,2-bis(4-( 3-aminophenoxy)phenyl)sulfone, 4,4'-oxydianiline, 4,4'-diaminodiphenyl sulfide, 3,4'-oxydianiline, 2,2-bis(4-(4-aminophenoxy) phenyl)propane, 1,3-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4' -diamino-3,3′-dimethoxybiphenyl, 9,9-bis(4-aminophenyl)fluorene, 1,3-bis(4-aminophenoxy)-2,2-dimethylpropane, 1,3-bis(4 -aminophenoxy)propane, 1,4-bis(4-aminophenoxy)butane, 1,5-bis(4-aminophenoxy)butane, 2,3,5,6-tetramethyl-1,4-phenylenediamine; 3,3′,5,5′-tetramethylbenzidine, 2,2-bis(4-aminophenyl)hexafluoropropane, m-xylylenediamine, p-xylylenediamine, bis(4-amino-3-methyl cyclohexyl)methane, 1,2-bis(2-aminoethoxy)ethane and the like.
The residue (divalent linking group) of compound (A) excluding the two amino groups corresponds to Y in formula (1).
 化合物(A)としては、炭素数2以上の脂肪族ジアミノ化合物が好ましく、その具体例としては1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,12-ジアミノドデカン、4,4’-メチレンビスシクロヘキサンジアミン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、イソホロンジアミン、ノルボルネンジアミン及びダイマージアミンなどが挙げられる。
 式(1)におけるYとしては、上記した炭素数2以上の脂肪族ジアミノ化合物から二つのアミノ基を除いた残基(二価の連結基)が好ましい。
The compound (A) is preferably an aliphatic diamino compound having 2 or more carbon atoms, and specific examples thereof include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, 1 ,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 4,4′-methylenebiscyclohexanediamine, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine , 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, isophorone diamine, norbornene diamine and dimer diamine.
Y in formula (1) is preferably a residue (a divalent linking group) obtained by removing two amino groups from the above aliphatic diamino compound having 2 or more carbon atoms.
 化合物(B)としては、ビス-3,5-ジアルキル-4-アミノフェニルメタン化合物とマレイン酸との縮合閉環反応により得られるビスマレイミド化合物であって、該化合物中の四つのアルキル基がそれぞれ独立にメチル基、エチル基、イソプロピル基又はターシャリーブチル基であるビスマレイミド化合物が用いられる。
 化合物(B)の具体例としては3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、3,3’,5,5’-テトラメチル-4,4’-ジフェニルメタンビスマレイミド、3,3’,5,5’-テトライソプロピル-4,4’-ジフェニルメタンビスマレイミドなどが挙げられる。
 上記した化合物(B)が有するアルキル基は、後に説明する式(1)中のR乃至Rは、に相当する。化合物(B)のアルキル基としては、メチル基又はエチル基が好ましい。
The compound (B) is a bismaleimide compound obtained by a condensation ring-closing reaction of a bis-3,5-dialkyl-4-aminophenylmethane compound and maleic acid, wherein the four alkyl groups in the compound are each independently A bismaleimide compound having a methyl group, an ethyl group, an isopropyl group or a tertiary butyl group is used.
Specific examples of compound (B) include 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, 3,3′,5,5′-tetramethyl-4,4′- diphenylmethanebismaleimide, 3,3',5,5'-tetraisopropyl-4,4'-diphenylmethanebismaleimide and the like.
The alkyl group of the compound (B) described above corresponds to R 1 to R 4 in formula (1) described later. The alkyl group of compound (B) is preferably a methyl group or an ethyl group.
 化合物(B)において、マレイミド基が結合するベンゼン環上の炭素原子のオルソ位が水素原子のビスマレイミド化合物は2級アミノ基との反応性が高いため、共重合物(C)を合成するための共重合反応の際にオルソ位の水素原子と化合物(A)のアミノ基との反応によってゲル化し易いが、オルソ位が全てアルキル基の化合物(B)を用いることにより、化合物(A)との共重合反応の際のゲル化を防ぐことができる。 In the compound (B), a bismaleimide compound having a hydrogen atom at the ortho position of the carbon atom on the benzene ring to which the maleimide group is bonded has high reactivity with the secondary amino group. is likely to gel due to the reaction between the ortho-positioned hydrogen atoms and the amino groups of compound (A) during the copolymerization reaction of (A). can prevent gelation during the copolymerization reaction.
 共重合物(C)を合成する際の化合物(A)と化合物(B)の使用量は、通常、化合物(B)に比べて化合物(A)が少ないモル量であり、好ましくは化合物(B)1モルに対して化合物(A)が0.4乃至0.98モルであり、より好ましくは0.5乃至0.96モルである。
 合成の際の反応温度は通常50乃至150℃、好ましくは60乃至140℃であり、反応時間は通常0.5乃至30時間、好ましくは1乃至20時間であり、反応触媒を使用してもよい。反応は、GPC(ゲルパーミエイションクロマトグラフィー)によって分子量が一定の値から増大しなくなった時点を終点とすればよい。反応に使用した溶剤は加熱減圧下で留去してもよく、そのまま溶剤を含む樹脂組成物に用いてもよい。
The amount of the compound (A) and the compound (B) used when synthesizing the copolymer (C) is usually a molar amount in which the compound (A) is less than the compound (B), preferably the compound (B ) is 0.4 to 0.98 mol, more preferably 0.5 to 0.96 mol, per 1 mol of compound (A).
The reaction temperature during synthesis is usually 50 to 150° C., preferably 60 to 140° C., the reaction time is usually 0.5 to 30 hours, preferably 1 to 20 hours, and a reaction catalyst may be used. . The end point of the reaction may be the time when the molecular weight stops increasing from a certain value by GPC (gel permeation chromatography). The solvent used in the reaction may be distilled off under heating and reduced pressure, or may be used as it is in the solvent-containing resin composition.
 化合物(A)と化合物(B)との共重合反応には溶剤を用いることが好ましく、使用可能な溶剤としては、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン及びプロピレングリコールモノメチルエーテルアセテート等が挙げられる。溶剤の使用量は、共重合反応に用いる原料の固形分に対して10乃至300質量%が好ましく、20乃至200質量%がより好ましい。 It is preferable to use a solvent for the copolymerization reaction of the compound (A) and the compound (B), and usable solvents include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone and propylene glycol monomethyl ether. Acetate etc. are mentioned. The amount of the solvent used is preferably 10 to 300% by mass, more preferably 20 to 200% by mass, based on the solid content of the raw materials used in the copolymerization reaction.
 共重合物(C)の数平均分子量は通常1,000乃至10万、好ましくは1,500乃至8万である。数平均分子量が前記の範囲内の共重合物(C)を得るためには、原料成分を上述の割合で仕込めばよい。この数平均分子量を測定することにより、式(1)のnの値を算出することができる。nは繰り返し単位数の平均値であり、1乃至100の範囲内にあり、この範囲内であれば、本発明の高分子化合物による効果を発揮することができる。
 尚、本明細書における分子量は、GPCの測定結果に基づいてポリスチレン換算で算出した値を意味する。
The number average molecular weight of the copolymer (C) is generally 1,000 to 100,000, preferably 1,500 to 80,000. In order to obtain a copolymer (C) having a number average molecular weight within the above range, the raw material components should be charged in the above ratio. By measuring this number average molecular weight, the value of n in formula (1) can be calculated. n is the average number of repeating units and ranges from 1 to 100. Within this range, the effect of the polymer compound of the present invention can be exhibited.
In addition, the molecular weight in this specification means the value calculated by polystyrene conversion based on the measurement result of GPC.
 次に、本発明の高分子化合物について説明する。
 本発明の高分子化合物は、前記の共重合物(C)中に存在する2級アミノ基の5%以上100%未満を下記式(3)で表される化合物(D)中のイソシアネート基と反応させた後、前記で得られた反応物中に残存する2級アミノ基を無水酢酸と反応させることによってアセチル化することにより得られる。
 尚、式(3)中のRは、式(2)中のRと同じ意味を表す。即ち、式(2)中のRは、化合物(D)の有する水素原子又はメチル基に由来する。
Next, the polymer compound of the present invention will be explained.
In the polymer compound of the present invention, 5% or more and less than 100% of the secondary amino groups present in the copolymer (C) are isocyanate groups in the compound (D) represented by the following formula (3). After the reaction, the secondary amino group remaining in the reactant obtained above is acetylated by reacting it with acetic anhydride.
R5 in formula (3) has the same meaning as R5 in formula (2). That is, R 5 in formula (2) is derived from the hydrogen atom or methyl group of compound (D).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 化合物(D)の具体例としては、2-イソシアナトエチルメタクリレート(製品名カレンズMOI 昭和電工株式会社製)、2-イソシアナトエチルアクリラート(製品名カレンズAOI 昭和電工株式会社製)等が挙げられる。 Specific examples of the compound (D) include 2-isocyanatoethyl methacrylate (product name Karenz MOI manufactured by Showa Denko K.K.), 2-isocyanatoethyl acrylate (product name Karenz AOI manufactured by Showa Denko K.K.), and the like. .
 本発明の高分子化合物を合成する際の共重合物(C)と化合物(D)の使用量は、共重合物(C)中の2級アミノ基1モル当量に対して化合物(D)が好ましくは0.05乃至0.9モル、より好ましくは0.1乃至0.8モルである。反応温度は10乃至90℃が好ましく、反応時間は30分間乃至5時間が好ましい。 The amount of the copolymer (C) and the compound (D) to be used when synthesizing the polymer compound of the present invention is such that the amount of the compound (D) per 1 molar equivalent of the secondary amino group in the copolymer (C) is It is preferably 0.05 to 0.9 mol, more preferably 0.1 to 0.8 mol. The reaction temperature is preferably 10 to 90°C, and the reaction time is preferably 30 minutes to 5 hours.
 上記で得られた共重合物(C)と化合物(D)との反応物に無水酢酸を加えることにより、残存する2級アミノ基のアセチル化を行うことができる。化合物(A)と化合物(B)の共重合反応を溶剤中で行い、得られた共重合物(C)溶液に化合物(D)を加えて反応させ、得られた反応溶液に更に無水酢酸を加えてアセチル化を行うことは、本発明の高分子化合物の合成方法の好ましい態様である。
 本発明の高分子化合物を合成する際の無水酢酸の使用量は、共重合物(C)と化合物(D)との反応物中に残存する2級アミンのモル数と同量かそれ以上であればよい。反応温度は10乃至90℃が好ましく、反応時間は30分間乃至5時間が好ましい。反応終了後に生成する酢酸及び過剰に用いた無水酢酸は、水洗分離によって除去することができる。
By adding acetic anhydride to the reaction product of the copolymer (C) obtained above and the compound (D), the remaining secondary amino groups can be acetylated. A copolymerization reaction of the compound (A) and the compound (B) is carried out in a solvent, the compound (D) is added to the obtained copolymer (C) solution and reacted, and acetic anhydride is further added to the obtained reaction solution. In addition, acetylation is a preferred embodiment of the method for synthesizing the polymer compound of the present invention.
The amount of acetic anhydride used when synthesizing the polymer compound of the present invention is equal to or greater than the number of moles of the secondary amine remaining in the reaction product of the copolymer (C) and the compound (D). I wish I had. The reaction temperature is preferably 10 to 90°C, and the reaction time is preferably 30 minutes to 5 hours. Acetic acid produced after the reaction and excess acetic anhydride can be removed by washing with water.
 本発明の樹脂組成物は、本発明の高分子化合物及びラジカル開始剤を含有する。
 好ましい熱ラジカル開始剤としては、例えばベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、α,α-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド及びトリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物が挙げられる。
The resin composition of the invention contains the polymer compound of the invention and a radical initiator.
Preferred thermal radical initiators include, for example, benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butyl peroxide). oxy)hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, α,α-bis(t-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di (t-butylperoxy)hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis(t-butylperoxy)butane, 2,2-bis and peroxides such as (t-butylperoxy)octane, 2,5-dimethyl-2,5-di(benzoylperoxy)hexane, di(trimethylsilyl)peroxide and trimethylsilyltriphenylsilylperoxide.
 好ましい光ラジカル開始剤の例としてはベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン類;2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オンや2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1;アシルホスフィンオキサイド類およびキサントン類等が挙げられる。 Examples of preferred photoradical initiators include benzoin and its alkyl ethers such as benzoin, benzoin methyl ether and benzoin ethyl ether; acetophenones such as acetophenone, 2,2-dimethoxy-2-phenylacetophenone and 1,1-dichloroacetophenone; anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone and 1-chloroanthraquinone; thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone; 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one and 2-benzyl-2-dimethyl amino-1-(4-morpholinophenyl)-butanone-1; acylphosphine oxides and xanthones;
 本発明の樹脂組成物におけるラジカル開始剤の含有量は、高分子化合物及び後述する任意成分であるラジカル反応性モノマー等の樹脂成分の合計100質量部に対して、通常0.1乃至10質量部、好ましくは0.1乃至8質量部である。 The content of the radical initiator in the resin composition of the present invention is usually 0.1 to 10 parts by mass with respect to a total of 100 parts by mass of resin components such as a polymer compound and a radical reactive monomer which is an optional component described later. , preferably 0.1 to 8 parts by mass.
 本発明の樹脂組成物は、ラジカル反応性モノマーをさらに含有してもよい。ラジカル反応性モノマーをさらに含有することにより、本発明の樹脂組成物の反応性や硬化物の耐熱性などを向上することができる。尚、本発明におけるラジカル反応性モノマーとは、一分子中にラジカル反応性の官能基を一つ以上有し、かつその数平均分子量が500以下(数平均分子量の下限は概ね100程度)の化合物を意味する。
 ラジカル反応性モノマーの具体例としては、アセナフチレン、エチレングリコールジメタクリレート、ジエチレングルコールジメタクリレート、トリエチエレングルコールジメタクリレート、1,4-ブタンジオールジメタクリレート、ネオペンチルグルコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、グリセリンジメタクリレート、2-ヒドロキシ-3-アクリロイロキシプロピルメタクリレート、ビスフェノールAのエチレンオキシド付加物メタクリレート、トリメチロールプロパントリメタクリレート、トリシクロデカンジメタノールジメタクリレート、グリセリンジメタクリレート、トリメチロールプロパントリメタクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールポリアクリレート、ジペンタエリスリトールヘキサアクリレート、トリアリルイソシアヌレート、トリアリルシアヌレート、ジビニルベンゼン、イソフタル酸ジビニル、N-フェニル-マレイミド、N-フェニル-メチルマレイミド、N-フェニル-クロロマレイミド、N-p-クロロフェニル-マレイミド、N-p-メトキシフェニル-マレイミド、N-p-メチルフェニル-マレイミド、N-p-ニトロフェニル-マレイミド、N-p-フェノキシフェニル-マレイミド、N-p-フェニルアミノフェニル-マレイミド、N-p-フェノキシカルボニルフェニル-マレイミド、1-マレイミド-4-アセトキシスクシンイミド-ベンゼン、4-マレイミド-4’-アセトキシスクシンイミド-ジフェニルメタン、4-マレイミド-4’-アセトキシスクシンイミド-ジフェニルエーテル、4-マレイミド-4’-アセトアミド-ジフェニルエーテル、2-マレイミド-6-アセトアミド-ピリジン、4-マレイミド-4’-アセトアミド-ジフェニルメタンおよびN-p-フェニルカルボニルフェニル-マレイミドN-エチルマレイミド、N-2.6-キシリルマレイミド、N-シクロヘキシルマレイミド、N-2,3-キシリルマレイミド、キシリルマレイミド、2,6-キシレンマレイミド及び4,4’-ビスマレイミドジフェニルメタン等が挙げられるが、マレイミド基を官能基として有するものが好ましい。
 これらのラジカル反応性モノマーは一種のみを用いてもよく、二種以上を混合して用いてもよい。
The resin composition of the present invention may further contain a radical reactive monomer. By further containing a radical-reactive monomer, the reactivity of the resin composition of the present invention and the heat resistance of the cured product can be improved. The radical-reactive monomer in the present invention is a compound having one or more radical-reactive functional groups in one molecule and having a number-average molecular weight of 500 or less (the lower limit of the number-average molecular weight is approximately 100). means
Specific examples of radical reactive monomers include acenaphthylene, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, neopentyl glycol dimethacrylate, 1,6 -hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, ethylene oxide adduct methacrylate of bisphenol A, trimethylolpropane trimethacrylate, tricyclodecanedimethanol Dimethacrylate, glycerin dimethacrylate, trimethylolpropane trimethacrylate, ethoxylated isocyanuric acid triacrylate, ε-caprolactone-modified tris-(2-acryloxyethyl) isocyanurate, pentaerythritol triacrylate, ditrimethylolpropane tetraacrylate, ethoxylated penta Erythritol tetraacrylate, pentaerythritol tetraacrylate, dipentaerythritol polyacrylate, dipentaerythritol hexaacrylate, triallyl isocyanurate, triallyl cyanurate, divinylbenzene, divinyl isophthalate, N-phenyl-maleimide, N-phenyl-methylmaleimide , N-phenyl-chloromaleimide, Np-chlorophenyl-maleimide, Np-methoxyphenyl-maleimide, Np-methylphenyl-maleimide, Np-nitrophenyl-maleimide, Np-phenoxyphenyl- Maleimide, Np-phenylaminophenyl-maleimide, Np-phenoxycarbonylphenyl-maleimide, 1-maleimido-4-acetoxysuccinimide-benzene, 4-maleimido-4′-acetoxysuccinimide-diphenylmethane, 4-maleimide-4 '-acetoxysuccinimide-diphenyl ether, 4-maleimido-4'-acetamido-diphenyl ether, 2-maleimido-6-acetamido-pyridine, 4-maleimido-4'-acetamido-diphenylmethane and Np-phenylcarbonylphenyl-maleimide N- ethylmaleimide, N-2.6-xylylmaleimide, N-cyclohexylmaleimide, N-2,3-xylylmaleimide, xylylmaleimide, 2,6-xylenemaleimide and 4,4′-bismaleimidediphenylmethane; However, those having a maleimide group as a functional group are preferred.
These radical reactive monomers may be used alone or in combination of two or more.
 本発明の樹脂組成物は、ラジカル反応性ポリマーをさらに含有してもよい。ラジカル反応性ポリマーをさらに含有することにより、本発明の樹脂組成物の接着性や硬化物の耐熱性などを向上することができる。尚、本発明のおけるラジカル反応性ポリマーとは、一分子中にラジカル反応性の官能基を一つ以上、好ましくは二つ以上有し、かつその数平均分子量が500以上の化合物を意味する。
 ラジカル反応性ポリマーの具体例としては、スチレンとブタジエンの共重合体、変性ポリフェニレンエーテル樹脂、イミド延長されたビスマレインイミド、又は下記式(4)で表される高分子化合物等が挙げられる。尚、式(4)中のmは繰り返し単位数の平均値であって1乃至20の範囲にある実数を表す。
The resin composition of the present invention may further contain a radical reactive polymer. By further containing the radical reactive polymer, the adhesiveness of the resin composition of the present invention and the heat resistance of the cured product can be improved. The term "radical-reactive polymer" as used in the present invention means a compound having one or more, preferably two or more, radical-reactive functional groups in one molecule and having a number average molecular weight of 500 or more.
Specific examples of radical-reactive polymers include copolymers of styrene and butadiene, modified polyphenylene ether resins, imide-extended bismaleimides, and polymeric compounds represented by the following formula (4). Incidentally, m in the formula (4) represents the average value of the number of repeating units and represents a real number in the range of 1 to 20.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ラジカル反応性ポリマーであるスチレンとブタジエンの共重合体は、ランダム共重合体(通称SBR)でもブロック共重合体でもよい。またブロック共重合体中のブタジエン由来の二重結合を水素添加により飽和炭化水素にしたもの(通称SEBS樹脂)でもよい。ポリマー中のスチレンとブタジエンの比率は通常10:90乃至90:10であり、その数平均分子量は通常1,000乃至100,000である。SBRの具体的な製品例としてはクレイバレー社のRicon100、Ricon181、Ricon184が挙げられ、SEBS樹脂の具体的な製品例としては旭化成株式会社のタフテックシリーズ、クレイトン社Gポリマーシリーズなどが挙げられる。 The copolymer of styrene and butadiene, which is a radical reactive polymer, may be a random copolymer (commonly known as SBR) or a block copolymer. A block copolymer in which the butadiene-derived double bond is hydrogenated to a saturated hydrocarbon (commonly known as SEBS resin) may also be used. The ratio of styrene to butadiene in the polymer is typically 10:90 to 90:10 and its number average molecular weight is typically 1,000 to 100,000. Specific product examples of SBR include Clay Valley's Ricon 100, Ricon 181, and Ricon 184, and specific product examples of SEBS resin include Asahi Kasei Corporation's Tuftec series and Kraton's G Polymer series.
 ラジカル反応性ポリマーである変性ポリフェニレンエーテル樹脂は、分子の両末端にメタクリロイル基、アクリロイル基又はビニル基を有し、数平均分子量が1,000乃至10,000の化合物が好ましい。その具体例としては、両末端にメタクリロイル基を有し、数平均分子量が約1,700である下記式(5)で表される化合物(製品名SA9000 SABICジャパン合同会社製)、或いは両末端にビニル基を有し、数平均分子量が約1,200あるいは2,200である下記式(6)で表される化合物(製品名OPE-2St 1200あるいはOPE-2St 2200 三菱瓦斯化学株式会社製)が挙げられる。 The modified polyphenylene ether resin, which is a radical reactive polymer, is preferably a compound having methacryloyl groups, acryloyl groups or vinyl groups at both ends of the molecule and having a number average molecular weight of 1,000 to 10,000. Specific examples thereof include a compound represented by the following formula (5) having a methacryloyl group at both ends and a number average molecular weight of about 1,700 (product name SA9000 manufactured by SABIC Japan LLC), or A compound represented by the following formula (6) having a vinyl group and a number average molecular weight of about 1,200 or 2,200 (product name: OPE-2St 1200 or OPE-2St 2200, manufactured by Mitsubishi Gas Chemical Co., Ltd.) mentioned.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 ラジカル反応性ポリマーであるイミド延長されたビスマレインイミド樹脂は、特許公報5,328,006号などに記載されている公知の方法で得ることができる。具体的には脂肪族ジアミンと芳香族又は脂肪族のテトラカルボン酸二酸無水物とを、脂肪族ジアミンが過剰になるモル比で、有機溶剤中で酸触媒を用いて脱水縮合反応を行った後、高分子末端に存在するアミノ基と無水マレイン酸とを脱水縮合し、触媒を水洗によって除去することにより得ることができる。 An imide-extended bismaleimide resin, which is a radical-reactive polymer, can be obtained by a known method described in Patent Publication No. 5,328,006. Specifically, an aliphatic diamine and an aromatic or aliphatic tetracarboxylic dianhydride were subjected to a dehydration condensation reaction in an organic solvent at a molar ratio in which the aliphatic diamine was excessive using an acid catalyst. After that, the amino group present at the end of the polymer is dehydrated and condensed with maleic anhydride, and the catalyst is removed by washing with water.
 脂肪族ジアミンの具体例としては1,10-ジアミノデカン;1,12-ジアミノドデカン;ダイマージアミン;1,2-ジアミノ-2-メチルプロパン;1,2-ジアミノシクロヘキサン;1,2-ジアミノプロパン;1,3-ジアミノプロパン;1,4-ジアミノブタン;1,5-ジアミノペンタン;1,7-ジアミノヘプタン;1,8-ジアミノメンタン;1,8-ジアミノオクタン;1,9-ジアミノノナン;3,3’-ジアミノ-N-メチルジプロピルアミン;ジアミノマレオニトリル;1,3-ジアミノペンタン;9,10-ジアミノフェナントレンなどが挙げられるが、特にダイマージアミンが好ましい。 Specific examples of aliphatic diamines include 1,10-diaminodecane; 1,12-diaminododecane; dimer diamine; 1,2-diamino-2-methylpropane; 1,2-diaminocyclohexane; 1,3-diaminopropane; 1,4-diaminobutane; 1,5-diaminopentane; 1,7-diaminoheptane; 1,8-diaminomenthane; 3′-diamino-N-methyldipropylamine; diaminomaleonitrile; 1,3-diaminopentane;
 芳香族又は脂肪族のテトラカルボン酸二酸無水物の具体例としては、無水ピロメリット酸、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビシクロ(2.2.2)オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ジエチレントリアミンペンタ酢酸二無水物、エチレンジアミン四酢酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタリックス無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、4,4’-ビスフェノールAジフタル酸無水物、5-(2,5-ジオキシテトラヒドロ)-3-メチル-3-シクロヘキセン-1,2-ジカルボン無水物、エチレングリコールビス(トリメリット酸無水物)、ヒドロキノンジフタル酸無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,5,6-トリカルボキシ-2-ノルボルナン酢酸二無水物などが挙げられるが特に無水ピロメリット酸、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましい。具体的な製品名としてはデザイナーモレキュールズインク社のBMI-3000が挙げられる。 Specific examples of aromatic or aliphatic tetracarboxylic dianhydrides include pyromellitic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetra Carboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bicyclo(2.2.2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride , diethylenetriaminepentaacetic dianhydride, ethylenediaminetetraacetic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride , 4,4′-oxydiphthalix anhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 4,4'-bisphenol A diphthalic anhydride, 5-(2,5-dioxytetrahydro)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, ethylene glycol bis(trimellit acid anhydride), hydroquinone diphthalic anhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride anhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2 ,4,5-cyclohexanetetracarboxylic dianhydride, 1,1′-bicyclohexane-3,3′,4,4′-tetracarboxylic acid-3,4:3′,4′-dianhydride, 4 -(2,5-dioxotetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, 5-(2,5-dioxotetrahydrofuryl)-3- methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,3,4 ,5-tetrahydrofurantetracarboxylic acid dianhydride, 3,5,6-tricarboxy-2-norbornane acetic acid dianhydride, and particularly pyromellitic anhydride and 1,2,4,5-cyclohexanetetracarboxylic acid. Dianhydrides are preferred. A specific product name is BMI-3000 manufactured by Designer Molecules Inc.
 本発明の樹脂組成物には、有機溶剤をさらに含有してもよい。有機溶剤の具体例としては、トルエン及びキシレン等の芳香族系溶剤、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート及びプロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン及びシクロヘキサノン等のケトン系溶剤、γ-ブチロラクトン及びγ-バレロラクトン等のラクトン類、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド及びN,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、等が挙げられる。本発明の樹脂組成物における有機溶剤の含有量は、樹脂組成物中に通常90質量%以下、好ましくは30乃至80質量%である。 The resin composition of the present invention may further contain an organic solvent. Specific examples of organic solvents include aromatic solvents such as toluene and xylene, ether solvents such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate and propylene glycol monobutyl ether, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone, lactones such as γ-butyrolactone and γ-valerolactone, N-methylpyrrolidone (NMP), N,N-dimethylformamide (DMF), N, Amide solvents such as N-dimethylacetamide and N,N-dimethylimidazolidinone, sulfones such as tetramethylenesulfone, and the like. The content of the organic solvent in the resin composition of the present invention is usually 90% by mass or less, preferably 30 to 80% by mass.
 本発明の樹脂組成物は、保存安定性を向上させるために重合禁止剤をさらに含有してもよい。併用し得る重合禁止剤は一般に公知のものであれば特に限定されず、例えば、ハイドロキノン、メチルハイドロキノン、p-ベンゾキノン、クロラニル及びトリメチルキノン等のキノン類や、芳香族ジオール類、ジ-t-ブチルヒドロキシトルエン等が挙げられる。 The resin composition of the present invention may further contain a polymerization inhibitor in order to improve storage stability. The polymerization inhibitor that can be used in combination is not particularly limited as long as it is generally known, and examples thereof include quinones such as hydroquinone, methylhydroquinone, p-benzoquinone, chloranil and trimethylquinone, aromatic diols, and di-t-butyl. Hydroxytoluene and the like can be mentioned.
 本発明の樹脂組成物は、その用途に応じて所望の性能を付与させる目的で本来の性能を損なわない範囲の量の充填剤や添加剤を配合して用いることができる。充填剤は繊維状であっても粉末状であってもよく、シリカ、カーボンブラック、アルミナ、タルク、雲母、ガラスビーズ、ガラス中空球等を挙げることができる。 The resin composition of the present invention can be used by blending fillers and additives in an amount within a range that does not impair the original performance for the purpose of imparting desired performance according to its use. The filler may be fibrous or powdery, and includes silica, carbon black, alumina, talc, mica, glass beads, glass hollow spheres, and the like.
 本発明の樹脂組成物は、難燃性化合物、添加剤などをさらに含有することも可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、4,4-ジブロモビフェニルなどの臭素化合物、リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂、メラミンやベンゾグアナミンなどの窒素化合物、オキサジン環含有化合物、シリコン系化合物等が挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤等、所望に応じて適宜組み合わせて使用することも可能である。 The resin composition of the present invention can further contain flame retardant compounds, additives, and the like. These are not particularly limited as long as they are commonly used. For example, flame-retardant compounds include bromine compounds such as 4,4-dibromobiphenyl, phosphate esters, melamine phosphate, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and silicon compounds. is mentioned. Additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, and brighteners. etc., it is also possible to use them in combination as desired.
 本発明の樹脂組成物は、さまざまな基材上に塗布あるいは含浸して使用することができる。例えば熱ラジカル開始剤を用いた場合、PETフィルム上に塗布することにより多層プリント基板の層間絶縁層として、ポリイミドフィルム上に塗布することによりカバーレイとして、また銅箔上に塗布乾燥することにより樹脂付き銅箔として、使用することができる。またガラスクロスやガラスペーパー、カーボンファイバー、各種不織布などに含浸させることにより、プリント配線基板やCFRPのプリプレグとして使用することができる。さらに光ラジカル開始剤を用いることにより各種レジストとして使用することもできる。 The resin composition of the present invention can be used by coating or impregnating various substrates. For example, when a thermal radical initiator is used, it can be used as an interlayer insulating layer of a multilayer printed circuit board by coating it on a PET film, as a coverlay by coating it on a polyimide film, or by coating and drying it on a copper foil. It can be used as an attached copper foil. Further, by impregnating glass cloth, glass paper, carbon fiber, various non-woven fabrics, etc., it can be used as a printed wiring board or CFRP prepreg. Furthermore, it can be used as various resists by using a photoradical initiator.
 本発明の層間絶縁層やカバーレイ、樹脂付き銅箔、プリプレグなどはホットプレス機などで加温加圧成形することにより、硬化物とすることができる。 The interlayer insulating layer, coverlay, resin-coated copper foil, prepreg, and the like of the present invention can be cured by heating and pressurizing with a hot press or the like.
 以下、本発明を実施例、比較例により更に詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples. However, the present invention is not limited to these examples.
実施例1(本発明の高分子化合物の合成)
 温度計、冷却管、窒素ガス導入管、撹拌器を取り付けたフラスコに、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド(製品名:BMI-70 ケイ・アイ化成株式会社製)22.10部(0.05モル)と、ダイマージアミン(製品名プリアミン1074 クローダ社製)20.18部(0.0375モル)と、トルエン20部とを加え、窒素雰囲気下100℃で8時間反応させることにより、下記式(7)で表される共重合体1(本発明の高分子化合物の中間原料である共重合物(C)に相当する共重合体であり、式(7)中のYはダイマージアミンから二つのアミノ基を除いた残基を表す。)のトルエン溶液を得た。この共重合体1の数平均分子量は2,700、重量平均分子量は15,100であった。数平均分子量から式(7)におけるnの値は2.5と算出される。この共重合体のトルエン溶液にカレンズMOI(昭和電工株式会社製)1.16部(0.0075モル)を加え、60℃で1時間反応させた後、無水酢酸6.12部(0.0675モル)を加え更に60℃で1時間反応させた。反応液にトルエン100部を加えて希釈した後、純水50部を加え、撹拌水洗により、副生成した酢酸を除去した。水層が中性になるまで水洗を繰り返したのち、トルエン溶液を濃縮することにより、本発明の高分子化合物の25質量%トルエン溶液を得た。得られた高分子化合物は、式(1)のXの10%がカレンズMOI由来部分であり、残りはアセチル基であると推測される。
Example 1 (Synthesis of polymer compound of the present invention)
3,3'-Dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide (product name: BMI-70 Kay・Ai Kasei Co., Ltd.) 22.10 parts (0.05 mol), dimer diamine (product name Priamine 1074 Croda) 20.18 parts (0.0375 mol), and toluene 20 parts were added, and a nitrogen atmosphere was added. By reacting at 100° C. for 8 hours, copolymer 1 represented by the following formula (7) (a copolymer corresponding to the copolymer (C), which is an intermediate raw material of the polymer compound of the present invention, is obtained. , Y in formula (7) represents a residue obtained by removing two amino groups from dimer diamine.) was obtained as a toluene solution. This copolymer 1 had a number average molecular weight of 2,700 and a weight average molecular weight of 15,100. The value of n in formula (7) is calculated to be 2.5 from the number average molecular weight. To the toluene solution of this copolymer, 1.16 parts (0.0075 mol) of Karenz MOI (manufactured by Showa Denko KK) was added and allowed to react at 60°C for 1 hour. mol) was added and further reacted at 60° C. for 1 hour. After adding 100 parts of toluene to dilute the reaction solution, 50 parts of pure water was added and washed with water while stirring to remove by-produced acetic acid. After repeating washing with water until the aqueous layer became neutral, the toluene solution was concentrated to obtain a 25% by mass toluene solution of the polymer compound of the present invention. In the resulting polymer compound, 10% of X in Formula (1) is presumed to be the Karenz MOI-derived moiety and the remainder to be acetyl groups.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
比較例1(比較用の高分子化合物の合成)
 カレンズMOIを加えて60℃で1時間反応させる工程を行わず、かつ無水酢酸の添加量を7.65部(0.075モル)に変更した以外は実施例1に準じた方法で、比較用の高分子化合物の25質量%トルエン溶液を得た。得られた高分子化合物は、式(1)のXの全てがアセチル基であると推測される。
Comparative Example 1 (Synthesis of polymer compound for comparison)
For comparison, in the same manner as in Example 1, except that the step of adding Karenz MOI and reacting at 60° C. for 1 hour was not performed and the amount of acetic anhydride added was changed to 7.65 parts (0.075 mol). A 25% by mass toluene solution of the polymer compound was obtained. It is presumed that all of the X's in formula (1) are acetyl groups in the obtained polymer compound.
実施例2、比較例2(樹脂組成物の調製)
 実施例1及び比較例1で得られた高分子化合物溶液10部に、ラジカル開始剤としてジクミルパーオキサイド0.05部を加えて均一に混合することにより本発明の樹脂組成物及び比較用の樹脂組成物をそれぞれ得た。
Example 2, Comparative Example 2 (Preparation of resin composition)
To 10 parts of the polymer compound solution obtained in Example 1 and Comparative Example 1, 0.05 part of dicumyl peroxide as a radical initiator was added and uniformly mixed to obtain the resin composition of the present invention and the comparative resin composition. A resin composition was obtained, respectively.
(樹脂組成物の硬化物の誘電特性、ガラス転移温度及び線膨張率(α1)の評価)
 アプリケーターを用いて、実施例2及び比較例2で得られた樹脂組成物を厚さ18μmの銅箔の鏡面上に280μmの厚さでそれぞれ塗布し、90℃で10分間加熱して溶剤を乾燥させ、フィルム状接着剤を得た。前記で得られた銅箔上のフィルム状接着剤を、真空オーブンを用いて180℃で1時間加熱硬化させた後、エッチング液に浸して銅箔を除去した。本発明のフィルム状接着剤及び比較用のフィルム状接着剤のいずれからもフィルムとして取り扱い可能な厚さ70μmの硬化物が得られたため、前記で得られた硬化物の誘電特性を評価した。誘電特性は、ネットワークアナライザー8719ET(アジレントテクノロジー製)を用いて、10GHzにおける誘電率と誘電正接を空洞共振法で測定した。またTMA(熱機械測定装置)を用いて、フィルム状接着剤の硬化物のガラス転移温度及び線膨張率(α1)を求めた。
結果を表1に示した。
(Evaluation of dielectric properties, glass transition temperature and linear expansion coefficient (α1) of cured product of resin composition)
Using an applicator, each of the resin compositions obtained in Example 2 and Comparative Example 2 was applied to a mirror surface of a copper foil having a thickness of 18 μm to a thickness of 280 μm, and heated at 90° C. for 10 minutes to dry the solvent. to obtain a film-like adhesive. The film-like adhesive on the copper foil obtained above was cured by heating at 180° C. for 1 hour using a vacuum oven, and then the copper foil was removed by immersion in an etchant. A cured product with a thickness of 70 μm that can be handled as a film was obtained from both the film-like adhesive of the present invention and the film-like adhesive for comparison, so the dielectric properties of the cured products obtained above were evaluated. Dielectric properties were obtained by measuring dielectric constant and dielectric loss tangent at 10 GHz by cavity resonance method using network analyzer 8719ET (manufactured by Agilent Technologies). Also, the glass transition temperature and linear expansion coefficient (α1) of the cured film adhesive were obtained using a TMA (thermo-mechanical measurement apparatus).
Table 1 shows the results.
(樹脂組成物の硬化物の接着強度及び耐熱性の評価)
 アプリケーターを用いて、実施例2及び比較例2で得られた樹脂組成物を厚さ12μmの高周波用低粗度銅箔(CF-T4X-SV:福田金属箔粉株式会社製)のマット面上に50μmの厚さでそれぞれ塗布し、90℃で10分間加熱して溶剤を乾燥させることにより本発明の樹脂組成物からなるフィルム状接着剤を有する銅箔を得た。前記で得られた銅箔の接着剤面上に、別の銅箔(使用した銅箔は同じ種類の銅箔)のマット面を重ねあわせて真空プレス中で3MPaの圧力で1時間加熱硬化させた後、銅箔間の90°引きはがし強さ(接着強度)をオートグラフAGX-50(株式会社島津製作所製)を用いて測定した。また張り合わせた銅箔を3cm角に切り出し、288℃の半田浴に浮かべて、銅箔上に膨れ、剥がれなどの異常が発生するまでの時間を測定した。結果を表1に示した。
(Evaluation of adhesive strength and heat resistance of cured product of resin composition)
Using an applicator, the resin compositions obtained in Example 2 and Comparative Example 2 are applied to the matte surface of a 12 μm thick high-frequency low-roughness copper foil (CF-T4X-SV: manufactured by Fukuda Metal Foil & Powder Co., Ltd.). A copper foil having a film-like adhesive made of the resin composition of the present invention was obtained by coating each layer with a thickness of 50 μm and drying the solvent by heating at 90° C. for 10 minutes. On the adhesive side of the copper foil obtained above, the matte side of another copper foil (the copper foil used was the same type of copper foil) was superposed and heat-cured in a vacuum press at a pressure of 3 MPa for 1 hour. After that, the 90° peeling strength (adhesive strength) between the copper foils was measured using Autograph AGX-50 (manufactured by Shimadzu Corporation). A 3 cm square piece of the laminated copper foil was cut out and floated in a solder bath at 288° C., and the time until an abnormality such as swelling or peeling occurred on the copper foil was measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例3(本発明の樹脂組成物の調製)
 実施例1で得られた本発明の高分子化合物溶液10部に、ラジカル開始剤としてジクミルパーオキサイド0.05部及びブタジエンとスチレンの共重合体ライコン100(クレイバレー社製)0.5部を加えて均一に混合することにより本発明の樹脂組成物を得た。
Example 3 (Preparation of the resin composition of the present invention)
To 10 parts of the polymer compound solution of the present invention obtained in Example 1, 0.05 parts of dicumyl peroxide as a radical initiator and 0.5 parts of butadiene-styrene copolymer LYCON 100 (manufactured by Clay Valley) were added. was added and uniformly mixed to obtain the resin composition of the present invention.
実施例4(本発明の樹脂組成物の調製)
 実施例1で得られた本発明の高分子化合物溶液10部に、ラジカル開始剤としてジクミルパーオキサイド0.05部及び変性ポリフェニレンエーテル樹脂SA-9000(サビック合同会社製)0.5部を加えて均一に混合することにより本発明の樹脂組成物を得た。
Example 4 (Preparation of the resin composition of the present invention)
To 10 parts of the polymer compound solution of the present invention obtained in Example 1, 0.05 part of dicumyl peroxide as a radical initiator and 0.5 part of modified polyphenylene ether resin SA-9000 (manufactured by Subic LLC) were added. The resin composition of the present invention was obtained by mixing them uniformly.
実施例5(本発明の樹脂組成物の調製)
 実施例1で得られた本発明の高分子化合物溶液10部に、ラジカル開始剤としてジクミルパーオキサイド0.05部及びイミド延長されたビスマレインイミド樹脂BMI-3000(デザイナーモレキュールズインク社製)0.5部を加えて均一に混合することにより本発明の樹脂組成物を得た。
Example 5 (Preparation of the resin composition of the present invention)
To 10 parts of the polymer compound solution of the present invention obtained in Example 1, 0.05 part of dicumyl peroxide as a radical initiator and imide-extended bismaleimide resin BMI-3000 (manufactured by Designer Molecules Inc.) ) was added and uniformly mixed to obtain the resin composition of the present invention.
(樹脂組成物の硬化物の評価)
 上記の「樹脂組成物の硬化物の誘電特性、ガラス転移温度及び線膨張率(α1)の評価」及び「樹脂組成物の硬化物の接着強度及び耐熱性の評価」と同じ方法で、実施例3乃至5で得られた樹脂組成物の諸特性を評価した。結果を表2に示した。
(Evaluation of cured product of resin composition)
In the same manner as the above "Evaluation of dielectric properties, glass transition temperature and coefficient of linear expansion (α1) of the cured product of the resin composition" and "Evaluation of adhesive strength and heat resistance of the cured product of the resin composition", Examples Various properties of the resin compositions obtained in 3 to 5 were evaluated. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 以上のように、本発明の高分子化合物は、ラジカル開始剤を併用して硬化することによりフレキシブルなフィルムとすることが可能であり、かつ該硬化物は優れた誘電特性、接着性及び耐熱性を示した。

 
As described above, the polymer compound of the present invention can be made into a flexible film by curing together with a radical initiator, and the cured product has excellent dielectric properties, adhesiveness and heat resistance. showed that.

Claims (7)

  1. 下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R、R、R及びRは、それぞれ独立にメチル基、エチル基、イソプロピル基又はターシャリーブチル基を表す。Xは、それぞれ独立にアセチル基又は下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは水素原子又はメチル基を表す。)
    で表される部分構造を表すが、複数存在するXの少なくとも一つはアセチル基であり、かつ複数存在するXの5%以上は式(2)で表される構造である。Yはジアミノ化合物から二つのアミノ基を除いた残基を表す。nは繰り返し単位数の平均値であって1乃至100の範囲にある。)で表される高分子化合物。
    Formula (1) below
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), R 1 , R 2 , R 3 and R 4 each independently represent a methyl group, ethyl group, isopropyl group or tertiary butyl group. X each independently represents an acetyl group or the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), R5 represents a hydrogen atom or a methyl group.)
    At least one of the multiple X's is an acetyl group, and 5% or more of the multiple X's are structures represented by formula (2). Y represents a residue obtained by removing two amino groups from a diamino compound. n is the average number of repeating units and ranges from 1 to 100; ) is a polymer compound represented by
  2. 請求項1に記載の高分子化合物及びラジカル開始剤を含む樹脂組成物。 A resin composition comprising the polymer compound according to claim 1 and a radical initiator.
  3. ラジカル反応性の官能基を有するラジカル反応性モノマーをさらに含む請求項2に記載の樹脂組成物。 3. The resin composition according to claim 2, further comprising a radically reactive monomer having a radically reactive functional group.
  4. 一分子中に二つ以上ラジカル反応性の官能基を有するラジカル反応性ポリマーをさらに含む請求項2に記載の樹脂組成物。 3. The resin composition according to claim 2, further comprising a radical-reactive polymer having two or more radical-reactive functional groups in one molecule.
  5. 請求項2乃至4のいずれか一項に記載の樹脂組成物からなるフィルム状接着剤。 A film adhesive comprising the resin composition according to any one of claims 2 to 4.
  6. 請求項2乃至4のいずれか一項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 2 to 4.
  7. 請求項5に記載のフィルム状接着剤の硬化物。

     
    A cured product of the film adhesive according to claim 5 .

PCT/JP2022/045421 2021-12-21 2022-12-09 Polymeric compound and resin composition containing said compound WO2023120234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207021 2021-12-21
JP2021207021A JP2023092046A (en) 2021-12-21 2021-12-21 Curable polymer compound, and resin composition containing the compound

Publications (1)

Publication Number Publication Date
WO2023120234A1 true WO2023120234A1 (en) 2023-06-29

Family

ID=86902361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045421 WO2023120234A1 (en) 2021-12-21 2022-12-09 Polymeric compound and resin composition containing said compound

Country Status (3)

Country Link
JP (1) JP2023092046A (en)
TW (1) TW202337961A (en)
WO (1) WO2023120234A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241300A (en) * 2005-03-03 2006-09-14 Wakayama Prefecture Polyaminobismaleimide prepolymer, method for producing polyaminobismaleimide prepolymer, and polyaminobismaleimide resin
US20110152466A1 (en) * 2008-08-13 2011-06-23 Designer Molecules, Inc. Amide-extended crosslinking compounds and methods for use thereof
JP2018012748A (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin film for forming semiconductor redistribution line layer, composite film for forming semiconductor redistribution line layer, semiconductor device using the same, and method for manufacturing semiconductor device
JP2018016793A (en) * 2016-07-25 2018-02-01 晉一化工股▲ふん▼有限公司Chin Yee Chemical Industries Co., Ltd. Thermosetting resin, and composition and application of the same
JP2018059100A (en) * 2016-10-05 2018-04-12 明和化成株式会社 Maleimide resin and method for producing the same, maleimide resin composition and cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241300A (en) * 2005-03-03 2006-09-14 Wakayama Prefecture Polyaminobismaleimide prepolymer, method for producing polyaminobismaleimide prepolymer, and polyaminobismaleimide resin
US20110152466A1 (en) * 2008-08-13 2011-06-23 Designer Molecules, Inc. Amide-extended crosslinking compounds and methods for use thereof
JP2018012748A (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin film for forming semiconductor redistribution line layer, composite film for forming semiconductor redistribution line layer, semiconductor device using the same, and method for manufacturing semiconductor device
JP2018016793A (en) * 2016-07-25 2018-02-01 晉一化工股▲ふん▼有限公司Chin Yee Chemical Industries Co., Ltd. Thermosetting resin, and composition and application of the same
JP2018059100A (en) * 2016-10-05 2018-04-12 明和化成株式会社 Maleimide resin and method for producing the same, maleimide resin composition and cured product

Also Published As

Publication number Publication date
TW202337961A (en) 2023-10-01
JP2023092046A (en) 2023-07-03

Similar Documents

Publication Publication Date Title
JP6872081B2 (en) Polyamic acid resin, polyimide resin and resin composition containing these
US8784682B2 (en) Thermosetting composition and printed circuit board using the same
JP6429342B2 (en) Thermosetting resin and its composition, application
JP2019182989A (en) Modified polyphenylene ether resin-based high molecular copolymer compound, terminal-modified polymer compound obtained by using said high molecular copolymer compound, and resin composition containing these compounds
WO2022004583A1 (en) Isocyanate-modified polyimide resin, resin composition and cured product of same
JP2021063182A (en) Polymer compound, and resin composition containing the compound
JP7324770B2 (en) Random copolymer compound, terminal-modified polymer compound and resin composition containing these compounds
TW202340323A (en) Polyimide resin, resin composition containing the polyimide resin and cured product thereof
WO2023120234A1 (en) Polymeric compound and resin composition containing said compound
JP7325382B2 (en) Curable polymer compound and resin composition containing the compound
JP2023039241A (en) Polyimide resin, resin composition containing the polyimide resin and cured product of the same
WO2019203112A1 (en) Random copolymer compound, terminal-modified polymer compound, and resin composition including said compounds
JP2023056332A (en) Curable polymer compound, and resin composition comprising the same
JP2023023334A (en) Resin composition containing curable high-molecular-weight compound
WO2022191056A1 (en) Resin composition including curable polymer compound
JP2023179860A (en) Polyimide resin composition and cured product thereof
JP2021075664A (en) Low dielectric loss tangent resin composition
JP2023087152A (en) Polyimide resin, resin composition comprising polyimide resin and cured product thereof
CN116724061A (en) Resin composition containing curable polymer compound
JP2023157103A (en) Modified styrenic elastomer, resin composition containing the same, and cured product thereof
JP2023108082A (en) Polyimide resin, resin composition comprising the polyimide resin and cured product thereof
JP2020111630A (en) Random copolymer compound, terminal-modified polymer compound, and resin composition including these compounds
TW202332716A (en) Polyimide resin, resin composition containing the polyimide resin and cured product thereof
JP2022030396A (en) Curable polymer compound, and resin composition containing the compound
WO2023013128A1 (en) Resin composition containing curable high-molecular-weight compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910945

Country of ref document: EP

Kind code of ref document: A1