WO2023120155A1 - Method for manufacturing glass article, and device for manufacturing glass article - Google Patents

Method for manufacturing glass article, and device for manufacturing glass article Download PDF

Info

Publication number
WO2023120155A1
WO2023120155A1 PCT/JP2022/044867 JP2022044867W WO2023120155A1 WO 2023120155 A1 WO2023120155 A1 WO 2023120155A1 JP 2022044867 W JP2022044867 W JP 2022044867W WO 2023120155 A1 WO2023120155 A1 WO 2023120155A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
side wall
glass
distance
pair
Prior art date
Application number
PCT/JP2022/044867
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 鈴木
孝介 愛内
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023120155A1 publication Critical patent/WO2023120155A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/03Tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass

Definitions

  • the present invention relates to a method and apparatus for producing glass articles from molten glass produced in a melting furnace, and particularly to improvements in technology for heating and melting frit in a melting furnace to obtain molten glass.
  • the method of manufacturing glass articles such as glass fibers and glass plates includes a melting process of heating and melting glass raw materials in a melting furnace.
  • Patent Document 1 molten glass by heating and melting the frit by heating the molten glass using electrodes arranged on the bottom wall of the melting furnace.
  • the molten glass obtained in the melting process flows out from the melting furnace into the transfer channel leading to the molding section of the glass article.
  • an object of the present invention is to enable the molten glass to be sufficiently heated around the side wall in the melting furnace, and to transfer the good quality molten glass from the melting furnace to the molding portion of the glass article. be.
  • a first aspect of the present invention which has been devised to solve the above problems, is a glass article having a melting step for obtaining molten glass by heating and melting frit using electrodes arranged on the bottom wall of a melting furnace. characterized in that the electrodes are positioned such that a portion of the current conducted by the electrodes flows to the side walls of the melting furnace.
  • part of the current supplied by the electrodes flows through the side walls of the melting furnace, thereby heating the side walls, so that the temperature drop of the molten glass around the side walls in the melting furnace can be reduced. . Therefore, the molten glass can be sufficiently heated around the side walls, and good quality molten glass can be transferred from the melting furnace toward the molding portion of the glass article.
  • the maximum value of the amount of heat generated per unit area on the side wall is 20% or more of the amount of heat released from the side wall, it is possible to reliably reduce the temperature drop of the molten glass around the side wall in the melting furnace.
  • the maximum amount of heat generated per unit area at the side wall is 150% or less of the amount of heat released from the side wall, it is possible to reduce thermal damage to the side wall.
  • the maximum value of the amount of heat generated per unit area on the sidewall is calculated by [Equation 5] and [Equation 7] described later.
  • the amount of heat radiation from the side walls is measured using, for example, a heat flow meter (HFM-201 manufactured by Kyoto Electronics Industry Co., Ltd.) and a heat flow sensor (T750S-B manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the electrodes are arranged such that a pair of electrodes through which current flows between them is arranged in a direction along the inner wall surface of the side wall closest to the electrodes, and the pair of electrodes is arranged along the inner wall surface of the side wall. It is preferable that a plurality of pairs are arranged in a direction intersecting with.
  • the mode of arranging the electrodes becomes a mode in which the current can be efficiently passed through the side wall.
  • the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L) is 3.0 or less. .
  • the electrode closest to the inner wall surface of the side wall will be close to the inner wall surface of the side wall, allowing a sufficient current to flow through the side wall.
  • the electrodes may be arranged so as to satisfy the following [Equation 1].
  • A is the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L);
  • Q is the power (W) supplied to the pair of electrodes;
  • D is the depth (m) of the molten glass in the melting furnace;
  • p is the distance (m) between the electrode pairs in the direction orthogonal to the inner wall surface of the side wall;
  • L is the distance (m) between the pair of electrodes, t is the thickness (m) of the sidewall, W is the heat radiation amount (W/m 2 ) from the side walls.
  • the electrodes may be arranged so as to satisfy the following [Equation 2].
  • the meanings of A, Q, D, p, L, t, and W are the same as those in the above formula (1).
  • the electrodes may be arranged so as to satisfy the following [Equation 3].
  • the meanings of A, Q, D, p, L, t, and W are the same as those in the above formula (1).
  • the ratio (R2/R1) of the specific resistance R2 of the molten glass at the predetermined heating temperature to the specific resistance R1 of the refractory bricks forming the side wall at the predetermined heating temperature is preferably 1 or more.
  • the molten glass may be E-glass, and the firebricks forming the side walls may be chrome bricks.
  • E-glass means a composition defined by ASTM D578-05 4.2.2.
  • the above-mentioned ratio (R2/R1) becomes 1 or more, and a sufficient amount of current can be passed through the side wall, so that insufficient heat generation of the side wall is eliminated and the molten glass is heated around the side wall. can be performed more appropriately.
  • E-glass is often used as the molten glass
  • the side walls of the melting furnace are often made of chrome bricks. Therefore, the molten glass here and the melting furnace with side walls here can be effectively used, in particular, in a method for producing glass fibers.
  • a second aspect of the present invention which has been devised to solve the above problems, is the manufacture of a glass article equipped with a melting furnace that heats and melts glass raw materials using electrodes arranged on the bottom wall to produce molten glass.
  • An apparatus characterized in that the electrodes are arranged such that part of the current conducted by the electrodes flows in the side walls of the melting furnace.
  • the present invention it becomes possible to sufficiently heat the molten glass around the side wall in the melting furnace, and it becomes possible to transfer the good quality molten glass from the melting furnace toward the molding portion of the glass article.
  • FIG. 1 is a schematic plan view showing an arrangement of electrodes around a side wall of a melting furnace, which is a component of the apparatus for manufacturing glass articles according to an embodiment of the present invention;
  • FIG. It is a graph which shows the 1st simulation result regarding the manufacturing method of the glass article which concerns on embodiment of this invention. It is a graph which shows the 2nd simulation result regarding the manufacturing method of the glass article which concerns on embodiment of this invention. It is a graph which shows the simulation result in the Example of this invention.
  • FIG. 1 is a vertical cross-sectional side view illustrating the schematic configuration of the main part of the glass article manufacturing apparatus according to the present embodiment.
  • a melting furnace 1 provided in this manufacturing apparatus melts frit (solid raw material) Ga by heating including electric heating to generate molten glass Gm.
  • This melting furnace 1 has a melting space defined by a bottom wall 1a and a side wall 1b made of refractory bricks. The upper part of the melting space is covered with the ceiling wall 1c. Molten glass Gm produced in the melting space flows out from the outlet 1d of the melting furnace 1 into the transfer channel 2, and is transferred through the transfer channel 2 toward the molding portion (not shown) of the glass article.
  • the molding portion of the glass article is a bushing that molds the glass fibers.
  • Examples of the molten glass Gm transferred toward the bushing include E glass (glass having an alkali content of 2% or less), D glass (low dielectric constant glass), AR glass (alkali resistant glass), C glass (acid resistant glass), glass), M glass (high elastic modulus glass), S glass (high strength, high elastic modulus glass), T glass (high strength, high elastic modulus glass), H glass (high dielectric constant glass), NE glass (low dielectric constant glass) can be mentioned.
  • the density of glass is, for example, 2.0-3.0 g/cm 3 .
  • a plurality of electrodes 3 are arranged on the bottom wall 1a of the melting furnace 1 for electrically heating the molten glass Gm. These electrodes 3 protrude upward through the bottom wall 1a and are immersed in the molten glass Gm.
  • the lower limit of the projection length d upward from the bottom wall 1a of these electrodes 3 is, for example, 20% or more, preferably 30% or more, more preferably 40% or more of the depth D of the molten glass Gm.
  • the upper limit of the projection length d is, for example, 80% or less, preferably 70% or less, more preferably 60% or less of the depth D of the molten glass Gm.
  • a method is adopted in which electric heating by these electrodes 3 and gas combustion heating by a burner are used together, but a method in which gas combustion heating by a burner is omitted may be used.
  • a screw feeder 4 as a raw material feeder is arranged on the upper part of the side wall 1b of the melting furnace 1. This screw feeder 4 sequentially supplies frit Ga to a portion of the liquid surface Gma of the molten glass Gm.
  • other raw material feeders such as a pusher and a vibrating feeder may be used.
  • the manufacturing apparatus having the above configuration heats and melts the frit Ga using the electrode 3 arranged on the bottom wall 1a of the melting furnace 1 to obtain the molten glass Gm. A melting process is performed.
  • FIG. 2 is a cross-sectional plan view showing how the electrodes 3 are arranged with respect to the side wall 1b.
  • the side wall 1b has a square shape (preferably a rectangular shape) in a plan view, it has four faces, but for the sake of convenience, only the side wall 1b corresponding to one face is shown in the figure. .
  • the electrodes 3 are arranged such that a pair of electrodes 3 through which current flows between them are arranged in a direction along the inner wall surface 1z of the side wall 1b closest to the electrodes 3. A plurality of pairs (two pairs in the figure) are arranged in a direction intersecting the inner wall surface 1z of 1b.
  • a voltage (for example, a single-phase AC voltage) is applied between the first electrode 3a and the second electrode 3b and between the third electrode 3c and the fourth electrode 3d. Accordingly, current flows between the first electrode 3a and the second electrode 3b and between the third electrode 3c and the fourth electrode 3d.
  • the direction along the inner wall surface 1z is preferably a direction parallel to the inner wall surface 1z, but a direction inclined within 10° to one side or within 10° to the other side with respect to the parallel direction. There may be.
  • the direction intersecting the inner wall surface 1z is preferably a direction perpendicular to the inner wall surface 1z.
  • the first characteristic configuration is that the electrodes 3 are arranged so that part of the current flowing between the electrodes 3 flows through the sidewall 1b. According to this, the side wall 1b is heated by the current flowing through the side wall 1b. In this case, the temperature of the molten glass Gm tends to drop around the side wall 1b in the melting furnace 1, but the temperature drop is reduced by heating the side wall 1b. Thereby, the molten glass Gm can be sufficiently heated around the side wall 1b, and the molten glass Gm of good quality can be produced in the melting furnace 1. Therefore, it becomes possible to transfer the molten glass Gm of good quality toward the bushing through the transfer channel 2 .
  • a second characteristic configuration is that under the arrangement of the electrodes 3 as described above, the maximum amount of heat generated per unit area on the sidewall 1b is 20% or more and 150% or less of the amount of heat released from the sidewall 1b.
  • the difference is that the current flows through the side wall 1b so that In this case, if the maximum amount of heat generated per unit area at the side wall 1b is less than 20% of the amount of heat released from the side wall 1b, the temperature drop of the molten glass Gm around the side wall 1b should be sufficiently reduced. is difficult. On the other hand, if the maximum amount of heat generated per unit area at the side walls 1b exceeds 150% of the amount of heat released from the side walls 1b, the side walls 1b may be thermally damaged. On the other hand, if the numerical range is 20% or more and 150% or less as described above, the temperature drop of the molten glass Gm around the side wall 1b is reliably reduced, and the heat of the side wall 1b Damage etc. can be prevented.
  • the third characteristic configuration is the distance Lx from the electrode 3 (first electrode 3a and second electrode 3b) closest to the inner wall surface 1z of the side wall 1b to the inner wall surface 1z of the side wall 1b with respect to the distance L between the pair of electrodes 3.
  • the difference is that the ratio (Lx/L) of (hereinafter referred to as the shortest distance Lx from the electrode 3 to the side wall 1b) is 3.0 or less. If the ratio (Lx/L) is 3.0 or less, the first electrode 3a and the second electrode 3b are close to the inner wall surface 1z of the side wall 1b, allowing sufficient current to flow through the side wall 1b.
  • the fourth characteristic configuration is that the ratio (R2/R1) of the specific resistance R2 of the molten glass Gm at the predetermined heating temperature to the specific resistance R1 of the refractory bricks constituting the side wall 1b at the predetermined heating temperature is preferably 1 As described above, it is more preferable that the number is 2 or more. In this case, a sufficient amount of current can be passed through the side wall 1b, so that insufficient heat generation of the side wall 1b can be eliminated, and the molten glass Gm can be heated more appropriately around the side wall 1b. Become.
  • the specific conditions under which the simulation was performed were as follows: the glass depth D was 1 m; The thickness d was set to 0.5 m, and the thickness t of the side wall 1b was set to 0.15 m. Then, four conditions of 1 m, 1.33 m, 1.66 m, and 2 m for the distance L between the pair of electrodes 3 in the direction along the inner wall surface 1z of the side wall 1b were tested. Moreover, the ratio A (Lx/L) of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the pair of electrodes 3 was carried out under three conditions of 0.5, 1.0, and 2.0.
  • the ratio B (R2/R1) of the specific resistance R2 of the molten glass Gm to the specific resistance R1 of the side wall 1b was measured under two conditions of 4 and 8.
  • the specific resistance ratio B is the ratio when the sidewall 1b is made of chrome bricks and E glass is used as the molten glass Gm.
  • the side wall 1b may be made of a refractory material other than chrome bricks, such as an electroformed brick, or a glass other than the E glass listed above may be used as the molten glass Gm.
  • the ratio B of the resistivity is preferably 1 or more as described above.
  • FIG. 3 is a graph showing the ratio C ( ⁇ max / ⁇ ave ) of the maximum heat generation density ⁇ max of the sidewall 1b to the average heat generation density ⁇ ave of the molten glass Gm when the specific resistance ratio B is 4. be.
  • FIG. 4 is a graph showing the ratio C ( ⁇ max / ⁇ ave ) of the maximum heat generation density ⁇ max of the sidewall 1b to the average heat generation density ⁇ ave of the molten glass Gm when the specific resistance ratio B is 8. be.
  • the average calorific value ⁇ ave of the molten glass Gm is the average value of the calorific value per unit volume of the molten glass Gm.
  • the maximum heat generation density ⁇ max of the side wall 1b is the maximum value of the heat generation amount per unit volume of the side wall 1b.
  • 3 and 4 show numerical values for the four conditions of the distance L between the electrodes 3 and the three conditions of the ratio A of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the electrodes 3. Data obtained for a total of 12 types are plotted.
  • the average heat generation density ⁇ ave of the molten glass Gm is represented by the following [Equation 5].
  • Q is the power (W) supplied to the pair of electrodes 3
  • D is the depth (m) of the molten glass Gm in the melting furnace 1
  • p is the interval (m) between the three pairs of electrodes in the direction intersecting the inner wall surface 1z of the side wall 1b
  • L is the distance (m) between the pair of electrodes 3 in the direction along the sidewall 1b.
  • the maximum heat generation density ⁇ max of the side wall 1b is represented by the following [Equation 6], which is a modification of the above [Equation 4].
  • the maximum value ⁇ max ⁇ t of the heat generation amount per unit area at the side wall 1b must be 20% or more of the heat dissipation amount W from the side wall 1b. is preferably heated (for reasons already mentioned).
  • the following [Equation 8] formula needs to hold.
  • W is the heat radiation amount (W/m 2 ) from the side wall 1b
  • t is the thickness (m) of the side wall 1b.
  • the side wall 1b should be formed such that the maximum value ⁇ max ⁇ t of the heat generation amount per unit area of the side wall 1b is 50% or more of the heat radiation amount W from the side wall 1b. Heating is preferred.
  • the following [Equation 9] formula must be established. It should be noted that the above-described [Equation 2] is a modified one obtained by substituting the above [Equation 5] into the following [Equation 9].
  • the maximum value ⁇ max ⁇ t of the amount of heat generated per unit area at the side walls 1b is 1.5 times or less the amount W of heat dissipation from the side walls 1b.
  • the following [Equation 10] formula must be established. It should be noted that the above-described [Equation 3] is a modified one obtained by substituting the above [Equation 5] into the following [Equation 10].
  • the arrangement of the electrodes 3 was described with respect to only the side wall 1b corresponding to one surface of the melting furnace 1.
  • the side wall 1b corresponding to the surface may also be subject to the same arrangement mode of the electrodes 3.
  • FIG. When the side wall 1b has a square shape in plan view as in the above embodiment, the side wall 1b is positioned between the side wall 1b on which the raw material feeder (screw feeder 4) is arranged and the side wall 1b on which the outflow port 1d is arranged. It is preferable to target both side walls 1b.
  • the pair of electrodes 3 arranged in the direction along the inner wall surface 1z of the side wall 1b is exemplified in the case where two pairs are arranged in the direction intersecting the inner wall surface 1z of the side wall 1b. Three or more pairs may be arranged in the crossing direction.
  • the present invention is applied to the method and apparatus for producing glass fibers, but the present invention can also be applied to the method and apparatus for producing glass articles other than glass fibers (for example, glass plates and glass tubes). good too.
  • a plurality of pairs of electrodes are arranged along the inner wall surface 1z of the side wall 1b of the melting furnace 1 in a direction intersecting (perpendicular to) the inner wall surface 1z of the side wall 1b.
  • the depth D of the molten glass Gm in the melting furnace 1 is 1 m
  • the distance L between the pair of electrodes 3 in the direction along the inner wall surface 1z of the melting furnace 1 is 1.5 m
  • the inner wall surface 1z of the melting furnace 1 The distance p between the three pairs of electrodes in the intersecting direction was 0.5 m
  • the projection length d of the electrode 3 from the bottom wall 1a was 0.5 m
  • the thickness t of the side wall 1b was 0.15 m.
  • a power of 100 kW was supplied to the electrodes 3 per pair. Therefore, the average heat generation density ⁇ ave of the molten glass Gm in this example is 133.3 kW/m 3 according to the formula [Equation 5].
  • the ratio B (R2/R1) of the specific resistance R2 of the molten glass to the specific resistance R1 of the side wall 1b was set to 6.
  • the amount of heat dissipation W from the side wall 1b can be measured using, for example, a heat flow meter (HFM-201 manufactured by Kyoto Electronics Industry Co., Ltd.) and a heat flow sensor (T750S-B manufactured by Kyoto Electronics Industry Co., Ltd.). m2 .
  • the maximum heat generation density of the side wall 1b is obtained from the equation [Equation 8].
  • ⁇ max must be 2.7 kW/m 3 or more.
  • the ratio A of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the pair of electrodes 3 must be 1.89 or less.
  • the maximum heat generation density ⁇ max of the side wall 1b is set to 6.5 from the formula [Equation 9]. It is necessary to make it 7 kW/m 3 or more. Along with this, it is necessary to set the ratio A to 1.47 or less according to the formula [Equation 2].
  • FIG. 5 shows the results.
  • a curve S1 shown in FIG. 5 represents the expression [6]. The above simulation results are discussed below with reference to FIG.
  • Equation 3 the simulation result when the ratio A is 1.0 (0.97 or more as described above) shows that the maximum heat generation density is 16.9 kW / m 3 , which is 150% of the heat dissipation amount W is smaller than the above-mentioned 20 kW/m 3 corresponding to .
  • the simulation results when the ratio A is set to 0.8 show that the maximum heat generation density ⁇ max is 27.4 kW/m 3 , which corresponds to 150% of the heat dissipation amount W. greater than 20 kW/m 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

This method for manufacturing a glass article involves a melting step for heating and melting a glass raw material Ga using an electrode 3 disposed on a bottom wall 1a of a melting furnace 1 to obtain melted glass Gm, wherein the electrode 3 is disposed such that part of current distributed by the electrode 3 flows to a side wall 1b of the melting furnace 1.

Description

ガラス物品の製造方法及びガラス物品の製造装置Glass article manufacturing method and glass article manufacturing apparatus
 本発明は、溶融炉で生成した溶融ガラスからガラス物品を製造する方法及び装置に係り、特に、溶融炉でガラス原料を加熱溶融して溶融ガラスを得るための技術の改良に関する。 The present invention relates to a method and apparatus for producing glass articles from molten glass produced in a melting furnace, and particularly to improvements in technology for heating and melting frit in a melting furnace to obtain molten glass.
 周知のように、ガラス繊維やガラス板などのガラス物品の製造方法は、溶融炉でガラス原料を加熱溶融する溶融工程を備えている。 As is well known, the method of manufacturing glass articles such as glass fibers and glass plates includes a melting process of heating and melting glass raw materials in a melting furnace.
 この溶融工程では、溶融炉の底壁に配置された電極を用いて溶融ガラスを通電加熱することにより、ガラス原料を加熱溶融して溶融ガラスを得ることが公知となっている(特許文献1、2参照)。 In this melting step, it is known to obtain molten glass by heating and melting the frit by heating the molten glass using electrodes arranged on the bottom wall of the melting furnace (Patent Document 1, 2).
 溶融工程で得られた溶融ガラスは、溶融炉からガラス物品の成形部に通じる移送流路に流出する。 The molten glass obtained in the melting process flows out from the melting furnace into the transfer channel leading to the molding section of the glass article.
特開2003-183031号公報Japanese Patent Application Laid-Open No. 2003-183031 特開2019-34871号公報JP 2019-34871 A
 ところで、特許文献1、2に開示のように溶融炉の底壁に電極を配置する手法では、溶融炉内の熱が側壁を通じて炉外に放熱される。これに対して何ら対策を講じなければ、溶融炉内の側壁の周辺で温度低下が生じ、溶融ガラスを適切に加熱することが困難になる。この場合には、十分に加熱溶融されていないガラス原料が溶融炉から移送流路に流出し、良質の溶融ガラスの供給に支障が生じるおそれがある。また、溶融炉内の側壁の周辺で溶融ガラスの粘度が上昇して停滞層が形成され、停滞層の溶融ガラスが溶融炉から移送流路に流出すると、得られるガラス物品に泡や脈理が発生するおそれがある。これによっても、良質の溶融ガラスの供給に支障が生じるおそれがある。 By the way, in the method of arranging the electrodes on the bottom wall of the melting furnace as disclosed in Patent Documents 1 and 2, the heat inside the melting furnace is radiated out of the furnace through the side wall. If no measures are taken against this, a temperature drop will occur around the side walls in the melting furnace, making it difficult to properly heat the molten glass. In this case, frit that has not been sufficiently heated and melted may flow out of the melting furnace into the transfer flow path, thereby interfering with the supply of good quality molten glass. In addition, when the viscosity of the molten glass rises around the side wall in the melting furnace to form a stagnant layer, and the molten glass in the stagnant layer flows out of the melting furnace into the transfer channel, bubbles and striae are formed in the resulting glass article. It may occur. This may also hinder the supply of good quality molten glass.
 以上の観点から、本発明の課題は、溶融炉内の側壁の周辺で溶融ガラスを十分に加熱できるようにして、溶融炉から良質の溶融ガラスをガラス物品の成形部に向かって移送することである。 In view of the above, an object of the present invention is to enable the molten glass to be sufficiently heated around the side wall in the melting furnace, and to transfer the good quality molten glass from the melting furnace to the molding portion of the glass article. be.
 上記課題を解決するために創案された本発明の第一の側面は、溶融炉の底壁に配置された電極を用いてガラス原料を加熱溶融して溶融ガラスを得る溶融工程を備えたガラス物品の製造方法であって、前記電極により通電される電流の一部が前記溶融炉の側壁に流れるように該電極を配置することに特徴づけられる。 A first aspect of the present invention, which has been devised to solve the above problems, is a glass article having a melting step for obtaining molten glass by heating and melting frit using electrodes arranged on the bottom wall of a melting furnace. characterized in that the electrodes are positioned such that a portion of the current conducted by the electrodes flows to the side walls of the melting furnace.
 このような構成によれば、電極により通電される電流の一部が溶融炉の側壁に流れることで、側壁が加熱されるため、溶融炉内の側壁の周辺で溶融ガラスの温度低下を低減できる。したがって、側壁の周辺で溶融ガラスを十分に加熱できるようになり、溶融炉から良質の溶融ガラスをガラス物品の成形部に向かって移送することが可能となる。 According to such a configuration, part of the current supplied by the electrodes flows through the side walls of the melting furnace, thereby heating the side walls, so that the temperature drop of the molten glass around the side walls in the melting furnace can be reduced. . Therefore, the molten glass can be sufficiently heated around the side walls, and good quality molten glass can be transferred from the melting furnace toward the molding portion of the glass article.
 この構成において、前記側壁での単位面積当たりの発熱量の最大値が前記側壁からの放熱量の20%以上で且つ150%以下になるように前記側壁に電流を流すことが好ましい。 In this configuration, it is preferable to apply current to the side wall so that the maximum amount of heat generated per unit area at the side wall is 20% or more and 150% or less of the amount of heat released from the side wall.
 ここで、側壁での単位面積当たりの発熱量の最大値が、側壁からの放熱量の20%以上であれば、溶融炉内の側壁の周辺で溶融ガラスの温度低下を確実に低減できる。一方、側壁での単位面積当たりの発熱量の最大値が、側壁からの放熱量の150%以下であれば、側壁が熱により損傷等することを低減できる。ここで、側壁での単位面積当たりの発熱量の最大値は、後述の[数5]及び[数7]によって算出するものとする。また、側壁からの放熱量は、例えば熱流計(京都電子工業株式会社製HFM-201)及び熱流センサー(京都電子工業株式会社製T750S-B)を用いて測定するものとする。 Here, if the maximum value of the amount of heat generated per unit area on the side wall is 20% or more of the amount of heat released from the side wall, it is possible to reliably reduce the temperature drop of the molten glass around the side wall in the melting furnace. On the other hand, if the maximum amount of heat generated per unit area at the side wall is 150% or less of the amount of heat released from the side wall, it is possible to reduce thermal damage to the side wall. Here, the maximum value of the amount of heat generated per unit area on the sidewall is calculated by [Equation 5] and [Equation 7] described later. The amount of heat radiation from the side walls is measured using, for example, a heat flow meter (HFM-201 manufactured by Kyoto Electronics Industry Co., Ltd.) and a heat flow sensor (T750S-B manufactured by Kyoto Electronics Industry Co., Ltd.).
 以上の構成において、前記電極を配置する態様は、相互間に電流が流れる一対の電極が、前記電極に最も近い前記側壁の内壁面に沿う方向に並び、前記一対の電極が前記側壁の内壁面と交差する方向に複数対並ぶ態様であることが好ましい。 In the above configuration, the electrodes are arranged such that a pair of electrodes through which current flows between them is arranged in a direction along the inner wall surface of the side wall closest to the electrodes, and the pair of electrodes is arranged along the inner wall surface of the side wall. It is preferable that a plurality of pairs are arranged in a direction intersecting with.
 このようにすれば、電極を配置する態様が、側壁に効率良く電流を流すことが可能な態様になる。 By doing so, the mode of arranging the electrodes becomes a mode in which the current can be efficiently passed through the side wall.
 この構成において、前記一対の電極間の距離Lに対する前記側壁の内壁面に最も近い電極から該側壁の内壁面までの距離Lxの比(Lx/L)が、3.0以下であることが好ましい。 In this configuration, it is preferable that the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L) is 3.0 or less. .
 ここで、上述の距離の比が、3.0以下であれば、側壁の内壁面に最も近い電極が、側壁の内壁面に近くなり、側壁に十分な電流を流すことができる。 Here, if the above distance ratio is 3.0 or less, the electrode closest to the inner wall surface of the side wall will be close to the inner wall surface of the side wall, allowing a sufficient current to flow through the side wall.
 以上の構成において、下記の[数1]式を満たすように前記電極を配置してもよい。
Figure JPOXMLDOC01-appb-M000004
 ここで、
 Aは、前記一対の電極間の距離Lに対する前記側壁の内壁面に最も近い電極から該側壁の内壁面までの距離Lxの比(Lx/L)であり、
 Qは、前記一対の電極への供給電力(W)であり、
 Dは、前記溶融炉内での溶融ガラスの深さ(m)であり、
 pは、前記側壁の内壁面と直交する方向の電極対間の間隔(m)であり、
 Lは、前記一対の電極間の距離(m)であり、
 tは、前記側壁の厚み(m)であり、
 Wは、前記側壁からの放熱量(W/m2)である。
In the above configuration, the electrodes may be arranged so as to satisfy the following [Equation 1].
Figure JPOXMLDOC01-appb-M000004
here,
A is the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L);
Q is the power (W) supplied to the pair of electrodes;
D is the depth (m) of the molten glass in the melting furnace;
p is the distance (m) between the electrode pairs in the direction orthogonal to the inner wall surface of the side wall;
L is the distance (m) between the pair of electrodes,
t is the thickness (m) of the sidewall,
W is the heat radiation amount (W/m 2 ) from the side walls.
 このようにすれば、側壁での単位面積当たりの発熱量の最大値を側壁からの放熱量の20%以上にするための具体的な電極の配置態様を得ることができる(詳細は、[発明を実施するための形態]の欄で説明する)。 In this way, it is possible to obtain a specific electrode arrangement mode for making the maximum amount of heat generated per unit area on the side wall 20% or more of the amount of heat released from the side wall (for details, refer to [Invention [Mode for implementation] column).
 さらに、下記の[数2]式を満たすように前記電極を配置してもよい。
Figure JPOXMLDOC01-appb-M000005
 ここで、A、Q、D、p、L、t、Wの意義は、上記[数1]式のそれらと同一である。
Furthermore, the electrodes may be arranged so as to satisfy the following [Equation 2].
Figure JPOXMLDOC01-appb-M000005
Here, the meanings of A, Q, D, p, L, t, and W are the same as those in the above formula (1).
 このようにすれば、側壁での単位面積当たりの発熱量の最大値を側壁からの放熱量の50%以上にするための具体的な電極の配置態様を得ることができる(詳細は、[発明を実施するための形態]の欄で説明する)。 In this way, it is possible to obtain a specific electrode arrangement mode for making the maximum amount of heat generated per unit area on the side wall 50% or more of the amount of heat released from the side wall (details are described in [Invention [Mode for implementation] column).
 加えて、下記の[数3]式を満たすように前記電極を配置してもよい。
Figure JPOXMLDOC01-appb-M000006
 ここで、A、Q、D、p、L、t、Wの意義は、上記[数1]式のそれらと同一である。
In addition, the electrodes may be arranged so as to satisfy the following [Equation 3].
Figure JPOXMLDOC01-appb-M000006
Here, the meanings of A, Q, D, p, L, t, and W are the same as those in the above formula (1).
 このようにすれば、側壁での単位面積当たりの発熱量の最大値を側壁からの放熱量の150%以下にするための具体的な電極の配置態様を得ることができる(詳細は、[発明を実施するための形態]の欄で説明する)。 In this way, it is possible to obtain a specific electrode arrangement mode for making the maximum amount of heat generated per unit area on the side wall 150% or less of the amount of heat released from the side wall (for details, refer to the [Invention [Mode for implementation] column).
 以上の構成において、所定加熱温度での前記側壁を構成する耐火煉瓦の比抵抗R1に対する前記所定加熱温度での溶融ガラスの比抵抗R2の比(R2/R1)が、1以上であることが好ましい。 In the above configuration, the ratio (R2/R1) of the specific resistance R2 of the molten glass at the predetermined heating temperature to the specific resistance R1 of the refractory bricks forming the side wall at the predetermined heating temperature is preferably 1 or more. .
 このようにすれば、側壁に十分な量の電流を流すことができるため、側壁の発熱不足をなくして、側壁の周辺での溶融ガラスの加熱をより適切に行うことが可能となる。 In this way, a sufficient amount of current can be passed through the side wall, so that insufficient heat generation of the side wall can be eliminated and the molten glass can be heated more appropriately around the side wall.
 以上の構成において、溶融ガラスはEガラスであり且つ前記側壁を構成する耐火煉瓦はクロム煉瓦であってもよい。なお、Eガラスとは、ASTM D578-05 4.2.2で定義される組成を意味する。 In the above configuration, the molten glass may be E-glass, and the firebricks forming the side walls may be chrome bricks. E-glass means a composition defined by ASTM D578-05 4.2.2.
 このようにすれば、上述の比(R2/R1)が1以上となり、側壁に十分な量の電流を流すことができるため、側壁の発熱不足をなくして、側壁の周辺での溶融ガラスの加熱をより適切に行うことが可能となる。また、ガラス繊維の製造方法では、溶融ガラスとしてEガラスを用いることが多く、溶融炉の側壁をクロム煉瓦で構成することが多い。したがって、ここでの溶融ガラス及びここでの側壁を有する溶融炉を、特にガラス繊維の製造方法に有効利用することができる。 In this way, the above-mentioned ratio (R2/R1) becomes 1 or more, and a sufficient amount of current can be passed through the side wall, so that insufficient heat generation of the side wall is eliminated and the molten glass is heated around the side wall. can be performed more appropriately. Further, in the method of producing glass fibers, E-glass is often used as the molten glass, and the side walls of the melting furnace are often made of chrome bricks. Therefore, the molten glass here and the melting furnace with side walls here can be effectively used, in particular, in a method for producing glass fibers.
 上記課題を解決するために創案された本発明の第二の側面は、底壁に配置された電極を用いてガラス原料を加熱溶融して溶融ガラスを生成する溶融炉を備えたガラス物品の製造装置であって、前記電極により通電される電流の一部が前記溶融炉の側壁に流れるように該電極が配置されていることに特徴づけられる。 A second aspect of the present invention, which has been devised to solve the above problems, is the manufacture of a glass article equipped with a melting furnace that heats and melts glass raw materials using electrodes arranged on the bottom wall to produce molten glass. An apparatus, characterized in that the electrodes are arranged such that part of the current conducted by the electrodes flows in the side walls of the melting furnace.
 これによれば、この製造装置と構成が実質的に同一の既述の製造方法と同一の作用効果を享受することができる。 According to this, it is possible to enjoy the same effect as the above-described manufacturing method having substantially the same configuration as this manufacturing apparatus.
 本発明によれば、溶融炉内の側壁の周辺で溶融ガラスを十分に加熱できるようになり、溶融炉から良質の溶融ガラスをガラス物品の成形部に向かって移送することが可能となる。 According to the present invention, it becomes possible to sufficiently heat the molten glass around the side wall in the melting furnace, and it becomes possible to transfer the good quality molten glass from the melting furnace toward the molding portion of the glass article.
本発明の実施形態に係るガラス物品の製造装置における主要部の概略構成を例示する縦断側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a longitudinal side view which illustrates schematic structure of the principal part in the manufacturing apparatus of the glass article which concerns on embodiment of this invention. 本発明の実施形態に係るガラス物品の製造装置の構成要素である溶融炉の側壁の周辺での電極の配置態様を示す概略平面図である。1 is a schematic plan view showing an arrangement of electrodes around a side wall of a melting furnace, which is a component of the apparatus for manufacturing glass articles according to an embodiment of the present invention; FIG. 本発明の実施形態に係るガラス物品の製造方法に関する第一のシミュレーション結果を示すグラフである。It is a graph which shows the 1st simulation result regarding the manufacturing method of the glass article which concerns on embodiment of this invention. 本発明の実施形態に係るガラス物品の製造方法に関する第二のシミュレーション結果を示すグラフである。It is a graph which shows the 2nd simulation result regarding the manufacturing method of the glass article which concerns on embodiment of this invention. 本発明の実施例でのシミュレーション結果を示すグラフである。It is a graph which shows the simulation result in the Example of this invention.
 以下、本発明の実施形態に係るガラス物品の製造方法及び製造装置について添付図面を参照しつつ説明する。 A method and apparatus for manufacturing a glass article according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
 図1は、本実施形態に係るガラス物品の製造装置における主要部の概略構成を例示する縦断側面図である。同図に示すように、この製造装置が備える溶融炉1は、通電加熱を含む加熱によって、ガラス原料(固体原料)Gaを溶融して溶融ガラスGmを生成するものである。この溶融炉1は、耐火煉瓦で構成された底壁1aと側壁1bとによって溶融空間が区画形成されている。なお、溶融空間の上方は、天井壁1cで覆われている。溶融空間で生成された溶融ガラスGmは、溶融炉1の流出口1dから移送流路2に流出し、移送流路2を通じてガラス物品の成形部(図示略)に向かって移送される。本実施形態では、ガラス物品の成形部は、ガラス繊維を成形するブッシングである。 FIG. 1 is a vertical cross-sectional side view illustrating the schematic configuration of the main part of the glass article manufacturing apparatus according to the present embodiment. As shown in the figure, a melting furnace 1 provided in this manufacturing apparatus melts frit (solid raw material) Ga by heating including electric heating to generate molten glass Gm. This melting furnace 1 has a melting space defined by a bottom wall 1a and a side wall 1b made of refractory bricks. The upper part of the melting space is covered with the ceiling wall 1c. Molten glass Gm produced in the melting space flows out from the outlet 1d of the melting furnace 1 into the transfer channel 2, and is transferred through the transfer channel 2 toward the molding portion (not shown) of the glass article. In this embodiment, the molding portion of the glass article is a bushing that molds the glass fibers.
 ブッシングに向かって移送される溶融ガラスGmとしては、例えば、Eガラス(アルカリ含有量2%以下のガラス)、Dガラス(低誘電率ガラス)、ARガラス(耐アルカリ性ガラス)、Cガラス(耐酸性のガラス)、Mガラス(高弾性率のガラス)、Sガラス(高強度、高弾性率のガラス)、Tガラス(高強度、高弾性率のガラス)、Hガラス(高誘電率のガラス)、NEガラス(低誘電率のガラス)が挙げられる。ガラスの密度は、例えば、2.0~3.0g/cm3である。 Examples of the molten glass Gm transferred toward the bushing include E glass (glass having an alkali content of 2% or less), D glass (low dielectric constant glass), AR glass (alkali resistant glass), C glass (acid resistant glass), glass), M glass (high elastic modulus glass), S glass (high strength, high elastic modulus glass), T glass (high strength, high elastic modulus glass), H glass (high dielectric constant glass), NE glass (low dielectric constant glass) can be mentioned. The density of glass is, for example, 2.0-3.0 g/cm 3 .
 溶融炉1の底壁1aには、溶融ガラスGmを通電加熱するための複数の電極3が配置されている。これらの電極3は、底壁1aを貫通して上方に突出し、溶融ガラスGmに侵漬された状態にある。本実施形態では、これらの電極3の底壁1aから上方への突出長さdの下限が、例えば溶融ガラスGmの深さDの20%以上、好ましくは30%以上、より好ましくは40%以上とされる。また、突出長さdの上限が、例えば溶融ガラスGmの深さDの80%以下、好ましくは70%以下、より好ましくは60%以下とされる。また、本実施形態では、これらの電極3による通電加熱とバーナーによるガス燃焼加熱とを併用する方式を採用しているが、バーナーによるガス燃焼加熱を省略する方式であっても良い。 A plurality of electrodes 3 are arranged on the bottom wall 1a of the melting furnace 1 for electrically heating the molten glass Gm. These electrodes 3 protrude upward through the bottom wall 1a and are immersed in the molten glass Gm. In the present embodiment, the lower limit of the projection length d upward from the bottom wall 1a of these electrodes 3 is, for example, 20% or more, preferably 30% or more, more preferably 40% or more of the depth D of the molten glass Gm. It is said that Further, the upper limit of the projection length d is, for example, 80% or less, preferably 70% or less, more preferably 60% or less of the depth D of the molten glass Gm. In addition, in this embodiment, a method is adopted in which electric heating by these electrodes 3 and gas combustion heating by a burner are used together, but a method in which gas combustion heating by a burner is omitted may be used.
 溶融炉1の側壁1bの上部には、原料供給機であるスクリューフィーダー4が配設されている。このスクリューフィーダー4は、溶融ガラスGmの液面Gmaの一部にガラス原料Gaを順次供給するものである。なお、スクリューフィーダー4に代えて、プッシャーや振動フィーダ等の他の原料供給機を用いてもよい。 A screw feeder 4 as a raw material feeder is arranged on the upper part of the side wall 1b of the melting furnace 1. This screw feeder 4 sequentially supplies frit Ga to a portion of the liquid surface Gma of the molten glass Gm. In addition, instead of the screw feeder 4, other raw material feeders such as a pusher and a vibrating feeder may be used.
 本実施形態に係る製造方法では、以上のような構成を備えた製造装置によって、溶融炉1の底壁1aに配置された電極3を用いてガラス原料Gaを加熱溶融して溶融ガラスGmを得る溶融工程が実行される。 In the manufacturing method according to the present embodiment, the manufacturing apparatus having the above configuration heats and melts the frit Ga using the electrode 3 arranged on the bottom wall 1a of the melting furnace 1 to obtain the molten glass Gm. A melting process is performed.
 図2は、側壁1bに対する電極3の配置態様を示す横断平面図である。なお、側壁1bは、平面視で四角形状(好ましくは矩形状)をなすため、四つの面を有しているが、同図では便宜上、一つの面に対応する側壁1bのみを図示している。同図に示すように、電極3の配置態様は、相互間に電流が流れる一対の電極3が、電極3に最も近い側壁1bの内壁面1zに沿う方向に並び、この一対の電極3が側壁1bの内壁面1zと交差する方向に複数対(図例では二対)並ぶ態様である。そして、第一電極3aと第二電極3bとの間、及び第三電極3cと第四電極3dとの間に、それぞれ電圧(例えば単相交流電圧)が印加される。これに伴って、第一電極3aと第二電極3bとの間、及び第三電極3cと第四電極3dとの間に電流が流れる。 FIG. 2 is a cross-sectional plan view showing how the electrodes 3 are arranged with respect to the side wall 1b. Since the side wall 1b has a square shape (preferably a rectangular shape) in a plan view, it has four faces, but for the sake of convenience, only the side wall 1b corresponding to one face is shown in the figure. . As shown in the figure, the electrodes 3 are arranged such that a pair of electrodes 3 through which current flows between them are arranged in a direction along the inner wall surface 1z of the side wall 1b closest to the electrodes 3. A plurality of pairs (two pairs in the figure) are arranged in a direction intersecting the inner wall surface 1z of 1b. A voltage (for example, a single-phase AC voltage) is applied between the first electrode 3a and the second electrode 3b and between the third electrode 3c and the fourth electrode 3d. Accordingly, current flows between the first electrode 3a and the second electrode 3b and between the third electrode 3c and the fourth electrode 3d.
 なお、内壁面1zに沿う方向とは、内壁面1zと平行な方向であることが好ましいが、この平行な方向に対して一方側に10°以内または他方側に10°以内で傾斜した方向であってもよい。また、内壁面1zと交差する方向とは、内壁面1zと直交する方向であることが好ましいが、この直交する方向に対して一方側に10°以内または他方側に10°以内で傾斜した方向であってもよい。 The direction along the inner wall surface 1z is preferably a direction parallel to the inner wall surface 1z, but a direction inclined within 10° to one side or within 10° to the other side with respect to the parallel direction. There may be. In addition, the direction intersecting the inner wall surface 1z is preferably a direction perpendicular to the inner wall surface 1z. may be
 以下、本実施形態に係るガラス物品の製造方法の特徴的構成及びその作用効果を説明する。 Hereinafter, the characteristic configuration of the method for manufacturing a glass article according to the present embodiment and the effects thereof will be described.
 第一の特徴的構成は、電極3の相互間に流れる電流の一部が側壁1bに流れるように電極3が配置されている点である。これによれば、側壁1bに電流が流れることで、側壁1bが加熱される。この場合、溶融炉1内の側壁1bの周辺では溶融ガラスGmの温度低下が生じやすいが、側壁1bが加熱されることで、その温度低下が低減される。これにより、側壁1bの周辺で溶融ガラスGmを十分に加熱することができ、溶融炉1内で良質の溶融ガラスGmを生成することが可能となる。したがって、移送流路2を通じてブッシングに向かって良質の溶融ガラスGmを移送することが可能となる。 The first characteristic configuration is that the electrodes 3 are arranged so that part of the current flowing between the electrodes 3 flows through the sidewall 1b. According to this, the side wall 1b is heated by the current flowing through the side wall 1b. In this case, the temperature of the molten glass Gm tends to drop around the side wall 1b in the melting furnace 1, but the temperature drop is reduced by heating the side wall 1b. Thereby, the molten glass Gm can be sufficiently heated around the side wall 1b, and the molten glass Gm of good quality can be produced in the melting furnace 1. Therefore, it becomes possible to transfer the molten glass Gm of good quality toward the bushing through the transfer channel 2 .
 第二の特徴的構成は、上記のような電極3の配置態様の下で、側壁1bでの単位面積当たりの発熱量の最大値が側壁1bからの放熱量の20%以上で且つ150%以下になるように側壁1bに電流が流れるようになっている点である。この場合、側壁1bでの単位面積当たりの発熱量の最大値が、側壁1bからの放熱量の20%未満であれば、側壁1bの周辺での溶融ガラスGmの温度低下を十分に低減することが困難である。一方、側壁1bでの単位面積当たりの発熱量の最大値が、側壁1bからの放熱量の150%超であれば、側壁1bが熱により損傷等するおそれがある。これに対して、当該数値範囲が上述のように20%以上で且つ150%以下であれば、側壁1bの周辺での溶融ガラスGmの温度低下を確実に低減した上で、側壁1bの熱による損傷等を防止できる。 A second characteristic configuration is that under the arrangement of the electrodes 3 as described above, the maximum amount of heat generated per unit area on the sidewall 1b is 20% or more and 150% or less of the amount of heat released from the sidewall 1b. The difference is that the current flows through the side wall 1b so that In this case, if the maximum amount of heat generated per unit area at the side wall 1b is less than 20% of the amount of heat released from the side wall 1b, the temperature drop of the molten glass Gm around the side wall 1b should be sufficiently reduced. is difficult. On the other hand, if the maximum amount of heat generated per unit area at the side walls 1b exceeds 150% of the amount of heat released from the side walls 1b, the side walls 1b may be thermally damaged. On the other hand, if the numerical range is 20% or more and 150% or less as described above, the temperature drop of the molten glass Gm around the side wall 1b is reliably reduced, and the heat of the side wall 1b Damage etc. can be prevented.
 第三の特徴的構成は、一対の電極3間の距離Lに対する側壁1bの内壁面1zに最も近い電極3(第一電極3a及び第二電極3b)から側壁1bの内壁面1zまでの距離Lx(以下、電極3から側壁1bまでの最短距離Lxという)の比(Lx/L)が、3.0以下とされている点である。比(Lx/L)が3.0以下であれば、第一電極3a及び第二電極3bが、側壁1bの内壁面1zに近くなり、側壁1bに十分な電流を流すことができる。 The third characteristic configuration is the distance Lx from the electrode 3 (first electrode 3a and second electrode 3b) closest to the inner wall surface 1z of the side wall 1b to the inner wall surface 1z of the side wall 1b with respect to the distance L between the pair of electrodes 3. The difference is that the ratio (Lx/L) of (hereinafter referred to as the shortest distance Lx from the electrode 3 to the side wall 1b) is 3.0 or less. If the ratio (Lx/L) is 3.0 or less, the first electrode 3a and the second electrode 3b are close to the inner wall surface 1z of the side wall 1b, allowing sufficient current to flow through the side wall 1b.
 第四の特徴的構成は、所定加熱温度での側壁1bを構成する耐火煉瓦の比抵抗R1に対する上記所定加熱温度での溶融ガラスGmの比抵抗R2の比(R2/R1)が、好ましくは1以上、より好ましくは2以上とされている点である。このようにした場合、側壁1bに十分な量の電流を流すことができるため、側壁1bの発熱不足をなくして、側壁1bの周辺での溶融ガラスGmの加熱をより適切に行うことが可能となる。 The fourth characteristic configuration is that the ratio (R2/R1) of the specific resistance R2 of the molten glass Gm at the predetermined heating temperature to the specific resistance R1 of the refractory bricks constituting the side wall 1b at the predetermined heating temperature is preferably 1 As described above, it is more preferable that the number is 2 or more. In this case, a sufficient amount of current can be passed through the side wall 1b, so that insufficient heat generation of the side wall 1b can be eliminated, and the molten glass Gm can be heated more appropriately around the side wall 1b. Become.
 次いで、本発明者等が実施したシミュレーションについて図2を参照しつつ説明する。このシミュレーションは、側壁1bに電流を流した場合の発熱効果を確認するために実施したものである。 Next, the simulation performed by the inventors will be described with reference to FIG. This simulation was performed to confirm the heat generation effect when a current is passed through the side wall 1b.
 シミュレーションを実施した具体的な条件は、ガラス深さDを1m、側壁1bの内壁面1zと交差する方向の電極3対間の間隔pを0.5m、電極3の底壁1aからの突出長さdを0.5m、側壁1bの厚さtを0.15mとした。そして、側壁1bの内壁面1zに沿う方向の一対の電極3間の距離Lを1m、1.33m、1.66m、2mの四条件について実施した。また、一対の電極3間の距離Lに対する電極3から側壁1bまでの最短距離Lxの比A(Lx/L)を0.5、1.0、2.0の三条件について実施した。さらに、側壁1bの比抵抗R1に対する溶融ガラスGmの比抵抗R2の比B(R2/R1)を4、8の二条件について実施した。ここで、比抵抗の比Bは、側壁1bがクロム煉瓦で構成され且つ溶融ガラスGmとしてEガラスが用いられる場合の比である。この場合、側壁1bをクロム煉瓦以外の耐火物、例えば電鋳煉瓦などで構成したり、溶融ガラスGmとして上記列挙した中でEガラス以外のガラスを用いたりすることがある。この事を考慮すれば、比抵抗の比Bは、上述のように1以上であることが好ましい。 The specific conditions under which the simulation was performed were as follows: the glass depth D was 1 m; The thickness d was set to 0.5 m, and the thickness t of the side wall 1b was set to 0.15 m. Then, four conditions of 1 m, 1.33 m, 1.66 m, and 2 m for the distance L between the pair of electrodes 3 in the direction along the inner wall surface 1z of the side wall 1b were tested. Moreover, the ratio A (Lx/L) of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the pair of electrodes 3 was carried out under three conditions of 0.5, 1.0, and 2.0. Furthermore, the ratio B (R2/R1) of the specific resistance R2 of the molten glass Gm to the specific resistance R1 of the side wall 1b was measured under two conditions of 4 and 8. Here, the specific resistance ratio B is the ratio when the sidewall 1b is made of chrome bricks and E glass is used as the molten glass Gm. In this case, the side wall 1b may be made of a refractory material other than chrome bricks, such as an electroformed brick, or a glass other than the E glass listed above may be used as the molten glass Gm. Considering this, the ratio B of the resistivity is preferably 1 or more as described above.
 図3は、比抵抗の比Bを4とした場合における溶融ガラスGmの平均発熱密度ωaveに対する側壁1bの最高発熱密度ωmaxの比C(ωmax/ωave)をグラフに表したものである。図4は、比抵抗の比Bを8とした場合における溶融ガラスGmの平均発熱密度ωaveに対する側壁1bの最高発熱密度ωmaxの比C(ωmax/ωave)をグラフに表したものである。溶融ガラスGmの平均発熱密度ωaveは、溶融ガラスGmの単位体積当たりの発熱量の平均値である。また、側壁1bの最高発熱密度ωmaxは、側壁1bの単位体積当たりの発熱量の最大値である。図3及び図4は、何れも、上記の電極3間の距離Lの四条件と、電極3間の距離Lに対する電極3から側壁1bまでの最短距離Lxの比Aの三条件とについて数値を変えることで計12種類について求めたデータをプロットしたものである。 FIG. 3 is a graph showing the ratio C (ω maxave ) of the maximum heat generation density ω max of the sidewall 1b to the average heat generation density ω ave of the molten glass Gm when the specific resistance ratio B is 4. be. FIG. 4 is a graph showing the ratio C (ω maxave ) of the maximum heat generation density ω max of the sidewall 1b to the average heat generation density ω ave of the molten glass Gm when the specific resistance ratio B is 8. be. The average calorific value ω ave of the molten glass Gm is the average value of the calorific value per unit volume of the molten glass Gm. Further, the maximum heat generation density ω max of the side wall 1b is the maximum value of the heat generation amount per unit volume of the side wall 1b. 3 and 4 show numerical values for the four conditions of the distance L between the electrodes 3 and the three conditions of the ratio A of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the electrodes 3. Data obtained for a total of 12 types are plotted.
 本発明者等は、図3及び図4から、比Cが比Aに対して指数関数的に変化していることに着目し、シミュレーション結果(上記のプロットしたデータ)から最小二乗法により曲線Sを割り出した。図3に示す曲線Sと図4に示す曲線Sとは同一である。したがって、曲線Sは、計24種類のシミュレーション結果から割り出されたものである。この曲線Sは、下記の[数4]式で表わされる。
Figure JPOXMLDOC01-appb-M000007
 ここで、
 ωmaxは、側壁1bの最高発熱密度(W/m3)であり、
 ωaveは、溶融ガラスGmの平均発熱密度(W/m3)であり、
 Aは、一対の電極3間の距離Lに対する電極3から側壁1bまでの最短距離Lxの比である。
From FIGS. 3 and 4, the present inventors focused on the fact that the ratio C changed exponentially with respect to the ratio A, and from the simulation results (the above plotted data), the curve S I figured out. Curve S shown in FIG. 3 and curve S shown in FIG. 4 are the same. Therefore, the curve S is calculated from a total of 24 types of simulation results. This curve S is represented by the following [Equation 4].
Figure JPOXMLDOC01-appb-M000007
here,
ω max is the maximum heat generation density (W/m 3 ) of the sidewall 1b,
ω ave is the average heat generation density (W/m 3 ) of the molten glass Gm,
A is the ratio of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the pair of electrodes 3;
 溶融ガラスGmの平均発熱密度ωaveは、下記の[数5]式で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、
 Qは、一対の電極3への供給電力(W)であり、
 Dは、溶融炉1内での溶融ガラスGmの深さ(m)であり、
 pは、側壁1bの内壁面1zと交差する方向の電極3対間の間隔(m)であり、
 Lは、側壁1bに沿う方向の一対の電極3間の距離(m)である。
The average heat generation density ω ave of the molten glass Gm is represented by the following [Equation 5].
Figure JPOXMLDOC01-appb-M000008
here,
Q is the power (W) supplied to the pair of electrodes 3,
D is the depth (m) of the molten glass Gm in the melting furnace 1;
p is the interval (m) between the three pairs of electrodes in the direction intersecting the inner wall surface 1z of the side wall 1b,
L is the distance (m) between the pair of electrodes 3 in the direction along the sidewall 1b.
 側壁1bの最高発熱密度ωmaxは、上記の[数4]式を変形した下記の[数6]式で表される。
Figure JPOXMLDOC01-appb-M000009
The maximum heat generation density ω max of the side wall 1b is represented by the following [Equation 6], which is a modification of the above [Equation 4].
Figure JPOXMLDOC01-appb-M000009
 さらに、側壁1bの最高発熱密度ωmaxに側壁1bの厚みtを乗じることで、側壁1bでの単位面積当たりの発熱量の最大値ωmax・tに換算することができる。したがって、下記の[数7]式が成り立つ。
Figure JPOXMLDOC01-appb-M000010
Furthermore, by multiplying the maximum heat generation density ω max of the side wall 1b by the thickness t of the side wall 1b, it is possible to convert the maximum heat generation amount ω max ·t per unit area of the side wall 1b. Therefore, the following [Equation 7] formula holds.
Figure JPOXMLDOC01-appb-M000010
 そして、側壁1bでの加熱効果を得るためには、側壁1bでの単位面積当たりの発熱量の最大値ωmax・tが側壁1bからの放熱量Wに対して20%以上の割合で側壁1bを加熱するのが好ましい(この理由は既述の通り)。そのためには、下記の[数8]式が成り立つ必要がある。なお、既述の[数1]式は、下記の[数8]式に上記の[数5]式を代入し、変形したものである。
Figure JPOXMLDOC01-appb-M000011
 ここで、
 Wは、側壁1bからの放熱量(W/m2)であり、
 tは、側壁1bの厚さ(m)である。
In order to obtain the heating effect at the side wall 1b, the maximum value ω max ·t of the heat generation amount per unit area at the side wall 1b must be 20% or more of the heat dissipation amount W from the side wall 1b. is preferably heated (for reasons already mentioned). For that purpose, the following [Equation 8] formula needs to hold. It should be noted that the above-mentioned [Equation 1] is a modified one obtained by substituting the above [Equation 5] into the following [Equation 8].
Figure JPOXMLDOC01-appb-M000011
here,
W is the heat radiation amount (W/m 2 ) from the side wall 1b,
t is the thickness (m) of the side wall 1b.
 側壁1bでの加熱効果をさらに得るためには、側壁1bでの単位面積当たりの発熱量の最大値ωmax・tが側壁1bからの放熱量Wに対して50%以上の割合で側壁1bを加熱するのが好ましい。そのためには、下記の[数9]式が成り立つ必要がある。なお、既述の[数2]式は、下記の[数9]式に上記の[数5]式を代入し、変形したものである。
Figure JPOXMLDOC01-appb-M000012
In order to further obtain the heating effect on the side wall 1b, the side wall 1b should be formed such that the maximum value ω max ·t of the heat generation amount per unit area of the side wall 1b is 50% or more of the heat radiation amount W from the side wall 1b. Heating is preferred. For that purpose, the following [Equation 9] formula must be established. It should be noted that the above-described [Equation 2] is a modified one obtained by substituting the above [Equation 5] into the following [Equation 9].
Figure JPOXMLDOC01-appb-M000012
 一方、側壁1bの過度な加熱は、側壁1bを構成する耐火煉瓦の溶損等をもたらす。側壁1bでの単位面積当たりの発熱量の最大値ωmax・tが側壁1bからの放熱量Wよりも大きくなるに連れて、耐火煉瓦の溶損等が発生しやすくなる。側壁1bの過度な発熱を生じさせないようにするには、側壁1bでの単位面積当たりの発熱量の最大値ωmax・tが側壁1bからの放熱量Wを大きく超えないようにする必要がある。これを考慮すれば、側壁1bでの単位面積当たりの発熱量の最大値ωmax・tが側壁1bからの放熱量Wの1.5倍以下になることが好ましい。そのためには、下記の[数10]式が成り立つ必要がある。なお、既述の[数3]式は、下記の[数10]式に上記の[数5]式を代入し、変形したものである。
Figure JPOXMLDOC01-appb-M000013
On the other hand, excessive heating of the side wall 1b causes erosion of the refractory bricks forming the side wall 1b. As the maximum value ω max ·t of the amount of heat generated per unit area at the side wall 1b becomes larger than the amount W of heat radiation from the side wall 1b, the refractory bricks are likely to be damaged by melting. In order to prevent the side wall 1b from generating excessive heat, it is necessary to prevent the maximum value ω max ·t of the amount of heat generated per unit area in the side wall 1b from exceeding the heat release amount W from the side wall 1b. . Taking this into consideration, it is preferable that the maximum value ω max ·t of the amount of heat generated per unit area at the side walls 1b is 1.5 times or less the amount W of heat dissipation from the side walls 1b. For that purpose, the following [Equation 10] formula must be established. It should be noted that the above-described [Equation 3] is a modified one obtained by substituting the above [Equation 5] into the following [Equation 10].
Figure JPOXMLDOC01-appb-M000013
 以上、本発明の実施形態に係るガラス物品の製造方法及び製造装置について説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で種々のバリエーションが可能である。 Although the manufacturing method and manufacturing apparatus for glass articles according to the embodiments of the present invention have been described above, the present invention is not limited to this, and various variations are possible without departing from the spirit of the present invention.
 例えば、以上の実施形態では、溶融炉1の一つの面に対応する側壁1bのみを対象として電極3の配置態様を説明したが、当該側壁1bと対向する側壁、または当該側壁1b以外の三つの面に対応する側壁1bについても対象として、同様の電極3の配置態様としてもよい。以上の実施形態のように側壁1bが平面視で四角形状をなす場合、原料供給機(スクリューフィーダー4)が配設された側壁1bと流出口1dが配設された側壁1bとの間に位置する側壁1bの両方を対象とすることが好ましい。原料供給機(スクリューフィーダー4)が配設された側壁1bと流出口1dが配設された側壁1bの平面視での長さに比べて、その間に位置する側壁1bの方が長い場合、より広範囲で側壁1bを加熱することができる。 For example, in the above-described embodiment, the arrangement of the electrodes 3 was described with respect to only the side wall 1b corresponding to one surface of the melting furnace 1. The side wall 1b corresponding to the surface may also be subject to the same arrangement mode of the electrodes 3. FIG. When the side wall 1b has a square shape in plan view as in the above embodiment, the side wall 1b is positioned between the side wall 1b on which the raw material feeder (screw feeder 4) is arranged and the side wall 1b on which the outflow port 1d is arranged. It is preferable to target both side walls 1b. When the side wall 1b located between the side wall 1b on which the raw material feeder (screw feeder 4) is arranged and the side wall 1b on which the outflow port 1d is arranged are longer than the side wall 1b in plan view, Side wall 1b can be heated over a wide range.
 以上の実施形態では、側壁1bの内壁面1zに沿う方向に並ぶ一対の電極3を、側壁1bの内壁面1zと交差する方向に二対並ぶ場合を例示したが、側壁1bの内壁面1zと交差する方向に三対以上並ぶようにしてもよい。 In the above embodiment, the pair of electrodes 3 arranged in the direction along the inner wall surface 1z of the side wall 1b is exemplified in the case where two pairs are arranged in the direction intersecting the inner wall surface 1z of the side wall 1b. Three or more pairs may be arranged in the crossing direction.
 以上の実施形態では、ガラス繊維の製造方法及び製造装置に本発明を適用したが、ガラス繊維以外のガラス物品(例えばガラス板やガラス管など)の製造方法及び製造装置に本発明を適用してもよい。 In the above embodiments, the present invention is applied to the method and apparatus for producing glass fibers, but the present invention can also be applied to the method and apparatus for producing glass articles other than glass fibers (for example, glass plates and glass tubes). good too.
 以下、本発明の実施例を説明する。この実施例では、溶融炉1の側壁1bの内壁面1zに沿う方向に並ぶ電極対を側壁1bの内壁面1zと交差(直交)する方向に複数対配置した。そして、溶融炉1内での溶融ガラスGmの深さDを1m、溶融炉1の内壁面1zに沿う方向の一対の電極3間の距離Lを1.5m、溶融炉1の内壁面1zと交差する方向の電極3対間の間隔pを0.5m、電極3の底壁1aからの突出長さdを0.5m、側壁1bの厚みtを0.15mとした。電極3には、一対あたり100kWの電力を供給した。したがって、この実施例における溶融ガラスGmの平均発熱密度ωaveは、[数5]式より133.3kW/m3である。また、側壁1bの比抵抗R1に対する溶融ガラスの比抵抗R2の比B(R2/R1)は6とした。側壁1bからの放熱量Wは、例えば熱流計(京都電子工業株式会社製HFM-201)及び熱流センサー(京都電子工業株式会社製T750S-B)を用いて測定することができ、ここでは2000W/m2とした。 Examples of the present invention will be described below. In this embodiment, a plurality of pairs of electrodes are arranged along the inner wall surface 1z of the side wall 1b of the melting furnace 1 in a direction intersecting (perpendicular to) the inner wall surface 1z of the side wall 1b. Then, the depth D of the molten glass Gm in the melting furnace 1 is 1 m, the distance L between the pair of electrodes 3 in the direction along the inner wall surface 1z of the melting furnace 1 is 1.5 m, and the inner wall surface 1z of the melting furnace 1 The distance p between the three pairs of electrodes in the intersecting direction was 0.5 m, the projection length d of the electrode 3 from the bottom wall 1a was 0.5 m, and the thickness t of the side wall 1b was 0.15 m. A power of 100 kW was supplied to the electrodes 3 per pair. Therefore, the average heat generation density ω ave of the molten glass Gm in this example is 133.3 kW/m 3 according to the formula [Equation 5]. Also, the ratio B (R2/R1) of the specific resistance R2 of the molten glass to the specific resistance R1 of the side wall 1b was set to 6. The amount of heat dissipation W from the side wall 1b can be measured using, for example, a heat flow meter (HFM-201 manufactured by Kyoto Electronics Industry Co., Ltd.) and a heat flow sensor (T750S-B manufactured by Kyoto Electronics Industry Co., Ltd.). m2 .
 以上の条件の下で、側壁1bでの単位面積当たりの発熱量の最大値を側壁1bからの放熱量Wの20%以上とするためには、[数8]式より側壁1bの最高発熱密度ωmaxを2.7kW/m3以上にする必要がある。これに伴って、[数1]式より一対の電極3間の距離Lに対する電極3から側壁1bまでの最短距離Lxの比Aは1.89以下にする必要がある。 Under the above conditions, in order to make the maximum amount of heat generated per unit area at the side wall 1b 20% or more of the amount W of heat radiation from the side wall 1b, the maximum heat generation density of the side wall 1b is obtained from the equation [Equation 8]. ω max must be 2.7 kW/m 3 or more. Along with this, according to the formula [Equation 1], the ratio A of the shortest distance Lx from the electrode 3 to the side wall 1b to the distance L between the pair of electrodes 3 must be 1.89 or less.
 さらに、側壁1bでの単位面積当たりの発熱量の最大値を側壁1bからの放熱量Wの50%以上とするためには、[数9]式より側壁1bの最高発熱密度ωmaxを6.7kW/m3以上にする必要がある。これに伴って、[数2]式より比Aは1.47以下にする必要がある。 Furthermore, in order to make the maximum amount of heat generated per unit area at the side wall 1b 50% or more of the amount W of heat radiation from the side wall 1b, the maximum heat generation density ω max of the side wall 1b is set to 6.5 from the formula [Equation 9]. It is necessary to make it 7 kW/m 3 or more. Along with this, it is necessary to set the ratio A to 1.47 or less according to the formula [Equation 2].
 一方、側壁1bの過度な加熱を回避することを目的として、側壁1bでの単位面積当たりの発熱量の最大値を側壁1bからの放熱量Wの1.5倍以下にするには、[数10]式より側壁1bの最高発熱密度ωmaxを20kW/m3以下にする必要がある。これに伴って、[数3]式より比Aは0.97以上とする必要がある。 On the other hand, for the purpose of avoiding excessive heating of the side wall 1b, in order to make the maximum value of the heat generation amount per unit area of the side wall 1b 1.5 times or less of the heat dissipation amount W from the side wall 1b, [number 10], it is necessary to set the maximum heat generation density ω max of the sidewall 1b to 20 kW/m 3 or less. Along with this, it is necessary to set the ratio A to 0.97 or more according to the formula [Equation 3].
 このような理論の下で、比Aを、0.6、0.8、1.0、1.2、1.4、1.6、1.8、2.0とした場合のシミュレーションを実施し、側壁での最高発熱密度ωmaxを求めた。図5に、その結果を示す。図5に示す曲線S1は、[数6]式を表したものである。以下、図5を参照して、上記のシミュレーション結果を検討する。 Under such a theory, simulations were performed with the ratio A set to 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 Then, the maximum heat generation density ω max at the side wall was obtained. FIG. 5 shows the results. A curve S1 shown in FIG. 5 represents the expression [6]. The above simulation results are discussed below with reference to FIG.
 [数1]式について検討すると、比Aを2.0(上述の1.89超)とした場合のシミュレーション結果では、最高発熱密度ωmaxが2.3kW/m3を示し、放熱量Wの20%に相当する上述の2.7kW/m3より小さくなっている。一方、比Aを1.8(上述の1.89以下)とした場合のシミュレーション結果では、最高発熱密度ωmaxが3.3kW/m3を示し、放熱量Wの20%に相当する上述の2.7kW/m3より大きくなっている。ここでのシミュレーション結果から、比Aが2.0から1.8に至るまでの間に、側壁1bでの単位面積当たりの発熱量の最大値が側壁1bからの放熱量Wの20%を超えるか否かの境界が存在していることを知得できる。この事によって、[数1]式が適正であることを確認した。 Examining the formula [Equation 1], the simulation result when the ratio A is set to 2.0 (above 1.89) shows that the maximum heat generation density ω max is 2.3 kW / m 3 , and the heat dissipation amount W It is less than the above-mentioned 2.7 kW/m 3 which corresponds to 20%. On the other hand, in the simulation results when the ratio A is set to 1.8 (1.89 or less as described above), the maximum heat generation density ω max is 3.3 kW/m It is greater than 2.7 kW/m 3 . From the simulation results here, the maximum value of the amount of heat generated per unit area on the sidewall 1b exceeds 20% of the amount of heat dissipation W from the sidewall 1b while the ratio A is from 2.0 to 1.8. It can be understood that there is a boundary between whether or not From this fact, it was confirmed that the formula [Equation 1] is appropriate.
 [数2]式について検討すると、比Aを1.6(上述の1.47超)とした場合のシミュレーション結果では、最高発熱密度が4.8kW/m3を示し、放熱量Wの50%に相当する上述の6.7kW/m3より小さくなっている。一方、比Aを1.4(上述の1.47以下)とした場合のシミュレーション結果では、最高発熱密度ωmaxが7.2kW/m3を示し、放熱量Wの50%に相当する上述の6.7kW/m3より大きくなっている。ここでのシミュレーション結果から、比Aが1.6から1.4に至るまでの間に、側壁1bでの単位面積当たりの発熱量の最大値が側壁1bからの放熱量Wの50%を超えるか否かの境界が存在していることを知得できる。この事によって、[数2]式が適正であることを確認した。 Examining the formula [Equation 2], the simulation results when the ratio A is set to 1.6 (above 1.47) show that the maximum heat generation density is 4.8 kW / m 3 , which is 50% of the heat dissipation amount W is smaller than the above-mentioned 6.7 kW/m 3 corresponding to . On the other hand, the simulation results when the ratio A is set to 1.4 (1.47 or less as described above) show that the maximum heat generation density ω max is 7.2 kW/m It is greater than 6.7 kW/m 3 . From the simulation results here, the maximum value of the amount of heat generated per unit area on the side wall 1b exceeds 50% of the amount W of heat dissipation from the side wall 1b while the ratio A is from 1.6 to 1.4. It can be understood that there is a boundary between whether or not From this fact, it was confirmed that the formula [Equation 2] is appropriate.
 [数3]式について検討すると、比Aを1.0(上述の0.97以上)とした場合のシミュレーション結果では、最高発熱密度が16.9kW/m3を示し、放熱量Wの150%に相当する上述の20kW/m3より小さくなっている。一方、比Aを0.8(上述の0.97未満)とした場合のシミュレーション結果では、最高発熱密度ωmaxが27.4kW/m3を示し、放熱量Wの150%に相当する上述の20kW/m3より大きくなっている。ここでのシミュレーション結果から、比Aが1.0から0.8に至るまでの間に、側壁1bでの単位面積当たりの発熱量の最大値が側壁1bからの放熱量Wの150%を超えるか否かの境界が存在していることを知得できる。この事によって、[数3]式が適正であることを確認した。 Considering the formula [Equation 3], the simulation result when the ratio A is 1.0 (0.97 or more as described above) shows that the maximum heat generation density is 16.9 kW / m 3 , which is 150% of the heat dissipation amount W is smaller than the above-mentioned 20 kW/m 3 corresponding to . On the other hand, the simulation results when the ratio A is set to 0.8 (less than 0.97 as described above) show that the maximum heat generation density ω max is 27.4 kW/m 3 , which corresponds to 150% of the heat dissipation amount W. greater than 20 kW/m 3 . From the simulation results here, the maximum value of the amount of heat generated per unit area on the side wall 1b exceeds 150% of the amount of heat dissipation W from the side wall 1b while the ratio A is from 1.0 to 0.8. It can be understood that there is a boundary between whether or not From this fact, it was confirmed that the formula [Equation 3] is appropriate.
1     溶融炉
1a   底壁
1b   側壁
1z   側壁の内壁面
3     電極
3a   第一電極
3b   第二電極
3c   第三電極
3d   第四電極
Ga   ガラス原料
Gm   溶融ガラス
1 Melting Furnace 1a Bottom Wall 1b Side Wall 1z Side Wall Inner Wall 3 Electrode 3a First Electrode 3b Second Electrode 3c Third Electrode 3d Fourth Electrode Ga Frit Gm Molten Glass

Claims (10)

  1.  溶融炉の底壁に配置された電極を用いてガラス原料を加熱溶融して溶融ガラスを得る溶融工程を備えたガラス物品の製造方法であって、
     前記電極により通電される電流の一部が前記溶融炉の側壁に流れるように該電極を配置することを特徴とするガラス物品の製造方法。
    A method for producing a glass article comprising a melting step of obtaining molten glass by heating and melting glass raw materials using electrodes arranged on the bottom wall of a melting furnace,
    A method for producing a glass article, characterized in that the electrodes are arranged such that a portion of the current conducted by the electrodes flows to the side walls of the melting furnace.
  2.  前記側壁での単位面積当たりの発熱量の最大値が前記側壁からの放熱量の20%以上で且つ150%以下になるように前記側壁に電流を流す請求項1に記載のガラス物品の製造方法。 2. The method for manufacturing a glass article according to claim 1, wherein current is passed through the sidewalls so that the maximum amount of heat generated per unit area at the sidewalls is 20% or more and 150% or less of the amount of heat released from the sidewalls. .
  3.  前記電極を配置する態様は、相互間に電流が流れる一対の電極が、前記電極に最も近い前記側壁の内壁面に沿う方向に並び、前記一対の電極が前記側壁の内壁面と交差する方向に複数対並ぶ態様である請求項1または2に記載のガラス物品の製造装置。 A mode of arranging the electrodes is such that the pair of electrodes through which current flows between them is arranged in the direction along the inner wall surface of the side wall closest to the electrodes, and the pair of electrodes is arranged in the direction intersecting the inner wall surface of the side wall. 3. The apparatus for manufacturing a glass article according to claim 1 or 2, wherein a plurality of pairs are arranged side by side.
  4.  前記一対の電極間の距離Lに対する前記側壁の内壁面に最も近い電極から該側壁の内壁面までの距離Lxの比(Lx/L)が、3.0以下である請求項3に記載のガラス物品の製造装置。 4. The glass according to claim 3, wherein the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L) is 3.0 or less. Equipment for manufacturing goods.
  5.  下記の[数1]式を満たすように前記電極を配置する請求項3または4に記載のガラス物品の製造方法。
    Figure JPOXMLDOC01-appb-M000001
     ここで、
     Aは、前記一対の電極間の距離Lに対する前記側壁の内壁面に最も近い電極から該側壁の内壁面までの距離Lxの比(Lx/L)であり、
     Qは、前記一対の電極への供給電力(W)であり、
     Dは、前記溶融炉内での溶融ガラスの深さ(m)であり、
     pは、前記側壁の内壁面と直交する方向の電極対間の間隔(m)であり、
     Lは、前記一対の電極間の距離(m)であり、
     tは、前記側壁の厚み(m)であり、
     Wは、前記側壁からの放熱量(W/m2)である。
    5. The method for producing a glass article according to claim 3 or 4, wherein the electrodes are arranged so as to satisfy the following [Equation 1].
    Figure JPOXMLDOC01-appb-M000001
    here,
    A is the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L);
    Q is the power (W) supplied to the pair of electrodes;
    D is the depth (m) of the molten glass in the melting furnace;
    p is the distance (m) between the electrode pairs in the direction orthogonal to the inner wall surface of the side wall;
    L is the distance (m) between the pair of electrodes,
    t is the thickness (m) of the sidewall,
    W is the heat radiation amount (W/m 2 ) from the side walls.
  6.  下記の[数2]式を満たすように前記電極を配置する請求項3または4に記載のガラス物品の製造方法。
    Figure JPOXMLDOC01-appb-M000002
     ここで、
     Aは、前記一対の電極間の距離Lに対する前記側壁の内壁面に最も近い電極から該側壁の内壁面までの距離Lxの比(Lx/L)であり、
     Qは、前記一対の電極への供給電力(W)であり、
     Dは、前記溶融炉内での溶融ガラスの深さ(m)であり、
     pは、前記側壁の内壁面と直交する方向の電極対間の間隔(m)であり、
     Lは、前記一対の電極間の距離(m)であり、
     tは、前記側壁の厚み(m)であり、
     Wは、前記側壁からの放熱量(W/m2)である。
    5. The method for manufacturing a glass article according to claim 3 or 4, wherein the electrodes are arranged so as to satisfy the following [Equation 2].
    Figure JPOXMLDOC01-appb-M000002
    here,
    A is the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L);
    Q is the power (W) supplied to the pair of electrodes;
    D is the depth (m) of the molten glass in the melting furnace;
    p is the distance (m) between the electrode pairs in the direction orthogonal to the inner wall surface of the side wall;
    L is the distance (m) between the pair of electrodes,
    t is the thickness (m) of the sidewall,
    W is the heat radiation amount (W/m 2 ) from the side walls.
  7.  下記の[数3]式を満たすように前記電極を配置する請求項3または4に記載のガラス物品の製造方法。
    Figure JPOXMLDOC01-appb-M000003
     ここで、
     Aは、前記一対の電極間の距離Lに対する前記側壁の内壁面に最も近い電極から該側壁の内壁面までの距離Lxの比(Lx/L)であり、
     Qは、前記一対の電極への供給電力(W)であり、
     Dは、前記溶融炉内での溶融ガラスの深さ(m)であり、
     pは、前記側壁の内壁面と直交する方向の電極対間の間隔(m)であり、
     Lは、前記一対の電極間の距離(m)であり、
     tは、前記側壁の厚み(m)であり、
     Wは、前記側壁からの放熱量(W/m2)である。
    5. The method for manufacturing a glass article according to claim 3 or 4, wherein the electrodes are arranged so as to satisfy the following [Equation 3].
    Figure JPOXMLDOC01-appb-M000003
    here,
    A is the ratio of the distance Lx from the electrode closest to the inner wall surface of the side wall to the inner wall surface of the side wall to the distance L between the pair of electrodes (Lx/L);
    Q is the power (W) supplied to the pair of electrodes;
    D is the depth (m) of the molten glass in the melting furnace;
    p is the distance (m) between the electrode pairs in the direction orthogonal to the inner wall surface of the side wall;
    L is the distance (m) between the pair of electrodes,
    t is the thickness (m) of the sidewall,
    W is the heat radiation amount (W/m 2 ) from the side walls.
  8.  所定加熱温度での前記側壁を構成する耐火煉瓦の比抵抗R1に対する前記所定加熱温度での溶融ガラスの比抵抗R2の比(R2/R1)が、1以上である請求項1~7の何れかに記載のガラス物品の製造方法。 The ratio (R2/R1) of the specific resistance R2 of the molten glass at the predetermined heating temperature to the specific resistance R1 of the refractory bricks forming the side wall at the predetermined heating temperature is 1 or more. A method for producing the glass article according to 1.
  9.  溶融ガラスはEガラスであり且つ前記側壁を構成する耐火煉瓦はクロム煉瓦である請求項1~8の何れかに記載のガラス物品の製造方法。 The method for producing a glass article according to any one of claims 1 to 8, wherein the molten glass is E-glass and the firebricks forming the side walls are chromium bricks.
  10.  底壁に配置された電極を用いてガラス原料を加熱溶融して溶融ガラスを生成する溶融炉を備えたガラス物品の製造装置であって、
     前記電極により通電される電流の一部が前記溶融炉の側壁に流れるように該電極が配置されていることを特徴とするガラス物品の製造装置。
    An apparatus for manufacturing a glass article comprising a melting furnace that heats and melts frit to produce molten glass using electrodes arranged on a bottom wall,
    An apparatus for manufacturing glass articles, wherein the electrodes are arranged so that part of the current supplied by the electrodes flows to the side wall of the melting furnace.
PCT/JP2022/044867 2021-12-20 2022-12-06 Method for manufacturing glass article, and device for manufacturing glass article WO2023120155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206126 2021-12-20
JP2021206126A JP2023091397A (en) 2021-12-20 2021-12-20 Method and device for manufacturing glass article

Publications (1)

Publication Number Publication Date
WO2023120155A1 true WO2023120155A1 (en) 2023-06-29

Family

ID=86902162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044867 WO2023120155A1 (en) 2021-12-20 2022-12-06 Method for manufacturing glass article, and device for manufacturing glass article

Country Status (2)

Country Link
JP (1) JP2023091397A (en)
WO (1) WO2023120155A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013939A (en) * 1973-04-30 1975-02-13
JPS51106111A (en) * 1975-02-18 1976-09-20 Owens Corning Fiberglass Corp
JP2009523697A (en) * 2006-01-24 2009-06-25 ショット アクチエンゲゼルシャフト Method and apparatus for anticorrosion of electrodes when affecting the temperature of the melt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013939A (en) * 1973-04-30 1975-02-13
JPS51106111A (en) * 1975-02-18 1976-09-20 Owens Corning Fiberglass Corp
JP2009523697A (en) * 2006-01-24 2009-06-25 ショット アクチエンゲゼルシャフト Method and apparatus for anticorrosion of electrodes when affecting the temperature of the melt

Also Published As

Publication number Publication date
JP2023091397A (en) 2023-06-30

Similar Documents

Publication Publication Date Title
KR101521366B1 (en) Energy-efficient high-temperature refining
EP3538497B1 (en) Apparatus and method for forming a glass article
JP2001031434A (en) Forming of plate glass and forming apparatus
WO2023120155A1 (en) Method for manufacturing glass article, and device for manufacturing glass article
US11530152B2 (en) Method for manufacturing glass article, and melting furnace
TWI626224B (en) Glass manufacturing method
JP2014224002A (en) Production method of glass plate, design method of dissolution tank, and dissolution tank
CN111433161B (en) Glass manufacturing apparatus and method including thermal shield
JP7090844B2 (en) Manufacturing method of glass articles and glass substrate group
JP2017066016A (en) Method and apparatus for manufacturing float plate glass
JP7374186B2 (en) Apparatus and method for mitigating electrochemical attack of precious metal components in glass making processes
JP6425537B2 (en) Method of manufacturing glass substrate
WO2021117618A1 (en) Melted glass transport device, glass article manufacturing device, and glass article manufacturing method
JP2003292323A (en) Glass-fusing furnace and glass-fusing method
TWI778123B (en) Method of making glass articles
JP7198423B2 (en) Method for manufacturing glass article
WO2024084985A1 (en) Manufacturing method and manufacturing device of glass article
WO2014119708A1 (en) Method for manufacturing glass substrate
WO2020017204A1 (en) Method for controlling temperature of heating element, and method for manufacturing glass article
WO2022118781A1 (en) Glass melting furnace monitoring method and glass article manufacturing method
WO2019130901A1 (en) Feeder and glass article manufacturing method
JP2023178699A (en) Glass melting furnace and manufacturing method of glass article
KR101075451B1 (en) Glass melting furnace having hypocaust
WO2023069232A1 (en) Apparatus for forming molten glass with structurally reinforced conduits
JP2009209026A (en) Glass melting furnace and method of manufacturing melt-glass, and method of manufacturing glass product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910869

Country of ref document: EP

Kind code of ref document: A1