WO2023119635A1 - Recipe formulation method, apparatus, and program - Google Patents

Recipe formulation method, apparatus, and program Download PDF

Info

Publication number
WO2023119635A1
WO2023119635A1 PCT/JP2021/048248 JP2021048248W WO2023119635A1 WO 2023119635 A1 WO2023119635 A1 WO 2023119635A1 JP 2021048248 W JP2021048248 W JP 2021048248W WO 2023119635 A1 WO2023119635 A1 WO 2023119635A1
Authority
WO
WIPO (PCT)
Prior art keywords
tobacco
heated
heating temperature
raw
aroma
Prior art date
Application number
PCT/JP2021/048248
Other languages
French (fr)
Japanese (ja)
Inventor
祥之 白石
淳二 神谷
一寿 三井
裕紀 里村
里望 津久井
道弘 稲垣
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/048248 priority Critical patent/WO2023119635A1/en
Publication of WO2023119635A1 publication Critical patent/WO2023119635A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/08Blending tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the present invention relates to a recipe determination method, a recipe determination device, and a recipe determination program.
  • Product tobacco is manufactured by mixing multiple types of leaf tobacco in a predetermined blend ratio, depending on the brand.
  • a skilled blender gradually changes the mixing ratio of the raw tobaccos and repeats trials to measure the flavor and taste to obtain the target flavor. It has been done to bring it closer to the taste.
  • a technique such as that described in Patent Document 1 may be used.
  • An object of one aspect of the present invention is to realize a reduction in labor for determining recipes for product tobacco.
  • a recipe determination method provides an aroma component to be contained in a heated aroma generated by a product tobacco to be produced when the product tobacco is heated. determining, using the processor, the mixing ratio and heating temperature of the tobacco raw material such that the component ratio of the tobacco is within a predetermined allowable range.
  • the step of determining the mixing ratio and heating temperature of the raw material tobacco is such that the product tobacco with the mixing ratio of the raw tobacco set to an arbitrary value is heated to an arbitrary heating temperature.
  • the value of the second variable that minimizes the objective function is set as the heating temperature of the raw tobacco. It may be calculated.
  • a temperature indicating the relationship between the heating temperature of the raw tobacco and the amount of the aromatic component generated is prepared in advance for each aromatic component.
  • the error may be set based on a function.
  • the step of setting the objective function may set the objective function using the least squares method.
  • the weighting of the corresponding variable and the penalty term for the increase of the corresponding variable are performed according to the manufacturing objective of the tobacco products. It is also possible to set an objective function in which at least one of the settings of
  • the component ratio of the aroma components to be included in the heated aroma generated by the product tobacco is set to a predetermined value. It has a determination unit that determines the mixing ratio and heating temperature of raw tobacco that fall within the allowable range of.
  • the component ratio of the aroma components to be included in the heated aroma generated by the product tobacco is set to a predetermined value.
  • a determination unit that determines the mixing ratio and heating temperature of raw tobacco that fall within the permissible range of .
  • the recipe determination device may be realized by a computer.
  • the recipe determination device is implemented by the computer by operating the computer as each part (software element) included in the recipe determination device.
  • a recipe determination program for a recipe determination device that is realized by a computer, and a computer-readable recording medium recording it are also included in the scope of the present invention.
  • FIG. 1 is a block diagram showing a functional configuration of a recipe determination device according to an embodiment of one aspect of the present invention
  • FIG. FIG. 4 is a flow chart showing the flow of a recipe determination method according to an embodiment of another aspect of the present invention
  • FIG. The amount of each aroma component contained in the target unit volume of heated aroma generated by the product tobacco (target value 1), and the amount of each aroma component contained in the unit volume of heated aroma generated by the product tobacco according to the example of the present invention 1 is a graph showing the amount of each flavor component (Example 1).
  • the amount of each aroma component contained in the target volume of heated aroma generated by the product tobacco (target value 2), and the amount of each aroma component contained in the unit volume of heated aroma generated by the product tobacco according to the example of the present invention It is a graph which shows the amount (Example 2) of each fragrance component.
  • Recipe refers to the combination of tobacco raw materials used in the manufacture of tobacco products and their mixing ratio.
  • Finished tobacco refers to tobacco that is all or part of the raw material and is in a state where it can be used as a flavor source for tobacco-based products. Specifically, it includes combustible cigarettes, cigars, and the like. Further, the product tobacco may be one that can be used as a flavor source for non-combustible heat-not-burn tobacco. Further, the product tobacco may be a combination of raw tobaccos, and may be, for example, a semi-finished product before reaching the final product, or may be a reconstituted raw material (tobacco sheet) or the like.
  • Raw tobacco refers to leaf tobacco, reconstituted raw materials (tobacco sheets), etc. used as raw materials for manufacturing tobacco products.
  • Leaf tobacco is obtained through the steps of harvesting, drying, and re-drying tobacco leaves, barreling the dried leaves and maturing them, and heating, humidifying, and flavoring the matured leaves. be done.
  • the reconstituted raw material is obtained through a step of adding pulp and a binder to pulverized leaf tobacco to fluidize it, and a step of forming paper from the fluidized leaf tobacco.
  • Raw material tobacco is classified into a plurality of types according to varieties (for example, yellow variety, burley variety, orient variety, native variety, etc.), place of production, and the like.
  • the recipe determination device 100 has a control unit 1, an input unit 2, a storage unit 3, and an output unit 4, as shown in FIG.
  • the input unit 2 includes an operation unit that can be operated by a user, a communication unit that receives various data from other devices, and the like.
  • the storage unit 3 stores objective functions. The details of this objective function will be described later. Note that when the objective function is acquired from another device, the recipe determination device does not have to include the storage unit.
  • the output unit 4 includes a display unit for displaying characters, images, etc., a communication unit for transmitting various data to other devices, and the like.
  • the control unit 1 has an acquisition unit 11 , a determination unit 12 and an output control unit 13 .
  • the acquisition unit 11 acquires the amount of each aroma component contained in the unit volume of heated aroma generated by the target tobacco product when the tobacco product is heated (component ratio of heated aroma: hereinafter, target value). .
  • the target value is represented by a p ⁇ 1 vector containing the amounts of p types of heated scents.
  • the acquisition unit 11 also acquires the amount of each aroma component contained in the unit volume of the heated aroma generated by the raw tobacco when the raw tobacco is heated at a desired heating temperature, together with the heating temperature at that time.
  • Acquisition unit 11 acquires the target value and the amount of heated aroma via input unit 2 .
  • the determination unit 12 selects the raw tobacco material so that the component ratio of the aroma components contained in the heated aroma generated by the product tobacco, when the product tobacco to be manufactured is heated, falls within a predetermined allowable range. Determine the mixing ratio and heating temperature.
  • Aroma component is a component contained in the heated aroma generated by the product tobacco when the product tobacco is heated, and refers to a component that humans perceive as an odor.
  • aroma components include, but are not limited to, nitrogen compounds in raw materials, sugar decomposition products, organic acids in raw materials, aromatic components in raw materials, and lignin decomposition products.
  • the aroma component may contain nicotine.
  • the aroma component may also include other components that are contained in tobacco products and that evaporate when heated.
  • the types of aroma components contained in the heated aroma differ for each raw tobacco.
  • the amount of aroma components contained in the unit volume of heated aroma varies depending on the heating temperature.
  • the aroma component for which the component ratio is to be calculated can be arbitrarily selected as long as it is contained in raw tobacco. By selecting a larger number of aroma components to be calculated, it is possible to determine a recipe for product tobacco that produces a heated aroma that is closer to the target flavor and taste of manufactured tobacco. Note that it is preferable not to include components used in tobacco flavoring in the aroma components to be calculated. This is because the amount of such components can be easily adjusted by simply adding the tobacco flavor without adjusting the mixing ratio of the raw tobacco.
  • “Tolerance” refers to the range of deviation from the target value that can be tolerated in manufacturing tobacco products.
  • Target range refers to the range of deviation that can be determined to be close to the target value. The upper and lower limits of the target range are, for example, ⁇ 30% of the target value, preferably ⁇ 20% of the target value. If the calculated component ratio is within the target range, it means that the target recipe has been determined. On the other hand, even if the calculated component ratio is outside the target range, if it is within the allowable range, it means that a recipe with no problem as a product has been determined.
  • the determination unit 12 includes a temperature setting unit 121, an error setting unit 122, a function setting unit 123, and a calculation unit 124.
  • the temperature setting unit 121 sets the heating temperature to a desired heating temperature.
  • the temperature setting unit 121 according to this embodiment, for example, sets the numerical value input from the input unit 2 to a desired heating temperature. Note that when only the recipe for non-combustible heat-not-burn cigarettes with an unfixed heating temperature is determined (not the recipe for combustible heat-not-burn tobacco with a fixed heating temperature), the determining unit 12 sets the temperature setting unit to It does not have to be included.
  • the error setting unit 122 determines the components of the aroma components that will be included in the heated aroma generated by the product tobacco, in which the mixture ratio of the raw tobacco is set to an arbitrary value, when the product tobacco is heated at an arbitrary heating temperature. Set the error between the ratio and the target value.
  • the error setting unit 122 sets the error based on a temperature function that is created in advance for each flavor component and indicates the relationship between the heating temperature of the raw tobacco and the amount of flavor components generated.
  • the temperature function is a function that indicates the relationship between the heating temperature and the amount of aroma component generated. Also, the temperature function differs for each component and each raw material.
  • a quadratic function in which the values of a, b, and c are fixed is the temperature function in this case.
  • the temperature function in that case is obtained by determining the coefficient of each term of the n-1 order function in the same manner as the above linear and secondary functions. Obtainable.
  • the error setting unit 122 determines the amount of each aroma component that will be contained in the heated aroma generated by the product tobacco to be produced when the product tobacco is heated. Calculate Specifically, the error setting unit 122 calculates an integrated value by accumulating the product of the temperature function for one aroma component and the mixing ratio of one raw tobacco for all the raw tobaccos. Then, the sum of squares of the difference between the amount corresponding to one fragrance component included in the target value (vector) and the integrated value is calculated as an error. Note that the error is not limited to this, and may be in any format that appropriately expresses the difference between the component ratio of the aroma components that will be included in the heated aroma generated by the product tobacco and a predetermined target value. It may be defined by the ratio of the target value and the integrated value.
  • the error setting unit 122 may obtain a temperature function using a sigmoid function.
  • a sigmoid function when the value x (heating temperature) on the horizontal axis is small, the value y (aroma component) on the vertical axis is small. It has the characteristic of becoming This feature is similar to the relationship between the heating temperature and the amount of aromatic components generated in product tobacco. Therefore, by using the sigmoid function, it is possible to generate a more realistic temperature function.
  • the function setting unit sets an objective function (functional) for evaluating the error.
  • the objective function may operate on the error itself, or on the error added with a penalty term or weighted.
  • the function setting unit according to this embodiment acquires and sets the objective function from the storage unit 3 .
  • the function setting unit according to this embodiment sets the objective function using the least squares method. Specifically, the function setting unit sets the objective function with the sum of squared errors as shown in Equation 1 below, for example.
  • Equation 1 p is the number of aroma components, and n is the number (type) of raw tobacco. Moreover, c is a target value. Also, f(t) is a temperature function. Also, q is the amount of each raw tobacco contained in the unit amount of product tobacco to be manufactured (mixing ratio of raw tobacco). The raw tobacco mix ratio is an n ⁇ 1 vector containing the amounts of n raw tobaccos. That is, the objective function according to this embodiment is obtained by integrating the squares of the errors set by the error setting unit 122 for all the aroma components.
  • optimization by the least squares method can be easily implemented. Therefore, when the function setting unit 123 sets the objective function as described above, it is possible to more easily optimize at least the mixing ratio of the raw tobacco.
  • the function setting unit 123 may set an objective function other than Equation 1 above.
  • the function setting unit 123 may set an objective function using an optimization technique other than the least squares method.
  • the function setting unit 123 may set an objective function that does not depend on the heating temperature t. Specifically, as an example of the former, the function setting unit 123 may set an objective function as shown in Equation 2 below.
  • the function setting unit 123 sets an objective function to which not only the temperature function but also a function (such as a sheeting function) indicating the relationship between the raw tobacco processing method and the amount of aroma components generated is added. may Also, the function setting unit 123 may set an objective function that does not include the temperature function. In this way, it is also possible to optimize only the mixing ratio of raw tobacco.
  • the function setting unit 123 may set an objective function in which corresponding variables are weighted according to the purpose of manufacturing tobacco products. Specifically, the function setting unit 123 may set an objective function as shown in Equation 3 below, for example.
  • the w in Equation 3 above is the importance of each aroma component contained in the heated aroma.
  • the importance is represented by a p ⁇ 1 vector containing p values that indicate the importance of each heated scent.
  • the greater this value the greater the range of increase in the objective function when the error of the corresponding aroma component increases. For this reason, when weighting is performed, a large value is set for the aroma component to be emphasized.
  • the function setting unit 123 may set an objective function in which a penalty term for an increase in the corresponding variable is set according to the purpose of manufacturing tobacco products. Specifically, the function setting unit 123 may set an objective function as shown in Equation 4 below, for example.
  • a in the above number 3 is the penalty item.
  • the penal provisions shall be as follows, depending on the purpose of manufacturing tobacco products. For example, if it is desired to restrict the use of a specific raw tobacco, the penalty term is such that the objective function increases as the ratio of the specific raw tobacco increases. Also, if it is desired to only slightly modify the mixing ratio of raw tobacco in existing product tobacco, the penalty term is set to increase the objective function as the deviation from the mixing ratio of the existing raw tobacco increases. Also, if it is desired to reduce the temperature deviation from the heating temperature of the existing device, the penalty term is such that the objective function increases as the difference between the variable t and the constant (heating temperature of the existing device) increases. do. Also, if it is desired to keep the heating temperature in the low temperature range, the penalty term is such that the objective function increases as the variable t increases.
  • the function setting unit 123 may set an objective function in which both the weighting and the penalties are set. Further, the function setting unit 123 may set an objective function in which penalty terms (combinations of the above penalty terms) are set so as to satisfy the plurality of manufacturing purposes. Also, the function setting unit 123 may set an objective function that combines the aroma component and the sensory characteristic. If the function setting unit 123 sets the objective function as described above, at least the mixture ratio of raw tobacco can be made more suitable for the manufacturing purpose.
  • the calculation unit 124 calculates the value of the first variable q that minimizes the objective function as the mixing ratio of raw tobacco.
  • the calculation unit 124 according to the present embodiment calculates the value of the second variable t that minimizes the objective function as the heating temperature of the raw tobacco.
  • the calculator 124 first marks the variables q and t. Specifically, a plurality of levels (for example, 10 points) are appropriately distributed between the minimum value and the maximum value of the heating temperature when the heated aroma is measured in the measurement step. Then, for each level, t is substituted into the objective function, and the objective function is pseudo-dependent only on the variable q.
  • levels for example, 10 points
  • the non-negative least squares method (a type of least squares method) can uniquely determine the solution without the need for initial values due to the characteristics of the calculation. ) are used to calculate the value of the objective function at each level. Then, the calculation unit 124 adopts the variables q and t when the objective function is minimized among the calculated variables q and t as initial values. The calculator 124 then optimizes the objective function using this initial value.
  • the domain of the variable can be limited, for example, it can be the range of heating temperatures that can be set in the desired heated tobacco device.
  • the output control unit 13 causes the output unit 4 to output (display, transmit, etc.) the mixing ratio and the heating temperature of the raw material tobacco determined by the determination unit 12 .
  • the function of the recipe determination device is a recipe determination program for causing a computer to function as the device.
  • the apparatus comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program.
  • control device eg processor
  • storage device eg memory
  • Each function described in each of the above embodiments is realized by executing the above program using the control device and the storage device.
  • the program may be recorded on one or more computer-readable recording media, not temporary.
  • the recording medium may or may not be included in the device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.
  • control blocks can be realized by logic circuits.
  • integrated circuits in which logic circuits functioning as the control blocks described above are formed are also included in the scope of the present invention.
  • control blocks described above it is also possible to implement the functions of the control blocks described above by, for example, a quantum computer.
  • each process described in each of the above embodiments may be executed by AI (Artificial Intelligence).
  • AI may operate on the control device, or may operate on another device (for example, an edge computer or a cloud server).
  • Embodiment 1 of the recipe determination method according to another aspect of the present invention will be described in detail.
  • members having the same functions as the members explained in the first embodiment of the invention are given the same reference numerals, and the explanation thereof will not be repeated.
  • the recipe determination method has a planning step S1, a selection step S2, a measurement step S3, and a determination step S4.
  • selection step S2 After determining the target value, the process proceeds to the selection step S2.
  • the selection step S2 raw tobaccos to be used for manufacturing tobacco products are selected. There is no upper limit to the number of types of raw tobacco to be selected in this selection step S2, and the more the number, the higher the accuracy of recipe determination. However, it takes time and money to prepare a large number of raw tobaccos. For this reason, for example, 100 types or less of raw tobacco may be prepared and selected from among them. Also, in this selection step S2, it is preferable to select a plurality of types of raw tobacco. Specifically, 5 or more types, preferably 10 or more types, more preferably 20 or more types are selected. If the raw tobacco to be used has already been selected (in this method, only the mixing ratio is to be determined), this selection step S2 may be skipped.
  • Measurement step S3 After selecting the raw tobacco, the process proceeds to the measurement step S3.
  • the measurement step S3 when each raw tobacco selected in the selection step S2 is heated at a desired heating temperature, the amount of the aroma component contained in the unit volume of the heated aroma generated by the raw tobacco is measured.
  • the measurement is performed using, for example, GC-MS.
  • one raw tobacco is divided into a plurality of pieces. Specifically, it is divided into 2 or more, preferably 3 or more.
  • each of the divided raw tobaccos is heated at different heating temperatures, and the amount of the aromatic component is measured at each heating temperature.
  • Each heating temperature is preferably within a temperature range in which tobacco-derived aromatic components are generated. Specifically, it is in the range of 10 to 900°C, preferably in the range of 50 to 400°C, more preferably in the range of 100 to 400°C.
  • the measurement method may be a method other than GC-MS.
  • this measurement step S3 may be skipped.
  • Determination step S4 After measuring the amount of the aroma component contained in the heated aroma generated by the raw tobacco, the process proceeds to determination step S4.
  • the determination step S4 when the product tobacco to be manufactured is heated, the ratio of the aroma components contained in the heated aroma generated by the product tobacco is determined within a predetermined allowable range. Mixing ratios and heating temperatures are determined using a processor.
  • the recipe determination device 100 is used to determine the mixing ratio and the heating temperature.
  • the determination step S4 includes an error setting step S41, a function setting step S42, and a calculation step S43.
  • Error setting step S41 In the error setting step S41, when the product tobacco in which the mixture ratio of the raw tobacco is set to an arbitrary value is heated at an arbitrary heating temperature, the components of the aroma components that will be included in the heated aroma generated by the product tobacco. An error between the ratio and a predetermined target value is set.
  • the error setting unit 122 of the recipe determination device 100 makes settings.
  • an error is set based on a temperature function indicating the relationship between the heating temperature of the raw tobacco and the amount of the aromatic component produced, which is created in advance for each aromatic component.
  • a temperature function is generated based on the amount of each heated aroma for each heating temperature of each raw tobacco measured in the measuring step S3.
  • the value of the first variable q that minimizes the objective function is calculated as the mixing ratio of the raw tobacco. Further, in the calculation step S43 according to the present embodiment, the value of the second variable t that minimizes the objective function is calculated as the heating temperature of the raw tobacco. In the calculation step S43 according to this embodiment, the calculation unit 124 of the recipe determination device 100 calculates.
  • variable q calculated by the calculator 124 may be 0 (zero). This indicates that the corresponding raw material tobacco is not included in the product tobacco recipe.
  • the recipe determination method according to the first embodiment was to optimize the mixing ratio and heating temperature of raw tobacco.
  • the recipe determination method according to the present embodiment fixes the heating temperature and optimizes only the mixing ratio of raw tobacco.
  • the heating temperature can be the combustion temperature of the tobacco.
  • the heating temperature can be set to an appropriate temperature such as human body temperature.
  • the heated aroma may be a flavor component that is gradually released into saliva.
  • the second embodiment can be preferably carried out when the heating temperature is fixed.
  • the recipe determination method according to this embodiment has a planning step S1, a selection step S2, a measurement step S3, and a determination step S4A.
  • the determination step S4A includes a temperature setting step S44 before the error setting step S41A.
  • the heating temperature is set to a desired heating temperature.
  • the temperature input by the user to the input unit is set as the heating temperature.
  • the process moves to error setting step S41A.
  • the error setting step when the product tobacco in which the mixing ratio of the raw tobacco is set to an arbitrary value is heated at the heating temperature set in the temperature setting step, the heated aroma generated by the product tobacco is A mixing ratio of the raw tobacco is determined so that the ratio of the aroma components to be contained falls within a predetermined allowable range. Specifically, a constant (desired heating temperature) is substituted for the second variable t included in the temperature function f(t) of the objective function, and then the first variable that minimizes the objective function Calculate q.
  • each divided product tobacco X is heated at six different heating temperatures (100, 150, 200, 250, 300, 350° C.), and the heated aroma generated by each product tobacco is heated. were obtained respectively. Then, the obtained heated aroma was analyzed using GC-MS, and the amount of the aroma component contained in each unit amount of heated aroma was measured.
  • a target value 1 was obtained when the product tobacco was heated at 300°C
  • a target value 2 was obtained when the product tobacco was heated at 350°C.
  • Table 1 shows the breakdown of target values 1 and 2.
  • aroma component 1 is one type of nitrogen compound in the raw material
  • aroma component 2 is one type of sugar decomposition product
  • aroma component 3 is one type of organic acid in the raw material
  • aroma component 4 is one type of aromatic component in the raw material.
  • Type 1 and aroma component 5 are a type of lignin degradation product.
  • each of the selected raw tobacco was divided into 6 pieces. Then, using a heating furnace, each of the divided raw tobaccos is heated at six different heating temperatures (100, 150, 200, 250, 300, 350° C.), and the heated aroma generated by each raw tobacco is heated. were obtained respectively. Then, the obtained heated aroma was analyzed using GC-MS, and the amount of the aroma component contained in each unit amount of heated aroma was measured. Table 2 shows the amount of each aroma component contained in the unit volume of heated aroma generated from each raw material tobacco.
  • the variables q and t of the sigmoid function were determined by the method of least squares to obtain the temperature function f(t). Then, the generated temperature function f(t) was applied to the objective function LS using the method of least squares shown in Equation 3 above, and the variables q and t that minimized the objective function LS were calculated respectively. .
  • a computer program created using the python language scipy package was used for these processes.
  • the evaluation function L S based on the error from the target value 1 was 9.463589428% for Orient tobacco 1, 26.27889785% for Orient tobacco 2, 35.3664568% for core material for flue-cured leaf tobacco 2, and 5.434983824% for reconstituted material A. %, the reconstituted raw material B was mixed at a ratio of 23.4560721% (recipe 1) and heated at 325°C.
  • the evaluation function L S based on the error from the target value 2 is 6.45353718% for flue-cured leaf tobacco 1, 6.28852554% for orient-seed leaf tobacco 1, 24.64267891% for orient-seed leaf tobacco 2, and 39.71050195% for flue-cured leaf tobacco 2 core material.
  • the reconstituted raw material C was mixed at a ratio of 22.90475642% (recipe 2) and heated at 350°C.
  • the amount of each aroma component contained in the heated aroma generated by the product tobacco is as shown in Table 3 below. It is assumed that
  • Example 1 a product tobacco sample (hereinafter referred to as Example 1). At that time, as the mixing ratio, a value rounded off to the nearest whole number was used. Then, it was heated at 325° C., and the amount of each aroma component contained in the heated aroma generated in Example 1 was measured in the same procedure as in obtaining Tables 1 and 2 above. Table 4 below and FIG.
  • Example 2 a product tobacco sample (hereinafter referred to as Example 2).
  • a value rounded off to the nearest whole number was used.
  • it was heated at 350° C., and the amount of each aroma component contained in the heated aroma generated in Example 2 was measured in the same manner as in obtaining Tables 1 and 2 above.
  • Table 5 the ratio of each aroma component contained in the heated aroma generated in Example 2 is as shown in Table 5 below and FIG.
  • Example 1 From Tables 4 and 5 above and FIGS. 2 falls within the target range of ⁇ 30% of each value).
  • the other four scent components except for the scent component 5 fell within the range of each value of the target value 1 ⁇ 13%).
  • Example 2 the other four scent components except for the scent component 1 fell within the range of each value of the target value 2 ⁇ 18%).
  • control unit 11 acquisition unit 12 determination unit 121 temperature setting unit 122 error setting unit 123 function setting unit 124 calculation unit 13 output control unit 2 input unit 3 storage unit 4 output unit S1 planning step S2 selection step S3 measurement step S4, S4A determination step S41, S41A error setting step S42 function setting step S43 calculation step S44 temperature setting step

Abstract

This invention reduces the time and effort for formulating a recipe for a tobacco product. This recipe formulation method includes a step (S4, S4A) for using a processor to designate ingredient tobaccos heating temperature and mixing ratio according to which, assuming a case where a tobacco product to be produced is heated, the ratio of flavour components contained in the flavour resulting from the tobacco product being heated falls within a preset allowance.

Description

レシピ決定方法、レシピ決定装置およびレシピ決定プログラムRecipe determination method, recipe determination device, and recipe determination program
 本発明はレシピ決定方法、レシピ決定装置およびレシピ決定プログラムに関する。 The present invention relates to a recipe determination method, a recipe determination device, and a recipe determination program.
 製品たばこは、その銘柄に応じて、複数種の葉たばこを所定のブレンド比率で混ぜ合わせて製造される。製品たばこのレシピ(原料たばこの組み合わせ及びそれらの混合比)の決定においては、従来、熟練のブレンダーが、原料たばこの混合比を少しずつ変え、香喫味を測定する試行を繰り返しながら目標とする香喫味に近づけていくことが行われてきた。その際、例えば特許文献1に記載されたような技術が利用されることもある。 Product tobacco is manufactured by mixing multiple types of leaf tobacco in a predetermined blend ratio, depending on the brand. Conventionally, a skilled blender gradually changes the mixing ratio of the raw tobaccos and repeats trials to measure the flavor and taste to obtain the target flavor. It has been done to bring it closer to the taste. At that time, for example, a technique such as that described in Patent Document 1 may be used.
特開平11-113550号公報JP-A-11-113550
 近年、非燃焼型の加熱式たばこが広く流通するようになってきている。加熱式たばこは、従来の燃焼型のたばこと異なり、加熱温度を多様に設定することができる。このため、加熱式たばこのレシピの決定においては、原料たばこの混合比だけでなく、加熱温度を変えて試行する必要が新たに生じるようになった。この加熱温度という変数が加わったことにより、試行の数は爆発的に増加し、ブレンダーの負担となっていた。
 本発明の一態様は、製品たばこのレシピを決定する手間の低減を実現することを目的とする。
In recent years, non-combustible heated cigarettes have become widely distributed. Unlike conventional combustible cigarettes, heat-not-burn cigarettes can be heated at various temperatures. For this reason, in determining the recipe for heat-not-burn tobacco, it has become necessary to experiment by changing not only the mixing ratio of raw tobacco but also the heating temperature. The addition of this heating temperature variable caused an explosive increase in the number of trials, which was a burden on the blender.
An object of one aspect of the present invention is to realize a reduction in labor for determining recipes for product tobacco.
 上記の課題を解決するために、本発明の一態様に係るレシピ決定方法は、製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を、プロセッサを用いて決定するステップを有する。 In order to solve the above problems, a recipe determination method according to an aspect of the present invention provides an aroma component to be contained in a heated aroma generated by a product tobacco to be produced when the product tobacco is heated. determining, using the processor, the mixing ratio and heating temperature of the tobacco raw material such that the component ratio of the tobacco is within a predetermined allowable range.
 また、本発明の一態様に係るレシピ決定方法における、前記原料たばこの混合比および加熱温度を決定するステップは、前記原料たばこの混合比を任意の値に設定した前記製品たばこが任意の加熱温度で加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比と、所定の目標値と、の誤差を設定するステップと、 前記誤差を評価する目的関数を設定するステップと、前記目的関数が最小となるような変数の値を、前記原料たばこの混合比として算出するステップと、を含むこととしてもよい。 Further, in the recipe determination method according to one aspect of the present invention, the step of determining the mixing ratio and heating temperature of the raw material tobacco is such that the product tobacco with the mixing ratio of the raw tobacco set to an arbitrary value is heated to an arbitrary heating temperature. A step of setting an error between the component ratio of the aroma components that will be included in the heated aroma generated by the product tobacco when heated with a specified target value, and an objective function for evaluating the error and calculating the value of the variable that minimizes the objective function as the mixing ratio of the raw tobacco.
 また、本発明の一態様に係るレシピ決定方法における、前記原料たばこの混合比を算出するステップでは、前記目的関数が最小となるような第二の変数の値を、前記原料たばこの加熱温度として算出することとしてもよい。 Further, in the recipe determination method according to one aspect of the present invention, in the step of calculating the mixing ratio of the raw tobacco, the value of the second variable that minimizes the objective function is set as the heating temperature of the raw tobacco. It may be calculated.
 また、本発明の一態様に係るレシピ決定方法における、前記誤差を設定するステップでは、予め香気成分ごとに作成された、前記原料たばこの加熱温度と前記香気成分の発生量との関係を示す温度関数に基づいて、前記誤差を設定することとしてもよい。 Further, in the recipe determination method according to one aspect of the present invention, in the step of setting the error, a temperature indicating the relationship between the heating temperature of the raw tobacco and the amount of the aromatic component generated is prepared in advance for each aromatic component. The error may be set based on a function.
 また、本発明の一態様に係るレシピ決定方法における、前記目的関数を設定するステップでは、最小二乗法を用いた目的関数を設定することとしてもよい。 Also, in the recipe determination method according to one aspect of the present invention, the step of setting the objective function may set the objective function using the least squares method.
 また、本発明の一態様に係るレシピ決定方法における、前記目的関数を設定するステップでは、前記製品たばこの製造目的に応じて、対応する変数への重みづけ、および対応する変数の増加に対する罰則項の設定の少なくとも一方がなされた目的関数を設定することとしてもよい。 Further, in the recipe determination method according to one aspect of the present invention, in the step of setting the objective function, the weighting of the corresponding variable and the penalty term for the increase of the corresponding variable are performed according to the manufacturing objective of the tobacco products. It is also possible to set an objective function in which at least one of the settings of
 また、本発明の他の態様に係るレシピ決定装置は、製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を決定する決定部を有する。 Further, in the recipe determining device according to another aspect of the present invention, when the product tobacco to be manufactured is heated, the component ratio of the aroma components to be included in the heated aroma generated by the product tobacco is set to a predetermined value. It has a determination unit that determines the mixing ratio and heating temperature of raw tobacco that fall within the allowable range of.
 また、本発明の他の態様に係るレシピ決定装置において、製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を決定する決定部を有するようにしてもよい。 Further, in the recipe determining device according to another aspect of the present invention, when the product tobacco to be manufactured is heated, the component ratio of the aroma components to be included in the heated aroma generated by the product tobacco is set to a predetermined value. may be provided with a determination unit that determines the mixing ratio and heating temperature of raw tobacco that fall within the permissible range of .
 本発明の各態様に係るレシピ決定装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記レシピ決定装置が備える各部(ソフトウェア要素)として動作させることにより前記レシピ決定装置をコンピュータにて実現させるレシピ決定装置のレシピ決定プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The recipe determination device according to each aspect of the present invention may be realized by a computer. In this case, the recipe determination device is implemented by the computer by operating the computer as each part (software element) included in the recipe determination device. A recipe determination program for a recipe determination device that is realized by a computer, and a computer-readable recording medium recording it are also included in the scope of the present invention.
 本発明の一態様によれば、製品たばこのレシピを決定する手間の低減を実現することができる。 According to one aspect of the present invention, it is possible to reduce the effort required to determine the recipe for product tobacco.
本発明の一態様の実施形態に係るレシピ決定装置の機能的構成を示すブロック図である。1 is a block diagram showing a functional configuration of a recipe determination device according to an embodiment of one aspect of the present invention; FIG. 本発明の他の態様の実施形態に係るレシピ決定方法の流れを示すフローチャートである。FIG. 4 is a flow chart showing the flow of a recipe determination method according to an embodiment of another aspect of the present invention; FIG. 目標とする製品たばこが発生させた単位体積の加熱香気に含まれる各香気成分の量(目標値1)、および本発明の実施例に係る製品たばこが発生させた単位体積の加熱香気に含まれる各香気成分の量(実施例1)を示すグラフである。The amount of each aroma component contained in the target unit volume of heated aroma generated by the product tobacco (target value 1), and the amount of each aroma component contained in the unit volume of heated aroma generated by the product tobacco according to the example of the present invention 1 is a graph showing the amount of each flavor component (Example 1). 目標とする製品たばこが発生させた単位体積の加熱香気に含まれる各香気成分の量(目標値2)、および本発明の実施例に係る製品たばこが発生させた単位体積の加熱香気に含まれる各香気成分の量(実施例2)を示すグラフである。The amount of each aroma component contained in the target volume of heated aroma generated by the product tobacco (target value 2), and the amount of each aroma component contained in the unit volume of heated aroma generated by the product tobacco according to the example of the present invention It is a graph which shows the amount (Example 2) of each fragrance component.
 <態様1実施形態>
 以下、本発明の一態様に係るレシピ決定装置の実施形態について、詳細に説明する。
<Aspect 1 embodiment>
Hereinafter, an embodiment of a recipe determination device according to one aspect of the present invention will be described in detail.
 「レシピ」は、製品たばこの製造に使用される原料たばこの組み合わせ及びそれらの混合比を指す。 "Recipe" refers to the combination of tobacco raw materials used in the manufacture of tobacco products and their mixing ratio.
 「製品たばこ」は、原料たばこを原料の全部又は一部とし、たばこを用いた製品に香味源として供し得る状態とされたものをいう。具体的には、燃焼型のシガレット、シガー等を含む。また、製品たばこは、非燃焼型の加熱式たばこに香味源として供し得るものであってもよい。また、製品たばこは、原料たばこが組み合わされていればよく、例えば最終製品に至る前の半製品の態様であってもよく、例えば、再構成原料(たばこシート)等であってもよい。 "Finished tobacco" refers to tobacco that is all or part of the raw material and is in a state where it can be used as a flavor source for tobacco-based products. Specifically, it includes combustible cigarettes, cigars, and the like. Further, the product tobacco may be one that can be used as a flavor source for non-combustible heat-not-burn tobacco. Further, the product tobacco may be a combination of raw tobaccos, and may be, for example, a semi-finished product before reaching the final product, or may be a reconstituted raw material (tobacco sheet) or the like.
 「原料たばこ」は、製品たばこを製造するための原料として用いられる葉たばこ、再構成原料(たばこシート)等を指す。葉たばこは、たばこの葉を収穫・乾燥・再乾燥させる工程、乾燥させた葉を樽詰めし、熟成させる工程、および熟成させた葉に加熱・加湿・加香等を施す工程を経ることにより得られる。再構成原料は、粉砕した葉たばこに、パルプやバインダーを添加して流動化させる工程、および流動化した葉たばこを紙状する工程を経ることにより得られる。原料たばこは、品種(例えば、黄色種、バーレー種、オリエント種、在来種等)、産地等によって複数種類に分類される。 "Raw tobacco" refers to leaf tobacco, reconstituted raw materials (tobacco sheets), etc. used as raw materials for manufacturing tobacco products. Leaf tobacco is obtained through the steps of harvesting, drying, and re-drying tobacco leaves, barreling the dried leaves and maturing them, and heating, humidifying, and flavoring the matured leaves. be done. The reconstituted raw material is obtained through a step of adding pulp and a binder to pulverized leaf tobacco to fluidize it, and a step of forming paper from the fluidized leaf tobacco. Raw material tobacco is classified into a plurality of types according to varieties (for example, yellow variety, burley variety, orient variety, native variety, etc.), place of production, and the like.
 本実施形態に係るレシピ決定装置100は、図1に示したように、制御部1と、入力部2と、記憶部3と、出力部4と、を有する。 The recipe determination device 100 according to this embodiment has a control unit 1, an input unit 2, a storage unit 3, and an output unit 4, as shown in FIG.
 [入力部2]
 入力部2は、ユーザが操作可能な操作部、他の装置から各種データを受信する通信部等で構成されている。
[Input section 2]
The input unit 2 includes an operation unit that can be operated by a user, a communication unit that receives various data from other devices, and the like.
 [記憶部3]
 記憶部3は、目的関数を記憶している。この目的関数の詳細については後述する。なお、目的関数を他の装置から取得する場合、レシピ決定装置は、記憶部を備えていなくてもよい。
[Storage unit 3]
The storage unit 3 stores objective functions. The details of this objective function will be described later. Note that when the objective function is acquired from another device, the recipe determination device does not have to include the storage unit.
 [出力部4]
 出力部4は、文字、画像等を表示する表示部、各種データを他の装置へ送信する通信部等で構成されている。
[Output unit 4]
The output unit 4 includes a display unit for displaying characters, images, etc., a communication unit for transmitting various data to other devices, and the like.
 [制御部1]
 制御部1は、取得部11と、決定部12と、出力制御部13と、を有する。
[Control unit 1]
The control unit 1 has an acquisition unit 11 , a determination unit 12 and an output control unit 13 .
 〔取得部11〕
 取得部11は、目標とする製品たばこが加熱された場合に当該製品たばこが発生させる単位体積の加熱香気に含まれる各香気成分の量(加熱香気の成分比:以下、目標値)を取得する。目標値は、p種類の加熱香気の量を含むp×1のベクトルで表される。また、取得部11は、原料たばこが所望の加熱温度で加熱された場合に、当該原料たばこが発生させる単位体積の加熱香気に含まれる各香気成分の量を、その際の加熱温度と共に取得する。本実施形態に係る取得部11は、目標値及び加熱香気の量を入力部2を介して取得する。
[Acquisition unit 11]
The acquisition unit 11 acquires the amount of each aroma component contained in the unit volume of heated aroma generated by the target tobacco product when the tobacco product is heated (component ratio of heated aroma: hereinafter, target value). . The target value is represented by a p×1 vector containing the amounts of p types of heated scents. The acquisition unit 11 also acquires the amount of each aroma component contained in the unit volume of the heated aroma generated by the raw tobacco when the raw tobacco is heated at a desired heating temperature, together with the heating temperature at that time. . Acquisition unit 11 according to the present embodiment acquires the target value and the amount of heated aroma via input unit 2 .
 〔決定部12〕
 決定部12は、製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を決定する。
[Determination unit 12]
The determination unit 12 selects the raw tobacco material so that the component ratio of the aroma components contained in the heated aroma generated by the product tobacco, when the product tobacco to be manufactured is heated, falls within a predetermined allowable range. Determine the mixing ratio and heating temperature.
 「香気成分」は、製品たばこが加熱された際に当該製品たばこが発生させる加熱香気に含まれる成分であって、ヒトが匂いとして感じられる成分を指す。限定されるものではないが、香気成分の例として、原料中窒素化合物、糖分解物、原料中有機酸、原料中芳香族成分、及びリグニン分解物が挙げられる。なお、香気成分は、ニコチンを含むこととしてもよい。また、香気成分は、製品たばこに含まれる成分であって、加熱されることにより蒸発する他の成分を含むこととしてもよい。加熱香気に含まれる香気成分の種類は、原料たばこ毎に異なる。また、単位体積の加熱香気に含まれる香気成分の量は、加熱温度によって異なる。 "Aroma component" is a component contained in the heated aroma generated by the product tobacco when the product tobacco is heated, and refers to a component that humans perceive as an odor. Examples of aroma components include, but are not limited to, nitrogen compounds in raw materials, sugar decomposition products, organic acids in raw materials, aromatic components in raw materials, and lignin decomposition products. Note that the aroma component may contain nicotine. The aroma component may also include other components that are contained in tobacco products and that evaporate when heated. The types of aroma components contained in the heated aroma differ for each raw tobacco. In addition, the amount of aroma components contained in the unit volume of heated aroma varies depending on the heating temperature.
 成分比の算出対象とする香気成分は、原料たばこに含まれるものであれば任意に選定することができる。算出対象とする香気成分をより多く選定すると、目標とする製造たばこの香喫味により近い加熱香気を発生させる製品たばこのレシピを決定することができる。なお、算出対象とする香気成分には、たばこ香料で使用される成分を含めないことが好ましい。このような成分は、原料たばこの混合比を調節しなくても、たばこ香料を添加するだけで、その量を容易に調整することができるためである。 The aroma component for which the component ratio is to be calculated can be arbitrarily selected as long as it is contained in raw tobacco. By selecting a larger number of aroma components to be calculated, it is possible to determine a recipe for product tobacco that produces a heated aroma that is closer to the target flavor and taste of manufactured tobacco. Note that it is preferable not to include components used in tobacco flavoring in the aroma components to be calculated. This is because the amount of such components can be easily adjusted by simply adding the tobacco flavor without adjusting the mixing ratio of the raw tobacco.
 「許容範囲」は、目標値に対する、製品たばこを製造する上で許容することのできるずれの範囲を指す。「目標範囲」は、目標値に近似していると判断することのできるずれの範囲を指す。目標範囲の上限値および下限値は、例えば目標値±30%、好ましくは目標値±20%等とする。算出した成分比が目標範囲に含まれていれば、目標通りのレシピを決定できたことになる。一方、算出した成分比が目標範囲から外れていても、許容範囲に含まれていれば、製品としては問題のないレシピを決定できたことになる。 "Tolerance" refers to the range of deviation from the target value that can be tolerated in manufacturing tobacco products. "Target range" refers to the range of deviation that can be determined to be close to the target value. The upper and lower limits of the target range are, for example, ±30% of the target value, preferably ±20% of the target value. If the calculated component ratio is within the target range, it means that the target recipe has been determined. On the other hand, even if the calculated component ratio is outside the target range, if it is within the allowable range, it means that a recipe with no problem as a product has been determined.
 本実施形態に係る決定部12は、温度設定部121と、誤差設定部122と、関数設定部123と、算出部124と、を含む。 The determination unit 12 according to this embodiment includes a temperature setting unit 121, an error setting unit 122, a function setting unit 123, and a calculation unit 124.
 (温度設定部121)
 温度設定部121は、加熱温度を所望の加熱温度に設定する。本実施形態に係る温度設定部121は、例えば、入力部2から入力された数値を所望の加熱温度に設定する。なお、加熱温度が固定されていない非燃焼型の加熱式たばこのレシピのみを決定する(加熱温度が固定された燃焼型のたばこのレシピを決定しない)場合、決定部12は、温度設定部を含んでいなくてもよい。
(Temperature setting unit 121)
The temperature setting unit 121 sets the heating temperature to a desired heating temperature. The temperature setting unit 121 according to this embodiment, for example, sets the numerical value input from the input unit 2 to a desired heating temperature. Note that when only the recipe for non-combustible heat-not-burn cigarettes with an unfixed heating temperature is determined (not the recipe for combustible heat-not-burn tobacco with a fixed heating temperature), the determining unit 12 sets the temperature setting unit to It does not have to be included.
 (誤差設定部122)
 誤差設定部122は、原料たばこの混合比を任意の値に設定した製品たばこが任意の加熱温度で加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比と、目標値と、の誤差を設定する。本実施形態に係る誤差設定部122は、予め香気成分ごとに作成された、原料たばこの加熱温度と香気成分の発生量との関係を示す温度関数に基づいて、誤差を設定する。温度関数は、加熱温度と香気成分の発生量との関係を示す関数である。また、温度関数は、成分毎、原料毎に異なる。
(Error setting unit 122)
The error setting unit 122 determines the components of the aroma components that will be included in the heated aroma generated by the product tobacco, in which the mixture ratio of the raw tobacco is set to an arbitrary value, when the product tobacco is heated at an arbitrary heating temperature. Set the error between the ratio and the target value. The error setting unit 122 according to the present embodiment sets the error based on a temperature function that is created in advance for each flavor component and indicates the relationship between the heating temperature of the raw tobacco and the amount of flavor components generated. The temperature function is a function that indicates the relationship between the heating temperature and the amount of aroma component generated. Also, the temperature function differs for each component and each raw material.
 本実施形態に係る誤差設定部122は、まず、原料たばこおよび香気成分毎(原料たばこの数n×香気成分の数p通り)の温度関数をそれぞれ生成する。具体的には、取得部11が取得した、2以上の加熱温度及び加熱香気の量の組を用いて、多項式を関数フィッティングすることにより温度関数を生成する。例えば、取得した加熱温度及び加熱香気の量の組が2つの場合、一次関数y=ax+bに各組の値をそれぞれ代入することによりa,bを具体的に決定する。そして、a,bの値が定まった一次関数が、この場合の温度関数となる。また、取得した加熱温度及び加熱香気の量の組が3つの場合、二次関数y=ax2+bx+cに各組の値をそれぞれ代入することによりa,b,cを具体的に決定する。そして、a,b,cの値が定まった二次関数が、この場合の温度関数となる。さらに、取得した加熱温度及び加熱香気の量の組がn個の場合、n-1次関数の各項の係数を上記一次,二次関数と同様に決定することにより、その場合の温度関数を得ることができる。 The error setting unit 122 according to the present embodiment first generates a temperature function for each raw tobacco and aroma component (the number of raw tobaccos is n×the number of aroma components is p). Specifically, a temperature function is generated by performing function fitting of a polynomial using two or more pairs of heating temperature and amount of heated aroma acquired by the acquiring unit 11 . For example, when there are two pairs of obtained heating temperature and amount of heated aroma, a and b are specifically determined by substituting the values of each pair into the linear function y=ax+b. A linear function in which the values of a and b are fixed becomes the temperature function in this case. Also, when there are three pairs of the acquired heating temperature and amount of heated aroma, a, b, and c are specifically determined by substituting the values of each pair into the quadratic function y=ax 2 +bx+c. A quadratic function in which the values of a, b, and c are fixed is the temperature function in this case. Furthermore, when there are n sets of obtained heating temperature and amount of heated aroma, the temperature function in that case is obtained by determining the coefficient of each term of the n-1 order function in the same manner as the above linear and secondary functions. Obtainable.
 次に、誤差設定部122は、生成した一の温度関数に基づいて、製造しようとする製品たばこが加熱された場合に当該製品たばこが発生させる加熱香気に含まれることになる各香気成分の量を算出する。具体的には、誤差設定部122は、一の香気成分についての温度関数と一の原料たばこの混合比との積を、全ての原料たばこについて積算した積算値を算出する。そして、目標値(ベクトル)に含まれる一の香気成分に対応する量と積算値の差の二乗和を誤差として算出する。なお、誤差は、これに限らず、製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比と、所定の目標値との差異を適切に表現する形式であればよく、例えば、目標値と積算値の比で定義してもよい。 Next, based on the generated one temperature function, the error setting unit 122 determines the amount of each aroma component that will be contained in the heated aroma generated by the product tobacco to be produced when the product tobacco is heated. Calculate Specifically, the error setting unit 122 calculates an integrated value by accumulating the product of the temperature function for one aroma component and the mixing ratio of one raw tobacco for all the raw tobaccos. Then, the sum of squares of the difference between the amount corresponding to one fragrance component included in the target value (vector) and the integrated value is calculated as an error. Note that the error is not limited to this, and may be in any format that appropriately expresses the difference between the component ratio of the aroma components that will be included in the heated aroma generated by the product tobacco and a predetermined target value. It may be defined by the ratio of the target value and the integrated value.
 また、誤差設定部122は、シグモイド関数を用いて温度関数を得るようになっていてもよい。シグモイド関数は、横軸の値x(加熱温度)が小さいと縦軸の値y(香気成分)が小さく、xが大きくなるにつれてyも増加し、xが一定以上になるとyの増加が頭打ちになるという特徴を持つ。この特徴は、製品たばこにおける加熱温度と香気成分の発生量との関係に似ている。このため、シグモイド関数を用いることにより、より実態に即した温度関数を生成することができる。 Also, the error setting unit 122 may obtain a temperature function using a sigmoid function. In the sigmoid function, when the value x (heating temperature) on the horizontal axis is small, the value y (aroma component) on the vertical axis is small. It has the characteristic of becoming This feature is similar to the relationship between the heating temperature and the amount of aromatic components generated in product tobacco. Therefore, by using the sigmoid function, it is possible to generate a more realistic temperature function.
 以上説明してきたように温度関数に基づいて誤差を設定することで、予め分かっている原料たばこの加熱温度と香気成分の発生量との関係を利用することができるため、誤差をより容易に設定することができる。 By setting the error based on the temperature function as described above, it is possible to use the known relationship between the heating temperature of the raw material tobacco and the amount of the aroma component generated, so that the error can be set more easily. can do.
 (関数設定部)
 関数設定部は、誤差を評価する目的関数(汎関数)を設定する。目的関数は、誤差そのものを操作対象としてもよく、誤差に罰則項を加えたもの、または重みづけを行ったものを操作対象としてもよい。本実施形態に係る関数設定部は、記憶部3から目的関数を取得して設定する。本実施形態に係る関数設定部は、最小二乗法を用いた目的関数を設定する。具体的には、関数設定部は、例えば下記数1に示したような二乗和誤差で目的関数を設定する。
(Function setting part)
The function setting unit sets an objective function (functional) for evaluating the error. The objective function may operate on the error itself, or on the error added with a penalty term or weighted. The function setting unit according to this embodiment acquires and sets the objective function from the storage unit 3 . The function setting unit according to this embodiment sets the objective function using the least squares method. Specifically, the function setting unit sets the objective function with the sum of squared errors as shown in Equation 1 below, for example.
Figure JPOXMLDOC01-appb-M000001
 上記数1におけるpは香気成分の数、nは原料たばこの数(種類)である。また、cは目標値である。また、f(t)は温度関数である。また、qは製造しようとする単位量の製品たばこに含まれる各原料たばこの量(原料たばこの混合比)である。原料たばこの混合比は、n種類原料たばこの量を含むn×1のベクトルである。すなわち、本実施形態に係る目的関数は、誤差設定部122が設定した上記誤差の2乗を、全ての香気成分について積算したものである。
Figure JPOXMLDOC01-appb-M000001
In Equation 1, p is the number of aroma components, and n is the number (type) of raw tobacco. Moreover, c is a target value. Also, f(t) is a temperature function. Also, q is the amount of each raw tobacco contained in the unit amount of product tobacco to be manufactured (mixing ratio of raw tobacco). The raw tobacco mix ratio is an n×1 vector containing the amounts of n raw tobaccos. That is, the objective function according to this embodiment is obtained by integrating the squares of the errors set by the error setting unit 122 for all the aroma components.
 最小二乗法による最適化は、容易に実装することができる。このため、関数設定部123が上記のような目的関数を設定することで、少なくとも原料たばこの混合比の最適化を、より容易に行うことができる。  Optimization by the least squares method can be easily implemented. Therefore, when the function setting unit 123 sets the objective function as described above, it is possible to more easily optimize at least the mixing ratio of the raw tobacco.
 なお、関数設定部123は、上記数1以外の目的関数を設定するようになっていてもよい。例えば、関数設定部123は、最小二乗法以外の最適化の手法を用いた目的関数を設定するようになっていてもよい。また、関数設定部123は、加熱温度tに依存しない目的関数を設定するようになっていてもよい。前者の例として具体的には、関数設定部123は、下記数2に示したような目的関数を設定するようになっていてもよい。 Note that the function setting unit 123 may set an objective function other than Equation 1 above. For example, the function setting unit 123 may set an objective function using an optimization technique other than the least squares method. Also, the function setting unit 123 may set an objective function that does not depend on the heating temperature t. Specifically, as an example of the former, the function setting unit 123 may set an objective function as shown in Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、関数設定部123は、温度関数だけでなく、原料たばこの処理方法と香気成分の発生量との関係を示す関数(シート化関数等)が追加された目的関数を設定するようになっていてもよい。
 また、関数設定部123は、温度関数を含まない目的関数を設定するようになっていてもよい。このようにすれば、原料たばこの混合比のみを最適化することも可能である。
In addition, the function setting unit 123 sets an objective function to which not only the temperature function but also a function (such as a sheeting function) indicating the relationship between the raw tobacco processing method and the amount of aroma components generated is added. may
Also, the function setting unit 123 may set an objective function that does not include the temperature function. In this way, it is also possible to optimize only the mixing ratio of raw tobacco.
 また、関数設定部123は、製品たばこの製造目的に応じて、対応する変数への重みづけがなされた目的関数を設定するようになっていてもよい。具体的には、関数設定部123は、例えば下記数3に示したような目的関数を設定するようになっていてもよい。 In addition, the function setting unit 123 may set an objective function in which corresponding variables are weighted according to the purpose of manufacturing tobacco products. Specifically, the function setting unit 123 may set an objective function as shown in Equation 3 below, for example.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記数3におけるwは加熱香気に含まれる各香気成分の重要度である。重要度は、各加熱香気の重要さを示すp種類の値を含むp×1のベクトルで表される。この値が大きいほど、対応する香気成分の誤差が大きくなったときの目的関数の増大幅がより大きくなる。このため、重みづけを行う場合には、重視する香気成分に対応する値を大きく設定する。 The w in Equation 3 above is the importance of each aroma component contained in the heated aroma. The importance is represented by a p×1 vector containing p values that indicate the importance of each heated scent. The greater this value, the greater the range of increase in the objective function when the error of the corresponding aroma component increases. For this reason, when weighting is performed, a large value is set for the aroma component to be emphasized.
 また、関数設定部123は、製品たばこの製造目的に応じて、対応する変数の増加に対する罰則項の設定がなされた目的関数を設定するようになっていてもよい。具体的には、関数設定部123は、例えば下記数4に示したような目的関数を設定するようになっていてもよい。 In addition, the function setting unit 123 may set an objective function in which a penalty term for an increase in the corresponding variable is set according to the purpose of manufacturing tobacco products. Specifically, the function setting unit 123 may set an objective function as shown in Equation 4 below, for example.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記数3におけるAが罰則項である。罰則項は、製品たばこの製造目的に応じて以下のようなものとする。例えば、特定の原料たばこに使用制限を設けたい場合には、罰則項を、特定の原料たばこの比率が大きくなると目的関数を増大させるようなものとする。また、既存の製品たばこにおける原料たばこの混合比の微修正に留めたい場合には、罰則項を、既存の原料たばこの混合比からの乖離が大きくなると目的関数を増大させるようなものとする。また、既存のデバイスの加熱温度からの温度乖離を小さくしたい場合には、罰則項を、変数tと定数(既存のデバイスの加熱温度)との差が大きくなると目的関数を増大させるようなものとする。また、加熱温度を低温度帯にとどめたい場合には、罰則項を、変数tが大きくなると目的関数を増大させるようなものとする。 A in the above number 3 is the penalty item. The penal provisions shall be as follows, depending on the purpose of manufacturing tobacco products. For example, if it is desired to restrict the use of a specific raw tobacco, the penalty term is such that the objective function increases as the ratio of the specific raw tobacco increases. Also, if it is desired to only slightly modify the mixing ratio of raw tobacco in existing product tobacco, the penalty term is set to increase the objective function as the deviation from the mixing ratio of the existing raw tobacco increases. Also, if it is desired to reduce the temperature deviation from the heating temperature of the existing device, the penalty term is such that the objective function increases as the difference between the variable t and the constant (heating temperature of the existing device) increases. do. Also, if it is desired to keep the heating temperature in the low temperature range, the penalty term is such that the objective function increases as the variable t increases.
 なお、関数設定部123は、上記重みづけと罰則項の設定の両方がなされた目的関数を設定するようになっていてもよい。また、関数設定部123は、上記複数の製造目的を満たすような(上記各罰則項が組み合わされた)罰則項の設定がなされた目的関数を設定するようになっていてもよい。また、関数設定部123は、香気成分と官能特性とを結びつけた目的関数を設定するようになっていてもよい。関数設定部123が以上説明してきたような目的関数を設定するようにすれば、少なくとも原料たばこの混合比を、より製造目的に即したものとすることができる。 Note that the function setting unit 123 may set an objective function in which both the weighting and the penalties are set. Further, the function setting unit 123 may set an objective function in which penalty terms (combinations of the above penalty terms) are set so as to satisfy the plurality of manufacturing purposes. Also, the function setting unit 123 may set an objective function that combines the aroma component and the sensory characteristic. If the function setting unit 123 sets the objective function as described above, at least the mixture ratio of raw tobacco can be made more suitable for the manufacturing purpose.
 (算出部124)
 算出部124は、目的関数が最小となるような第一の変数qの値を、原料たばこの混合比として算出する。本実施形態に係る算出部124は、目的関数が最小となるような第二の変数tの値を、原料たばこの加熱温度として算出する。
(Calculation unit 124)
The calculation unit 124 calculates the value of the first variable q that minimizes the objective function as the mixing ratio of raw tobacco. The calculation unit 124 according to the present embodiment calculates the value of the second variable t that minimizes the objective function as the heating temperature of the raw tobacco.
 上述したように、本実施形態に係る関数設定ステップでは、最小二乗法を用いた目的関数を設定する。最小二乗法を用いた最適化では、最適値に近い初期値が必要となる場合があることが知られている。このため、本実施形態に係る算出部124は、まず、変数q,tにアタリを付ける。具体的には、上記測定ステップで加熱香気を測定したときの加熱温度の最低値と最高値との間で、複数(例えば、10点)の水準を適当に振り分ける。そして、水準ごとに、目的関数にtを代入し、目的関数を疑似的に変数qにのみ依存した関数とする。このとき、変数q,tは負ではないことを利用して、非負最小二乗法(最小二乗法の一種であり、計算の特性上、初期値が必要なく解が一意に定まることが知られている)を用い、各水準における目的関数の値をそれぞれ算出する。そして、算出部124は、算出した複数の変数q,tのうち、目的関数が最小となったときの変数q,tを、初期値として採用する。そして、算出部124は、この初期値を用いて目的関数の最適化を行う。なお、変数の定義域は制限を設けることが可能であり、例えば、所望の加熱式たばこデバイスにおいて設定可能な加熱温度の範囲とすることができる。 As described above, in the function setting step according to this embodiment, an objective function using the least squares method is set. It is known that optimization using the least-squares method sometimes requires initial values close to optimal values. Therefore, the calculator 124 according to the present embodiment first marks the variables q and t. Specifically, a plurality of levels (for example, 10 points) are appropriately distributed between the minimum value and the maximum value of the heating temperature when the heated aroma is measured in the measurement step. Then, for each level, t is substituted into the objective function, and the objective function is pseudo-dependent only on the variable q. At this time, using the fact that the variables q and t are not negative, it is known that the non-negative least squares method (a type of least squares method) can uniquely determine the solution without the need for initial values due to the characteristics of the calculation. ) are used to calculate the value of the objective function at each level. Then, the calculation unit 124 adopts the variables q and t when the objective function is minimized among the calculated variables q and t as initial values. The calculator 124 then optimizes the objective function using this initial value. It should be noted that the domain of the variable can be limited, for example, it can be the range of heating temperatures that can be set in the desired heated tobacco device.
 以上説明してきたように変数q,tを算出すれば、数理最適化の手法により、より目標値に近似した混合比を、容易に決定することができる。 By calculating the variables q and t as explained above, it is possible to easily determine a mixing ratio that is more approximate to the target value by means of mathematical optimization.
 〔出力制御部13〕
 出力制御部13は、決定部12が決定した原料たばこの混合比および加熱温度を出力部4に出力(表示、送信等)させる。
[Output control unit 13]
The output control unit 13 causes the output unit 4 to output (display, transmit, etc.) the mixing ratio and the heating temperature of the raw material tobacco determined by the determination unit 12 .
 〔ソフトウェアによる実現例〕
 レシピ決定装置(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのレシピ決定プログラムであって、当該装置の各制御ブロック(特に制御部1に含まれる各部)としてコンピュータを機能させるためのレシピ決定プログラム(以下、「プログラム」と呼ぶ)により実現することができる。
 この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。
[Example of realization by software]
The function of the recipe determination device (hereinafter referred to as "device") is a recipe determination program for causing a computer to function as the device. can be realized by a recipe determination program (hereinafter referred to as "program") for functioning.
In this case, the apparatus comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program. Each function described in each of the above embodiments is realized by executing the above program using the control device and the storage device.
The program may be recorded on one or more computer-readable recording media, not temporary. The recording medium may or may not be included in the device. In the latter case, the program may be supplied to the device via any transmission medium, wired or wireless.
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本発明の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。
 また、上記各実施形態で説明した各処理は、AI(Artificial Intelligence:人工知能)に実行させてもよい。この場合、AIは上記制御装置で動作するものであってもよいし、他の装置(例えばエッジコンピュータまたはクラウドサーバ等)で動作するものであってもよい。
Also, part or all of the functions of the above control blocks can be realized by logic circuits. For example, integrated circuits in which logic circuits functioning as the control blocks described above are formed are also included in the scope of the present invention. In addition, it is also possible to implement the functions of the control blocks described above by, for example, a quantum computer.
Further, each process described in each of the above embodiments may be executed by AI (Artificial Intelligence). In this case, the AI may operate on the control device, or may operate on another device (for example, an edge computer or a cloud server).
 <態様2実施形態1>
 以下、本発明の他の態様に係るレシピ決定方法の実施形態1について、詳細に説明する。なお、説明の便宜上、上記発明1実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
<Aspect 2 Embodiment 1>
Hereinafter, Embodiment 1 of the recipe determination method according to another aspect of the present invention will be described in detail. For convenience of explanation, members having the same functions as the members explained in the first embodiment of the invention are given the same reference numerals, and the explanation thereof will not be repeated.
 本実施形態に係るレシピ決定方法は、計画ステップS1と、選択ステップS2と、測定ステップS3と、決定ステップS4と、を有する。 The recipe determination method according to this embodiment has a planning step S1, a selection step S2, a measurement step S3, and a determination step S4.
 〔計画ステップS1〕
 計画ステップS1では、製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比(=製品たばこが発生させる単位体積の加熱香気に含まれる各香気成分の量)を目標値として決定する。また、目標値を既に決定済みの場合には、この計画ステップS1を飛ばしてもよい。
[Planning step S1]
In the planning step S1, when the product tobacco to be manufactured is heated, the component ratio of the aroma components that will be contained in the heated aroma generated by the product tobacco (= the heated aroma of the unit volume generated by the product tobacco) amount of each aroma component contained) is determined as a target value. Also, if the target value has already been determined, this planning step S1 may be skipped.
 〔選択ステップS2〕
 目標値を決定した後は、選択ステップS2へ移る。選択ステップS2では、製品たばこの製造に使用する原料たばこを選択する。この選択ステップS2で選択対象とする原料たばこの種類に上限はなく、多ければ多いほどレシピ決定の精度が向上する。しかし、多数の原料たばこを準備するのには手間やコストがかかる。このため、例えば100種類以下の原料たばこを用意し、その中から選択してもよい。また、この選択ステップS2では、原料たばこを複数種類選択することが好ましい。具体的には、5種類以上、好ましくは10種類以上、より好ましくは20種類以上選択する。なお、使用する原料たばこを既に選択済みの場合(本方法では混合比だけを決定したい場合)には、この選択ステップS2を飛ばしてもよい。
[Selection step S2]
After determining the target value, the process proceeds to the selection step S2. In the selection step S2, raw tobaccos to be used for manufacturing tobacco products are selected. There is no upper limit to the number of types of raw tobacco to be selected in this selection step S2, and the more the number, the higher the accuracy of recipe determination. However, it takes time and money to prepare a large number of raw tobaccos. For this reason, for example, 100 types or less of raw tobacco may be prepared and selected from among them. Also, in this selection step S2, it is preferable to select a plurality of types of raw tobacco. Specifically, 5 or more types, preferably 10 or more types, more preferably 20 or more types are selected. If the raw tobacco to be used has already been selected (in this method, only the mixing ratio is to be determined), this selection step S2 may be skipped.
 〔測定ステップS3〕
 原料たばこを選択した後は、測定ステップS3へ移る。測定ステップS3では、選択ステップS2で選択した各原料たばこが、所望の加熱温度で加熱された場合に、当該原料たばこが発生させる単位体積の加熱香気に含まれる香気成分の量をそれぞれ測定する。本実施形態に係る測定ステップS3では、例えばGC-MSを用いて測定する。また、この測定ステップS3では、一つの原料たばこを複数に分ける。具体的には、2以上、好ましくは3以上に分ける。
[Measurement step S3]
After selecting the raw tobacco, the process proceeds to the measurement step S3. In the measurement step S3, when each raw tobacco selected in the selection step S2 is heated at a desired heating temperature, the amount of the aroma component contained in the unit volume of the heated aroma generated by the raw tobacco is measured. In the measurement step S3 according to this embodiment, the measurement is performed using, for example, GC-MS. Also, in this measurement step S3, one raw tobacco is divided into a plurality of pieces. Specifically, it is divided into 2 or more, preferably 3 or more.
 そして、分けられた各原料たばこをそれぞれ異なる加熱温度で加熱して、加熱温度ごとの香気成分の量をそれぞれ測定する。各加熱温度は、たばこ由来の香気成分が発生する温度帯の範囲内とすることが好ましい。具体的には、10~900℃の範囲内、好ましくは50~400℃の範囲内、より好ましくは100~400℃の範囲内とする。なお、測定の方法は、GC-MS以外の他の方法であってもよい。また、選択した原料たばこにおける香気成分の量が予め分かっている場合には、この測定ステップS3を飛ばしてもよい。 Then, each of the divided raw tobaccos is heated at different heating temperatures, and the amount of the aromatic component is measured at each heating temperature. Each heating temperature is preferably within a temperature range in which tobacco-derived aromatic components are generated. Specifically, it is in the range of 10 to 900°C, preferably in the range of 50 to 400°C, more preferably in the range of 100 to 400°C. Note that the measurement method may be a method other than GC-MS. Moreover, if the amount of the aromatic component in the selected raw tobacco is known in advance, this measurement step S3 may be skipped.
 〔決定ステップS4〕
 原料たばこが発生させる加熱香気に含まれる香気成分の量を測定した後は、決定ステップS4に移る。決定ステップS4では、製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を、プロセッサを用いて決定する。本実施形態に係る決定ステップS4では、上記レシピ決定装置100を用いて混合比および加熱温度を決定する。
[Determination step S4]
After measuring the amount of the aroma component contained in the heated aroma generated by the raw tobacco, the process proceeds to determination step S4. In the determination step S4, when the product tobacco to be manufactured is heated, the ratio of the aroma components contained in the heated aroma generated by the product tobacco is determined within a predetermined allowable range. Mixing ratios and heating temperatures are determined using a processor. In the determination step S4 according to this embodiment, the recipe determination device 100 is used to determine the mixing ratio and the heating temperature.
 決定ステップS4は、誤差設定ステップS41と、関数設定ステップS42と、算出ステップS43と、を含む。 The determination step S4 includes an error setting step S41, a function setting step S42, and a calculation step S43.
 (誤差設定ステップS41)
 誤差設定ステップS41では、原料たばこの混合比を任意の値に設定した製品たばこが任意の加熱温度で加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比と、所定の目標値と、の誤差を設定する。本実施形態に係る誤差設定ステップS41では、上記レシピ決定装置100の誤差設定部122が設定する。
(Error setting step S41)
In the error setting step S41, when the product tobacco in which the mixture ratio of the raw tobacco is set to an arbitrary value is heated at an arbitrary heating temperature, the components of the aroma components that will be included in the heated aroma generated by the product tobacco. An error between the ratio and a predetermined target value is set. In the error setting step S41 according to the present embodiment, the error setting unit 122 of the recipe determination device 100 makes settings.
 また、本実施形態に係る誤差設定ステップS41では、予め香気成分ごとに作成された、原料たばこの加熱温度と香気成分の発生量との関係を示す温度関数に基づいて、誤差を設定する。本実施形態に係る誤差設定ステップS41では、測定ステップS3で測定した各原料たばこの加熱温度毎の各加熱香気の量に基づいて温度関数を生成する。 In addition, in the error setting step S41 according to the present embodiment, an error is set based on a temperature function indicating the relationship between the heating temperature of the raw tobacco and the amount of the aromatic component produced, which is created in advance for each aromatic component. In the error setting step S41 according to this embodiment, a temperature function is generated based on the amount of each heated aroma for each heating temperature of each raw tobacco measured in the measuring step S3.
 なお、誤差設定ステップS41では、実際のデータの分布を考慮して関数の次数を決定するのが好ましい。このようにすれば、関数の次数を増やしすぎることによる過学習の問題が生じるのを防ぐことができる。 It should be noted that in the error setting step S41, it is preferable to determine the order of the function in consideration of the actual data distribution. In this way, it is possible to prevent the problem of overfitting caused by increasing the degree of the function too much.
 (関数設定ステップS42)
 関数設定ステップS42では、誤差を評価する目的関数を設定する。本実施形態に係る関数設定ステップS42では、上記レシピ決定装置100の関数設定部123が設定する。本実施形態に係る関数設定ステップS42では、最小二乗法を用いた目的関数を設定する。
(Function setting step S42)
At the function setting step S42, an objective function for evaluating the error is set. In the function setting step S42 according to this embodiment, the function setting unit 123 of the recipe determination device 100 sets. In the function setting step S42 according to this embodiment, an objective function using the least squares method is set.
 (算出ステップS43)
 算出ステップS43では、目的関数が最小となるような第一の変数qの値を、原料たばこの混合比として算出する。また、本実施形態に係る算出ステップS43では、目的関数が最小となるような第二の変数tの値を、原料たばこの加熱温度として算出する。本実施形態に係る算出ステップS43では、上記レシピ決定装置100の算出部124が算出する。
(Calculation step S43)
In the calculation step S43, the value of the first variable q that minimizes the objective function is calculated as the mixing ratio of the raw tobacco. Further, in the calculation step S43 according to the present embodiment, the value of the second variable t that minimizes the objective function is calculated as the heating temperature of the raw tobacco. In the calculation step S43 according to this embodiment, the calculation unit 124 of the recipe determination device 100 calculates.
 なお、算出部124が算出する変数qは0(ゼロ)になることがある。これは、対応する原料たばこを製品たばこのレシピに含めないことを示す。 Note that the variable q calculated by the calculator 124 may be 0 (zero). This indicates that the corresponding raw material tobacco is not included in the product tobacco recipe.
 〔作用効果〕
 従来、原料たばこの混合比はブレンダー(人)が決定してきたが、加熱温度が可変の加熱式たばこの登場により、レシピを決定する際の変数が増え、ブレンダーによるレシピ決定が困難さを増していた。しかし、本実施形態に係るレシピ決定装置、またはレシピ決定方法によれば、加熱温度が固定された燃焼たばこだけでなく、加熱温度が可変の加熱式たばこであっても、原料たばこの混合比および加熱温度をプロセッサの処理により容易に決定することができる。すなわち、製品たばこのレシピを決定する手間の低減を実現することができる。そして、得られた混合比に基づいて原料たばこをブレンド(その際、たばこ香料を適宜添加して香気成分を調整してもよい)することにより、許容範囲に含まれる目標値に近似した製品たばこを容易に製造することができる。
[Effect]
Traditionally, blenders (persons) have determined the mixing ratio of raw tobacco, but with the advent of heated tobacco with variable heating temperatures, the number of variables in determining recipes has increased, making it more difficult for blenders to determine recipes. rice field. However, according to the recipe determination device or the recipe determination method according to the present embodiment, not only combustion tobacco whose heating temperature is fixed, but also heated tobacco whose heating temperature is variable, the mixture ratio and The heating temperature can be easily determined by processor processing. In other words, it is possible to reduce the time and effort required to determine the recipe for product tobacco. Then, by blending the raw material tobacco based on the obtained mixture ratio (at that time, tobacco flavoring may be added as appropriate to adjust the aroma component), product tobacco that is close to the target value included in the allowable range can be easily manufactured.
 <態様2実施形態2>
 以下、本発明の他の態様に係るレシピ決定方法の実施形態2について、詳細に説明する。なお、説明の便宜上、上記発明1実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
<Aspect 2 Embodiment 2>
A second embodiment of the recipe determination method according to another aspect of the present invention will be described in detail below. For convenience of explanation, members having the same functions as the members explained in the first embodiment of the invention are given the same reference numerals, and the explanation thereof will not be repeated.
 上記実施形態1に係るレシピ決定方法は、原料たばこの混合比および加熱温度を最適化するものであった。これに対し、本実施形態に係るレシピ決定方法は、加熱温度を固定して、原料たばこの混合比のみを最適化するものとなっている。限定されるものではないが、製品たばこが燃焼型たばこの場合、加熱温度をたばこの燃焼温度とすることができる。製品たばこが嗅ぎたばこの場合は、加熱温度をヒトの体温等、適切な温度に設定することができる。なお、この場合、加熱香気は唾液中に徐放される香喫味成分であってよい。また、製品たばこが加熱式たばこである場合も、加熱温度を固定する場合には、実施形態2を好ましく実施できる。本実施形態に係るレシピ決定方法は、計画ステップS1と、選択ステップS2と、測定ステップS3と、決定ステップS4Aと、を有する。 The recipe determination method according to the first embodiment was to optimize the mixing ratio and heating temperature of raw tobacco. In contrast, the recipe determination method according to the present embodiment fixes the heating temperature and optimizes only the mixing ratio of raw tobacco. Although not limited, if the tobacco product is a combustible tobacco, the heating temperature can be the combustion temperature of the tobacco. When the product tobacco is snuff, the heating temperature can be set to an appropriate temperature such as human body temperature. In this case, the heated aroma may be a flavor component that is gradually released into saliva. Also, when the product tobacco is a heated tobacco, the second embodiment can be preferably carried out when the heating temperature is fixed. The recipe determination method according to this embodiment has a planning step S1, a selection step S2, a measurement step S3, and a determination step S4A.
 本実施形態に係る決定ステップS4Aは、誤差設定ステップS41Aの前に、温度設定ステップS44を含む。温度設定ステップS44では、加熱温度を所望の加熱温度に設定する。本実施形態に係る誤差設定ステップS41Aでは、例えば、ユーザにより入力部に入力された温度を加熱温度に設定する。 The determination step S4A according to this embodiment includes a temperature setting step S44 before the error setting step S41A. At the temperature setting step S44, the heating temperature is set to a desired heating temperature. In the error setting step S41A according to the present embodiment, for example, the temperature input by the user to the input unit is set as the heating temperature.
 加熱温度を設定した後は、誤差設定ステップS41Aに移る。本実施形態に係る誤差設定ステップでは、原料たばこの混合比を任意の値に設定した製品たばこが、温度設定ステップで設定した加熱温度で加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比を決定する。具体的には、目的関数の温度関数f(t)に含まれる第二の変数tに定数(所望の加熱温度)を代入し、その上で、目的関数が最小となるような第一の変数qを算出する。 After setting the heating temperature, the process moves to error setting step S41A. In the error setting step according to the present embodiment, when the product tobacco in which the mixing ratio of the raw tobacco is set to an arbitrary value is heated at the heating temperature set in the temperature setting step, the heated aroma generated by the product tobacco is A mixing ratio of the raw tobacco is determined so that the ratio of the aroma components to be contained falls within a predetermined allowable range. Specifically, a constant (desired heating temperature) is substituted for the second variable t included in the temperature function f(t) of the objective function, and then the first variable that minimizes the objective function Calculate q.
 〔作用効果〕
 本実施形態に係るレシピ決定装置、またはレシピ決定方法によれば、加熱温度が予め決まっている製品たばこの混合比を容易に決定することができる。
[Effect]
According to the recipe determination device or the recipe determination method according to the present embodiment, it is possible to easily determine the mixing ratio of product tobacco whose heating temperature is predetermined.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 次に、本発明の一実施例について以下に説明する。 Next, an embodiment of the present invention will be described below.
 まず、市販されているある製品たばこXを、目標とする製品たばこに選定した。 First, we selected a product tobacco X on the market as our target product tobacco.
 次に、複数の原料たばこの中から、黄色種葉たばこ1、オリエント種葉たばこ1、オリエント種葉たばこ2、黄色種葉たばこ2中骨原料、再構成原料A、再構成原料B、および再構成原料Cの7種類を原料たばことして選択した。 Next, from among a plurality of raw tobaccos, flue-cured leaf tobacco 1, orient-seed leaf tobacco 1, orient-seed leaf tobacco 2, flue-cured leaf tobacco 2 backbone raw material, reconstituted raw material A, reconstituted raw material B, and reconstituted raw material C Seven types were selected as raw material tobacco.
 次に、製品たばこXを6つに分けた。そして、加熱炉を用い、分けられた各製品たばこを、それぞれ異なる6段階の加熱温度(100,150,200,250,300,350℃)でそれぞれ加熱し、各製品たばこが発生させた加熱香気をそれぞれ取得した。そして、取得した加熱香気をGC-MSを用いて分析し、単位量の各加熱香気に含まれる香気成分の量をそれぞれ測定した。そして、製品たばこを300℃で加熱したときのものを目標値1(ターゲット1)、同製品たばこを350℃で加熱したときのものを目標値2(ターゲット2)とした。目標値1,2の内訳を表1に示す。なお、表1の香気成分1は原料中窒素化合物の1種、香気成分2は糖分解物の1種、香気成分3は原料中有機酸の1種、香気成分4は原料中芳香族成分の1種、香気成分5はリグニン分解物の1種である。 Next, we divided product tobacco X into 6 parts. Then, using a heating furnace, each divided product tobacco is heated at six different heating temperatures (100, 150, 200, 250, 300, 350° C.), and the heated aroma generated by each product tobacco is heated. were obtained respectively. Then, the obtained heated aroma was analyzed using GC-MS, and the amount of the aroma component contained in each unit amount of heated aroma was measured. A target value 1 (target 1) was obtained when the product tobacco was heated at 300°C, and a target value 2 (target 2) was obtained when the product tobacco was heated at 350°C. Table 1 shows the breakdown of target values 1 and 2. In Table 1, aroma component 1 is one type of nitrogen compound in the raw material, aroma component 2 is one type of sugar decomposition product, aroma component 3 is one type of organic acid in the raw material, and aroma component 4 is one type of aromatic component in the raw material. Type 1 and aroma component 5 are a type of lignin degradation product.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、選択した原料たばこをそれぞれ6つに分けた。そして、加熱炉を用い、分けられた各原料たばこを、それぞれ異なる6段階の加熱温度(100,150,200,250,300,350℃)でそれぞれ加熱し、各原料たばこが発生させた加熱香気をそれぞれ取得した。そして、取得した加熱香気をGC-MSを用いて分析し、単位量の各加熱香気に含まれる香気成分の量をそれぞれ測定した。各原料たばこがそれぞれ発生させた単位体積の加熱香気に含まれる各香気成分の量を表2に示す。 Next, each of the selected raw tobacco was divided into 6 pieces. Then, using a heating furnace, each of the divided raw tobaccos is heated at six different heating temperatures (100, 150, 200, 250, 300, 350° C.), and the heated aroma generated by each raw tobacco is heated. were obtained respectively. Then, the obtained heated aroma was analyzed using GC-MS, and the amount of the aroma component contained in each unit amount of heated aroma was measured. Table 2 shows the amount of each aroma component contained in the unit volume of heated aroma generated from each raw material tobacco.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 次に、上記表2に示した各値を用いて、シグモイド関数の変数q,tを最小二乗法により決定し、それを温度関数f(t)とした。そして、上記数3に示した、最小二乗法を用いた目的関数LSに生成した温度関数f(t)を適用し、目的関数LSが最小となるような変数q,tをそれぞれ算出した。これらの処理には、python言語のscipyパッケージを用いて作成したコンピュータプログラムを用いた。 Next, using the values shown in Table 2 above, the variables q and t of the sigmoid function were determined by the method of least squares to obtain the temperature function f(t). Then, the generated temperature function f(t) was applied to the objective function LS using the method of least squares shown in Equation 3 above, and the variables q and t that minimized the objective function LS were calculated respectively. . A computer program created using the python language scipy package was used for these processes.
 その結果、目標値1との誤差に基づく評価関数LSは、オリエント種葉たばこ1を9.463589428%,オリエント種葉たばこ2を26.27889785%,黄色種葉たばこ2中骨原料を35.3664568%,再構成原料Aを5.434983824%,再構成原料Bを23.4560721%の比率(レシピ1)で混合し、それを325℃で加熱することとした場合に極小値を示した。また、目標値2との誤差に基づく評価関数LSは、黄色種葉たばこ1を6.45353718%,オリエント種葉たばこ1を6.28852554%,オリエント種葉たばこ2を24.64267891%,黄色種葉たばこ2中骨原料を39.71050195%,再構成原料Cを22.90475642%の比率(レシピ2)で混合し、それを350℃で加熱することとした場合に極小値を示した。レシピ1,2に基づいて製品たばこを作成し、それを対応する加熱温度で加熱した場合、当該製品たばこが発生させる加熱香気に含まれる各香気成分の量は、下記表3に示したようになるものと推測される。 As a result, the evaluation function L S based on the error from the target value 1 was 9.463589428% for Orient tobacco 1, 26.27889785% for Orient tobacco 2, 35.3664568% for core material for flue-cured leaf tobacco 2, and 5.434983824% for reconstituted material A. %, the reconstituted raw material B was mixed at a ratio of 23.4560721% (recipe 1) and heated at 325°C. In addition, the evaluation function L S based on the error from the target value 2 is 6.45353718% for flue-cured leaf tobacco 1, 6.28852554% for orient-seed leaf tobacco 1, 24.64267891% for orient-seed leaf tobacco 2, and 39.71050195% for flue-cured leaf tobacco 2 core material. , the reconstituted raw material C was mixed at a ratio of 22.90475642% (recipe 2) and heated at 350°C. When a product tobacco is prepared based on recipes 1 and 2 and heated at a corresponding heating temperature, the amount of each aroma component contained in the heated aroma generated by the product tobacco is as shown in Table 3 below. It is assumed that
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 次に、得られたレシピ1に基づいて原料たばこをブレンドし、製品たばこのサンプル(以下、実施例1)を実際に作成した。なお、その際混合比として、小数点以下を四捨五入して整数にした値を用いた。そして、それを325℃で加熱し、実施例1が発生させた加熱香気に含まれる各香気成分の量を、上記表1,2を得たときと同様の手順で測定した。目標値1の各値を1としたときの、実施例1が発生させた加熱香気に含まれる各香気成分の比は、下記表4および図3に示したようになった。 Next, based on the obtained recipe 1, the raw tobacco was blended to actually prepare a product tobacco sample (hereinafter referred to as Example 1). At that time, as the mixing ratio, a value rounded off to the nearest whole number was used. Then, it was heated at 325° C., and the amount of each aroma component contained in the heated aroma generated in Example 1 was measured in the same procedure as in obtaining Tables 1 and 2 above. Table 4 below and FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、得られたレシピ2に基づいて原料たばこをブレンドし、製品たばこのサンプル(以下、実施例2)を作成した。なお、その際混合比として、小数点以下を四捨五入して整数にした値を用いた。そして、それを350℃で加熱し、実施例2が発生させた加熱香気に含まれる各香気成分の量を、上記表1,2を得たときと同様の手順で測定した。目標値2の各値を1としたときの、実施例2が発生させた加熱香気に含まれる各香気成分の比は、下記表5および図4に示したようになった。 Next, the raw tobacco was blended based on Recipe 2 obtained to prepare a product tobacco sample (hereinafter referred to as Example 2). At that time, as the mixing ratio, a value rounded off to the nearest whole number was used. Then, it was heated at 350° C., and the amount of each aroma component contained in the heated aroma generated in Example 2 was measured in the same manner as in obtaining Tables 1 and 2 above. When each value of target value 2 is set to 1, the ratio of each aroma component contained in the heated aroma generated in Example 2 is as shown in Table 5 below and FIG.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表4,5および図3,4により、実施例1,2が発生させた単位体積の加熱香気に含まれる各香気成分の量(成分比)は、目標値に近似する(目標値1,2の各値±30%の目標範囲に収まる)ことが確認できた。実施例1と目標値1との比較においては、特に、香気成分5を除く他の4つの香気成分が目標値1の各値±13%の範囲)に収まった。また、実施例2と目標値2との比較においては、香気成分1を除く他の4つの香気成分が目標値2の各値±18%の範囲)に収まった。 From Tables 4 and 5 above and FIGS. 2 falls within the target range of ±30% of each value). In the comparison between Example 1 and the target value 1, in particular, the other four scent components except for the scent component 5 fell within the range of each value of the target value 1 ±13%). Further, in comparison between Example 2 and the target value 2, the other four scent components except for the scent component 1 fell within the range of each value of the target value 2 ±18%).
100 レシピ決定装置
 1 制御部
  11 取得部
  12 決定部
   121 温度設定部
   122 誤差設定部
   123 関数設定部
   124 算出部
  13 出力制御部
 2 入力部
 3 記憶部
 4 出力部
S1 計画ステップ
S2 選択ステップ
S3 測定ステップ
S4、S4A 決定ステップ
 S41、S41A 誤差設定ステップ
 S42 関数設定ステップ
 S43 算出ステップ
 S44 温度設定ステップ

 
100 recipe determination device 1 control unit 11 acquisition unit 12 determination unit 121 temperature setting unit 122 error setting unit 123 function setting unit 124 calculation unit 13 output control unit 2 input unit 3 storage unit 4 output unit S1 planning step S2 selection step S3 measurement step S4, S4A determination step S41, S41A error setting step S42 function setting step S43 calculation step S44 temperature setting step

Claims (9)

  1.  製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を、プロセッサを用いて決定するステップを有する、レシピ決定方法。 The mixing ratio and heating temperature of the tobacco raw materials that, when the tobacco product to be manufactured is heated, the ratio of the aroma components contained in the heated aroma generated by the tobacco product to be produced falls within a predetermined allowable range. using a processor.
  2.  前記原料たばこの混合比および加熱温度を決定するステップは、
     前記原料たばこの混合比を任意の値に設定した前記製品たばこが任意の加熱温度で加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比と、所定の目標値と、の誤差を設定するステップと、
     前記誤差を評価する目的関数を設定するステップと、
     前記目的関数が最小となるような変数の値を、前記原料たばこの混合比として算出するステップと、
    を含む、請求項1に記載のレシピ決定方法。
    The step of determining the mixing ratio and heating temperature of the raw tobacco,
    a component ratio of aroma components that will be included in the heated aroma generated by the product tobacco when the product tobacco in which the mixture ratio of the raw tobacco is set to an arbitrary value is heated at an arbitrary heating temperature; setting a target value of and an error of
    setting an objective function to evaluate the error;
    calculating the value of the variable that minimizes the objective function as the mixing ratio of the raw tobacco;
    The recipe determination method of claim 1, comprising:
  3.  前記原料たばこの混合比を算出するステップでは、前記目的関数が最小となるような第二の変数の値を、前記原料たばこの加熱温度として算出する、請求項2に記載のレシピ決定方法。 3. The recipe determining method according to claim 2, wherein in the step of calculating the mixing ratio of the raw tobacco, the value of the second variable that minimizes the objective function is calculated as the heating temperature of the raw tobacco.
  4.  前記誤差を設定するステップでは、予め香気成分ごとに作成された、前記原料たばこの加熱温度と前記香気成分の発生量との関係を示す温度関数に基づいて、前記誤差を設定する、請求項2または3に記載のレシピ決定方法。 3. In the step of setting the error, the error is set based on a temperature function, which is prepared in advance for each flavor component and indicates the relationship between the heating temperature of the raw tobacco and the amount of the flavor component generated. Or the recipe determination method as described in 3.
  5.  前記目的関数を設定するステップでは、最小二乗法を用いた目的関数を設定する、請求項2~4のいずれか一項に記載のレシピ決定方法。 The recipe determination method according to any one of claims 2 to 4, wherein, in the step of setting the objective function, the objective function is set using a method of least squares.
  6.  前記目的関数を設定するステップでは、前記製品たばこの製造目的に応じて、対応する変数への重みづけ、および対応する変数の増加に対する罰則項の設定の少なくとも一方がなされた目的関数を設定する請求項2~5のいずれか一項に記載のレシピ決定方法。 The step of setting the objective function includes setting an objective function in which at least one of weighting the corresponding variable and setting a penalty term for an increase in the corresponding variable is performed according to the purpose of manufacturing the tobacco product. Item 6. The recipe determination method according to any one of items 2 to 5.
  7.  前記原料たばこの混合比および加熱温度を決定するステップは、
     前記誤差を設定するステップの前に、前記加熱温度を所望の加熱温度に設定するステップを含み、
     前記誤差を設定するステップでは、前記原料たばこの混合比を任意の値に設定した前記製品たばこが、前記加熱温度を設定するステップで設定した加熱温度で加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような前記原料たばこの混合比を決定する、
    請求項2に記載のレシピ決定方法。
    The step of determining the mixing ratio and heating temperature of the raw tobacco,
    prior to setting the error, setting the heating temperature to a desired heating temperature;
    In the step of setting the error, when the product tobacco in which the mixture ratio of the raw tobacco is set to an arbitrary value is heated at the heating temperature set in the step of setting the heating temperature, the product tobacco is generated. determining the mixing ratio of the raw tobacco so that the component ratio of the aroma components to be contained in the heated aroma to be heated falls within a predetermined allowable range;
    The recipe determination method according to claim 2.
  8.  製造しようとする製品たばこが加熱された場合に、当該製品たばこが発生させる加熱香気に含まれることになる香気成分の成分比が、所定の許容範囲に収まるような原料たばこの混合比および加熱温度を決定する決定部を有する、レシピ決定装置。 The mixing ratio and heating temperature of the tobacco raw materials that, when the tobacco product to be manufactured is heated, the ratio of the aroma components contained in the heated aroma generated by the tobacco product to be produced falls within a predetermined allowable range. A recipe determination device having a determination unit that determines the
  9.  請求項8に記載のレシピ決定装置としてコンピュータを機能させるためのレシピ決定プログラムであって、
     上記決定部としてコンピュータを機能させるためのレシピ決定プログラム。
    A recipe determination program for causing a computer to function as the recipe determination device according to claim 8,
    A recipe determination program for causing a computer to function as the determination unit.
PCT/JP2021/048248 2021-12-24 2021-12-24 Recipe formulation method, apparatus, and program WO2023119635A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048248 WO2023119635A1 (en) 2021-12-24 2021-12-24 Recipe formulation method, apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/048248 WO2023119635A1 (en) 2021-12-24 2021-12-24 Recipe formulation method, apparatus, and program

Publications (1)

Publication Number Publication Date
WO2023119635A1 true WO2023119635A1 (en) 2023-06-29

Family

ID=86901847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048248 WO2023119635A1 (en) 2021-12-24 2021-12-24 Recipe formulation method, apparatus, and program

Country Status (1)

Country Link
WO (1) WO2023119635A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184675A (en) * 1991-06-28 1993-07-27 R J Reynolds Tobacco Co Smoking article with electrochemical heat source
JP2010506594A (en) * 2006-10-18 2010-03-04 アール・ジエイ・レイノルズ・タバコ・カンパニー Smoking articles that contain tobacco
WO2021201265A1 (en) * 2020-04-03 2021-10-07 日本たばこ産業株式会社 Cartridge for heat-not-burn tobacco product and heat-not-burn tobacco product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184675A (en) * 1991-06-28 1993-07-27 R J Reynolds Tobacco Co Smoking article with electrochemical heat source
JP2010506594A (en) * 2006-10-18 2010-03-04 アール・ジエイ・レイノルズ・タバコ・カンパニー Smoking articles that contain tobacco
WO2021201265A1 (en) * 2020-04-03 2021-10-07 日本たばこ産業株式会社 Cartridge for heat-not-burn tobacco product and heat-not-burn tobacco product

Similar Documents

Publication Publication Date Title
Ziobro et al. Non-gluten proteins as structure forming agents in gluten free bread
CN106617251B (en) A kind of beating and double roasting processing method of raw tobacco material
Zambrano et al. The use of guar and xanthan gums in the production of ‘light’low fat cakes
Román et al. Degree of roasting of carob flour affecting the properties of gluten-free cakes and cookies
CN104830529B (en) A kind of sweet type cigarette paper essence and preparation method thereof
AU2011203556A1 (en) Microwaveable cake powder composition and method of making cake by using the same
US10681931B2 (en) High protein puffed whole egg snack and method of making same
WO2023119635A1 (en) Recipe formulation method, apparatus, and program
Vatankhah et al. Quality attributes of reduced-sugar Iranian traditional sweet bread containing stevioside
CN108523206A (en) The cigar flavor cooling composition of raw materials of blending section, preparation method and heating are not burnt cigarette base bars
CN110301666B (en) Method for widening application range of tobacco leaf raw materials of cigarette products by feeding in groups
Hejri-Zarifi et al. Dough performance, quality and shelf life of flat bread supplemented with fractions of germinated date seed
Jensen et al. Sensory profiling of changes in wheat and whole wheat bread during a prolonged period of storage
Ali et al. Effect of black gram flour as egg replacer on microstructure of biscuit dough and its impact on edible qualities
CN104634693B (en) Method for obtaining drying characteristic parameter of blend-threshed tobacco leaves in redrying technology
Akintayo et al. Quality attributes of breads from high‐quality cassava flour improved with wet gluten
Franklin et al. Application of D‐optimal mixture design and fuzzy logic approach in the preparation of chhana podo (baked milk cake)
Pico et al. Selection of the most suitable mixture of flours and starches for the improvement of gluten-free breads through their volatile profiles
US8357418B2 (en) Method for preparing chocolates and/or chocolate-/cocoa-flavored compositions
JPWO2013125586A1 (en) Method for producing oral tobacco material and oral tobacco material
Uysal et al. Determination of pasteurization treatment of liquid whole egg by measuring physical and rheological properties of cake cream
CN109726815B (en) Pareto optimal-based digital flavoring method
WO2019004003A1 (en) Method for estimating swelling property of leaf tobacco stem
Kwaw et al. Application of D-optimal design for optimizing Parkia biglobosa flour-based cookie
Ghods Rohani et al. Improving the characteristics of spreadable processed cheese using Konjac and Xanthan gums

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969066

Country of ref document: EP

Kind code of ref document: A1