WO2023119347A1 - Maintenance method for plating device - Google Patents

Maintenance method for plating device Download PDF

Info

Publication number
WO2023119347A1
WO2023119347A1 PCT/JP2021/046934 JP2021046934W WO2023119347A1 WO 2023119347 A1 WO2023119347 A1 WO 2023119347A1 JP 2021046934 W JP2021046934 W JP 2021046934W WO 2023119347 A1 WO2023119347 A1 WO 2023119347A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
catholyte
anolyte
plating
anode
Prior art date
Application number
PCT/JP2021/046934
Other languages
French (fr)
Japanese (ja)
Inventor
正輝 富田
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to JP2022507852A priority Critical patent/JP7041795B1/en
Priority to PCT/JP2021/046934 priority patent/WO2023119347A1/en
Priority to KR1020227025386A priority patent/KR102549747B1/en
Priority to CN202180011192.4A priority patent/CN115087764B/en
Publication of WO2023119347A1 publication Critical patent/WO2023119347A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/06Filtering particles other than ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Definitions

  • the present invention relates to a maintenance method for plating equipment.
  • a so-called cup-type plating apparatus is known as a plating apparatus for plating substrates (see, for example, Patent Documents 1 and 2).
  • a plating apparatus has a plating tank.
  • the interior of the plating bath is partitioned by a membrane into an anode chamber below the membrane and a cathode chamber above the membrane.
  • An anode is placed in the anode chamber, and a substrate as a cathode is placed in the cathode chamber.
  • the anode fluid (plating fluid) stored in the anode fluid tank is circulated between the anode fluid tank and the anode chamber, and the cathode fluid stored in the catholyte tank is circulated.
  • a liquid (plating liquid) is circulated between the catholyte tank and the cathode chamber.
  • maintenance of the plating apparatus may be carried out, for example, when the substrate is not being plated.
  • the anolyte remaining in the anode chamber of the plating bath is returned to the anolyte tank, the anolyte is circulated between the anolyte tank and the anode chamber, and the plating is performed.
  • the catholyte remaining in the catholyte compartment of the cell is returned to the catholyte tank to circulate the catholyte between the catholyte tank and the cathode compartment.
  • such maintenance of the plating apparatus has room for improvement in terms of suppressing deformation of the film arranged inside the plating tank.
  • the present invention has been made in view of the above, and one of the objects thereof is to provide a technique capable of suppressing the deformation of the film arranged inside the plating bath.
  • a maintenance method for a plating apparatus provides an anolyte solution remaining in an anode chamber partitioned below a membrane inside a plating bath. returning catholyte remaining in a cathode chamber partitioned above the membrane inside the plating bath to a catholyte tank for storing catholyte; remaining in the anode chamber circulating the anolyte between the anolyte tank and the anode chamber after returning the anolyte to the anolyte tank; and returning any catholyte remaining in the cathode chamber to the catholyte tank. circulating catholyte between the catholyte tank and the cathode chamber at a later time after anolyte circulation between the anolyte tank and the anode chamber has been initiated.
  • the anolyte circulation between the anolyte tank and the anode chamber is initiated prior to the catholyte circulation between the catholyte tank and the cathode chamber, thereby
  • the chamber pressure increase can be initiated prior to the cathode chamber pressure increase.
  • the catholyte circulation precedes the anolyte circulation, and the pressure rise in the cathode chamber starts before the pressure rise in the anode chamber. It is possible to suppress the downward deformation of the membrane arranged in the cathode chamber due to the pressure in the cathode chamber.
  • the amount of air bubbles contained in the catholyte can be reduced by returning the catholyte to the catholyte tank after circulating the catholyte by bypassing the cathode chamber. This makes it possible to reduce the amount of air bubbles contained in the catholyte supplied to the cathode chamber during the subsequent circulation of the catholyte between the catholyte tank and the cathode chamber.
  • circulating the anolyte between the anolyte tank and the anode chamber is performed by increasing the temperature of the anolyte flowing from the front anolyte tank to the anode chamber. is adjusted within a predetermined temperature range by a temperature controller.
  • the temperature of the anolyte flowing from the anolyte tank toward the anode chamber can be quickly brought within a predetermined temperature range.
  • the circulating of the catholyte between the catholyte tank and the cathode chamber is performed by adjusting the temperature of the catholyte flowing from the catholyte tank to the cathode chamber. is adjusted within a predetermined temperature range by a temperature controller.
  • the temperature of the catholyte flowing from the catholyte tank toward the cathode chamber can be quickly brought within a predetermined temperature range.
  • FIG. 1 is a perspective view showing the overall configuration of a plating apparatus according to an embodiment
  • FIG. 1 is a plan view showing the overall configuration of a plating apparatus according to an embodiment
  • FIG. It is a figure which shows typically the peripheral structure of one plating tank of the plating module which concerns on embodiment.
  • FIG. 3 is a schematic diagram showing a liquid distribution configuration of one plating module according to the embodiment;
  • FIG. 4 is a flow diagram for explaining an example of a liquid distribution mode in the plating module according to the embodiment;
  • FIG. 5 is a flow chart for explaining the details of chemical solution preparation processing according to the embodiment;
  • FIG. 1 is a perspective view showing the overall configuration of a plating apparatus 1000 of this embodiment.
  • FIG. 2 is a plan view showing the overall configuration of the plating apparatus 1000 of this embodiment.
  • the plating apparatus 1000 includes a load port 100, a transfer robot 110, an aligner 120, a pre-wet module 200, a pre-soak module 300, a plating module 400, a cleaning module 500, a spin rinse dryer 600, a transfer It comprises an apparatus 700 and a control module 800 .
  • the load port 100 is a module for loading substrates housed in cassettes such as FOUPs (not shown) into the plating apparatus 1000 and for unloading substrates from the plating apparatus 1000 to cassettes. Although four load ports 100 are arranged horizontally in this embodiment, the number and arrangement of the load ports 100 are arbitrary.
  • the transfer robot 110 is a robot for transferring substrates, and is configured to transfer substrates among the load port 100 , the aligner 120 , the pre-wet module 200 and the spin rinse dryer 600 .
  • the transfer robot 110 and the transfer device 700 can transfer the substrates via a temporary table (not shown) when transferring the substrates between the transfer robot 110 and the transfer device 700 .
  • the aligner 120 is a module for aligning the positions of orientation flats, notches, etc. of the substrate in a predetermined direction. Although two aligners 120 are arranged horizontally in this embodiment, the number and arrangement of the aligners 120 are arbitrary.
  • the pre-wet module 200 replaces the air inside the pattern formed on the substrate surface with the treatment liquid by wetting the surface to be plated of the substrate before the plating treatment with a treatment liquid such as pure water or degassed water.
  • the pre-wet module 200 is configured to perform a pre-wet process that facilitates the supply of the plating solution to the inside of the pattern by replacing the treatment solution inside the pattern with the plating solution during plating. In this embodiment, two pre-wet modules 200 are arranged side by side in the vertical direction, but the number and arrangement of the pre-wet modules 200 are arbitrary.
  • the presoak module 300 for example, an oxide film having a large electric resistance existing on the surface of a seed layer formed on the surface to be plated of the substrate before plating is removed by etching with a treatment liquid such as sulfuric acid or hydrochloric acid, and the surface of the plating base is cleaned.
  • a treatment liquid such as sulfuric acid or hydrochloric acid
  • it is configured to perform a pre-soak process for activation.
  • two presoak modules 300 are arranged side by side in the vertical direction, but the number and arrangement of the presoak modules 300 are arbitrary.
  • the plating module 400 applies plating to the substrate. In this embodiment, there are two sets of 12 plating modules 400 arranged vertically and four horizontally, and a total of 24 plating modules 400 are provided. The number and arrangement of are arbitrary.
  • the cleaning module 500 is configured to perform a cleaning process on the substrate in order to remove the plating solution and the like remaining on the substrate after the plating process.
  • the spin rinse dryer 600 is a module for drying the substrate after cleaning by rotating it at high speed.
  • two spin rinse dryers 600 are arranged side by side in the vertical direction, but the number and arrangement of the spin rinse dryers 600 are arbitrary.
  • the transport device 700 is a device for transporting substrates between a plurality of modules within the plating apparatus 1000 .
  • Control module 800 is configured to control a plurality of modules of plating apparatus 1000 and may comprise, for example, a general purpose or dedicated computer with input/output interfaces to an operator.
  • a substrate accommodated in a cassette is loaded into the load port 100 .
  • the transport robot 110 takes out the substrate from the cassette of the load port 100 and transports the substrate to the aligner 120 .
  • the aligner 120 aligns orientation flats, notches, etc. of the substrate in a predetermined direction.
  • the transfer robot 110 transfers the substrates aligned by the aligner 120 to the pre-wet module 200 .
  • the pre-wet module 200 pre-wets the substrate.
  • the transport device 700 transports the pre-wet processed substrate to the pre-soak module 300 .
  • the presoak module 300 applies a presoak treatment to the substrate.
  • the transport device 700 transports the presoaked substrate to the plating module 400 .
  • the plating module 400 applies plating to the substrate.
  • the transport device 700 transports the plated substrate to the cleaning module 500 .
  • the cleaning module 500 performs a cleaning process on the substrate.
  • the transport device 700 transports the cleaned substrate to the spin rinse dryer 600 .
  • a spin rinse dryer 600 performs a drying process on the substrate.
  • the transport robot 110 receives the substrate from the spin rinse dryer 600 and transports the dried substrate to the cassette of the load port 100 . Finally, the cassette containing the substrates is unloaded from the load port 100 .
  • the configuration of the plating apparatus 1000 described with reference to FIGS. 1 and 2 is merely an example, and the configuration of the plating apparatus 1000 is not limited to the configuration of FIGS. 1 and 2.
  • plating module 400 Since the plurality of plating modules 400 of the plating apparatus 1000 according to this embodiment have the same configuration, one plating module 400 will be described.
  • FIG. 3 is a diagram schematically showing the peripheral configuration of one plating tank 10 of the plating module 400 in the plating apparatus 1000 according to this embodiment.
  • a plating apparatus 1000 according to this embodiment is a cup-type plating apparatus.
  • a plating module 400 of a plating apparatus 1000 according to this embodiment includes a plating bath 10, a substrate holder 20, a rotating mechanism 22, and an elevating mechanism 24.
  • one plating module 400 includes a plurality of plating tanks 10 in this embodiment.
  • the number of the plurality of plating tanks 10 should be two or more, and the specific number is not particularly limited.
  • one plating module 400 includes four plating tanks 10 (see FIG. 4 described later).
  • the plating tank 10 is configured by a bottomed container having an upper opening.
  • the plating bath 10 has a bottom wall 10a and an outer peripheral wall 10b extending upward from the outer edge of the bottom wall 10a, and the upper portion of the outer peripheral wall 10b is open.
  • the shape of the outer peripheral wall 10b of the plating tank 10 is not particularly limited, the outer peripheral wall 10b according to the present embodiment has a cylindrical shape as an example.
  • a plating solution Ps is stored inside the plating tank 10 . Outside the outer peripheral wall 10b of the plating bath 10, an overflow bath 19 for storing the plating solution Ps overflowing from the upper end of the outer peripheral wall 10b is arranged.
  • the plating solution Ps is not particularly limited as long as it contains ions of the metal elements forming the plating film.
  • a copper plating process is used as an example of the plating process
  • a copper sulfate solution is used as an example of the plating solution Ps.
  • the plating solution Ps contains a predetermined plating additive.
  • a predetermined plating additive in this embodiment, a "nonionic plating additive" is used.
  • the nonionic plating additive means an additive that does not exhibit ionicity in the plating solution Ps.
  • An anode 13 is arranged inside the plating tank 10 . Moreover, the anode 13 is arranged so as to extend in the horizontal direction.
  • a specific type of the anode 13 is not particularly limited, and may be an insoluble anode or a soluble anode. In this embodiment, an insoluble anode is used as an example of the anode 13 .
  • a specific type of the insoluble anode is not particularly limited, and platinum, iridium oxide, or the like can be used.
  • An ion resistor 14 is arranged in a later-described cathode chamber 12 inside the plating bath 10 . Specifically, the ion resistor 14 is provided above a film 40 described later in the cathode chamber 12 and below the substrate Wf.
  • the ion resistor 14 is a member that can act as a resistance to movement of ions in the cathode chamber 12, and is provided to uniformize the electric field formed between the anode 13 and the substrate Wf.
  • the ionic resistor 14 is composed of a plate member having a plurality of through holes 15 provided so as to penetrate the lower surface and the upper surface of the ionic resistor 14 .
  • the plurality of through-holes 15 are provided in the hole-forming area of the ion resistor 14 (which in the present embodiment is, as an example, a circular area when viewed from above).
  • a specific material of the ion resistor 14 is not particularly limited, but in this embodiment, as an example, a resin such as polyetheretherketone is used.
  • the film thickness of the plating film (plating layer) formed on the substrate Wf can be made uniform.
  • the ion resistor 14 is not an essential member for this embodiment, and the plating module 400 may be configured without the ion resistor 14 .
  • a film 40 is arranged inside the plating bath 10 .
  • the interior of the plating bath 10 is partitioned by a membrane 40 into an anode chamber 11 below the membrane 40 and a cathode chamber 12 above the membrane 40 .
  • the aforementioned anode 13 is arranged in the anode chamber 11 and the ion resistor 14 is arranged in the cathode chamber 12 .
  • the substrate Wf is placed in the cathode chamber 12 during the plating process on the substrate Wf.
  • the plating solution Ps supplied to the anode chamber 11 is referred to as “anode solution”
  • the plating solution Ps supplied to the cathode chamber 12 is referred to as “cathode solution”.
  • the membrane 40 allows the ionic species contained in the plating solution Ps (which include metal ions) to pass through the membrane 40 while allowing the nonionic plating additives contained in the plating solution Ps to pass through the membrane 40 .
  • the average diameter of the plurality of pores is nanometer size (that is, a size of 1 nm or more and 999 nm or less). This allows ionic species, including metal ions (which are nanometer-sized), to pass through the pores of membrane 40, while non-ionic plating additives (which are nanometer-sized). (larger than the size) are inhibited from passing through the pores of the membrane 40 .
  • an ion exchange membrane can be used.
  • the plating module 400 By providing the plating module 400 with the film 40 as in the present embodiment, it is possible to prevent the nonionic plating additive contained in the catholyte in the cathode chamber 12 from moving to the anode chamber 11 . As a result, the amount of consumption of the plating additive in the cathode chamber 12 can be reduced.
  • the film 40 may have an inclined portion 41 inclined with respect to the horizontal direction, as illustrated in FIG.
  • the slanted portion 41 of the film 40 illustrated in FIG. 3 is slanted with respect to the horizontal direction and positioned upward from the center side of the plating bath 10 toward the outer peripheral wall 10b side of the plating bath 10. It is slanted so that
  • the film 40 illustrated in FIG. 3 has, as an example, a “V-shaped” external shape when viewed from the front.
  • the structure of the film 40 is not limited to the above structure.
  • the membrane 40 may extend generally horizontally without the angled portion 41 .
  • the substrate holder 20 holds the substrate Wf as a cathode so that the surface to be plated (lower surface) of the substrate Wf faces the anode 13 .
  • the substrate holder 20 is connected to a rotating mechanism 22 .
  • the rotating mechanism 22 is a mechanism for rotating the substrate holder 20 .
  • the rotating mechanism 22 is connected to a lifting mechanism 24 .
  • the lifting mechanism 24 is supported by a column 26 extending vertically.
  • the elevating mechanism 24 is a mechanism for elevating the substrate holder 20 and the rotating mechanism 22 . Operations of the rotating mechanism 22 and the lifting mechanism 24 are controlled by the control module 800 .
  • the substrate Wf and the anode 13 are electrically connected to an energization device (not shown).
  • the energizing device is a device for causing electricity to flow between the substrate Wf and the anode 13 during the plating process.
  • the plating tank 10 is provided with an anode chamber supply port 16 a for supplying the anode fluid to the anode chamber 11 and an anode chamber discharge port 16 b for discharging the anode fluid from the anode chamber 11 .
  • the anode chamber supply port 16a according to the present embodiment is arranged on the bottom wall 10a of the plating bath 10 .
  • the anode chamber outlet 16b is arranged on the outer peripheral wall 10b of the plating bath 10 .
  • the anode chamber outlet 16b is provided at two locations in the plating tank 10, as an example.
  • the plating bath 10 is provided with a supply/drain port 17 for the cathode chamber 12 .
  • the supply/drain port 17 is a combination of a "catholyte supply port” and a “catholyte drain port”.
  • the supply/drain port 17 functions as a "supply port for catholyte", and the catholyte is supplied to the cathode chamber 12 from the supply/drain port 17. be done.
  • the supply/drain port 17 functions as a "drain port for the catholyte”. Catholyte is discharged from the supply/drain port 17 .
  • the configuration of the supply/drain port 17 is not limited to the configuration described above.
  • the plating module 400 may separately include a “cathode supply port” and a “cathode drain port” instead of the supply/drain port 17 .
  • the supply/drain port 17 is arranged on the outer peripheral wall 10b of the plating tank 10 so that the distance from the bottom (bottom surface) of the cathode chamber 12 to the supply/drain port 17 is, for example, 20 mm or less. It is
  • the overflow tank 19 is provided with an overflow tank discharge port 18 for discharging the plating solution Ps (cathode liquid) overflowing from the cathode chamber 12 and stored in the overflow tank 19 to the outside of the overflow tank 19. .
  • a pressure gauge 80a for detecting the pressure (Pa) in the anode chamber 11 and a pressure gauge 80b for detecting the pressure (Pa) in the cathode chamber 12 are arranged.
  • the detection results of the pressure gauges 80 a and 80 b are transmitted to the control module 800 .
  • the control module 800 comprises a processor 801 and a non-temporary storage device 802.
  • the storage device 802 stores programs, data, and the like.
  • the processor 801 controls the operation of the plating apparatus 1000 based on instructions of programs stored in the storage device 802 .
  • the rotation mechanism 22 rotates the substrate holder 20 , and the elevating mechanism 24 moves the substrate holder 20 downward to move the substrate Wf to the plating solution in the plating tank 10 . It is immersed in Ps (cathode liquid in the cathode chamber 12). Next, electricity is passed between the anode 13 and the substrate Wf by the energizing device. Thereby, a plating film is formed on the surface to be plated of the substrate Wf.
  • FIG. 4 is a schematic diagram showing the liquid circulation configuration of one plating module 400.
  • the plating module 400 includes tanks 50 and 51, pumps 52a and 52b, temperature controllers 53a and 53b, a filter 54, an anolyte supply device 57a, a catholyte supply device 57b, An additive supply device 57c, a metal ion supply device 57d, a plurality of channels (channels 70a to 70g4), a plurality of valves (valves 75a to 75o), a plurality of channel switching valves (channel switching valve 77a ⁇ 77d, etc.).
  • plating baths 10 are applied to one set of tanks 50 and 51 . That is, in the present embodiment, the number of plating baths 10 communicating with one set of tanks 50 and 51 via channels is four, as an example. However, the number of plating baths 10 applied to one set of tanks 50 and 51 may be plural, and may be less than four or may be more.
  • valves 75a to 75o are divided into a closed state (a state in which the valve opening is 0% and the flow rate of liquid passing through the valve is zero) and an open state (the valve opening is 0%). % and the flow rate of liquid passing through the valve is greater than zero).
  • valve opening degree is within the range of 0% or more and 100% or less (that is, the flow rate passing through the valve is within the range of zero or more and a predetermined value or less), continuously or stepwise
  • An adjustable flow control valve can also be used.
  • the plurality of valves and the plurality of flow path switching valves may be valves controlled by the control module 800, or may be manually operated valves. In this embodiment, the multiple valves and multiple flow path switching valves are controlled by the control module 800 .
  • the tank 50 is a tank for storing the anolyte.
  • Tank 50 communicates with anode chamber 11 .
  • the tank 51 is a tank for storing catholyte.
  • the tank 51 communicates with the cathode chamber 12 .
  • the tank 50 is an example of the "anode tank", and the tank 51 is an example of the "cathode tank”.
  • a liquid level sensor 81 a for detecting the liquid level of the anode fluid stored in the tank 50 is arranged in the tank 50 .
  • the tank 51 is also provided with a liquid level sensor 81 b for detecting the liquid level of the catholyte stored in the tank 51 .
  • the detection results of the liquid level sensors 81 a and 81 b are transmitted to the control module 800 .
  • the pump 52 a is a pump for pumping the anode fluid in the tank 50 toward the anode chamber 11 .
  • the pump 52 b is a pump for pumping the catholyte in the tank 51 toward the cathode chamber 12 .
  • a control module 800 controls the operation of the pumps 52a, 52b.
  • the pump 52a is an example of an "anolyte pump”
  • the pump 52b is an example of a "cathode pump”.
  • the temperature controller 53a is a device for adjusting the temperature of the anode fluid.
  • the temperature controller 53b is a device for adjusting the temperature of the catholyte.
  • the temperature adjuster 53a according to the present embodiment is arranged downstream of the pump 52a in the flow path 70a.
  • the temperature controller 53b according to the present embodiment is arranged at a location downstream of the pump 52b in the flow path 70c.
  • a control module 800 controls the operation of the temperature controllers 53a and 53b.
  • the filter 54 is a device for filtering the catholyte flowing from the tank 51 toward the cathode chamber 12 .
  • the filter 54 is disposed downstream of, for example, a temperature controller 53b in a flow path 70c, which will be described later.
  • the number of filters included in the plating module 400 is not limited to one, and may be two or more. Alternatively, plating module 400 may be configured without a filter.
  • the anolyte supply device 57a is a device for supplying anolyte.
  • the anolyte supplied by the anolyte supply device 57a may be an unused anolyte (that is, a new anolyte) or an anolyte that has been used for plating.
  • the catholyte supply device 57b is a device for supplying catholyte.
  • the catholyte supplied by the catholyte supply device 57b may be unused catholyte (ie, new catholyte) or may be catholyte that has been used for plating.
  • the specific configuration of the anolyte supply device 57a is not particularly limited, but for example, the anolyte supply device 57a includes a tank for storing the anolyte to be supplied and a tank for flowing the anolyte in the tank. and a pump for pumping toward the tank 50 via the line 70g1.
  • the specific configuration of the catholyte supply device 57b is not particularly limited. and a pump for pumping toward the tank 51 via the passage 70g2.
  • a control module 800 controls the operations of the anolyte supply device 57a and the catholyte supply device 57b according to the present embodiment.
  • the additive supply device 57c is a device for supplying plating additives.
  • the additive supply device 57c is used when supplying the plating additive to the plating solution Ps.
  • the additive supply device 57c according to the present embodiment is used, as an example, when replenishing the catholyte in the tank 51 with the plating additive.
  • a control module 800 controls the operation of the additive supply device 57c according to the present embodiment.
  • the metal ion supply device 57d is a device for supplying metal ions.
  • the metal ion supply device 57d according to this embodiment is used when supplying metal ions to the plating solution Ps.
  • the metal ion supply device 57d according to the present embodiment is used, as an example, when replenishing the catholyte in the tank 51 with a solution containing metal ions (eg, copper ions).
  • a control module 800 controls the operation of the metal ion supply device 57d according to this embodiment.
  • the flow path 70 a communicates the tank 50 , the pump 52 a and the anode chamber 11 of each plating tank 10 .
  • a temperature controller 53a is arranged in the flow path 70a according to the present embodiment.
  • the flow path 70a according to the present embodiment branches into a plurality of flow paths 70a1, 70a2, 70a3, and 70a4 at locations downstream of the temperature controller 53a. It communicates with the anode chamber 11 of the plating bath 10 .
  • the downstream end of the flow path 70a1 communicates with the anode chamber supply port 16a of the #1 plating tank 10.
  • the downstream end of the flow path 70a2 communicates with the anode chamber supply port 16a of the #2 plating tank 10.
  • the downstream end of the flow path 70a3 communicates with the anode chamber supply port 16a of the #3 plating tank 10.
  • the downstream end of the channel 70a4 communicates with the anode chamber supply port 16a of the plating tank 10 of #4.
  • the channels 70 b 1 , 70 b 2 , 70 b 3 , 70 b 4 are channels configured to return the anolyte in the anode chamber 11 of each plating tank 10 to the tank 50 .
  • the upstream portion of the flow path 70b1 is branched into two and communicated with the two anode chamber outlets 16b of the #1 plating tank 10.
  • a downstream end of the flow path 70b1 communicates with the tank 50 .
  • a portion of the flow path 70b2 on the upstream side of a predetermined location branches into two and communicates with the two anode chamber outlets 16b of the #2 plating tank 10. As shown in FIG. A downstream end of the flow path 70b2 communicates with the tank 50 .
  • a portion of the flow path 70b3 on the upstream side of a predetermined location branches into two and communicates with the two anode chamber outlets 16b of the #3 plating tank 10.
  • a downstream end of the flow path 70b3 communicates with the tank 50 .
  • a portion of the flow path 70b4 on the upstream side of a predetermined location branches into two and communicates with the two anode chamber outlets 16b of the plating tank 10 of #4.
  • a downstream end of the flow path 70b4 communicates with the tank 50 .
  • the flow path 70 c communicates the tank 51 , the pump 52 b and the cathode chamber 12 of each plating tank 10 . Further, a temperature controller 53b and a filter 54 are arranged in the flow path 70c according to this embodiment.
  • the flow path 70c according to the present embodiment is branched into a plurality of flow paths 70c1, 70c2, 70c3, and 70c4 at locations on the downstream side of the filter .
  • the downstream end of the flow path 70c1 communicates with the supply/drain port 17 of the #1 plating tank 10.
  • the downstream end of the flow path 70c2 communicates with the supply/drain port 17 of the plating tank 10 of #2.
  • the downstream end of the flow path 70c3 communicates with the supply/drain port 17 of the plating tank 10 of #3.
  • the downstream end of the flow path 70c4 communicates with the supply/drain port 17 of the plating tank 10 of #4.
  • the flow paths 70d1, 70d2, 70d3, and 70d4 are flow paths configured to return the catholyte of the overflow tank 19 of each plating tank 10 to the tank 51.
  • the upstream end of the flow path 70 d 1 communicates with the overflow tank discharge port 18 of the # 1 plating tank 10 , and the downstream end communicates with the tank 51 .
  • the upstream end of the flow path 70 d 2 communicates with the overflow tank discharge port 18 of the # 2 plating tank 10 , and the downstream end communicates with the tank 51 .
  • the upstream end of the flow path 70 d 3 communicates with the overflow tank discharge port 18 of the # 3 plating tank 10 , and the downstream end communicates with the tank 51 .
  • the upstream end of the flow path 70 d 4 communicates with the overflow tank discharge port 18 of the # 4 plating tank 10 , and the downstream end communicates with the tank 51 .
  • the flow paths 70 e 1 , 70 e 2 , 70 e 3 , and 70 e 4 are flow paths configured to return the catholyte to the tank 51 after circulating the catholyte bypassing the cathode chamber 12 .
  • the upstream end of the channel 70 e 1 communicates with the middle of the channel 70 c 1 via the channel switching valve 77 a , and the downstream end communicates with the tank 51 .
  • the upstream end of the channel 70 e 2 communicates with the middle of the channel 70 c 2 via the channel switching valve 77 b , and the downstream end communicates with the tank 51 .
  • the upstream end of the channel 70e3 communicates with the middle of the channel 70c3 via a channel switching valve 77c, and the downstream end communicates with the tank 51.
  • the upstream end of the channel 70e4 communicates with the middle of the channel 70c4 via a channel switching valve 77d, and the downstream end communicates with the tank 51.
  • FIG. 77c channel switching valve 77c
  • the flow path 70 g 1 is a flow path configured to allow the anolyte supplied from the anolyte supply device 57 a to flow into the tank 50 .
  • the upstream end of the channel 70g1 communicates with the anode fluid supply device 57a, and the downstream end thereof communicates with the tank 50.
  • the channel 70 g 2 is a channel configured to allow the catholyte supplied from the catholyte supply device 57 b to flow into the tank 51 .
  • the upstream end of the channel 70 g 2 communicates with the catholyte supply device 57 b , and the downstream end thereof communicates with the tank 51 .
  • the flow path 70g3 is a flow path configured to allow the plating additive supplied from the additive supply device 57c to flow into the tank 51.
  • the flow path 70 g 4 is a flow path configured to allow the solution containing metal ions supplied from the metal ion supply device 57 d to flow into the tank 51 .
  • the channel 70f is a channel (communication channel) configured to communicate the tank 50 and the tank 51 .
  • the flow path 70f according to the present embodiment includes a midway portion of the flow path 70a (a point upstream of a valve 75a described later) and a midpoint of the flow path 70c (a point upstream of the valve 75j described later). point).
  • a valve 75k for opening and closing the channel 70f is arranged in the channel 70f.
  • the valve 75k When the valve 75k is opened, the tanks 50 and 51 are communicated with each other via the flow path 70f. On the other hand, when the valve 75k is closed, the tanks 50 and 51 are disconnected.
  • the valve 75k is closed to close the flow path 70f. of catholyte.
  • the tank 50 and the tank 51 are communicated with each other by opening the valve 75k and opening the flow path 70f. and tank 51 may function as one large plating solution tank.
  • the valve 75a is arranged upstream of the pump 52a in the flow path 70a and downstream of the point where the flow path 70f is connected to the flow path 70a.
  • the valve 75b is arranged in the channel 70a1.
  • the valve 75c is arranged in the flow path 70a2.
  • the valve 75d is arranged in the flow path 70a3.
  • the valve 75e is arranged in the flow path 70a4.
  • the valve 75f is arranged in the flow path 70b1.
  • the valve 75g is arranged in the flow path 70b2.
  • 75 h of valves are arrange
  • the valve 75i is arranged in the flow path 70b4.
  • the valve 75j is disposed upstream of the pump 52b in the flow path 70c and downstream of a location where the flow path 70f is connected to the flow path 70c.
  • the valve 75l is arranged in the flow path 70g1.
  • the valve 75m is arranged in the flow path 70g2.
  • the valve 75n is arranged in the flow path 70g3.
  • the valve 75o is arranged in the flow path 70g4.
  • the channel switching valve 77a is arranged at a location where the channel 70e1 is connected to the channel 70c1.
  • the channel switching valve 77a switches the flow destination of the fluid in the channel 70c1 between the channel 70e1 and the anode chamber 11 of the plating bath 10 #1.
  • the channel switching valve 77b is arranged at a location where the channel 70e2 is connected to the channel 70c2.
  • the channel switching valve 77b switches the flow destination of the fluid in the channel 70c2 between the channel 70e2 and the anode chamber 11 of the plating tank 10 of #2.
  • the channel switching valve 77c is arranged at a location where the channel 70e3 is connected to the channel 70c3.
  • the channel switching valve 77c switches the flow destination of the fluid in the channel 70c3 between the channel 70e3 and the anode chamber 11 of the plating tank 10 of #3.
  • the channel switching valve 77d is arranged at a location where the channel 70e4 is connected to the channel 70c4.
  • the channel switching valve 77d switches the flow destination of the fluid in the channel 70c4 between the channel 70e4 and the anode chamber 11 of the plating tank 10 of #4.
  • a so-called three-way valve can be used as the channel switching valves 77a, 77b, 77c, and 77d.
  • FIG. 5 is a flow diagram for explaining an example of a liquid distribution mode in the plating module 400.
  • the plating solution circulation step in step S20 is executed when the substrate Wf is plated.
  • step S10 is executed when the plating apparatus 1000 is maintained. That is, step S10 corresponds to a maintenance method for the plating apparatus 1000.
  • each step in FIG. 5 may be automatically executed by the control module 800 based on a program command, for example.
  • step S20 of FIG. 5 the plating solution circulation step in step S20 of FIG. 5 will be described.
  • the anode solution is circulated between the tank 50 and the anode chamber 11
  • the catholyte solution is circulated between the tank 51 and the cathode chamber 12.
  • anode circulation Specifically, when circulating the anode fluid, the pump 52a is driven and the valves 75a, 75b, 75c, 75d, 75e, 75f, 75g, 75h and 75i are opened. As a result, the anode fluid in the tank 50 flows through the flow paths 70a, 70a1, 70a2, 70a3, and 70a4, and flows into the anode chambers 11 of the plating tanks 10 #1 to #4. The anolyte in the anode chambers 11 of the plating tanks 10 #1 to #4 returns to the tank 50 after flowing through the flow paths 70b1, 70b2, 70b3, and 70b4.
  • the channels 70 a , 70 a 1 , 70 a 2 , 70 a 3 , and 70 a 4 are examples of “anode fluid supply channels” for supplying the anode fluid in the tank 50 to the anode chamber 11 .
  • the flow paths 70b1, 70b2, 70b3, and 70b4 are an example of the "anolyte return flow path" for returning the anolyte in the anode chamber 11 to the tank 50.
  • the anolyte supply channel and the anolyte return channel are an example of the “anolyte circulation channel” for circulating the anolyte between the tank 50 and the anode chamber 11 .
  • the channels 70 c , 70 c 1 , 70 c 2 , 70 c 3 , and 70 c 4 are examples of “cathode supply channels” for supplying the catholyte in the tank 51 to the cathode chamber 12 .
  • the flow paths 70d1, 70d2, 70d3, and 70d4 are examples of "cathode return flow paths" for returning the catholyte from the cathode chamber 12 to the tank 51.
  • the catholyte supply channel and the catholyte return channel are an example of the “cathode circulation channel” for circulating the catholyte between the tank 51 and the cathode chamber 12 .
  • the temperature of the anode fluid may be adjusted within a predetermined temperature range by the temperature controller 53a.
  • the temperature controller 53b may adjust the temperature of the catholyte within a predetermined temperature range.
  • Specific values of these temperature ranges are not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically a range of 40° C. or higher and 60° C. or lower is used. be able to.
  • each plating module 400 includes a plurality of plating tanks 10, and in each plating module 400, the anolyte is separated between the anode chambers 11 of the plurality of plating tanks 10 and the tank 50. circulates, and the catholyte circulates between the cathode chambers 12 of the plurality of plating tanks 10 and the tank 51. Therefore, the circulation of the anolyte and the catholyte in one plating module 400 can be used for other plating. Circulation of the anolyte and catholyte in module 400 is independent. This allows maintenance of some of the plating modules 400 to be performed independently of other plating modules 400 . Specifically, for example, maintenance of some of the plating modules 400 can be performed while the substrates Wf are being plated in other plating modules 400 .
  • the pressure in the anode chambers 11 of the plating baths 10 #1 to #4 may be adjusted by adjusting the valves 75f, 75g, 75h, and 75i during execution of step S20.
  • the pressure in the anode chambers 11 of the plating baths 10 #1 to #4 is the same as the pressure in the cathode chambers 12 of the plating baths 10 #1 to #4.
  • 75g, 75h, 75i may be adjusted.
  • the pressure in the anode chamber 11 of the #1 plating bath 10 can be increased by, for example, decreasing the valve opening of the valve 75f to decrease the flow rate of the anolyte passing through the valve 75f.
  • the pressure in the anode chamber 11 of the #1 plating tank 10 can be reduced by increasing the valve opening of the valve 75f to increase the flow rate of the anolyte passing through the valve 75f.
  • the opening of the valve 75f within the range of 0% to 100%, the pressure in the anode chamber 11 of the #1 plating tank 10 can be adjusted.
  • the pressure in the anode chamber 11 of the #1 plating tank 10 can be made the same as the pressure in the cathode chamber 12 .
  • the pressure in the anode chamber 11 of the #2 plating bath 10 is adjusted to make the pressure in the anode chamber 11 the same as the pressure in the cathode chamber 12. can be done.
  • the valve opening of the valve 75h the pressure in the anode chamber 11 of the #3 plating bath 10 can be adjusted to make the pressure in the anode chamber 11 equal to that in the cathode chamber 12. can.
  • the opening degree of the valve 75i the pressure in the anode chamber 11 of the #4 plating tank 10 can be adjusted to make the pressure in the anode chamber 11 the same as the pressure in the cathode chamber 12. can.
  • the pressures in the anode chambers 11 of the plating baths 10 #1 to #4 may be obtained based on the detection results of the pressure gauges 80a, for example. Further, the pressures of the cathode chambers 12 of the plating baths 10 #1 to #4 may be obtained based on the detection results of the pressure gauges 80b, for example.
  • Step S10 is executed before plating the substrate Wf. Specifically, step S10 according to the present embodiment is performed before step S20.
  • FIG. 6 is a flowchart for explaining the details of the chemical solution preparation process.
  • an “anolyte recovery step” is performed to return the anolyte remaining in the anode chambers 11 of the plurality of plating tanks 10 to the tank 50 communicating with the anode chambers 11 .
  • a “catholyte recovery step” is executed to return the catholyte remaining in the cathode chambers 12 of the plurality of plating tanks 10 to the tank 51 communicating with the cathode chambers 12 .
  • the valves 75f, 75g, 75h, and 75i are opened while the pump 52a is stopped, so that the anode fluid in each of the anode chambers 11 flows into the flow path 70b1. , 70b2, 70b3, and 70b4 are returned to the tank 50 (recovered). In this case, the anolyte in the anode chamber 11 returns to the tank 50 using gravity.
  • the channel switching valves 77a, 77b, 77c, and 77d are operated so that the channels 70e1, 70e2, 70e3, and 70e4 are in communication with the cathode chamber 12 while the pump 52b is stopped.
  • the catholyte in each cathode chamber 12 is circulated through the channels 70e1, 70e2, 70e3, and 70e4 and returned to the tank 51 (collected). In this case, the catholyte in the cathode chamber 12 returns to the tank 51 using gravity.
  • the anolyte recovery step is performed until the anolyte remaining in the anode chamber 11 is 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the anode chamber 11.
  • the catholyte recovery step is performed until the catholyte remaining in the cathode chamber 12 is 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the cathode chamber 12.
  • the anolyte recovery step may be performed for a preset predetermined time.
  • this predetermined time for example, a time such that the remaining anolyte in the anode chamber 11 is 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the anode chamber 11 is determined in advance by experiments and simulations. etc. to set.
  • the catholyte recovery step may be performed for a predetermined period of time.
  • the predetermined time for example, a time such that the catholyte remaining in the cathode chamber 12 becomes 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the cathode chamber 12, is experimentally or simulated in advance. etc. to set.
  • a “cathode liquid surface level determination step” for determining whether or not the surface level is equal to or higher than a predetermined level may be executed.
  • the level of the anolyte in the tank 50 may be obtained, for example, based on the detection result of the level sensor 81a.
  • the liquid level of the catholyte in the tank 51 may be obtained based on the detection result of the liquid level sensor 81b, for example.
  • a specific value of the "predetermined level" of the anolyte in the tank 50 is not particularly limited, but for example, while the anode chamber 11 is filled with the anolyte, the anolyte is allowed to flow between the tank 50 and the anode chamber 11.
  • a value that is equal to or higher than the minimum liquid surface level that allows circulating can be used.
  • the specific value of the "predetermined level” of the catholyte in the tank 51 is not particularly limited. A value greater than or equal to the minimum liquid level that allows the catholyte to circulate at .
  • the "predetermined level”, which is the reference value for judging the liquid level of the anolyte in the tank 50, and the “predetermined level”, which is the reference value for judging the liquid level of the catholyte in the tank 51, are the same value. may be different values.
  • step S10c (Anolyte/catholyte supply step (step S10c))
  • the tank 50 is replenished with the anolyte so that the level of the anolyte stored in the tank 50 is equal to or higher than the predetermined level. It is preferable to perform an "anolyte replenishment step”. Further, when the level of the catholyte stored in the tank 51 is less than the predetermined level, the catholyte is added to the tank 51 so that the level of the catholyte stored in the tank 51 is equal to or higher than the predetermined level. It is preferable to perform a "catholyte replenishment step" to replenish the .
  • the anolyte replenishing step of step S10c if the fluid level of the anode fluid stored in the tank 50 is not determined to be equal to or higher than a predetermined level (the fluid surface level of the anode fluid is less than a predetermined level), in the anolyte replenishing step of step S10c, the anolyte is supplied from the anolyte supply device 57a and the valve 75l is opened. As a result, the anode fluid supplied from the anode fluid supply device 57 a flows through the flow path 70 g 1 and is replenished to the tank 50 . This process is performed until the level of the anolyte stored in the tank 50 reaches or exceeds a predetermined level.
  • the catholyte replenishing step of step S10c when it is not determined that the liquid level of the catholyte stored in the tank 51 is equal to or higher than the predetermined level in the catholyte level determination step related to step S10b described above (the liquid level of the catholyte is determined to be the predetermined level). level), in the catholyte replenishing step of step S10c, the catholyte is supplied from the catholyte supply device 57b and the valve 75m is opened. As a result, the catholyte supplied from the catholyte supply device 57b flows through the channel 70g2 and is supplied to the tank 51. As shown in FIG. This process is performed until the surface level of the catholyte stored in the tank 51 reaches or exceeds a predetermined level.
  • step S10d If the liquid surface level of the catholyte stored in the tank 51 is equal to or higher than the predetermined level as a result of the determination in step S10b, the catholyte stored in the tank 51 bypasses the cathode chamber 12 and flows through the tank 51. It is preferable to perform a "cathode bypass circulation step" to return to Note that step S10d according to the present embodiment is executed at least before step S10f, which will be described later (in FIG. 6, it is executed before step S10e, which will be further described later).
  • step S10d the pump 52b is operated, the valve 75j is opened, the other valves are closed, and the flow path switching valves 77a, 77b, 77c, and 77d are switched to the flow paths.
  • 70c1, 70c2, 70c3, 70c4 and flow paths 70e1, 70e2, 70e3, 70e4 are switched to communicate with each other.
  • step S10d is executed for a preset predetermined time.
  • the flow paths 70c, 70c1, 70c2, 70c3, 70c4, 70e1, 70e2, 70e3, and 70e4 are for returning the catholyte stored in the tank 51 to the tank 51 after bypassing the cathode chamber 12. It is an example of a "catholyte bypass channel".
  • the temperature controller 53b may adjust the temperature of the catholyte flowing through the flow path within a predetermined temperature range.
  • the specific value of this temperature range is not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically, a range of 40° C. or higher and 60° C. or lower is used. can be done.
  • the amount of air bubbles contained in the catholyte can be reduced while the catholyte is circulating in the cathode bypass circulation step of step S10d.
  • the amount of air bubbles contained in the catholyte supplied to the cathode chamber 12 can be reduced when the catholyte is circulated between the tank 51 and the cathode chamber 12 in step S10f, which will be described later. can.
  • adhesion of a large amount of air bubbles to the ion resistor 14 can be suppressed.
  • step S10e An "anode fluid circulation step” of circulating the anode fluid between the tank 50 and the anode chamber 11 is performed. This allows the anode chamber 11 to be filled with the anolyte.
  • step S10e the pump 52a is operated, the valves 75a, 75b, 75c, 75d, 75e, 75f, 75g, 75h, and 75i are opened, and the other valves are closed.
  • the anode fluid in the tank 50 flows through the flow path 70 a and the temperature controller 53 a , and then flows through the flow paths 70 a 1 , 70 a 2 , 70 a 3 and 70 a 4 into the respective anode chambers 11 .
  • the anolyte that has flowed through the anode chamber 11 flows through the channels 70b1, 70b2, 70b3, and 70b4 and returns to the tank 50.
  • step S10e is executed at least after step S10a is completed. Specifically, step S10e according to the present embodiment is performed after step S10a is completed, and when it is determined in step S10b that the liquid surface level of the anode fluid stored in the tank 50 is equal to or higher than a predetermined level. , and more specifically, after the end of step S10d.
  • the temperature controller 53a may adjust the temperature of the anode fluid flowing from the tank 50 toward the anode chamber 11 within a predetermined temperature range.
  • the specific value of this temperature range is not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically, a range of 40° C. or higher and 60° C. or lower is used. can be done. According to this configuration, the temperature of the anolyte flowing from the tank 50 toward the anode chamber 11 can be quickly brought within a predetermined temperature range.
  • step S10f After step S10a (after the catholyte remaining in the cathode chamber 12 is returned to the tank 51) and after the anolyte circulation step of step S10e is started, in step S10f, the tank 51 and the cathode chamber 12 are A "catholyte circulation step” is performed to circulate the catholyte between and. This allows the cathode chamber 12 to be filled with catholyte.
  • step S10f the pump 52b is operated, the valve 75j is controlled to be open, the other valves are closed, and the flow path switching valves 77a, 77b, 77c, and 77d are switched to the flow paths.
  • the catholyte that has flowed through 70c1, 70c2, 70c3, and 70c4 is switched to flow into the cathode chamber 12.
  • the catholyte stored in the tank 51 flows through the flow path 70c and through the temperature controller 53b and the filter 54.
  • the catholyte that has passed through the filter 54 flows into each cathode chamber 12 after passing through the channels 70c1, 70c2, 70c3, and 70c4.
  • the catholyte that has flowed through the cathode chamber 12 (specifically, the catholyte that overflowed from the cathode chamber 12 and flowed into the overflow tank 19) flows through the channels 70d1, 70d2, 70d3, and 70d4 and returns to the tank 51. .
  • the temperature controller 53b may adjust the temperature of the catholyte flowing from the tank 51 toward the cathode chamber 12 within a predetermined temperature range.
  • the specific value of this temperature range is not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically, a range of 40° C. or higher and 60° C. or lower is used. can be done. According to this configuration, the temperature of the catholyte flowing from the tank 51 toward the cathode chamber 12 can be quickly brought within a predetermined temperature range.
  • step S10f may be started after step S10e is started, and for example, step S10e may be continuously executed while step S10f is being executed.
  • the anolyte circulation step of step S10e is started, and while the anolyte circulation step is being executed, the catholyte circulation step of step S10f is started, and thereafter the anolyte circulation step is performed. and the catholyte circulation step may be performed together.
  • step S10f is preferably started after step S10e is started and after the anode chamber 11 is filled with the anolyte.
  • step S10f may be started after a predetermined time has elapsed since the start of step S10e.
  • a predetermined time for example, a time sufficient for the anode chamber 11 to be filled with the anolyte is obtained in advance, and the time thus obtained may be used.
  • the plating additive may be supplied to the tank 51 during execution of step S10f (this is referred to as an "additive supply step").
  • the additive supply device 57c is caused to start supplying the plating additive, and the valve 75n is controlled to be open.
  • the plating additive supplied from the additive supply device 57c flows through the flow path 70g3 and is supplied to the tank 51. As shown in FIG.
  • metal ions may be replenished to the tank 51 (this is called a "metal ion replenishing step"). ) may be performed. Specifically, in this metal ion supply step, the metal ion supply device 57d is caused to start supplying a solution containing metal ions, and the valve 75o is controlled to be open. As a result, the solution containing metal ions supplied from the metal ion supply device 57d flows through the flow path 70g4 and is supplied to the tank 51.
  • the circulation of the anode fluid between the tank 50 and the anode chamber 11 is performed between the tank 51 and the cathode chamber 12. Since the catholyte circulation (cathode circulation step) is started earlier, the pressure increase in the anode chamber 11 can be started before the pressure increase in the cathode chamber 12 . As a result, for example, the catholyte circulation step is started before the anolyte circulation step, and the pressure increase in the cathode chamber 12 is started before the pressure increase in the anode chamber 11. It is possible to suppress the downward deformation of the membrane 40 arranged inside the cathode chamber 12 due to the pressure of the cathode chamber 12 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Provided is a technology with which it is possible to inhibit deformation of a film disposed inside of a plating tank. This maintenance method for a plating device includes: returning an anolyte in an anodic chamber to an anolyte tank and then circulating the anolyte between the anolyte tank and the anodic chamber (step S10e); and returning a catholyte in a cathodic chamber to a catholyte tank and then circulating the catholyte between the catholyte tank and the cathodic chamber after the circulation of the anolyte between the anolyte tank and the anodic chamber has been initiated (step S10f).

Description

めっき装置のメンテナンス方法Plating equipment maintenance method
 本発明はめっき装置のメンテナンス方法に関する。 The present invention relates to a maintenance method for plating equipment.
 従来、基板にめっき処理を施すめっき装置として、いわゆるカップ式のめっき装置が知られている(例えば、特許文献1、特許文献2を参照)。このようなめっき装置は、めっき槽を有している。このめっき槽の内部は、膜によって、膜よりも下方のアノード室と膜よりも上方のカソード室とに区画されている。アノード室には、アノードが配置され、カソード室には、カソードとしての基板が配置される。また、基板にめっき皮膜を形成するめっき処理時においては、アノード液タンクに貯留されたアノード液(めっき液)をアノード液タンクとアノード室との間で循環させ、カソード液タンクに貯留されたカソード液(めっき液)を、カソード液タンクとカソード室との間で循環させている。 Conventionally, a so-called cup-type plating apparatus is known as a plating apparatus for plating substrates (see, for example, Patent Documents 1 and 2). Such a plating apparatus has a plating tank. The interior of the plating bath is partitioned by a membrane into an anode chamber below the membrane and a cathode chamber above the membrane. An anode is placed in the anode chamber, and a substrate as a cathode is placed in the cathode chamber. During the plating process for forming a plating film on the substrate, the anode fluid (plating fluid) stored in the anode fluid tank is circulated between the anode fluid tank and the anode chamber, and the cathode fluid stored in the catholyte tank is circulated. A liquid (plating liquid) is circulated between the catholyte tank and the cathode chamber.
特開2008-19496号公報JP 2008-19496 A 米国特許第6821407号明細書U.S. Pat. No. 6,821,407
 ところで、上述したような、カップ式のめっき装置において、例えば、基板へのめっき処理が実行されていない場合に、めっき装置のメンテナンスが行われる場合がある。具体的には、このめっき装置のメンテナンスにおいて、例えば、めっき槽のアノード室に残存するアノード液をアノード液タンクに戻して、アノード液タンクとアノード室との間でアノード液を循環させたり、めっき槽のカソード室に残存するカソード液をカソード液タンクに戻して、カソード液タンクとカソード室との間でカソード液を循環させたりする。しかしながら、このようなめっき装置のメンテナンスは、めっき槽の内部に配置された膜の変形を抑制するという観点において、改善の余地があった。 By the way, in the cup-type plating apparatus as described above, maintenance of the plating apparatus may be carried out, for example, when the substrate is not being plated. Specifically, in the maintenance of this plating apparatus, for example, the anolyte remaining in the anode chamber of the plating bath is returned to the anolyte tank, the anolyte is circulated between the anolyte tank and the anode chamber, and the plating is performed. The catholyte remaining in the catholyte compartment of the cell is returned to the catholyte tank to circulate the catholyte between the catholyte tank and the cathode compartment. However, such maintenance of the plating apparatus has room for improvement in terms of suppressing deformation of the film arranged inside the plating tank.
 本発明は、上記のことを鑑みてなされたものであり、めっき槽の内部に配置された膜の変形を抑制することができる技術を提供することを目的の一つとする。 The present invention has been made in view of the above, and one of the objects thereof is to provide a technique capable of suppressing the deformation of the film arranged inside the plating bath.
(態様1)
 上記目的を達成するため、本発明の一態様に係るめっき装置のメンテナンス方法は、めっき槽の内部における膜よりも下方に区画されたアノード室に残存するアノード液を、アノード液を貯留するためのアノード液タンクに戻すこと、前記めっき槽の内部における前記膜よりも上方に区画されたカソード室に残存するカソード液を、カソード液を貯留するためのカソード液タンクに戻すこと、前記アノード室に残存するアノード液を前記アノード液タンクに戻した後に、前記アノード液タンクと前記アノード室との間でアノード液を循環させること、及び、前記カソード室に残存するカソード液を前記カソード液タンクに戻した後であって、前記アノード液タンクと前記アノード室との間におけるアノード液の循環が開始された後に、前記カソード液タンクと前記カソード室との間でカソード液を循環させること、を含む。
(Aspect 1)
In order to achieve the above object, a maintenance method for a plating apparatus according to one aspect of the present invention provides an anolyte solution remaining in an anode chamber partitioned below a membrane inside a plating bath. returning catholyte remaining in a cathode chamber partitioned above the membrane inside the plating bath to a catholyte tank for storing catholyte; remaining in the anode chamber circulating the anolyte between the anolyte tank and the anode chamber after returning the anolyte to the anolyte tank; and returning any catholyte remaining in the cathode chamber to the catholyte tank. circulating catholyte between the catholyte tank and the cathode chamber at a later time after anolyte circulation between the anolyte tank and the anode chamber has been initiated.
 この態様によれば、アノード液タンクとアノード室との間でアノード液を循環させることが、カソード液タンクとカソード室との間のカソード液を循環させることよりも先に開始されるので、アノード室の圧力上昇をカソード室の圧力上昇よりも先に開始させることができる。これにより、例えば、カソード液の循環がアノード液の循環よりも先に行われて、カソード室の圧力上昇がアノード室の圧力上昇よりも先に開始される場合に比較して、めっき槽の内部に配置された膜がカソード室の圧力によって下方に変形することを抑制することができる。 According to this aspect, the anolyte circulation between the anolyte tank and the anode chamber is initiated prior to the catholyte circulation between the catholyte tank and the cathode chamber, thereby The chamber pressure increase can be initiated prior to the cathode chamber pressure increase. As a result, for example, the catholyte circulation precedes the anolyte circulation, and the pressure rise in the cathode chamber starts before the pressure rise in the anode chamber. It is possible to suppress the downward deformation of the membrane arranged in the cathode chamber due to the pressure in the cathode chamber.
(態様2)
 上記の態様1は、前記アノード液タンクに貯留されたアノード液の液面レベルが予め設定された所定レベル未満である場合に、前記アノード液タンクに貯留されたアノード液の液面レベルが当該所定レベル以上になるように、アノード液供給装置から供給されたアノード液を前記アノード液タンクに補給すること、をさらに含んでいてもよい。
(Aspect 2)
In the above aspect 1, when the liquid surface level of the anolyte stored in the anolyte tank is below a predetermined level, the liquid surface level of the anolyte stored in the anolyte tank is lower than the predetermined level. Replenishing the anolyte tank with anolyte supplied from an anolyte supply device to bring the level above the level.
(態様3)
 上記の態様2において、前記アノード液タンクと前記アノード室との間でアノード液を循環させることは、前記アノード室に残存するアノード液を前記アノード液タンクに戻した後であって、且つ、前記アノード液タンクに貯留されたアノード液の液面レベルが前記所定レベル以上である場合に、実行されてもよい。
(Aspect 3)
In the above aspect 2, circulating the anolyte between the anolyte tank and the anode chamber is performed after the anolyte remaining in the anode chamber is returned to the anolyte tank, and It may be executed when the liquid surface level of the anolyte stored in the anolyte tank is equal to or higher than the predetermined level.
(態様4)
 上記の態様1~3のいずれか1態様は、前記カソード液タンクに貯留されたカソード液の液面レベルが予め設定された所定レベル未満である場合に、前記カソード液タンクに貯留されたカソード液の液面レベルが当該所定レベル以上になるように、カソード液供給装置から供給されたカソード液を前記カソード液タンクに補給すること、をさらに含んでいてもよい。
(Aspect 4)
In any one of the above-mentioned modes 1 to 3, when the surface level of the catholyte stored in the catholyte tank is below a predetermined level, the catholyte stored in the catholyte tank replenishing the catholyte tank with the catholyte supplied from the catholyte supply device so that the liquid surface level of the catholyte tank is equal to or higher than the predetermined level.
(態様5)
 上記の態様4は、前記カソード液タンクに貯留されたカソード液の液面レベルが前記所定レベル以上である場合に、前記カソード液タンクに貯留されたカソード液を前記カソード室をバイパスさせて流通させた後に前記カソード液タンクに戻すことを、前記カソード液タンクと前記カソード室との間でカソード液を循環させることの前に、さらに含んでいてもよい。
(Aspect 5)
In the above aspect 4, when the surface level of the catholyte stored in the catholyte tank is equal to or higher than the predetermined level, the catholyte stored in the catholyte tank is allowed to flow by bypassing the cathode chamber. prior to circulating the catholyte between the catholyte tank and the cathode chamber.
 この態様によれば、カソード液をカソード室をバイパスさせて流通させた後にカソード液タンクに戻すことによって、カソード液に含まれる気泡の量を低減させることができる。これにより、この後に行われる、カソード液タンクとカソード室との間におけるカソード液の循環時に、カソード室に供給されるカソード液に含まれる気泡の量を低減させることができる。 According to this aspect, the amount of air bubbles contained in the catholyte can be reduced by returning the catholyte to the catholyte tank after circulating the catholyte by bypassing the cathode chamber. This makes it possible to reduce the amount of air bubbles contained in the catholyte supplied to the cathode chamber during the subsequent circulation of the catholyte between the catholyte tank and the cathode chamber.
(態様6)
 上記の態様1~5のいずれか1態様において、前記アノード液タンクと前記アノード室との間でアノード液を循環させることは、前アノード液タンクから前記アノード室に向けて流通するアノード液の温度を、温調器によって、所定の温度範囲内に調整することを含んでいてもよい。
(Aspect 6)
In any one of the above aspects 1 to 5, circulating the anolyte between the anolyte tank and the anode chamber is performed by increasing the temperature of the anolyte flowing from the front anolyte tank to the anode chamber. is adjusted within a predetermined temperature range by a temperature controller.
 この態様によれば、アノード液タンクからアノード室に向けて流通するアノード液の温度を早期に所定の温度範囲内にすることができる。 According to this aspect, the temperature of the anolyte flowing from the anolyte tank toward the anode chamber can be quickly brought within a predetermined temperature range.
(態様7)
 上記の態様1~6のいずれか1態様において、前記カソード液タンクと前記カソード室との間でカソード液を循環させることは、前記カソード液タンクから前記カソード室に向けて流通するカソード液の温度を、温調器によって、所定の温度範囲内に調整することを含んでいてもよい。
(Aspect 7)
In any one of the above aspects 1 to 6, the circulating of the catholyte between the catholyte tank and the cathode chamber is performed by adjusting the temperature of the catholyte flowing from the catholyte tank to the cathode chamber. is adjusted within a predetermined temperature range by a temperature controller.
 この態様によれば、カソード液タンクからカソード室に向けて流通するカソード液の温度を早期に所定の温度範囲内にすることができる。 According to this aspect, the temperature of the catholyte flowing from the catholyte tank toward the cathode chamber can be quickly brought within a predetermined temperature range.
実施形態に係るめっき装置の全体構成を示す斜視図である。1 is a perspective view showing the overall configuration of a plating apparatus according to an embodiment; FIG. 実施形態に係るめっき装置の全体構成を示す平面図である。1 is a plan view showing the overall configuration of a plating apparatus according to an embodiment; FIG. 実施形態に係るめっきモジュールの1つのめっき槽の周辺構成を模式的に示す図である。It is a figure which shows typically the peripheral structure of one plating tank of the plating module which concerns on embodiment. 実施形態に係る1つのめっきモジュールの液体流通構成を示す模式図である。FIG. 3 is a schematic diagram showing a liquid distribution configuration of one plating module according to the embodiment; 実施形態に係るめっきモジュールにおける液体の流通態様の一例を説明するためのフロー図である。FIG. 4 is a flow diagram for explaining an example of a liquid distribution mode in the plating module according to the embodiment; 実施形態に係る薬液準備処理の詳細を説明するためのフロー図である。FIG. 5 is a flow chart for explaining the details of chemical solution preparation processing according to the embodiment;
 以下、本発明の実施形態について、図面を参照しつつ説明する。なお、図面は、特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、いくつかの図面には、参考用として、X-Y-Zの直交座標が図示されている。この直交座標のうち、Z方向は上方に相当し、-Z方向は下方(重力が作用する方向)に相当する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the drawings are schematically illustrated to facilitate understanding of the features, and the dimensional ratios and the like of each component are not necessarily the same as the actual ones. Also, in some drawings, XYZ Cartesian coordinates are shown for reference. Of these orthogonal coordinates, the Z direction corresponds to the upward direction, and the -Z direction corresponds to the downward direction (the direction in which gravity acts).
 図1は、本実施形態のめっき装置1000の全体構成を示す斜視図である。図2は、本実施形態のめっき装置1000の全体構成を示す平面図である。図1及び図2に示すように、めっき装置1000は、ロードポート100、搬送ロボット110、アライナ120、プリウェットモジュール200、プリソークモジュール300、めっきモジュール400、洗浄モジュール500、スピンリンスドライヤ600、搬送装置700、及び、制御モジュール800を備える。 FIG. 1 is a perspective view showing the overall configuration of a plating apparatus 1000 of this embodiment. FIG. 2 is a plan view showing the overall configuration of the plating apparatus 1000 of this embodiment. As shown in FIGS. 1 and 2, the plating apparatus 1000 includes a load port 100, a transfer robot 110, an aligner 120, a pre-wet module 200, a pre-soak module 300, a plating module 400, a cleaning module 500, a spin rinse dryer 600, a transfer It comprises an apparatus 700 and a control module 800 .
 ロードポート100は、めっき装置1000に図示していないFOUPなどのカセットに収容された基板を搬入したり、めっき装置1000からカセットに基板を搬出するためのモジュールである。本実施形態では4台のロードポート100が水平方向に並べて配置されているが、ロードポート100の数及び配置は任意である。搬送ロボット110は、基板を搬送するためのロボットであり、ロードポート100、アライナ120、プリウェットモジュール200及びスピンリンスドライヤ600の間で基板を受け渡すように構成される。搬送ロボット110及び搬送装置700は、搬送ロボット110と搬送装置700との間で基板を受け渡す際には、仮置き台(図示せず)を介して基板の受け渡しを行うことができる。 The load port 100 is a module for loading substrates housed in cassettes such as FOUPs (not shown) into the plating apparatus 1000 and for unloading substrates from the plating apparatus 1000 to cassettes. Although four load ports 100 are arranged horizontally in this embodiment, the number and arrangement of the load ports 100 are arbitrary. The transfer robot 110 is a robot for transferring substrates, and is configured to transfer substrates among the load port 100 , the aligner 120 , the pre-wet module 200 and the spin rinse dryer 600 . The transfer robot 110 and the transfer device 700 can transfer the substrates via a temporary table (not shown) when transferring the substrates between the transfer robot 110 and the transfer device 700 .
 アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせるためのモジュールである。本実施形態では2台のアライナ120が水平方向に並べて配置されているが、アライナ120の数及び配置は任意である。プリウェットモジュール200は、めっき処理前の基板の被めっき面を純水または脱気水などの処理液で濡らすことで、基板表面に形成されたパターン内部の空気を処理液に置換する。プリウェットモジュール200は、めっき時にパターン内部の処理液をめっき液に置換することでパターン内部にめっき液を供給しやすくするプリウェット処理を施すように構成される。本実施形態では2台のプリウェットモジュール200が上下方向に並べて配置されているが、プリウェットモジュール200の数及び配置は任意である。 The aligner 120 is a module for aligning the positions of orientation flats, notches, etc. of the substrate in a predetermined direction. Although two aligners 120 are arranged horizontally in this embodiment, the number and arrangement of the aligners 120 are arbitrary. The pre-wet module 200 replaces the air inside the pattern formed on the substrate surface with the treatment liquid by wetting the surface to be plated of the substrate before the plating treatment with a treatment liquid such as pure water or degassed water. The pre-wet module 200 is configured to perform a pre-wet process that facilitates the supply of the plating solution to the inside of the pattern by replacing the treatment solution inside the pattern with the plating solution during plating. In this embodiment, two pre-wet modules 200 are arranged side by side in the vertical direction, but the number and arrangement of the pre-wet modules 200 are arbitrary.
 プリソークモジュール300は、例えばめっき処理前の基板の被めっき面に形成したシード層表面等に存在する電気抵抗の大きい酸化膜を硫酸や塩酸等の処理液でエッチング除去してめっき下地表面を洗浄または活性化するプリソーク処理を施すように構成される。本実施形態では2台のプリソークモジュール300が上下方向に並べて配置されているが、プリソークモジュール300の数及び配置は任意である。めっきモジュール400は、基板にめっき処理を施す。本実施形態では、上下方向に3台かつ水平方向に4台並べて配置された12台のめっきモジュール400のセットが2つあり、合計24台のめっきモジュール400が設けられているが、めっきモジュール400の数及び配置は任意である。 In the presoak module 300, for example, an oxide film having a large electric resistance existing on the surface of a seed layer formed on the surface to be plated of the substrate before plating is removed by etching with a treatment liquid such as sulfuric acid or hydrochloric acid, and the surface of the plating base is cleaned. Alternatively, it is configured to perform a pre-soak process for activation. In this embodiment, two presoak modules 300 are arranged side by side in the vertical direction, but the number and arrangement of the presoak modules 300 are arbitrary. The plating module 400 applies plating to the substrate. In this embodiment, there are two sets of 12 plating modules 400 arranged vertically and four horizontally, and a total of 24 plating modules 400 are provided. The number and arrangement of are arbitrary.
 洗浄モジュール500は、めっき処理後の基板に残るめっき液等を除去するために基板に洗浄処理を施すように構成される。本実施形態では2台の洗浄モジュール500が上下方向に並べて配置されているが、洗浄モジュール500の数及び配置は任意である。スピンリンスドライヤ600は、洗浄処理後の基板を高速回転させて乾燥させるためのモジュールである。本実施形態では2台のスピンリンスドライヤ600が上下方向に並べて配置されているが、スピンリンスドライヤ600の数及び配置は任意である。搬送装置700は、めっき装置1000内の複数のモジュール間で基板を搬送するための装置である。制御モジュール800は、めっき装置1000の複数のモジュールを制御するように構成され、例えばオペレータとの間の入出力インターフェースを備える一般的なコンピュータまたは専用コンピュータから構成することができる。 The cleaning module 500 is configured to perform a cleaning process on the substrate in order to remove the plating solution and the like remaining on the substrate after the plating process. In this embodiment, two cleaning modules 500 are arranged side by side in the vertical direction, but the number and arrangement of the cleaning modules 500 are arbitrary. The spin rinse dryer 600 is a module for drying the substrate after cleaning by rotating it at high speed. In this embodiment, two spin rinse dryers 600 are arranged side by side in the vertical direction, but the number and arrangement of the spin rinse dryers 600 are arbitrary. The transport device 700 is a device for transporting substrates between a plurality of modules within the plating apparatus 1000 . Control module 800 is configured to control a plurality of modules of plating apparatus 1000 and may comprise, for example, a general purpose or dedicated computer with input/output interfaces to an operator.
 めっき装置1000による一連のめっき処理の一例を説明する。まず、ロードポート100にカセットに収容された基板が搬入される。続いて、搬送ロボット110は、ロードポート100のカセットから基板を取り出し、アライナ120に基板を搬送する。アライナ120は、基板のオリエンテーションフラットやノッチなどの位置を所定の方向に合わせる。搬送ロボット110は、アライナ120で方向を合わせた基板をプリウェットモジュール200へ受け渡す。 An example of a series of plating processes by the plating apparatus 1000 will be explained. First, a substrate accommodated in a cassette is loaded into the load port 100 . Subsequently, the transport robot 110 takes out the substrate from the cassette of the load port 100 and transports the substrate to the aligner 120 . The aligner 120 aligns orientation flats, notches, etc. of the substrate in a predetermined direction. The transfer robot 110 transfers the substrates aligned by the aligner 120 to the pre-wet module 200 .
 プリウェットモジュール200は、基板にプリウェット処理を施す。搬送装置700は、プリウェット処理が施された基板をプリソークモジュール300へ搬送する。プリソークモジュール300は、基板にプリソーク処理を施す。搬送装置700は、プリソーク処理が施された基板をめっきモジュール400へ搬送する。めっきモジュール400は、基板にめっき処理を施す。 The pre-wet module 200 pre-wets the substrate. The transport device 700 transports the pre-wet processed substrate to the pre-soak module 300 . The presoak module 300 applies a presoak treatment to the substrate. The transport device 700 transports the presoaked substrate to the plating module 400 . The plating module 400 applies plating to the substrate.
 搬送装置700は、めっき処理が施された基板を洗浄モジュール500へ搬送する。洗浄モジュール500は、基板に洗浄処理を施す。搬送装置700は、洗浄処理が施された基板をスピンリンスドライヤ600へ搬送する。スピンリンスドライヤ600は、基板に乾燥処理を施す。搬送ロボット110は、スピンリンスドライヤ600から基板を受け取り、乾燥処理を施した基板をロードポート100のカセットへ搬送する。最後に、ロードポート100から基板を収容したカセットが搬出される。 The transport device 700 transports the plated substrate to the cleaning module 500 . The cleaning module 500 performs a cleaning process on the substrate. The transport device 700 transports the cleaned substrate to the spin rinse dryer 600 . A spin rinse dryer 600 performs a drying process on the substrate. The transport robot 110 receives the substrate from the spin rinse dryer 600 and transports the dried substrate to the cassette of the load port 100 . Finally, the cassette containing the substrates is unloaded from the load port 100 .
 なお、図1や図2で説明しためっき装置1000の構成は、一例に過ぎず、めっき装置1000の構成は、図1や図2の構成に限定されるものではない。 The configuration of the plating apparatus 1000 described with reference to FIGS. 1 and 2 is merely an example, and the configuration of the plating apparatus 1000 is not limited to the configuration of FIGS. 1 and 2.
 続いて、めっきモジュール400について説明する。なお、本実施形態に係るめっき装置1000が有する複数のめっきモジュール400は同様の構成を有しているので、1つのめっきモジュール400について説明する。 Next, the plating module 400 will be explained. Since the plurality of plating modules 400 of the plating apparatus 1000 according to this embodiment have the same configuration, one plating module 400 will be described.
 図3は、本実施形態に係るめっき装置1000におけるめっきモジュール400の1つのめっき槽10の周辺構成を模式的に示す図である。本実施形態に係るめっき装置1000は、カップ式のめっき装置である。本実施形態に係るめっき装置1000のめっきモジュール400は、めっき槽10と、基板ホルダ20と、回転機構22と、昇降機構24とを備えている。 FIG. 3 is a diagram schematically showing the peripheral configuration of one plating tank 10 of the plating module 400 in the plating apparatus 1000 according to this embodiment. A plating apparatus 1000 according to this embodiment is a cup-type plating apparatus. A plating module 400 of a plating apparatus 1000 according to this embodiment includes a plating bath 10, a substrate holder 20, a rotating mechanism 22, and an elevating mechanism 24.
 なお、本実施形態において、1つのめっきモジュール400は複数のめっき槽10を備えている。複数のめっき槽10の個数は2以上であればよく、その具体的な個数は特に限定されるものではない。本実施形態では、一例として、1つのめっきモジュール400は4つのめっき槽10を備えている(後述する図4参照)。 It should be noted that one plating module 400 includes a plurality of plating tanks 10 in this embodiment. The number of the plurality of plating tanks 10 should be two or more, and the specific number is not particularly limited. In this embodiment, as an example, one plating module 400 includes four plating tanks 10 (see FIG. 4 described later).
 図3に例示するように、めっき槽10は、上方に開口を有する有底の容器によって構成されている。具体的には、めっき槽10は、底壁10aと、この底壁10aの外縁から上方に延在する外周壁10bとを有しており、この外周壁10bの上部が開口している。なお、めっき槽10の外周壁10bの形状は特に限定されるものではないが、本実施形態に係る外周壁10bは、一例として円筒形状を有している。めっき槽10の内部には、めっき液Psが貯留されている。めっき槽10の外周壁10bの外側には、外周壁10bの上端からオーバーフローしためっき液Psを貯留するためのオーバーフロー槽19が配置されている。 As exemplified in FIG. 3, the plating tank 10 is configured by a bottomed container having an upper opening. Specifically, the plating bath 10 has a bottom wall 10a and an outer peripheral wall 10b extending upward from the outer edge of the bottom wall 10a, and the upper portion of the outer peripheral wall 10b is open. In addition, although the shape of the outer peripheral wall 10b of the plating tank 10 is not particularly limited, the outer peripheral wall 10b according to the present embodiment has a cylindrical shape as an example. A plating solution Ps is stored inside the plating tank 10 . Outside the outer peripheral wall 10b of the plating bath 10, an overflow bath 19 for storing the plating solution Ps overflowing from the upper end of the outer peripheral wall 10b is arranged.
 めっき液Psとしては、めっき皮膜を構成する金属元素のイオンを含む溶液であればよく、その具体例は特に限定されるものではない。本実施形態においては、めっき処理の一例として、銅めっき処理を用いており、めっき液Psの一例として、硫酸銅溶液を用いている。 The plating solution Ps is not particularly limited as long as it contains ions of the metal elements forming the plating film. In this embodiment, a copper plating process is used as an example of the plating process, and a copper sulfate solution is used as an example of the plating solution Ps.
 また、本実施形態において、めっき液Psには所定のめっき添加剤が含まれている。この所定のめっき添加剤の具体例として、本実施形態では、「非イオン系のめっき添加剤」が用いられている。なお、非イオン系のめっき添加剤とは、めっき液Ps中においてイオン性を示さない添加剤を意味している。 Also, in the present embodiment, the plating solution Ps contains a predetermined plating additive. As a specific example of this predetermined plating additive, in this embodiment, a "nonionic plating additive" is used. The nonionic plating additive means an additive that does not exhibit ionicity in the plating solution Ps.
 めっき槽10の内部には、アノード13が配置されている。また、アノード13は、水平方向に延在するように配置されている。アノード13の具体的な種類は特に限定されるものではなく、不溶性アノードであってもよく、可溶性アノードであってもよい。本実施形態では、アノード13の一例として、不溶性アノードを用いている。この不溶性アノードの具体的な種類は、特に限定されるものではなく、白金や酸化イリジウム等を用いることができる。 An anode 13 is arranged inside the plating tank 10 . Moreover, the anode 13 is arranged so as to extend in the horizontal direction. A specific type of the anode 13 is not particularly limited, and may be an insoluble anode or a soluble anode. In this embodiment, an insoluble anode is used as an example of the anode 13 . A specific type of the insoluble anode is not particularly limited, and platinum, iridium oxide, or the like can be used.
 めっき槽10の内部における後述するカソード室12には、イオン抵抗体14が配置されている。具体的には、イオン抵抗体14は、カソード室12における後述する膜40よりも上方、且つ、基板Wfよりも下方の箇所に設けられている。イオン抵抗体14は、カソード室12におけるイオンの移動の抵抗となり得る部材であり、アノード13と基板Wfとの間に形成される電場の均一化を図るために設けられている。 An ion resistor 14 is arranged in a later-described cathode chamber 12 inside the plating bath 10 . Specifically, the ion resistor 14 is provided above a film 40 described later in the cathode chamber 12 and below the substrate Wf. The ion resistor 14 is a member that can act as a resistance to movement of ions in the cathode chamber 12, and is provided to uniformize the electric field formed between the anode 13 and the substrate Wf.
 本実施形態に係るイオン抵抗体14は、イオン抵抗体14の下面と上面とを貫通するように設けられた複数の貫通孔15を有する板部材によって構成されている。この複数の貫通孔15は、イオン抵抗体14の孔形成エリア(これは、本実施形態では、一例として、上面視で円形のエリアである)に設けられている。イオン抵抗体14の具体的な材質は特に限定されるものではないが、本実施形態においては一例として、ポリエーテルエーテルケトン等の樹脂を用いている。 The ionic resistor 14 according to the present embodiment is composed of a plate member having a plurality of through holes 15 provided so as to penetrate the lower surface and the upper surface of the ionic resistor 14 . The plurality of through-holes 15 are provided in the hole-forming area of the ion resistor 14 (which in the present embodiment is, as an example, a circular area when viewed from above). A specific material of the ion resistor 14 is not particularly limited, but in this embodiment, as an example, a resin such as polyetheretherketone is used.
 めっきモジュール400がイオン抵抗体14を有することで、基板Wfに形成されるめっき皮膜(めっき層)の膜厚の均一化を図ることができる。但し、このイオン抵抗体14は、本実施形態に必須の部材ではなく、めっきモジュール400は、イオン抵抗体14を備えていない構成とすることもできる。 By having the ion resistor 14 in the plating module 400, the film thickness of the plating film (plating layer) formed on the substrate Wf can be made uniform. However, the ion resistor 14 is not an essential member for this embodiment, and the plating module 400 may be configured without the ion resistor 14 .
 めっき槽10の内部には、膜40が配置されている。めっき槽10の内部は、膜40によって、膜40よりも下方のアノード室11と、膜40よりも上方のカソード室12とに区画されている。前述したアノード13はアノード室11に配置されており、イオン抵抗体14はカソード室12に配置されている。また、基板Wfへのめっき処理時において、基板Wfはカソード室12に配置される。 A film 40 is arranged inside the plating bath 10 . The interior of the plating bath 10 is partitioned by a membrane 40 into an anode chamber 11 below the membrane 40 and a cathode chamber 12 above the membrane 40 . The aforementioned anode 13 is arranged in the anode chamber 11 and the ion resistor 14 is arranged in the cathode chamber 12 . Further, the substrate Wf is placed in the cathode chamber 12 during the plating process on the substrate Wf.
 なお、本実施形態において、アノード室11に供給されるめっき液Psを「アノード液」と称し、カソード室12に供給されるめっき液Psを「カソード液」と称する。 In this embodiment, the plating solution Ps supplied to the anode chamber 11 is referred to as "anode solution", and the plating solution Ps supplied to the cathode chamber 12 is referred to as "cathode solution".
 膜40は、めっき液Psに含まれるイオン種(これは金属イオンを含んでいる)が膜40を通過することを許容しつつ、めっき液Psに含まれる非イオン系のめっき添加剤が膜40を通過することを抑制するように構成された膜である。具体的には、膜40は、複数の微細な孔(微細孔)を有している(この微細孔の図示は省略されている)。この複数の孔の平均的な直径はナノメートルサイズ(すなわち、1nm以上999nm以下のサイズ)である。これにより、金属イオンを含むイオン種(これはナノメートルサイズである)が膜40の複数の微細孔を通過することは許容される一方で、非イオン系のめっき添加剤(これは、ナノメートルサイズよりも大きい)が膜40の複数の微細孔を通過することは抑制されている。このような膜40としては、例えば、イオン交換膜を用いることができる。 The membrane 40 allows the ionic species contained in the plating solution Ps (which include metal ions) to pass through the membrane 40 while allowing the nonionic plating additives contained in the plating solution Ps to pass through the membrane 40 . is a membrane configured to restrict passage through the Specifically, the film 40 has a plurality of fine holes (micropores) (illustration of the micropores is omitted). The average diameter of the plurality of pores is nanometer size (that is, a size of 1 nm or more and 999 nm or less). This allows ionic species, including metal ions (which are nanometer-sized), to pass through the pores of membrane 40, while non-ionic plating additives (which are nanometer-sized). (larger than the size) are inhibited from passing through the pores of the membrane 40 . As such a membrane 40, for example, an ion exchange membrane can be used.
 本実施形態のように、めっきモジュール400が膜40を備えることで、カソード室12のカソード液に含まれる非イオン系のめっき添加剤がアノード室11へ移動することを抑制できる。これにより、カソード室12のめっき添加剤の消耗量の低減を図ることができる。 By providing the plating module 400 with the film 40 as in the present embodiment, it is possible to prevent the nonionic plating additive contained in the catholyte in the cathode chamber 12 from moving to the anode chamber 11 . As a result, the amount of consumption of the plating additive in the cathode chamber 12 can be reduced.
 なお、膜40は、図3に例示するように、水平方向に対して傾斜した傾斜部位41を備えていてもよい。具体的には、図3に例示する膜40の傾斜部位41は、水平方向に対して傾斜するとともに、めっき槽10の中央側からめっき槽10の外周壁10bの側に向かうに従って上方に位置するように傾斜している。また、図3に例示する膜40は、一例として、正面視で「V字状」の外観形状を有している。 Note that the film 40 may have an inclined portion 41 inclined with respect to the horizontal direction, as illustrated in FIG. Specifically, the slanted portion 41 of the film 40 illustrated in FIG. 3 is slanted with respect to the horizontal direction and positioned upward from the center side of the plating bath 10 toward the outer peripheral wall 10b side of the plating bath 10. It is slanted so that In addition, the film 40 illustrated in FIG. 3 has, as an example, a “V-shaped” external shape when viewed from the front.
 但し、膜40の構成は上記の構成に限定されるものではない。例えば、膜40は、傾斜部位41を備えておらず、全体的に水平方向に延在していてもよい。 However, the structure of the film 40 is not limited to the above structure. For example, the membrane 40 may extend generally horizontally without the angled portion 41 .
 基板ホルダ20は、カソードとしての基板Wfを、基板Wfの被めっき面(下面)がアノード13に対向するように保持している。基板ホルダ20は、回転機構22に接続されている。回転機構22は、基板ホルダ20を回転させるための機構である。回転機構22は、昇降機構24に接続されている。昇降機構24は、上下方向に延在する支柱26によって支持されている。昇降機構24は、基板ホルダ20及び回転機構22を昇降させるための機構である。回転機構22及び昇降機構24の動作は、制御モジュール800によって制御されている。なお、基板Wf及びアノード13は、通電装置(図示せず)と電気的に接続されている。通電装置は、めっき処理の実行時に、基板Wfとアノード13との間に電気を流すための装置である。 The substrate holder 20 holds the substrate Wf as a cathode so that the surface to be plated (lower surface) of the substrate Wf faces the anode 13 . The substrate holder 20 is connected to a rotating mechanism 22 . The rotating mechanism 22 is a mechanism for rotating the substrate holder 20 . The rotating mechanism 22 is connected to a lifting mechanism 24 . The lifting mechanism 24 is supported by a column 26 extending vertically. The elevating mechanism 24 is a mechanism for elevating the substrate holder 20 and the rotating mechanism 22 . Operations of the rotating mechanism 22 and the lifting mechanism 24 are controlled by the control module 800 . In addition, the substrate Wf and the anode 13 are electrically connected to an energization device (not shown). The energizing device is a device for causing electricity to flow between the substrate Wf and the anode 13 during the plating process.
 めっき槽10には、アノード室11にアノード液を供給するためのアノード室用供給口16aと、アノード室11からアノード液を排出するためのアノード室用排出口16bと、が設けられている。本実施形態に係るアノード室用供給口16aは、一例として、めっき槽10の底壁10aに配置されている。アノード室用排出口16bは、一例として、めっき槽10の外周壁10bに配置されている。また、アノード室用排出口16bは、一例として、めっき槽10の2箇所に設けられている。 The plating tank 10 is provided with an anode chamber supply port 16 a for supplying the anode fluid to the anode chamber 11 and an anode chamber discharge port 16 b for discharging the anode fluid from the anode chamber 11 . As an example, the anode chamber supply port 16a according to the present embodiment is arranged on the bottom wall 10a of the plating bath 10 . As an example, the anode chamber outlet 16b is arranged on the outer peripheral wall 10b of the plating bath 10 . In addition, the anode chamber outlet 16b is provided at two locations in the plating tank 10, as an example.
 また、めっき槽10には、カソード室12用の供給・ドレイン口17が設けられている。供給・ドレイン口17は、「カソード液用の供給口」と「カソード液用のドレイン口」とが合体したものである。 In addition, the plating bath 10 is provided with a supply/drain port 17 for the cathode chamber 12 . The supply/drain port 17 is a combination of a "catholyte supply port" and a "catholyte drain port".
 すなわち、カソード室12にカソード液を供給する際には、この供給・ドレイン口17は「カソード液用の供給口」として機能して、この供給・ドレイン口17からカソード液がカソード室12に供給される。一方、カソード室12からカソード液を排出して、例えばカソード室12のカソード液を空にする際には、この供給・ドレイン口17は、「カソード液用のドレイン口」として機能して、この供給・ドレイン口17からカソード液が排出される。 That is, when the catholyte is supplied to the cathode chamber 12, the supply/drain port 17 functions as a "supply port for catholyte", and the catholyte is supplied to the cathode chamber 12 from the supply/drain port 17. be done. On the other hand, when the catholyte is discharged from the cathode chamber 12, for example, when the catholyte in the cathode chamber 12 is emptied, the supply/drain port 17 functions as a "drain port for the catholyte". Catholyte is discharged from the supply/drain port 17 .
 なお、供給・ドレイン口17の構成は上記の構成に限定されるものではない。他の一例を挙げると、めっきモジュール400は、供給・ドレイン口17に代えて、「カソード液用の供給口」、及び、「カソード液用のドレイン口」を、個別に備えていてもよい。 The configuration of the supply/drain port 17 is not limited to the configuration described above. As another example, the plating module 400 may separately include a “cathode supply port” and a “cathode drain port” instead of the supply/drain port 17 .
 本実施形態に係る供給・ドレイン口17は、一例として、カソード室12の底部(底面)から供給・ドレイン口17までの距離が例えば20mm以下になるように、めっき槽10の外周壁10bに配置されている。 As an example, the supply/drain port 17 according to the present embodiment is arranged on the outer peripheral wall 10b of the plating tank 10 so that the distance from the bottom (bottom surface) of the cathode chamber 12 to the supply/drain port 17 is, for example, 20 mm or less. It is
 オーバーフロー槽19には、カソード室12からオーバーフローして、オーバーフロー槽19に貯留されためっき液Ps(カソード液)をオーバーフロー槽19の外部に排出するためのオーバーフロー槽用排出口18が設けられている。 The overflow tank 19 is provided with an overflow tank discharge port 18 for discharging the plating solution Ps (cathode liquid) overflowing from the cathode chamber 12 and stored in the overflow tank 19 to the outside of the overflow tank 19. .
 めっき槽10には、アノード室11の圧力(Pa)を検出するための圧力計80aと、カソード室12の圧力(Pa)を検出するための圧力計80bと、が配置されている。圧力計80a及び圧力計80bの検出結果は、制御モジュール800に伝えられる。 In the plating tank 10, a pressure gauge 80a for detecting the pressure (Pa) in the anode chamber 11 and a pressure gauge 80b for detecting the pressure (Pa) in the cathode chamber 12 are arranged. The detection results of the pressure gauges 80 a and 80 b are transmitted to the control module 800 .
 制御モジュール800は、プロセッサ801と、非一時的な記憶装置802とを備えている。記憶装置802には、プログラムやデータ等が記憶されている。制御モジュール800においては、プロセッサ801が記憶装置802に記憶されたプログラムの指令に基づいて、めっき装置1000の動作を制御する。 The control module 800 comprises a processor 801 and a non-temporary storage device 802. The storage device 802 stores programs, data, and the like. In the control module 800 , the processor 801 controls the operation of the plating apparatus 1000 based on instructions of programs stored in the storage device 802 .
 基板Wfへのめっき処理を実行する際には、まず、回転機構22が基板ホルダ20を回転させるとともに、昇降機構24が基板ホルダ20を下方に移動させて、基板Wfをめっき槽10のめっき液Ps(カソード室12のカソード液)に浸漬させる。次いで、通電装置によって、アノード13と基板Wfとの間に電気が流される。これにより、基板Wfの被めっき面に、めっき皮膜が形成される。 When plating the substrate Wf, first, the rotation mechanism 22 rotates the substrate holder 20 , and the elevating mechanism 24 moves the substrate holder 20 downward to move the substrate Wf to the plating solution in the plating tank 10 . It is immersed in Ps (cathode liquid in the cathode chamber 12). Next, electricity is passed between the anode 13 and the substrate Wf by the energizing device. Thereby, a plating film is formed on the surface to be plated of the substrate Wf.
 図4は、1つのめっきモジュール400の液体流通構成を示す模式図である。図4に示すように、めっきモジュール400は、タンク50,51と、ポンプ52a,52bと、温調器53a,53bと、フィルター54と、アノード液供給装置57aと、カソード液供給装置57bと、添加剤供給装置57cと、金属イオン供給装置57dと、複数の流路(流路70a~70g4)と、複数のバルブ(バルブ75a~75o)と、複数の流路切換えバルブ(流路切換えバルブ77a~77d等)と、を備えている。 FIG. 4 is a schematic diagram showing the liquid circulation configuration of one plating module 400. FIG. As shown in FIG. 4, the plating module 400 includes tanks 50 and 51, pumps 52a and 52b, temperature controllers 53a and 53b, a filter 54, an anolyte supply device 57a, a catholyte supply device 57b, An additive supply device 57c, a metal ion supply device 57d, a plurality of channels (channels 70a to 70g4), a plurality of valves (valves 75a to 75o), a plurality of channel switching valves (channel switching valve 77a ~77d, etc.).
 なお、本実施形態では、一例として、1組のタンク50及びタンク51に対して、4つのめっき槽10(#1~#4のめっき槽10)が適用されている。すなわち、本実施形態において、1組のタンク50及びタンク51に流路を介して連通されているめっき槽10の数は、一例として4つである。但し、1組のタンク50及びタンク51に対して適用されるめっき槽10の数は、複数であればよく、4よりも少なくてもよく、多くてもよい。 In this embodiment, as an example, four plating baths 10 (plating baths 10 #1 to #4) are applied to one set of tanks 50 and 51 . That is, in the present embodiment, the number of plating baths 10 communicating with one set of tanks 50 and 51 via channels is four, as an example. However, the number of plating baths 10 applied to one set of tanks 50 and 51 may be plural, and may be less than four or may be more.
 複数のバルブ(バルブ75a~75o)としては、閉弁状態(バルブ開度が0%の状態であり、バルブを通過する液体の流量がゼロの状態)と、開弁状態(バルブ開度が0%よりも大きい状態であり、バルブを通過する液体の流量がゼロよりも大きい状態)と、を少なくとも切り替えることが可能な流量調整バルブを用いることができる。 The plurality of valves (valves 75a to 75o) are divided into a closed state (a state in which the valve opening is 0% and the flow rate of liquid passing through the valve is zero) and an open state (the valve opening is 0%). % and the flow rate of liquid passing through the valve is greater than zero).
 また、これらの複数のバルブとして、バルブ開度を0%以上100%以下の範囲内で(すなわち、バルブを通過する流量をゼロ以上所定値以下の範囲内で)、連続的に又は段階的に調整することが可能な流量調整バルブを用いることもできる。 In addition, as these multiple valves, the valve opening degree is within the range of 0% or more and 100% or less (that is, the flow rate passing through the valve is within the range of zero or more and a predetermined value or less), continuously or stepwise An adjustable flow control valve can also be used.
 なお、複数のバルブ、及び、複数の流路切換えバルブは、制御モジュール800によって制御されるバルブであってもよく、あるいは、手動によって動作される手動式のバルブであってもよい。本実施形態においては、複数のバルブ、及び、複数の流路切換えバルブは、制御モジュール800によって制御される。 The plurality of valves and the plurality of flow path switching valves may be valves controlled by the control module 800, or may be manually operated valves. In this embodiment, the multiple valves and multiple flow path switching valves are controlled by the control module 800 .
 タンク50は、アノード液を貯留するためのタンクである。タンク50は、アノード室11に連通している。タンク51は、カソード液を貯留するためのタンクである。タンク51は、カソード室12に連通している。なお、タンク50は「アノード液タンク」の一例であり、タンク51は「カソード液タンク」の一例である。 The tank 50 is a tank for storing the anolyte. Tank 50 communicates with anode chamber 11 . The tank 51 is a tank for storing catholyte. The tank 51 communicates with the cathode chamber 12 . The tank 50 is an example of the "anode tank", and the tank 51 is an example of the "cathode tank".
 タンク50には、タンク50に貯留されたアノード液の液面レベルを検出するための液面レベルセンサ81aが配置されている。また、タンク51にも、タンク51に貯留されたカソード液の液面レベルを検出するための液面レベルセンサ81bが配置されている。液面レベルセンサ81a,81bの検出結果は、制御モジュール800に伝えられる。 A liquid level sensor 81 a for detecting the liquid level of the anode fluid stored in the tank 50 is arranged in the tank 50 . In addition, the tank 51 is also provided with a liquid level sensor 81 b for detecting the liquid level of the catholyte stored in the tank 51 . The detection results of the liquid level sensors 81 a and 81 b are transmitted to the control module 800 .
 ポンプ52aは、タンク50のアノード液をアノード室11に向けて圧送するためのポンプである。ポンプ52bは、タンク51のカソード液をカソード室12に向けて圧送するためのポンプである。ポンプ52a,52bの動作は、制御モジュール800が制御する。なお、ポンプ52aは「アノード液ポンプ」の一例であり、ポンプ52bは「カソード液ポンプ」の一例である。 The pump 52 a is a pump for pumping the anode fluid in the tank 50 toward the anode chamber 11 . The pump 52 b is a pump for pumping the catholyte in the tank 51 toward the cathode chamber 12 . A control module 800 controls the operation of the pumps 52a, 52b. The pump 52a is an example of an "anolyte pump", and the pump 52b is an example of a "cathode pump".
 温調器53aは、アノード液の温度を調整するための装置である。温調器53bは、カソード液の温度を調整するための装置である。本実施形態に係る温調器53aは、一例として、流路70aのポンプ52aよりも下流側の箇所に配置されている。本実施形態に係る温調器53bは、一例として、流路70cのポンプ52bよりも下流側の箇所に配置されている。温調器53a,53bの動作は、制御モジュール800が制御する。 The temperature controller 53a is a device for adjusting the temperature of the anode fluid. The temperature controller 53b is a device for adjusting the temperature of the catholyte. As an example, the temperature adjuster 53a according to the present embodiment is arranged downstream of the pump 52a in the flow path 70a. As an example, the temperature controller 53b according to the present embodiment is arranged at a location downstream of the pump 52b in the flow path 70c. A control module 800 controls the operation of the temperature controllers 53a and 53b.
 図5に示すように、フィルター54は、タンク51からカソード室12に向かって流通するカソード液を濾過するための装置である。フィルター54は、後述する流路70cの例えば温調器53bよりも下流側の箇所に配置されている。 As shown in FIG. 5, the filter 54 is a device for filtering the catholyte flowing from the tank 51 toward the cathode chamber 12 . The filter 54 is disposed downstream of, for example, a temperature controller 53b in a flow path 70c, which will be described later.
 なお、めっきモジュール400が有するフィルターの個数は、1個に限定されるものではなく、2個以上であってもよい。あるいは、めっきモジュール400は、フィルターを備えていない構成とすることもできる。 The number of filters included in the plating module 400 is not limited to one, and may be two or more. Alternatively, plating module 400 may be configured without a filter.
 アノード液供給装置57aは、アノード液を供給するための装置である。アノード液供給装置57aが供給するアノード液は、未使用のアノード液(すなわち、新しいアノード液)であってもよく、めっき処理に使用されたことのあるアノード液であってもよい。カソード液供給装置57bは、カソード液を供給するための装置である。カソード液供給装置57bが供給するカソード液は、未使用のカソード液(すなわち、新しいカソード液)であってもよく、めっき処理に使用されたことのあるカソード液であってもよい。 The anolyte supply device 57a is a device for supplying anolyte. The anolyte supplied by the anolyte supply device 57a may be an unused anolyte (that is, a new anolyte) or an anolyte that has been used for plating. The catholyte supply device 57b is a device for supplying catholyte. The catholyte supplied by the catholyte supply device 57b may be unused catholyte (ie, new catholyte) or may be catholyte that has been used for plating.
 アノード液供給装置57aの具体的な構成は、特に限定されるものではないが、例えば、アノード液供給装置57aは、供給用のアノード液を貯留するためのタンクと、このタンクのアノード液を流路70g1を介してタンク50に向けて圧送するためのポンプとを備えていてもよい。カソード液供給装置57bの具体的な構成は、特に限定されるものではないが、例えば、カソード液供給装置57bは、供給用のカソード液を貯留するためのタンクと、このタンクのカソード液を流路70g2を介してタンク51に向けて圧送するためのポンプとを備えていてもよい。本実施形態に係るアノード液供給装置57a及びカソード液供給装置57bの動作は、制御モジュール800が制御する。 The specific configuration of the anolyte supply device 57a is not particularly limited, but for example, the anolyte supply device 57a includes a tank for storing the anolyte to be supplied and a tank for flowing the anolyte in the tank. and a pump for pumping toward the tank 50 via the line 70g1. The specific configuration of the catholyte supply device 57b is not particularly limited. and a pump for pumping toward the tank 51 via the passage 70g2. A control module 800 controls the operations of the anolyte supply device 57a and the catholyte supply device 57b according to the present embodiment.
 添加剤供給装置57cは、めっき添加剤を供給するための装置である。本実施形態において、添加剤供給装置57cは、めっき液Psにめっき添加剤を補給する際に用いられる。具体的には、本実施形態に係る添加剤供給装置57cは、一例として、タンク51のカソード液にめっき添加剤を補給する際に用いられる。本実施形態に係る添加剤供給装置57cの動作は、制御モジュール800が制御する。 The additive supply device 57c is a device for supplying plating additives. In this embodiment, the additive supply device 57c is used when supplying the plating additive to the plating solution Ps. Specifically, the additive supply device 57c according to the present embodiment is used, as an example, when replenishing the catholyte in the tank 51 with the plating additive. A control module 800 controls the operation of the additive supply device 57c according to the present embodiment.
 金属イオン供給装置57dは、金属イオンを供給するための装置である。本実施形態に係る金属イオン供給装置57dは、めっき液Psに金属イオンを補給する際に用いられる。具体的には、本実施形態に係る金属イオン供給装置57dは、一例として、タンク51のカソード液に、金属イオン(一例として、銅イオン)を含む溶液を補給する際に用いられる。本実施形態に係る金属イオン供給装置57dの動作は、制御モジュール800が制御する。 The metal ion supply device 57d is a device for supplying metal ions. The metal ion supply device 57d according to this embodiment is used when supplying metal ions to the plating solution Ps. Specifically, the metal ion supply device 57d according to the present embodiment is used, as an example, when replenishing the catholyte in the tank 51 with a solution containing metal ions (eg, copper ions). A control module 800 controls the operation of the metal ion supply device 57d according to this embodiment.
 流路70aは、タンク50とポンプ52aと各々のめっき槽10のアノード室11とを連通している。また、本実施形態に係る流路70aには、温調器53aが配置されている。本実施形態に係る流路70aは、温調器53aよりも下流側の箇所において複数に分岐して、流路70a1、流路70a2、流路70a3、及び、流路70a4になって、各々のめっき槽10のアノード室11に連通している。 The flow path 70 a communicates the tank 50 , the pump 52 a and the anode chamber 11 of each plating tank 10 . A temperature controller 53a is arranged in the flow path 70a according to the present embodiment. The flow path 70a according to the present embodiment branches into a plurality of flow paths 70a1, 70a2, 70a3, and 70a4 at locations downstream of the temperature controller 53a. It communicates with the anode chamber 11 of the plating bath 10 .
 流路70a1の下流端は、#1のめっき槽10のアノード室用供給口16aに連通している。流路70a2の下流端は、#2のめっき槽10のアノード室用供給口16aに連通している。流路70a3の下流端は、#3のめっき槽10のアノード室用供給口16aに連通している。流路70a4の下流端は、#4のめっき槽10のアノード室用供給口16aに連通している。 The downstream end of the flow path 70a1 communicates with the anode chamber supply port 16a of the #1 plating tank 10. The downstream end of the flow path 70a2 communicates with the anode chamber supply port 16a of the #2 plating tank 10. As shown in FIG. The downstream end of the flow path 70a3 communicates with the anode chamber supply port 16a of the #3 plating tank 10. As shown in FIG. The downstream end of the channel 70a4 communicates with the anode chamber supply port 16a of the plating tank 10 of #4.
 流路70b1,70b2,70b3,70b4は、各々のめっき槽10のアノード室11のアノード液をタンク50に戻すように構成された流路である。 The channels 70 b 1 , 70 b 2 , 70 b 3 , 70 b 4 are channels configured to return the anolyte in the anode chamber 11 of each plating tank 10 to the tank 50 .
 具体的には、本実施形態に係る流路70b1の所定箇所よりも上流側の部分は、2つに分岐して、#1のめっき槽10の2つのアノード室用排出口16bに連通している。流路70b1の下流端はタンク50に連通している。流路70b2の所定箇所よりも上流側の部分は、2つに分岐して、#2のめっき槽10の2つのアノード室用排出口16bに連通している。流路70b2の下流端はタンク50に連通している。 Specifically, the upstream portion of the flow path 70b1 according to the present embodiment is branched into two and communicated with the two anode chamber outlets 16b of the #1 plating tank 10. there is A downstream end of the flow path 70b1 communicates with the tank 50 . A portion of the flow path 70b2 on the upstream side of a predetermined location branches into two and communicates with the two anode chamber outlets 16b of the #2 plating tank 10. As shown in FIG. A downstream end of the flow path 70b2 communicates with the tank 50 .
 流路70b3の所定箇所よりも上流側の部分は、2つに分岐して、#3のめっき槽10の2つのアノード室用排出口16bに連通している。流路70b3の下流端はタンク50に連通している。流路70b4の所定箇所よりも上流側の部分は、2つに分岐して、#4のめっき槽10の2つのアノード室用排出口16bに連通している。流路70b4の下流端は、タンク50に連通している。 A portion of the flow path 70b3 on the upstream side of a predetermined location branches into two and communicates with the two anode chamber outlets 16b of the #3 plating tank 10. A downstream end of the flow path 70b3 communicates with the tank 50 . A portion of the flow path 70b4 on the upstream side of a predetermined location branches into two and communicates with the two anode chamber outlets 16b of the plating tank 10 of #4. A downstream end of the flow path 70b4 communicates with the tank 50 .
 流路70cは、タンク51とポンプ52bと各々のめっき槽10のカソード室12とを連通している。また、本実施形態に係る流路70cには、温調器53b及びフィルター54が配置されている。本実施形態に係る流路70cは、フィルター54よりも下流側の箇所において、複数に分岐して、流路70c1,70c2,70c3,70c4になっている。 The flow path 70 c communicates the tank 51 , the pump 52 b and the cathode chamber 12 of each plating tank 10 . Further, a temperature controller 53b and a filter 54 are arranged in the flow path 70c according to this embodiment. The flow path 70c according to the present embodiment is branched into a plurality of flow paths 70c1, 70c2, 70c3, and 70c4 at locations on the downstream side of the filter .
 流路70c1の下流端は、#1のめっき槽10の供給・ドレイン口17に連通している。流路70c2の下流端は、#2のめっき槽10の供給・ドレイン口17に連通している。流路70c3の下流端は、#3のめっき槽10の供給・ドレイン口17に連通している。流路70c4の下流端は、#4のめっき槽10の供給・ドレイン口17に連通している。 The downstream end of the flow path 70c1 communicates with the supply/drain port 17 of the #1 plating tank 10. The downstream end of the flow path 70c2 communicates with the supply/drain port 17 of the plating tank 10 of #2. The downstream end of the flow path 70c3 communicates with the supply/drain port 17 of the plating tank 10 of #3. The downstream end of the flow path 70c4 communicates with the supply/drain port 17 of the plating tank 10 of #4.
 流路70d1,70d2,70d3,70d4は、各々のめっき槽10のオーバーフロー槽19のカソード液をタンク51に戻すように構成された流路である。具体的には、流路70d1の上流端は、#1のめっき槽10のオーバーフロー槽用排出口18に連通し、下流端はタンク51に連通している。流路70d2の上流端は、#2のめっき槽10のオーバーフロー槽用排出口18に連通し、下流端はタンク51に連通している。流路70d3の上流端は、#3のめっき槽10のオーバーフロー槽用排出口18に連通し、下流端はタンク51に連通している。流路70d4の上流端は、#4のめっき槽10のオーバーフロー槽用排出口18に連通し、下流端はタンク51に連通している。 The flow paths 70d1, 70d2, 70d3, and 70d4 are flow paths configured to return the catholyte of the overflow tank 19 of each plating tank 10 to the tank 51. Specifically, the upstream end of the flow path 70 d 1 communicates with the overflow tank discharge port 18 of the # 1 plating tank 10 , and the downstream end communicates with the tank 51 . The upstream end of the flow path 70 d 2 communicates with the overflow tank discharge port 18 of the # 2 plating tank 10 , and the downstream end communicates with the tank 51 . The upstream end of the flow path 70 d 3 communicates with the overflow tank discharge port 18 of the # 3 plating tank 10 , and the downstream end communicates with the tank 51 . The upstream end of the flow path 70 d 4 communicates with the overflow tank discharge port 18 of the # 4 plating tank 10 , and the downstream end communicates with the tank 51 .
 流路70e1,70e2,70e3,70e4は、カソード液を、カソード室12をバイパスさせて流通させた後にタンク51に戻すように構成された流路である。具体的には、流路70e1の上流端は、流路切換えバルブ77aを介して流路70c1の途中に連通し、下流端はタンク51に連通している。流路70e2の上流端は、流路切換えバルブ77bを介して流路70c2の途中に連通し、下流端はタンク51に連通している。流路70e3の上流端は、流路切換えバルブ77cを介して流路70c3の途中に連通し、下流端はタンク51に連通している。流路70e4の上流端は、流路切換えバルブ77dを介して流路70c4の途中に連通し、下流端はタンク51に連通している。 The flow paths 70 e 1 , 70 e 2 , 70 e 3 , and 70 e 4 are flow paths configured to return the catholyte to the tank 51 after circulating the catholyte bypassing the cathode chamber 12 . Specifically, the upstream end of the channel 70 e 1 communicates with the middle of the channel 70 c 1 via the channel switching valve 77 a , and the downstream end communicates with the tank 51 . The upstream end of the channel 70 e 2 communicates with the middle of the channel 70 c 2 via the channel switching valve 77 b , and the downstream end communicates with the tank 51 . The upstream end of the channel 70e3 communicates with the middle of the channel 70c3 via a channel switching valve 77c, and the downstream end communicates with the tank 51. As shown in FIG. The upstream end of the channel 70e4 communicates with the middle of the channel 70c4 via a channel switching valve 77d, and the downstream end communicates with the tank 51. As shown in FIG.
 流路70g1は、アノード液供給装置57aから供給されたアノード液を、タンク50に流入させるように構成された流路である。具体的には、流路70g1の上流端はアノード液供給装置57aに連通し、下流端はタンク50に連通している。流路70g2は、カソード液供給装置57bから供給されたカソード液を、タンク51に流入させるように構成された流路である。具体的には、流路70g2の上流端はカソード液供給装置57bに連通し、下流端はタンク51に連通している。 The flow path 70 g 1 is a flow path configured to allow the anolyte supplied from the anolyte supply device 57 a to flow into the tank 50 . Specifically, the upstream end of the channel 70g1 communicates with the anode fluid supply device 57a, and the downstream end thereof communicates with the tank 50. As shown in FIG. The channel 70 g 2 is a channel configured to allow the catholyte supplied from the catholyte supply device 57 b to flow into the tank 51 . Specifically, the upstream end of the channel 70 g 2 communicates with the catholyte supply device 57 b , and the downstream end thereof communicates with the tank 51 .
 流路70g3は、添加剤供給装置57cから供給されためっき添加剤をタンク51に流入させるように構成された流路である。流路70g4は、金属イオン供給装置57dから供給された金属イオンを含む溶液をタンク51に流入させるように構成された流路である。 The flow path 70g3 is a flow path configured to allow the plating additive supplied from the additive supply device 57c to flow into the tank 51. The flow path 70 g 4 is a flow path configured to allow the solution containing metal ions supplied from the metal ion supply device 57 d to flow into the tank 51 .
 流路70fは、タンク50とタンク51とを連通するように構成された流路(連通流路)である。具体的には、本実施形態に係る流路70fは、流路70aの途中箇所(後述するバルブ75aよりも上流側の箇所)と流路70cの途中箇所(後述するバルブ75jよりも上流側の箇所)とを連通するように構成されている。 The channel 70f is a channel (communication channel) configured to communicate the tank 50 and the tank 51 . Specifically, the flow path 70f according to the present embodiment includes a midway portion of the flow path 70a (a point upstream of a valve 75a described later) and a midpoint of the flow path 70c (a point upstream of the valve 75j described later). point).
 流路70fには、流路70fを開閉するためのバルブ75kが配置されている。バルブ75kが開弁状態になると、流路70fを介して、タンク50及びタンク51は互いに連通された状態になる。一方、バルブ75kが閉弁状態になると、タンク50及びタンク51は非連通状態になる。 A valve 75k for opening and closing the channel 70f is arranged in the channel 70f. When the valve 75k is opened, the tanks 50 and 51 are communicated with each other via the flow path 70f. On the other hand, when the valve 75k is closed, the tanks 50 and 51 are disconnected.
 本実施形態によれば、例えば、アノード液及びカソード液として異なる成分のめっき液を用いる場合には、バルブ75kを閉弁状態にして流路70fを閉じることで、タンク50のアノード液がタンク51のカソード液と混合しないようにすることができる。一方、例えば、アノード液及びカソード液として同じ成分のめっき液を用いる場合には、バルブ75kを開弁状態にして流路70fを開くことで、タンク50とタンク51とを連通させて、タンク50及びタンク51を1つの大きなめっき液タンクとして機能させてもよい。 According to the present embodiment, for example, when plating solutions having different components are used as the anolyte and the catholyte, the valve 75k is closed to close the flow path 70f. of catholyte. On the other hand, for example, when plating solutions of the same composition are used as the anolyte and the catholyte, the tank 50 and the tank 51 are communicated with each other by opening the valve 75k and opening the flow path 70f. and tank 51 may function as one large plating solution tank.
 バルブ75aは、流路70aにおけるポンプ52aよりも上流側であって、流路70aにおける流路70fが接続している箇所よりも下流側の箇所に、配置されている。 The valve 75a is arranged upstream of the pump 52a in the flow path 70a and downstream of the point where the flow path 70f is connected to the flow path 70a.
 バルブ75bは、流路70a1に配置されている。バルブ75cは、流路70a2に配置されている。バルブ75dは、流路70a3に配置されている。バルブ75eは、流路70a4に配置されている。 The valve 75b is arranged in the channel 70a1. The valve 75c is arranged in the flow path 70a2. The valve 75d is arranged in the flow path 70a3. The valve 75e is arranged in the flow path 70a4.
 バルブ75fは、流路70b1に配置されている。バルブ75gは、流路70b2に配置されている。バルブ75hは、流路70b3に配置されている。バルブ75iは、流路70b4に配置されている。 The valve 75f is arranged in the flow path 70b1. The valve 75g is arranged in the flow path 70b2. 75 h of valves are arrange|positioned at the flow path 70b3. The valve 75i is arranged in the flow path 70b4.
 バルブ75jは、流路70cにおけるポンプ52bよりも上流側であって、流路70cにおける流路70fが接続している箇所よりも下流側の箇所に、配置されている。バルブ75lは、流路70g1に配置されている。バルブ75mは、流路70g2に配置されている。バルブ75nは、流路70g3に配置されている。バルブ75oは、流路70g4に配置されている。 The valve 75j is disposed upstream of the pump 52b in the flow path 70c and downstream of a location where the flow path 70f is connected to the flow path 70c. The valve 75l is arranged in the flow path 70g1. The valve 75m is arranged in the flow path 70g2. The valve 75n is arranged in the flow path 70g3. The valve 75o is arranged in the flow path 70g4.
 流路切換えバルブ77aは、流路70c1における流路70e1が接続している箇所に配置されている。流路切換えバルブ77aは、流路70c1の流体の流動先を流路70e1と#1のめっき槽10のアノード室11との間で切換える。流路切換えバルブ77bは、流路70c2における流路70e2が接続している箇所に配置されている。流路切換えバルブ77bは、流路70c2の流体の流動先を流路70e2と#2のめっき槽10のアノード室11との間で切換える。 The channel switching valve 77a is arranged at a location where the channel 70e1 is connected to the channel 70c1. The channel switching valve 77a switches the flow destination of the fluid in the channel 70c1 between the channel 70e1 and the anode chamber 11 of the plating bath 10 #1. The channel switching valve 77b is arranged at a location where the channel 70e2 is connected to the channel 70c2. The channel switching valve 77b switches the flow destination of the fluid in the channel 70c2 between the channel 70e2 and the anode chamber 11 of the plating tank 10 of #2.
 流路切換えバルブ77cは、流路70c3における流路70e3が接続している箇所に配置されている。流路切換えバルブ77cは、流路70c3の流体の流動先を流路70e3と#3のめっき槽10のアノード室11との間で切換える。流路切換えバルブ77dは、流路70c4における流路70e4が接続している箇所に配置されている。流路切換えバルブ77dは、流路70c4の流体の流動先を流路70e4と#4のめっき槽10のアノード室11との間で切換える。 The channel switching valve 77c is arranged at a location where the channel 70e3 is connected to the channel 70c3. The channel switching valve 77c switches the flow destination of the fluid in the channel 70c3 between the channel 70e3 and the anode chamber 11 of the plating tank 10 of #3. The channel switching valve 77d is arranged at a location where the channel 70e4 is connected to the channel 70c4. The channel switching valve 77d switches the flow destination of the fluid in the channel 70c4 between the channel 70e4 and the anode chamber 11 of the plating tank 10 of #4.
 なお、流路切換えバルブ77a,77b,77c,77dとして、いわゆる3方弁を用いることができる。 A so-called three-way valve can be used as the channel switching valves 77a, 77b, 77c, and 77d.
 図5は、めっきモジュール400における液体の流通態様の一例を説明するためのフロー図である。図5の各ステップのうち、ステップS20に係るめっき液循環ステップは、基板Wfへのめっき処理時に実行される。一方、ステップS10は、めっき装置1000のメンテナンス時に実行される。すなわち、ステップS10は、めっき装置1000のメンテナンス方法に相当する。また、図5の各ステップは、例えば、制御モジュール800がプログラムの指令に基づいて自動的に実行してもよい。 FIG. 5 is a flow diagram for explaining an example of a liquid distribution mode in the plating module 400. FIG. Among the steps shown in FIG. 5, the plating solution circulation step in step S20 is executed when the substrate Wf is plated. On the other hand, step S10 is executed when the plating apparatus 1000 is maintained. That is, step S10 corresponds to a maintenance method for the plating apparatus 1000. FIG. Also, each step in FIG. 5 may be automatically executed by the control module 800 based on a program command, for example.
<<めっき液循環ステップ>>
 最初に、図5のステップS20に係るめっき液循環ステップについて説明する。ステップS20に係るめっき液循環ステップにおいては、タンク50とアノード室11との間でアノード液を循環させるとともに、タンク51とカソード室12との間でカソード液を循環させる。
<<Plating Solution Circulation Step>>
First, the plating solution circulation step in step S20 of FIG. 5 will be described. In the plating solution circulation step of step S20, the anode solution is circulated between the tank 50 and the anode chamber 11, and the catholyte solution is circulated between the tank 51 and the cathode chamber 12.
(アノード循環)
 具体的には、アノード液を循環させるに際して、ポンプ52aを駆動させるとともに、バルブ75a,75b,75c,75d,75e,75f,75g,75h,75iを開弁状態にする。これにより、タンク50のアノード液は、流路70aを流動した後に、流路70a1,70a2,70a3,70a4を流動して、#1~#4のめっき槽10のアノード室11に流入する。そして、#1~#4のめっき槽10のアノード室11のアノード液は、流路70b1,70b2,70b3,70b4を流動した後に、タンク50に戻る。
(anode circulation)
Specifically, when circulating the anode fluid, the pump 52a is driven and the valves 75a, 75b, 75c, 75d, 75e, 75f, 75g, 75h and 75i are opened. As a result, the anode fluid in the tank 50 flows through the flow paths 70a, 70a1, 70a2, 70a3, and 70a4, and flows into the anode chambers 11 of the plating tanks 10 #1 to #4. The anolyte in the anode chambers 11 of the plating tanks 10 #1 to #4 returns to the tank 50 after flowing through the flow paths 70b1, 70b2, 70b3, and 70b4.
 なお、流路70a,70a1,70a2,70a3,70a4は、タンク50のアノード液をアノード室11に供給するための「アノード液供給流路」の一例である。また、流路70b1,70b2,70b3,70b4は、アノード室11のアノード液をタンク50に戻すための「アノード液リターン流路」の一例である。また、アノード液供給流路及びアノード液リターン流路は、アノード液をタンク50とアノード室11との間で循環させるための「アノード液循環流路」の一例である。 The channels 70 a , 70 a 1 , 70 a 2 , 70 a 3 , and 70 a 4 are examples of “anode fluid supply channels” for supplying the anode fluid in the tank 50 to the anode chamber 11 . Further, the flow paths 70b1, 70b2, 70b3, and 70b4 are an example of the "anolyte return flow path" for returning the anolyte in the anode chamber 11 to the tank 50. FIG. Also, the anolyte supply channel and the anolyte return channel are an example of the “anolyte circulation channel” for circulating the anolyte between the tank 50 and the anode chamber 11 .
(カソード循環)
 また、カソード液を循環させるに際して、具体的には、ポンプ52bを駆動させるとともに、バルブ75jを開弁状態にする。さらに、流路切換えバルブ77a,77b,77c,77dを、カソード液がカソード室12に流入するように切り替える。これにより、タンク51のカソード液は、流路70cを流動した後に、流路70c1,70c2,70c3,70c4を流動して、#1~#4のめっき槽10のカソード室12に流入する。カソード室12からオーバーフローしてオーバーフロー槽19に流入したカソード液は、流路70d1,70d2,70d3,70d4を流動してタンク51に戻る。
(cathode circulation)
Further, when circulating the catholyte, specifically, the pump 52b is driven and the valve 75j is opened. Furthermore, the channel switching valves 77 a , 77 b , 77 c , and 77 d are switched so that the catholyte flows into the cathode chamber 12 . As a result, the catholyte in the tank 51 flows through the flow path 70c, then flows through the flow paths 70c1, 70c2, 70c3, and 70c4, and flows into the cathode chambers 12 of the plating tanks 10 of #1 to #4. The catholyte overflowing from the cathode chamber 12 and flowing into the overflow tank 19 flows through the flow paths 70d1, 70d2, 70d3, and 70d4 and returns to the tank 51.
 なお、流路70c,70c1,70c2,70c3,70c4は、タンク51のカソード液をカソード室12に供給するための「カソード液供給流路」の一例である。また、流路70d1,70d2,70d3,70d4は、カソード室12のカソード液をタンク51に戻すための「カソード液リターン流路」の一例である。また、カソード液供給流路及びカソード液リターン流路は、カソード液をタンク51とカソード室12との間で循環させるための「カソード液循環流路」の一例である。 The channels 70 c , 70 c 1 , 70 c 2 , 70 c 3 , and 70 c 4 are examples of “cathode supply channels” for supplying the catholyte in the tank 51 to the cathode chamber 12 . Further, the flow paths 70d1, 70d2, 70d3, and 70d4 are examples of "cathode return flow paths" for returning the catholyte from the cathode chamber 12 to the tank 51. FIG. Also, the catholyte supply channel and the catholyte return channel are an example of the “cathode circulation channel” for circulating the catholyte between the tank 51 and the cathode chamber 12 .
 なお、ステップS20において、温調器53aによって、アノード液の温度を所定の温度範囲内に調整してもよい。同様に、温調器53bによって、カソード液の温度を所定の温度範囲内に調整してもよい。これらの温度範囲の具体的な値は、特に限定されるものではないが、一例を挙げると、30℃以上70℃以下の範囲、より具体的には、40℃以上60℃以下の範囲を用いることができる。 Note that in step S20, the temperature of the anode fluid may be adjusted within a predetermined temperature range by the temperature controller 53a. Similarly, the temperature controller 53b may adjust the temperature of the catholyte within a predetermined temperature range. Specific values of these temperature ranges are not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically a range of 40° C. or higher and 60° C. or lower is used. be able to.
 本実施形態によれば、各々のめっきモジュール400が複数のめっき槽10を備えており、且つ、各々のめっきモジュール400において、複数のめっき槽10のアノード室11とタンク50との間でアノード液が循環し、複数のめっき槽10のカソード室12とタンク51との間でカソード液が循環する構成になっているので、1つのめっきモジュール400におけるアノード液及びカソード液の循環が、他のめっきモジュール400におけるアノード液及びカソード液の循環とは独立して行われている。これにより、一部のめっきモジュール400のメンテナンスを、他のめっきモジュール400とは独立して行うことができる。具体的には、例えば、他のめっきモジュール400における基板Wfへのめっき処理の実行中に、一部のめっきモジュール400のメンテナンスを行うことができる。 According to the present embodiment, each plating module 400 includes a plurality of plating tanks 10, and in each plating module 400, the anolyte is separated between the anode chambers 11 of the plurality of plating tanks 10 and the tank 50. circulates, and the catholyte circulates between the cathode chambers 12 of the plurality of plating tanks 10 and the tank 51. Therefore, the circulation of the anolyte and the catholyte in one plating module 400 can be used for other plating. Circulation of the anolyte and catholyte in module 400 is independent. This allows maintenance of some of the plating modules 400 to be performed independently of other plating modules 400 . Specifically, for example, maintenance of some of the plating modules 400 can be performed while the substrates Wf are being plated in other plating modules 400 .
 なお、ステップS20の実行時において、バルブ75f,75g,75h,75iを調整することで、#1~#4のめっき槽10のアノード室11の圧力を調整してもよい。この一例を挙げると、例えば、#1~#4のめっき槽10のアノード室11の圧力がそれぞれ#1~#4のめっき槽10のカソード室12の圧力と同じ値になるように、バルブ75f,75g,75h,75iを調整してもよい。 It should be noted that the pressure in the anode chambers 11 of the plating baths 10 #1 to #4 may be adjusted by adjusting the valves 75f, 75g, 75h, and 75i during execution of step S20. To give an example of this, for example, the pressure in the anode chambers 11 of the plating baths 10 #1 to #4 is the same as the pressure in the cathode chambers 12 of the plating baths 10 #1 to #4. , 75g, 75h, 75i may be adjusted.
 具体的には、例えばバルブ75fのバルブ開度を減少させてバルブ75fを通過するアノード液の流量を減少させることで、#1のめっき槽10のアノード室11の圧力を上昇させることができる。一方、バルブ75fのバルブ開度を増加させてバルブ75fを通過するアノード液の流量を増加させることで、#1のめっき槽10のアノード室11の圧力を低下させることができる。このように、バルブ75fのバルブ開度を0%~100%の範囲内で調整することで、#1のめっき槽10のアノード室11の圧力を調整することができる。これにより、#1のめっき槽10のアノード室11の圧力をカソード室12の圧力と同じ値にすることができる。 Specifically, the pressure in the anode chamber 11 of the #1 plating bath 10 can be increased by, for example, decreasing the valve opening of the valve 75f to decrease the flow rate of the anolyte passing through the valve 75f. On the other hand, the pressure in the anode chamber 11 of the #1 plating tank 10 can be reduced by increasing the valve opening of the valve 75f to increase the flow rate of the anolyte passing through the valve 75f. Thus, by adjusting the opening of the valve 75f within the range of 0% to 100%, the pressure in the anode chamber 11 of the #1 plating tank 10 can be adjusted. As a result, the pressure in the anode chamber 11 of the #1 plating tank 10 can be made the same as the pressure in the cathode chamber 12 .
 同様に、バルブ75gのバルブ開度を調整することで、#2のめっき槽10のアノード室11の圧力を調整して、このアノード室11の圧力をカソード室12の圧力と同じ値にすることができる。また、バルブ75hのバルブ開度を調整することで、#3のめっき槽10のアノード室11の圧力を調整して、このアノード室11の圧力をカソード室12の圧力を同じ値にすることができる。また、バルブ75iのバルブ開度を調整することで、#4のめっき槽10のアノード室11の圧力を調整して、このアノード室11の圧力をカソード室12の圧力と同じ値にすることができる。 Similarly, by adjusting the valve opening of the valve 75g, the pressure in the anode chamber 11 of the #2 plating bath 10 is adjusted to make the pressure in the anode chamber 11 the same as the pressure in the cathode chamber 12. can be done. Further, by adjusting the valve opening of the valve 75h, the pressure in the anode chamber 11 of the #3 plating bath 10 can be adjusted to make the pressure in the anode chamber 11 equal to that in the cathode chamber 12. can. Further, by adjusting the opening degree of the valve 75i, the pressure in the anode chamber 11 of the #4 plating tank 10 can be adjusted to make the pressure in the anode chamber 11 the same as the pressure in the cathode chamber 12. can.
 なお、#1~#4のめっき槽10のアノード室11の圧力は、例えば圧力計80aの検出結果に基づいて取得すればよい。また、#1~#4のめっき槽10のカソード室12の圧力は、例えば圧力計80bの検出結果に基づいて取得すればよい。 The pressures in the anode chambers 11 of the plating baths 10 #1 to #4 may be obtained based on the detection results of the pressure gauges 80a, for example. Further, the pressures of the cathode chambers 12 of the plating baths 10 #1 to #4 may be obtained based on the detection results of the pressure gauges 80b, for example.
<<薬液準備処理>>
 続いて、図5のステップS10に係る薬液準備処理について説明する。ステップS10は、基板Wfへのめっき処理の実行前に実行される。具体的には、本実施形態に係るステップS10は、ステップS20の前に実行される。図6は、薬液準備処理の詳細を説明するためのフロー図である。
<<Chemical solution preparation process>>
Next, the chemical solution preparation process in step S10 of FIG. 5 will be described. Step S10 is executed before plating the substrate Wf. Specifically, step S10 according to the present embodiment is performed before step S20. FIG. 6 is a flowchart for explaining the details of the chemical solution preparation process.
(アノード液・カソード液回収ステップ(ステップS10a))
 薬液準備処理においては、最初に、複数のめっき槽10のアノード室11に残存しているアノード液をアノード室11に連通したタンク50に戻す、「アノード液回収ステップ」を実行する。また、複数のめっき槽10のカソード室12に残存しているカソード液をカソード室12に連通したタンク51に戻す、「カソード液回収ステップ」を実行する。
(Anolyte/catholyte recovery step (step S10a))
In the chemical solution preparation process, first, an “anolyte recovery step” is performed to return the anolyte remaining in the anode chambers 11 of the plurality of plating tanks 10 to the tank 50 communicating with the anode chambers 11 . In addition, a “catholyte recovery step” is executed to return the catholyte remaining in the cathode chambers 12 of the plurality of plating tanks 10 to the tank 51 communicating with the cathode chambers 12 .
 具体的には、アノード液回収ステップにおいては、ポンプ52aを停止させた状態で、バルブ75f,75g,75h,75iを開弁状態にすることで、各々のアノード室11のアノード液を流路70b1,70b2,70b3,70b4を流通させて、タンク50に戻す(回収させる)。なお、この場合、アノード室11のアノード液は重力を利用してタンク50に戻る。 Specifically, in the anode fluid recovery step, the valves 75f, 75g, 75h, and 75i are opened while the pump 52a is stopped, so that the anode fluid in each of the anode chambers 11 flows into the flow path 70b1. , 70b2, 70b3, and 70b4 are returned to the tank 50 (recovered). In this case, the anolyte in the anode chamber 11 returns to the tank 50 using gravity.
 また、カソード液回収ステップにおいては、ポンプ52bを停止させた状態で、流路70e1,70e2,70e3,70e4がカソード室12と連通状態になるように流路切換えバルブ77a,77b,77c,77dを切り替えることで、各々のカソード室12のカソード液を流路70e1,70e2,70e3,70e4を流通させて、タンク51に戻す(回収させる)。なお、この場合、カソード室12のカソード液は重力を利用してタンク51に戻る。 In the catholyte recovery step, the channel switching valves 77a, 77b, 77c, and 77d are operated so that the channels 70e1, 70e2, 70e3, and 70e4 are in communication with the cathode chamber 12 while the pump 52b is stopped. By switching, the catholyte in each cathode chamber 12 is circulated through the channels 70e1, 70e2, 70e3, and 70e4 and returned to the tank 51 (collected). In this case, the catholyte in the cathode chamber 12 returns to the tank 51 using gravity.
 また、本実施形態において、アノード液回収ステップは、アノード室11に残存するアノード液がアノード室11の容積の10%以下、好ましくは5%以下、より好ましくは1%以下となるまで、実行されてもよい。同様に、本実施形態において、カソード液回収ステップは、カソード室12に残存するカソード液がカソード室12の容積の10%以下、好ましくは5%以下、より好ましくは1%以下となるまで、実行されてもよい。 In the present embodiment, the anolyte recovery step is performed until the anolyte remaining in the anode chamber 11 is 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the anode chamber 11. may Similarly, in this embodiment, the catholyte recovery step is performed until the catholyte remaining in the cathode chamber 12 is 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the cathode chamber 12. may be
 具体的には、本実施形態において、アノード液回収ステップは、予め設定された所定時間の間、実行されてもよい。この所定時間としては、例えば、アノード室11に残存するアノード液がアノード室11の容積の10%以下、好ましくは5%以下、より好ましくは1%以下となるような時間を、予め実験・シミュレーション等を行って、設定すればよい。 Specifically, in the present embodiment, the anolyte recovery step may be performed for a preset predetermined time. As this predetermined time, for example, a time such that the remaining anolyte in the anode chamber 11 is 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the anode chamber 11 is determined in advance by experiments and simulations. etc. to set.
 同様に、本実施形態において、カソード液回収ステップは、予め設定された所定時間の間、実行されてもよい。この所定時間としては、例えば、カソード室12に残存するカソード液がカソード室12の容積の10%以下、好ましくは5%以下、より好ましくは1%以下となるような時間を、予め実験・シミュレーション等を行って、設定すればよい。 Similarly, in the present embodiment, the catholyte recovery step may be performed for a predetermined period of time. As the predetermined time, for example, a time such that the catholyte remaining in the cathode chamber 12 becomes 10% or less, preferably 5% or less, more preferably 1% or less of the volume of the cathode chamber 12, is experimentally or simulated in advance. etc. to set.
(アノード・カソード液面レベル判定ステップ(ステップS10b))
 次いで、タンク50に貯留されたアノード液の液面レベルが予め設定された所定レベル以上であるか否かを判定する「アノード液面レベル判定ステップ」と、タンク51に貯留されたカソード液の液面レベルが予め設定された所定レベル以上であるか否かを判定する「カソード液面レベル判定ステップ」と、を実行してもよい。なお、タンク50のアノード液の液面レベルは、例えば液面レベルセンサ81aの検出結果に基づいて取得すればよい。タンク51のカソード液の液面レベルは、例えば液面レベルセンサ81bの検出結果に基づいて取得すればよい。
(Anode/cathode liquid level determination step (step S10b))
Next, an "anode liquid level determination step" for determining whether or not the liquid level of the anolyte stored in the tank 50 is equal to or higher than a preset predetermined level; A "cathode liquid surface level determination step" for determining whether or not the surface level is equal to or higher than a predetermined level may be executed. The level of the anolyte in the tank 50 may be obtained, for example, based on the detection result of the level sensor 81a. The liquid level of the catholyte in the tank 51 may be obtained based on the detection result of the liquid level sensor 81b, for example.
 タンク50のアノード液の「所定レベル」の具体的な値は、特に限定されるものではないが、例えば、アノード室11をアノード液で満たしつつ、タンク50とアノード室11との間でアノード液が循環することが可能な最低限の液面レベル以上の値を用いることができる。 A specific value of the "predetermined level" of the anolyte in the tank 50 is not particularly limited, but for example, while the anode chamber 11 is filled with the anolyte, the anolyte is allowed to flow between the tank 50 and the anode chamber 11. A value that is equal to or higher than the minimum liquid surface level that allows circulating can be used.
 同様に、タンク51のカソード液の「所定レベル」の具体的な値は、特に限定されるものではないが、例えば、カソード室12をカソード液で満たしつつ、タンク51とカソード室12との間でカソード液が循環することが可能な最低限の液面レベル以上の値を用いることができる。なお、タンク50のアノード液の液面レベルの判定の基準値である「所定レベル」と、タンク51のカソード液の液面レベルの判定の基準値である「所定レベル」は、同じ値であってもよく、異なる値であってもよい。 Similarly, the specific value of the "predetermined level" of the catholyte in the tank 51 is not particularly limited. A value greater than or equal to the minimum liquid level that allows the catholyte to circulate at . The "predetermined level", which is the reference value for judging the liquid level of the anolyte in the tank 50, and the "predetermined level", which is the reference value for judging the liquid level of the catholyte in the tank 51, are the same value. may be different values.
(アノード液・カソード液補給ステップ(ステップS10c))
 タンク50に貯留されたアノード液の液面レベルが所定レベル未満である場合には、タンク50に貯留されたアノード液の液面レベルが所定レベル以上になるように、アノード液をタンク50に補給する「アノード液補給ステップ」を実行することが好ましい。また、タンク51に貯留されたカソード液の液面レベルが所定レベル未満である場合には、タンク51に貯留されたカソード液の液面レベルが所定レベル以上になるように、カソード液をタンク51に補給する「カソード液補給ステップ」を実行することが好ましい。
(Anolyte/catholyte supply step (step S10c))
When the level of the anolyte stored in the tank 50 is below a predetermined level, the tank 50 is replenished with the anolyte so that the level of the anolyte stored in the tank 50 is equal to or higher than the predetermined level. It is preferable to perform an "anolyte replenishment step". Further, when the level of the catholyte stored in the tank 51 is less than the predetermined level, the catholyte is added to the tank 51 so that the level of the catholyte stored in the tank 51 is equal to or higher than the predetermined level. It is preferable to perform a "catholyte replenishment step" to replenish the .
 具体的には、前述したステップS10bに係るアノード液面レベル判定ステップにおいて、タンク50に貯留されたアノード液の液面レベルが所定レベル以上であると判定されなかった場合(アノード液の液面レベルが所定レベル未満である場合)、ステップS10cに係るアノード液補給ステップにおいて、アノード液供給装置57aからアノード液を供給させるとともに、バルブ75lを開弁状態にする。これにより、アノード液供給装置57aから供給されたアノード液は、流路70g1を流通して、タンク50に補給される。この処理は、タンク50に貯留されたアノード液の液面レベルが所定レベル以上になるまで実行される。 Specifically, in the anode fluid level determination step of step S10b described above, if the fluid level of the anode fluid stored in the tank 50 is not determined to be equal to or higher than a predetermined level (the fluid surface level of the anode fluid is less than a predetermined level), in the anolyte replenishing step of step S10c, the anolyte is supplied from the anolyte supply device 57a and the valve 75l is opened. As a result, the anode fluid supplied from the anode fluid supply device 57 a flows through the flow path 70 g 1 and is replenished to the tank 50 . This process is performed until the level of the anolyte stored in the tank 50 reaches or exceeds a predetermined level.
 同様に、前述したステップS10bに係るカソード液面レベル判定ステップにおいて、タンク51に貯留されたカソード液の液面レベルが所定レベル以上であると判定されなかった場合(カソード液の液面レベルが所定レベル未満である場合)、ステップS10cに係るカソード液補給ステップにおいて、カソード液供給装置57bからカソード液を供給させるとともに、バルブ75mを開弁状態にする。これにより、カソード液供給装置57bから供給されたカソード液は、流路70g2を流通して、タンク51に補給される。この処理は、タンク51に貯留されたカソード液の液面レベルが所定レベル以上になるまで実行される。 Similarly, when it is not determined that the liquid level of the catholyte stored in the tank 51 is equal to or higher than the predetermined level in the catholyte level determination step related to step S10b described above (the liquid level of the catholyte is determined to be the predetermined level). level), in the catholyte replenishing step of step S10c, the catholyte is supplied from the catholyte supply device 57b and the valve 75m is opened. As a result, the catholyte supplied from the catholyte supply device 57b flows through the channel 70g2 and is supplied to the tank 51. As shown in FIG. This process is performed until the surface level of the catholyte stored in the tank 51 reaches or exceeds a predetermined level.
(カソードバイパス循環ステップ(ステップS10d))
 ステップS10bの判定の結果、タンク51に貯留されたカソード液の液面レベルが所定レベル以上である場合、タンク51に貯留されたカソード液を、カソード室12をバイパスさせて流通させた後にタンク51に戻す、「カソードバイパス循環ステップ」を実行することが好ましい。なお、本実施形態に係るステップS10dは、少なくとも後述するステップS10fの前に実行される(図6においては、さらに後述するステップS10eの前に実行されている)。
(Cathode Bypass Circulation Step (Step S10d))
If the liquid surface level of the catholyte stored in the tank 51 is equal to or higher than the predetermined level as a result of the determination in step S10b, the catholyte stored in the tank 51 bypasses the cathode chamber 12 and flows through the tank 51. It is preferable to perform a "cathode bypass circulation step" to return to Note that step S10d according to the present embodiment is executed at least before step S10f, which will be described later (in FIG. 6, it is executed before step S10e, which will be further described later).
 具体的には、ステップS10dにおいて、ポンプ52bを運転させるとともに、バルブ75jを開弁状態にし、その他のバルブを閉弁状態にし、且つ、流路切換えバルブ77a,77b,77c,77dを、流路70c1,70c2,70c3,70c4と流路70e1,70e2,70e3,70e4とが連通するように切り替える。 Specifically, in step S10d, the pump 52b is operated, the valve 75j is opened, the other valves are closed, and the flow path switching valves 77a, 77b, 77c, and 77d are switched to the flow paths. 70c1, 70c2, 70c3, 70c4 and flow paths 70e1, 70e2, 70e3, 70e4 are switched to communicate with each other.
 これにより、タンク51に貯留されたカソード液は、流路70cを流通して、温調器53b、フィルター54を流通する。そして、このフィルター54を流通したカソード液は、流路70c1,70c2,70c3,70c4を流通した後に流路70e1,70e2,70e3,70e4を流通して(すなわち、カソード室12をバイパスして)、タンク51に戻る。なお、本実施形態に係るステップS10dは、予め設定された所定時間、実行される。 As a result, the catholyte stored in the tank 51 flows through the flow path 70c, the temperature controller 53b, and the filter 54. The catholyte that has passed through the filter 54 flows through the flow paths 70c1, 70c2, 70c3, and 70c4, and then flows through the flow paths 70e1, 70e2, 70e3, and 70e4 (that is, bypasses the cathode chamber 12), Return to tank 51. Note that step S10d according to the present embodiment is executed for a preset predetermined time.
 なお、流路70c,70c1,70c2,70c3,70c4,70e1,70e2,70e3,70e4は、タンク51に貯留されたカソード液を、カソード室12をバイパスさせて流通させた後にタンク51に戻すための「カソード液バイパス流路」の一例である。 The flow paths 70c, 70c1, 70c2, 70c3, 70c4, 70e1, 70e2, 70e3, and 70e4 are for returning the catholyte stored in the tank 51 to the tank 51 after bypassing the cathode chamber 12. It is an example of a "catholyte bypass channel".
 また、ステップS10dにおいて、温調器53bは、流路を流通するカソード液の温度を所定の温度範囲内に調整してもよい。この温度範囲の具体的な値は、特に限定されるものではないが、一例を挙げると、30℃以上70℃以下の範囲、より具体的には、40℃以上60℃以下の範囲を用いることができる。 Further, in step S10d, the temperature controller 53b may adjust the temperature of the catholyte flowing through the flow path within a predetermined temperature range. The specific value of this temperature range is not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically, a range of 40° C. or higher and 60° C. or lower is used. can be done.
 本実施形態によれば、ステップS10dに係るカソードバイパス循環ステップにおいてカソード液が流通している間に、カソード液に含まれる気泡の量を低減させることができる。これにより、この後に行われる、後述するステップS10fに係るタンク51とカソード室12との間におけるカソード液の循環時に、カソード室12に供給されるカソード液に含まれる気泡の量を低減させることができる。これにより、例えば、イオン抵抗体14に多量の気泡が付着することを抑制することができる。 According to this embodiment, the amount of air bubbles contained in the catholyte can be reduced while the catholyte is circulating in the cathode bypass circulation step of step S10d. As a result, the amount of air bubbles contained in the catholyte supplied to the cathode chamber 12 can be reduced when the catholyte is circulated between the tank 51 and the cathode chamber 12 in step S10f, which will be described later. can. Thereby, for example, adhesion of a large amount of air bubbles to the ion resistor 14 can be suppressed.
(アノード液循環ステップ(ステップS10e))
 次いで、ステップS10eにおいて、タンク50とアノード室11との間でアノード液を循環させる、「アノード液循環ステップ」を実行する。これにより、アノード室11をアノード液で満たすことができる。
(Anolyte circulation step (step S10e))
Next, in step S10e, an "anode fluid circulation step" of circulating the anode fluid between the tank 50 and the anode chamber 11 is performed. This allows the anode chamber 11 to be filled with the anolyte.
 具体的には、ステップS10eにおいて、ポンプ52aを運転させるとともに、バルブ75a,75b,75c,75d,75e,75f,75g,75h,75iを開弁状態にし、他のバルブを閉弁状態にする。これにより、タンク50のアノード液は、流路70aを流通して温調器53aを流通した後に、流路70a1,70a2,70a3,70a4を流通して各々のアノード室11に流入する。アノード室11を流通したアノード液は、流路70b1,70b2,70b3,70b4を流通して、タンク50に戻る。 Specifically, in step S10e, the pump 52a is operated, the valves 75a, 75b, 75c, 75d, 75e, 75f, 75g, 75h, and 75i are opened, and the other valves are closed. As a result, the anode fluid in the tank 50 flows through the flow path 70 a and the temperature controller 53 a , and then flows through the flow paths 70 a 1 , 70 a 2 , 70 a 3 and 70 a 4 into the respective anode chambers 11 . The anolyte that has flowed through the anode chamber 11 flows through the channels 70b1, 70b2, 70b3, and 70b4 and returns to the tank 50. FIG.
 また、ステップS10eは、少なくともステップS10aの終了後に実行される。具体的には、本実施形態に係るステップS10eは、ステップS10aの終了後であって、ステップS10bにおいてタンク50に貯留されたアノード液の液面レベルが所定レベル以上であると判定された場合に、実行されており、より具体的には、さらにステップS10dの終了後に実行されている。 Also, step S10e is executed at least after step S10a is completed. Specifically, step S10e according to the present embodiment is performed after step S10a is completed, and when it is determined in step S10b that the liquid surface level of the anode fluid stored in the tank 50 is equal to or higher than a predetermined level. , and more specifically, after the end of step S10d.
 ステップS10eにおいて、温調器53aは、タンク50からアノード室11に向けて流通するアノード液の温度を所定の温度範囲内に調整してもよい。この温度範囲の具体的な値は、特に限定されるものではないが、一例を挙げると、30℃以上70℃以下の範囲、より具体的には、40℃以上60℃以下の範囲を用いることができる。この構成によれば、タンク50からアノード室11に向けて流通するアノード液の温度を早期に所定の温度範囲内にすることができる。 In step S10e, the temperature controller 53a may adjust the temperature of the anode fluid flowing from the tank 50 toward the anode chamber 11 within a predetermined temperature range. The specific value of this temperature range is not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically, a range of 40° C. or higher and 60° C. or lower is used. can be done. According to this configuration, the temperature of the anolyte flowing from the tank 50 toward the anode chamber 11 can be quickly brought within a predetermined temperature range.
(カソード液循環ステップ(ステップS10f))
 ステップS10aの終了後(カソード室12に残存するカソード液をタンク51に戻した後)であって、ステップS10eに係るアノード液循環ステップが開始された後に、ステップS10fにおいて、タンク51とカソード室12との間でカソード液を循環させる、「カソード液循環ステップ」を実行する。これにより、カソード室12をカソード液で満たすことができる。
(Cathode liquid circulation step (step S10f))
After step S10a (after the catholyte remaining in the cathode chamber 12 is returned to the tank 51) and after the anolyte circulation step of step S10e is started, in step S10f, the tank 51 and the cathode chamber 12 are A "catholyte circulation step" is performed to circulate the catholyte between and. This allows the cathode chamber 12 to be filled with catholyte.
 具体的には、ステップS10fにおいて、ポンプ52bを運転させるとともに、バルブ75jを開弁状態に制御し、その他のバルブを閉弁状態にし、流路切換えバルブ77a,77b,77c,77dを、流路70c1,70c2,70c3,70c4を流通したカソード液がカソード室12に流入するように切り替える。 Specifically, in step S10f, the pump 52b is operated, the valve 75j is controlled to be open, the other valves are closed, and the flow path switching valves 77a, 77b, 77c, and 77d are switched to the flow paths. The catholyte that has flowed through 70c1, 70c2, 70c3, and 70c4 is switched to flow into the cathode chamber 12.
 これにより、タンク51に貯留されたカソード液は、流路70cを流通して、温調器53b、及び、フィルター54を流通する。このフィルター54を流通したカソード液は、流路70c1,70c2,70c3,70c4を流通した後に、各々のカソード室12に流入する。カソード室12を流通したカソード液(具体的には、カソード室12からオーバーフローしてオーバーフロー槽19に流入したカソード液)は、流路70d1,70d2,70d3,70d4を流通して、タンク51に戻る。 As a result, the catholyte stored in the tank 51 flows through the flow path 70c and through the temperature controller 53b and the filter 54. The catholyte that has passed through the filter 54 flows into each cathode chamber 12 after passing through the channels 70c1, 70c2, 70c3, and 70c4. The catholyte that has flowed through the cathode chamber 12 (specifically, the catholyte that overflowed from the cathode chamber 12 and flowed into the overflow tank 19) flows through the channels 70d1, 70d2, 70d3, and 70d4 and returns to the tank 51. .
 ステップS10fにおいて、温調器53bは、タンク51からカソード室12に向けて流通するカソード液の温度を所定の温度範囲内に調整してもよい。この温度範囲の具体的な値は、特に限定されるものではないが、一例を挙げると、30℃以上70℃以下の範囲、より具体的には、40℃以上60℃以下の範囲を用いることができる。この構成によれば、タンク51からカソード室12に向けて流通するカソード液の温度を早期に所定の温度範囲内にすることができる。 In step S10f, the temperature controller 53b may adjust the temperature of the catholyte flowing from the tank 51 toward the cathode chamber 12 within a predetermined temperature range. The specific value of this temperature range is not particularly limited, but as an example, a range of 30° C. or higher and 70° C. or lower, more specifically, a range of 40° C. or higher and 60° C. or lower is used. can be done. According to this configuration, the temperature of the catholyte flowing from the tank 51 toward the cathode chamber 12 can be quickly brought within a predetermined temperature range.
 また、ステップS10fはステップS10eが開始された後に開始されればよく、例えば、ステップS10fの実行中に、ステップS10eが継続して実行されていてもよい。換言すると、ステップS10eに係るアノード液循環ステップが開始され、このアノード液循環ステップが実行されている最中に、ステップS10fに係るカソード液循環ステップの実行が開始され、その後は、アノード液循環ステップとカソード液循環ステップとが共に実行されてもよい。 Also, step S10f may be started after step S10e is started, and for example, step S10e may be continuously executed while step S10f is being executed. In other words, the anolyte circulation step of step S10e is started, and while the anolyte circulation step is being executed, the catholyte circulation step of step S10f is started, and thereafter the anolyte circulation step is performed. and the catholyte circulation step may be performed together.
 また、ステップS10fは、ステップS10eが開始された後において、アノード室11がアノード液で満たされた後に、開始されることが好ましい。具体的には、この場合、例えば、ステップS10eの開始から予め設定された所定時間が経過した後に、ステップS10fを開始してもよい。この所定時間としては、例えば、アノード室11がアノード液で満たされるのに十分な時間を予め求めておき、このようにして求められた時間を用いればよい。 Also, step S10f is preferably started after step S10e is started and after the anode chamber 11 is filled with the anolyte. Specifically, in this case, for example, step S10f may be started after a predetermined time has elapsed since the start of step S10e. As this predetermined time, for example, a time sufficient for the anode chamber 11 to be filled with the anolyte is obtained in advance, and the time thus obtained may be used.
 なお、例えばステップS10fの実行中に、めっき添加剤をタンク51に補給すること(これを「添加剤補給ステップ」と称する)を行ってもよい。具体的には、この添加剤補給ステップにおいて、添加剤供給装置57cにめっき添加剤の供給を開始させるとともに、バルブ75nを開弁状態に制御する。これにより、添加剤供給装置57cから供給されためっき添加剤は流路70g3を流通してタンク51に補給される。 It should be noted that, for example, the plating additive may be supplied to the tank 51 during execution of step S10f (this is referred to as an "additive supply step"). Specifically, in this additive supply step, the additive supply device 57c is caused to start supplying the plating additive, and the valve 75n is controlled to be open. As a result, the plating additive supplied from the additive supply device 57c flows through the flow path 70g3 and is supplied to the tank 51. As shown in FIG.
 また、例えばステップS10fの実行中に、上述した添加剤補給ステップに加えて、又は、添加剤補給ステップに代えて、金属イオンをタンク51に補給すること(これを、「金属イオン補給ステップ」と称する)を行ってもよい。具体的には、この金属イオン補給ステップにおいて、金属イオン供給装置57dに金属イオンを含む溶液の供給を開始させるとともに、バルブ75oを開弁状態に制御する。これにより、金属イオン供給装置57dから供給された金属イオンを含む溶液は流路70g4を流通してタンク51に補給される。 Further, for example, during execution of step S10f, in addition to or instead of the additive replenishing step described above, metal ions may be replenished to the tank 51 (this is called a "metal ion replenishing step"). ) may be performed. Specifically, in this metal ion supply step, the metal ion supply device 57d is caused to start supplying a solution containing metal ions, and the valve 75o is controlled to be open. As a result, the solution containing metal ions supplied from the metal ion supply device 57d flows through the flow path 70g4 and is supplied to the tank 51. FIG.
 以上説明したような本実施形態によれば、ステップS10に係る薬液準備処理において、タンク50とアノード室11との間のアノード液の循環(アノード液循環ステップ)が、タンク51とカソード室12との間のカソード液の循環(カソード液循環ステップ)よりも先に開始されるので、アノード室11の圧力上昇をカソード室12の圧力上昇よりも先に開始させることができる。これにより、例えば、カソード液循環ステップがアノード液循環ステップよりも先に開始されて、カソード室12の圧力上昇がアノード室11の圧力上昇よりも先に開始される場合に比較して、めっき槽10の内部に配置された膜40がカソード室12の圧力によって下方に変形することを抑制することができる。 According to the present embodiment as described above, in the chemical solution preparation process in step S10, the circulation of the anode fluid between the tank 50 and the anode chamber 11 (anode fluid circulation step) is performed between the tank 51 and the cathode chamber 12. Since the catholyte circulation (cathode circulation step) is started earlier, the pressure increase in the anode chamber 11 can be started before the pressure increase in the cathode chamber 12 . As a result, for example, the catholyte circulation step is started before the anolyte circulation step, and the pressure increase in the cathode chamber 12 is started before the pressure increase in the anode chamber 11. It is possible to suppress the downward deformation of the membrane 40 arranged inside the cathode chamber 12 due to the pressure of the cathode chamber 12 .
 以上、本発明の実施形態について詳述したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、さらなる種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the present invention described in the claims. is possible.
 10 めっき槽
 11 アノード室
 12 カソード室
 13 アノード
 40 膜
 50 タンク(アノード液タンク)
 51 タンク(カソード液タンク)
 52a,52b ポンプ
 53a 温調器
 53b 温調器(第2の温調器)
 54 フィルター
 57a アノード液供給装置
 57b カソード液供給装置
 70a~70g4 流路
 75a~75o バルブ
 77a~77d 流路切換えバルブ
 400 めっきモジュール
 1000 めっき装置
 Wf 基板
 Ps めっき液(アノード液、カソード液)
REFERENCE SIGNS LIST 10 plating tank 11 anode chamber 12 cathode chamber 13 anode 40 membrane 50 tank (anolyte tank)
51 tank (catholyte tank)
52a, 52b pump 53a temperature controller 53b temperature controller (second temperature controller)
54 Filter 57a Anolyte supply device 57b Catholyte supply device 70a~70g4 Channels 75a~75o Valves 77a~77d Channel switching valve 400 Plating module 1000 Plating device Wf Substrate Ps Plating solution (anolyte, catholyte)

Claims (7)

  1.  めっき槽の内部における膜よりも下方に区画されたアノード室に残存するアノード液を、アノード液を貯留するためのアノード液タンクに戻すこと、
     前記めっき槽の内部における前記膜よりも上方に区画されたカソード室に残存するカソード液を、カソード液を貯留するためのカソード液タンクに戻すこと、
     前記アノード室に残存するアノード液を前記アノード液タンクに戻した後に、前記アノード液タンクと前記アノード室との間でアノード液を循環させること、及び、
     前記カソード室に残存するカソード液を前記カソード液タンクに戻した後であって、前記アノード液タンクと前記アノード室との間におけるアノード液の循環が開始された後に、前記カソード液タンクと前記カソード室との間でカソード液を循環させること、を含む、めっき装置のメンテナンス方法。
    returning the anolyte remaining in the anode chamber partitioned below the membrane inside the plating tank to the anolyte tank for storing the anolyte;
    returning the catholyte remaining in the cathode chamber partitioned above the membrane inside the plating bath to a catholyte tank for storing the catholyte;
    circulating the anolyte between the anolyte tank and the anode chamber after returning the anolyte remaining in the anode chamber to the anolyte tank;
    After returning the catholyte remaining in the cathode chamber to the catholyte tank and after starting the circulation of the anolyte between the anolyte tank and the anode chamber, the catholyte tank and the cathode A method of maintaining a plating apparatus comprising circulating catholyte to and from the chamber.
  2.  前記アノード液タンクに貯留されたアノード液の液面レベルが予め設定された所定レベル未満である場合に、前記アノード液タンクに貯留されたアノード液の液面レベルが当該所定レベル以上になるように、アノード液供給装置から供給されたアノード液を前記アノード液タンクに補給すること、をさらに含む、請求項1に記載のめっき装置のメンテナンス方法。 When the liquid level of the anolyte stored in the anolyte tank is below a predetermined level, the liquid level of the anolyte stored in the anolyte tank is set to a predetermined level or higher. and replenishing the anode fluid tank with the anode fluid supplied from the anode fluid supply device.
  3.  前記アノード液タンクと前記アノード室との間でアノード液を循環させることは、前記アノード室に残存するアノード液を前記アノード液タンクに戻した後であって、且つ、前記アノード液タンクに貯留されたアノード液の液面レベルが前記所定レベル以上である場合に、実行される、請求項2に記載のめっき装置のメンテナンス方法。 The anolyte is circulated between the anolyte tank and the anode chamber after the anolyte remaining in the anode chamber is returned to the anolyte tank, and the anolyte is stored in the anolyte tank. 3. The maintenance method for a plating apparatus according to claim 2, which is executed when the liquid surface level of the anolyte is equal to or higher than the predetermined level.
  4.  前記カソード液タンクに貯留されたカソード液の液面レベルが予め設定された所定レベル未満である場合に、前記カソード液タンクに貯留されたカソード液の液面レベルが当該所定レベル以上になるように、カソード液供給装置から供給されたカソード液を前記カソード液タンクに補給すること、をさらに含む、請求項1~3のいずれか1項に記載のめっき装置のメンテナンス方法。 When the liquid surface level of the catholyte stored in the catholyte tank is below a predetermined level, the liquid surface level of the catholyte stored in the catholyte tank is set to be equal to or higher than the predetermined level. and replenishing the catholyte tank with the catholyte supplied from the catholyte supply device.
  5.  前記カソード液タンクに貯留されたカソード液の液面レベルが前記所定レベル以上である場合に、前記カソード液タンクに貯留されたカソード液を前記カソード室をバイパスさせて流通させた後に前記カソード液タンクに戻すことを、前記カソード液タンクと前記カソード室との間でカソード液を循環させることの前に、さらに含む、請求項4に記載のめっき装置のメンテナンス方法。 When the surface level of the catholyte stored in the catholyte tank is equal to or higher than the predetermined level, the catholyte stored in the catholyte tank is circulated by bypassing the cathode chamber, and then the catholyte tank 5. The method of maintaining a plating apparatus according to claim 4, further comprising, prior to circulating catholyte between said catholyte tank and said cathode chamber, further comprising: returning catholyte to said catholyte tank.
  6.  前記アノード液タンクと前記アノード室との間でアノード液を循環させることは、前記アノード液タンクから前記アノード室に向けて流通するアノード液の温度を、温調器によって、所定の温度範囲内に調整することを含む、請求項1~5のいずれか1項に記載のめっき装置のメンテナンス方法。 By circulating the anolyte between the anolyte tank and the anode chamber, the temperature of the anolyte flowing from the anolyte tank to the anode chamber is controlled within a predetermined temperature range by a temperature controller. A maintenance method for a plating apparatus according to any one of claims 1 to 5, comprising adjusting.
  7.  前記カソード液タンクと前記カソード室との間でカソード液を循環させることは、前記カソード液タンクから前記カソード室に向けて流通するカソード液の温度を、温調器によって、所定の温度範囲内に調整することを含む、請求項1~6のいずれか1項に記載のめっき装置のメンテナンス方法。 By circulating the catholyte between the catholyte tank and the cathode chamber, the temperature of the catholyte flowing from the catholyte tank to the cathode chamber is controlled within a predetermined temperature range by a temperature controller. A maintenance method for a plating apparatus according to any one of claims 1 to 6, comprising adjusting.
PCT/JP2021/046934 2021-12-20 2021-12-20 Maintenance method for plating device WO2023119347A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022507852A JP7041795B1 (en) 2021-12-20 2021-12-20 How to maintain the plating equipment
PCT/JP2021/046934 WO2023119347A1 (en) 2021-12-20 2021-12-20 Maintenance method for plating device
KR1020227025386A KR102549747B1 (en) 2021-12-20 2021-12-20 Maintenance method of plating equipment
CN202180011192.4A CN115087764B (en) 2021-12-20 2021-12-20 Maintenance method of plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046934 WO2023119347A1 (en) 2021-12-20 2021-12-20 Maintenance method for plating device

Publications (1)

Publication Number Publication Date
WO2023119347A1 true WO2023119347A1 (en) 2023-06-29

Family

ID=81214348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046934 WO2023119347A1 (en) 2021-12-20 2021-12-20 Maintenance method for plating device

Country Status (4)

Country Link
JP (1) JP7041795B1 (en)
KR (1) KR102549747B1 (en)
CN (1) CN115087764B (en)
WO (1) WO2023119347A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230313406A1 (en) * 2022-04-04 2023-10-05 Applied Materials, Inc. Electroplating systems and methods with increased metal ion concentrations
US20230313405A1 (en) * 2022-04-04 2023-10-05 Applied Materials, Inc. Electroplating systems and methods with increased metal ion concentrations

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220698A (en) * 2001-01-29 2002-08-09 Tokyo Electron Ltd Liquid treatment apparatus
JP2007291419A (en) * 2006-04-21 2007-11-08 Nec Electronics Corp Plating treatment device
US20150068911A1 (en) * 2013-09-12 2015-03-12 Kabushiki Kaisha Toshiba Copper plating apparatus, copper plating method and method for manufacturing semiconductor device
JP2016117918A (en) * 2014-12-18 2016-06-30 三菱マテリアル株式会社 Electrolytic plating method and electrolytic plating apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821407B1 (en) 2000-05-10 2004-11-23 Novellus Systems, Inc. Anode and anode chamber for copper electroplating
JP2008019496A (en) * 2006-07-14 2008-01-31 Matsushita Electric Ind Co Ltd Electrolytically plating apparatus and electrolytically plating method
CN202925116U (en) * 2012-09-27 2013-05-08 兰州交通大学 Membrane electrodeposition tank for refining metal chlorides
US10760178B2 (en) * 2018-07-12 2020-09-01 Lam Research Corporation Method and apparatus for synchronized pressure regulation of separated anode chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220698A (en) * 2001-01-29 2002-08-09 Tokyo Electron Ltd Liquid treatment apparatus
JP2007291419A (en) * 2006-04-21 2007-11-08 Nec Electronics Corp Plating treatment device
US20150068911A1 (en) * 2013-09-12 2015-03-12 Kabushiki Kaisha Toshiba Copper plating apparatus, copper plating method and method for manufacturing semiconductor device
JP2016117918A (en) * 2014-12-18 2016-06-30 三菱マテリアル株式会社 Electrolytic plating method and electrolytic plating apparatus

Also Published As

Publication number Publication date
KR102549747B1 (en) 2023-07-03
JPWO2023119347A1 (en) 2023-06-29
CN115087764B (en) 2023-02-28
CN115087764A (en) 2022-09-20
JP7041795B1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
TWI657168B (en) Apparatuses and methods for maintaining ph in nickel electroplating baths
WO2023119347A1 (en) Maintenance method for plating device
TWI586846B (en) Electrochemical deposition apparatus with remote catholyte fluid management
JP6397620B2 (en) Electroplating method and apparatus
KR102583188B1 (en) Method for uniform flow behavior in an electroplating cell
TWI565840B (en) Electrolyte loop with pressure regulation for separated anode chamber of electroplating system
JP2018050001A (en) Substrate processing device and substrate processing method
TW201604333A (en) Methods and apparatuses for electroplating nickel using sulfur-free nickel anodes
KR20190018530A (en) Wet processing system and method of operation
CN114916234B (en) Plating apparatus and plating method
TW202325899A (en) Controlling plating electrolyte concentration on an electrochemical plating apparatus
US10458010B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR20210021098A (en) Method and apparatus for synchronized pressure regulation in separate anode chambers
TWI789175B (en) Maintenance method of plating equipment
KR20150120865A (en) Nickel Electroplating Systems Having a Grain Refiner Releasing Device
TWI732109B (en) Plating method
WO2023067649A1 (en) Plating method
JP7162785B1 (en) Liquid control method in anode chamber and plating apparatus
TWI789096B (en) Plating device
TWI417962B (en) Electrochemical deposition system
TW202317815A (en) Plating treatment method suppressing the deterioration of the plating quality of a substrate caused by bubbles typically trapped below a film
KR20220016770A (en) Substrate processing system, control device for substrate processing system and control method of substrate processing system
JP2001316871A5 (en)
WO2023232420A1 (en) Module kit for a chemical and/or electrolytic surface treatment of a substrate
JPH08134698A (en) Electrodeposition coating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022507852

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968785

Country of ref document: EP

Kind code of ref document: A1