WO2023118762A1 - Copolymere resistant aux lavages - Google Patents

Copolymere resistant aux lavages Download PDF

Info

Publication number
WO2023118762A1
WO2023118762A1 PCT/FR2022/052480 FR2022052480W WO2023118762A1 WO 2023118762 A1 WO2023118762 A1 WO 2023118762A1 FR 2022052480 W FR2022052480 W FR 2022052480W WO 2023118762 A1 WO2023118762 A1 WO 2023118762A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
copolymer
chosen
denoted
weight
Prior art date
Application number
PCT/FR2022/052480
Other languages
English (en)
Inventor
Quentin Pineau
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2023118762A1 publication Critical patent/WO2023118762A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/28Soles; Sole-and-heel integral units characterised by their attachment, also attachment of combined soles and heels
    • A43B13/32Soles; Sole-and-heel integral units characterised by their attachment, also attachment of combined soles and heels by adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties

Definitions

  • the present invention relates to a copolymer for the manufacture of a heat-sensitive adhesive, in particular a veil, a film, granules, a filament, a grid, a powder or a suspension.
  • heat-sensitive adhesives and their use in the textile industry, in particular for the manufacture and assembly of flexible materials.
  • Flocking can be defined as the application of a thin film on a textile surface.
  • the film can be polyurethane, polyvinyl or polyester and the textile can be nylon, polyester, cotton or lycra.
  • the film is coated with an adhesive, then heat transferred to the textile surface. This transfer can be done using a press or an iron at temperatures between 150°C and 200°C.
  • the flocked garment can withstand several washing cycles at 40°C, or even at 60°C.
  • the adhesive used In order not to stiffen the flocked garment, the adhesive used must also be flexible. Ideally, it is characterized by a modulus close to that of the textile to be flocked.
  • TPU Polyurethane thermoplastics
  • copolyamides can be resistant to washing up to 90°C and easy to implement. However, they are not flexible enough or are too rigid.
  • PEBAs are copolymers with amide units and polyether units but devoid of thermoadhesive properties.
  • the subject of the present invention is a copolymer comprising amide units and polyether units comprising at least one A unit, at least one B unit and at least one C unit, in which:
  • unit A is an aliphatic repeating unit chosen from a unit obtained from at least one amino acid, a unit obtained from at least one lactam, and a unit X1, Y1 obtained from the polycondensation of at least one at least one linear aliphatic diamine denoted X1 and at least one linear aliphatic carboxylic diacid denoted Y1, and their mixture, the unit A containing 10 or more carbon atoms,
  • - unit B is a repetitive aliphatic unit chosen from a unit obtained from an amino acid, a unit obtained from a lactam, and an X2.Y2 unit obtained from polycondensation:
  • diamine being chosen from a linear or branched aliphatic diamine, a cycloaliphatic diamine and a mixture thereof?
  • Y2 at least one carboxylic diacid denoted Y2
  • said diacid being chosen from an aliphatic diacid and a cycloaliphatic diacid, the unit B comprising from 6 to 36 carbon atoms, advantageously from 6 to 20 carbon atoms; pattern A being different from pattern B,
  • Unit C is a repeating unit of formula X3.Y3 obtained from the polycondensation of at least one polyethylene glycol diamine or polypropylene glycol diamine denoted X3 with a molecular mass of between 200 and 1000 g. mol -1 and a linear aliphatic carboxylic diacid denoted Y3, the unit A representing at least 30% by weight of the copolymer, the melting temperature being between 75 and 130° C.
  • melt flow index IFC
  • MFI Melt Flow Index
  • polyamide within the meaning of the invention, is meant the products of condensation of lactams, amino acids and/or diacids with diamines.
  • the copolymer according to the invention results from the polycondensation of at least one precursor of unit A with at least one precursor of unit B and with at least one precursor of unit C.
  • Unit A is an aliphatic repeating unit chosen from a unit obtained from at least one amino acid, a unit obtained from at least one lactam, and a unit X1, Y1 obtained from the polycondensation of at least a linear aliphatic diamine denoted X1 and at least one linear aliphatic dicarboxylic acid denoted Y1, and their mixture, the unit A containing 10 or more carbon atoms.
  • the aliphatic repeating unit A When the aliphatic repeating unit A is obtained from a unit derived from an amino acid, it may be chosen from 10-aminodecanoic acid, 10-aminoundecanoic acid, 11-aminoundecanoic acid and 12-aminoundecanoic acid. - aminododecanoic, as well as its derivatives, in particular N-heptyl-11 - aminoundecanoic acid.
  • the aliphatic repeating unit A is a unit derived from a lactam, it can be chosen from decanolactam, undecanolactam, and lauryllactam.
  • unit A is obtained from a unit chosen from decanolactam, 11-aminoundecanoic acid, lauryllactam, the unit denoted 10.10 obtained from decanediamine and sebacic acid and the unit denoted 10.12 obtained from the decanediamine and dodecanedioic acid.
  • Unit B is an aliphatic repeating unit chosen from a unit obtained from at least one amino acid, a unit obtained from at least one lactam, and an X2.Y2 unit obtained from polycondensation:
  • diamine denoted X2
  • said diamine being chosen from a linear or branched aliphatic diamine, a cycloaliphatic diamine and a mixture thereof, and
  • Y2 at least one carboxylic diacid denoted Y2
  • said diacid being chosen from an aliphatic diacid, a cycloaliphatic diacid and a mixture thereof, the unit B comprising from 6 to 36 carbon atoms, advantageously from 6 to 20 carbon.
  • the repeating unit B is obtained from an amino acid
  • the latter may be chosen from 9-aminononanoic acid, 10-aminodecanoic acid, 10-aminoundecanoic acid, 11-aminoundecanoic acid and 12-aminododecanoic acid, as well as its derivatives, in particular N-heptyl-11-aminoundecanoic acid.
  • repeating unit B when the repeating unit B is obtained from a lactam, this may be chosen from pyrrolidinone, 2-piperidinone, caprolactam, enantholactam, caprylolactam, pelargolactam, decanolactam, undecanolactam, and lauryllactam.
  • the precursor of X2 can be chosen from aliphatic, linear or branched diamines and cycloaliphatic diamines.
  • the diamine When the diamine is aliphatic and branched, it may have one or more methyl or ethyl substituents on the main chain.
  • it can be chosen from 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 1,3-diaminopentane, 2-methyl- 1,5-pentanediamine, 2-methyl-1,8-octanediamine.
  • the diamine is cycloaliphatic, it is preferably chosen from piperazine, an aminoalkylpiperazine, bis(3,5-dialkyl-4-aminocyclohexyl)methane, bis(3,5-dialkyl-4-aminocyclohexyl)ethane, bis( 3,5-dialkyl-4-aminocyclo-hexyl)propane, bis(3,5-dialkyl-4-aminocyclo-hexyl)butane, bis-(3-methyl-4-aminocyclohexyl)-methane (BMACM or MACM) , p-bis(aminocyclohexyl)-methane (PACM) and risopropylidenedi(cyclohexylamine) (PACP).
  • piperazine an aminoalkylpiperazine
  • bis(3,5-dialkyl-4-aminocyclohexyl)methane bis(3,5-dialkyl-4-a
  • the precursor of Y2 can be chosen from aliphatic, linear or branched diacids and cycloaliphatic diacids.
  • adipic acid
  • the diacid when it is cycloaliphatic, it may comprise the following carbon skeletons: norbornyl methane, cyclohexylmethane, dicyclohexylmethane, dicyclohexylpropane, di(methylcyclohexyl), di(methylcyclohexyl)propane.
  • this carbon number is the sum of the carbon number of the units constituting the pattern.
  • the carbon number is 6.
  • the carbon number is 12.
  • unit B is obtained from a unit chosen from caprolactam, the unit noted 6.6 obtained from hexanediamine and adipic acid and the unit noted 10.10 obtained from decanediamine and sebacic acid.
  • Patterns A and B are different from each other.
  • Unit C has the formula X3.Y3 and is obtained from the polycondensation of at least one polyethylene glycol diamine or polypropylene glycol diamine denoted X3 with a molecular mass of between 200 and 1000 and a linear aliphatic dicarboxylic acid denoted Y3.
  • the precursor of the X3 unit is a polyethylene glycol or polypropylene glycol with diamine chain ends obtained by cyanoethylation and hydrogenation of aliphatic dihydroxylated alpha-omega polyethylene or polypropylene sequences called polyethylene ether diol or polypropylene ether diol.
  • the precursor of the X3 unit has a molecular mass between 200 and 1000 g. mol ⁇ 1 , preferably between 300 and 600 g. mol' 1 .
  • the polyalkylene ether diamine of the copolymer according to the invention is chosen from diamines derived from PPG, from PEG or from a PEG-PPG mixture.
  • the polyalkylene ether diamines can in particular be chosen from the commercial products sold under the brands Elastamine® or Jeffamine® by Huntsman, or Baxxodur® by BASF.
  • the copolymer according to the invention can be obtained by reacting the polyalkylene ether diamine precursor of the X3 unit, the polyamide precursors of the A and B units and a chain-limiting diacid precursor of the Y3 unit.
  • a polymer is obtained having essentially polyether blocks, polyamide blocks of variable length, but also units resulting from the random reaction between the various precursors distributed randomly (statistically) along the polymer chain.
  • Unit A represents at least 30% by weight of the copolymer according to the invention, preferably between 30 and 70%, and more particularly between 30 and 50% by weight relative to the total weight of the copolymer.
  • unit B represents between 10 and 40% and in particular between 15 and 30% by weight relative to the total weight of the copolymer.
  • unit C represents at least 30% by weight of the copolymer relative to the total weight of the copolymer according to the invention, preferably between 30 and 70%, and more particularly between 30 and 50% by weight relative to the total weight. of the copolymer.
  • the copolymer according to the invention comprises between 30 and 50% by weight of unit A, between 10% and 40% by weight of unit B, and between 30% and 50% by weight of unit C with respect to the total weight of the copolymer, the sum of the contents of units A, B and C representing 100%.
  • the copolymer according to the invention may consist of 3 monomers A, B and C, and thus be a terpolymer.
  • the copolymer can also be a tetrapolymer and contain 4 different units, with for example 2 different B units, according to the following formula A/B1/B2/C or with for example 2 different A units according to the following formula A1/A2/B1/ vs.
  • the copolymer can also be a pentapolymer and contain 5 different units, with for example 2 different A units and 2 different B units, according to the following formula A1/A2/B1/B2/C.
  • the copolymer according to the invention is chosen from 10.12/6/PPG400.12; 11/6/PPG400.6; 12/6/PPG400.6; 10.10/6/PPG400.10; 11/6/6.6/PPG400.6,
  • the melting point of the copolymer according to the invention is between 75 and 130°C, preferably between 90 and 120°C.
  • the melting temperature is measured by DSC (differential scanning calorimetry) according to standard 11357-3 (2013).
  • the melt flow index is between 5 and 200 cm 3 /10 min, measured at 160°C under a load of 2.16 kg determined according to standard ISO 1133-1 (2011), preferably between 10 and 100 cm 3 /10 min, in particular between 15 and 50 cm 3 /10 min, at 160° C. under a load of 2.16 kg as determined according to standard ISO 1133-2 (2011).
  • the tensile modulus on film of the copolymer according to the invention is less than 200 MPa, as determined according to standard ISO 178 (2010).
  • the modulus is between 50 and 180 MPa, and more particularly between 90 and 160 MPa.
  • copolymer with amide units and with polyether units can be prepared by the following process which:
  • the precursors of the amide units are prepared by polycondensation:
  • comonomer(s) chosen from lactams and alpha-omega aminocarboxylic acids; in the presence of a Y3 chain limiter chosen from dicarboxylic acids; then -in a second step, the precursors of the amide units obtained are reacted with the polyalkylene ether diamine(s), in the presence of a catalyst.
  • the formation reaction of the precursors of the amide units usually takes place between 180 and 300° C., preferably from 200 to 290° C., the pressure in the reactor is established between 5 and 30 bars, and it is maintained for approximately 2 to 3 hours. The pressure is then slowly reduced and the excess water is distilled off.
  • the polyamide with carboxylic acid ends having been prepared, the polyetherdiamine and a catalyst are then added.
  • the polyether can be added in one or more stages, likewise for the catalyst.
  • the polyetherdiamine is first added, the reaction of the NH2 ends of the polyether and of the COOH ends of the polyamide begins with the formation of amide bonds and the elimination of water. As much water as possible is removed from the reaction medium by distillation, then the catalyst is introduced to complete the bonding of the polyamide blocks and the polyether blocks.
  • This second stage is carried out with stirring, preferably under a vacuum of at least 15 mm Hg (2000 Pa) at a temperature such that the reactants and the copolymers obtained are in the molten state.
  • this temperature may be between 100 and 400°C and most often 200 and 300°C.
  • the reaction is monitored by measuring the torque exerted by the molten polymer on the stirrer or by measuring the electrical power consumed by the stirrer. The end of the reaction is determined by the value of the target torque or power.
  • One or more antioxidants can be added during the synthesis, for example those commercially available under the name Irganox® 1010, Irganox® 245 or Irganox 1098®.
  • said dicarboxylic acid is used as Y3 chain limiter, which is introduced in excess relative to the stoichiometry of the diamine(s).
  • a strong acid such as phosphoric acid, hypophosphorous acid or phosphorous acid is used as catalyst.
  • the mixture is heated to a temperature of 270° C., then the reaction medium is expanded.
  • the polycondensation then takes place under nitrogen sweeping.
  • the reaction ends under vacuum, at a pressure between 20 and 50 mbar.
  • the polycondensation temperature is to be adapted according to the melting temperature of the monomers used.
  • the invention also relates to a composition mainly comprising at least one copolymer according to the invention and at least one additive.
  • the additives are present in the composition in a content of between 0.10 and 5%, preferably between 0.25 and 2% by weight relative to the total weight of the composition.
  • the additives are chosen in particular from stabilizers and colorants.
  • the stabilizer can be a UV stabilizer, an organic stabilizer or more generally a combination of organic stabilizers, such as a phenol-type antioxidant (for example of the type of that of Irganox® 245 or 1098 or 1010 from the company Ciba-BASF), a phosphite-type antioxidant (for example Irgaphos® 126 from the company Ciba-BASF) and possibly even other stabilizers such as a HALS, which means Hindered Amine Light Stabilizer or light stabilizer of the hindered amine (for example Tinuvin® 770 from the company Ciba-BASF), an anti-UV (for example Tinuvin® 312 from the company Ciba), a stabilizer based on phosphorus.
  • a phenol-type antioxidant for example of the type of that of Irganox® 245 or 1098 or 1010 from the company Ciba-BASF
  • a phosphite-type antioxidant for example Irgaphos® 126 from the
  • antioxidants of the amine type such as Naugard® 445 from the company Crompton or alternatively polyfunctional stabilizers such as Nylostab S-EED® from the company Clariant.
  • This stabilizer can also be an inorganic stabilizer, such as a copper-based stabilizer.
  • a copper-based stabilizer By way of example of such mineral stabilizers, mention may be made of copper halides and acetates or those of other metals such as silver. These copper-based compounds are typically associated with alkali metal halides, in particular potassium.
  • the colorants are present in a proportion of 0 to 1.5%, in particular 0.5 to 1% by weight relative to the total weight of the composition.
  • the stabilizers are present in a proportion of 0 to 2%, in particular of 0.5 to 1% by weight relative to the total weight of the composition.
  • composition of the invention is devoid of plasticizer and in particular of BBSA.
  • the composition according to the invention comprises: - mostly at least one copolymer as defined above and between 0 and 2% by weight of at least one additive chosen from a stabilizer, a colorant, and a mixture of these ci, relative to the total weight of the composition.
  • the composition may also comprise a second polymer, preferably chosen from a polyester, a polyurethane, or even a polyamide.
  • a second polymer preferably chosen from a polyester, a polyurethane, or even a polyamide.
  • the composition comprises between 0.25 and 15% by weight at least one polymer chosen from a polyester, a polyurethane, a polyamide, relative to the total weight of the composition.
  • composition according to the invention can be manufactured by methods known to those skilled in the art.
  • the addition can be done in particular by melt mixing (in an extruder for example).
  • the copolymer as defined above or the composition according to the invention as defined above is useful as a heat-sensitive adhesive of the HMA type (or hot melt adhesives).
  • HMAs are thermoplastic adhesives which are made to be melted by heating and which when applied to two parts of a textile allow, after cooling, an edge to edge bonding of the two parts, thus avoiding a seam to connect the two parts.
  • the heat-sensitive adhesive as defined above is used in the form of a veil, a film, granules, a filament, a grid, a powder or even a suspension.
  • the copolymer or the composition of the invention can thus be easily shaped by means of known methods for this purpose.
  • the thickness of the heat-sensitive adhesive is preferably from 5 to 200 ⁇ m (equivalent to 5 to 200 g/m 2 which corresponds to another unit of measurement), in particular from 5 to 100 ⁇ m.
  • the preferred thickness may vary.
  • the thickness of a web is preferably between 5 and 30 ⁇ m
  • the thickness of a film is preferably between 10 and 100 ⁇ m
  • the thickness of a grid is preferably 10 to 50 ⁇ m.
  • the heat-sensitive adhesive in powder form can be used in different types of powders, characterized by a particle diameter ranging from:
  • the above powder is suspended, especially in water, in particular at a concentration of 40% to 50%.
  • said adhesive as defined above in particular in film form, has a thickness of 10 to 200 ⁇ m, preferably a thickness of 20 to 100 ⁇ m, and more particularly between 30 and 60 ⁇ m.
  • Said heat-sensitive adhesive as defined above when it is in the form of a film, can consist of a single layer or in multilayer form, that is to say comprising at least two layers.
  • said adhesive in the form of a film with a thickness of 40 ⁇ m may be a film constituted by a layer of 40 ⁇ m or by 2 layers of 20 ⁇ m, i.e. as many layers as the thickness of the film divided by the thickness of a layer.
  • the present invention relates to the use of the copolymer or of the composition as defined above, as a heat-sensitive adhesive.
  • the present invention relates to the use of the copolymer or of the composition as defined above for the manufacture of a heat-sensitive adhesive, in particular a veil, a film, granules, a filament, a grid, a powder or a suspension.
  • the heat-sensitive adhesive as defined above is used in the textile industry, in particular for the manufacture of flexible materials, in particular the bonding or flocking of textiles, in particular for sports.
  • the adhesive according to the invention is preferably used for flocking clothes.
  • the adhesive according to the invention can be used for assembling the soles of shoes, in particular the soles of sports shoes.
  • the exemplified copolymers are prepared by a one-step process. Concerning the copolymer 1, the monomers and the additive were mixed with water, and with phosphoric acid as a catalyst. The reaction medium has been heated to up to 230°C, then expansion is carried out. Then, the polycondensation continues under nitrogen sweeping. The reaction medium is then placed under vacuum at a pressure between 20 and 50 mbar.
  • Polymers 2 to 4 were prepared by a similar method.
  • Pripol 1013 designates a fatty acid dimer sold by the company CRODA.
  • 2 D400 designates a polypropylene glycol diamine with a molecular mass of 400 g. mol -1 sold under the brand name Jeffamine D400 by the company Huntsman.
  • the melting temperature is measured by DSC (differential scanning calorimetry) according to standard 11357-3 (2013).
  • the hot melt index (MFI) is measured according to the ISO 1133-1 (2011) standard, at 160° C. under a load of 2.16 kg.
  • Film tensile modulus is measured according to ISO 178(2010).
  • Copolymer 2 does not meet the modulus condition. It is too rigid and does not make it possible to obtain a flexible flocked textile.
  • Copolymer 3 does not meet the MFI condition. It's too fluid.
  • the copolymers are transformed into a 45 ⁇ m film by extrusion blow molding.
  • the film thus obtained is placed between a nylon textile fabric and a polyurethane film, the assembly is then assembled at 147°C, for 5 seconds under a pressure of 1.5 bars.
  • the samples are subjected to 15 machine wash cycles at 40°C followed by drying at 80°C, and the adhesion of the film is visually assessed between each cycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyamides (AREA)

Abstract

L'invention porte sur un copolymère à motifs amides et à motifs polyéthers comprenant au moins un motif A, au moins un motif B et au moins un motif C, dans lequel - le motif A est un motif répétitif amide aliphatique spécifique comportant 10 atomes de carbone ou plus, - le motif B est un motif aliphatique amide répétitif choisi parmi un motif obtenu à partir d'au moins un aminoacide, un motif obtenu à partir d'au moins un lactame, et un motif X2.Y2, le motif B comprenant de 6 à 36 atomes de carbone, avantageusement de 6 à 20 atomes de carbone; le motif A étant différent du motif B, -le motif C est un motif répétitif de formule X3.Y3 obtenu à partir de la polycondensation d'au moins une polyéthylène glycol diamine et/ou au moins une polypropylèneglycol diamine notée X3 de poids moléculaire comprise entre 200 et 1000 et d'un diacide carboxylique aliphatique linéaire noté Y3, le motif A représentant au moins 30% en poids par rapport au poids total du copolymère, - la température de fusion étant comprise entre 75 et 130°C, - l'indice de fluidité à chaud, nommé en langue anglaise Melt Flow Index étant compris entre 5 et 200 cm3/10 min, mesuré à 160°C sous une charge de 2,16 kg déterminé, et - le module de traction sur film étant inférieur à 200MPa. L'invention porte également sur son utilisation en tant qu'adhésif.

Description

DESCRIPTION TITRE DE L’INVENTION : COPOLYMERE RESISTANT AUX LAVAGES
La présente invention concerne un copolymère pour la fabrication d’un adhésif thermosensible, en particulier un voile, un film, des granulés, un filament, une grille, une poudre ou une suspension.
Elle concerne également lesdits adhésifs thermosensibles et leur utilisation dans l’industrie textile, notamment pour la fabrication et l’assemblage de matériaux flexibles. Dans le domaine textile, et notamment pour les vêtements de sport, il est ainsi connu de coller ou de floquer des inscriptions ou formes sur des vêtements. Le flocage peut être défini comme l’application d’un film fin sur une surface textile. Le film peut être en polyuréthane, en polyvinyle ou en polyester et le textile peut être en nylon, en polyester, en coton ou en lycra. Le film est enduit d’un adhésif, puis transféré à chaud sur la surface textile. Ce transfert peut se faire en utilisant une presse ou un fer à repasser à des températures comprises entre 150°C et 200°C.
Il est recherché de manière constante des adhésifs qui puissent être mis en œuvre à des températures inférieures à 150°C de manière à diminuer le coût énergétique. Le but est également de pouvoir floquer les textiles délicats et de pouvoir utiliser des films moins résistants à la température, par exemple en polyuréthane.
Par ailleurs, il est attendu que le vêtement floqué puisse résister à plusieurs de cycles de lavage à 40°C, voire à 60°C.
Afin de ne pas rigidifier le vêtement floqué, l’adhésif utilisé doit par ailleurs être flexible. Idéalement, il se caractérise par un module proche de celui du textile à floquer.
Ces adhésifs peuvent également être utilisés pour assembler des semelles de chaussures, notamment des chaussures de sport. Dans ce domaine technique, une grande flexibilité est requise et l’adhésif ne doit pas rigidifier la semelle une fois assemblée.
Les thermoplastiques polyuréthanes (TPU) sont utilisés dans l’industrie textile en tant qu’adhésifs thermosensibles pour l’assemblage sans couture. Ils possèdent notamment des propriétés de flexibilité ou souplesse. Néanmoins, ils présentent le défaut de ne pas résister au lavage, en particulier en machine, notamment au-delà de 60°C. De plus, ils sont difficiles à mettre en œuvre.
Certains copolyamides peuvent être résistants au lavage jusqu’à 90°C et faciles à mettre en œuvre. Cependant, ils ne sont pas suffisamment flexibles ou sont trop rigides.
Les PEBA sont des copolymères à motifs amides et à motifs polyéthers mais dépourvus de propriétés thermo-adhésives.
Ainsi, il existe un réel besoin d’adhésifs présentant les propriétés pré-citées.
Les inventeurs ont découvert un nouveau copolymère, qui répond à chacune de ces exigences. Brève description de l’invention
Ainsi, la présente invention a pour objet un copolymère à motifs amides et à motifs polyéthers comprenant au moins un motif A, au moins un motif B et au moins un motif C, dans lequel :
- le motif A est un motif répétitif aliphatique choisi parmi un motif obtenu à partir d'au moins un aminoacide, un motif obtenu à partir d'au moins un lactame, et un motif X1 ,Y1 obtenu à partir de la polycondensation d’au moins une diamine aliphatique linéaire notée X1 et d’au moins un diacide carboxylique aliphatique linéaire noté Y1 , et leur mélange, le motif A comportant 10 atomes de carbone ou plus,
- le motif B est un motif aliphatique répétitif choisi parmi un motif obtenu à partir d'un aminoacide, un motif obtenu à partir d'un lactame, et un motif X2.Y2 obtenu à partir de la polycondensation :
- d’au moins une diamine notée X2, ladite diamine étant choisie parmi une diamine aliphatique linéaire ou ramifiée, une diamine cycloaliphatique et un mélange de ceux- ci ? et
- d’au moins un diacide carboxylique noté Y2, ledit diacide étant choisi parmi un diacide aliphatique et un diacide cycloaliphatique, le motif B comprenant de 6 à 36 atomes de carbone, avantageusement de 6 à 20 atomes de carbone ; le motif A étant différent du motif B,
- le motif C est un motif répétitif de formule X3.Y3 obtenu à partir de la polycondensation d’au moins une polyéthylène glycol diamine ou polypropylèneglycol diamine notée X3 de masse moléculaire comprise entre 200 et 1000 g. mol-1 et d’un diacide carboxylique aliphatique linéaire noté Y3, le motif A représentant au moins 30% en poids du copolymère, la température de fusion étant comprise entre 75 et 130°C telle que mesurée par DSC (differential scanning calorimetry) selon la norme 11357-3 (2013), l’indice de fluidité à chaud (IFC), nommé en langue anglaise Melt Flow Index (MFI), étant compris entre 5 et 200 cm3/10 min, mesuré à 160°C sous une charge de 2,16 kg tel que déterminé selon la norme ISO 1133-1 (2011 ), et le module de traction sur film étant inférieur à 200MPa, tel que déterminé selon la norme ISO 178 (2010).
Description détaillée de l’invention
D'autres caractéristiques, aspects, objets et avantages de la présente invention apparaîtront encore plus clairement à la lecture de la description qui suit.
Il est précisé que les expressions « de ...à ... » et « compris entre ... et ... » utilisées dans la présente description doivent s’entendre comme incluant chacune des bornes mentionnées. La nomenclature utilisée pour définir les polyamides est décrite dans la norme ISO 1874-1 :1992 "Plastiques -- Matériaux polyamides (PA) pour moulage et extrusion -- Partie 1 : Désignation", notamment en page 3 (tableaux 1 et 2). Dans la présente description, les polyalkylène éther diamines sont désignées par l’abréviation du polyalkylène éther diol correspondant. Ainsi, l’abréviation « PPG » désigne par exemple la polypropylène éther diamine.
Le copolymère
Par polyamide (homopolyamide ou copolyamide) au sens de l'invention, on entend les produits de condensation des lactames, des aminoacides et/ou des diacides avec les diamines.
Le copolymère selon l’invention résulte de la polycondensation d’au moins un précurseur de motif A avec au moins un précurseur de motif B et avec au moins un précurseur de motif C.
Le motif A est un motif répétitif aliphatique choisi parmi un motif obtenu à partir d'au moins un aminoacide, un motif obtenu à partir d'au moins un lactame, et un motif X1 ,Y1 obtenu à partir de la polycondensation d’au moins une diamine aliphatique linéaire notée X1 et d’au moins un diacide carboxylique aliphatique linéaire noté Y1 , et leur mélange, le motif A comportant 10 atomes de carbone ou plus.
Lorsque le motif répétitif aliphatique A est obtenu à partir d’un motif dérivé d’un aminoacide, il peut être choisi parmi l'acide 10-aminodécanoïque, l'acide 10- aminoundécanoïque, l'acide 11 -aminoundécanoïque et l'acide 12- aminododécanoïque, ainsi que ses dérivés, notamment l'acide N-heptyl-11 - aminoundécanoïque.
Lorsque le motif répétitif aliphatique A est un motif dérivé d’un lactame, il peut être choisi parmi le décanolactame, l’undecanolactame, et le lauryllactame.
Lorsque le motif répétitif A répond à la formule X1.Y1 , le précurseur de X1 peut être choisi parmi les diamines aliphatiques linéaires de formule H2N-(CH2)a-NH2 choisie parmi la décanediamine (a=10), l'undécanediamine (a=11 ), la dodécanediamine (a=12), la tridécanediamine (a=13), la tétradécanediamine (a=14), l'hexadécanediamine (a=16), l'octadécanediamine (a=18) et l'octadécènediamine (a=18).
Le précurseur de Y1 peut être choisi parmi les diacides aliphatiques linéaires de formule HOOC-(CH2)b-COOH choisi parmi l'acide sébacique (b=10), l'acide undécanedioïque (b=11 ), l'acide dodécanedioïque (b=12), l'acide brassylique (b=13), l'acide tetradécanedioïque (b=14), l'acide hexadécanedioïque (b=16), l'acide octadécanedioïque (b=18) et l'acide octadécènedioïque (b=18).
De préférence, le motif A est obtenu à partir d’un motif choisi parmi le décanolactame, l'acide 11 -aminoundécanoïque, le lauryllactame, le motif noté 10.10 obtenu à partir de la décanediamine et de l’acide sébacique et le motif noté 10.12 obtenu à partir de la décanediamine et de l’acide dodécanedioique.
Le motif B est un motif répétitif aliphatique choisi parmi un motif obtenu à partir d'au moins un aminoacide, un motif obtenu à partir d'au moins un lactame, et un motif X2.Y2 obtenu à partir de la polycondensation :
- d’au moins une diamine notée X2, ladite diamine étant choisie parmi une diamine aliphatique linéaire ou ramifiée, une diamine cycloaliphatique et un mélange de celles-ci, et
- d’au moins un diacide carboxylique noté Y2, ledit diacide étant choisi parmi un diacide aliphatique, un diacide cycloaliphatique et un mélange de ceux-ci, le motif B comprenant de 6 à 36 atomes de carbone, avantageusement de 6 à 20 atomes de carbone.
Lorsque le motif répétitif B est obtenu à partir d’un aminoacide, celui-ci peut être choisi parmi l'acide 9-aminononanoïque, l'acide 10-aminodécanoïque, l'acide 10- aminoundécanoïque, l'acide 11 -aminoundécanoïque et l'acide 12- aminododécanoïque, ainsi que ses dérivés, notamment l'acide N-heptyl-11 - aminoundécanoïque.
Lorsque le motif répétitif B est obtenu à partir d’un lactame, celle-ci peut être choisie parmi la pyrrolidinone, la 2-pipéridinone, le caprolactame, l’énantholactame, le caprylolactame, le pelargolactame, le décanolactame, l’undecanolactame, et le lauryllactame.
Lorsque le motif répétitif B répond à la formule X2.Y2, le précurseur de X2 peut être choisie parmi les diamines aliphatiques, linéaires ou ramifiées et les diamines cycloaliphatiques.
Lorsque la diamine est aliphatique et linéaire, elle peut être notamment de formule H2N-(CH2)d-NH2, la diamine est choisie parmi la butanediamine (d=4), la pentanediamine (d=5), la hexanediamine (d=6), l'heptanediamine (d=7), l’octanediamine (d=8), la nonanediamine (d=9), la décanediamine (d=10), l'undécanediamine (d=11 ), la dodécanediamine (d=12), la tridécanediamine (d=13), la tétradécanediamine (d=14), l'hexadécanediamine (d=16), l'octadécanediamine (d=18) et l'octadécènediamine (d=18).
Lorsque la diamine est aliphatique et ramifiée, elle peut comporter un ou plusieurs substituants méthyle ou éthyle sur la chaîne principale. Par exemple, elle peut être choisie parmi la 2,2,4-triméthyl-1 ,6-hexanediamine, la 2,4,4-triméthyl-1 ,6- hexanediamine, le 1 ,3-diaminopentane, la 2-méthyl-1 ,5-pentanediamine, la 2-méthyl- 1 ,8-octanediamine.
Lorsque la diamine est cycloaliphatique, elle est préférentiellement choisie parmi la pipérazine, une aminoalkylpipérazine, le bis(3,5-dialkyl-4-aminocyclohexyl)méthane, le bis(3,5-dialkyl-4-aminocyclohexyl)éthane, le bis(3,5-dialkyl-4-aminocyclo- hexyl)propane, le bis(3,5-dialkyl-4-aminocyclo-hexyl)butane, le bis-(3-méthyl-4- aminocyclohexyl)-méthane (BMACM ou MACM), le p-bis(aminocyclohexyl)-méthane (PACM) et risopropylidènedi(cyclohexylamine) (PACP). Elle peut également comporter les squelettes carbonés suivants : norbornyl méthane, cyclohexylméthane, dicyclohexylpropane, di(méthylcyclohexyl), di(methylcyclohexyl) propane. Une liste non-exhaustive de ces diamines cycloaliphatiques est donnée dans la publication "Cycloaliphatic Amines" (Encyclopaedia of Chemical Technology, Kirk-Othmer, 4th Edition (1992), pp. 386-405).
Lorsque le motif répétitif B répond à la formule X2.Y2, le précurseur de Y2 peut être choisi parmi les diacides aliphatiques, linéaires ou ramifiés et les diacides cycloaliphatiques.
Lorsque le diacide de formule HOOC-(CH2)e-COOH est aliphatique et linéaire, il est préférentiellement choisi parmi l’acide succinique (e=4), l’acide pentanedioïque (e=5), l'acide adipique (e=6), l'acide heptanedioïque (e=7), l’acide octanedioïque (e=8), l'acide azélaïque (e=9), l'acide sébacique (e=10), l'acide undécanedioïque (e=11 ), l'acide dodécanedioïque (e=12), l'acide brassylique (e=13), l'acide tetradécanedioïque (e=14), l'acide hexadécanedioïque (e=16), l'acide octadécanedioïque (e=18) et l'acide octadécènedioïque (e=18).
Lorsque le diacide est cycloaliphatique, il peut comporter les squelettes carbonés suivants : norbornyl méthane, cyclohexylméthane, dicyclohexylméthane, dicyclohexylpropane, di(méthylcyclohexyl), di(methylcyclohexyl)propane.
Concernant le calcul du nombre d’atomes de carbone dans le motif B, ce nombre de carbone est la somme du nombre de carbone des unités constituant le motif. Par exemple, pour le motif 6, c’est-à-dire le motif résultant de la polycondensation du caprolactame, le nombre de carbone est de 6. Pour le motif 66, par exemple, c’est-à- dire le motif résultant de la polycondensation de l’hexanediamine et de l’acide adipique, le nombre de carbone est de 12.
De préférence, le motif B est obtenu à partir d’un motif choisi parmi le caprolactame, le motif noté 6.6 obtenu à partir de l’hexanediamine et de l’acide adipique et le motif noté 10.10 obtenu à partir de la décanediamine et de l’acide sébacique.
Les motifs A et B sont différents l’un de l’autre.
Le motif C est de formule X3.Y3 et est obtenu à partir de la polycondensation d’au moins une polyéthylène glycol diamine ou polypropylèneglycol diamine notée X3 de masse moléculaire comprise entre 200 et 1000 et d’un diacide carboxylique aliphatique linéaire noté Y3.
Le précurseur de l’unité X3 est un polyéthylène glycol ou polypropylène glycol à bouts de chaînes diamines obtenu par cyanoéthylation et hydrogénation de séquences polyéthylène ou polypropylène alpha-oméga dihydroxylées aliphatiques appelées polyéthylène éther diol ou polypropylène éther diol.
Le précurseur de l’unité X3 est de masse moléculaire comprise entre 200 et 1000 g. mol-1, de préférence comprise entre 300 et 600 g. mol’1.
La liste de diacides carboxyliques mentionnés ci-dessus pour l’unité Y2 du motif B vaut également pour l’unité Y3.
Avantageusement, la polyalkylène éther diamine du copolymère selon l’invention est choisie parmi des diamines dérivées du PPG, du PEG ou d’un mélange PEG-PPG. Les polyalkylène éther diamines peuvent notamment être choisies parmi les produits commerciaux vendus sous les marques Elastamine® ou Jeffamine® par Huntsman, ou Baxxodur® par BASF.
Le copolymère selon l’invention peut être obtenu en faisant réagir de la polyalkylène éther diamine précurseur du motif X3, les précurseurs polyamide des motifs A et B et un diacide limiteur de chaîne précurseur du motif Y3. On obtient un polymère ayant essentiellement des blocs polyéthers, des blocs polyamides de longueur variable, mais aussi des motifs issus de la réaction aléatoire entre les différents précurseurs répartis de façon aléatoire (statistique) le long de la chaîne polymère.
Le motif A représente au moins 30% en poids du copolymère selon l’invention, de préférence entre 30 et 70%, et plus particulièrement entre 30 et 50% en poids par rapport au poids total du copolymère.
De préférence, le motif B représente entre 10 et 40% et en particulier entre 15 et 30% en poids par rapport au poids total du copolymère.
De préférence, le motif C représente au moins 30% en poids du copolymère par rapport au poids total du copolymère selon l’invention, de préférence entre 30 et 70%, et plus particulièrement entre 30 et 50% en poids par rapport au poids total du copolymère.
De manière particulièrement préférée, le copolymère selon l’invention comporte entre 30 et 50% en poids de motif A, entre 10% et 40% en poids de motif B, et entre 30% et 50% en poids de motif C par rapport au poids total du copolymère, la somme des teneurs en motifs A, B et C représentant 100%.
Le copolymère selon l’invention peut être constitué de 3 monomères A, B et C, et être ainsi un terpolymère.
Le copolymère peut également être un tétrapolymère et contenir 4 motifs différents, avec par exemple 2 motifs B différents, selon la formule suivante A/B1/B2/C ou avec par exemple 2 motifs A différents selon la formule suivant A1/A2/B1/C.
Le copolymère peut également être un pentapolymère et contenir 5 motifs différents, avec par exemple 2 motifs A différents et 2 motifs B différents, selon la formule suivante A1/A2/B1/B2/C.
De préférence, le copolymère selon l’invention est choisi parmi 10.12/6/PPG400.12 ; 11/6/PPG400.6 ; 12/6/PPG400.6 ; 10.10/6/PPG400.10 ; 11/6/6.6/PPG400.6,
11/12/6/6.6/PPG400.6 ; .11/10.10/PPG400.10.
La température de fusion du copolymère selon l’invention est comprise entre 75 et 130°C, de préférence entre 90 et 120°C. La température de fusion est mesurée par DSC (differential scanning calorimetry) selon la norme 11357-3 (2013).
L’indice de fluidité à chaud, nommé en langue anglaise Melt Flow Index (MFI) est compris entre 5 et 200 cm3/10 min, mesuré à 160°C sous une charge de 2,16 kg déterminé selon la norme ISO 1133-1 (2011 ), préférentiellement entre 10 et 100 cm3/10 min, notamment entre 15 et 50 cm3/10 min, à 160°C sous une charge de 2,16 Kg tel que déterminé selon la norme ISO 1133-2 (2011 ).
Le module de traction sur film du copolymère selon l’invention est inférieur à 200MPa, tel que déterminé selon la norme ISO 178(2010). De préférence, le module est compris entre 50 et 180 MPa, et plus particulièrement entre 90 et 160MPa.
Le procédé de préparation du copolymère
Le copolymère à motifs amides et à motifs polyéthers peut être préparé par le procédé suivant lequel :
-dans une première étape, on prépare les précurseurs des motifs amides par polycondensation :
-de la ou des diamines ;
-du ou des diacides carboxyliques ; et
-le cas échéant, du ou des comonomères choisis parmi les lactames et les acides alpha-oméga aminocarboxyliques ; en présence d’un limiteur de chaîne Y3 choisi parmi les diacides carboxyliques ; puis -dans une seconde étape, on fait réagir les précurseurs des motifs amides obtenus avec la ou les polyalkylène éther diamine, en présence d’un catalyseur.
La méthode générale de préparation en deux étapes des copolymères de l’invention est connue et est décrite, par exemple, dans le brevet français FR 2 846 332 et dans le brevet européen EP 1 482 011 .
La réaction de formation des précurseurs des motifs amides se fait habituellement entre 180 et 300°C, de préférence de 200 à 290°C, la pression dans le réacteur s’établit entre 5 et 30 bars, et on la maintient environ 2 à 3 heures. On réduit ensuite lentement la pression, puis on distille l’eau excédentaire.
Le polyamide à extrémités acide carboxylique ayant été préparé, on ajoute ensuite le polyétherdiamine et un catalyseur. On peut ajouter le polyéther en une ou plusieurs fois, de même pour le catalyseur. Selon une forme avantageuse, on ajoute d’abord le polyétherdiamine, la réaction des extrémités NH2 du polyéther et des extrémités COOH du polyamide commence avec formation de liaisons amide et élimination d’eau. On élimine le plus possible l’eau du milieu réactionnel par distillation, puis on introduit le catalyseur pour achever la liaison des blocs polyamides et des blocs polyéthers. Cette deuxième étape s’effectue sous agitation, de préférence sous un vide d’au moins 15 mm Hg (2000 Pa) à une température telle que les réactifs et les copolymères obtenus soient à l’état fondu. A titre d’exemple, cette température peut être comprise entre 100 et 400°C et le plus souvent 200 et 300°C. La réaction est suivie par la mesure du couple de torsion exercée par le polymère fondu sur l’agitateur ou par la mesure de la puissance électrique consommée par l’agitateur. La fin de la réaction est déterminée par la valeur du couple ou de la puissance cible. On peut ajouter pendant la synthèse un ou plusieurs agents anti-oxydant, par exemple ceux disponibles dans le commerce sous le nom Irganox® 1010, Irganox® 245 ou Irganox 1098®.
On peut aussi considérer le procédé de préparation du copolymère tel que l’on ajoute dans de l’eau tous les monomères au début, soit en une seule étape, pour effectuer la polycondensation : de la ou des diamines ; du ou des diacides carboxyliques ; et le cas échéant, de l’autre ou des autres comonomères de polyamide ; d’un limiteur de chaîne Y3 choisi parmi les diacides carboxyliques ; de la ou des polyalkylène éther diamines ; en présence d’un catalyseur pour la réaction entre les motifs amides et les motifs amides.
Avantageusement, on utilise comme limiteur de chaîne Y3 ledit diacide carboxylique, que l’on introduit en excès par rapport à la stœchiométrie de la ou des diamines.
Avantageusement, on utilise comme catalyseur, un acide fort tel que l’acide phosphorique, l’acide hypophosphoreux ou l’acide phosphoreux.
On chauffe jusqu’à une température de 270°C, puis on détend le milieu réactionnel. La polycondensation s’effectue alors sous balayage d’azote. La réaction se termine sous vide, à une pression entre 20 et 50 mbar. La température de polycondensation est à adapter en fonction de la température de fusion des monomères mis en œuvre.
La composition
L’invention porte également sur une composition comprenant majoritairement au moins un copolymère selon l’invention et au moins un additif.
De préférence, les additifs sont présents dans la composition en une teneur comprise entre 0,10 et 5%, de préférence entre 0,25 et 2% en poids par rapport au poids total de la composition.
Les additifs sont choisis notamment parmi les stabilisants et les colorants.
A titre d’exemple, le stabilisant peut être un stabilisant UV, un stabilisant organique ou plus généralement une combinaison de stabilisants organiques, tel un antioxydant de type phénol (par exemple du type de celle de l'Irganox® 245 ou 1098 ou 1010 de la société Ciba-BASF), un antioxydant de type phosphite (par exemple l’Irgaphos® 126 de la société Ciba-BASF) et voire éventuellement d'autres stabilisants comme un HALS, ce qui signifie Hindered Amine Light Stabiliser ou stabilisant lumière de type amine encombrée (par exemple le Tinuvin® 770 de la société Ciba-BASF), un anti-UV (par exemple le Tinuvin® 312 de la société Ciba), un stabilisant à base de phosphore. On peut également utiliser des antioxydants de type amine tel le Naugard® 445 de la société Crompton ou encore des stabilisants polyfonctionnels tel le Nylostab S-EED® de la société Clariant. Ce stabilisant peut également être un stabilisant minéral, tel qu'un stabilisant à base de cuivre. A titre d'exemple de tels stabilisants minéraux, on peut citer les halogénures et les acétates de cuivre ou ceux d'autres métaux tel l'argent. Ces composés à base de cuivre sont typiquement associés à des halogénures de métaux alcalins, en particulier de potassium.
De préférence, les colorants sont présents en une proportion de 0 à 1 ,5%, notamment de 0,5 à 1 % en poids par rapport au poids total de la composition. De préférence, les stabilisants sont présents en une proportion de 0 à 2%, notamment de 0,5 à 1 % en poids par rapport au poids total de la composition.
Avantageusement, la composition de l’invention est dépourvue de plastifiant et notamment de BBSA.
Avantageusement, la composition selon l’invention comporte : -majoritairement au moins un copolymère tel que défini ci-dessus et entre 0 et 2% en poids d’au moins un additif choisi parmi un stabilisant, un colorant, et un mélange de ceux-ci, par rapport au poids total de la composition.
La composition peut également comporter un second polymère, de préférence choisi parmi un polyester, un polyuréthane, ou encore un polyamide. De préférence, la composition comporte entre 0,25 et 15% en poids au moins un polymère choisi parmi un polyester, un polyuréthane, un polyamide, par rapport au poids total de la composition.
La composition selon l’invention peut être fabriquée par des procédés connus de l’homme du métier. En particulier, il est possible d’ajouter les additifs au copolymère de l’invention pendant ou après la synthèse. Lorsque l’ajout est réalisé après synthèse, il peut se faire notamment par mélange en fusion (dans une extrudeuse par exemple). Le copolymère tel que défini ci-dessus ou la composition selon l’invention telle que définie ci-dessus est utile à titre d’adhésif thermosensible du type HMA (ou hot melt adhesives).
Les HMA sont des adhésifs thermoplastiques qui sont constitués pour être fondus par chauffage et qui lorsqu’ils sont appliqués sur deux parties d’un textile permettent, après refroidissement, un collage bord à bord des deux parties, évitant ainsi une couture pour relier les deux parties.
Avantageusement, l’adhésif thermosensible tel que défini ci-dessus, est utilisé sous forme d’un voile, d’un film, de granulés, d’un filament, d’une grille, d’une poudre ou encore d’une suspension. Le copolymère ou la composition de l’invention peuvent être ainsi mis en forme aisément au moyen des procédés connus à cet effet.
L’épaisseur de l’adhésif thermosensible est de préférence comprise de 5 à 200 pm (équivalent à 5 à 200 g/m2 qui correspond à une autre unité de mesure), en particulier de 5 à 100 pm. Selon la forme sous laquelle l’adhésif est utilisé, l’épaisseur préférée peut varier. Ainsi par exemple, l’épaisseur d’un voile est de préférence comprise de 5 à 30 pm, l’épaisseur d’un film est de préférence comprise de 10 à 100 pm, et l’épaisseur d’une grille est de préférence comprise de 10 à 50 pm.
L’adhésif thermosensible sous forme de poudre peut être utilisé sous différent types de poudres, caractérisées par un diamètre de particules allant de :
• de plus de 0 à 80 microns ;
• de plus de 0 à 120 microns ;
• de 80 à 180 microns ;
• de 80 à 200 microns ; ou encore
• de 200 à 500 microns.
S’agissant de la suspension, la poudre ci-dessus est mise en suspension, notamment dans de l’eau, en particulier à une concentration de 40% à 50%.
Avantageusement, ledit adhésif tel que défini ci-dessus, notamment sous forme de film, présente une épaisseur comprise de 10 à 200 pm, de préférence une épaisseur comprise de 20 à 100 pm, et plus particulièrement entre 30 et 60 pm.
Ledit adhésif thermosensible tel que défini ci-dessus, lorsqu’il est sous forme de film, peut être constitué d’une seule couche ou sous forme multicouche, c’est-à-dire comprenant au moins deux couches.
A titre d’exemple, ledit adhésif sous forme de film d’une épaisseur de 40 pm peut être un film constitué par une couche de 40 pm ou par 2 couches de 20 pm, soit autant de couches que l’épaisseur du film divisé par l’épaisseur d’une couche.
Selon un autre aspect, la présente invention concerne l’utilisation du copolymère ou de la composition telle que définie ci-dessus, en tant qu’adhésif thermosensible.
Selon un autre aspect, la présente invention concerne l’utilisation du copolymère ou de la composition telle que définie ci-dessus pour la fabrication d’un adhésif thermosensible, en particulier un voile, un film, des granulés, un filament, une grille, une poudre ou une suspension.
Avantageusement, l’adhésif thermosensible tel que défini ci-dessus, est utilisé dans l'industrie textile, notamment pour la fabrication de matériaux flexibles, notamment le collage ou le flocage de textiles, notamment de sport.
L’adhésif selon l’invention est de préférence utilisé pour le flocage de vêtements.
Selon un autre aspect de l’invention, l’adhésif selon l’invention peut être utilisé pour l’assemblage des semelles de chaussures, notamment de semelles de chaussures de sport.
Les exemples, qui suivent permettent d’illustrer la présente invention, mais ne sont en aucun cas limitatifs.
EXEMPLES
Préparation des échantillons
Les copolymères exemplifiés ides sont préparés selon un procédé en une seule étape. Concernant le copolymère 1 , les monomères et l’additif ont été mélangés avec de l’eau, et avec de l’acide phosphorique en tant que catalyseur. Le milieu réactionnel a été chauffé à jusque 230°C, puis une détente est opérée. Ensuite, la polycondensation se poursuit sous balayage d’azote. Le milieu réactionnel est ensuite placé sous vide à une pression entre 20 et 50 mbar.
Les polymères 2 à 4 ont été préparés selon une méthode similaire.
La formulation des copolymères est détaillée dans le tableau 1 ci-après.
[Ta b I eau 1]
Figure imgf000012_0001
1 Pripol 1013 désigne un dimère d’acide gras vendu par la société CRODA.
2 D400 désigne une polypropylène gycol diamine de masse moléculaire 400 g. mol-1 vendue sous le nom de marque Jeffamine D400 par la société Huntsman.
Mesure des propriétés des échantillons
Les propriétés physico-chimiques suivantes de ces copolymères et des compositions ont été mesurées.
La température de fusion est mesurée par DSC (differential scanning calorimetry) selon la norme 11357-3 (2013). L’indice de fluidité à chaud (MFI) est mesuré selon la norme ISO 1133-1 (2011 ), à 160°C sous une charge de 2.16 kg.
Le module de traction sur film est mesuré selon la norme ISO 178(2010).
Les propriétés physico-chimiques des copolymères testés sont rassemblées dans le tableau 2 ci-dessous.
[Ta b I eau 2]
Figure imgf000013_0001
Le copolymère 2 ne remplit pas la condition du module. Il est trop rigide et ne permet pas d’obtenir un textile floqué souple.
Le copolymère 3 ne remplit pas la condition du MFI. Il est trop fluide.
Evaluation des échantillons
Les copolymères sont transformés en film de 45 pm par extrusion soufflage.
Le film ainsi obtenu est placé entre un tissu textile nylon et un film de polyuréthane, l’ensemble est ensuite assemblé à 147°C, pendant 5 secondes sous une pression de 1 .5bars.
Les échantillons sont évalués au moyen de deux tests distincts :
Dans un premier test, les échantillons sont soumis à 15 cycles de lavage en machine à 40°C puis un séchage à 80°C, et l’adhésion du film est évaluée visuellement entre chaque cycle.
Les résultats sont rassemblés dans le tableau 3.
[Ta b I eau 3]
Figure imgf000013_0002
Dans le second test, les échantillons sont soumis à 10 cycles de lavage en machine à 60°C puis un séchage à 80°C, et l’adhésion du film est évaluée visuellement entre chaque cycle. Les résultats sont rassemblés dans le tableau 4.
[Ta b I eau 4]
Figure imgf000014_0001
Les résultats montrent que le copolymère selon l’invention permet de résister aux lavages, même à 60°C.

Claims

Revendications
1 . Copolymère à motifs amides et à motifs polyéthers comprenant au moins un motif A, au moins un motif B et au moins un motif C, dans lequel
- le motif A est un motif répétitif amide aliphatique choisi parmi un motif obtenu à partir d'au moins un aminoacide, un motif obtenu à partir d'au moins un lactame, et un motif X1.Y1 obtenu à partir de la polycondensation d’au moins une diamine aliphatique linéaire notée X1 et d’au moins un diacide carboxylique aliphatique linéaire noté Y1 , le motif A comportant 10 atomes de carbone ou plus,
- le motif B est un motif aliphatique amide répétitif choisi parmi un motif obtenu à partir d'au moins un aminoacide, un motif obtenu à partir d'au moins un lactame, et un motif X2.Y2 obtenu à partir de la polycondensation :
-d’au moins une diamine notée X2, ladite diamine étant choisie parmi une diamine aliphatique linéaire ou ramifiée, une diamine cycloaliphatique et un mélange de celles-ci et
-d’au moins un diacide carboxylique noté Y2, ledit diacide étant choisi parmi un diacide aliphatique, un diacide cycloaliphatique, le motif B comprenant de 6 à 36 atomes de carbone, avantageusement de 6 à 20 atomes de carbone ; le motif A étant différent du motif B,
-le motif C est un motif répétitif de formule X3.Y3 obtenu à partir de la polycondensation d’au moins une polyéthylène glycol diamine et/ou au moins une polypropylèneglycol diamine notée X3 de poids moléculaire comprise entre 200 et 1000 g. mol’1 et d’un diacide carboxylique aliphatique linéaire noté Y3, le motif A représentant au moins 30% en poids par rapport au poids total du copolymère,
- la température de fusion étant comprise entre 75 et 130°C telle que mesurée par DSC (differential scanning calorimetry) selon la norme 11357-3 (2013),
- l’indice de fluidité à chaud, nommé en langue anglaise Melt Flow Index étant compris entre 5 et 200 cm3/10 min, mesuré à 160°C sous une charge de 2,16 kg déterminé selon la norme ISO 1133-1 (2011 ), et - le module de traction sur film étant inférieur à 200MPa, tel que déterminé selon la norme ISO 178(2010). Copolymère selon la revendication 1 , caractérisé en ce qu’il comporte au moins 30% en poids par rapport au poids total du copolymère de motifs C. Copolymère selon la revendication 1 ou 2, caractérisé en ce qu’il comporte entre 30 % et 50% en poids de motif A, entre 10% et 40% en poids de motif B, et entre 30% et 50% en poids de motif C par rapport au poids total du copolymère, la somme des teneurs en motifs A, B et C représentant 100%. Copolymère selon l’une quelconque des revendications 1 à 3, caractérisé en ce que le motif A est obtenu à partir d’un motif choisi parmi le décanolactame, l'acide 11 -aminoundécanoïque, le lauryllactame, le motif noté 10.10 obtenu à partir de la décanediamine et de l’acide sébacique et le motif noté 10.12 obtenu à partir de la décanediamine et de l’acide dodécanedioique. Copolymère selon l’une quelconque des revendications 1 à 4, caractérisé en ce que le motif B est obtenu à partir d’un motif choisi parmi le caprolactame, le motif noté 6.6 obtenu à partir de l’hexanediamine et de l’acide adipique et le motif noté 10.10 obtenu à partir de la décanediamine et de l’acide sébacique Copolymère selon l’une quelconque des revendications 1 à 5, caractérisé en ce qu’il est choisi parmi 10.12/6/PPG400.12 ; 11/6/PPG400.6 ; 12/6/PPG400.6 ; 10.10/6/PPG400.10 ; 11/6/6.6/PPG400.6,
11/12/6/6.6/PPG400.6 ; .11/10.10/PPG400.10. Composition adhésive caractérisée en ce qu’elle comporte -majoritairement au moins un copolymère tel que défini à l’une quelconque des revendications précédentes et
-entre 0 et 2% en poids d’au moins un additif choisi parmi un stabilisant, un colorant, et un mélange de ceux-ci, par rapport au poids total de la composition. Composition selon la revendication 7, caractérisée ne ce qu’elle comporte entre 0,25 et 15% en poids au moins un polymère choisi parmi un polyester, un polyuréthane, un polyamide, par rapport au poids total de la composition. Composition selon la revendication 7 ou 8, caractérisée en ce qu’elle se trouve sous forme d’un voile, d’un film, de granulés, d’un filament, d’une grille, d’une poudre ou d’une suspension. 16 Utilisation du copolymère tel que défini à l’une quelconque des revendications 1 à 6 ou de la composition telle que définie à l’une quelconque des revendications 7 à 9, en tant qu’adhésif thermosensible. Utilisation selon la revendication 10, dans l'industrie textile, notamment pour la fabrication et l’assemblage de matériaux flexibles et dans l’industrie de la chaussure, notamment pour l’assemblage des semelles de chaussures.
PCT/FR2022/052480 2021-12-23 2022-12-22 Copolymere resistant aux lavages WO2023118762A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2114452 2021-12-23
FR2114452A FR3131319A1 (fr) 2021-12-23 2021-12-23 Copolymere resistant aux lavages

Publications (1)

Publication Number Publication Date
WO2023118762A1 true WO2023118762A1 (fr) 2023-06-29

Family

ID=80736150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052480 WO2023118762A1 (fr) 2021-12-23 2022-12-22 Copolymere resistant aux lavages

Country Status (2)

Country Link
FR (1) FR3131319A1 (fr)
WO (1) WO2023118762A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2285446A1 (fr) * 1974-09-21 1976-04-16 Basf Ag Adhesifs fusibles a base de copolyamides, notamment pour le contre-collage des matieres textiles
FR2846332A1 (fr) 2002-10-23 2004-04-30 Atofina Copolymeres transparents a blocs polyamides et blocs polyethers
EP1482011A1 (fr) 2003-05-27 2004-12-01 Ube Industries, Ltd. Composition thermoplastique ayant une résistance à l'hydrolyse améliorée
EP2956494B1 (fr) * 2013-02-13 2018-05-02 Lubrizol Advanced Materials, Inc. Polymères et copolymères de polyamide n-alkylés téléchéliques

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2285446A1 (fr) * 1974-09-21 1976-04-16 Basf Ag Adhesifs fusibles a base de copolyamides, notamment pour le contre-collage des matieres textiles
FR2846332A1 (fr) 2002-10-23 2004-04-30 Atofina Copolymeres transparents a blocs polyamides et blocs polyethers
EP1482011A1 (fr) 2003-05-27 2004-12-01 Ube Industries, Ltd. Composition thermoplastique ayant une résistance à l'hydrolyse améliorée
EP2956494B1 (fr) * 2013-02-13 2018-05-02 Lubrizol Advanced Materials, Inc. Polymères et copolymères de polyamide n-alkylés téléchéliques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIRK-OTHMER: "Encyclopaedia of Chemical Technology", 1992, article "Cycloaliphatic Amines", pages: 386 - 405

Also Published As

Publication number Publication date
FR3131319A1 (fr) 2023-06-30

Similar Documents

Publication Publication Date Title
FR2846332A1 (fr) Copolymeres transparents a blocs polyamides et blocs polyethers
JP3404007B2 (ja) グラフトコポリマー
EP3126447B1 (fr) Compositions de polyamide et de peba pour l'injection de pièces rigides résistant a la fatigue
JP3404008B2 (ja) グラフトコポリマー
CA2909747A1 (fr) Procede de reticulation en surface de particules de polymere
CA2282675A1 (fr) Structure multicouches comprenant un materiau recouvert par un copolymere a blocs polyamides et blocs hydrophiles
FR2606416A1 (fr) Copolyamides transparents et leur utilisation pour le gainage de fibres optiques et pour la fabrication d'objets moules
JPS6238370B2 (fr)
CA2342117C (fr) Copolymeres a blocs polyamides et blocs polyethers a base d'amines ethoxylees
EP1591468A1 (fr) Reactifs thermo-adhesifs a base des copolyamides ou copolyamide-bloc-polyethers reticulables
EP3197938B1 (fr) Utilisation d'un copolymere a blocs pour la protection de pieces a base de metaux
JPS6333492B2 (fr)
US20200140613A1 (en) Soft hand copolyamide composition
WO2023118762A1 (fr) Copolymere resistant aux lavages
WO2016001512A1 (fr) Polyamides a base d'aminoalkyl- ou aminoaryl- piperazine pour adhesifs thermofusibles
FR3115491A1 (fr) Structure multicouche imper-respirante
DK1999184T3 (en) polyamides
FR2996559A1 (fr) Composition et procede d'adhesion sans solvant sur elastomere a base d'acrylonitrile
EP3433303B1 (fr) Copolymère à blocs pour la protection de pièces à base de métaux
FR2776295A1 (fr) Polyamide thermofusible et reticulable, l'un de ses procedes d'obtention et colle le comprenant
FR3109385A1 (fr) Adhésif thermofusible résistant aux fluides automobiles
JPS62161828A (ja) ポリアミドの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22850729

Country of ref document: EP

Kind code of ref document: A1