WO2023116646A1 - 移动终端的定位方法、装置、设备和存储介质 - Google Patents

移动终端的定位方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2023116646A1
WO2023116646A1 PCT/CN2022/140154 CN2022140154W WO2023116646A1 WO 2023116646 A1 WO2023116646 A1 WO 2023116646A1 CN 2022140154 W CN2022140154 W CN 2022140154W WO 2023116646 A1 WO2023116646 A1 WO 2023116646A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
base station
current period
coordinates
area
Prior art date
Application number
PCT/CN2022/140154
Other languages
English (en)
French (fr)
Inventor
纪铮
张嘉铭
蒙越
宁昀鹏
李修璋
Original Assignee
北京罗克维尔斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京罗克维尔斯科技有限公司 filed Critical 北京罗克维尔斯科技有限公司
Publication of WO2023116646A1 publication Critical patent/WO2023116646A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00896Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys specially adapted for particular uses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • H04W4/022Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences with dynamic range variability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of positioning technology, and in particular to a positioning method, device, equipment and storage medium for a mobile terminal.
  • the present disclosure provides a positioning method, device, device and storage medium for a mobile terminal.
  • an embodiment of the present disclosure provides a positioning method for a mobile terminal, including:
  • Fusion processing is performed on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period.
  • the determining the target base station corresponding to the current period according to the ranging distance between multiple UWB base stations and the mobile terminal includes:
  • the target base station corresponding to the current period is determined according to the target area where the mobile terminal is located in the current period.
  • determining the target area where the mobile terminal is located in the current period in multiple preset areas according to the ranging distance between the multiple UWB base stations and the mobile terminal includes:
  • the boundary marking data includes the calibration distance from the boundary marking point to each UWB base station
  • the absolute value of the first difference with the corresponding ranging distance is greater than the set value, and the target area of the mobile terminal in the previous cycle is used as the target area of the current cycle. target area.
  • the boundary calibration data also includes the reference distance between the orientation reference point on one side of each boundary calibration point and each UWB base station, and the second difference between the calibration distance between the corresponding boundary calibration point and the corresponding UWB base station value;
  • the determining the target area where the mobile terminal is located in the current period in a plurality of preset areas according to the ranging distance between the plurality of UWB base stations and the mobile terminal also includes:
  • a preset area on the other side of the boundary marking point that does not include the orientation reference point is used as a target area of the mobile terminal in a current period.
  • the method also includes:
  • the preset previous time is a preset time before the current period, and the preset previous time includes multiple periods ;
  • the boundary calibration data includes the calibration distance from the boundary calibration point to each UWB base station;
  • determining the target area where the mobile terminal is located in the current period in a plurality of preset areas includes: according to each boundary marking point to each UWB base station The calibration distance and the ranging distance corresponding to each UWB base station in the current period determine the target area of the mobile terminal in the current period.
  • the preset area is an area determined based on the vehicle, and the preset area includes an area outside the vehicle and an area inside the vehicle.
  • the plurality of UWB base stations includes six, of which two UWB base stations are respectively located on the left and right sides of the center grid in front of the vehicle, two UWB base stations are located on the left and right sides of the rear door, and two UWB base stations are located in the middle area of the vehicle roof And dislocation along the length direction of the vehicle body;
  • the area outside the vehicle includes a front area outside the vehicle, a rear area outside the vehicle, a left front area outside the vehicle, a left rear area outside the vehicle, a right front area outside the vehicle, and a right rear area outside the vehicle;
  • the interior area includes an interior left front area, an interior right front area, an interior left rear area, and an interior right rear area.
  • the method also includes: obtaining confidence degrees corresponding to each of the target base stations;
  • the calculating the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal includes:
  • the calculating the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal, and the corresponding confidence of each target base station includes:
  • the measurement coordinates of the mobile terminal in the current period are calculated.
  • the method also includes:
  • the set constraint conditions include whether the height coordinate is within the set height coordinate range, and/or whether the horizontal coordinate is within the set horizontal coordinate range;
  • the performing fusion processing on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current cycle includes: responding to the fact that the measured coordinates of the mobile terminal in the current cycle satisfy the set constraints, performing fusion processing on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period;
  • the method further includes: in response to the fact that the measured coordinates of the mobile terminal in the current period do not meet the set constraints, performing fusion processing on the position coordinates of the mobile terminal in the previous period and the predicted coordinates to obtain the The location coordinates of the mobile terminal in the current cycle.
  • performing fusion processing on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period including:
  • the measured coordinates and the predicted coordinates are fused by using a nonlinear Kalman filter method or a particle filter method to obtain the position coordinates of the mobile terminal in the current period.
  • an embodiment of the present disclosure provides a positioning device for a mobile terminal, including:
  • the target UWB base station determination unit is used to determine the target base station corresponding to the current period according to the ranging distance between a plurality of UWB base stations and the mobile terminal;
  • a measurement coordinate calculation unit configured to calculate the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal;
  • a predicted coordinate calculation unit configured to calculate the predicted coordinates of the mobile terminal in the current period according to the position coordinates of the mobile terminal in the previous period and the displacement in the current period;
  • a data fusion unit configured to perform fusion processing on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period.
  • the target base station determining unit includes:
  • the target area determination subunit is used to determine the target area where the mobile terminal is located in the current period in multiple preset areas according to the ranging distance between the multiple UWB base stations and the mobile terminal;
  • the target base station determination subunit is configured to determine the target base station corresponding to the current period according to the target area where the mobile terminal is located in the current period.
  • a confidence degree obtaining unit configured to obtain the confidence degree corresponding to each of the target base stations
  • the measurement coordinate calculation unit calculates the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal, and the corresponding confidence of each target base station.
  • the implementation of the present disclosure provides a computer device, including: a memory and a processor, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the aforementioned A positioning method for a mobile terminal.
  • an embodiment of the present disclosure provides a computer-readable storage medium, in which a computer program is stored, and when the computer program is executed by a processor, the positioning method for a mobile terminal is as described above. .
  • the target base station is determined according to the ranging distances corresponding to the multiple UWB base stations, and the target base station is determined according to the distance between the target base station and the mobile terminal.
  • the ranging distance is used to calculate the measurement coordinates of the mobile terminal.
  • the predicted coordinates of the mobile terminal are calculated according to the position coordinates of the last period of the mobile terminal and the displacement of the current period, and the measured coordinates and predicted coordinates are used for fusion processing to obtain the position coordinates of the mobile terminal in the current period. Because the position coordinates of the current cycle are obtained by fusing the measured coordinates and the predicted coordinates, it is more accurate than the measured coordinates obtained by directly using the UWB side distance calculation.
  • FIG. 1 is a flowchart of a positioning method for a mobile terminal provided by some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of a UWB base station layout and area division provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a positioning device for a mobile terminal provided by some embodiments of the present disclosure
  • Fig. 4 is a schematic structural diagram of a computer device provided by an embodiment of the present disclosure.
  • the term “comprise” and its variations are open-ended, ie “including but not limited to”.
  • the term “based on” is “based at least in part on”.
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one further embodiment”; the term “some embodiments” means “at least some embodiments.”
  • Relevant definitions of other terms will be given in the description below. It should be noted that concepts such as “first” and “second” mentioned in this disclosure are only used to distinguish different devices, modules or units, and are not used to limit the sequence of functions performed by these devices, modules or units or interdependence.
  • An embodiment of the present disclosure provides a positioning method for a mobile terminal.
  • the positioning method can be applied in application scenarios such as vehicles and smart houses to realize positioning of mobile terminals such as smart keys.
  • the positioning method of the mobile terminal provided by the embodiments of the present disclosure will be described below by taking a vehicle use scene as an example.
  • Fig. 1 is a flowchart of a positioning method for a mobile terminal provided by some embodiments of the present disclosure. As shown in FIG. 1 , the positioning method for a mobile terminal provided by an embodiment of the present disclosure includes steps S101-S105.
  • the mobile terminal positioning method provided by the embodiments of the present disclosure can be executed by a mobile terminal equipped with a UWB module, such as a vehicle remote control key, or by a vehicle or a smart house installed with a UWB base station (specifically, by a vehicle in a vehicle). Computing devices with data processing capabilities, such as HU, etc., and central control devices in smart houses).
  • a mobile terminal equipped with a UWB module, such as a vehicle remote control key, or by a vehicle or a smart house installed with a UWB base station (specifically, by a vehicle in a vehicle).
  • Computing devices with data processing capabilities such as HU, etc., and central control devices in smart houses.
  • Step S101 Determine the target base station corresponding to the current cycle according to the ranging distances corresponding to the multiple UWB base stations.
  • a UWB module is installed in the mobile terminal, and the UWB module periodically performs UWB communication with multiple UWB base stations deployed in the vehicle, and determines the distance between the mobile terminal and the UWB base station based on the time stamp information transmitted during mutual communication. The ranging distance between.
  • a non-bilateral ranging algorithm may be used between the mobile terminal and the UWB base station of the vehicle to determine the ranging distance between the mobile terminal and the UWB base station of the vehicle.
  • a UWB base station UWB base station A
  • the method for determining the ranging distance between the mobile terminal and the UWB base station A by using an asymmetric bilateral ranging algorithm is as follows.
  • the UWB module in the mobile terminal sends a Pos1 message to the UWB base station A, and records the sending time stamp of sending the Pos1 message.
  • UWB base station A After receiving the Pos1 message matching its own address, UWB base station A records the receiving time stamp of receiving the Pos1 message. After a delay for a period of time, UWB base station A sends a response message RespA to the mobile terminal, and records the sending time stamp of sending RespA. According to the receiving time stamp of receiving the Pos1 message and the sending time stamp of sending RespA, the time period TreplyA between UWB base station A receiving the Pos1 message and sending the response message can be calculated.
  • the mobile terminal After the mobile terminal receives the response message RespA from UWB base station A, it records the receiving time stamp of the response message RespA, and delays Trepl2A for a period of time to send the Final message to UWB base station A.
  • the final message includes the mobile terminal and UWB base station A Various time stamp information recorded at the time of communication. According to the receiving timestamp of receiving the response message RespA and the sending timestamp of sending the Pos1 message, the time period Tround1A from sending the Pos1 message to receiving the response message RespA by the mobile terminal can be calculated.
  • UWB base station A After receiving the Final message, UWB base station A records the receiving time stamp of receiving the Final message. According to the receiving timestamp of receiving the Final message and the sending timestamp of sending RespA, the time period Tround2A between UWB base station A sending RespA and receiving the Final message can be calculated.
  • UWB base station A calculates Tround1A, TreplyA, Treply2A and Tround2A according to the aforementioned various timestamps, and uses the following formula (Tround1A ⁇ Tround2A-TreplyA ⁇ Treply2A)/(Tround1A+TreplyA+Treply2A+Tround2A) to obtain the message in Time-of-flight TOFA of mobile terminal and UWB base station A.
  • the UWB base station A can calculate the ranging distance between the mobile terminal and the UWB base station A. After the ranging distance is calculated, the UWB base station A may send the ranging distance to the mobile terminal, so that the mobile terminal acquires the ranging distance with the UWB base station A.
  • UWB base station A may also send various timestamps to the mobile terminal, so that the mobile terminal calculates the aforementioned Tround1A, TreplyA, Treply2A and Tround2A, and According to the aforementioned four time periods, (Tround1A ⁇ Tround2A-TreplyA ⁇ Treply2A)/(Tround1A+TreplyA+Treply2A+Tround2A) is used to calculate the time-of-flight TOFA, and according to the time-of-flight TOFA and electromagnetic signal propagation speed, the mobile terminal and UWB base station A The ranging distance between.
  • the mobile terminal in one ranging period, can communicate with multiple UWB base stations. According to the aforementioned method, the embodiment of the present application can also obtain the ranging distance between the mobile terminal and other UWB base stations in the current cycle.
  • asymmetric bilateral ranging algorithm can compensate the clock offset between the mobile terminal and each UWB base station, ensuring a high accuracy of the ranging distance.
  • a unilateral ranging algorithm may also be used to determine the ranging distance between the mobile terminal and each UWB base station.
  • the target base station is a UWB base station that does not have non-line-of-sight propagation of UWB signals during UWB communication with the mobile terminal, or that has a small degree of non-line-of-sight propagation.
  • determining the target base station corresponding to the current period according to the ranging distance between multiple UWB base stations and the mobile terminal may include steps S1011-S1012.
  • Step S1011 According to the ranging distance between multiple UWB base stations and the mobile terminal, determine the target area where the mobile terminal is located in the current period in multiple preset areas.
  • Step S1012 According to the target area where the mobile terminal is located in the current period, determine the target base station corresponding to the current period.
  • the applicant of this application considers that the distance between the mobile terminal and the UWB base station at a large number of locations can be measured based on the layout of the UWB base station in the vehicle, and mathematical statistics are performed on the accuracy of the distance measurement. Based on the results of mathematical statistics The vehicle's interior space and exterior space are divided into regions, and the relationship between each region and the UWB base station is established. Among them, establishing the association relationship between each area and the UWB base station is to determine which UWB base stations the mobile terminal communicates with when the ranging distance is credible (that is, the non-line-of-sight propagation occurs to a lesser extent) when it is in a certain area. That is to say, when the mobile terminal is located in a certain area, which UWB base stations can be used to calculate the location coordinates of the mobile terminal using the ranging distances measured by them.
  • Fig. 2 is a schematic diagram of a UWB base station layout and area division provided by an embodiment of the present disclosure.
  • six UWB base stations are installed in the vehicle, of which two UWB base stations are located on the left and right sides of the central grid in front of the vehicle, and two UWB base stations are located on the left and right sides of the tailgate.
  • the two UWB base stations are located in the middle area of the roof of the vehicle and are staggered along the length of the vehicle body.
  • the inventor measured the ranging distance between the mobile terminal and the UWB base station at a large number of locations, and performed mathematical statistics on the accuracy of the ranging distance. Based on the mathematical statistical results Both the interior space and the exterior space of the vehicle are divided into regions, and the relationship between each division region and the UWB base station is established.
  • the area outside the vehicle is divided into six sub-areas.
  • the sub-areas outside the vehicle are respectively the front area outside the vehicle, the rear area outside the vehicle, the left front area outside the vehicle, the left rear area outside the vehicle, the right front area outside the vehicle, and the right rear area outside the vehicle, corresponding to Figure 2 in turn
  • the front area outside the vehicle and the left front area outside the vehicle, the front area outside the vehicle and the right front area outside the vehicle are bounded by the connection line between UWB base station 1 and UWB base station 2, and the left front area outside the vehicle and the front area outside the vehicle
  • the left rear area, the right front area outside the vehicle, and the right rear area outside the vehicle are bounded by the plane where the B-pillar of the vehicle is located, and the rear area outside the vehicle, the left rear area outside the vehicle, and the right rear area outside the vehicle are bounded by UWB base station 3
  • the connection with the UWB base station 4 is the boundary.
  • the vehicle interior area is divided into four word areas.
  • the sub-areas in the car are the left front area in the car, the right front area in the car, the left rear area in the car, and the right rear area in the car, which correspond to the interior area 1, the interior area 2, the interior area 3 and the interior area in Figure 2. area 4.
  • the in-vehicle area 1 and the in-vehicle area 2, the in-vehicle area 3 and the in-vehicle area 4 are bounded by the vertical plane where the connection line of the UWB base station 5 and the UWB base station 6 is located, the in-vehicle area 1 and the in-vehicle area 3, the in-vehicle area Area 2 and interior area 4 are bounded by the plane where the B-pillar of the vehicle is located.
  • Table 1 is a table of association relationship between divided areas and UWB base stations.
  • indicates that an area in a certain row has an association relationship with a UWB base station in a certain column.
  • the in-vehicle area and the out-of-vehicle area may also be divided by other area division methods, and the corresponding association relationship also needs to be determined according to mathematical statistics.
  • Step S102 Calculate the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal.
  • the ranging distance from the target base station to the mobile terminal can be queried, and then the measurement coordinates of the mobile terminal in the current period can be calculated according to the ranging distance.
  • the measurement coordinates of the current period may be calculated using a trilateration least squares fitting method. Assuming that the target area is the area outside the vehicle, the position coordinates of UWB base station 1 are (x 1 , y 1 , z 1 ), the ranging distance from the mobile terminal to UWB base station 1 is d 1 , and the position coordinates of UWB base station 2 are (x 2 , y 2 , z 2 ), the distance from the mobile terminal to the UWB base station 2 is d 2 , the position coordinates of the UWB base station 5 are (x 5 , y 5 , z 5 ), the distance from the mobile terminal to the UWB base station 5 is The distance is d 5 , the position coordinates of the UWB base station 6 are (x 6 , y 6 , z 6 ), and the ranging distance from the mobile terminal to the UWB base station 6 is d 6 , then the following equations can be constructed.
  • Step S103 Calculate the predicted coordinates of the mobile terminal in the current period according to the position coordinates of the mobile terminal in the previous period and the displacement in the current period.
  • an inertial measurement unit is configured in the mobile terminal, and the displacement of the mobile terminal in the current period can be determined according to the inertial signal output in the current period of inertial measurement.
  • an inertial measurement unit usually includes a three-axis accelerometer and a three-axis gyroscope.
  • the motion acceleration of the mobile terminal can be measured according to the three-axis accelerometer, and the motion speed of the mobile terminal can be obtained according to the integral operation of the motion acceleration, and the displacement of the mobile terminal can be obtained according to the integral operation of the motion speed.
  • the inertial measurement unit configured on the mobile terminal is a strapdown inertial measurement unit, and the three-axis acceleration values and three-axis angular velocity values measured by the strapdown inertial measurement unit are relative to the carrier coordinates system, the speed and displacement information of the mobile terminal cannot be obtained simply by integration, it is necessary to convert the acceleration value in the carrier coordinate system to the acceleration value in the geographic coordinate system where the mobile terminal is located, and then calculate the mobile terminal based on the converted acceleration value. speed of movement and displacement.
  • adding the position coordinates of the mobile terminal in the previous period to the displacement of the current period can obtain the predicted coordinates of the mobile terminal in the current period.
  • Step S104 Fusion processing is performed on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period.
  • the mobility characteristic of the mobile terminal has a non-linear characteristic.
  • the measured coordinates and predicted coordinates can be fused, such as nonlinear Kalman filter method or particle filter method can be used to fuse the measured coordinates and predicted coordinates, and then the position of the mobile terminal in the current period can be obtained coordinate.
  • the nonlinear Kalman filtering method can specifically be an extended Kalman filtering method or an unscented Kalman filtering method, wherein the extended Kalman filtering method is a method obtained by linearizing a random nonlinear discrete system, and the unscented Kalman filtering method is Mann filtering is a Kalman filtering method that uses unscented changes to deal with nonlinear systems.
  • an extended Kalman filter method is used to illustrate the location coordinates of the current period of the mobile terminal obtained through fusion processing based on the measured coordinates and the predicted coordinates in the embodiment of the present disclosure.
  • the system for positioning a mobile terminal provided by the embodiments of the present disclosure is a consistent, safe, measurable, and controllable nonlinear system.
  • the nonlinear system can use the state equation to predict the predicted coordinates of the mobile terminal at the next moment, where the displacement of the current cycle plays a role in driving the state equation. Because the inertial measurement unit has a certain amount of noise, the long-term accumulation of the prediction of the speed and displacement of the mobile terminal will introduce serious cumulative errors, so the state equation can only provide state estimation in a short period of time.
  • the state equation can be simplified as:
  • the nonlinear system can use the measurement equation to directly or indirectly measure the description of the model through the measurement coordinates, and correct the error generated during the state equation deduction process.
  • the measurement equation can be simplified as
  • the measured coordinates and the predicted coordinates are fused to obtain the position coordinates of the mobile terminal in the current cycle, that is, using Calculate the position coordinates of the current cycle in is the predicted coordinate, z k is the measured coordinate, and K k is the Kalman gain.
  • the mobile terminal positioning method After obtaining the ranging distances between multiple UWB base stations and the mobile terminal in the current period, determine the target base station according to the ranging distances corresponding to the multiple UWB base stations, and determine the target base station according to the distance between the target base station and the mobile terminal.
  • the ranging distance of the mobile terminal is used to calculate the measurement coordinates of the mobile terminal.
  • the predicted coordinates of the mobile terminal are calculated according to the position coordinates of the last period of the mobile terminal and the displacement of the current period, and the measured coordinates and predicted coordinates are used for fusion processing to obtain the position coordinates of the mobile terminal in the current period.
  • the target base station is a UWB base station with a small degree of non-line-of-sight propagation of UWB signals transmitted between mobile terminals
  • the measurement coordinates calculated by using the ranging distance corresponding to the target base station are more accurate.
  • the position coordinates of the mobile terminal obtained through the fusion processing of the measured coordinates and the predicted coordinates are relatively accurate.
  • the problem of positioning distortion caused by excessive distance measurement errors in UWB communication can be reduced.
  • determining the target area where the mobile terminal is located in the current period is to determine which preset area the mobile terminal is in in the vehicle interior or in the space outside the vehicle in the current period.
  • determining the target area where the mobile terminal is located in the current period may include steps S1011A-S1011F.
  • Step S1011A According to the location coordinates of the mobile terminal in the previous period, determine the boundary marking data of the area where the mobile terminal was located in the previous period.
  • the boundary calibration data includes calibration distances from boundary calibration points to multiple UWBs.
  • the mobile terminal determines the boundary calibration data of the area in the previous cycle according to the position coordinates of the previous cycle, including the following steps: firstly, according to the position coordinates of the previous cycle, the area in the previous cycle is determined, and then according to the previous cycle Select corresponding calibration data from all the boundary calibration data for the area where the mobile terminal is located in the previous period as the boundary calibration data for the area where the mobile terminal is located in the previous period.
  • Step S1011B Determine the relationship between the ranging distance between the mobile terminal and all UWB base stations in the current period, the absolute value of the first difference of the calibration distance from each boundary calibration point to the corresponding UWB base station, and the set value.
  • step S1011C If the first difference between the ranging distance between the mobile terminal and any UWB base station in the current period and the calibration distance between a boundary calibration point and the corresponding UWB base station is greater than the set value, execute step S1011C. And if the difference between the ranging distance between the mobile terminal and multiple UWB base stations in the current period and the calibration distance between a certain border calibration point and each UWB base station is smaller than the set value, execute step S1011D.
  • Step S1011C take the area where the mobile terminal was located in the previous cycle as the target area.
  • the difference between the ranging distance between the mobile terminal and any UWB base station in the current period and the ranging distance from the boundary marking point to the corresponding UWB base station is greater than the set value, it indicates that the mobile terminal is in the current period. If it has not moved to the vicinity of the area boundary of the area where it was located in the previous period, it indicates that the mobile terminal is still located in the area where the mobile terminal was located in the previous period in the current period, so the area where the mobile terminal was located in the previous period is taken as the target area where the mobile terminal is located in the current period.
  • Step S1011D Determine whether the magnitude relationship between the first difference value and the second difference value corresponding to a certain boundary calibration point is the same with respect to the zero value; if they are the same, execute step S1011E; if not, execute step S1011F.
  • the boundary marking data in addition to the ranging distances from the boundary marking points to a plurality of UWB base stations, also includes the reference distance between the orientation reference point on one side of each boundary marking point and each UWB base station and the corresponding The second difference of the calibration distance between the boundary calibration point and the corresponding UWB base station.
  • step S1011D is performed in the embodiment of the present disclosure.
  • the first difference is the difference between the ranging distance between the mobile terminal and a certain UWB base station and the calibration distance between the boundary calibration point and the corresponding UWB base station
  • the second difference is the azimuth on one side of the boundary calibration point
  • step S1011F is executed.
  • Step S1011E Take the area where the orientation reference point is located as the target area.
  • Step S1011F Take the area on the other side of a certain boundary marking point that does not include the orientation reference point as the target area.
  • the mobile terminal may further perform steps S1011G-S10111H.
  • Step S1011G Obtain the displacement of the mobile terminal in the current period.
  • the mobile terminal can obtain the velocity of the mobile terminal in the current period by performing an integral operation on the motion acceleration output by the inertial measurement unit.
  • the speed of the mobile terminal in the current period may be an average speed, or may be an instantaneous speed at various time points in the current period.
  • the displacement in the current cycle can be determined through an integral operation.
  • Step S1011H Determine the set value according to the displacement of the mobile terminal in the current cycle.
  • the aforementioned set value can be determined based on the moving distance.
  • the moving distance can be directly used as the setting value, or the setting value can be obtained by multiplying the moving distance by a weight value.
  • the mobile terminal needs to determine the target area in the previous cycle according to the location coordinates in the previous cycle, and determine the target area in the current cycle according to the target area in the previous cycle. In other embodiments of the present disclosure, the mobile terminal may also use other methods to determine the target area where the current cycle is located.
  • the positioning method of the mobile terminal before performing step S1011, the positioning method of the mobile terminal further includes steps S1013-S1016.
  • Step S1013 Obtain ranging distances between a plurality of UWB base stations and the mobile terminal preset in the previous time.
  • the preset previous time is a preset time before the current cycle, and the preset previous time includes a plurality of UWB communication cycles.
  • the preset previous time is set to 1 s, and the UWB communication cycle is 50 ms, so the preset previous time includes 20 communication cycles.
  • the mobile terminal can determine the preset ranging distance with multiple UWB base stations in the previous time according to the non-bilateral ranging algorithm in step S101, or can use the unilateral ranging algorithm to determine the preset ranging distance.
  • the ranging distance between multiple BUWB base stations in the previous time will not be repeated here.
  • Step S1014 Calculate the average value of the ranging distance corresponding to each UWB base station in the preset previous time.
  • the mobile terminal after obtaining a plurality of ranging distances corresponding to each UWB base station in the preset previous time, calculates the corresponding mean value and variance based on the ranging distance corresponding to each UWB base station.
  • the mean value corresponding to UWB base station 1 can be obtained as The corresponding variance is Similarly, the mean value corresponding to UWB base station 2 is The corresponding variance is
  • Step S1015 Select the mean values corresponding to at least N UWB base stations with the smallest variances, and calculate the estimated position coordinates of the mobile terminal.
  • the mobile terminal After calculating the mean value and variance of the test distances corresponding to each UWB base station in the preset period of time, the mobile terminal will compare the variances corresponding to each UWB base station to determine at least N UWB base stations with the smallest variance, and based on the aforementioned UWB The average value of the ranging distance corresponding to the base station is used to calculate the estimated position coordinates of the mobile terminal; wherein N is at least 1, and preferably N is at least 4.
  • the possibility is smaller, and the reliability of the mean value of the ranging distance corresponding to the UWB base station for calculating the estimated position coordinates of the mobile terminal is higher.
  • the mobile terminal selects the average value of the ranging distances corresponding to the four UWB base stations with the smallest variance, and calculates the estimated position coordinates of the mobile terminal.
  • the mobile terminal may also select the mean value of the ranging distances corresponding to the UWB base stations whose variance is smaller than the set threshold, and calculate the estimated position coordinates of the mobile terminal.
  • Step S1016 According to the estimated position coordinates, determine the target area corresponding to the estimated position coordinates, and the boundary calibration data of the target area, the boundary calibration data includes the calibration distance from the boundary calibration points to each UWB base station.
  • step S1011 may be executed to determine the target area where the mobile terminal is located in the current period in multiple preset areas according to multiple ranging distances. Specifically, step S1011 includes step S10111.
  • Step S10111 According to the calibration distance from each boundary calibration point to each UWB base station, and the corresponding ranging distance of each UWB base station in the current period, determine the target area of the mobile terminal in the current period.
  • step S10111 may include steps S10111A-S10111E.
  • S10111A Determine the relationship between the ranging distance between the mobile terminal and all UWB base stations in the current period, the absolute value of the first difference of the calibration distance from each boundary calibration point to the corresponding UWB base station, and the set value.
  • step S10111B If the first difference between the ranging distance between the mobile terminal and any UWB base station in the current period and the calibration distance between a boundary calibration point and the corresponding UWB base station is greater than the set value, execute step S10111B.
  • step S10111C executes step S10111C.
  • Step S10111B Take the preset area corresponding to the estimated position coordinates as the target area.
  • the difference between the ranging distance between the mobile terminal and any UWB base station in the current period and the ranging distance from the boundary marking point to the corresponding UWB base station is greater than the set value, it indicates that the mobile terminal is in the current period. It has not moved to the vicinity of the area boundary of the preset area where the estimated position coordinates are located, which then indicates that the mobile terminal is still located in the preset area where the estimated position coordinates are located in the current period, so the preset area where the estimated position coordinates is located is taken as the target of the current period area.
  • Step S10111C Determine whether the magnitude relationship between the first difference and the second difference corresponding to a certain boundary marking point is the same with respect to the zero value; if they are the same, execute step S10111D; if not, execute step S10111E.
  • the boundary marking data in addition to the ranging distances from the boundary marking points to a plurality of UWB base stations, also includes the reference distance between the orientation reference point on one side of each boundary marking point and each UWB base station and the corresponding The second difference of the calibration distance between the boundary calibration point and the corresponding UWB base station.
  • Judging whether the magnitude relationship between the first difference and the second difference relative to the zero value is the same is to judge whether the first difference and the second difference are both positive or negative.
  • step S1019C is performed in the embodiment of the present disclosure.
  • step S1019D If the magnitude relationship between the first difference and the second difference relative to the zero value is the same, it proves that the mobile terminal in the current period is located in the same area as the orientation reference point, so step S1019D is executed. And if the magnitude relationship between the first difference and the second difference relative to the zero value is different, it proves that the current cycle mobile terminal is not in the same area as the orientation reference point, that is, the current cycle mobile terminal is located at another point of the aforementioned certain boundary calibration point. One side area, so step S1019E is executed.
  • Step S10111D Take the area where the orientation reference point is located as the target area.
  • Step S10111E Take the area on the other side of a certain boundary marking point that does not include the orientation reference point as the target area.
  • the aforementioned method may be used to determine the target area when the mobile terminal just establishes a connection with the UWB base station; the aforementioned method may also be used to determine the target area at any period.
  • step S101 when the electronic device performs step S101 to select a target UWB base station corresponding to the target area from among multiple UWB base stations, it may also perform step S105.
  • Step S105 Obtain the confidence of each target UWB base station corresponding to the target area.
  • the confidence relationship table between the divided areas and the corresponding areas can also be obtained.
  • Table 2 is a table of the relationship between the divided area and the confidence degree of the UWB base station.
  • Table 2 The relationship between the divided area and the confidence degree of the UWB base station
  • step S102 calculates the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target UWB base station and the mobile terminal, specifically step S1021.
  • Step S1021 Calculate the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target UWB base station and the mobile terminal, and the confidence of each target UWB base station corresponding to the target area.
  • step S1021 may include steps S10211-S10212.
  • Step S10211 Multiply the ranging distance corresponding to each target base station in the current period by the confidence degree to obtain the corrected ranging distance from each target base station to the mobile terminal in the current period.
  • Step S10212 Calculate the measurement coordinates of the mobile terminal in the current period according to the corrected ranging distance.
  • the position coordinates of the current period may be calculated by using a trilateration positioning least squares method fitting solution. Assuming that the target area is the area outside the vehicle, the position coordinates of UWB base station 1 are (x 1 , y 1 , z 1 ), the ranging distance from the mobile terminal to UWB base station 1 is d 1 , and the position coordinates of UWB base station 2 are (x 2 , y 2 , z 2 ), the distance from the mobile terminal to the UWB base station 2 is d 2 , the position coordinates of the UWB base station 5 are (x 5 , y 5 , z 5 ), the distance from the mobile terminal to the UWB base station 5 is The distance is d 5 , the position coordinates of UWB base station 6 are (x 6 , y 6 , z 6 ), and the ranging distance from the mobile terminal to UWB base station 6 is d 6 . According to Table 2, UWB base station 1 and UW
  • the UWB signal has non-line-of-sight propagation, its propagation distance is larger than that of straight-line propagation. And if the non-line-of-sight propagation of the UWB signal is more serious, the confidence of the corresponding ranging distance is lower.
  • the corrected ranging distance is obtained by correcting the ranging distance with the confidence level, and then the measured coordinates (x, y, z) are calculated by using the corrected ranging distance, which improves the accuracy of the measured coordinate calculation.
  • the corrected ranging distance may also be calculated based on the ranging distance between the target UWB base station and the mobile terminal, and the confidence degree of the target UWB base station corresponding to the target area.
  • step S102 after the mobile terminal executes step S102 to obtain the measurement coordinates of the current cycle, it may further execute step S106.
  • Step S106 judging whether the measurement coordinates of the mobile terminal in the current period satisfy the set constraints. If the preset constraint condition is satisfied, the aforementioned step S104 is executed; if the preset constraint condition is not satisfied, step S107 is executed.
  • the calculated measurement coordinates are contrary to the actual situation. For example, it may happen that the height coordinate in the calculated measurement coordinates is smaller than the ground height, or the horizontal direction coordinate exceeds the UWB communication radius. If the aforementioned measurement coordinates contrary to the actual situation occur and the coordinates of the mobile terminal at the current location are calculated, a huge error will be introduced.
  • the measurement coordinates of the mobile terminal in the current period After obtaining the measurement coordinates of the mobile terminal in the current period, it is also determined whether the measurement coordinates satisfy the set constraint conditions.
  • the aforementioned setting constraints are constraints for judging whether the measurement coordinates are reasonable or not.
  • setting the constraint condition includes setting a height coordinate range and setting a horizontal coordinate range.
  • the set height coordinate range is a range representing possible height coordinates of the mobile terminal
  • the set horizontal coordinate range is a range representing possible horizontal coordinates of the mobile terminal.
  • the constraints in the aforementioned step S107 may include: whether the height coordinate is within the set height coordinate range, and/or whether the horizontal coordinate is within Set the horizontal coordinate range.
  • Step S107 Perform fusion processing on the location coordinates of the mobile terminal in the previous cycle and the predicted coordinates to obtain the location coordinates of the mobile terminal in the current cycle.
  • the measurement coordinates of the mobile terminal in the current period do not meet the set constraints, it proves that the measurement coordinates of the mobile terminal in the current period are not credible, so the measurement coordinates of the current period are not used for fusion processing, but the position coordinates of the previous period are used Fusion processing is performed with the predicted coordinates to obtain the position coordinates of the mobile terminal in the current cycle.
  • the number of UWB base stations deployed in the vehicle is six, and the number of target base stations is four.
  • the number of UWB base stations can also be other numbers, and the number of target base stations can also be other numbers, but it should be ensured that the number of UWB base stations is at least five, and the number of target base stations is at least four, so that It is ensured that at least four base stations can be selected as target base stations among at least five UWB base stations, and the position coordinates of the mobile terminal can be obtained through settlement of at least four target base stations.
  • Fig. 3 is a schematic structural diagram of a positioning device for a mobile terminal provided by some embodiments of the present disclosure.
  • the positioning device of the mobile terminal can be understood as a part of the functional modules of the above-mentioned vehicle controller.
  • the mobile terminal positioning device 300 provided by the embodiment of the present disclosure includes a target base station determination unit 301 , a measured coordinate calculation unit 302 , a predicted coordinate calculation unit 303 and a data fusion unit 304 .
  • the target base station determining unit 301 is configured to determine the target base station corresponding to the current period according to the ranging distance between multiple UWB base stations and the mobile terminal.
  • the measurement coordinate calculation unit 302 is configured to calculate the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal.
  • the predicted coordinate calculation unit 303 is configured to calculate the predicted coordinates of the mobile terminal in the current period according to the position coordinates of the mobile terminal in the previous period and the displacement in the current period.
  • the data fusion unit 304 is configured to perform fusion processing on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period.
  • the target base station determining unit includes a target area determining subunit and a target base station determining subunit.
  • the target area determination subunit is used to determine the target area where the mobile terminal is located in the current period in multiple preset areas according to the ranging distance between multiple UWB base stations and the mobile terminal.
  • the target base station determination subunit is configured to determine the target base station corresponding to the current period according to the target area where the mobile terminal is located in the current period.
  • the target area determining subunit determines the boundary marking data of the target area where the mobile terminal is located in the previous period according to the position coordinates of the mobile terminal in the previous period, and the boundary marking data includes boundary marking points to each UWB The calibration distance of the base station; in response to the calibration distance from each boundary calibration point to each UWB base station, the absolute value of the first difference with the corresponding ranging distance is greater than the set value, and the target area of the mobile terminal in the previous cycle is used as The target area for the current cycle.
  • the boundary calibration data also includes the reference distance between the orientation reference point on one side of each boundary calibration point and each UWB base station, and the calibration distance between the corresponding boundary calibration point and the corresponding UWB base station
  • the second difference correspondingly, the target area determination subunit responds to the absolute value of the first difference being less than the set value, and judges whether the first difference corresponding to the boundary calibration point and the second difference are related to the zero value.
  • the preset area where the orientation reference point is located is used as the target area where the current cycle of the mobile terminal is located; Let the area be the target area of the current period of the mobile terminal.
  • the positioning device 300 of the mobile terminal further includes a setting value determining unit.
  • the set value determining unit is used for determining the set value according to the displacement of the mobile terminal in the current period.
  • the positioning device 300 of the mobile terminal further includes an initial ranging distance acquisition unit, a mean variance calculation unit, an estimated position coordinate calculation unit, and a preset area selection unit.
  • the initial ranging distance acquisition unit is used to obtain the ranging distance between multiple UWB base stations and mobile terminals in the preset previous time, the preset previous time is the preset time before the current cycle, and the preset previous time includes multiple cycle;.
  • the mean and variance calculation unit is used to respectively calculate the mean and variance of the ranging distances corresponding to each UWB base station in the preset previous time.
  • the estimated position coordinate calculation unit is used to select at least N average values corresponding to the UWB base stations with the smallest variance, and calculate the estimated position coordinates of the mobile terminal, where N is an integer greater than or equal to 1.
  • the preset area selection unit is used to determine the preset area corresponding to the estimated position coordinates and the boundary calibration data of the preset area according to the estimated position coordinates.
  • the boundary calibration data includes the calibration distance from the boundary calibration points to each UWB base station.
  • the target area determination subunit is used to determine the target area of the mobile terminal in the current period according to the calibration distance from each boundary calibration point to each UWB base station, and the corresponding ranging distance of each UWB base station in the current period.
  • the device for locating a mobile terminal further includes a confidence degree acquiring unit.
  • the confidence acquisition unit is configured to acquire the confidence of each target base station corresponding to the target area.
  • the measurement coordinate calculation unit 302 calculates the measurement coordinates of the mobile terminal in the current period according to the ranging distance between the target base station and the mobile terminal, and the confidence of each target base station corresponding to the target area. Specifically, the measurement coordinate calculation unit first multiplies the ranging distance corresponding to each target base station in the current period and the confidence degree to obtain the corrected ranging distance from each target base station to the mobile terminal in the current period; then according to the corrected ranging distance corresponding to each target base station The distance and the position coordinates of each target base station are used to calculate the measurement coordinates of the mobile terminal in the current cycle.
  • the device for locating a mobile terminal further includes a constraint judging unit.
  • the constraint judging unit is used for judging whether the measurement coordinates of the mobile terminal in the current cycle satisfy the set constraint conditions.
  • the data fusion unit 304 performs fusion processing on the measured coordinates and predicted coordinates to obtain the position coordinates of the mobile terminal in the current period.
  • setting the constraint condition includes setting a height coordinate range and setting a horizontal coordinate range.
  • the constraint judging unit judging whether the measurement coordinates of the mobile terminal in the current period satisfy the set constraint conditions includes: judging whether the height coordinates of the mobile terminal in the measurement coordinates of the current period are within the range of the set height coordinates, and/or judging whether the mobile terminal is in Whether the horizontal coordinate in the measurement coordinates of the current period is within the range of the set horizontal coordinate.
  • the data fusion unit 304 when the measurement coordinates of the mobile terminal in the current period do not meet the set constraint conditions, performs fusion processing on the position coordinates and predicted coordinates of the mobile terminal in the previous period to obtain The location coordinates of the mobile terminal in the current cycle.
  • the data fusion unit 304 uses a nonlinear Kalman filter method or a particle filter method to perform fusion processing on the measured coordinates and the predicted coordinates to obtain the position coordinates of the mobile terminal in the current period.
  • the number of the plurality of UWB base stations is at least five, and the number of target UWB base stations is at least four.
  • FIG. 4 is a schematic structural diagram of a computer device provided by an embodiment of the present disclosure. Referring to FIG. 4 in detail below, it shows a schematic structural diagram of a computer device 400 suitable for implementing an embodiment of the present disclosure.
  • the computer device shown in FIG. 4 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • a computer device 400 may include a processing device (such as a central processing unit, a graphics processing unit, etc.) 401, which may be loaded into a random access memory RAM according to a program stored in a read-only memory ROM 402 or from a storage device 408.
  • the program in 403 executes various appropriate actions and processing.
  • various programs and data necessary for the operation of the computer device 400 are also stored.
  • the processing device 401, the ROM 402, and the RAM 403 are connected to each other through a bus 404.
  • An input/output I/O interface 405 is also connected to the bus 404 .
  • the following devices can be connected to the I/O interface 405: input devices 406 including, for example, a touch screen, touchpad, camera, microphone, accelerometer, gyroscope, etc.; outputs including, for example, a liquid crystal display (LCD), speaker, vibrator, etc. means 407; storage means 408 including, for example, magnetic tape, hard disk, etc.; and communication means 409.
  • the communication means 409 may allow the computer device 400 to communicate with other devices wirelessly or by wire to exchange data. While FIG. 5 shows computer device 400 having various means, it should be understood that implementing or possessing all of the means shown is not a requirement. More or fewer means may alternatively be implemented or provided.
  • embodiments of the present disclosure include a computer program product, which includes a computer program carried on a non-transitory computer readable medium, where the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from a network via communication means 409, or from storage means 408, or from ROM 402.
  • the processing device 401 When the computer program is executed by the processing device 401, the above-mentioned functions defined in the methods of the embodiments of the present disclosure are performed.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can transmit, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the client and the server can communicate using any currently known or future network protocols such as HTTP (HyperText Transfer Protocol, Hypertext Transfer Protocol), and can communicate with digital data in any form or medium Communications (eg, communication networks) are interconnected.
  • Examples of communication networks include local area networks (“LANs”), wide area networks (“WANs”), internetworks (e.g., the Internet), and peer-to-peer networks (e.g., ad hoc peer-to-peer networks), as well as any currently known or future developed network of.
  • the above-mentioned computer-readable medium may be included in the above-mentioned computer device, or may exist independently without being incorporated into the computer device.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the computer device, the computer device: acquires the ranging distance between multiple UWB base stations and the mobile terminal in the current period, and The displacement of the mobile terminal in the current period; according to the ranging distance corresponding to multiple UWB base stations, determine the target base station corresponding to the current period; according to the ranging distance between the target base station and the mobile terminal, calculate the measurement coordinates of the mobile terminal in the current period; According to the position coordinates of the mobile terminal in the previous period and the displacement in the current period, the predicted coordinates of the mobile terminal in the current period are calculated; the measured coordinates and the predicted coordinates are fused to obtain the position coordinates of the mobile terminal in the current period.
  • Computer program code for carrying out operations of the present disclosure may be written in one or more programming languages, or combinations thereof, including but not limited to object-oriented programming languages—such as Java, Smalltalk, C++, and Includes conventional procedural programming languages - such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block in the block diagrams and/or flowcharts, and combinations of blocks in the block diagrams and/or flowcharts can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure may be implemented by software or by hardware. Wherein, the name of a unit does not constitute a limitation of the unit itself under certain circumstances.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs System on Chips
  • CPLD Complex Programmable Logical device
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatus, or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include electrical connections via one or more wires, portable computer disks, hard disks, Random Access Memory (RAM), Read Only Memory (ROM), Erasable Programmable Read Only Memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, in which a computer program is stored, and when the computer program is executed by a processor, the method in any one of the above method embodiments can be implemented, and its execution method and benefits The effects are similar and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种移动终端的定位方法包括:根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站;根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标;根据所述移动终端在上一周期的位置坐标和在当前周期的位移,计算所述移动终端在当前周期的预测坐标;对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。

Description

移动终端的定位方法、装置、设备和存储介质
相关申请的交叉引用
本申请基于申请号为202111574475.8、申请日为2021年12月21日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及定位技术领域,具体涉及一种移动终端的定位方法、装置、设备和存储介质。
背景技术
现有技术中已经提出采用采用超带宽(Ultra Wide Band,UWB)通信技术实现车辆遥控钥匙等移动终端定位的技术方案。但是,通过对现有技术分析发现,在车辆场景中部署实现超带宽技术的UWB基站时,利用UWB基站与移动终端之间的测距距离计算得到的位置坐标精度较差。
发明内容
为了解决上述技术问题,本公开提供一种移动终端的定位方法、装置、设备和存储介质。
第一方面,本公开实施例提供一种移动终端的定位方法,包括:
根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站;
根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标;
根据所述移动终端在上一周期的位置坐标和在当前周期的位移,计算所述移动终端在当前周期的预测坐标;
对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
可选的,所述根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站,包括:
根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域;
根据所述移动终端在当前周期所在的目标区域,确定当前周期对应的所述目标基站。
可选的,所述根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域,包括:
根据所述移动终端在上一周期的位置坐标,确定所述移动终端在上一周期所在目标区域的边界标定数据,所述边界标定数据包括边界标定点到各个UWB基站的标定距离;
响应于各个边界标定点到各个UWB基站的标定距离,与对应的测距距离的第一差值的绝对值均大于设定值,将所述移动终端在上一周期的目标区域作为当前周期的目标区域。
可选的,所述边界标定数据还包括各个边界标定点一侧的方位参考点到各个UWB基站之间的参考距离,与对应的边界标定点到对应UWB基站之间的标定距离的第二差值;
所述根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域,还包括:
响应于第一差值的绝对值均小于所述设定值,判断边界标定点对应的第一差值和第二差值与零值的大小关系是否相同;
响应于所述大小关系均相同,将所述方位参考点所在的预设区域作为所述移动终端当前周期所在的目标区域;
响应于至少一个所述大小关系不同,将所述边界标定点另一侧不包括所述方位参考点的预设区域作为所述移动终端当前周期的目标区域。
可选的,所述方法还包括:
获取预设在前时间内多个UWB基站与所述移动终端之间的测距距离,所述预设在前时间是当前周期之前的预设时间,所述预设在前时间包括多个周期;
分别计算所述预设在前时间内各个UWB基站对应的测距距离的均值和方差;
选择至少N个方差最小的UWB基站对应的所述均值,计算所述移动终端的估计位置坐标,N为大于或等于1的整数;
根据所述估计位置坐标,确定所述估计位置坐标对应的预设区域,以及所述预设区域的边界标定数据,所述边界标定数据包括边界标定点到各个UWB基站的标定距离;
所述根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域,包括:根据各个边界标定点到各个UWB基站的标定距离,以及各个UWB基站在当前周期对应的测距距离,确定所述移动终端在当前周期的目标区域。
可选的,所述预设区域是以车辆为基准确定的区域,所述预设区域包括车外区域和车内区域。
可选的,所述多个UWB基站包括六个,其中两个UWB基站分别位于车前中网左右两侧,两个UWB基站位于车尾门左右两侧,两个UWB基站位于车辆顶棚中间区域并沿车身长度方向错位设置;
所述车外区域包括车外前侧区域、车外后侧区域、车外左侧前方区域、车外左侧后方区域、车外右侧前方区域和车外右侧后方区域;
所述车内区域包括车内左前区域、车内右前区域、车内左后区域和车内右后区域。
可选的,还包括:获取各个所述目标基站对应的置信度;
所述根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标,包括:
根据所述目标基站与所述移动终端之间的测距距离,以及各个所述目标基站对应的置信度,计算所述移动终端在当前周期的测量坐标。
可选的,所述根据所述目标基站与所述移动终端之间的测距距离,以及各个所述目标基站对应的置信度,计算所述移动终端在当前周期的测量坐标,包括:
根据当前周期各个所述目标基站对应的测距距离和置信度相乘,得到当前周期各个目标基站到所述移动终端的修正测距距离;
根据各个目标基站对应的修正测距距离和各个目标基站的位置坐标,计算所述移动终端 在当前周期的测量坐标。
可选的,所述方法还包括:
判断所述移动终端在当前周期的测量坐标是否满足设定约束条件;所述设定约束条件包括高度坐标是否位于设定高度坐标范围内,和/或水平坐标是否位于设定水平坐标范围内;
所述对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标,包括:响应于所述移动终端在当前周期的测量坐标满足所述设定约束条件,对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标;
所述方法还包括:响应于所述移动终端在当前周期的测量坐标不满足所述设定约束条件,将所述移动终端在上一周期的位置坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
可选的,对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标,包括:
采用非线性卡尔曼滤波方法或者粒子滤波方法对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
第二方面,本公开实施例提供一种移动终端的定位装置,包括:
目标UWB基站确定单元,用于根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站;
测量坐标计算单元,用于根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标;
预测坐标计算单元,用于根据所述移动终端在上一周期的位置坐标和在当前周期的位移,计算所述移动终端在当前周期的预测坐标;
数据融合单元,用于对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
可选的,所述目标基站确定单元包括:
目标区域确定子单元,用于根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域;
目标基站确定子单元,用于根据所述移动终端在当前周期所在的目标区域,确定当前周期对应的所述目标基站。
可选的,还包括:置信度获取单元,用于获取各个所述目标基站对应的置信度;
所述测量坐标计算单元根据所述目标基站与所述移动终端之间的测距距离,以及各个所述目标基站对应的置信度,计算所述移动终端在当前周期的测量坐标。
第三方面,本公开实施提供一种计算机设备,包括:存储器和处理器,其中,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,实现如前所述的移动终端的定位方法。
第四方面,本公开实施例提供一种计算机可读存储介质,所述存储介质中存储有计算机程序,当所述计算机程序被处理器执行时,现如前所述的移动终端的定位方法。。
本公开实施例提供的技术方案,在获取当前周期多个UWB基站与移动终端之间的测距 距离后,根据多个UWB基站对应的测距距离确定目标基站,并根据目标基站与移动终端的测距距离计算移动终端的测量坐标。此外还根据移动终端上一周期的位置坐标和当前周期的位移计算移动终端的预测坐标,并采用测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。因为当前周期的位置坐标由测量坐标和预测坐标融合得到,其相比于直接利用UWB侧距离计算得到的测量坐标更为准确。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本公开一些实施例提供的移动终端的定位方法流程图;
图2是本公开一个实施例提供的UWB基站布局方式和区域划分示意图;
图3是本公开一些实施例提供的移动终端的定位装置的结构示意图;
图4是本公开实施例提供的一种计算机设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施例提供一种移动终端的定位方法,此定位方法可以应用在诸如车辆、智能房屋等应用场景下,实现对诸如智能钥匙等移动终端的定位。以下以车辆使用场景为例,对本公开实施例提供的移动终端的定位方法进行说明。
图1是本公开一些实施例提供的移动终端的定位方法流程图。如图1所示,本公开实施例提供的移动终端的定位方法包括步骤S101-S105。
应当注意的是,本公开实施例提供的移动终端的定位方法可以由诸如车辆遥控钥匙等安装UWB模块的移动终端执行,也可以由安装UWB基站的车辆、智能房屋执行(具体的,由车辆中诸如HU等、智能房屋中的中控设备等具有数据处理能力的计算设备执行)。以下 以移动终端为执行主体对本公开实施例提供的方法进行说明。
步骤S101:根据多个UWB基站对应的测距距离,确定当前周期对应的目标基站。
本公开实施例中,移动终端中安装有UWB模块,UWB模块周期性地与部署在车辆中的多个UWB基站进行UWB通信,并基于相互通信时传输的时间戳信息确定移动终端与UWB基站之间的测距距离。
在本公开的一些实施例中,移动终端与车辆的UWB基站之间可以采用非双边测距算法确定移动终端与车辆UWB基站之间的测距距离。以与一个UWB基站(UWB基站A)通信为例,移动终端采用非对称双边测距算法确定与UWB基站A之间的测距距离的方法如下。
首先,移动终端中的UWB模块向UWB基站A发送Pos1消息,并记录发送Pos1消息的发送时间戳。
随后,UWB基站A在接收到与自身地址匹配的Pos1消息后,记录接收到Pos1消息的接收时间戳。在延时一段时间后,UWB基站A发送回应消息RespA给移动终端,并记录下发送RespA的发送时间戳。根据前述接收Pos1消息的接收时间戳和发送RespA的发送时间戳,可以计算得到UWB基站A收到Pos1消息到发送回应消息之间的时间段TreplyA。
随后,移动终端接收到来自UWB基站A的回应消息RespA后,记录接收到回应消息RespA的接收时间戳,并延迟一段时间Trepl2A向UWB基站A发送Final消息,Final消息中包括移动终端和UWB基站A通信时记录的各种时间戳信息。根据前述接收到回应消息RespA的接收时间戳和发送Pos1消息的发送时间戳,可以计算得到移动终端发送Pos1消息到接收到回应消息RespA的时间段Tround1A。
再后,UWB基站A在接收到Final消息后,记录接收到Final消息的接收时间戳。根据接收到Final消息的接收时间戳和发送RespA的发送时间戳,可以计算得到UWB基站A从发送RespA到接收到Final消息之间的时间段Tround2A。
再后,UWB基站A根据前述的各种时间戳计算得到的Tround1A、TreplyA、Treply2A和Tround2A,采用如下公式(Tround1A×Tround2A-TreplyA×Treply2A)/(Tround1A+TreplyA+Treply2A+Tround2A)可以得到消息在移动终端和UWB基站A的飞行时间TOFA。
最后,基于飞行时间TOFA和电磁信号传输速度(也就是光速),UWB基站A可以计算得到移动终端与UWB基站A之间的测距距离。在计算得到测距距离后,UWB基站A可以将测距距离发送给移动终端,以使得移动终端获取与UWB基站A之间的测距距离。
当然,在本公开的其他实施例中,UWB基站A在接收到Final消息后,还可以将各种时间戳发送给移动终端,以使得移动终端计算得到前述的Tround1A、TreplyA、Treply2A和Tround2A,并根据前述四个时间段采用(Tround1A×Tround2A-TreplyA×Treply2A)/(Tround1A+TreplyA+Treply2A+Tround2A)计算得到飞行时间TOFA,以及根据飞行时间TOFA和电磁信号传播速度计算得到移动终端与UWB基站A之间的测距距离。
本公开实施例中,在一个测距周期,移动终端可以与多个UWB基站进行通信。按照前述的方法,本申请实施例还可以获得当前周期中移动终端与其他UWB基站的测距距离。
采用前述的非对称双边测距算法可以补偿移动终端与各个UWB基站之间的时钟偏移,保证测距距离具有较高的准确性。当然,在本公开其他实施例中,也可以采用单边测距算法 确定移动终端与各个UWB基站之间的测距距离。
本公开实施例中,目标基站是与移动终端进行UWB通信时UWB信号没有发生非视距传播,或者发生非视距传播程度较小的UWB基站。
在本公开的一些实施例中,根据多个UWB基站与移动终端之间的测距距离确定当前周期对应的目标基站可以包括步骤S1011-S1012。
步骤S1011:根据多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定移动终端在当前周期所在的目标区域。
步骤S1012:根据移动终端在当前周期所在的目标区域,确定当前周期对应的目标基站。
通过对各种UWB基站布局方式进行测试发现,由于车身座舱轮廓和车内设备布局的影响,移动终端在特定的位置时,和某些UWB基站传输的UWB信号发生严重的非视距传播,造成测距距离数据异常。正是因为测距距离异常,使得基于所有UWB基站测量得到的测距距离计算移动终端的位置坐标的定位精度很差。
基于前述规律,本申请申请人考虑可以基于车辆中UWB基站的布局方式,测量移动终端在大量位置处与UWB基站的测距距离,并对测距距离的准确性进行数理统计,基于数理统计结果将车辆的车内空间和车外空间均进行了区域划分,并建立各个区域与UWB基站的关联关系。其中,建立各个区域与UWB基站的关联关系,是确定移动终端在某一区域时,与哪些UWB基站通信得到的测距距离是可信的(即发生非视距传播的程度较小)。也就是说在移动终端位于某一区域时,可以采用哪些UWB基站测量的测距距离进行移动终端位置坐标的计算。
图2是本公开一个实施例提供的UWB基站布局方式和区域划分示意图。如图2所示,在本公开一个实施例中,车辆中安装有6个UWB基站,其中两个UWB基站分别位于车前中网左右两侧,两个UWB基站位于车尾门左右两侧,两个UWB基站位于车辆顶棚中间区域并沿车身长度方向错位设置。
基于前述的UWB基站布局方式,本公开实施例方法实施前,发明人测量了移动终端在大量位置处与UWB基站的测距距离,并对测距距离的准确性进行数理统计,基于数理统计结果将车辆的车内空间和车外空间均进行了区域划分,并建立各个划分区域与UWB基站的关联关系。
具体的,基于前述的UWB基站布局方式,车外区域被划分成了六个子区域。车外子区域分别为车外前侧区域、车外后侧区域、车外左侧前方区域、车外左侧后方区域、车外右侧前方区域和车外右侧后方区域,依次对应图2中的车外区域1、车外区域4、车外区域2、车外区域3、车外区域6和车外区域5。其中,车外前侧区域和车外左侧前方区域、车外前侧区域和车外右侧前方区域以UWB基站1和UWB基站2的连线为边界,车外左侧前方区域和车外左侧后方区域、车外右侧前方区域和车外右侧后方区域以车辆B柱所在平面为边界,车外后侧区域和车外左侧后方区域、车外右侧后方区域以UWB基站3和UWB基站4的连线为边界。
基于前述的UWB基站布局方式,车内区域被划分成了四个字区域。车内子区域分别为车内左前区域、车内右前区域、车内左后区域和车内右后区域,依次对应图2中的车内区域1、车内区域2、车内区域3和车内区域4。其中车内区域1和车内区域2、车内区域3和车 内区域4以UWB基站5和UWB基站6的连线所在竖直平面为边界,车内区域1和车内区域3、车内区域2和车内区域4以车辆B柱所在平面为边界。
表1是划分区域与UWB基站关联关系表。在表1中,“√”表示某一行的区域与某一列的UWB基站具有关联关系。
表1划分区域与UWB基站关联关系表
Figure PCTCN2022140154-appb-000001
在本公开其他实施例中,在UWB基站采用其他布局方式的情况下,车内区域和车外区域也可以采用其他的区域划分方式进行划分,对应的关联关系也需要根据数理统计确定。
步骤S102:根据目标基站与移动终端之间的测距距离,计算移动终端在当前周期的测量坐标。
本公开实施例中,在移动终端确定目标基站后,可以查询到目标基站到移动终端的测距距离,随后根据测距距离可以计算得到移动终端在当前周期的测量坐标。
在本公开的一些实施例中,可以采用三边定位最小二乘法拟合法计算得到当前周期的测量坐标。假设目标区域为车外区域1,UWB基站1的位置坐标为(x 1,y 1,z 1),移动终端到UWB基站1的测距距离为d 1,UWB基站2的位置坐标为(x 2,y 2,z 2),移动终端到UWB基站2的测距距离为d 2,UWB基站5的位置坐标为(x 5,y 5,z 5),移动终端到UWB基站5的测距距离为d 5,UWB基站6的位置坐标为(x 6,y 6,z 6),移动终端到UWB基站6的测距距离为d 6,则可以构建如下方程组。
Figure PCTCN2022140154-appb-000002
采用最小二乘法对前述方程组进行求解,可以得到移动终端在当前周期的测量坐标(x,y,z)。
步骤S103:根据移动终端在上一周期的位置坐标和在当前周期的位移,计算移动终端在当前周期的预测坐标。
本公开实施例中,移动终端中配置有惯性测量单元(IMU),根据惯性测量当前周期输出的惯性信号可以确定移动终端在当前周期的位移。
实际应用中,惯性测量单元通常包括三轴加速度计和三轴陀螺仪。根据三轴加速度计可以测量移动终端的运动加速度,并根据对运动加速度的积分运算得到移动终端的运动速度,以及根据对运动速度的积分运算得到移动终端的位移。
在本公开的一个实施例中,移动终端配置的惯性测量单元为捷联式地惯性测量单元,捷联式地惯性测量单元测量得到的三轴加速度值和三轴角速度值都是相对于载体坐标系,不能简单地通过积分得到移动终端的速度和位移信息,需要基于载体坐标系下的加速度值换算到移动终端所在的地理坐标系下的加速度值,再根据转换得到的加速度值计算得到移动终端的运动速度和的位移。
本公开实施例中,在获取移动终端在上一周期的位置坐标后,将移动终端在上一周期的位置坐标和当前周期的位移相加,即可以得到移动终端在当前周期的预测坐标。
步骤S104:对测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
本公开实施例中,移动终端的移动特性具有非线性的特性。为了适应前述的非线性特性,对测量坐标和预测坐标进行融合处理,可以采用诸如非线性卡尔曼滤波方法或者粒子滤波方法对测量坐标和预测坐标进行融合处理,进而得到移动终端在当前周期的位置坐标。具体的,非线性卡尔曼滤波方法具体可以为扩展卡尔曼滤波方法或者无迹卡尔曼滤波方法,其中扩展卡尔曼滤波方法是随机非线性离散系统进行线性化近似得到的一种方法,无迹卡尔曼滤波是采用无迹变化处理非线性系统的问题卡尔曼滤波方法。
以下,采用扩展卡尔曼滤波方法对本公开实施例中基于测量坐标和预测坐标进行融合处理得到移动终端当前周期的位置坐标进行说明。
根据经验可知,本公开实施例提供的用于移动终端定位的系统是一个一致安全可测、可控的非线性系统。
非线性系统可以采用状态方程来预测下一时刻移动终端的预测坐标,其中当前周期的位移起到了驱动状态方程的作用。因为惯性测量单元有一定的噪声,对移动终端速度、位移等状态的预测长期累积会引入严重的累积误差,所以状态方程仅可以提供较短时间内的状态估计。本实施例中可以将状态方程简化为:
Figure PCTCN2022140154-appb-000003
非线性系统可以采用测量方程通过测量坐标直接或者间接测量模型的描述,并对状态方程推演过程中产生的误差进行修正。本公开实施例中,测量方程可以简化为
Figure PCTCN2022140154-appb-000004
Figure PCTCN2022140154-appb-000005
假设在时刻t的状态x(t)是已知的,选取如下:
Figure PCTCN2022140154-appb-000006
将上述两个方程与模型状态方程、测量方程相减,并用泰勒级数展开略去高阶项,得到
Figure PCTCN2022140154-appb-000007
其中,
Figure PCTCN2022140154-appb-000008
根据离散化公式
Figure PCTCN2022140154-appb-000009
以及
Figure PCTCN2022140154-appb-000010
将F d记为Φ k/k-1,将Q d记为Q k,则可以将线性即离散化后的状态方程写为X k/k-1=Φ k/k-1X k-1+Q k
套用卡尔曼滤波五公式进行迭代估计,可以得到状态一步预测为
Figure PCTCN2022140154-appb-000011
预测均方误差为P k/k-1=Φ k/k-1P k-1Φ T k/k-1+Q k-1,测量值融合权重计算为
Figure PCTCN2022140154-appb-000012
融合测量值为
Figure PCTCN2022140154-appb-000013
估计均方误差P k=(I-K kH k)P k/k-1
本公开实施例中,对测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标,即是采用
Figure PCTCN2022140154-appb-000014
计算当前周期的位置坐标
Figure PCTCN2022140154-appb-000015
其中
Figure PCTCN2022140154-appb-000016
为预测坐标,z k为测量坐标,K k为卡尔曼增益。
采用本公开实施例提供的移动终端定位方法,在获取当前周期多个UWB基站与移动终端之间的测距距离后,根据多个UWB基站对应的测距距离确定目标基站,并根据目标基站与移动终端的测距距离计算移动终端的测量坐标。此外还根据移动终端上一周期的位置坐标和当前周期的位移计算移动终端的预测坐标,并采用测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
因为目标基站是移动终端之间传输UWB信号发生非视距传播程度较小的UWB基站,所以采用目标基站对应的测距距离计算得到的测量坐标较为准确。进而,采用测量坐标和预测坐标融合处理得到的移动终端的位置坐标也较为准确。此外,本公开实施例中,通过采用惯性测量单元测量数据对测量坐标进行修正,可以减小UWB通信因为测距距离误差过大而引起的定位失真的问题。
如前,在本公开的一些实施例中,需要确定移动终端在当前周期所在的目标区域,在基于目标区域确定目标基站。本公开实施例中,确定移动终端在当前周期所在的目标区域,即是确定当前周期移动终端在车内空间或者车外空间中的哪一预设区域。
在本公开的一些实施例中,确定移动终端在当前周期所在的目标区域可以包括步骤S1011A-S1011F。
步骤S1011A:根据移动终端在上一周期的位置坐标,确定移动终端在上一周期所在的区域的边界标定数据。
本公开实施例的定位方法执行前,对各个区域边界进行了充分的标定工作,得到了所有边界的边界标定数据。边界标定数据包括边界标定点到多个UWB的标定距离。
本公开实施例中,移动终端根据上一周期的位置坐标,确定上一周期所在的区域的边界标定数据包括如下步骤:首先根据上一周期的位置坐标确定上一周期所在区域,随后再根据上一周期所在的区域在所有的边界标定数据中,选择对应的标定数据,作为移动终端在上一周期所在区域的边界标定数据。
步骤S1011B:判断当前周期移动终端与所有UWB基站之间的测距距离,与各个边界标定点到对应UWB基站之间的标定距离的第一差值的绝对值与设定值的大小关系。
如果当前周期移动终端与任一UWB基站之间的测距距离与一个边界标定点到对应UWB基站之间的标定距离的第一差值大于设定值,执行步骤S1011C。而如果当前周期移动终端到多个UWB基站之间的测距距离与某一边界标定点到各个UWB基站之间的标定距离的差值均小于设定值,执行步骤S1011D。
步骤S1011C:将移动终端在上一周期所在的区域作为目标区域。
本公开实施例中,如果当前周期中移动终端与任一UWB基站之间的测距距离与边界标定点到对应UWB基站之前的测距距离的差值大于设定值,则表明在当前周期移动终端还未移动至上一周期所在区域的区域边界附近,继而表明当前周期移动终端仍然位于上一周期所在的区域内,因此将移动终端在上一周期所在的区域作为当前周期所在的目标区域。
步骤S1011D:判断某一边界标定点对应的第一差值和第二差值相对于零值的大小关系是否相同;若相同,执行步骤S1011E;若不相同,执行步骤S1011F。
在本公开一些实施例中,边界标定数据除了包括边界标定点到多个UWB基站的测距距离外还包括各个边界标定点一侧的方位参考点到各个UWB基站之间的参考距离与对应的边界标定点到对应UWB基站之间的标定距离的第二差值。
判断第一差值和第二差值相对于零值的大小关系是否相同,是判断第一差值和第二差值是否同为正值或者同为负值。如果当前周期中移动终端到各个UWB基站之间的测距距离与某一边界标定点到各个UWB基站之间的标定距离的差值均小于设定值,则确定移动终端靠近前述的某一边界标定点较近,此时移动终端可能位于上一周期所在区域,也可能跨过边界标定点移动至临近其他区域,也就是此时移动终端可能出现跨越边界的情况。为保证移动终端在前述某一边界标定点处位置判定更为准确,本公开实施例中执行步骤S1011D。
如前,第一差值是移动终端到某一UWB基站之间的测距距离与边界标定点到对应的UWB基站之间的标定距离的差值,第二差值是边界标定点一侧方位参考点到各个UWB之间的参考距离与对应的边界标定点到对应UWB基站之间的标定距离的差值。如果第一差值和第二差值相对零值的大小关系相同,则证明当前周期移动终端与方位参考点位于同一区域,因此执行步骤S1011E。而如果第一差值与第二差值的相对于零值的大小关系不同,则证明当前周期移动终端与方位参考点并不在同一区域,也就是当前周期移动终端位于前述某一边界标定点的另一侧区域,因此执行步骤S1011F。
步骤S1011E:将方位参考点所在的区域作为目标区域。
步骤S1011F:将某一边界标定点另一侧不包括方位参考点的区域作为目标区域。
可选的,在本公开的一些实施例中,执行前述的步骤S1011A之前,移动终端还可以执行步骤S1011G-S10111H。
步骤S1011G:获取移动终端在当前周期的位移。
本公开实施例中,移动终端可以通过对惯性测量单元输出的运动加速度进行积分运算,而得到移动终端在当前周期的速度。具体实施中,移动终端在当前周期的速度可以是一平均速度,也可以是在当前周期各个时间点的瞬时速度。移动终端确定当前周期的速度和周期时长后,通过积分运算可以确定在当前周期的位移。
步骤S1011H:根据移动终端在当前周期的位移,确定设定值。
在本公开实施例中,基于移动距离可以确定前述的设定值。例如,在确定移动距离后,可以直接将移动距离作为设定值,或者采用移动距离与一权重值相乘而得到设定值。
如前文,本公开一些实施例中,移动终端需要根据上一周期所在的位置坐标,确定上一周期所在的目标区域,并根据上一周期所在的目标区域确定当前周期所在的目标区域。在本公开的其他实施例中,移动终端还可以采用其他方式确定当前周期所在的目标区域。
在本公开的一些实施例,在执行步骤S1011之前,移动终端的定位方法还包括步骤 S1013-S1016。
步骤S1013:获取预设在前时间内多个UWB基站与移动终端之间的测距距离。
预设在前时间是当前周期之前的预设时间,预设在前时间包括多个UWB通信周期。在本公开的一个实施例中,预设在前时间被设置为1s,UWB通信周期为50ms,则预设在前时间包括20个通信周期。
本公开实施例中,移动终端可以按照前文步骤S101中的非双边测距算法确定预设在前时间内与多个UWB基站之间的测距距离,也可以采用单边测距算法确定预设在前时间内与多个BUWB基站之间的测距距离,此处不再复述。
步骤S1014:分别计算预设在前时间内各个UWB基站对应的测距距离的均值。
本公开实施例中,在获得预设在前时间内各个UWB基站对应的多个测距距离后,移动终端分别基于每个UWB基站对应的测距距离,计算对应的均值和方差。
例如,针对前述的UWB基站1获得20个测距距离
Figure PCTCN2022140154-appb-000017
可以得到UWB基站1对应的均值为
Figure PCTCN2022140154-appb-000018
对应的方差为
Figure PCTCN2022140154-appb-000019
类似的,UWB基站2对应的均值为
Figure PCTCN2022140154-appb-000020
对应的方差为
Figure PCTCN2022140154-appb-000021
步骤S1015:选择至少N个方差最小的UWB基站对应的均值,计算移动终端的估计位置坐标。
在计算得到预设在前时间内各个UWB基站对应的测试距离的均值和方差后,移动终端会将各个UWB基站对应的方差进行比较,以确定至少N个方差最小的UWB基站,并基于前述UWB基站对应的测距距离的均值,计算移动终端的估计位置坐标;其中N至少为1,优选的N至少为4。
其中,测距距离的方差越小,则证明在预设在前时间内移动终端与对应UWB基站之间的测距距离变化较小,因此表明移动终端与此UWB基站进行通信发生非视距传播的可能性较小,此UWB基站对应的测距距离的均值用于计算移动终端的估计位置坐标的可信性越高。
在本公开实施例中,移动终端选择4个方差最小的UWB基站对应的测距距离的均值,计算移动终端的估计位置坐标。在本公开其他实施例中,移动终端也可以选择方差小于设定阈值的UWB基站对应的测距距离的均值,计算移动终端的估计位置坐标。
步骤S1016:根据估计位置坐标,确定估计位置坐标对应的目标区域,以及目标区域的边界标定数据,边界标定数据包括边界标定点到各个UWB基站的标定距离。
在确定估计位置坐标后,根据估计位置坐标可以确定对应的预设区域,并确定预设区域的边界标定数据。随后可以执行步骤S1011,根据多个测距距离在多个预设区域中确定移动终端在当前周期所在的目标区域。具体的,步骤S1011包括步骤S10111。
步骤S10111:根据各个边界标定点到各个UWB基站的标定距离,以及各个UWB基站在当前周期对应的测距距离,确定移动终端在当前周期的目标区域。
具体实施例中,步骤S10111可以包括步骤S10111A-S10111E。
S10111A:判断当前周期移动终端与所有UWB基站之间的测距距离,与各个边界标定点到对应UWB基站之间的标定距离的第一差值的绝对值与设定值的大小关系。
如果当前周期移动终端与任一UWB基站之间的测距距离与一个边界标定点到对应UWB基站之间的标定距离的第一差值大于设定值,执行步骤S10111B。
而如果当前周期移动终端到多个UWB基站之间的测距距离与某一边界标定点到各个UWB基站之间的标定距离的差值均小于设定值,执行步骤S10111C。
步骤S10111B:将估计位置坐标对应的预设区域作为目标区域。
本公开实施例中,如果当前周期中移动终端与任一UWB基站之间的测距距离与边界标定点到对应UWB基站之前的测距距离的差值大于设定值,则表明在当前周期移动终端还未移动至估计位置坐标所在预设区域的区域边界附近,继而表明当前周期移动终端仍然位于估计位置坐标所在的预设区域内,因此将估计位置坐标所在的预设区域作为当前周期所在的目标区域。
步骤S10111C:判断某一边界标定点对应的第一差值和第二差值相对于零值的大小关系是否相同;若相同,执行步骤S10111D;若不相同,执行步骤S10111E。
在本公开一些实施例中,边界标定数据除了包括边界标定点到多个UWB基站的测距距离外还包括各个边界标定点一侧的方位参考点到各个UWB基站之间的参考距离与对应的边界标定点到对应UWB基站之间的标定距离的第二差值。
判断第一差值和第二差值相对于零值的大小关系是否相同,是判断第一差值和第二差值是否同为正值或者同为负值。
如果当前周期中移动终端到各个UWB基站之间的测距距离与某一边界标定点到各个UWB基站之间的标定距离的差值均小于设定值,则确定移动终端靠近前述的某一边界标定点较近,此时移动终端可能位于上一周期所在区域,也可能跨过边界标定点移动至临近其他区域,也就是此时移动终端可能出现跨越边界的情况。为保证移动终端在前述某一边界标定点处位置判定更为准确,本公开实施例中执行步骤S1019C。
如果第一差值和第二差值相对于零值的大小关系相同,则证明当前周期移动终端与方位参考点位于同一区域,因此执行步骤S1019D。而如果第一差值与第二差值相对于零值的大小关系不同,则证明当前周期移动终端与方位参考点并不在同一区域,也就是当前周期移动终端位于前述某一边界标定点的另一侧区域,因此执行步骤S1019E。
步骤S10111D:将方位参考点所在的区域作为目标区域。
步骤S10111E:将某一边界标定点另一侧不包括方位参考点的区域作为目标区域。
具体实施例中,可以在移动终端刚与UWB基站建立连接时,采用前述的方法确定目标区域;也可以在任一周期时采用前述方法确定目标区域。
在本公开的一些实施例中,电子设备在执行步骤S101在多个UWB基站中选择与目标区域对应的目标UWB基站时,还可以执行步骤S105。
步骤S105:获取各个目标UWB基站对应目标区域的置信度。
在本公开实施例方法实施前,基于数据标定工作,除了获取划分区域和UWB基站关联关系表外,还可以获取划分区域与对应区域的置信度关系表。表2是划分区域与UWB基站的置信度关系表。
表2划分区域与UWB基站的置信度关系表
Figure PCTCN2022140154-appb-000022
在执行前述步骤S105的情况下,步骤S102根据目标UWB基站与移动终端之间的测距距离,计算移动终端在当前周期的测量坐标,具体为步骤S1021。
步骤S1021:根据目标UWB基站与移动终端的测距距离,以及各个目标UWB基站对应目标区域的置信度,计算移动终端在当前周期的测量坐标。
具体的,步骤S1021具体实施过程中,可以包括步骤S10211-S10212。
步骤S10211:根据当前周期各个目标基站对应的测距距离和置信度相乘,得到当前周期各个目标基站到移动终端的修正测距距离。
步骤S10212:根据修正测距距离计算移动终端在当前周期的测量坐标。
具体实施例中,可以采用三边定位最小二乘法拟合解法计算得到当前周期的位置坐标。假设目标区域为车外区域1,UWB基站1的位置坐标为(x 1,y 1,z 1),移动终端到UWB基站1的测距距离为d 1,UWB基站2的位置坐标为(x 2,y 2,z 2),移动终端到UWB基站2的测距距离为d 2,UWB基站5的位置坐标为(x 5,y 5,z 5),移动终端到UWB基站5的测距距离为d 5,UWB基站6的位置坐标为(x 6,y 6,z 6),移动终端到UWB基站6的测距距离为d 6,根据表2,查到到UWB基站1、UWB基站2、UWB基站5和UWB基站6对应的置信度分别为1、1、0.25和1,则可以构建如下方程组。
Figure PCTCN2022140154-appb-000023
采用最小二乘法对前述方程组进行求解,可以得到移动终端在当前周期的测量坐标(x,y,z)。
根据UWB信号传输特性可知,如果UWB信号出现了非视距传播,则其传播距离相对于直线传播距离较大。而如果UWB信号出现非视距传播的情况越严重,则相应测距距离的置信度越低。通过采用置信度修正测距距离得到修正测距距离,再利用修正测距距离计算测 量坐标(x,y,z),提高了测量坐标计算的准确性。
当然,在本公开的其他实施例中,也可以其他方式基于目标UWB基站与移动终端的测距距离,以及目标UWB基站对应目标区域的置信度计算修正测距距离。
在本公开的一些实施例中,移动终端在执行步骤S102计算得到当前周期的测量坐标后,还可以执行步骤S106。
步骤S106:判断移动终端在当前周期的测量坐标是否满足设定约束条件。若满足预设约束条件,则执行前述步骤S104;若不满足预设约束条件,执行步骤S107。
本公开具体实施中,可能出现计算得到的测量坐标与实际情况相悖的情况。例如,可能出现解算得到的测量坐标中的高度坐标小于地面高度,或者水平方向坐标超过UWB通信半径的情况。如果出现前述与实际情况相悖的测量坐标计算移动终端在当前位置的坐标,会引入极大的误差。
为了避免引入与实际情况相悖的测量坐标,本公开一些实施例,在得到移动终端在当前周期的测量坐标后,还会判断测量坐标是否满足设定约束条件。前述设定约束条件是设定约束条件是判断测量坐标是否合理的约束条件。
在本公开的一些实施例中,设定约束条件包括设定高度坐标范围和设定水平坐标范围。其中设定高度坐标范围是表征移动终端可能高度坐标的范围,设定水平坐标范围是表征移动终端可能水平坐标的范围。
在设定约束条件包括设定高度坐标范围和设定水平坐标范围的情况下,前述的步骤S107中的约束条件可以包括:高度坐标是否位于设定高度坐标范围内,和/或水平坐标是否位于设定水平坐标范围内。
步骤S107:将移动终端在上一周期的位置坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
如果移动终端在当前周期的测量坐标不满足设定约束条件,则证明移动终端在当前周期的测量坐标不可信,因此不在使用当前周期的测量坐标进行融合处理,而是采用上一周期的位置坐标与预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
如前,在本公开前述实施例中,车辆中部署的UWB基站的数量为六个,目标基站的数量为四个。在本公开其他实施例中,UWB基站的数量也可以为其他数量,目标基站的数量也可以为其他数量,但是应当保证UWB基站的数量至少为五个,目标基站的数量至少为四个,以保证能够在至少五个UWB基站中选择至少四个基站作为目标基站,并通过至少四个目标基站结算得到移动终端的位置坐标。
图3是本公开一些实施例提供的移动终端的定位装置的结构示意图。移动终端的定位装置可以被理解为上述车载控制器的部分功能模块。如图3所示,本公开实施例提供的移动终端的定位装置300包括、目标基站确定单元301、测量坐标计算单元302、预测坐标计算单元303和数据融合单元304。
目标基站确定单元301用于根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站。
测量坐标计算单元302用于根据目标基站与移动终端之间的测距距离,计算移动终端在当前周期的测量坐标。
预测坐标计算单元303用于根据移动终端在上一周期的位置坐标和在当前周期的位移,计算移动终端在当前周期的预测坐标。
数据融合单元304用于对测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
在本公开的一些实施例中,目标基站确定单元包括目标区域确定子单元和目标基站确定子单元。目标区域确定子单元用于根据多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定移动终端在当前周期所在的目标区域。目标基站确定子单元用于根据移动终端在当前周期所在的目标区域,确定当前周期对应的目标基站。
在本公开的一些实施例中,目标区域确定子单元根据移动终端在上一周期的位置坐标,确定移动终端在上一周期所在目标区域的边界标定数据,边界标定数据包括边界标定点到各个UWB基站的标定距离;响应于各个边界标定点到各个UWB基站的标定距离,与对应的测距距离的第一差值的绝对值均大于设定值,将移动终端在上一周期的目标区域作为当前周期的目标区域。
在本公开的一些实施例中,边界标定数据还包括各个边界标定点一侧的方位参考点到各个UWB基站之间的参考距离,与对应的边界标定点到对应UWB基站之间的标定距离的第二差值;对应的,目标区域确定子单元响应于第一差值的绝对值均小于设定值,判断边界标定点对应的第一差值和第二差值与零值的大小关系是否相同;响应于大小关系均相同,将方位参考点所在的预设区域作为移动终端当前周期所在的目标区域;响应于至少一个大小关系不同,将边界标定点另一侧不包括方位参考点的预设区域作为移动终端当前周期的目标区域。
在本公开的一些实施例中,移动终端的定位装置300还包括设定值确定单元。设定值确定单元用于根据移动终端在当前周期的位移确定设定值。
在本公开的一些实施例中,移动终端的定位装置300还包括初始测距距离获取单元、均值方差计算单元、估计位置坐标计算单元、预设区域选择单元。
初始测距距离获取单元用于获取预设在前时间内多个UWB基站与移动终端之间的测距距离,预设在前时间是当前周期之前的预设时间,预设在前时间包括多个周期;。
均值方差计算单元用于分别计算预设在前时间内各个UWB基站对应的测距距离的均值和方差。
估计位置坐标计算单元用于选择至少N个方差最小的UWB基站对应的均值,计算移动终端的估计位置坐标,N为大于或等于1的整数。
预设区域选择单元用于根据估计位置坐标,确定估计位置坐标对应的预设区域,以及预设区域的边界标定数据,边界标定数据包括边界标定点到各个UWB基站的标定距离。
目标区域确定子单元用于根据各个边界标定点到各个UWB基站的标定距离,以及各个UWB基站在当前周期对应的测距距离,确定移动终端在当前周期的目标区域。
在本公开的一些实施例中,移动终端定位装置还包括置信度获取单元。置信度获取单元用于获取各个目标基站对应目标区域的置信度。
测量坐标计算单元302根据目标基站与移动终端之间的测距距离,以及各个目标基站对应目标区域的置信度,计算移动终端在当前周期的测量坐标。具体的,测量坐标计算单元首先根据当前周期各个目标基站对应的测距距离和置信度相乘,得到当前周期各个目标基站到 移动终端的修正测距距离;随后根据各个目标基站对应的修正测距距离和各个目标基站的位置坐标,计算移动终端在当前周期的测量坐标。
在本公开一些实施例中,移动终端定位装置还包括约束判断单元。约束判断单元用于判断移动终端在当前周期的测量坐标是否满足设定约束条件。在约束判断单元判定移动终端在当前周期的测量坐标满足设定约束条件的情况下,数据融合单元304对测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
在本公开的一些实施例中,设定约束条件包括设定高度坐标范围和设定水平坐标范围。约束判断单元判断移动终端在当前周期的测量坐标是否满足设定约束条件包括:判断移动终端在当前周期的测量坐标中的高度坐标是否位于设定高度坐标范围内,和/或,判断移动终端在当前周期的测量坐标中的水平坐标是否位于设定水平坐标范围内。
在本公开的一些实施例中,数据融合单元304在移动终端在当前周期的测量坐标不满足设定约束条件的情况下,将移动终端在上一周期的位置坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
在本公开的一些实施例中,数据融合单元304采用非线性卡尔曼滤波方法或者粒子滤波方法对测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
在本公开的一些实施例中,多个UWB基站的数量至少为五个,目标UWB基站的数量至少为四个。
图4是本公开实施例提供的一种计算机设备的结构示意图。下面具体参考图4,其示出了适于用来实现本公开实施例中的计算机设备400的结构示意图。图4示出的计算机设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图4所示,计算机设备400可以包括处理装置(例如中央处理器、图形处理器等)401,其可以根据存储在只读存储器ROM 402中的程序或者从存储装置408加载到随机访问存储器RAM 403中的程序而执行各种适当的动作和处理。在RAM 403中,还存储有计算机设备400操作所需的各种程序和数据。处理装置401、ROM 402以及RAM 403通过总线404彼此相连。输入/输出I/O接口405也连接至总线404。
通常,以下装置可以连接至I/O接口405:包括例如触摸屏、触摸板、摄像头、麦克风、加速度计、陀螺仪等的输入装置406;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置407;包括例如磁带、硬盘等的存储装置408;以及通信装置409。通信装置409可以允许计算机设备400与其他设备进行无线或有线通信以交换数据。虽然图5示出了具有各种装置的计算机设备400,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置409从网络上被下载和安装,或者从存储装置408被安装,或者从ROM 402被安装。在该计算机程序被处理装置401执行时,执行本公开实施例的方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可 读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述计算机设备中所包含的;也可以是单独存在,而未装配入该计算机设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该计算机设备执行时,使得该计算机设备:获取当前周期多个UWB基站与移动终端之间的测距距离,以及移动终端在当前周期的位移;根据多个UWB基站对应的测距距离,确定当前周期对应的目标基站;根据目标基站与移动终端之间的测距距离,计算移动终端在当前周期的测量坐标;根据移动终端在上一周期的位置坐标和在当前周期的位移,计算移动终端在当前周期的预测坐标;对测量坐标和预测坐标进行融合处理,得到移动终端在当前周期的位置坐标。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实 现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的根据硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括根据一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
本公开实施例还提供一种计算机可读存储介质,所述存储介质中存储有计算机程序,当所述计算机程序被处理器执行时可以实现上述任一方法实施例的方法,其执行方式和有益效果类似,在这里不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种移动终端的定位方法,包括:
    根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站;
    根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标;
    根据所述移动终端在上一周期的位置坐标和在当前周期的位移,计算所述移动终端在当前周期的预测坐标;
    对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
  2. 根据权利要求1所述的方法,其中,所述根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站,包括:
    根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域;
    根据所述移动终端在当前周期所在的目标区域,确定当前周期对应的所述目标基站。
  3. 根据权利要求2所述的方法,其中,所述根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域,包括:
    根据所述移动终端在上一周期的位置坐标,确定所述移动终端在上一周期所在目标区域的边界标定数据,所述边界标定数据包括边界标定点到各个UWB基站的标定距离;
    响应于各个边界标定点到各个UWB基站的标定距离,与对应的测距距离的第一差值的绝对值均大于设定值,将所述移动终端在上一周期的目标区域作为当前周期的目标区域。
  4. 根据权利要求3所述的方法,其中,所述边界标定数据还包括各个边界标定点一侧的方位参考点到各个UWB基站之间的参考距离,与对应的边界标定点到对应UWB基站之间的标定距离的第二差值;
    所述根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域,还包括:
    响应于第一差值的绝对值均小于所述设定值,判断边界标定点对应的第一差值和第二差值与零值的大小关系是否相同;
    响应于所述大小关系均相同,将所述方位参考点所在的预设区域作为所述移动终端当前周期所在的目标区域;
    响应于至少一个所述大小关系不同,将所述边界标定点另一侧不包括所述方位参考点的预设区域作为所述移动终端当前周期的目标区域。
  5. 根据权利要求2-4任一项所述的方法,还包括:
    获取预设在前时间内多个UWB基站与所述移动终端之间的测距距离,所述预设在前时间是当前周期之前的预设时间,所述预设在前时间包括多个周期;
    分别计算所述预设在前时间内各个UWB基站对应的测距距离的均值和方差;
    选择至少N个方差最小的UWB基站对应的所述均值,计算所述移动终端的估计位置坐标,N为大于或等于1的整数;
    根据所述估计位置坐标,确定所述估计位置坐标对应的预设区域,以及所述预设区域的边界标定数据,所述边界标定数据包括边界标定点到各个UWB基站的标定距离;
    所述根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域,包括:根据各个边界标定点到各个UWB基站的标定距离,以及各个UWB基站在当前周期对应的测距距离,确定所述移动终端在当前周期的目标区域。
  6. 根据权利要求2-5任一项所述的方法,其中:
    所述预设区域是以车辆为基准确定的区域,所述预设区域包括车外区域和车内区域。
  7. 根据权利要求6所述的方法,其中:
    所述多个UWB基站包括六个,其中两个UWB基站分别位于车前中网左右两侧,两个UWB基站位于车尾门左右两侧,两个UWB基站位于车辆顶棚中间区域并沿车身长度方向错位设置;
    所述车外区域包括车外前侧区域、车外后侧区域、车外左侧前方区域、车外左侧后方区域、车外右侧前方区域和车外右侧后方区域;
    所述车内区域包括车内左前区域、车内右前区域、车内左后区域和车内右后区域。
  8. 根据权利要求1-7任一项所述的方法,还包括:获取各个所述目标基站对应的置信度;
    所述根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标,包括:
    根据所述目标基站与所述移动终端之间的测距距离,以及各个所述目标基站对应的置信度,计算所述移动终端在当前周期的测量坐标。
  9. 根据权利要求8所述的方法,其中,所述根据所述目标基站与所述移动终端之间的测距距离,以及各个所述目标基站对应的置信度,计算所述移动终端在当前周期的测量坐标,包括:
    根据当前周期各个所述目标基站对应的测距距离和置信度相乘,得到当前周期各个目标基站到所述移动终端的修正测距距离;
    根据各个目标基站对应的修正测距距离和各个目标基站的位置坐标,计算所述移动终端在当前周期的测量坐标。
  10. 根据权利要求1-9任一项所述的方法,还包括:
    判断所述移动终端在当前周期的测量坐标是否满足设定约束条件;所述设定约束条件包括高度坐标是否位于设定高度坐标范围内,和/或水平坐标是否位于设定水平坐标范围内;
    所述对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标,包括:响应于所述移动终端在当前周期的测量坐标满足所述设定约束条件,对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标;
    所述方法还包括:响应于所述移动终端在当前周期的测量坐标不满足所述设定约束条件,将所述移动终端在上一周期的位置坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
  11. 根据权利要求1-10任一项所述的方法,其中,对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标,包括:
    采用非线性卡尔曼滤波方法或者粒子滤波方法对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
  12. 一种移动终端的定位装置,包括:
    目标基站确定单元,用于根据多个UWB基站与移动终端之间的测距距离,确定当前周期对应的目标基站;
    测量坐标计算单元,用于根据所述目标基站与所述移动终端之间的测距距离,计算所述移动终端在当前周期的测量坐标;
    预测坐标计算单元,用于根据所述移动终端在上一周期的位置坐标和在当前周期的位移,计算所述移动终端在当前周期的预测坐标;
    数据融合单元,用于对所述测量坐标和所述预测坐标进行融合处理,得到所述移动终端在当前周期的位置坐标。
  13. 根据权利要求12所述的装置,其中,所述目标基站确定单元包括:
    目标区域确定子单元,用于根据所述多个UWB基站与移动终端之间的测距距离,在多个预设区域中确定所述移动终端在当前周期所在的目标区域;
    目标基站确定子单元,用于根据所述移动终端在当前周期所在的目标区域,确定当前周期对应的所述目标基站。
  14. 根据权利要求12或13所述的装置,还包括:
    置信度获取单元,用于获取各个所述目标基站对应的置信度;
    所述测量坐标计算单元根据所述目标基站与所述移动终端之间的测距距离,以及各个所述目标基站对应的置信度,计算所述移动终端在当前周期的测量坐标。
  15. 一种计算机设备,包括:存储器和处理器,其中,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,实现如权利要求1-11中任一项所述的移动终端的定位方法。
  16. 一种计算机可读存储介质,其中,所述存储介质中存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1-11中任一项所述的移动终端的定位方法。
PCT/CN2022/140154 2021-12-21 2022-12-19 移动终端的定位方法、装置、设备和存储介质 WO2023116646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111574475.8A CN116367297A (zh) 2021-12-21 2021-12-21 移动终端的定位方法、装置、设备和存储介质
CN202111574475.8 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116646A1 true WO2023116646A1 (zh) 2023-06-29

Family

ID=86901355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140154 WO2023116646A1 (zh) 2021-12-21 2022-12-19 移动终端的定位方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN116367297A (zh)
WO (1) WO2023116646A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714821A (zh) * 2017-10-23 2019-05-03 深圳市优必选科技有限公司 无线定位测距基站的选择方法及装置
CN109959894A (zh) * 2017-12-26 2019-07-02 深圳市优必选科技有限公司 定位方法及终端设备
CN111381586A (zh) * 2018-12-11 2020-07-07 深圳市优必选科技有限公司 一种机器人及其移动控制方法和装置
US10939406B1 (en) * 2020-03-27 2021-03-02 Psj International Ltd. Ultra-wideband assisted precise positioning method
CN113091742A (zh) * 2021-03-30 2021-07-09 北京邮电大学 一种融合定位方法、装置、电子设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714821A (zh) * 2017-10-23 2019-05-03 深圳市优必选科技有限公司 无线定位测距基站的选择方法及装置
CN109959894A (zh) * 2017-12-26 2019-07-02 深圳市优必选科技有限公司 定位方法及终端设备
CN111381586A (zh) * 2018-12-11 2020-07-07 深圳市优必选科技有限公司 一种机器人及其移动控制方法和装置
US10939406B1 (en) * 2020-03-27 2021-03-02 Psj International Ltd. Ultra-wideband assisted precise positioning method
CN113091742A (zh) * 2021-03-30 2021-07-09 北京邮电大学 一种融合定位方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN116367297A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
US10375668B2 (en) Time distance of arrival based mobile device location detection with disturbance scrutiny
CN112598762B (zh) 三维车道线信息生成方法、装置、电子设备和介质
US9915550B2 (en) Method and apparatus for data fusion of a three-axis magnetometer and three axis accelerometer
US9222785B2 (en) Systems and methods of reducing timing measurement error due to clock offset
US9769622B2 (en) Indoor location survey assisted by a motion path on a venue map
EP3087348B1 (en) Apparatus, system and method of estimating an orientation of a mobile device
CN110197615B (zh) 用于生成地图的方法及装置
CN110839208B (zh) 用于校正多路径偏移和确定无线站点位置的方法及装置
US10139253B2 (en) Adjustment of interrupt timestamps of signals from a sensor based on an estimated sampling rate of the sensor
US9952308B2 (en) Access point, terminal, and wireless fidelity WiFi indoor positioning method
EP2930959A1 (en) Locating method, drive test terminal and hand-held terminal
CN116182878B (zh) 道路曲面信息生成方法、装置、设备和计算机可读介质
CN115616937A (zh) 自动驾驶仿真测试方法、装置、设备和计算机可读介质
CN114894205A (zh) 三维车道线信息生成方法、装置、设备和计算机可读介质
WO2023116646A1 (zh) 移动终端的定位方法、装置、设备和存储介质
CN116758498B (zh) 障碍物信息生成方法、装置、电子设备和计算机可读介质
WO2023116640A1 (zh) 移动终端的定位方法、装置、设备和存储介质
CN114140538B (zh) 车载相机位姿调整方法、装置、设备和计算机可读介质
CN116161040A (zh) 车位信息生成方法、装置、电子设备和计算机可读介质
CN116449396A (zh) Gnss欺骗信号的检测方法、装置、设备及产品
WO2023116645A1 (zh) 移动终端的定位方法、装置、设备和存储介质
CN115937046B (zh) 道路地面信息生成方法、装置、设备和计算机可读介质
CN111912528A (zh) 体温测量系统、方法、装置、设备存储介质
CN116022159B (zh) 车辆移动控制方法、装置、电子设备和计算机可读介质
CN114494428B (zh) 车辆位姿矫正方法、装置、电子设备和计算机可读介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909958

Country of ref document: EP

Kind code of ref document: A1