WO2023116601A1 - 旁链路传输方法、装置及终端 - Google Patents

旁链路传输方法、装置及终端 Download PDF

Info

Publication number
WO2023116601A1
WO2023116601A1 PCT/CN2022/139899 CN2022139899W WO2023116601A1 WO 2023116601 A1 WO2023116601 A1 WO 2023116601A1 CN 2022139899 W CN2022139899 W CN 2022139899W WO 2023116601 A1 WO2023116601 A1 WO 2023116601A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical sidelink
sidelink shared
shared channels
physical
information
Prior art date
Application number
PCT/CN2022/139899
Other languages
English (en)
French (fr)
Inventor
李�灿
李�根
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023116601A1 publication Critical patent/WO2023116601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the present application belongs to the technical field of mobile communication, and in particular relates to a sidelink transmission method, device and terminal.
  • a sidelink also called a secondary link, a direct link, a side link, or a side link
  • the Sidelink link interface may also be called a PC5 interface.
  • UE schedules Physical Sidelink Shared Channel (PSSCH) by sending Physical Sidelink Control Channel (PSCCH) containing Sidelink Control Information (SCI) ) to send sidelink data.
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • SCI Sidelink Control Information
  • a new subcarrier spacing (SubCarrier Spacing, SCS) is introduced in the 52.6GHz-71GHz deployment frequency band, including 480kHz and 960kHz.
  • SCS SubCarrier Spacing
  • Embodiments of the present application provide a sidelink transmission method, device, and terminal, which can solve the problem of resource scheduling when one PSCCH is used to schedule multiple PSSCHs during the sidelink transmission process.
  • a sidelink transmission method which is applied to a terminal, and the method includes:
  • the terminal acquires first information transmitted by a physical sidelink control channel in a resource unit of the sidelink, where the first information includes first sidelink control information; where the resource unit includes N time slots;
  • the terminal determines, according to the first information, transmission information of M physical sidelink shared channels in the resource unit scheduled by the physical sidelink control channel, where N is greater than or equal to M.
  • a sidelink transmission device including:
  • An acquisition module configured to acquire first information transmitted by a physical sidelink control channel in a sidelink resource unit, where the first information includes first sidelink control information; wherein, the resource unit includes N time gap;
  • a transmission module configured to determine transmission information of M physical sidelink shared channels in the resource unit scheduled by the physical sidelink control channel according to the first information, where N is greater than or equal to M.
  • a terminal in a third aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface, wherein the processor is configured to determine M resource units in the resource units scheduled by the physical sidelink control channel according to the first information
  • the transmission information of the physical sidelink shared channel, N is greater than or equal to M
  • the communication interface is used to obtain the first information transmitted by the physical sidelink control channel in the resource unit of the sidelink, and the first information includes the first Sidelink control information; wherein, the resource unit includes N time slots.
  • a sidelink transmission system including: a terminal and a network side device, and the terminal can be used to execute the steps of the sidelink transmission method as described in the first aspect.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method as described in the first aspect are implemented.
  • a chip in a seventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the method described in the first aspect Steps of a sidechain transmission method.
  • the terminal obtains the first information of the PSCCH transmission in the resource unit of the side link, the first information includes the first SCI; the terminal determines the PSCCH scheduling according to the first information
  • the transmission information of the M PSSCHs in the resource unit can be used to schedule multiple PSSCHs in the resource unit through one PSCCH, fully utilize the time-frequency resources in the resource unit, and improve resource utilization.
  • FIG. 1 is a schematic structural diagram of a wireless communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a sidelink transmission method provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a sidelink transmission device provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), teller machines or self-service Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a WLAN access point, or a WiFi node, etc., and the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (Base Transceiver Station, BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all As long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in this embodiment of the application, only the base station in the NR system is used as an example for introduction, and The specific type of the base station is not limited.
  • Core network equipment may include but not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (Policy Control Function, PCF), Policy and Charging Rules Function (PCRF), edge application service Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that, in the embodiment of the present application, only the core
  • the embodiment of the present application provides a sidelink transmission method.
  • the execution subject of the method may be a terminal performing sidelink communication, including a sending end and a receiving end.
  • the method may be installed in terminal software or hardware to execute.
  • Step 210 the terminal acquires first information of PSCCH transmission in resource units of the sidelink, where the first information includes the first SCI; wherein, the resource units include N time slots.
  • the resource unit may be a new SCS introduced for deployment in the 52.6GHz-71GHz frequency band, including 480kHz and 960kHz, and the time slot included in the resource unit is a time slot corresponding to the new SCS.
  • the physical channel may include at least one of the following:
  • PSCCH where the PSCCH bears the first SCI and can be used to schedule multiple PSSCHs;
  • PSFCH Physical Sidelink Feedback Channel
  • the AGC has the function of power adjustment, specifically manifested as repeated transmission of the transmission content carried by at least one of the following channels: PSCCH, PSSCH, PSFCH;
  • guard symbol the guard symbol may be set between the PSSCH and the PSFCH.
  • Step 220 the terminal determines the transmission information of M PSSCHs in the resource unit scheduled by the PSCCH according to the first information, and the N is greater than or equal to the M.
  • the M can be specified by the protocol or configured by a high-level layer on the network side, or dynamically displayed or implicitly displayed by SCI or downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the transmission information may include time domain resources of the M PSSCHs, frequency domain resources of the M PSSCHs, transmission modes of the M PSSCHs, and the like.
  • the terminal may send sidelink data through the M PSSCHs according to the transmission information, so as to realize sidelink communication.
  • the terminal obtains the first information transmitted by the PSCCH in the resource unit of the side link, and the first information includes the first SCI; the terminal obtains the first information according to the The first information is to determine the transmission information of M PSSCHs in the resource unit scheduled by the PSCCH, so that multiple PSSCHs in the resource unit can be scheduled through one PSCCH, and the time-frequency resources in the resource unit can be fully utilized to improve resource utilization. Rate.
  • step 220 there may be various implementation manners for determining the transmission information of the M PSSCHs according to the first information, and this embodiment of the application only provides several specific implementation manners.
  • the step 220 may include:
  • the time domain resource includes the first time slot where the M PSSCHs are located.
  • the determining the time domain resources of the M PSSCHs may include:
  • Determining the corresponding relationship between time domain resources that can transmit the PSSCH in the first time slot and the PSSCH may include determining symbol positions that can transmit the PSSCH in the first time slot.
  • the time slots where the M PSSCHs are located are all N time slots in the resource unit.
  • the first first time slot is determined according to the second time slot where the PSCCH is located and the first offset; Then, other first time slots are determined based on the first first time slot; wherein, the first offset is used to indicate the distance between the first first time slot and the second time slot.
  • the offset that is, the number of offset time slots, the first offset may be indicated by the first SCI or DCI, or may be specified by a protocol or configured by a high-level layer on the network side.
  • each first time slot is determined according to the second time slot where the PSCCH is located and the first offset group corresponding to the M PSSCHs; wherein, the first offset
  • the set of quantities includes an offset between each first time slot and said second time slot.
  • the first offset group may be obtained in various manners, and may be determined by the first SCI or DCI indication, or may also be specified by a protocol or configured by a high layer on the network side.
  • the embodiment of the present application only provides one implementation mode:
  • the multiple first offset groups may be specified by the protocol or configured by a high-level layer on the network side;
  • the first offset group corresponding to the M PSSCHs from the multiple first offset groups according to the indication information.
  • two first offset groups: ⁇ A1, A2 ⁇ and ⁇ A3, A4 ⁇ are configured by the upper layers of the network side, and one of ⁇ A1, A2 ⁇ is selected from the two first offset groups according to the instruction information as For the first offset group corresponding to the M PSSCHs, then, based on the position of the second time slot where the PSCCH is located, determine the corresponding first time slot according to the offsets A1 and A2 respectively.
  • the instruction information is at least one of the following:
  • each first time slot is determined according to an index value corresponding to each first time slot, where the index value of each first time slot may be specified by a protocol or configured by a network-side device, or It may be determined according to indication information of the first SCI or DCI.
  • the manner of obtaining the index value corresponding to each first time slot includes:
  • the bitmap sequences are used to indicate the index values corresponding to the first time slots
  • ⁇ 1,0,1,0 ⁇ means that the index values of the M first time slots are the index values of the first time slot and the third time slot
  • ⁇ 1,1,1,1 ⁇ means that the M first time slots
  • the time slots are all N time slots in the resource unit.
  • the multiple bit mapping sequences configured as described above include ⁇ 1,0,1,0 ⁇ , ⁇ 1, 1,1,1 ⁇ as an example, if the PSCCH schedules 2 PSSCHs, the indication information may indicate that the bit mapping sequence corresponding to the 2 PSSCHs is ⁇ 1,0,1,0 ⁇ ; if the PSCCH If 4 PSSCHs are scheduled, then the bit mapping sequence corresponding to the indication information and the 2 PSSCHs is ⁇ 1, 1, 1, 1 ⁇ .
  • the instruction information is at least one of the following:
  • the step 220 may also include:
  • the frequency domain resources of the M PSSCHs may include subchannels or physical resource blocks (Physical Resource Blocks, PRBs) corresponding to the M PSSCHs.
  • PRBs Physical Resource Blocks
  • the determining the frequency domain resources of the M PSSCHs includes:
  • the second subchannel determines the second subchannel corresponding to the M PSSCHs; wherein the first subchannel is the smallest subchannel where the PSCCH is located , the second subchannel is the smallest subchannel where the M PSSCHs are located, where the second offset is used to indicate the offset between the index value of the first subchannel and the index value of the second subchannel displacement;
  • the determining the frequency domain resources of the M PSSCHs further includes:
  • the second PRB corresponding to the M PSSCHs determine the second PRB corresponding to the M PSSCHs; where the first PRB is the smallest PRB where the PSCCH is located, and the first PRB is Two PRBs are the smallest PRBs where the M PSSCHs are located, and the second offset is used to indicate the offset between the index value of the first PRB and the index value of the second PRB.
  • two second offsets for the subchannel and the PRB may be set respectively for determining the second subchannel and the second PRB.
  • the smallest subchannel mentioned in the embodiment of the present application refers to the subchannel with the smallest index value
  • the smallest PRB refers to the PRB with the smallest index value
  • the second subchannel is the same as the first subchannel, or the second PRB is the same as the first PRB.
  • the frequency domain resources of the M PSSCHs are the same, that is, each PSSCH corresponds to the same second subchannel and/or the same second PRB.
  • the second offset, the number of subchannels and the number of PRBs are determined by at least one of the following:
  • the step 220 may also include:
  • the transmission modes of the M PSSCHs According to the first information, determine the transmission modes of the M PSSCHs.
  • the transmission modes of the M PSSCHs can be varied, and the embodiment of the present application only provides two transmission modes for illustration:
  • Transmission mode 1 The M PSSCHs are in one-to-one correspondence with M transport blocks (Transport Block, TB), that is, no PSSCH transmits different TBs, there is no repeated transmission of TBs, and one TB is mapped to one PSSCH;
  • Transport Block Transport Block
  • Transmission mode 2 the M PSSCHs are used to repeatedly transmit one transport block, that is, one TB is mapped to each PSSCH, and different PSSCHs transmit the same one TB.
  • the transmission mode of the M PSSCHs may be determined by at least one of the following:
  • step 220 also includes:
  • At least one of the following information is determined:
  • the M PSSCHs are mapped to resource elements (Resource Element, RE) of the corresponding TB;
  • Time-frequency resources of the reserved PSSCH wherein the reserved PSSCH can be used for retransmission scheduling of the PSSCH, etc.
  • Modulation and Coding Scheme (MCS) of the M PSSCHs are Modulation and Coding Scheme (MCS) of the M PSSCHs;
  • the format and proportional coefficient of the second SCI carried by the M PSSCHs, the SCI format may include 2-A, 2-B, etc., and the proportional coefficient is used to calculate the number of REs occupied by the second SCI;
  • Time-frequency resources of channel state information reference information (Channel State Information Reference Signal, CSI-RS) of the M first time slots;
  • Phase Tracking Reference Signal Phase Tracking Reference Signal
  • the REs used for PSSCH transmission in the TBs are determined based on at least one of the following:
  • the airspace information of the M PSSCHs is determined by a unified indication of the first SCI for the M PSSCHs or determined by the first SCI for the M PSSCHs respectively.
  • the priorities of the M PSSCHs are determined by the same priority determined by the first SCI for the M PSSCHs uniformly or by the first SCI for the M PSSCHs respectively. respective priorities.
  • the time-frequency resource of the reserved PSSCH is determined by at least one of the following:
  • the time-frequency resource of the reserved PSSCH is determined by the indication of the first SCI
  • the time-frequency resource of the first PSSCH among the reserved time-frequency resources of the PSSCH is determined by the indication of the first SCI
  • the time-frequency pattern of the reserved time-frequency resource of the PSSCH is the same as the time-frequency pattern of the M PSSCH time-frequency resources.
  • the symbol length of the DMRS of the M PSSCHs is determined by at least one of the following:
  • the symbol length of the DMRS of the M PSSCHs is determined by the first SCI for the M PSSCHs, or is determined by the first SCI for the M PSSCHs respectively;
  • the first SCI indication determine the symbol lengths of the DMRS of the M PSSCHs from the candidate symbol lengths; wherein the candidate symbol lengths are specified by the protocol or configured by a high layer on the network side.
  • the MCSs of the M PSSCHs are determined by a unified indication of the first SCI for the M PSSCHs, or determined by the first SCI for the M PSSCHs respectively.
  • the PSFCH symbol overhead of the time slot where the M PSSCHs are located is determined by the unified indication of the M PSSCHs by the first SCI, or by the first SCI for the M PSSCHs respectively Instruction OK.
  • the format and scale factor of the second SCI carried by the M PSSCHs include at least one of the following:
  • Each PSSCH carries a corresponding second SCI
  • a designated PSSCH among the M PSSCHs carries the second SCI; wherein, the designated PSSCH is specified by a protocol or configured by a high-level network side.
  • the indication content of the first SCI may include the above information that uniformly indicates the same for the M PSSCHs, or include the above information corresponding to the M PSSCHs respectively. As shown in Table 1 below:
  • Time Domain Resource Allocation M first time slots Allocation of frequency domain resources Indicate the same frequency domain resources for M PSSCHs airspace information Indicate the same or different beam information for M PSSCHs priority Indicate the same or different priorities for M PSSCHs Reservation Period for Resource Reservation Use M PSSCHs as the resource reservation unit Time-frequency pattern of DMRS Indicate the same DMRS time-frequency pattern for M PSSCHs DMRS port Ports indicating the same or different DMRS for M PSSCHs MCS Indicate the same or different MCS for M PSSCHs Symbol overhead of PSFCH Indicates the symbol overhead of the same or different PSFCHs for M PSSCHs Format of the second SCI Indicate the format of the same or different second SCI for M PSSCHs Scale factor for the second SCI Indicates the same or different ratio systems for M PSSCHs
  • the content indicated by the second SCI can be various.
  • the second SCI is used to indicate at least one of the following information of the M PSSCHs:
  • hybrid automatic repeat request Hybrid Automatic Repeat Request, HARQ
  • New data indicators New Data Indicator, NDI
  • redundancy versions Redundancy Version, RV
  • the HARQ feedback enable flag or disable flag of the M PSSCHs
  • the second SCI is further used to indicate that the M PSSCHs have the same source ID, target ID, area ID and communication range.
  • the HARQ process numbers of the M PSSCHs are determined by at least one of the following:
  • the second SCI carried by each PSSCH determines the corresponding HARQ process number
  • the HARQ process number of the first PSSCH among the M PSSCHs is indicated by the second SCI, and is based on the HARQ process of the first PSSCH number to determine the HARQ process numbers of the remaining PSSCHs, for example, the HARQ process numbers of the remaining PSSCHs may be determined in a manner of sequentially +1 based on the HARQ process number of the first PSSCH.
  • the NDI and RV of the M PSSCHs are determined by at least one of the following:
  • the second SCI carried by each PSSCH determines the corresponding NDI and RV;
  • the number of bits in the second SCI used to indicate the NDI and RV fields of the M PSSCHs is related to the M, and the number of bits is dynamic;
  • the number of bits in the second SCI used to indicate the fields of NDI and RV of the M PSSCHs is related to the N, then the number of bits is static, and the number of bits used in the second SCI to indicate the M
  • the number of effective bits in the fields of NDI and RV of a PSSCH is related to the M, then the number of effective bits is dynamic, and the terminal only pays attention to the number of effective bits during demodulation.
  • At least one of the following information is collectively indicated by one second SCI or separately indicated by multiple second SCIs:
  • the HARQ feedback enable flag or disable flag of the M PSSCHs
  • the second SCI is carried in the PSSCH, and the number of coded modulation symbols of the second SCI is related to the following: the number of subcarriers of the PSSCH allocated to the first time slot where the second SCI is located.
  • each second SCI indicates the above information of the PSSCH where it is located; if the second SCI is carried in one PSSCH, the second SCI
  • Table 2 The instruction content is shown in Table 2 below:
  • the REs used for PSSCH transmission in each first time slot are determined by at least one of the following:
  • the airspace information of the M PSSCHs is determined by a unified indication of the first SCI for the M PSSCHs or determined by the first SCI for the M PSSCHs respectively.
  • the format and scale factor of the PSCCH carried by the M PSSCHs include:
  • the designated PSSCH among the M PSSCHs carries the second SCI; wherein, the designated PSSCH is specified by a protocol or configured by a high-level network side.
  • At least one of the following information is uniformly indicated by the first SCI:
  • the indication content of the first SCI is a unified indication for the M PSSCHs.
  • the content indicated by the second SCI can be various.
  • the second SCI is used to indicate at least one of the following information of the M PSSCHs:
  • hybrid automatic repeat request Hybrid Automatic Repeat Request, HARQ
  • New data indicators New Data Indicator, NDI
  • redundancy versions Redundancy Version, RV
  • the HARQ feedback enable flag or disable flag of the M PSSCHs
  • the second SCI is further used to indicate that the M PSSCHs have the same source ID, target ID, area ID and communication range.
  • At least one of the following information is uniformly indicated by a second SCI:
  • the HARQ feedback enable flag or disable flag of the M PSSCHs
  • the indication content of the second SCI is a unified indication for each of the M PSSCHs.
  • the time domain resource of the DMRS of the PSSCH in the first time slot where the M PSSCHs are located is determined by at least one of the following:
  • the symbol length of the DMRS of the PSSCH is the symbol length of the DMRS of the PSSCH.
  • the position of the DMRS symbol of the PSSCH in the first time slot where the M PSSCHs are located is determined by the index value of the symbol in the first time slot in the resource unit.
  • the symbol positions of the DMRS of the PSSCH in each first time slot are the same.
  • the number of symbols nominally occupied by the PSSCH of the first time slot is determined by at least one of the following:
  • the number of symbols occupied by the PSCCH is the number of symbols occupied by the PSCCH.
  • the time-frequency resource of the CSI-RS in the first time slot where the M PSSCHs are located is determined by at least one of the following:
  • a CSI request field where the CSI request field is the CSI request field of the second SCI associated with the PSSCH;
  • the time-frequency resource of the PT-RS in the first time slot where the M PSSCHs are located is determined by at least one of the following:
  • the resource reservation of the first time slot takes M PSSCHs as a resource reservation unit.
  • the time-frequency patterns of the DMRS in the first time slot are all the same.
  • the port of the DMRS in the first time slot is determined by a unified indication or a separate indication of the first SCI.
  • the embodiments of the present invention determine the time domain resources, frequency domain resources, and transmission modes of the M PSSCHs, and determine the other transmission information for different transmission modes, thereby being able to A PSCCH is used to schedule multiple PSSCHs in a resource unit, fully utilizing the time-frequency resources in the resource unit, and improving resource utilization.
  • the sidelink transmission method provided in the embodiment of the present application may be executed by a sidelink transmission device.
  • the sidelink transmission device provided in the embodiment of the present application is described by taking the sidelink transmission device executing the sidelink transmission method as an example.
  • the sidelink transmission device includes an acquisition module 301 and a transmission module 302 .
  • the acquiring module 301 is configured to acquire first information transmitted by a physical sidelink control channel in a sidelink resource unit, where the first information includes first sidelink control information; wherein, the resource unit Including N time slots;
  • the transmission module 302 is configured to determine the transmission information of the M physical sidelink shared channels in the resource unit scheduled by the physical sidelink control channel according to the first information, N Greater than or equal to M.
  • time domain position of the physical channel in the resource unit has been determined
  • the physical channel includes at least one of the following:
  • the embodiments of the present invention obtain the first information transmitted by the PSCCH in the resource unit of the side link, and the first information includes the first SCI; according to the first information, The transmission information of M PSSCHs in the resource unit scheduled by the PSCCH is determined, so that multiple PSSCHs in the resource unit can be scheduled by one PSCCH, and the time-frequency resources in the resource unit can be fully utilized to improve resource utilization.
  • the transmission module is configured to perform at least one of the following:
  • the transmission module is configured to determine the first time slot where the M physical sidelink shared channels are located according to at least one of the following:
  • the first time slots where the M physical sidelink shared channels are located are all N time slots in the resource unit;
  • the first first time slot is determined according to the second time slot where the physical sidelink control channel is located and the first offset; wherein, the The first offset is used to indicate an offset between the first first time slot and the second time slot.
  • the first time slot determines each first time slot; wherein, the first time slot A set of offsets includes offsets between each first time slot and the second time slot.
  • Each first time slot is determined according to the index value corresponding to each first time slot.
  • the manner of obtaining the first offset group includes:
  • the instruction information is at least one of the following:
  • the acquisition method of the index value corresponding to each first time slot includes:
  • bitmap sequences are used to indicate index values corresponding to each first time slot
  • the instruction information is at least one of the following:
  • the transmission module is used for:
  • the first subchannel is the smallest subchannel where the physical sidelink control channel is located, and the first physical resource block is the smallest physical resource block where the physical sidelink control channel is located
  • the second subchannel is the smallest subchannel where the M physical sidelink shared channels are located
  • the second physical resource block is the smallest physical resource block where the M physical sidelink shared channels are located
  • the second subchannel or the second physical resource block and the number of subchannels or the number of physical resource blocks occupied by the M physical sidelink shared channels, determine the frequency of the M physical sidelink shared channels Domain resources.
  • the second subchannel is the same as the first subchannel, or the second physical resource block is the same as the first physical resource block.
  • frequency domain resources of the M physical sidelink shared channels are the same.
  • the transmission modes of the M physical sidelink shared channels include at least one of the following:
  • the M physical sidelink shared channels are in one-to-one correspondence with the M transport blocks;
  • the M physical sidelink shared channels are used to repeatedly transmit a transport block.
  • the transmission mode is determined by at least one of the following:
  • the transmission module is also used to determine at least one of the following information:
  • the M physical sidelink shared channels are mapped to resource units of corresponding transport blocks
  • Time-frequency resources of the reserved physical sidelink shared channel
  • Time-frequency resources of channel state information reference information of the M first time slots are Time-frequency resources of channel state information reference information of the M first time slots
  • the transmission module is further configured to determine the physical sidelink in the transport block based on at least one of the following Resource units for shared channel transmission:
  • the space domain information of the M physical sidelink shared channels is determined by a unified indication or a separate indication of the first sidelink control information.
  • the priorities of the M physical sidelink shared channels are unified by the first sidelink control information Indicates OK or OK respectively.
  • the time-frequency resource of the reserved physical sidelink shared channel is determined by at least one of the following:
  • the time-frequency resource of the reserved physical sidelink shared channel is determined by the indication of the first sidelink control information
  • the time-frequency resource of the first physical sidelink shared channel among the reserved time-frequency resources of the physical sidelink shared channel is determined by the indication of the first sidelink control information
  • the time-frequency pattern of the reserved time-frequency resources of the physical sidelink shared channel is the same as the time-frequency pattern of the time-frequency resources of the M physical sidelink shared channels.
  • the symbol length of the demodulation reference signal of the M physical sidelink shared channels is determined by at least one of the following :
  • the symbol lengths of the demodulation reference signals of the M physical sidelink shared channels are determined by the unified indication or separate indications of the first sidelink control information
  • the first sidelink control information indication determine the symbol lengths of the demodulation reference signals of the M physical sidelink shared channels from the candidate symbol lengths; wherein, the candidate symbol lengths are specified by the protocol or High-level configuration on the network side.
  • the modulation and coding schemes of the M physical sidelink shared channels are controlled by the first sidelink A unified indication of information or a separate indication is determined.
  • the symbol overhead of the physical sidelink feedback channel in the time slot where the M physical sidelink shared channels are located is given by The unified indication or separate indication of the first side link control information is determined.
  • the format and scale factor of the second sidelink control information carried by the M physical sidelink shared channels including at least one of the following:
  • Each physical sidelink shared channel carries corresponding second sidelink control information
  • a designated physical sidelink shared channel among the M physical sidelink shared channels carries the second sidelink control information; wherein, the designated physical sidelink shared channel is specified by a protocol or configured by a network-side high layer.
  • the second sidelink control information is used to indicate at least one of the following information of the M physical sidelink shared channels:
  • the second sidelink control information is used to indicate that the M physical sidelink shared channels have the same source ID, target ID, area ID and communication range.
  • the HARQ process number of the M physical sidelink shared channels is determined by at least one of the following :
  • the second sidelink control information carried by each physical sidelink shared channel determines the corresponding HARQ process number
  • the HARQ of the first physical sidelink shared channel among the M physical sidelink shared channels is continuous
  • the HARQ of the remaining physical sidelink shared channels is determined based on the HARQ process number of the first physical sidelink shared channel request process number.
  • the new data indication and redundancy version of the M physical sidelink shared channels are determined by at least one of the following :
  • the second sidelink control information carried by each physical sidelink shared channel determines the corresponding new data indication and redundancy version
  • the number of bits in the second sidelink control information used to indicate the new data indication and redundancy version fields of the M physical sidelink shared channels is related to the M;
  • the number of bits in the second sidelink control information used to indicate the new data indication and redundancy version fields of the M physical sidelink shared channels is related to the N, and the second sidelink
  • the effective number of bits in the field used to indicate the new data indication and redundancy version of the M physical sidelink shared channels in the control information is related to the M.
  • the M physical sidelink shared channels correspond to M transport blocks one-to-one
  • at least one piece of information below is uniformly indicated by one second sidelink control information or by multiple second sidelinks
  • the road control information respectively indicates:
  • the transmission module is also used to determine the physical sidechain used in each first time slot by at least one of the following Resource units for channel shared channel transmission:
  • the space domain information of the M physical sidelink shared channels is determined by a unified indication or a separate indication of the first sidelink control information.
  • the format and scale factor of the second sidelink control information carried by the M physical sidelink shared channels Including: the specified physical sidelink shared channel among the M physical sidelink shared channels carries the second sidelink control information; wherein, the specified physical sidelink shared channel is specified by the protocol or the network side high-level configuration.
  • the M physical sidelink shared channels are used to repeatedly transmit a transport block, at least one of the following information is uniformly indicated by the first sidelink control information:
  • Time-frequency resources of the reserved physical sidelink shared channel
  • the second sidelink control information is used to indicate at least one of the following information of the M physical sidelink shared channels:
  • the second sidelink control information is used to indicate that the M physical sidelink shared channels have the same source ID, target ID, area ID and communication range.
  • the M physical sidelink shared channels are used to repeatedly transmit a transport block, at least one of the following information is uniformly indicated by one second sidelink control information:
  • time domain resource of the demodulation reference signal of the physical sidelink shared channel in the first time slot is determined by at least one of the following:
  • the symbol position of the demodulation reference signal of the physical sidelink shared channel in the first time slot is determined by the index value of the symbol in the first time slot in the resource unit.
  • symbol positions of the demodulation reference signals of the physical sidelink shared channel in each first time slot are the same.
  • the nominal number of symbols occupied by the physical sidelink control channel of the first time slot is determined by at least one of the following:
  • the number of symbols occupied by the physical sidelink control channel is the number of symbols occupied by the physical sidelink control channel.
  • time-frequency resource of the channel state information reference information of the first time slot is determined by at least one of the following:
  • the time-frequency position of the channel state information reference information is the time-frequency position of the channel state information reference information
  • the number of antenna ports for channel state information reference information is the number of antenna ports for channel state information reference information
  • time-frequency resource of the phase tracking reference signal of the first time slot is determined by at least one of the following:
  • the resource reservation of the first time slot takes M physical sidelink shared channels as resource reservation units.
  • time-frequency patterns of the demodulation reference signal in the first time slot are all the same.
  • the ports of the demodulation reference signal of the first time slot are determined by the unified indication or the respective indications of the first sidelink control information.
  • the embodiments of the present invention determine the time domain resources, frequency domain resources, and transmission modes of the M PSSCHs, and determine the other transmission information for different transmission modes, thereby being able to A PSCCH is used to schedule multiple PSSCHs in a resource unit, fully utilizing the time-frequency resources in the resource unit, and improving resource utilization.
  • the sidelink transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the sidelink transmission device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 2 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 400, including a processor 401 and a memory 402, and the memory 402 stores programs or instructions that can run on the processor 401, such as , when the communication device 400 is a terminal, when the program or instruction is executed by the processor 401, each step of the above embodiment of the sidelink transmission method can be implemented, and the same technical effect can be achieved.
  • the communication device 400 is a network-side device, when the program or instruction is executed by the processor 401, the steps of the above embodiment of the sidelink transmission method can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the processor is configured to determine M physical side links in the resource unit scheduled by the physical side link control channel according to the first information
  • the transmission information of the shared channel, N is greater than or equal to M
  • the communication interface is used to obtain the first information transmitted by the physical sidelink control channel in the resource unit of the sidelink, and the first information includes the first sidelink control information;
  • the resource unit includes N time slots.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 500 includes, but is not limited to: a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, a display unit 506, a user input unit 507, an interface unit 508, a memory 509, and a processor 510. At least some parts.
  • the terminal 500 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 510 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 504 may include a graphics processing unit (Graphics Processing Unit, GPU) 5041 and a microphone 5042, and the graphics processor 5041 is used in a video capture mode or an image capture mode by an image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 506 may include a display panel 5061, and the display panel 5061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 507 includes at least one of a touch panel 5071 and other input devices 5072 .
  • the touch panel 5071 is also called a touch screen.
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 5072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 501 may transmit the downlink data from the network side device to the processor 510 for processing after receiving it; in addition, the radio frequency unit 501 may send uplink data to the network side device.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 509 can be used to store software programs or instructions as well as various data.
  • the memory 509 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 509 may include volatile memory or nonvolatile memory, or, memory 509 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 510 may include one or more processing units; optionally, the processor 510 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 510 .
  • the radio frequency unit 501 is configured to obtain the first information transmitted by the physical sidelink control channel in the resource unit of the sidelink, where the first information includes the first sidelink control information; where the resource unit includes N time slots.
  • the processor 510 is configured to determine, according to the first information, transmission information of M physical sidelink shared channels in the resource unit scheduled by the physical sidelink control channel, where N is greater than or equal to M.
  • time domain position of the physical channel in the resource unit has been determined
  • the physical channel includes at least one of the following:
  • one PSCCH can schedule multiple PSSCHs in a resource unit, fully utilize the time-frequency resources in the resource unit, and improve resource utilization.
  • processor 510 is configured to perform at least one of the following:
  • processor 510 is configured to:
  • the first time slots where the M physical sidelink shared channels are located are all N time slots in the resource unit;
  • the first first time slot is determined according to the second time slot where the physical sidelink control channel is located and the first offset; wherein, the The first offset is used to indicate an offset between the first first time slot and the second time slot.
  • the first time slot determines each first time slot; wherein, the first time slot A set of offsets includes offsets between each first time slot and the second time slot.
  • Each first time slot is determined according to the index value corresponding to each first time slot.
  • the manner of obtaining the first offset group includes:
  • the instruction information is at least one of the following:
  • the acquisition method of the index value corresponding to each first time slot includes:
  • bitmap sequences are used to indicate index values corresponding to each first time slot
  • the instruction information is at least one of the following:
  • processor 510 is further configured to:
  • the first subchannel is the smallest subchannel where the physical sidelink control channel is located, and the first physical resource block is the smallest physical resource block where the physical sidelink control channel is located
  • the second subchannel is the smallest subchannel where the M physical sidelink shared channels are located
  • the second physical resource block is the smallest physical resource block where the M physical sidelink shared channels are located
  • the second subchannel or the second physical resource block and the number of subchannels or the number of physical resource blocks occupied by the M physical sidelink shared channels, determine the frequency of the M physical sidelink shared channels Domain resources.
  • the second subchannel is the same as the first subchannel, or the second physical resource block is the same as the first physical resource block.
  • frequency domain resources of the M physical sidelink shared channels are the same.
  • processor 510 is further configured to perform at least one of the following:
  • the M physical sidelink shared channels are in one-to-one correspondence with the M transport blocks;
  • the M physical sidelink shared channels are used to repeatedly transmit a transport block.
  • the transmission mode is determined by at least one of the following:
  • processor 510 is also configured to execute at least one of the following items of information:
  • the M physical sidelink shared channels are mapped to resource units of corresponding transport blocks
  • Time-frequency resources of the reserved physical sidelink shared channel
  • Time-frequency resources of channel state information reference information of the M first time slots are Time-frequency resources of channel state information reference information of the M first time slots
  • the processor 510 when determining the resource units of the M transport blocks, is further configured to:
  • resource units used for physical sidelink shared channel transmission in the transport block based on at least one of the following:
  • the processor 510 when determining the resource units of the M transport blocks, is further configured to:
  • the resource units used for physical sidelink shared channel transmission in each first time slot are determined by at least one of the following:
  • the space domain information of the M physical sidelink shared channels is determined by a unified indication or a separate indication of the first sidelink control information.
  • the priorities of the M physical sidelink shared channels are unified by the first sidelink control information Indicates OK or OK respectively.
  • the time-frequency resource of the reserved physical sidelink shared channel is determined by at least one of the following:
  • the time-frequency resource of the reserved physical sidelink shared channel is determined by the indication of the first sidelink control information
  • the time-frequency resource of the first physical sidelink shared channel among the reserved time-frequency resources of the physical sidelink shared channel is determined by the indication of the first sidelink control information
  • the time-frequency pattern of the reserved time-frequency resources of the physical sidelink shared channel is the same as the time-frequency pattern of the time-frequency resources of the M physical sidelink shared channels.
  • the symbol length of the demodulation reference signal of the M physical sidelink shared channels is determined by at least one of the following :
  • the symbol lengths of the demodulation reference signals of the M physical sidelink shared channels are determined by the unified indication or separate indications of the first sidelink control information
  • the first sidelink control information indication determine the symbol lengths of the demodulation reference signals of the M physical sidelink shared channels from the candidate symbol lengths; wherein, the candidate symbol lengths are specified by the protocol or High-level configuration on the network side.
  • the modulation and coding schemes of the M physical sidelink shared channels are controlled by the first sidelink A unified indication of information or a separate indication is determined.
  • the symbol overhead of the physical sidelink feedback channel in the time slot where the M physical sidelink shared channels are located is given by The unified indication or separate indication of the first side link control information is determined.
  • the format and scale factor of the second sidelink control information carried by the M physical sidelink shared channels including at least one of the following:
  • Each physical sidelink shared channel carries corresponding second sidelink control information
  • a designated physical sidelink shared channel among the M physical sidelink shared channels carries the second sidelink control information; wherein, the designated physical sidelink shared channel is specified by a protocol or configured by a network-side high layer.
  • the format and scale factor of the second sidelink control information carried by the M physical sidelink shared channels Including: the specified physical sidelink shared channel among the M physical sidelink shared channels carries the second sidelink control information; wherein, the specified physical sidelink shared channel is specified by the protocol or the network side high-level configuration.
  • the M physical sidelink shared channels are used to repeatedly transmit a transport block, at least one of the following information is uniformly indicated by the first sidelink control information:
  • Time-frequency resources of the reserved physical sidelink shared channel
  • the second sidelink control information is used to indicate at least one of the following information of the M physical sidelink shared channels:
  • the second sidelink control information is used to indicate that the M physical sidelink shared channels have the same source ID, target ID, area ID and communication range.
  • the HARQ process number of the M physical sidelink shared channels is determined by at least one of the following :
  • the second sidelink control information carried by each physical sidelink shared channel determines the corresponding HARQ process number
  • the HARQ of the first physical sidelink shared channel among the M physical sidelink shared channels is continuous
  • the HARQ of the remaining physical sidelink shared channels is determined based on the HARQ process number of the first physical sidelink shared channel request process number.
  • the new data indication and redundancy version of the M physical sidelink shared channels are determined by at least one of the following :
  • the second sidelink control information carried by each physical sidelink shared channel determines the corresponding new data indication and redundancy version
  • the number of bits in the second sidelink control information used to indicate the new data indication and redundancy version fields of the M physical sidelink shared channels is related to the M;
  • the number of bits in the second sidelink control information used to indicate the new data indication and redundancy version fields of the M physical sidelink shared channels is related to the N, and the second sidelink
  • the effective number of bits in the field used to indicate the new data indication and redundancy version of the M physical sidelink shared channels in the control information is related to the M.
  • the M physical sidelink shared channels correspond to M transport blocks one-to-one
  • at least one piece of information below is uniformly indicated by one second sidelink control information or by multiple second sidelinks
  • the road control information respectively indicates:
  • the M physical sidelink shared channels are used to repeatedly transmit a transport block, at least one of the following information is uniformly indicated by one second sidelink control information:
  • time domain resource of the demodulation reference signal of the physical sidelink shared channel in the first time slot is determined by at least one of the following:
  • the symbol position of the demodulation reference signal of the physical sidelink shared channel in the first time slot is determined by the index value of the symbol in the first time slot in the resource unit.
  • symbol positions of the demodulation reference signals of the physical sidelink shared channel in each first time slot are the same.
  • the nominal number of symbols occupied by the physical sidelink control channel of the first time slot is determined by at least one of the following:
  • the number of symbols occupied by the physical sidelink control channel is the number of symbols occupied by the physical sidelink control channel.
  • time-frequency resource of the channel state information reference information of the first time slot is determined by at least one of the following:
  • the time-frequency position of the channel state information reference information is the time-frequency position of the channel state information reference information
  • the number of antenna ports for channel state information reference information is the number of antenna ports for channel state information reference information
  • time-frequency resource of the phase tracking reference signal of the first time slot is determined by at least one of the following:
  • the resource reservation of the first time slot takes M physical sidelink shared channels as resource reservation units.
  • time-frequency patterns of the demodulation reference signal in the first time slot are all the same.
  • the ports of the demodulation reference signal of the first time slot are determined by the unified indication or the respective indications of the first sidelink control information.
  • time domain position of the physical channel in the resource unit has been determined
  • the physical channel includes at least one of the following:
  • one PSCCH can be used to schedule multiple PSSCHs in a resource unit, fully utilize the time-frequency resources in the resource unit, and improve resource utilization.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by the processor, each process of the above embodiment of the sidelink transmission method is implemented, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the implementation of the above-mentioned side link transmission method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the implementation of the above-mentioned side link transmission method
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above sidelink transmission method
  • the various processes of the embodiment can achieve the same technical effect, so in order to avoid repetition, details are not repeated here.
  • An embodiment of the present application also provides a sidelink transmission system, including: a plurality of terminals and network side equipment, and the terminals can be used to execute the steps of the above sidelink transmission method.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Abstract

本申请公开了一种旁链路传输方法、装置及终端,属于移动通信领域,本申请实施例的旁链路传输方法包括:终端获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙;所述终端根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。

Description

旁链路传输方法、装置及终端
相关申请的交叉引用
本申请要求在2021年12月20日提交的中国专利申请第202111564262.7号的优先权,该中国专利申请的全部内容通过引用包含于此。
技术领域
本申请属于移动通信技术领域,具体涉及一种旁链路传输方法、装置及终端。
背景技术
旁链路(sidelink),也称为副链路、直连链路、侧链路、边链路等,用于终端之间不通过网络设备进行直接数据传输。Sidelink链路接口又可以称作PC5接口。在sidelink上,UE通过发送包含旁链路控制信息(Sidelink Control Information,SCI)的物理旁链路控制信道(Physical Sidelink Control Channel,PSCCH),调度物理旁链路共享信道(Physical Sidelink Shared Channel,PSSCH)的传输以发送sidelink数据。
在52.6GHz-71GHz部署频段引入了新的子载波间隔(SubCarrier Spacing,SCS),包括480kHz和960kHz。针对这些新引入的SCS,会引入新的资源单元,并且为了提高频谱效率,一个PSCCH承载的SCI可以调度多个PSSCH,为此,需要解决旁链路传输过程中对这种新的资源单元的资源调度问题。
发明内容
本申请实施例提供一种旁链路传输方法、装置及终端,能够解决旁链路传输过程中通过一个PSCCH调度多个PSSCH时的资源调度的问题。
第一方面,提供了一种旁链路传输方法,应用于终端,该方法包括:
终端获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息, 所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙;
所述终端根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。
第二方面,提供了一种旁链路传输装置,包括:
获取模块,用于获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙;
传输模块,用于根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。
第三方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M,所述通信接口用于获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙。
第五方面,提供了一种旁链路传输系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的旁链路传输方法的步骤。
第六方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第七方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第八方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实 现如第一方面所述的旁链路传输方法的步骤。
在本申请实施例中,通过终端获取旁链路的资源单元内的PSCCH传输的第一信息,所述第一信息包括第一SCI;所述终端根据所述第一信息,确定所述PSCCH调度的所述资源单元内的M个PSSCH的传输信息,从而能够通过一个PSCCH调度资源单元内多个PSSCH,充分利用资源单元内的时频资源,提升资源的利用率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的结构示意图;
图2是本申请实施例提供的一种旁链路传输方法的流程示意图;
图3是本申请实施例提供的一种旁链路传输装置的结构示意图;
图4是本申请实施例提供的一种通信设备结构示意图;
图5为实现本申请实施例的一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网 (Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的旁链路传输方法、装置及终端进行详细地说明。
如图2所示,本申请实施例提供了一种旁链路传输方法,该方法的执行 主体可以为进行旁链路通信的终端,包括发送端和接收端,换言之,该方法可以由安装在终端的软件或硬件来执行。
步骤210、终端获取旁链路的资源单元内的PSCCH传输的第一信息,所述第一信息包括第一SCI;其中,所述资源单元包括N个时隙。
本申请实施例定义了一种用于旁链路的资源单元,所述资源单元包括N个时隙,所述N可以由协议规定或网络侧高层配置,例如,N=4或5等。
所述资源单元可以为针对在52.6GHz-71GHz部署频段引入的新的SCS,包括480kHz和960kHz,所述资源单元中包括的时隙为与所述新的SCS对应的时隙。
进一步地,所述资源单元内各物理信道的时域位置均已确定;
其中,所述物理信道可以包括以下至少一项:
PSCCH,所述PSCCH承载有第一SCI,可用于调度多个PSSCH;
PSSCH;
物理旁链路反馈信道(Physical Sidelink Feedback Channel,PSFCH);
自动增益控制(Automatic Gain Control,AGC),所述AGC具有功率调整的作用,具体表现为重复传输以下至少一个信道承载的传输内容:PSCCH,PSSCH,PSFCH;
保护符号(GAP),所述保护符号可以设置于PSSCH与PSFCH之间。
步骤220、所述终端根据所述第一信息,确定所述PSCCH调度的所述资源单元内的M个PSSCH的传输信息,所述N大于等于所述M。
所述M可以由协议规定或网络侧高层配置,或由SCI或下行控制信息(Downlink Control Information,DCI)动态显示或隐式显示。
应理解的是,所述传输信息可以包括所述M个PSSCH的时域资源、所述M个PSSCH的频域资源、所述M个PSSCH的传输模式等。
终端可根据所述传输信息,通过所述M个PSSCH发送旁链路的数据,实现旁链路通信。
由以上本发明实施例提供的技术方案可见,本发明实施例通过终端获取旁链路的资源单元内的PSCCH传输的第一信息,所述第一信息包括第一SCI;所述终端根据所述第一信息,确定所述PSCCH调度的所述资源单元内的M个PSSCH的传输信息,从而能够通过一个PSCCH调度资源单元内多个PSSCH,充分利用资源单元内的时频资源,提升资源的利用率。
基于上述实施例,进一步地,所述步骤220中根据第一信息确定所述M个PSSCH的传输信息的实施方式可以多种多样,本申请实施例仅给出了其中的几种具体实施方式。
在一种实施方式中,所述步骤220可以包括:
根据所述第一信息,确定所述M个PSSCH的时域资源。
所述时域资源包括所述M个PSSCH所在的第一时隙。
所述确定所述M个PSSCH的时域资源可以包括:
确定所述M个PSSCH所在的第一时隙;
确定所述第一时隙中可传输PSSCH的时域资源与所述PSSCH的对应关系,可以包括确定所述第一时隙中可传输PSSCH的符号位置。
用于确定所述第一时隙的方式可以多种多样,本申请实施例仅给出了其中的几种具体实施方式。
在一种实施方式中,所述M个PSSCH所在的时隙为所述资源单元中所有N个时隙。
在另一种实施方式中,在M个第一时隙为连续时隙的情况下,根据所述PSCCH所在的第二时隙,以及第一偏移量,确定第一个第一时隙;然后,再基于第一个第一时隙确定出其它的第一时隙;其中,所述第一偏移量用于指示所述第一个第一时隙与所述第二时隙之间的偏移量,即偏移的时隙数量,所述第一偏移量可以由所述第一SCI或DCI指示,也可以由协议规定或网络侧高层配置。
在另一种实施方式中,根据所述PSCCH所在的第二时隙,以及与所述 M个PSSCH对应的第一偏移量组,确定各第一时隙;其中,所述第一偏移量组包括各第一时隙与所述第二时隙之间的偏移量。
所述第一偏移量组的获取方式可以多种多样,可以由所述第一SCI或DCI指示确定,或者也可以由协议规定或网络侧高层配置。本申请实施例仅给出了其中的一种实施方式:
获取配置的多个第一偏移量组,所述多个第一偏移量组可以由协议规定或网络侧高层配置;
根据指示信息从所述多个第一偏移量组中确定与所述M个PSSCH对应的第一偏移量组。例如,由网络侧高层配置2个第一偏移量组:{A1、A2}和{A3、A4},根据指示信息从2个第一偏移量组中选择其中一个{A1、A2}作为与所述M个PSSCH对应的第一偏移量组,然后,基于所述PSCCH所在的第二时隙的位置,分别根据偏移量A1和A2,确定对应第一时隙。
所述指示信息为以下至少一项:
所述第一SCI;
DCI。
在另一种实施方式中,根据与各第一时隙对应的索引值,确定各第一时隙,其中,所述各第一时隙的索引值可以由协议规定或网络侧设备配置,也可以根据第一SCI或DCI的指示信息确定。
在一种实施方式中,所述与各第一时隙对应的索引值的获取方式包括:
获取多个比特映射(bitmap)序列,所述比特映射序列用于指示各第一时隙对应的索引值,所述比特映射序列可以由协议规定或网络侧高层配置;例如,若所述资源单元包括N=4个时隙,则配置的多个比特映射序列包括{1,0,1,0}{1,1,1,1},其中,1表示对应时隙的索引值为对应第一时隙的索引值。{1,0,1,0}表示M个第一时隙的索引值为第一个时隙和第三个时隙的索引值,{1,1,1,1}则表示M个第一时隙为所述资源单元中的所有N个时隙。
根据指示信息从所述多个比特映射序列中确定与所述M个PSSCH对应 的比特映射序列;以如上所述配置的多个比特映射序列包括{1,0,1,0}、{1,1,1,1}为例,若所述PSCCH调度了2个PSSCH,则指示信息可以指示与所述2个PSSCH对应的比特映射序列为{1,0,1,0};若所述PSCCH调度了4个PSSCH,则指示信息与所述2个PSSCH对应的比特映射序列为{1,1,1,1}。
其中,所述指示信息为以下至少一项:
所述第一SCI;
DCI。
在另一种实施方式中,所述步骤220还可以包括:
根据所述第一信息,确定所述M个PSSCH的频域资源。
所述M个PSSCH的频域资源可以包括所述M个PSSCH对应的子信道或物理资源块(Physical Resource Block,PRB)。
在一种实施方式中,所述确定所述M个PSSCH的频域资源包括:
根据与所述PSCCH对应的第一子信道,以及第二偏移量,确定与所述M个PSSCH对应的第二子信道;其中,所述第一子信道为所述PSCCH所在的最小子信道,所述第二子信道为所述M个PSSCH所在的最小子信道,此处,所述第二偏移量用于指示第一子信道的索引值与第二子信道的索引值之间偏移量;
根据所述第二子信道,以及所述M个PSSCH所占的子信道数量,确定所述M个PSSCH的频域资源。
在另一种实施方式中,所述确定所述M个PSSCH的频域资源还包括:
根据与所述PSCCH对应的第一PRB,以及第二偏移量,确定与所述M个PSSCH对应的第二PRB;其中,所述第一PRB为所述PSCCH所在的最小PRB,所述第二PRB为所述M个PSSCH所在的最小PRB,此处,所述第二偏移量用于指示第一PRB的索引值与第二PRB的索引值之间的偏移量。
根据所述第二PRB,以及所述M个PSSCH所占的PRB数量,确定所述M个PSSCH的频域资源。
应理解的是,可以分别设定针对子信道和PRB的两个第二偏移量,用于确定所述第二子信道和第二PRB。
应理解的是,本申请实施例中所述的最小子信道是指索引值最小的子信道,最小PRB是指索引值最小的PRB。
在另一种实施方式中,所述第二子信道与所述第一子信道相同,或者所述第二PRB与所述第一PRB相同。
在另一种实施方式中,所述M个PSSCH的频域资源相同,即各PSSCH对应于相同的第二子信道和/或相同的第二PRB。
其中,所述第二偏移量、子信道数量和PRB数量由以下至少一项确定:
所述第一SCI;
DCI;
协议规定;
网络侧高层配置。
在另一种实施方式中,所述步骤220还可以包括:
根据所述第一信息,确定所述M个PSSCH的传输模式。
所述M个PSSCH的传输模式可以多种多样,本申请实施例仅给出了其中的两种传输模式进行举例说明:
传输模式1:所述M个PSSCH与M个传输块(Transport Block,TB)一一对应,即没的PSSCH传输不同的TB,没有重复传输的TB,一个TB映射到一个PSSCH;
传输模式2:所述M个PSSCH用于重复传输一个传输块,即一个TB映射到各PSSCH,不同的PSSCH传输相同的一个TB。
所述M个PSSCH的传输模式可以由以下至少一项确定:
所述第一SCI;
DCI;
协议规定;
网络侧高层配置。
在另一种实施方式中,所述步骤220还包括:
根据所述第一信息,确定以下至少一项信息:
所述M个PSSCH与对应的TB的资源单元(Resource Element,RE)映射;
所述M个PSSCH的空域信息;
所述M个PSSCH的优先级;
预留的PSSCH的时频资源,其中,所述预留的PSSCH可以用于PSSCH的重传调度等;
所述M个PSSCH的解调参考信号(Demodulation Reference Signal,DMRS)的符号长度;
所述M个PSSCH的调制和编码方案(Modulation and Coding Scheme,MCS);
所述M个PSSCH所在第一时隙的PSFCH的符号开销;
所述M个PSSCH承载的第二SCI的格式及比例系数,所述SCI格式可以包括2-A,2-B等,所述比例系数用于计算所述第二SCI所占的RE数量;
所述M个PSSCH所在的第一时隙中的PSSCH的DMRS的时域资源;
所述M个第一时隙的信道状态信息参考信息(Channel State Information Reference Signal,CSI-RS)的时频资源;
所述M个第一时隙的相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS)的时频资源;
所述M个第一时隙的资源预留的预留周期;
所述M个第一时隙的解调参考信号的时频图样;
所述M个第一时隙的解调参考信号的端口。
下面针对不同的传输模式,分别说明上述信息的确定方式。
针对传输模式1:
在一种实施方式中,在确定所述M个TB的RE时,基于以下至少一项确定所述TB中用于PSSCH传输的RE:
所述PSCCH所占的RE数量;
所述PSCCH的DMRS所占的RE数量;
所述第一时隙在所述资源单元中的索引值;
所述M;
所述N。
在一种实施方式中,所述M个PSSCH的空域信息由所述第一SCI对所述M个PSSCH统一指示确定或者由所述第一SCI对所述M个PSSCH分别指示确定。
在一种实施方式中,所述M个PSSCH的优先级由所述第一SCI对所述M个PSSCH统一指示确定相同的优先级或由所述第一SCI对所述M个PSSCH分别指示确定各自的优先级。
在一种实施方式中,所述预留的PSSCH的时频资源由以下至少一项确定:
所述预留的PSSCH的时频资源由所述第一SCI的指示确定;
所述预留的PSSCH的时频资源中的第一个PSSCH的时频资源由所述第一SCI的指示确定;
所述预留的PSSCH的时频资源的时频图样与所述M个PSSCH的时频资源的时频图样相同。
在一种实施方式中,所述M个PSSCH的DMRS的符号长度由以下至少一项确定:
所述M个PSSCH的DMRS的符号长度由所述第一SCI对所述M个PSSCH统一指示确定,或由所述第一SCI对所述M个PSSCH分别指示确定;
根据所述第一SCI指示,从候选的符号长度中确定所述M个PSSCH的DMRS的符号长度;其中,所述候选的符号长度由协议规定或网络侧高层配置。
在一种实施方式中,所述M个PSSCH的MCS由所述第一SCI对所述M个PSSCH的统一指示确定,或由所述第一SCI对所述M个PSSCH分别指示确定。
在一种实施方式中,所述M个PSSCH所在时隙的PSFCH符号开销由所述第一SCI对所述M个PSSCH的统一指示确定,或由所述第一SCI对所述M个PSSCH分别指示确定。
在一种实施方式中,所述M个PSSCH承载的第二SCI的格式及比例系数,包括以下至少之一:
各PSSCH均承载对应的第二SCI;
在所述M个PSSCH中的指定PSSCH承载第二SCI;其中,所述指定的PSSCH由协议规定或网络侧高层配置。
可见,针对传输模式1,所述第一SCI的指示内容可以包括对所述M个PSSCH统一指示相同的上述信息,或者包括对所述M个PSSCH分别对应的上述信息。如下表1所示:
表1
第一SCI指示的信息 第一SCI的指示内容
时域资源的分配 M个第一时隙
频域资源的分配 对M个PSSCH指示相同的频域资源
空域信息 对M个PSSCH指示相同或不同的波束信息
优先级 对M个PSSCH指示相同或不同的优先级
资源预留的预留周期 以M个PSSCH为资源预留单位
DMRS的时频图样 对M个PSSCH指示相同DMRS时频图样
DMRS的端口 对M个PSSCH指示相同或不同DMRS的端口
MCS 对M个PSSCH指示相同或不同MCS
PSFCH的符号开销 对M个PSSCH指示相同或不同PSFCH的符号开销
第二SCI的格式 对M个PSSCH指示相同或不同的第二SCI的格式
第二SCI的比例系数 对M个PSSCH指示相同或不同的比例系统
所述第二SCI指示的内容可以多种多样,在一种实施方式中,所述第二SCI用于指示所述M个PSSCH的以下至少一项信息:
所述M个PSSCH的源标识(ID);
所述M个PSSCH的目标ID;
所述M个PSSCH的区域ID;
所述M个PSSCH的通信范围;
所述M个PSSCH的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程号;
所述M个PSSCH的新数据指示(New Data Indicator,NDI)和冗余版本(Redundancy Version,RV);
所述M个PSSCH的传输类型;
所述M个PSSCH的HARQ反馈使能标识或去使能标识;
所述M个PSSCH的CSI请求。
在一种实施方式中,所述第二SCI还用于指示M个PSSCH具有相同的源ID、目标ID、区域ID和通信范围。
在一种实施方式中,所述M个PSSCH的HARQ进程号由以下至少一项确定:
由各PSSCH承载的第二SCI确定对应的HARQ进程号;
在所述M个PSSCH的HARQ进程号连续的情况下,由所述M个PSSCH中的第一个PSSCH的HARQ进程号由所述第二SCI指示,并基于所述第一个PSSCH的HARQ进程号确定其余PSSCH的HARQ进程号,例如可以采用基于第一个PSSCH的HARQ进程号,依次+1的方式确定其余PSSCH的HARQ进程号。
在一种实施方式中,所述M个PSSCH的NDI和RV由以下至少一项确定:
由各PSSCH承载的第二SCI确定对应的NDI和RV;
所述第二SCI中用于指示所述M个PSSCH的NDI和RV的域的比特数与所述M相关,则该比特数是动态的;
所述第二SCI中用于指示所述M个PSSCH的NDI和RV的域的比特数与所述N相关,则该比特数是静态的,且所述第二SCI中用于指示所述M个PSSCH的NDI和RV的域的有效比特数与所述M相关,则该有效比特数是动态,终端在进行解调的过程中仅关注有效比特数。
在一种实施方式中,以下至少一项信息由一个第二SCI统一指示或由多个第二SCI分别指示:
所述M个PSSCH的传输类型;
所述M个PSSCH的HARQ的反馈使能标识或去使能标识;
所述M个PSSCH的CSI请求。
可见,第二SCI在PSSCH中承载,第二SCI的编码调制符号数目与以下相关:所述第二SCI所在的第一时隙分配该PSSCH的子载波数量。针对传输模式1,若所述第二SCI承载在每个PSSCH中,则每个第二SCI分别指示所在的PSSCH的上述信息;若所述第二SCI承载在一个PSSCH中,则第二SCI的指示内容如下表2所示:
表2
Figure PCTCN2022139899-appb-000001
针对传输模式2:
在一种实施方式中,在确定所述M个TB的RE时,由以下至少一项确定每个第一时隙中用于PSSCH传输的RE:
所述M个PSSCH所在第一时隙的第一个第一时隙中PSSCH所占的RE数量;
所述M个PSSCH所在第一时隙的第一个第一时隙中PSCCH的DMRS所占的RE数量。
在一种实施方式中,所述M个PSSCH的空域信息由所述第一SCI对所述M个PSSCH统一指示确定或者由所述第一SCI对所述M个PSSCH分别指示确定。
在一种实施方式中,所述M个PSSCH承载的PSCCH的格式及比例系数,包括:
在所述M个PSSCH中的指定PSSCH承载第二SCI;其中,所述指定PSSCH由协议规定或网络侧高层配置。
在一种实施方式中,以下至少一项信息均由第一SCI统一指示:
所述M个PSSCH的优先级;
预留的PSSCH的时频资源;
所述M个PSSCH的DMRS的符号长度;
所述M个PSSCH的MCS;
所述M个PSSCH所在第一时隙的PSFCH的符号开销;
所述M个PSSCH承载的第二SCI的格式及比例系数。
可见,针对传输模式2,所述第一SCI的指示内容对所述M个PSSCH都是统一指示。
所述第二SCI指示的内容可以多种多样,在一种实施方式中,所述第二SCI用于指示所述M个PSSCH的以下至少一项信息:
所述M个PSSCH的源标识(ID);
所述M个PSSCH的目标ID;
所述M个PSSCH的区域ID;
所述M个PSSCH的通信范围;
所述M个PSSCH的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程号;
所述M个PSSCH的新数据指示(New Data Indicator,NDI)和冗余版本(Redundancy Version,RV);
所述M个PSSCH的传输类型;
所述M个PSSCH的HARQ反馈使能标识或去使能标识;
所述M个PSSCH的CSI请求。
在一种实施方式中,所述第二SCI还用于指示M个PSSCH具有相同的源ID、目标ID、区域ID和通信范围。
在一种实施方式中,以下至少一项信息由一个第二SCI统一指示:
所述M个PSSCH的源ID;
所述M个PSSCH的目标ID;
所述M个PSSCH的区域ID;
所述M个PSSCH的通信范围;
所述M个PSSCH的HARQ进程号;
所述M个PSSCH的NDI和RV;
所述M个PSSCH的传输类型;
所述M个PSSCH的HARQ的反馈使能标识或去使能标识;
所述M个PSSCH的CSI请求。
可见,针对传输模式2,第二SCI的指示内容,对所述M个PSSCH中的每个PSSCH都是统一指示。
在一种实施方式中,所述M个PSSCH所在的第一时隙中的PSSCH的DMRS的时域资源由以下至少一项确定:
所述第一时隙的PSCCH所占的符号数;
所述第一时隙的PSSCH所占的符号数;
所述PSSCH的DMRS的符号长度;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
在一种实施方式中,所述M个PSSCH所在的第一时隙中的PSSCH的DMRS的符号位置由所述第一时隙的符号在所述资源单元中的索引值确定。
在一种实施方式中,每个第一时隙中的PSSCH的DMRS的符号位置相同。
在一种实施方式中,所述第一时隙的PSSCH名义上所占的符号数由以下至少一项确定:
所述M;
所述N;
所述PSCCH所占的符号数。
在一种实施方式中,所述M个PSSCH所在的第一时隙的CSI-RS的时频资源由以下至少一项确定:
CSI请求获取参数;
CSI请求字段,所述CSI请求字段为PSSCH关联的第二SCI的CSI请求字段;
CSI-RS的时频位置;
CSI-RS的天线端口数;
CSI的RE密度;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
在一种实施方式中,所述M个PSSCH所在的第一时隙的PT-RS的时频资源由以下至少一项确定:
所述M个PSSCH的MCS;
所述第一PSCCH的CRC校验比特数;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
在一种实施方式中,所述第一时隙的资源预留以M个PSSCH为资源预留单元。
在一种实施方式中,所述第一时隙的DMRS的时频图样均相同。
在一种实施方式中,所述第一时隙的DMRS的端口由所述第一SCI统一指示确定或分别指示确定。
由以上本发明实施例提供的技术方案可见,本发明实施例通过确定所述M个PSSCH的时域资源、频域资源、传输模式,并针对不同的传输模式确定所述其它传输信息,从而能够通过一个PSCCH调度资源单元内多个PSSCH,充分利用资源单元内的时频资源,提升资源的利用率。
本申请实施例提供的旁链路传输方法,执行主体可以为旁链路传输装置。本申请实施例中以旁链路传输装置执行旁链路传输方法为例,说明本申请实施例提供的旁链路传输装置。
如图3所示,所述旁链路传输装置包括获取模块301和传输模块302。其中,所述获取模块301用于获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙;所述传输模块302用于根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。
进一步地,所述资源单元内物理信道的时域位置已确定;
其中,所述物理信道包括以下至少一项:
物理旁链路控制信道;
物理旁链路共享信道;
物理旁链路反馈信道;
自动增益控制;
保护符号。
由以上本发明实施例提供的技术方案可见,本发明实施例通获取旁链路的资源单元内的PSCCH传输的第一信息,所述第一信息包括第一SCI;根据所述第一信息,确定所述PSCCH调度的所述资源单元内的M个PSSCH的传输信息,从而能够通过一个PSCCH调度资源单元内多个PSSCH,充分利用资源单元内的时频资源,提升资源的利用率。
基于上述实施例,进一步地,传输模块用于执行以下至少一项:
确定所述M个物理旁链路共享信道的时域资源;
确定所述M个物理旁链路共享信道的频域资源;
确定所述M个物理旁链路共享信道的传输模式。
进一步地,所述传输模块用于根据以下至少一项确定所述M个物理旁链路共享信道所在的第一时隙:
所述M个物理旁链路共享信道所在的第一时隙为所述资源单元中所有N个时隙;
在M个第一时隙为连续时隙的情况下,根据所述物理旁链路控制信道所在的第二时隙,以及第一偏移量,确定第一个第一时隙;其中,所述第一偏移量用于指示第一个第一时隙与所述第二时隙之间的偏移量。
根据所述物理旁链路控制信道所在的第二时隙,以及与所述M个物理旁链路共享信道对应的第一偏移量组,确定与各第一时隙;其中,所述第一偏移量组包括各第一时隙与所述第二时隙之间的偏移量。
根据与各第一时隙对应的索引值,确定各第一时隙。
进一步地,所述第一偏移量组的获取方式包括:
获取配置的多个第一偏移量组;
根据指示信息从所述多个第一偏移量组中确定与所述M个物理旁链路共享信道对应的第一偏移量组;
其中,所述指示信息为以下至少一项:
所述第一旁链路控制信息;
下行控制信息。
进一步地,所述与各第一时隙对应的索引值的获取方式包括:
获取多个比特映射序列,所述比特映射序列用于指示各第一时隙对应的索引值;
根据指示信息从所述多个比特映射序列中确定与所述M个物理旁链路共享信道对应的比特映射序列;
其中,所述指示信息为以下至少一项:
所述第一旁链路控制信息;
下行控制信息。
进一步地,所述传输模块用于:
根据与所述物理旁链路控制信道对应的第一子信道或第一物理资源块,以及第二偏移量,确定与所述M个物理旁链路共享信道对应的第二子信道或第二物理资源块;其中,所述第一子信道为所述物理旁链路控制信道所在的最小子信道,所述第一物理资源块为所述物理旁链路控制信道所在的最小物理资源块,所述第二子信道为所述M个物理旁链路共享信道所在的最小子信道,所述第二物理资源块为所述M个物理旁链路共享信道所在的最小物理资源块;
根据所述第二子信道或第二物理资源块,以及所述M个物理旁链路共享信道所占的子信道数量或物理资源块数量,确定所述M个物理旁链路共享信道的频域资源。
进一步地,所述第二子信道与所述第一子信道相同,或者所述第二物理资源块与所述第一物理资源块相同。
进一步地,所述M个物理旁链路共享信道的频域资源相同。
进一步地,所述M个物理旁链路共享信道的传输模式,包括以下至少一种:
所述M个物理旁链路共享信道与M个传输块一一对应;
所述M个物理旁链路共享信道用于重复传输一个传输块。
进一步地,所述传输模式由以下至少一项确定:
所述第一旁链路控制信息;
下行控制信息;
协议规定;
网络侧高层配置。
进一步地,所述传输模块还用于确定以下至少一项信息:
所述M个物理旁链路共享信道与对应的传输块的资源单元映射;
所述M个物理旁链路共享信道的空域信息;
所述M个物理旁链路共享信道的优先级;
预留的物理旁链路共享信道的时频资源;
所述M个物理旁链路共享信道的解调参考信号的符号长度;
所述M个物理旁链路共享信道的调制和编码方案;
所述M个物理旁链路共享信道所在第一时隙的物理旁链路反馈信道的符号开销;
所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数;
所述M个第一时隙中的物理旁链路共享信道的解调参考信号的时域资源;
所述M个第一时隙的信道状态信息参考信息的时频资源;
所述M个第一时隙的相位跟踪参考信号的时频资源;
所述M个第一时隙的资源预留的预留周期;
所述M个第一时隙的解调参考信号的时频图样;
所述第一时隙的解调参考信号的端口。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述传输模块还用于基于以下至少一项确定所述传输块中用于物理旁链路共享信道传输的资源单元:
所述物理旁链路控制信道所占的资源单元数量;
所述物理旁链路控制信道的解调参考信号所占的资源单元数量;
所述第一时隙在所述资源单元中的索引值;
所述M;
所述N。
进一步地,所述M个物理旁链路共享信道的空域信息由所述第一旁链路控制信息统一指示确定或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的优先级由所述第一旁链路控制信息统一指示确定或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述预留的物理旁链路共享信道的时频资源由以下至少一项确定:
所述预留的物理旁链路共享信道的时频资源由所述第一旁链路控制信息的指示确定;
所述预留的物理旁链路共享信道的时频资源中的第一个物理旁链路共享信道的时频资源由所述第一旁链路控制信息的指示确定;
所述预留的物理旁链路共享信道的时频资源的时频图样与所述M个物理旁链路共享信道的时频资源的时频图样相同。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的 情况下,所述M个物理旁链路共享信道的解调参考信号的符号长度由以下至少一项确定:
所述M个物理旁链路共享信道的解调参考信号的符号长度由所述第一旁链路控制信息的统一指示或分别指示确定;
根据所述第一旁链路控制信息指示,从候选的符号长度中确定所述M个物理旁链路共享信道的解调参考信号的符号长度;其中,所述候选的符号长度由协议规定或网络侧高层配置。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的调制和编码方案由所述第一旁链路控制信息的统一指示或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道所在时隙的物理旁链路反馈信道的符号开销由所述第一旁链路控制信息的统一指示或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数,包括以下至少之一:
各物理旁链路共享信道均承载对应的第二旁链路控制信息;
在所述M个物理旁链路共享信道中的指定物理旁链路共享信道承载第二旁链路控制信息;其中,所述指定的物理旁链路共享信道由协议规定或网络侧高层配置。
进一步地,所述第二旁链路控制信息用于指示所述M个物理旁链路共享信道的以下至少一项信息:
所述M个物理旁链路共享信道的源标识;
所述M个物理旁链路共享信道的目标标识;
所述M个物理旁链路共享信道的区域标识;
所述M个物理旁链路共享信道的通信范围;
所述M个物理旁链路共享信道的混合自动重传请求进程号;
所述M个物理旁链路共享信道的新数据指示和冗余版本;
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,所述第二旁链路控制信息用于指示M个物理旁链路共享信道具有相同的源标识、目标标识、区域标识和通信范围。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的混合自动重传请求进程号由以下至少一项确定:
由各物理旁链路共享信道承载的第二旁链路控制信息确定对应的混合自动重传请求进程号;
在所述M个物理旁链路共享信道的混合自动重传请求进程号连续的情况下,由所述M个物理旁链路共享信道中的第一个物理旁链路共享信道的混合自动重传请求进程号由所述第二旁链路控制信息指示,并基于所述第一个物理旁链路共享信道的混合自动重传请求进程号确定其余物理旁链路共享信道的混合自动重传请求进程号。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的新数据指示和冗余版本由以下至少一项确定:
由各物理旁链路共享信道承载的第二旁链路控制信息确定对应的新数据指示和冗余版本;
所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的比特数与所述M相关;
所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的 新数据指示和冗余版本的域的比特数与所述N相关,且所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的有效比特数与所述M相关。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,以下至少一项信息由一个第二旁链路控制信息统一指示或由多个第二旁链路控制信息分别指示:
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,所述传输模块还用于由以下至少一项确定每个第一时隙中用于物理旁链路共享信道传输的资源单元:
所述M个物理旁链路共享信道所在第一时隙的第一个第一时隙中物理旁链路控制信道所占的资源单元数量;
所述M个物理旁链路共享信道所在第一时隙的第一个第一时隙中物理旁链路控制信道的解调参考信号所占的资源单元数量。
进一步地,所述M个物理旁链路共享信道的空域信息由所述第一旁链路控制信息统一指示确定或分别指示确定。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数,包括:在所述M个物理旁链路共享信道中的指定物理旁链路共享信道承载第二旁链路控制信息;其中,所述指定的物理旁链路共享信道由协议规定或网络侧高层配置。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,以下至少一项信息均由第一旁链路控制信息统一指示:
所述M个物理旁链路共享信道的优先级;
预留的物理旁链路共享信道的时频资源;
所述M个物理旁链路共享信道的解调参考信号的符号长度;
所述M个物理旁链路共享信道的调制和编码方案;
所述M个物理旁链路共享信道所在第一时隙的物理旁链路反馈信道的符号开销;
所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数。
进一步地,所述第二旁链路控制信息用于指示所述M个物理旁链路共享信道的以下至少一项信息:
所述M个物理旁链路共享信道的源标识;
所述M个物理旁链路共享信道的目标标识;
所述M个物理旁链路共享信道的区域标识;
所述M个物理旁链路共享信道的通信范围;
所述M个物理旁链路共享信道的混合自动重传请求进程号;
所述M个物理旁链路共享信道的新数据指示和冗余版本;
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,所述第二旁链路控制信息用于指示M个物理旁链路共享信道具有相同的源标识、目标标识、区域标识和通信范围。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,以下至少一项信息由一个第二旁链路控制信息统一指示:
所述M个物理旁链路共享信道的源标识;
所述M个物理旁链路共享信道的目标标识;
所述M个物理旁链路共享信道的区域标识;
所述M个物理旁链路共享信道的通信范围;
所述M个物理旁链路共享信道的混合自动重传请求进程号;
所述M个物理旁链路共享信道的新数据指示和冗余版本;
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,第一时隙中的物理旁链路共享信道的解调参考信号的时域资源由以下至少一项确定:
所述第一时隙的物理旁链路控制信道所占的符号数;
所述第一时隙的物理旁链路共享信道所占的符号数;
所述物理旁链路共享信道的解调参考信号的符号长度;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
进一步地,第一时隙中的物理旁链路共享信道的解调参考信号的符号位置由所述第一时隙的符号在所述资源单元中的索引值确定。
进一步地,每个第一时隙中的物理旁链路共享信道的解调参考信号的符号位置相同。
进一步地,所述第一时隙的物理旁链路控制信道名义上所占的符号数由以下至少一项确定:
所述M;
所述N;
所述物理旁链路控制信道所占的符号数。
进一步地,第一时隙的信道状态信息参考信息的时频资源由以下至少一 项确定:
信道状态信息请求获取参数;
信道状态信息请求字段;
信道状态信息参考信息的时频位置;
信道状态信息参考信息的天线端口数;
信道状态信息的资源单元密度;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
进一步地,第一时隙的相位跟踪参考信号的时频资源由以下至少一项确定:
所述M个物理旁链路共享信道的调制和编码方案;
所述第一旁链路控制信息的循环冗余校验比特数;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
进一步,第一时隙的资源预留以M个物理旁链路共享信道为资源预留单元。
进一步,第一时隙的解调参考信号的时频图样均相同。
进一步,第一时隙的解调参考信号的端口由所述第一旁链路控制信息统一指示确定或分别指示确定。
由以上本发明实施例提供的技术方案可见,本发明实施例通过确定所述M个PSSCH的时域资源、频域资源、传输模式,并针对不同的传输模式确定所述其它传输信息,从而能够通过一个PSCCH调度资源单元内多个PSSCH,充分利用资源单元内的时频资源,提升资源的利用率。
本申请实施例中的旁链路传输装置可以是电子设备,例如具有操作系统 的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的旁链路传输装置能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图4所示,本申请实施例还提供一种通信设备400,包括处理器401和存储器402,存储器402上存储有可在所述处理器401上运行的程序或指令,例如,该通信设备400为终端时,该程序或指令被处理器401执行时实现上述旁链路传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备400为网络侧设备时,该程序或指令被处理器401执行时实现上述旁链路传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M,通信接口用于获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图5为实现本申请实施例的一种终端的硬件结构示意图。
该终端500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509以及处理器510等中的至少部分部件。
本领域技术人员可以理解,终端500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器510逻辑相连,从而通过 电源管理系统实现管理充电、放电、以及功耗管理等功能。图5中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元504可以包括图形处理单元(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元506可包括显示面板5061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板5061。用户输入单元507包括触控面板5071以及其他输入设备5072中的至少一种。触控面板5071,也称为触摸屏。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元501接收来自网络侧设备的下行数据后,可以传输给处理器510进行处理;另外,射频单元501可以向网络侧设备发送上行数据。通常,射频单元501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器509可用于存储软件程序或指令以及各种数据。存储器509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器509可以包括易失性存储器或非易失性存储器,或者,存储器509可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取 存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器509包括但不限于这些和任意其它适合类型的存储器。
处理器510可包括一个或多个处理单元;可选的,处理器510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
其中,射频单元501,用于获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙。
处理器510,用于根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。
进一步地,所述资源单元内物理信道的时域位置已确定;
其中,所述物理信道包括以下至少一项:
物理旁链路控制信道;
物理旁链路共享信道;
物理旁链路反馈信道;
自动增益控制;
保护符号。
本申请实施例能够通过一个PSCCH调度资源单元内多个PSSCH,充分利用资源单元内的时频资源,提升资源的利用率。
进一步地,所述处理器510用于执行以下至少一项:
确定所述M个物理旁链路共享信道的时域资源;
确定所述M个物理旁链路共享信道的频域资源;
确定所述M个物理旁链路共享信道的传输模式。
进一步地,所述处理器510用于:
根据以下至少一项确定所述M个物理旁链路共享信道所在的第一时隙:
所述M个物理旁链路共享信道所在的第一时隙为所述资源单元中所有N个时隙;
在M个第一时隙为连续时隙的情况下,根据所述物理旁链路控制信道所在的第二时隙,以及第一偏移量,确定第一个第一时隙;其中,所述第一偏移量用于指示第一个第一时隙与所述第二时隙之间的偏移量。
根据所述物理旁链路控制信道所在的第二时隙,以及与所述M个物理旁链路共享信道对应的第一偏移量组,确定与各第一时隙;其中,所述第一偏移量组包括各第一时隙与所述第二时隙之间的偏移量。
根据与各第一时隙对应的索引值,确定各第一时隙。
进一步地,所述第一偏移量组的获取方式包括:
获取配置的多个第一偏移量组;
根据指示信息从所述多个第一偏移量组中确定与所述M个物理旁链路共享信道对应的第一偏移量组;
其中,所述指示信息为以下至少一项:
所述第一旁链路控制信息;
下行控制信息。
进一步地,所述与各第一时隙对应的索引值的获取方式包括:
获取多个比特映射序列,所述比特映射序列用于指示各第一时隙对应的索引值;
根据指示信息从所述多个比特映射序列中确定与所述M个物理旁链路共享信道对应的比特映射序列;
其中,所述指示信息为以下至少一项:
所述第一旁链路控制信息;
下行控制信息。
进一步地,所述处理器510还用于:
根据与所述物理旁链路控制信道对应的第一子信道或第一物理资源块,以及第二偏移量,确定与所述M个物理旁链路共享信道对应的第二子信道或第二物理资源块;其中,所述第一子信道为所述物理旁链路控制信道所在的最小子信道,所述第一物理资源块为所述物理旁链路控制信道所在的最小物理资源块,所述第二子信道为所述M个物理旁链路共享信道所在的最小子信道,所述第二物理资源块为所述M个物理旁链路共享信道所在的最小物理资源块;
根据所述第二子信道或第二物理资源块,以及所述M个物理旁链路共享信道所占的子信道数量或物理资源块数量,确定所述M个物理旁链路共享信道的频域资源。
进一步地,所述第二子信道与所述第一子信道相同,或者所述第二物理资源块与所述第一物理资源块相同。
进一步地,所述M个物理旁链路共享信道的频域资源相同。
进一步地,所述处理器510还用于执行以下至少一种:
所述M个物理旁链路共享信道与M个传输块一一对应;
所述M个物理旁链路共享信道用于重复传输一个传输块。
进一步地,所述传输模式由以下至少一项确定:
所述第一旁链路控制信息;
下行控制信息;
协议规定;
网络侧高层配置。
进一步地,所述处理器510还用于执行以下至少一项信息:
所述M个物理旁链路共享信道与对应的传输块的资源单元映射;
所述M个物理旁链路共享信道的空域信息;
所述M个物理旁链路共享信道的优先级;
预留的物理旁链路共享信道的时频资源;
所述M个物理旁链路共享信道的解调参考信号的符号长度;
所述M个物理旁链路共享信道的调制和编码方案;
所述M个物理旁链路共享信道所在第一时隙的物理旁链路反馈信道的符号开销;
所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数;
所述M个第一时隙中的物理旁链路共享信道的解调参考信号的时域资源;
所述M个第一时隙的信道状态信息参考信息的时频资源;
所述M个第一时隙的相位跟踪参考信号的时频资源;
所述M个第一时隙的资源预留的预留周期;
所述M个第一时隙的解调参考信号的时频图样;
所述M个第一时隙的解调参考信号的端口。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,在确定所述M个传输块的资源单元时,所述处理器510还用于:
基于以下至少一项确定所述传输块中用于物理旁链路共享信道传输的资源单元:
所述物理旁链路控制信道所占的资源单元数量;
所述物理旁链路控制信道的解调参考信号所占的资源单元数量;
所述第一时隙在所述资源单元中的索引值;
所述M;
所述N。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的 情况下,在确定所述M个传输块的资源单元时,所述处理器510还用于:
由以下至少一项确定每个第一时隙中用于物理旁链路共享信道传输的资源单元:
所述M个物理旁链路共享信道所在第一时隙的第一个第一时隙中物理旁链路控制信道所占的资源单元数量;
所述M个物理旁链路共享信道所在第一时隙的第一个第一时隙中物理旁链路控制信道的解调参考信号所占的资源单元数量。
进一步地,所述M个物理旁链路共享信道的空域信息由所述第一旁链路控制信息统一指示确定或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的优先级由所述第一旁链路控制信息统一指示确定或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述预留的物理旁链路共享信道的时频资源由以下至少一项确定:
所述预留的物理旁链路共享信道的时频资源由所述第一旁链路控制信息的指示确定;
所述预留的物理旁链路共享信道的时频资源中的第一个物理旁链路共享信道的时频资源由所述第一旁链路控制信息的指示确定;
所述预留的物理旁链路共享信道的时频资源的时频图样与所述M个物理旁链路共享信道的时频资源的时频图样相同。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的解调参考信号的符号长度由以下至少一项确定:
所述M个物理旁链路共享信道的解调参考信号的符号长度由所述第一旁链路控制信息的统一指示或分别指示确定;
根据所述第一旁链路控制信息指示,从候选的符号长度中确定所述M个 物理旁链路共享信道的解调参考信号的符号长度;其中,所述候选的符号长度由协议规定或网络侧高层配置。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的调制和编码方案由所述第一旁链路控制信息的统一指示或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道所在时隙的物理旁链路反馈信道的符号开销由所述第一旁链路控制信息的统一指示或分别指示确定。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数,包括以下至少之一:
各物理旁链路共享信道均承载对应的第二旁链路控制信息;
在所述M个物理旁链路共享信道中的指定物理旁链路共享信道承载第二旁链路控制信息;其中,所述指定的物理旁链路共享信道由协议规定或网络侧高层配置。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数,包括:在所述M个物理旁链路共享信道中的指定物理旁链路共享信道承载第二旁链路控制信息;其中,所述指定的物理旁链路共享信道由协议规定或网络侧高层配置。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,以下至少一项信息均由第一旁链路控制信息统一指示:
所述M个物理旁链路共享信道的优先级;
预留的物理旁链路共享信道的时频资源;
所述M个物理旁链路共享信道的解调参考信号的符号长度;
所述M个物理旁链路共享信道的调制和编码方案;
所述第一时隙的物理旁链路反馈信道的符号开销;
所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数。
进一步地,所述第二旁链路控制信息用于指示所述M个物理旁链路共享信道的以下至少一项信息:
所述M个物理旁链路共享信道的源标识;
所述M个物理旁链路共享信道的目标标识;
所述M个物理旁链路共享信道的区域标识;
所述M个物理旁链路共享信道的通信范围;
所述M个物理旁链路共享信道的混合自动重传请求进程号;
所述M个物理旁链路共享信道的新数据指示和冗余版本;
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,所述第二旁链路控制信息用于指示M个物理旁链路共享信道具有相同的源标识、目标标识、区域标识和通信范围。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的混合自动重传请求进程号由以下至少一项确定:
由各物理旁链路共享信道承载的第二旁链路控制信息确定对应的混合自动重传请求进程号;
在所述M个物理旁链路共享信道的混合自动重传请求进程号连续的情况下,由所述M个物理旁链路共享信道中的第一个物理旁链路共享信道的混合自动重传请求进程号由所述第二旁链路控制信息指示,并基于所述第一个物理旁链路共享信道的混合自动重传请求进程号确定其余物理旁链路共享信 道的混合自动重传请求进程号。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的新数据指示和冗余版本由以下至少一项确定:
由各物理旁链路共享信道承载的第二旁链路控制信息确定对应的新数据指示和冗余版本;
所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的比特数与所述M相关;
所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的比特数与所述N相关,且所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的有效比特数与所述M相关。
进一步地,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,以下至少一项信息由一个第二旁链路控制信息统一指示或由多个第二旁链路控制信息分别指示:
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,以下至少一项信息由一个第二旁链路控制信息统一指示:
所述M个物理旁链路共享信道的源标识;
所述M个物理旁链路共享信道的目标标识;
所述M个物理旁链路共享信道的区域标识;
所述M个物理旁链路共享信道的通信范围;
所述M个物理旁链路共享信道的混合自动重传请求进程号;
所述M个物理旁链路共享信道的新数据指示和冗余版本;
所述M个物理旁链路共享信道的传输类型;
所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
所述M个物理旁链路共享信道的信道状态信息请求。
进一步地,所述第一时隙中的物理旁链路共享信道的解调参考信号的时域资源由以下至少一项确定:
所述第一时隙的物理旁链路控制信道所占的符号数;
所述第一时隙的物理旁链路共享信道所占的符号数;
所述物理旁链路共享信道的解调参考信号的符号长度;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
进一步地,第一时隙中的物理旁链路共享信道的解调参考信号的符号位置由所述第一时隙的符号在所述资源单元中的索引值确定。
进一步地,每个第一时隙中的物理旁链路共享信道的解调参考信号的符号位置相同。
进一步地,所述第一时隙的物理旁链路控制信道名义上所占的符号数由以下至少一项确定:
所述M;
所述N;
所述物理旁链路控制信道所占的符号数。
进一步地,第一时隙的信道状态信息参考信息的时频资源由以下至少一项确定:
信道状态信息请求获取参数;
信道状态信息请求字段;
信道状态信息参考信息的时频位置;
信道状态信息参考信息的天线端口数;
信道状态信息的资源单元密度;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
进一步地,第一时隙的相位跟踪参考信号的时频资源由以下至少一项确定:
所述M个物理旁链路共享信道的调制和编码方案;
所述第一旁链路控制信息的循环冗余校验比特数;
所述M;
所述N;
所述第一时隙在所述资源单元中的索引值。
进一步地,第一时隙的资源预留以M个物理旁链路共享信道为资源预留单元。
进一步地,第一时隙的解调参考信号的时频图样均相同。
进一步地,第一时隙的解调参考信号的端口由所述第一旁链路控制信息统一指示确定或分别指示确定。
进一步地,所述资源单元内物理信道的时域位置已确定;
其中,所述物理信道包括以下至少一项:
物理旁链路控制信道;
物理旁链路共享信道;
物理旁链路反馈信道;
自动增益控制;
保护符号。
本申请实施例能够通过一个PSCCH调度资源单元内多个PSSCH,充分 利用资源单元内的时频资源,提升资源的利用率。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述旁链路传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述旁链路传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述旁链路传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种旁链路传输系统,包括:多个终端及网络侧设备,所述终端可用于执行如上所述的旁链路传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还 可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (41)

  1. 一种旁链路传输方法,包括:
    终端获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙;
    所述终端根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。
  2. 根据权利要求1所述的方法,其中,所述确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,包括以下至少一项:
    确定所述M个物理旁链路共享信道的时域资源;
    确定所述M个物理旁链路共享信道的频域资源;
    确定所述M个物理旁链路共享信道的传输模式。
  3. 根据权利要求2所述的方法,其中,所述确定所述M个物理旁链路共享信道的时域资源,包括:
    根据以下至少一项确定所述M个物理旁链路共享信道所在的第一时隙:
    所述M个物理旁链路共享信道所在的第一时隙为所述资源单元中所有N个时隙;
    在M个第一时隙为连续时隙的情况下,根据所述物理旁链路控制信道所在的第二时隙,以及第一偏移量,确定第一个第一时隙;其中,所述第一偏移量用于指示第一个第一时隙与所述第二时隙之间的偏移量;
    根据所述物理旁链路控制信道所在的第二时隙,以及与所述M个物理旁链路共享信道对应的第一偏移量组,确定与各第一时隙;其中,所述第一偏移量组包括各第一时隙与所述第二时隙之间的偏移量;
    根据与各第一时隙对应的索引值,确定各第一时隙。
  4. 根据权利要求3所述的方法,其中,所述第一偏移量组的获取方式包括:
    获取配置的多个第一偏移量组;
    根据指示信息从所述多个第一偏移量组中确定与所述M个物理旁链路共享信道对应的第一偏移量组;
    其中,所述指示信息为以下至少一项:
    所述第一旁链路控制信息;
    下行控制信息。
  5. 根据权利要求3所述的方法,其中,所述与各第一时隙对应的索引值的获取方式包括:
    获取多个比特映射序列,所述比特映射序列用于指示各第一时隙对应的索引值;
    根据指示信息从所述多个比特映射序列中确定与所述M个物理旁链路共享信道对应的比特映射序列;
    其中,所述指示信息为以下至少一项:
    所述第一旁链路控制信息;
    下行控制信息。
  6. 根据权利要求2所述的方法,其中,所述确定所述M个物理旁链路共享信道的频域资源,包括:
    根据与所述物理旁链路控制信道对应的第一子信道或第一物理资源块,以及第二偏移量,确定与所述M个物理旁链路共享信道对应的第二子信道或第二物理资源块;其中,所述第一子信道为所述物理旁链路控制信道所在的最小子信道,所述第一物理资源块为所述物理旁链路控制信道所在的最小物理资源块,所述第二子信道为所述M个物理旁链路共享信道所在的最小子信道,所述第二物理资源块为所述M个物理旁链路共享信道所在的最小物理资源块;
    根据所述第二子信道或第二物理资源块,以及所述M个物理旁链路共享信道所占的子信道数量或物理资源块数量,确定所述M个物理旁链路共享信 道的频域资源。
  7. 根据权利要求6所述的方法,其中,所述第二子信道与所述第一子信道相同,或者所述第二物理资源块与所述第一物理资源块相同。
  8. 根据权利要求2、6或7所述的方法,其中,所述M个物理旁链路共享信道的频域资源相同。
  9. 根据权利要求2所述的方法,其中,所述M个物理旁链路共享信道的传输模式,包括以下至少一种:
    所述M个物理旁链路共享信道与M个传输块一一对应;
    所述M个物理旁链路共享信道用于重复传输一个传输块。
  10. 根据权利要求8所述的方法,其中,所述传输模式由以下至少一项确定:
    所述第一旁链路控制信息;
    下行控制信息;
    协议规定;
    网络侧高层配置。
  11. 根据权利要求9所述的方法,其中,所述确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,还包括确定以下至少一项信息:
    所述M个物理旁链路共享信道与对应的传输块的资源单元映射;
    所述M个物理旁链路共享信道的空域信息;
    所述M个物理旁链路共享信道的优先级;
    预留的物理旁链路共享信道的时频资源;
    所述M个物理旁链路共享信道的解调参考信号的符号长度;
    所述M个物理旁链路共享信道的调制和编码方案;
    所述M个物理旁链路共享信道所在第一时隙的物理旁链路反馈信道的符号开销;
    所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数;
    所述M个第一时隙中的物理旁链路共享信道的解调参考信号的时域资源;
    所述M个第一时隙的信道状态信息参考信息的时频资源;
    所述M个第一时隙的相位跟踪参考信号的时频资源;
    所述M个第一时隙的资源预留的预留周期;
    所述M个第一时隙的解调参考信号的时频图样;
    所述M个第一时隙的解调参考信号的端口。
  12. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,在确定所述M个传输块的资源单元时,所述方法还包括:
    基于以下至少一项确定所述传输块中用于物理旁链路共享信道传输的资源单元:
    所述物理旁链路控制信道所占的资源单元数量;
    所述物理旁链路控制信道的解调参考信号所占的资源单元数量;
    所述第一时隙在所述资源单元中的索引值;
    所述M;
    所述N。
  13. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,在确定所述M个传输块的资源单元时,所述方法还包括:
    由以下至少一项确定每个第一时隙中用于物理旁链路共享信道传输的资源单元:
    所述M个物理旁链路共享信道所在第一时隙的第一个第一时隙中物理旁链路控制信道所占的资源单元数量;
    所述M个物理旁链路共享信道所在第一时隙的第一个第一时隙中物理旁链路控制信道的解调参考信号所占的资源单元数量。
  14. 根据权利要求11所述的方法,其中,所述M个物理旁链路共享信道的空域信息由所述第一旁链路控制信息统一指示确定或分别指示确定。
  15. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的优先级由所述第一旁链路控制信息统一指示确定或分别指示确定。
  16. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述预留的物理旁链路共享信道的时频资源由以下至少一项确定:
    所述预留的物理旁链路共享信道的时频资源由所述第一旁链路控制信息的指示确定;
    所述预留的物理旁链路共享信道的时频资源中的第一个物理旁链路共享信道的时频资源由所述第一旁链路控制信息的指示确定;
    所述预留的物理旁链路共享信道的时频资源的时频图样与所述M个物理旁链路共享信道的时频资源的时频图样相同。
  17. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的解调参考信号的符号长度由以下至少一项确定:
    所述M个物理旁链路共享信道的解调参考信号的符号长度由所述第一旁链路控制信息的统一指示或分别指示确定;
    根据所述第一旁链路控制信息指示,从候选的符号长度中确定所述M个物理旁链路共享信道的解调参考信号的符号长度;其中,所述候选的符号长度由协议规定或网络侧高层配置。
  18. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的调制 和编码方案由所述第一旁链路控制信息的统一指示或分别指示确定。
  19. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道所在时隙的物理旁链路反馈信道的符号开销由所述第一旁链路控制信息的统一指示或分别指示确定。
  20. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数,包括以下至少之一:
    各物理旁链路共享信道均承载对应的第二旁链路控制信息;
    在所述M个物理旁链路共享信道中的指定物理旁链路共享信道承载第二旁链路控制信息;其中,所述指定的物理旁链路共享信道由协议规定或网络侧高层配置。
  21. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比例系数,包括:在所述M个物理旁链路共享信道中的指定物理旁链路共享信道承载第二旁链路控制信息;其中,所述指定的物理旁链路共享信道由协议规定或网络侧高层配置。
  22. 根据权利要求11所述的方法,其中,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,以下至少一项信息均由第一旁链路控制信息统一指示:
    所述M个物理旁链路共享信道的优先级;
    预留的物理旁链路共享信道的时频资源;
    所述M个物理旁链路共享信道的解调参考信号的符号长度;
    所述M个物理旁链路共享信道的调制和编码方案;
    所述第一时隙的物理旁链路反馈信道的符号开销;
    所述M个物理旁链路共享信道承载的第二旁链路控制信息的格式及比 例系数。
  23. 根据权利要求11所述的方法,其中,所述第二旁链路控制信息用于指示所述M个物理旁链路共享信道的以下至少一项信息:
    所述M个物理旁链路共享信道的源标识;
    所述M个物理旁链路共享信道的目标标识;
    所述M个物理旁链路共享信道的区域标识;
    所述M个物理旁链路共享信道的通信范围;
    所述M个物理旁链路共享信道的混合自动重传请求进程号;
    所述M个物理旁链路共享信道的新数据指示和冗余版本;
    所述M个物理旁链路共享信道的传输类型;
    所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
    所述M个物理旁链路共享信道的信道状态信息请求。
  24. 根据权利要求23所述的方法,其中,所述第二旁链路控制信息用于指示M个物理旁链路共享信道具有相同的源标识、目标标识、区域标识和通信范围。
  25. 根据权利要求23所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的混合自动重传请求进程号由以下至少一项确定:
    由各物理旁链路共享信道承载的第二旁链路控制信息确定对应的混合自动重传请求进程号;
    在所述M个物理旁链路共享信道的混合自动重传请求进程号连续的情况下,由所述M个物理旁链路共享信道中的第一个物理旁链路共享信道的混合自动重传请求进程号由所述第二旁链路控制信息指示,并基于所述第一个物理旁链路共享信道的混合自动重传请求进程号确定其余物理旁链路共享信道的混合自动重传请求进程号。
  26. 根据权利要求23所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,所述M个物理旁链路共享信道的新数据指示和冗余版本由以下至少一项确定:
    由各物理旁链路共享信道承载的第二旁链路控制信息确定对应的新数据指示和冗余版本;
    所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的比特数与所述M相关;
    所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的比特数与所述N相关,且所述第二旁链路控制信息中用于指示所述M个物理旁链路共享信道的新数据指示和冗余版本的域的有效比特数与所述M相关。
  27. 根据权利要求23所述的方法,其中,在所述M个物理旁链路共享信道与M个传输块一一对应的情况下,以下至少一项信息由一个第二旁链路控制信息统一指示或由多个第二旁链路控制信息分别指示:
    所述M个物理旁链路共享信道的传输类型;
    所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
    所述M个物理旁链路共享信道的信道状态信息请求。
  28. 根据权利要求23所述的方法,其中,在所述M个物理旁链路共享信道用于重复传输一个传输块的情况下,以下至少一项信息由一个第二旁链路控制信息统一指示:
    所述M个物理旁链路共享信道的源标识;
    所述M个物理旁链路共享信道的目标标识;
    所述M个物理旁链路共享信道的区域标识;
    所述M个物理旁链路共享信道的通信范围;
    所述M个物理旁链路共享信道的混合自动重传请求进程号;
    所述M个物理旁链路共享信道的新数据指示和冗余版本;
    所述M个物理旁链路共享信道的传输类型;
    所述M个物理旁链路共享信道的混合自动重传请求反馈使能标识或去使能标识;
    所述M个物理旁链路共享信道的信道状态信息请求。
  29. 根据权利要求11所述的方法,其中,所述第一时隙中的物理旁链路共享信道的解调参考信号的时域资源由以下至少一项确定:
    所述第一时隙的物理旁链路控制信道所占的符号数;
    所述第一时隙的物理旁链路共享信道所占的符号数;
    所述物理旁链路共享信道的解调参考信号的符号长度;
    所述M;
    所述N;
    所述第一时隙在所述资源单元中的索引值。
  30. 根据权利要求29所述的方法,其中,第一时隙中的物理旁链路共享信道的解调参考信号的符号位置由所述第一时隙的符号在所述资源单元中的索引值确定。
  31. 根据权利要求29所述的方法,其中,每个第一时隙中的物理旁链路共享信道的解调参考信号的符号位置相同。
  32. 根据权利要求31所述的方法,其中,所述第一时隙的物理旁链路控制信道名义上所占的符号数由以下至少一项确定:
    所述M;
    所述N;
    所述物理旁链路控制信道所占的符号数。
  33. 根据权利要求11所述的方法,其中,第一时隙的信道状态信息参考信息的时频资源由以下至少一项确定:
    信道状态信息请求获取参数;
    信道状态信息请求字段;
    信道状态信息参考信息的时频位置;
    信道状态信息参考信息的天线端口数;
    信道状态信息的资源单元密度;
    所述M;
    所述N;
    所述第一时隙在所述资源单元中的索引值。
  34. 根据权利要求11所述的方法,其中,第一时隙的相位跟踪参考信号的时频资源由以下至少一项确定:
    所述M个物理旁链路共享信道的调制和编码方案;
    所述第一旁链路控制信息的循环冗余校验比特数;
    所述M;
    所述N;
    所述第一时隙在所述资源单元中的索引值。
  35. 根据权利要求11所述的方法,其中,第一时隙的资源预留以M个物理旁链路共享信道为资源预留单元。
  36. 根据权利要求11所述的方法,其中,第一时隙的解调参考信号的时频图样均相同。
  37. 根据权利要求11所述的方法,其中,第一时隙的解调参考信号的端口由所述第一旁链路控制信息统一指示确定或分别指示确定。
  38. 根据权利要求1所述的方法,其中,所述资源单元内物理信道的时域位置已确定;
    其中,所述物理信道包括以下至少一项:
    物理旁链路控制信道;
    物理旁链路共享信道;
    物理旁链路反馈信道;
    自动增益控制;
    保护符号。
  39. 一种旁链路传输装置,包括:
    获取模块,用于获取旁链路的资源单元内的物理旁链路控制信道传输的第一信息,所述第一信息包括第一旁链路控制信息;其中,所述资源单元包括N个时隙;
    传输模块,用于根据所述第一信息,确定所述物理旁链路控制信道调度的所述资源单元内的M个物理旁链路共享信道的传输信息,N大于等于M。
  40. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至38任一项所述的旁链路传输方法的步骤。
  41. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-38任一项所述的旁链路传输方法的步骤。
PCT/CN2022/139899 2021-12-20 2022-12-19 旁链路传输方法、装置及终端 WO2023116601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111564262.7 2021-12-20
CN202111564262.7A CN116321441A (zh) 2021-12-20 2021-12-20 旁链路传输方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2023116601A1 true WO2023116601A1 (zh) 2023-06-29

Family

ID=86830980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139899 WO2023116601A1 (zh) 2021-12-20 2022-12-19 旁链路传输方法、装置及终端

Country Status (2)

Country Link
CN (1) CN116321441A (zh)
WO (1) WO2023116601A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756513A (zh) * 2019-03-26 2020-10-09 北京三星通信技术研究有限公司 控制信息的传输方法、装置、电子设备及存储介质
CN111836304A (zh) * 2019-08-09 2020-10-27 维沃移动通信有限公司 一种信息传输方法及终端
CN111867092A (zh) * 2019-04-30 2020-10-30 夏普株式会社 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) * 2019-07-23 2021-01-28 夏普株式会社 由用户设备执行的方法以及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756513A (zh) * 2019-03-26 2020-10-09 北京三星通信技术研究有限公司 控制信息的传输方法、装置、电子设备及存储介质
CN111867092A (zh) * 2019-04-30 2020-10-30 夏普株式会社 由用户设备执行的方法以及用户设备
WO2021013213A1 (zh) * 2019-07-23 2021-01-28 夏普株式会社 由用户设备执行的方法以及用户设备
CN111836304A (zh) * 2019-08-09 2020-10-27 维沃移动通信有限公司 一种信息传输方法及终端

Also Published As

Publication number Publication date
CN116321441A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
CN109802789A (zh) 传输公共控制信息的时频域资源的配置方法和设备
WO2019095919A1 (zh) Csi的传输方法及装置
WO2022152072A1 (zh) 信道信息发送方法、信道信息接收方法及相关设备
CN107295661A (zh) 一种下行数据传输及检测方法、装置、相关设备和系统
WO2018082546A1 (zh) 下行控制信道的检测方法、发送方法、网络侧设备及终端
CN114375008A (zh) 配置授权的重复传输方法、装置、设备及可读存储介质
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
CN114071747A (zh) 信息确定方法、信息发送方法及终端
WO2023116601A1 (zh) 旁链路传输方法、装置及终端
CN114070525B (zh) 传输方法及装置
CN109495965A (zh) 一种资源指示、确定方法及装置
WO2019095946A1 (zh) 多时隙传输的方法和设备
CN113839728A (zh) Dci检测方法、发送方法及相关设备
WO2023125824A1 (zh) 控制信道监测方法、终端及网络侧设备
WO2024078456A1 (zh) 上行控制信息传输方法、装置及终端
WO2023202520A1 (zh) Harq ack码本反馈方法、装置、终端及可读存储介质
WO2023025124A1 (zh) 信息指示方法、装置、终端及可读存储介质
WO2023125912A1 (zh) 上行传输的跳频、指示方法、装置、终端及网络侧设备
WO2023051506A1 (zh) 波束指示方法、装置及终端
WO2023169363A1 (zh) 上行对象发送方法、装置、通信设备、系统及存储介质
WO2024022251A1 (zh) 上行传输方法、装置、终端及介质
WO2022237620A1 (zh) Csi测量资源的处理方法及装置、终端及可读存储介质
WO2023186070A1 (zh) 资源确定方法、装置、终端及存储介质
RU2815913C2 (ru) Способ и устройство улучшения восходящего опорного сигнала слежения за фазой (pt-rs-сигнала) и устройство связи
WO2024017197A1 (zh) 传输处理方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909914

Country of ref document: EP

Kind code of ref document: A1