WO2023116421A1 - 电池除湿系统、电池及用电装置 - Google Patents

电池除湿系统、电池及用电装置 Download PDF

Info

Publication number
WO2023116421A1
WO2023116421A1 PCT/CN2022/136988 CN2022136988W WO2023116421A1 WO 2023116421 A1 WO2023116421 A1 WO 2023116421A1 CN 2022136988 W CN2022136988 W CN 2022136988W WO 2023116421 A1 WO2023116421 A1 WO 2023116421A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
section
cooling
gas
box
Prior art date
Application number
PCT/CN2022/136988
Other languages
English (en)
French (fr)
Inventor
胡浪超
黄小腾
徐晨怡
杨海奇
王鹏
孙占宇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023116421A1 publication Critical patent/WO2023116421A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular, to a battery dehumidification system, a battery and an electrical device.
  • Embodiments of the present application provide a battery dehumidification system, a battery, and an electrical device, which can effectively reduce potential safety hazards in the use of the battery.
  • the embodiment of the present application provides a battery dehumidification system.
  • the battery has a box body.
  • the battery dehumidification system includes a vent pipe, an air extraction mechanism and a cooling mechanism; both ends of the vent pipe are used to communicate with the case body, and the vent pipe has The condensing section; the pumping mechanism is used to extract the gas in the box, so that the gas circulates between the box and the vent pipe; the cooling mechanism is used to cool the gas flowing through the condensing section, so that the gas condenses in the condensing section.
  • both ends of the ventilation pipe are in communication with the box, so that the ventilation pipe and the box form a circulation loop for gas flow, so that when the gas in the box is extracted by the pumping mechanism, the gas in the box can be realized.
  • the circulation flow between the box and the ventilation pipe, and the cooling mechanism cools the condensation section of the ventilation pipe, so that when the gas flows through the condensation section, it will condense and liquefy when it is cold, so as to condense the water vapor in the gas into condensate
  • the liquid circulates sequentially, which in turn helps to reduce the environmental humidity in the box, so as to solve the phenomenon that the electronic components in the battery box are damaged or have insulation failure due to excessive environmental humidity in the later use process, and it is beneficial to reduce the battery in the box.
  • the condensate produced after condensing the gas is collected in the condensation section of the vent pipe, so that the condensate produced by the gas condensation can be effectively separated from the battery to reduce the condensate in the air.
  • the accumulation phenomenon in the box of the battery is beneficial to improving the safety of the battery in use and to improving the service life of the battery.
  • the cooling mechanism includes a cooling box; an accommodating cavity for accommodating the first cooling medium is formed inside the cooling box, and the condensation section is located in the accommodating cavity.
  • the cooling mechanism is provided with a cooling box, and by opening an accommodating cavity for accommodating the first cooling medium in the cooling box, and setting the condensing section of the vent pipe in the accommodating cavity of the cooling box, cooling can be improved.
  • the mechanism has a cooling effect on the condensation section to enhance the condensation ability of the gas flowing through the condensation section.
  • the condensing section extends in an S-shape in the accommodating chamber.
  • the flow stroke of the gas in the condensing section can be effectively extended, so that the time for the gas to flow through the condensing section is greatly extended, which in turn is beneficial to improve the flow rate of the gas in the condensing section.
  • the condensation effect in the condensation section is used to improve the dehumidification ability of the battery dehumidification system for the gas in the battery box.
  • the ventilation pipe also includes an air outlet section and an air inlet section; one end of the air outlet section is used to communicate with the box, the other end of the air outlet section is connected to the condensation section, and the air outlet section is used to guide the gas in the box to the condensation section Inside; one end of the air intake section communicates with the condensation section, the other end of the air intake section is used to communicate with the box body, the air intake section is used to guide the gas in the condensation section to the box body, and the air extraction mechanism is arranged on the air intake section.
  • the air intake section is used to guide the gas in the condensation section to the box, that is to say, the gas in the intake section is the gas that flows through the condensation section for condensation, and the air extraction mechanism is set in On the air intake section, so that the gas passing through the air extraction mechanism has been condensed, so as to reduce the damage caused by the high humidity gas to the air extraction mechanism, and thus help to prolong the service life of the air extraction mechanism.
  • the battery dehumidification system further includes a liquid collector; the liquid collector is connected to the condensation section, and the liquid collector is used to collect condensate generated by condensation of gas in the condensation section.
  • the liquid collector by connecting the liquid collector to the condensation section, the liquid collector can recover the condensate produced by the condensation of the gas in the condensation section, thereby effectively alleviating the excessive accumulation of condensate in the condensation section.
  • it is beneficial to ensure the normal operation of the battery dehumidification system.
  • the liquid collector includes a liquid collection tank and a liquid collection pipe; the liquid collection tank is used to collect condensate; the liquid collection pipe communicates with the liquid collection tank and the condensation section, and the liquid collection pipe is used to guide the condensate into the liquid collection tank .
  • the liquid collector is provided with a liquid collection tank and a liquid collection pipe, and the liquid collection tank is connected with the condensation section through the liquid collection pipe, so that the liquid collection pipe can guide the condensate in the condensation section to the liquid collection box , so that it is convenient to collect the condensate produced by the condensation of the gas in the condensation section.
  • the liquid collector with this structure is simple in structure, easy to realize, and can effectively improve the recovery and storage capacity of the liquid collector for the condensate.
  • the cooling mechanism includes a cooling box, and the interior of the cooling box forms an accommodating chamber for accommodating the first cooling medium; the condensation section includes a plurality of U-shaped parts connected in sequence and located in the accommodating chamber, and each U-shaped part A liquid outlet for communicating with a liquid collection pipe is formed at the bottom of the body.
  • the condensation section is provided with a plurality of U-shaped parts connected in sequence, so as to prolong the flow path and duration of the gas in the condensation section, thereby improving the condensation effect of the gas flowing through the condensation section.
  • the liquid collection pipe can collect the condensate formed by condensation in each U-shaped part, so that the liquid collector can be easily adjusted. The condensate in the condensation section is recovered, which is beneficial to improve the recovery efficiency of the condensate.
  • the liquid collector further includes a drying unit; the drying unit is disposed in the liquid collecting tank, and the drying unit is used for absorbing condensate.
  • a drying unit is provided in the liquid collecting tank, so that the recovered condensate in the liquid collecting tank can be absorbed by the drying unit, thereby improving the ability of the liquid collecting device to recover the condensate.
  • the battery dehumidification system further includes a cooling pipe; the cooling pipe has a first cooling section and a second cooling section, the first cooling section is used to be arranged in the box, and the cooling pipe is used for the flow of the second cooling medium to adjust The temperature in the box; the cooling mechanism is used to cool the second cooling medium flowing through the second cooling section.
  • the battery dehumidification system is also provided with a cooling pipe, by arranging the first cooling section of the cooling pipe in the battery box, and cooling the second cooling section of the cooling pipe through the cooling mechanism, so that the first 2.
  • the cooling medium circulates in the cooling pipe, it can adjust the temperature in the box, so that the battery dehumidification system can also realize the temperature adjustment function in the battery box.
  • the battery dehumidification system with this structure shares the ventilation pipe and the cooling pipe A cooling mechanism helps reduce the manufacturing cost of the battery dehumidification system and saves energy.
  • the embodiment of the present application also provides a battery, including a battery cell, a box body, and the above-mentioned battery dehumidification system; the box body is used to accommodate the battery cell; both ends of the ventilation pipe communicate with the box body.
  • the ventilation pipe has an air inlet end and an air outlet end, and the air inlet end and the air outlet end are respectively connected to two sides of the box in the first direction.
  • the air inlet end and the air outlet end are arranged at intervals in a second direction, and the second direction is perpendicular to the first direction.
  • the air inlet end and the air outlet end are arranged at intervals in a third direction, and the third direction is perpendicular to the first direction and the second direction.
  • the air inlet and the air outlet on both sides of the box in the first direction are further arranged at intervals along the third direction, so that the air inlet and the air outlet are located at opposite diagonal corners of the box , so that the overall fluidity of the gas in the box can be further enhanced, which is beneficial to further improving the dehumidification effect in the box.
  • the embodiment of the present application further provides an electrical device, including the above-mentioned battery; the battery is used to provide electrical energy.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of the structure of the battery provided by some embodiments of the present application.
  • Fig. 3 is a schematic structural diagram of a battery dehumidification system provided by some embodiments of the present application.
  • Fig. 4 is a schematic structural diagram of a cooling mechanism provided by some embodiments of the present application.
  • Fig. 5 is a cross-sectional view of a cooling mechanism provided by some embodiments of the present application.
  • Fig. 6 is an exploded view of the structure of the battery provided by some other embodiments of the present application.
  • Icons 1000-vehicle; 100-battery; 10-box; 11-first part; 12-second part; 20-battery unit; 30-battery dehumidification system; 31-ventilator; 311-condensing section; 3111- U-shaped part; 3112-liquid outlet; 312-outlet section; 313-intake section; 314-intake end; 315-outlet end; 32-exhaust mechanism; 3312-inlet; 3313-outlet; 34-collector; 341-collecting tank; 342-collecting pipe; 343-drying unit; 35-cooling pipe; 351-first cooling section; 352-second cooling section; 200-controller; 300-motor.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the same reference numerals represent the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments. It should be understood that the thickness, length, width and other dimensions of the various components in the embodiments of the application shown in the drawings, as well as the overall thickness, length and width of the integrated device, are for illustrative purposes only, and should not constitute any limitation to the application .
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • the battery cells are generally divided into three types according to the way of packaging: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • a battery generally includes a case for enclosing one or more battery cells or a plurality of battery modules. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes a casing, an electrode assembly and an electrolyte, and the casing is used to accommodate the electrode assembly and the electrolyte.
  • the electrode assembly consists of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon. In order to ensure that a large current is passed without fusing, the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the water vapor in the battery box reaches a certain Concentration or when there is a temperature difference with the inner wall of the box, the phenomenon of water vapor liquefaction often occurs, resulting in a large amount of condensate, because the condensate accumulated in the battery box will affect the performance of each electronic component in the box and the performance of each electronic component.
  • the insulation between the devices will bring adverse effects, which will easily lead to the damage of the electronic components or the failure of the insulation between the electronic components during the later use of the battery, which will lead to a greater safety hazard during the use of the battery.
  • the inventor designed a battery dehumidification system after in-depth research.
  • the vent tube is used to connect with the battery box, so that the vent tube and the box form a circulation loop for gas flow
  • the air extraction mechanism is used to extract the gas in the box to make other gas flow in the circulation loop
  • the cooling mechanism is used to cool the gas flowing through the condensation section of the vent pipe.
  • the gas in the box can be extracted through the pumping mechanism, so as to realize the gas circulation in the box between the box and the vent pipe, and the condensation section of the vent pipe can be cooled by the cooling mechanism. Cooling, so that when the gas flows through the condensation section, it will condense and liquefy when it is cold, so that the water vapor in the gas will be condensed into condensate, which will be circulated in turn, which will help reduce the ambient humidity in the box and solve the problem of the battery in the box.
  • the various electronic components of the battery will be damaged or have insulation failure due to excessive environmental humidity during later use, which will help reduce the potential safety hazards of the battery during use.
  • the condensate produced after condensing the gas is collected in the condensation section of the vent pipe, so that the condensate produced by the gas condensation can be effectively separated from the battery to reduce the condensate in the air.
  • the accumulation phenomenon in the box of the battery is beneficial to improving the safety of the battery in use and to improving the service life of the battery.
  • the batteries disclosed in the embodiments of the present application can be used, but not limited to, in electric devices such as vehicles, ships or aircrafts.
  • the battery dehumidification system disclosed in this application, the battery, etc. can be used to form the power supply system of the electrical device, which is conducive to alleviating the phenomenon of damage or insulation failure of the electronic components of the battery, so as to improve the safety and reliability of the battery. life.
  • the embodiment of the present application provides an electric device using a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet, a notebook computer, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, and the like.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the structure of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a case body 10 and a battery cell 20 , and the case body 10 has an accommodation space for accommodating the battery cell 20 .
  • the box body 10 can adopt various structures.
  • the box body 10 may include a first part 11 and a second part 12, the first part 11 and the second part 12 cover each other, the first part 11 and the second part 12 jointly define a of accommodation space.
  • the second part 12 can be a hollow structure with one end open, the first part 11 can be a plate-shaped structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define an accommodation space ;
  • the first part 11 and the second part 12 can also be hollow structures with one side opening, and the opening side of the first part 11 is covered by the opening side of the second part 12 .
  • the box body 10 formed by the first part 11 and the second part 12 can be in various shapes, such as a cylinder, a cuboid and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • FIG. 3 is a schematic structural diagram of a battery dehumidification system 30 provided in some embodiments of the present application.
  • the present application provides a battery dehumidification system 30 , and the battery dehumidification system 30 includes a ventilation pipe 31 , an air extraction mechanism 32 and a cooling mechanism 33 . Both ends of the ventilation pipe 31 are used to communicate with the box body 10 , and the ventilation pipe 31 has a condensation section 311 .
  • the air extraction mechanism 32 is used to extract the gas in the box body 10 , so that the gas circulates between the box body 10 and the ventilation pipe 31 .
  • the cooling mechanism 33 is used for cooling the gas flowing through the condensation section 311 , so that the gas is condensed in the condensation section 311 .
  • both ends of the air pipe 31 are used to communicate with the box body 10, that is, both ends of the air pipe 31 are connected with the accommodation space in the box body 10, so that the gas can form a circulation between the box body 10 and the air pipe 31 circuit.
  • the cooling mechanism 33 is used to cool the gas flowing through the condensing section 311 so that the gas condenses in the condensing section 311 , that is, the cooling mechanism 33 is used to cool down the condensing section 311 of the vent pipe 31 , so that the gas flows through the condensing section 311 Sometimes it will touch the inner wall of the condensation section 311 with a lower temperature, so that the gas will be condensed and liquefied.
  • the gas in the box body 10 When the gas in the box body 10 is extracted by the air extraction mechanism 32, the gas can be circulated between the box body 10 and the vent pipe 31, and the condensation section 311 of the vent pipe 31 is cooled by the cooling mechanism 33, so that the gas When it flows through the condensation section 311, it will condense and liquefy when it is cold, so as to condense the water vapor in the gas into a condensate, which is circulated in turn, which is beneficial to reduce the ambient humidity in the box 10, so as to solve the problem of the box of the battery 100
  • Each electronic component in 10 may be damaged or have insulation failure due to excessive ambient humidity during later use, which is beneficial to reduce potential safety hazards in the use of battery 100 .
  • the condensate produced by the battery dehumidification system 30 with this structure after condensing the gas is collected in the condensation section 311 of the vent pipe 31, so that the condensate produced by the gas condensation can be effectively separated from the battery 100, so as to Reducing the accumulation of condensate in the box 10 of the battery 100 is beneficial to improving the safety of the battery 100 and the service life of the battery 100 .
  • FIG. 3 Sectional view of mechanism 33.
  • the cooling mechanism 33 includes a cooling box 331 , and an accommodation cavity 3311 for accommodating the first cooling medium is formed inside the cooling box 331 , and the condensation section 311 is located in the accommodation cavity 3311 .
  • the specific structure of the cooling mechanism 33 reference may be made to related technologies, which will not be repeated here.
  • cooling box 331 is provided with inlet 3312 and outlet 3313, and inlet 3312 and outlet 3313 are communicated with accommodating chamber 3311, and inlet 3312 and outlet 3313 are used for flowing in or flowing out of the first cooling medium respectively, so that the first cooling medium is contained Circulating flow is carried out in the cavity 3311, so that the condensation section 311 located in the accommodating cavity 3311 can be cooled by the first cooling medium.
  • the first cooling medium may be difluorochloromethane, ammonia or Freon.
  • the cooling mechanism 33 can improve the condensing section 311. Cooling effect to enhance the condensation ability of the gas flowing through the condensation section 311.
  • the condensation section 311 extends in an S-shape in the accommodating cavity 3311 .
  • the condensing section 311 extends in an S shape, that is, the condensing section 311 has an S-shaped curved structure (serpentine structure).
  • the structure of the condensation section 311 may also be a straight pipe structure or a Z-shaped structure.
  • the condensing section 311 By setting the condensing section 311 as an S-shaped structure, the gas flow in the condensing section 311 can be effectively extended, so that the time for the gas to flow through the condensing section 311 is greatly extended, which in turn is conducive to improving the flow of gas through the condensing section 311.
  • the condensing effect of the time is used to improve the dehumidification capability of the battery dehumidification system 30 for the gas in the box 10 of the battery 100 .
  • the vent pipe 31 further includes an air outlet section 312 and an air inlet section 313 .
  • One end of the gas outlet section 312 is used to communicate with the box body 10 , and the other end of the gas outlet section 312 is connected to the condensation section 311 , and the gas outlet section 312 is used to guide the gas in the box body 10 into the condensation section 311 .
  • One end of the air intake section 313 communicates with the condensation section 311, the other end of the air intake section 313 is used to communicate with the box body 10, the air intake section 313 is used to guide the gas in the condensation section 311 to the box body 10, and the air extraction mechanism 32 Set on the intake section 313.
  • the air inlet section 313 is used to guide the gas in the condensation section 311 into the box body 10 , that is, the gas flowing through the air inlet section 313 is the gas after flowing through the condensation section 311 for condensation.
  • the suction mechanism 32 may be an axial flow motor or a suction pump.
  • the air extraction mechanism 32 may also be disposed on the air outlet section 312 .
  • the gas passing through the air extraction mechanism 32 has already flowed through and condensed, thereby reducing the damage caused by the gas with high humidity to the air extraction mechanism 32, thereby facilitating the extension The service life of air extraction mechanism 32.
  • the battery dehumidification system 30 further includes a liquid collector 34 .
  • the liquid collector 34 is connected to the condensation section 311 , and the liquid collector 34 is used to collect the condensate generated by the condensation of gas in the condensation section 311 .
  • the liquid collector 34 By connecting the liquid collector 34 on the condensing section 311, the liquid collector 34 can recover the condensate produced by the condensation of the gas in the condensing section 311, thereby effectively alleviating the excessive accumulation of condensate in the condensing section 311. The risk of the condensing section 311 being blocked by condensate is reduced, which is beneficial to ensure the normal operation of the battery dehumidification system 30 .
  • the structure of the liquid collector 34 may be various, for example, the liquid collector 34 may be a drying bag arranged in the condensation section 311 .
  • the liquid collector 34 includes a liquid collecting tank 341 and a liquid collecting pipe 342 .
  • the liquid collection tank 341 is used to collect the condensate
  • the liquid collection pipe 342 is connected to the liquid collection tank 341 and the condensation section 311 , and the liquid collection pipe 342 is used to guide the condensate into the liquid collection tank 341 .
  • the liquid collection tank 341 communicates with the condensation section 311 through the liquid collection pipe 342, so that the liquid collection pipe 342 can guide the condensate in the condensation section 311 to the liquid collection tank 341, thereby facilitating the condensation of gas produced in the condensation section 311
  • the condensate is collected, and the liquid collector 34 with this structure is simple in structure, easy to implement, and can effectively improve the recovery and storage capacity of the liquid collector 34 for the condensate.
  • the cooling mechanism 33 includes a cooling box 331 , and an accommodating chamber 3311 for accommodating the first cooling medium is formed inside the cooling box 331 .
  • the condensing section 311 includes a plurality of U-shaped parts 3111 connected in sequence and located in the containing chamber 3311 , and a liquid outlet 3112 for communicating with the liquid collecting pipe 342 is formed at the bottom of each U-shaped part 3111 .
  • the condensing section 311 arranged in the accommodating cavity 3311 has an S-shaped structure, the condensing section 311 has a plurality of U-shaped parts 3111 connected in sequence, and the bottom of each U-shaped part 3111 is communicated with the liquid collecting pipe 342 .
  • each U-shaped part 3111 By opening the bottom of each U-shaped part 3111 with a liquid outlet 3112 connected to the liquid collection pipe 342, the liquid collection pipe 342 can collect the condensate formed by condensation in each U-shaped part 3111, thereby facilitating The liquid collector 34 recovers the condensed liquid in the condensing section 311 and is beneficial to improve the recovery efficiency of the condensed liquid.
  • the liquid collector 34 further includes a drying unit 343 .
  • the drying unit 343 is disposed in the liquid collecting tank 341, and the drying unit 343 is used for absorbing condensate.
  • the drying unit 343 is detachably connected to the liquid collection tank 341, so that the drying unit 343 can be disposed or replaced when the drying unit 343 absorbs too much water during subsequent use.
  • the drying unit 343 is a drying bag.
  • the recovered condensate in the liquid collecting tank 341 can be absorbed by the drying unit 343 , which is beneficial to improve the ability of the liquid collecting tank 34 to recover the condensate.
  • the battery dehumidification system 30 further includes a cooling pipe 35 .
  • the cooling pipe 35 has a first cooling section 351 and a second cooling section 352, the first cooling section 351 is used to be arranged in the box body 10, and the cooling pipe 35 is used for the flow of the second cooling medium to adjust the temperature in the box body 10 .
  • the cooling mechanism 33 is used for cooling the second cooling medium flowing through the second cooling section 352 .
  • the second cooling medium in the cooling pipe 35 can circulate between the first cooling section 351 and the second cooling section 352, and the second cooling section 352 is arranged in the accommodating chamber 3311 of the cooling box 331 of the cooling mechanism 33.
  • the second cooling medium flows through the second cooling section 352, it can be cooled by the cooling mechanism 33 and then flow into the first cooling section 351, so that the second cooling medium can perform heat exchange in the box body 10, thereby cooling the box body 10
  • the internal temperature plays a regulating role.
  • the second cooling medium may be water or ethylene glycol mixture and the like.
  • the battery dehumidification system 30 With this structure combines the ventilation pipe 31 and the The cooling pipes 35 share one cooling mechanism 33, which is beneficial to reduce the manufacturing cost of the battery dehumidification system 30 and is beneficial to save energy.
  • FIG. 6 is a schematic structural diagram of a battery 100 provided in some other embodiments of the present application.
  • the present application also provides a battery 100, which includes a case 10, a single battery 100, and a battery dehumidification system 30 according to any of the above schemes.
  • the box body 10 is used for accommodating a single battery 100 , and both ends of the vent pipe 31 are connected to the box body 10 .
  • the air pipe 31 of the battery dehumidification system 30 has an air inlet 314 and an air outlet 315, and the air inlet 314 and the air outlet 315 are respectively connected to the box body 10 at the second One side up on both sides.
  • the first direction is the width direction of the box body 10 .
  • the first direction may also be the length direction or the height direction of the box body 10 .
  • the air inlet end 314 and the air outlet end 315 of the air pipe 31 By connecting the air inlet end 314 and the air outlet end 315 of the air pipe 31 to the two sides of the box body 10 in the first direction, the air inlet end 314 and the air outlet end 315 are located on both sides of the box body 10 in the first direction. side, so as to facilitate the circulation of gas between the box body 10 and the vent pipe 31 , and this structure can effectively reduce the phenomenon of partial flow of gas in the box body 10 .
  • the air inlet end 314 and the air outlet end 315 are arranged at intervals in a second direction, and the second direction is perpendicular to the first direction.
  • the box body 10 By arranging the inlet end 314 and the gas outlet end 315 on both sides of the first direction of the box body 10 at intervals along the second direction, it is beneficial to enhance the overall fluidity of the gas in the box body 10, and then the box body 10 can be improved. internal dehumidification effect.
  • the air inlet end 314 and the air outlet end 315 are arranged at intervals in a third direction, and the third direction is perpendicular to the first direction and the second direction.
  • the air inlet 314 and the air outlet 315 are located at opposite diagonal corners of the box body 10 , so that the overall fluidity of the gas in the box 10 can be further enhanced, which is beneficial to further improving the dehumidification effect in the box 10 .
  • the present application also provides an electric device, the electric device includes the battery 100 of any solution above, and the battery 100 is used to provide electric energy for the electric device.
  • the electric device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a battery dehumidification system 30
  • the battery dehumidification system 30 includes a ventilation pipe 31 , an air extraction mechanism 32 , a cooling mechanism 33 , and a liquid collector 34 And cooling pipe 35. Both ends of the vent pipe 31 are used to communicate with the case 10 of the battery 100 , and the vent pipe 31 has a gas outlet section 312 , a condensation section 311 and an air inlet section 313 which are connected in sequence.
  • the air extraction mechanism 32 is arranged on the air intake section 313 , and the air extraction mechanism 32 is used to extract the gas in the box body 10 so that the gas circulates between the box body 10 and the ventilation pipe 31 .
  • the cooling mechanism 33 has a cooling box 331.
  • the inside of the cooling box 331 has an accommodating cavity 3311 for accommodating the first cooling medium.
  • the condensing section 311 is arranged in the accommodating cavity 3311, and the condensing section 311 extends in an S shape.
  • the liquid collector 34 includes a liquid collecting tank 341, a liquid collecting pipe 342 and a drying unit 343.
  • the liquid collecting tank 341 is provided with a drying unit 343 for absorbing condensed water.
  • the liquid collecting pipe 342 and each U-shaped portion 3111 of the condensation section 311 Connected, and the liquid collection pipe 342 is used to guide the condensate produced by the condensation of gas in the condensation section 311 into the liquid collection tank 341 .
  • the cooling pipe 35 has a first cooling section 351 and a second cooling section 352, the first cooling section 351 is used to be arranged in the casing 10, the second cooling section 352 is arranged in the cooling box 331 of the cooling mechanism 33, and the cooling pipe 35 is used for For the flow of the second cooling medium to adjust the temperature in the box body 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请提供了一种电池除湿系统、电池及用电装置,属于电池技术领域。其中,电池除湿系统包括通气管、抽气机构和冷却机构。通气管的两端均用于与箱体连通,通气管具有冷凝段。抽气机构用于抽取箱体内的气体,以使气体在箱体和通气管之间循环流动。冷却机构用于冷却流经冷凝段的气体,以使气体在冷凝段内冷凝。具有这种电池除湿系统的电池能够实现气体在箱体和通气管之间循环流动,使得气体在流经冷凝段时冷凝液化,以将气体中的水蒸气冷凝成冷凝液,从而有利于降低箱体内的环境湿度,以解决电池的箱体内的各电子元器件在后期使用过程中因环境湿度过大而出现损坏或绝缘失效的现象,有利于降低电池在使用过程中存在的安全隐患。

Description

电池除湿系统、电池及用电装置
相关申请的交叉引用
本申请要求享有于2021年12月21日提交的名称为“电池除湿系统、电池及用电装置”的中国专利申请202123234321.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池除湿系统、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池由箱体和容纳于箱体的容纳空间内的多个电池单体组成。其中,电池作为新能源汽车核心零部件不论在使用性能、使用寿命和安全性方面等均有着较高的要求。但是,现有的动力电池在使用过程中常常会出现各电子元器件损坏或各电子元器件之间绝缘失效的现象,从而导致电池在使用过程中存在较大的安全隐患,且不利于电池的使用寿命。
发明内容
本申请实施例提供一种电池除湿系统、电池及用电装置,能够有效降低电池在使用过程中存在的安全隐患。
第一方面,本申请实施例提供一种电池除湿系统,电池具有箱体,电池除湿系统包括通气管、抽气机构和冷却机构;通气管的两端均用于与箱体连通,通气管具有冷凝段;抽气机构用于抽取箱体内的气体,以使气体在箱体和通气管之间循环流动;冷却机构用于冷却流经冷凝段的气体,以使气体在冷凝段内冷凝。
在上述技术方案中,通气管的两端均与箱体连通,以使通气管与箱体形成供气体流动的循环回路,从而在通过抽气机构对箱体内的气体进行抽取时能够实现气体在箱体和通气管之间循环流动,并通过冷却机构对通气管的冷凝段进行冷却,使得气体在流经冷凝段时遇冷会产生冷凝液化的现象,以将气体中的水蒸气冷凝成冷凝液,依次循环,进而有利于降低箱体内的环境湿度,以解决电池的箱体内的各电子元器件在后期使用过程中因环境湿度过大而出现损坏或绝缘失效的现象,有利于降低电池在使用过程中存在的安全隐患。此外,通过这种结构的电池除湿系统在对气体进行冷凝后产生的冷凝液聚集在通气管的冷凝段内,从而能够有效地将气体冷凝生产后的冷凝液与电池分离,以减少冷凝液在电池的箱体内聚集的现象,进而有利于提高电池的使用安全性,且有利于提高电池的使用寿命。
在一些实施例中,冷却机构包括冷却箱;冷却箱的内部形成用于容纳第一冷却介质的容纳腔,冷凝段位于容纳腔内。
在上述技术方案中,冷却机构设置有冷却箱,通过在冷却箱内开设用于容纳第一冷却介质的容纳腔,且将通气管的冷凝段设置于冷却箱的容纳腔内,从而能够提高 冷却机构对冷凝段的冷却效果,以增强流经冷凝段的气体的冷凝能力。
在一些实施例中,冷凝段在容纳腔内呈S型延伸。
在上述技术方案中,通过将冷凝段设置为S型结构,从而能够有效延长气体在冷凝段内的流动行程,使得气体流经冷凝段的时长被极大地延长,进而有利于提高气体在流经冷凝段时的冷凝效果,以提升电池除湿系统的对电池的箱体内的气体的除湿能力。
在一些实施例中,通气管还包括出气段和进气段;出气段的一端用于与箱体连通,出气段的另一端与冷凝段连通,出气段用于将箱体内的气体导向冷凝段内;进气段的一端与冷凝段连通,进气段的另一端用于与箱体连通,进气段用于将冷凝段内的气体导向箱体内,抽气机构设置于进气段上。
在上述技术方案中,进气段用于将冷凝段内的气体导向至箱体内,也就是说,进气段内的气体为流经冷凝段进行冷凝后的气体,通过将抽气机构设置于进气段上,以使经过抽气机构的气体已经流经冷凝过,从而能够降低湿度较大的气体对抽气机构造成的损坏,进而有利于延长抽气机构的使用寿命。
在一些实施例中,电池除湿系统还包括集液器;集液器连接于冷凝段,集液器用于收集气体在冷凝段内冷凝生成的冷凝液。
在上述技术方案中,通过在冷凝段上连接集液器,以使集液器能够对气体在冷凝段内冷凝生产的冷凝液进行回收,从而能够有效缓解冷凝段内的冷凝液堆积过多,以降低冷凝段被冷凝液堵塞的风险,进而有利于保证电池除湿系统的正常运行。
在一些实施例中,集液器包括集液箱和集液管;集液箱用于收集冷凝液;集液管连通集液箱和冷凝段,集液管用于将冷凝液导向集液箱内。
在上述技术方案中,集液器设置有集液箱和集液管,集液箱通过集液管与冷凝段连通,以使集液管能够将冷凝段内的冷凝液导向至集液箱内,从而便于对气体在冷凝段内冷凝生产的冷凝液进行收集,采用这种结构的集液器结构简单,便于实现,且能够有效提高集液器对冷凝液的回收能力和存储能力。
在一些实施例中,冷却机构包括冷却箱,冷却箱的内部形成用于容纳第一冷却介质的容纳腔;冷凝段包括依次相连且位于容纳腔内的多个U型部,每个U型部的底部形成有用于与集液管连通的出液口。
在上述技术方案中,冷凝段设置有依次相连的多个U型部,从而能够延长气体在冷凝段内的流动行程和时长,进而有利于提高气体在流经冷凝段时的冷凝效果。此外,通过将每个U型部的底部均开设有与集液管相连通的出液口,使得集液管能够对每个U型部内冷凝形成的冷凝液进行收集,从而便于集液器对冷凝段内的冷凝液进行回收,且有利于提高冷凝液的回收效率。
在一些实施例中,集液器还包括干燥单元;干燥单元设置于集液箱内,干燥单元用于吸收冷凝液。
在上述技术方案中,通过在集液箱内设置干燥单元,以通过干燥单元能够对集液箱内的回收的冷凝液进行吸收,从而有利于提高集液器对冷凝液回收能力。
在一些实施例中,电池除湿系统还包括冷却管;冷却管具有第一冷却段和第二冷却段,第一冷却段用于设置于箱体内,冷却管用于供第二冷却介质流动,以调节箱 体内的温度;冷却机构用于冷却流经第二冷却段的第二冷却介质。
在上述技术方案中,电池除湿系统还设置有冷却管,通过将冷却管的第一冷却段设置于电池的箱体内,且通过冷却机构能够对冷却管的第二冷却段进行冷却,以使第二冷却介质在冷却管内进行循环流动时能够对箱体内的温度进行调节,从而使得电池除湿系统还能够实现电池的箱体内的温度调节功能,这种结构的电池除湿系统将通气管和冷却管共用一个冷却机构,有利于降低电池除湿系统的制造成本,且有利于节省能源。
第二方面,本申请实施例还提供一种电池,包括电池单体、箱体和上述的电池除湿系统;箱体用于容纳电池单体;通气管的两端均与箱体连通。
在一些实施例中,通气管具有进气端和出气端,进气端和出气端分别连接于箱体在第一方向上的两侧。
在上述技术方案中,通过将通气管的进气端和出气端分别连接于箱体在第一方向上的两侧,以使进气端和出气端位于箱体在第一方向上的两侧,从而便于气体在箱体和通气管之间循环流动,且通过这种结构能够有效减少箱体内的气体出现局部流动的现象。
在一些实施例中,进气端和出气端在第二方向上间隔布置,第二方向垂直于第一方向。
在上述技术方案中,通过将位于箱体第一方向上的两侧的进气端和出气端沿第二方向间隔布置,从而有利于增强箱体内的气体的整体流动性,进而能够提高箱体内的除湿效果。
在一些实施例中,进气端和出气端在第三方向上间隔布置,第三方向垂直于第一方向和第二方向。
在上述技术方案中,通过将位于箱体第一方向上的两侧的进气端和出气端进一步沿第三方向间隔布置,以使进气端和出气端位于箱体的相对的对角处,从而能够进一步增强箱体内的气体的整体流动性,进而有利于进一步提升箱体内的除湿效果。
第三方面,本申请实施例还提供一种用电装置,包括上述的电池;电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构爆炸图;
图3为本申请一些实施例提供的电池除湿系统的结构示意图;
图4为本申请一些实施例提供的冷却机构的结构示意图;
图5为本申请一些实施例提供的冷却机构的剖视图;
图6为本申请又一些实施例提供的电池的结构爆炸图。
图标:1000-车辆;100-电池;10-箱体;11-第一部分;12-第二部分;20-电池单体;30-电池除湿系统;31-通气管;311-冷凝段;3111-U型部;3112-出液口;312-出气段;313-进气段;314-进气端;315-出气端;32-抽气机构;33-冷却机构;331-冷却箱;3311-容纳腔;3312-入口;3313-出口;34-集液器;341-集液箱;342-集液管;343-干燥单元;35-冷却管;351-第一冷却段;352-第二冷却段;200-控制器;300-马达。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体 一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模组的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、电极组件和电解液,外壳用于容纳电极组件和电解液。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池由箱体和容纳于箱体的容纳空间内的多个电池单体组成。其中,电池作为新能源汽车核心零部件不论在使用性能、使用寿命和安全性方面等均有着较高的要求。
发明人发现,在电池后期使用的过程中由于环境比较复杂,电池的箱体容易出现水蒸气进入的现象,以造成电池的箱体内的环境湿度较高,当电池的箱体内的水蒸气达到一定浓度或与箱体的内壁存在温差时,常常出现水蒸气液化的现象,产生大量的冷凝液,由于聚集在电池的箱体内的冷凝液会对箱体内的各电子元器件的性能和各电子元器件之间的绝缘带来不利影响,从而极容易导致电池在后期使用过程中出现各电子元器件损坏或各电子元器件之间绝缘失效的现象,进而导致电池在使用过程中存在较大的安全隐患,且不利于电池的使用寿命。在现有技术中,通常采用在电池的箱体内设置干燥剂或者吸湿片等方法,或者在电池的箱体内设置冷凝器,使得箱体内的气体中的水蒸气遇到冷凝器后会产生液化现象并生成冷凝液,以降低电池的箱体内的环境湿度。然而,采用这种结构的电池的除湿效果不佳,且同样会造成冷凝液在箱体内堆积的现象,从而导致电池依旧存在较大的使用安全隐患,且不利于电池的长期使用。
基于上述考虑,为了解决电池在后期使用过程中存在较大的安全隐患以及使用寿命较短的问题,发明人经过深入研究,设计了一种电池除湿系统,电池除湿系统设置有通气管、抽气机构和冷却机构,通气管用于与电池的箱体相连,以使通气管与箱体形成供气体流动的循环回路,抽气机构用于抽取箱体内的气体,以使其它在循环回 路内流动,冷却机构用于冷却流经通气管的冷凝段的气体。
在具有这种电池除湿系统的电池中,通过抽气机构能够抽取箱体内的气体,以实现箱体内的气体在箱体和通气管之间循环流动,并通过冷却机构对通气管的冷凝段进行冷却,使得气体在流经冷凝段时遇冷会产生冷凝液化的现象,以将气体中的水蒸气冷凝成冷凝液,依次循环,从而有利于降低箱体内的环境湿度,以解决电池的箱体内的各电子元器件在后期使用过程中因环境湿度过大而出现损坏或绝缘失效的现象,进而有利于降低电池在使用过程中存在的安全隐患。
此外,通过这种结构的电池除湿系统在对气体进行冷凝后产生的冷凝液聚集在通气管的冷凝段内,从而能够有效地将气体冷凝生产后的冷凝液与电池分离,以减少冷凝液在电池的箱体内聚集的现象,进而有利于提高电池的使用安全性,且有利于提高电池的使用寿命。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池除湿系统、电池等组成该用电装置的电源系统,这样,有利于缓解电池的各电子元器件出现损坏或绝缘失效的现象,以提升电池的使用安全性和使用寿命。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的结构爆炸图。电池100包括箱体10和电池单体20,箱体10具有用于容纳电池单体20的容纳空间。其中,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
根据本申请的一些实施例,参照图2,并请进一步参照图3,图3为本申请一些实施例提供的电池除湿系统30的结构示意图。本申请提供了一种电池除湿系统30,电池除湿系统30包括通气管31、抽气机构32和冷却机构33。通气管31的两端均用于与箱体10连通,通气管31具有冷凝段311。抽气机构32用于抽取箱体10内的气体,以使气体在箱体10和通气管31之间循环流动。冷却机构33用于冷却流经冷凝段311的气体,以使气体在冷凝段311内冷凝。
其中,通气管31的两端均用于与箱体10连通,即通气管31的两端均与箱体10内的容纳空间连通,使得气体能够在箱体10与通气管31之间形成循环回路。冷却机构33用于冷却流经冷凝段311的气体,以使气体在冷凝段311内冷凝,即冷却机构33用于对通气管31的冷凝段311进行降温,从而使得气体在流经冷凝段311时会碰到温度较低的冷凝段311的内壁,以使气体发生冷凝液化的现象。
在通过抽气机构32对箱体10内的气体进行抽取时能够实现气体在箱体10和通气管31之间循环流动,并通过冷却机构33对通气管31的冷凝段311进行冷却,使得气体在流经冷凝段311时遇冷会产生冷凝液化的现象,以将气体中的水蒸气冷凝成冷凝液,依次循环,进而有利于降低箱体10内的环境湿度,以解决电池100的箱体10内的各电子元器件在后期使用过程中因环境湿度过大而出现损坏或绝缘失效的现象,有利于降低电池100在使用过程中存在的安全隐患。此外,通过这种结构的电池除湿系统30在对气体进行冷凝后产生的冷凝液聚集在通气管31的冷凝段311内,从而能够有效地将气体冷凝生产后的冷凝液与电池100分离,以减少冷凝液在电池100的箱体10内聚集的现象,进而有利于提高电池100的使用安全性,且有利于提高电池100的使用寿命。
根据本申请的一些实施例,参照图3,并请进一步参照图4和图5,图4为本申请一些实施例提供的冷却机构33的结构示意图,图5为本申请一些实施例提供的冷却机构33的剖视图。冷却机构33包括冷却箱331,冷却箱331的内部形成用于容纳第一冷却介质的容纳腔3311,冷凝段311位于容纳腔3311内。冷却机构33的具体结构可参见相关技术,在此不再赘述。
其中,冷却箱331开设有入口3312和出口3313,入口3312和出口3313均与容纳腔3311连通,入口3312和出口3313分别用于供第一冷却介质流入或流出,以实现第一冷却介质在容纳腔3311内进行循环流动,从而通过第一冷却介质能够对位于容纳腔3311内的冷凝段311进行冷却。
示例性的,第一冷却介质可以为二氟一氯甲烷、氨气或氟利昂等。
通过在冷却箱331内开设用于容纳第一冷却介质的容纳腔3311,且将通气管31的冷凝段311设置于冷却箱331的容纳腔3311内,从而能够提高冷却机构33对冷凝段311的冷却效果,以增强流经冷凝段311的气体的冷凝能力。
根据本申请的一些实施例,请参见图4和图5所示,冷凝段311在容纳腔3311内呈S型延伸。
其中,冷凝段311呈S型延伸,即冷凝段311为S型弯曲结构(蛇形结构)。
需要说明的是,在一些实施例中,冷凝段311的结构也可以为直管结构或Z型结构等。
通过将冷凝段311设置为S型结构,从而能够有效延长气体在冷凝段311内的流动行程,使得气体流经冷凝段311的时长被极大地延长,进而有利于提高气体在流经冷凝段311时的冷凝效果,以提升电池除湿系统30的对电池100的箱体10内的气体的除湿能力。
根据本申请的一些实施例,请继续参见图3所示,通气管31还包括出气段312和进气段313。出气段312的一端用于与箱体10连通,出气段312的另一端与冷凝段311连通,出气段312用于将箱体10内的气体导向冷凝段311内。进气段313的一端与冷凝段311连通,进气段313的另一端用于与箱体10连通,进气段313用于将冷凝段311内的气体导向箱体10内,抽气机构32设置于进气段313上。
其中,进气段313用于将冷凝段311内的气体导向箱体10内,也就是说,流经进气段313的气体为流经冷凝段311进行冷凝后的气体。
示例性的,抽气机构32可以为轴流电机或抽气泵等。
需要说明的是,在其他实施例中,抽气机构32也可以设置于出气段312上。
通过将抽气机构32设置于进气段313上,以使经过抽气机构32的气体已经流经冷凝过,从而能够降低湿度较大的气体对抽气机构32造成的损坏,进而有利于延长抽气机构32的使用寿命。
根据本申请的一些实施例,请参见图3、图4和图5所示,电池除湿系统30还包括集液器34。集液器34连接于冷凝段311,集液器34用于收集气体在冷凝段311内冷凝生成的冷凝液。
通过在冷凝段311上连接集液器34,以使集液器34能够对气体在冷凝段311内冷凝生产的冷凝液进行回收,从而能够有效缓解冷凝段311内的冷凝液堆积过多,以降低冷凝段311被冷凝液堵塞的风险,进而有利于保证电池除湿系统30的正常运行。
可选地,集液器34的结构可以是多种,比如,集液器34可以为设置于冷凝段311内的干燥包等。
在一些实施例中,集液器34包括集液箱341和集液管342。集液箱341用于收集冷凝液,集液管342连通集液箱341和冷凝段311,集液管342用于将冷凝液导向集液箱341内。
集液箱341通过集液管342与冷凝段311连通,以使集液管342能够将冷凝段311内的冷凝液导向至集液箱341内,从而便于对气体在冷凝段311内冷凝生产的冷凝 液进行收集,采用这种结构的集液器34结构简单,便于实现,且能够有效提高集液器34对冷凝液的回收能力和存储能力。
根据本申请的一些实施例,请参见图5所示,冷却机构33包括冷却箱331,冷却箱331的内部形成用于容纳第一冷却介质的容纳腔3311。冷凝段311包括依次相连且位于容纳腔3311内的多个U型部3111,每个U型部3111的底部形成有用于与集液管342连通的出液口3112。
其中,由于设置于容纳腔3311内的冷凝段311为S型结构,因此,冷凝段311具有依次连接的多个U型部3111,且每个U型部3111的底部均与集液管342连通。
通过将每个U型部3111的底部均开设有与集液管342相连通的出液口3112,使得集液管342能够对每个U型部3111内冷凝形成的冷凝液进行收集,从而便于集液器34对冷凝段311内的冷凝液进行回收,且有利于提高冷凝液的回收效率。
根据本申请的一些实施例,请继续参见图5所示,集液器34还包括干燥单元343。干燥单元343设置于集液箱341内,干燥单元343用于吸收冷凝液。
可选地,干燥单元343可拆卸地连接于集液箱341内,以便于在后续使用过程中当干燥单元343吸水过多后对干燥单元343进行处理或更换。
示例性的,干燥单元343为干燥包。
通过在集液箱341内设置干燥单元343,以通过干燥单元343能够对集液箱341内的回收的冷凝液进行吸收,从而有利于提高集液器34对冷凝液回收能力。
根据本申请的一些实施例,请参见图3、图4和图5所示,电池除湿系统30还包括冷却管35。冷却管35具有第一冷却段351和第二冷却段352,第一冷却段351用于设置于箱体10内,冷却管35用于供第二冷却介质流动,以调节箱体10内的温度。冷却机构33用于冷却流经第二冷却段352的第二冷却介质。
其中,冷却管35内的第二冷却介质能够在第一冷却段351和第二冷却段352之间循环流动,第二冷却段352设置于冷却机构33的冷却箱331的容纳腔3311内,第二冷却介质在流经第二冷却段352时能够经过冷却机构33冷却后再流动至第一冷却段351内,以使第二冷却介质能够在箱体10内进行热交换,从而对箱体10内的温度起到调节作用。
示例性的,第二冷却介质可以为水或乙二醇混合剂等。
通过将冷却管35的第一冷却段351设置于电池100的箱体10内,且通过冷却机构33能够对冷却管35的第二冷却段352进行冷却,以使第二冷却介质在冷却管35内进行循环流动时能够对箱体10内的温度进行调节,从而使得电池除湿系统30还能够实现电池100的箱体10内的温度调节功能,这种结构的电池除湿系统30将通气管31和冷却管35共用一个冷却机构33,有利于降低电池除湿系统30的制造成本,且有利于节省能源。
根据本申请的一些实施例,请参照图6,图6为本申请又一些实施例提供的电池100的结构示意图。本申请还提供了一种电池100,电池100包括箱体10、电池100单体和以上任一方案的电池除湿系统30。箱体10用于容纳电池100单体,通气管31的两端均与箱体10连通。
根据本申请的一些实施例,请继续参见图6所示,电池除湿系统30的通气管 31具有进气端314和出气端315,进气端314和出气端315分别连接于箱体10在第一方向上的两侧。
示例性的,在图6中,第一方向为箱体10的宽度方向。当然,在一些实施例中,第一方向也可以为箱体10的长度方向或高度方向等。
通过将通气管31的进气端314和出气端315分别连接于箱体10在第一方向上的两侧,以使进气端314和出气端315位于箱体10在第一方向上的两侧,从而便于气体在箱体10和通气管31之间循环流动,且通过这种结构能够有效减少箱体10内的气体出现局部流动的现象。
进一步地,进气端314和出气端315在第二方向上间隔布置,第二方向垂直于第一方向。
通过将位于箱体10第一方向上的两侧的进气端314和出气端315沿第二方向间隔布置,从而有利于增强箱体10内的气体的整体流动性,进而能够提高箱体10内的除湿效果。
进一步地,进气端314和出气端315在第三方向上间隔布置,第三方向垂直于第一方向和第二方向。
通过将位于箱体10第一方向上的两侧的进气端314和出气端315进一步沿第三方向间隔布置,以使进气端314和出气端315位于箱体10的相对的对角处,从而能够进一步增强箱体10内的气体的整体流动性,进而有利于进一步提升箱体10内的除湿效果。
根据本申请的一些实施例,本申请还提供了一种用电装置,用电装置包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图3-图5所示,本申请提供了一种电池除湿系统30,电池除湿系统30包括通气管31、抽气机构32、冷却机构33、集液器34和冷却管35。通气管31的两端均用于与电池100的箱体10连通,通气管31具有依次连通的出气段312、冷凝段311和进气段313。抽气机构32设置于进气段313上,抽气机构32用于抽取箱体10内的气体,以使气体在箱体10和通气管31之间循环流动。冷却机构33具有冷却箱331,冷却箱331的内部具有用于容纳第一冷却介质的容纳腔3311,冷凝段311设置于容纳腔3311内,且冷凝段311呈S型延伸。集液器34包括集液箱341、集液管342和干燥单元343,集液箱341内设置有用于吸收冷凝水的干燥单元343集液管342与冷凝段311的每个U型部3111均连通,且集液管342用于将冷凝段311内的气体冷凝生产的冷凝液引导至集液箱341内。冷却管35具有第一冷却段351和第二冷却段352,第一冷却段351用于设置于箱体10内,第二冷却段352设置于冷却机构33的冷却箱331内,冷却管35用于供第二冷却介质流动,以调节箱体10内的温度。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种电池除湿系统,所述电池具有箱体,包括:
    通气管,所述通气管的两端均用于与所述箱体连通,所述通气管具有冷凝段;
    抽气机构,所述抽气机构用于抽取所述箱体内的气体,以使所述气体在所述箱体和所述通气管之间循环流动;以及
    冷却机构,所述冷却机构用于冷却流经所述冷凝段的所述气体,以使所述气体在所述冷凝段内冷凝。
  2. 根据权利要求1所述的电池除湿系统,其中,所述冷却机构包括:
    冷却箱,所述冷却箱的内部形成用于容纳第一冷却介质的容纳腔,所述冷凝段位于所述容纳腔内。
  3. 根据权利要求2所述的电池除湿系统,其中,所述冷凝段在所述容纳腔内呈S型延伸。
  4. 根据权利要求1-3任一项所述的电池除湿系统,其中,所述通气管还包括:
    出气段,所述出气段的一端用于与所述箱体连通,所述出气段的另一端与所述冷凝段连通,所述出气段用于将所述箱体内的所述气体导向所述冷凝段内;
    进气段,所述进气段的一端与所述冷凝段连通,所述进气段的另一端用于与所述箱体连通,所述进气段用于将所述冷凝段内的所述气体导向所述箱体内,所述抽气机构设置于所述进气段上。
  5. 根据权利要求1-4任一项所述的电池除湿系统,其中,所述电池除湿系统还包括:
    集液器,所述集液器连接于所述冷凝段,所述集液器用于收集所述气体在所述冷凝段内冷凝生成的冷凝液。
  6. 根据权利要求5所述的电池除湿系统,其中,所述集液器包括:
    集液箱,所述集液箱用于收集所述冷凝液;
    集液管,所述集液管连通所述集液箱和所述冷凝段,所述集液管用于将所述冷凝液导向所述集液箱内。
  7. 根据权利要求6所述的电池除湿系统,其中,所述冷却机构包括冷却箱,所述冷却箱的内部形成用于容纳第一冷却介质的容纳腔;
    所述冷凝段包括依次相连且位于所述容纳腔内的多个U型部,每个所述U型部的底部形成有用于与所述集液管连通的出液口。
  8. 根据权利要求6或7所述的电池除湿系统,其中,所述集液器还包括:
    干燥单元,所述干燥单元设置于所述集液箱内,所述干燥单元用于吸收所述冷凝液。
  9. 根据权利要求1-8任一项所述的电池除湿系统,其中,所述电池除湿系统还包括:
    冷却管,冷却管具有第一冷却段和第二冷却段,所述第一冷却段用于设置于所述箱体内,所述冷却管用于供第二冷却介质流动,以调节所述箱体内的温度;
    所述冷却机构用于冷却流经所述第二冷却段的所述第二冷却介质。
  10. 一种电池,包括:
    电池单体;
    箱体,所述箱体用于容纳所述电池单体;以及
    如权利要求1-9任一项所述的电池除湿系统,所述通气管的两端均与所述箱体连 通。
  11. 根据权利要求10所述的电池,其中,所述通气管具有进气端和出气端,所述进气端和所述出气端分别连接于所述箱体在第一方向上的两侧。
  12. 根据权利要求11所述的电池,其中,所述进气端和所述出气端在第二方向上间隔布置,所述第二方向垂直于所述第一方向。
  13. 根据权利要求12所述的电池,其中,所述进气端和所述出气端在第三方向上间隔布置,所述第三方向垂直于所述第一方向和所述第二方向。
  14. 一种用电装置,包括如权利要求10-13任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/136988 2021-12-21 2022-12-06 电池除湿系统、电池及用电装置 WO2023116421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123234321.2U CN216488223U (zh) 2021-12-21 2021-12-21 电池除湿系统、电池及用电装置
CN202123234321.2 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116421A1 true WO2023116421A1 (zh) 2023-06-29

Family

ID=81425670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136988 WO2023116421A1 (zh) 2021-12-21 2022-12-06 电池除湿系统、电池及用电装置

Country Status (2)

Country Link
CN (1) CN216488223U (zh)
WO (1) WO2023116421A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216488223U (zh) * 2021-12-21 2022-05-10 宁德时代新能源科技股份有限公司 电池除湿系统、电池及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035456A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Vorrichtung und Verfahren zum Betrieb eines Fahrzeugs
CN103648824A (zh) * 2011-05-23 2014-03-19 三菱自动车工业株式会社 用于电池组的空气调节控制装置
CN107388850A (zh) * 2017-09-07 2017-11-24 广东康明空调设备有限公司 一种智能静音横流式冷却塔
CN208254283U (zh) * 2018-05-23 2018-12-18 东莞市杉杉电池材料有限公司 一种用于配制电池电解液箱体的气体冷却装置
JP2020135957A (ja) * 2019-02-14 2020-08-31 株式会社豊田自動織機 蓄電システム
CN216488223U (zh) * 2021-12-21 2022-05-10 宁德时代新能源科技股份有限公司 电池除湿系统、电池及用电装置
CN114552149A (zh) * 2020-11-25 2022-05-27 郑州宇通客车股份有限公司 电池箱及电池箱除湿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035456A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Vorrichtung und Verfahren zum Betrieb eines Fahrzeugs
CN103648824A (zh) * 2011-05-23 2014-03-19 三菱自动车工业株式会社 用于电池组的空气调节控制装置
CN107388850A (zh) * 2017-09-07 2017-11-24 广东康明空调设备有限公司 一种智能静音横流式冷却塔
CN208254283U (zh) * 2018-05-23 2018-12-18 东莞市杉杉电池材料有限公司 一种用于配制电池电解液箱体的气体冷却装置
JP2020135957A (ja) * 2019-02-14 2020-08-31 株式会社豊田自動織機 蓄電システム
CN114552149A (zh) * 2020-11-25 2022-05-27 郑州宇通客车股份有限公司 电池箱及电池箱除湿方法
CN216488223U (zh) * 2021-12-21 2022-05-10 宁德时代新能源科技股份有限公司 电池除湿系统、电池及用电装置

Also Published As

Publication number Publication date
CN216488223U (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
JP2007042647A (ja) 電池モジュール
KR101960922B1 (ko) 배터리 모듈
WO2023116421A1 (zh) 电池除湿系统、电池及用电装置
CN104282964A (zh) 利用直接水冷却方式的蓄电池模块及其冷却方法
WO2023134107A1 (zh) 电池和用电设备
WO2023044764A1 (zh) 压力平衡机构、电池、用电装置、制备电池的方法和装置
WO2024083083A1 (zh) 电池和用电装置
US20230420798A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
US20230335845A1 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
WO2022082393A1 (zh) 用于电池的箱体、电池、用电装置、制备电池的方法和设备
US20230030834A1 (en) Case of battery, battery, power consuming device, and method and apparatus for manufacturing battery
WO2023164993A1 (zh) 热管理部件、电池及用电装置
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
CN216850070U (zh) 充电装置和用电设备
WO2023004777A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
US11926225B2 (en) Case of battery, battery, power consumption device, and method and device for producing battery
KR101760402B1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
CN220710433U (zh) 热管理系统、用电装置及储能装置
EP4016714B1 (en) Case body for battery, battery and electric device
CN218215630U (zh) 电池和用电设备
US20230369698A1 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
US11830996B1 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
KR101658974B1 (ko) 팩 하우징 및 이를 포함하는 배터리 팩
KR20240041097A (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909736

Country of ref document: EP

Kind code of ref document: A1