WO2023116330A1 - 一种橡胶摩擦测试装置 - Google Patents

一种橡胶摩擦测试装置 Download PDF

Info

Publication number
WO2023116330A1
WO2023116330A1 PCT/CN2022/133974 CN2022133974W WO2023116330A1 WO 2023116330 A1 WO2023116330 A1 WO 2023116330A1 CN 2022133974 W CN2022133974 W CN 2022133974W WO 2023116330 A1 WO2023116330 A1 WO 2023116330A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
friction disc
rubber
water
disc
Prior art date
Application number
PCT/CN2022/133974
Other languages
English (en)
French (fr)
Inventor
尹海山
行祺程
仇星文
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2023116330A1 publication Critical patent/WO2023116330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/021Tyre supporting devices, e.g. chucks

Definitions

  • the invention belongs to the technical field of rubber friction test equipment, and in particular relates to a rubber friction test device, which can test the friction of rubber under complex road surfaces.
  • Tires are circular elastic rubber products assembled on the ground and rolling on the ground. As the only part of the vehicle that is in contact with the road surface during driving, the quality of its friction performance directly affects the safety of driving.
  • the main raw material for making tires rubber, which has characteristics such as viscoelasticity, nonlinearity, and temperature sensitivity. Its friction mechanism is different from that of metal materials, and it has typical thermal-mechanical coupling characteristics.
  • the temperature of the road surface Due to the thermal-mechanical coupling characteristics of rubber, the temperature of the road surface has a non-negligible influence on the friction performance of tire rubber: under the influence of factors such as different climates and temperature differences between day and night, the temperature of the road surface has considerable differences, and is different from the ambient temperature, especially in summer , because the road surface absorbs the radiation of sunlight, the temperature of the road surface is much higher than the ambient temperature.
  • the road surface medium also has an important impact on the friction of the rubber.
  • the grip performance of the tire decreases, and skidding is prone to occur, which affects the safety of the vehicle.
  • the difference in the type of road surface will also have an important impact on the friction of rubber.
  • water films of different thicknesses on the road surface also have different effects on the friction properties of rubber.
  • the rubber friction performance detection device in the prior art is often tested on the mutual friction between the tire and the grinding wheel or the grinding surface at normal temperature or the set ambient temperature, ignoring the influence of the road surface temperature on the friction performance, and less It involves the study of water film thickness on friction performance.
  • Chinese patent 201711151068.X discloses a tire rubber high-speed ice surface friction test device, which is equipped with a detection box.
  • a transmission shaft is installed longitudinally through a thrust ball bearing in the detection box.
  • a power source is arranged below the transmission shaft.
  • the shafts are connected, the upper end of the transmission shaft is fixedly connected with a turntable, the upper side of the turntable is provided with an ice surface installation groove, and the installation box above the turntable is provided with a double-acting cylinder, and the piston rod of the double-acting cylinder is connected with a pressure shaft through a mechanical sensor.
  • the two ends are respectively connected to the rubber plate connecting seat through bearings; it is a pin-on-disk structure, which does not consider the influence of road surface temperature on the friction performance of rubber, and can only be tested on ice surface friction.
  • Chinese patent 201810823004.8 discloses a performance testing device for automobile tires, which includes a U-shaped frame, a first spring, a rough road surface, a high-temperature road surface, a low-temperature road surface, a first slide rail, a first slide block, a screw, a second slide rail, and a first slide rail.
  • Two slide blocks, the second spring, horizontal plate, mounting frame, mounting block, servo motor, first pulley, rotating shaft, second pulley, flat belt, automobile tire body, pole and top plate, the bottom in the U-shaped frame from front to The rear and from left to right are connected with first springs at even intervals.
  • the top of the first spring on the front side is connected to a rough road surface
  • the top of the first spring in the middle is connected to a high-temperature road surface
  • the top of the first spring on the rear side is connected to a low-temperature road surface.
  • the left and right sides of the top of the U-shaped frame are connected with a first slide rail
  • the first slide rail is provided with a first slide block
  • the top of the first slide rail is uniformly provided with threaded holes from front to back, and the first slide block is also provided with a threaded hole.
  • the threaded hole on the first slider is provided with a screw rod
  • the top of the first slider is connected with the second slide rail
  • the second slide rail is provided with the second slider
  • the second slider on the left A second spring is connected between the top right side of the second slider on the left side and the right side of the top and the top in the second slide rail on the corresponding side
  • the right side of the second slider on the left side is connected to the right side of the second slider on the right side.
  • the left side of the second slider is connected with a horizontal plate
  • the installation frame is connected between the two horizontal plates.
  • the top of the installation frame is embedded with an installation block, and the rear side of the installation block is installed with a servo motor.
  • the output shaft passes through the mounting block and is connected with the first pulley, the lower part of the mounting frame is rotatably connected with the rotating shaft, the rotating shaft at the rear side of the mounting frame is connected with the second pulley, and a flat belt is wound between the second pulley and the first pulley.
  • the rotating shaft on the rear side of the second pulley is connected with the car tire body, the top right side of the second slider on the left side and the top left side of the second slider on the right side are connected with a strut, the tops of the two struts There is a top plate connected between them; it adopts a crawler structure, and the influence of temperature on the friction performance of rubber is not considered, so it is impossible to test the road surface with medium.
  • a rubber friction testing machine disclosed in Chinese patent 201710632278.4 includes a base, a rubber fixing device, a rubber movement amplitude detection device, a rubber pressure loading device, a rubber friction loading device, and a signal acquisition and processing device.
  • the rubber fixing device is fixed on On the base, the rubber movement amplitude detection device is directly or indirectly fixed on the base, the rubber pressure loading device and the rubber friction loading device are fixed on the housing, the housing is fixed on the base, the signal acquisition and processing device and the rubber fixing device , the rubber moving range detection device, the rubber pressure loading device, and the control circuit connection of the rubber friction loading device are used to collect the heating temperature of the rubber, the moving range of the rubber, the pressure applied by the rubber, and the frictional force of the rubber loading; it adopts reciprocating friction , without considering the influence of road surface temperature on rubber friction performance, it is impossible to test the rubber friction performance under the condition of water film.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, seek to design a rubber friction test device, provide a test platform under complex road conditions and environmental conditions, and test the influence of road surface temperature, water film thickness and road surface type on friction performance.
  • the main structure of a rubber friction testing device involved in the present invention includes a motor, a friction disc and a central pipe; the motor is connected to the friction disc, the center of the friction disc is pierced with a central duct, and the central duct is connected to the friction disc.
  • the driving end of the motor involved in the present invention is connected to the shaft coupling after the 90-degree steering switch of the bearing, and further connected to the friction disc through the shaft coupling.
  • the motor is set on the bracket, the bracket is set on the base, and the motor is connected to the bearing.
  • the bottom end of the bearing is connected with the slip ring set on the base, the slip ring is set under the bracket, the top end of the bearing is connected with the coupling, and the coupling and the friction disc pass through a number of circles arranged at equal intervals at the bottom of the friction disc.
  • the pipeline is also provided with a thermometer and a heating pipe, the thermometer is located above the friction disk, and the heating pipe is located below the friction disk.
  • the upper surface of the friction disk involved in the present invention is provided with a fence, a friction belt is arranged on the upper surface, and an air release hole is opened on the side wall.
  • the test principle of the rubber friction test device involved in the present invention is: the temperature test range of the upper surface of the friction disc is -40 to 80°C, and the liquid nitrogen cooling provided by the liquid nitrogen pipeline or the radiation heating control of the heating pipe; the spray head according to The upper surface area of the friction disc is sprinkled with a corresponding amount of water to form a water film of a set thickness; friction belts of different materials are placed on the friction disc to simulate different road surfaces; during the test, the motor drives the friction disc to rotate, and the fixed rubber wheel By rubbing against the upper surface of the rotating friction disc, it is possible to study the influence of road temperature, water film thickness and different roads on friction performance.
  • the present invention is composed of a base, a temperature control unit, a road simulation unit, a power drive unit and a central pipeline.
  • the temperature control unit includes a liquid nitrogen tank and a heating pipe.
  • the road surface simulation unit includes a friction disc made of aluminum alloy, the interior is a cavity structure, and a friction belt with a size matching it is placed on the upper surface.
  • the friction process on the road surface, the power drive unit includes a motor, and the liquid nitrogen delivery pipe and heating pipe line are laid inside the central pipeline.
  • the rubber wheel testing mechanism and medium control unit composed of pressurized equipment and driving motors.
  • the medium control unit includes a spray head and a water tank.
  • the spray head has a switch.
  • the nozzle is aligned with the upper surface of the friction disc. Different amounts of water are sprayed to simulate different The tire friction process under the condition of water film thickness.
  • the motor is turned on, and the friction disc rotates under the drive of the motor.
  • the sprinkler sprays water on the surface to form a water film with a set thickness.
  • the six-component force sensor measures the rubber wheel.
  • the friction disc and the coupling are connected by multiple round tubes, which is convenient for maintenance , can test the influence of road surface temperature, water film thickness and road surface type on the friction performance, and the test results are accurate. The establishment of characterization of different parameters provides a basis for the improvement of tire friction performance.
  • Fig. 1 is a schematic diagram of the principle of the main structure of the present invention.
  • Fig. 2 is a schematic diagram of the use state of the present invention.
  • Fig. 3 is a schematic structural diagram of the friction disc involved in the present invention.
  • Fig. 4 is a schematic structural diagram of the air slip ring involved in the present invention.
  • Fig. 5 is a schematic structural diagram of the thermometer involved in the present invention.
  • Fig. 6 is a schematic structural view of the water tank involved in the present invention.
  • Fig. 7 is a schematic structural view of the rubber wheel testing mechanism involved in the present invention.
  • Fig. 8 is a perspective view of the rubber wheel testing mechanism involved in the present invention.
  • the main structure of a rubber friction testing device involved in this embodiment includes a base 1, a frame 2, a bracket 3, a motor 4, a bearing 5, a slip ring 6, a coupling 7, a friction disc 8, a round pipe 9, and a central pipe 10.
  • the base 1 is provided with an outer frame 2 and an inner bracket 3, and the bracket 3 is provided with
  • the motor 4 is connected with the bearing 5, the bottom end of the bearing 5 is connected with the slip ring 6 provided on the base 1 below the bracket 3, the top end of the bearing 5 is connected with the coupling 7, and the coupling 7 is connected with the inner space
  • the bottom of the friction disc 8 with circular ring structure is connected with 12 round pipes 9 equidistantly arranged, and a central pipe 10 is arranged in the central hole of the friction disc 8, and the top of the central pipe 10 is connected with the frame 2 and extends out of the frame.
  • the bottom end of the central pipe 10 is connected to the friction disc 8 through a hose 11.
  • An air slip ring 12 is provided at the connection between the central pipe 10 and the hose 11.
  • a thermometer 13 and a heating pipe 14 are arranged on the central pipe 10.
  • the thermometer 13 Located above the friction disc 8, the heating pipe 14 is located below the friction disc 8; the upper surface of the friction disc 8 is provided with a fence 15 on the circumference, the upper surface is provided with a friction belt 16, and the side wall is provided with an air vent 17.
  • the base 1 involved in this embodiment is placed on the desktop or the ground; the motor 4 is used to control the rotating speed of the friction disc 8; the slip ring 6 is used to support the bearing 5, and then the friction disc 8 is kept in a stable horizontal state during the test;
  • the shaft device 7 is located below the center of the friction disc 8;
  • the material of the friction disc 8 is aluminum alloy with a surface thickness of 3 mm, the radius of the friction disc 8 is 30 cm, the ring width is 8 cm, and the height of the hollow part is 7 mm;
  • the material of the circular tube 9 It is made of aluminum alloy, and there is a gasket made of rubber between the round tube 9 and the friction disc 8, which is fixed by screws to improve the stability of the friction disc 8 and reduce the heat transferred from the friction disc 8 to the motor 4.
  • the angle between the round tubes 9 is 30°; the outer side of the hose 11 is wrapped with heat insulating material, which has the function of keeping warm, and one end is fixed on the edge of the lower surface of the friction disc 8; the stator of the air slip ring 12 is fixed on the central pipe 10 Above, the rotor is connected to the friction disc 8 through a hose 11. During the test, the rotor and the friction disc 8 rotate together; the thermometer 13 is a radiation thermometer with a range of -40 to 80°C to measure the temperature of the friction disc 8 directly below it.
  • the upper surface temperature; the heating tube 14 is an infrared radiation heating tube, 3 are arranged side by side, the adjacent distance is 3cm, and the power of each is 1500W, and the heat is transferred to the friction disc 8 through thermal radiation.
  • the circuit of the heating tube 14 is set in The inside of the central pipeline 10; the fence 15 is arc-shaped, with a height of 2-5 cm, closed inwards, to prevent the friction disc 8 from rotating, and the medium on it is thrown out of the friction disc 8 under the action of centrifugal force; the friction belt 16 includes a particle size of 36 No.
  • the size matches the upper surface of the friction disc 8, and fits tightly on it; the diameter of the air release hole 17 is 1mm, used to discharge Air, closed during the test.
  • the water tank 18 is arranged on the top of the frame 2, and the outlet of the water tank 18 is provided with a shower head 19, which faces the upper surface of the friction disc 8 and is in contact with the upper surface of the friction disc 8.
  • the water pump 20 provided in the water tank 18 is connected; the rubber wheel testing mechanism 21 is arranged on the top of the friction disc 8, and the rubber wheel testing mechanism 21 is driven by a rubber wheel 211, a six-component force sensor 212, an angle adjustment device 213, a pressurizing device 214 and Composed of motor 215, the six-component force sensor 212 is arranged on the coaxial area of the rubber wheel 211, the angle adjustment device 213 is used to adjust the load and side slip angle of the rubber wheel 211, the angle adjustment device 213 and the pressing device 214 are driven by the motor 215 Drive; connect the liquid nitrogen delivery pipe 22 with the air slip ring 12 through the central pipe 10, the liquid nitrogen reaches the air slip ring 12 through the liquid nitrogen delivery pipe 22, and then enters the cavity of the friction disc 8 through the hose 11, and the friction disc 8 for cooling, and the outer side of the liquid nitrogen delivery pipe 22 is wrapped with a thermal insulation material with a warming effect, so as to avoid reducing the temperature loss in the liquid nitrogen delivery process; the thermometer 13 is
  • the operating temperature of the friction disc 8 is -40 to 80°C. It is controlled by the liquid nitrogen cooling provided by the liquid nitrogen delivery pipe 22 or the radiation heating of the heating pipe 14. Below 0°C, the water vapor in the air condenses on the friction disc 8 to form Frost, enabling the study of the effect of slightly wet road conditions on the coefficient of friction at different temperatures;
  • Water is sprayed on the upper surface of the friction disc 8 through the spray head 19, and the water freezes under low temperature conditions, which can simulate the influence of the frozen road on the friction coefficient;
  • a corresponding volume of water is sprayed through the spray head 19 to form a water film with a set thickness on the friction disc 8, and the influence of water films of different thicknesses on the friction performance can be studied;
  • the temperature signal of the thermometer 13 is transmitted to the computer through the signal collector, and the computer controls the input amount of liquid nitrogen or adjusts the power of the heating tube 14 according to the temperature signal, so as to achieve the effect of automatic temperature control;
  • Test results the friction force of the rubber wheel 211 is calculated from the data of the six-component force sensor 212 .
  • the shape of the water tank 18 involved in the present embodiment includes funnel shape, cylinder and rectangle, and the material is plastic, and there are scale marks printed on it.
  • the agitator can study the influence of different media on the friction performance.
  • the spray head 19 can be replaced by an atomizing nozzle to study the influence of a slightly wet road on the friction coefficient.
  • the water tank 18 is directly connected to the spray head 19 or connected in a pipeline , the water pump 20 can control the input amount of water in real time.
  • liquid nitrogen is input into the cavity of the friction disc 8, and the temperature of the upper surface of the friction disc 8 is measured by a thermometer.
  • the motor 4 is turned on and passed 4 Control the rotational speed of the friction disc 8, input the set pressure and adjust the angle for the rubber wheel 211, and obtain the friction force of the rubber wheel 211 on the dry road surface through the six-component force sensor 212;
  • an annular zirconium corundum abrasive belt with a particle size of No. 36 is arranged on the surface of the friction disc 8, the power of the heating tube 14 is adjusted, and the upper surface of the friction disc 8 is measured by a thermometer 13.
  • sprinkle water capable of forming a water film with a thickness of 2mm through the sprinkler 19 turn on the motor 4 and control the rotational speed of the friction disc 8 through the motor 4, input the set pressure for the rubber wheel 211 and adjust Angle, conduct a water slip test under the condition that the road surface temperature is 40° C., and obtain the friction force of the rubber wheel 211 through the six-component force sensor 212 .
  • the length of the ground-bearing rubber wheel 211 is L
  • the water medium provides bearing capacity to the rubber wheel 211, and the length of the ground-bearing rubber wheel 211 is reduced by x, which is L-x. At this time, based on what? The length of the water medium bearing rubber wheel 211 is also x,
  • Dry running distance L v d ⁇ t, wherein, v d is the slipping speed of the rubber wheel 211 under the dry road surface,
  • the ratio of the friction coefficient ⁇ w under the water slip condition to the friction coefficient ⁇ d under the dry road surface is equal to the ratio of the friction force under the water slip condition to that under the dry road surface, and is positively related to the ratio of the length of the load-carrying rubber wheel 211, namely: but: thereby:
  • the water slip model of the friction coefficient caused by the water film load is obtained: Among them, a is a parameter, the slip velocity v w and v d of dry and wet road surfaces can be controlled, and the friction coefficient ⁇ w under water sliding condition and the friction coefficient ⁇ d under dry road surface can be measured. Therefore, the water friction coefficient of this friction coefficient
  • the slip model can be tested and corrected by a rubber friction test device.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Viscous friction coefficient ⁇ F shear /F z , wherein, F shear is the total shear stress under the contact area, and F Z is the pressure on the tire in the vertical direction;
  • viscous shear stress ⁇ F shear /A nom
  • pressure p nom F z /A nom
  • a nom is the nominal contact area
  • the water slip model which accounts for the coefficient of friction, can be tested and verified by a rubber friction test setup.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Tires In General (AREA)

Abstract

一种橡胶摩擦测试装置,属于橡胶摩擦测试设备技术领域,测试前,在摩擦盘(8)的上方加载由胶轮(211)、六分力传感器(212)、角度调节设备(213)、加压设备(214)和驱动电机(215)组成的胶轮测试机构(21)和介质控制单元,介质控制单元包括喷淋头(19)和水箱(18),喷淋头(19)带有开关,喷口对准摩擦盘(8)的上表面,喷射不同量的水模拟不同水膜厚度条件下的轮胎摩擦过程,测试时,开启电机,摩擦盘(8)在电机驱动下旋转的同时,喷淋头(19)向其表面喷水,形成设定厚度的水膜,六分力传感器(212)测量胶轮在当前负荷和角度参数下的摩擦力;环形结构的摩擦盘(8)减小了自重,滑环(6)保证了测试过程的稳定性,摩擦盘(8)与联轴器(7)通过多根圆管连接,便于维修,测试结果准确。

Description

一种橡胶摩擦测试装置 技术领域:
本发明属于橡胶摩擦测试设备技术领域,具体涉及一种橡胶摩擦测试装置,能够测试橡胶在复杂路面下的摩擦。
背景技术:
轮胎是装配在汽车上的接地滚动的圆环形弹性橡胶制品,作为车辆在行驶过程中与路面接触的唯一部件,其摩擦性能的优劣直接影响行车的安全性。
制作轮胎的主要原材料:橡胶,具有粘弹性、非线性、温度敏感性等特性,其摩擦机理不同于金属材料,具有典型的热力耦合特征。
由于橡胶的热力耦合特征,路面温度对轮胎橡胶摩擦性能有着不可忽视的影响:在不同气候和昼夜温差等因素的影响下,路面温度存在相当大的差异,且与环境温度不同,尤其是在夏天,由于路面吸收太阳光的辐射,路面温度比环境温度高不少。
车辆行驶过程中,路面介质也对橡胶的摩擦也有着重要的影响,在湿滑状态下,轮胎的抓地性能下降,容易出现打滑现象,影响到车辆行驶的安全性。此外,路面种类的不同也会对橡胶的摩擦产生重要的影响。同时,路面上不同厚度的水膜对橡胶的摩擦性能也有不同的影响。
现有技术中的橡胶摩擦性能检测装置,往往是在常温或所设环境温度下,就轮胎与砂轮或磨面之间相互的摩擦进行试验,忽视了路面温度对摩擦性能的影响,且较少涉及到水膜厚度对摩擦性能的研究。
中国专利201711151068.X公开的一种轮胎橡胶高速冰面摩擦测试装置,设有检测箱,检测箱内经推力球轴承纵向安装有传动轴,传动轴下方设有动力源,动力源的输出轴与传动轴相连,传动轴上端固定连接有转盘,转盘上侧设有冰面安装槽,转盘上方的安装箱上设有双作用气缸,双作用气缸的活塞杆上经力学传感器连接有加压轴,加压轴两端经轴承分别连接胶盘连接座;其为销盘式结构,未考虑路面温度对橡胶摩擦性能的影响,只能进行冰面摩擦测试。
中国专利201810823004.8公开的一种汽车轮胎性能检测装置,包括有U形框、第一弹簧、粗糙路面、高温路面、低温路面、第一滑轨、第一滑块、螺杆、第二滑轨、第二滑块、第二弹簧、横板、安装框、安装块、伺服电机、第一皮带轮、转轴、第二皮带轮、平皮带、汽车轮胎本体、支杆和顶板,U形框内的底部从前至后和从左至右都均匀间隔连接有第一弹簧,前侧的第一弹簧顶端连接有粗糙路面,中间的第一弹簧顶端连接有高温路面,后侧的第一弹簧顶端连接有低温路面,U形框顶部的左右两侧均连接有第一滑轨,第一滑轨上设有第一滑块,第一滑轨的顶部从前至后均匀开有螺纹孔,第一滑块上也开有螺纹孔,第一滑块上的螺纹孔内设有螺杆,第一滑块的顶部连接有第二滑轨,第二滑轨上设有第二滑块,左侧的第二滑块的顶部左侧、右侧的第二滑块的顶部右侧均与对应一侧的第二滑轨内的顶部之间连接有第二弹簧,左侧的第二滑块右侧面与右侧的第二滑块的左侧面均连接有一个横板,两个横板之间连接有安装框,安装框的顶部嵌入式安装有安装块,安装块的后侧面安装有伺服电机,伺服电机的输出轴穿过安装块并连接有第一皮带轮,安装框的下部转动式连接有转轴,安装框后侧的转轴上连接有第二皮带轮,第二皮带轮与第一皮带轮之间绕有平皮带,第二皮带轮后侧的转轴上连接有汽车轮胎本体,左侧的第二滑块的顶部右侧与右侧的第二滑块的顶部左侧均连接有一个支杆,两个支杆的顶端之间连接有顶板;其采用履带式结构,未考虑温度对橡胶摩擦性能的影响,无法测试带介质的路面。
中国专利201710632278.4公开的一种橡胶摩擦实验机,包括基座、橡胶固定装置、橡胶移动幅度检测装置、橡胶压力加载装置、橡胶摩擦力加载装置、信号采集处理装置,所述的橡胶固定装置固定在基座上,橡胶移动幅度检测装置直接或间接固定在基座上,橡胶压力加载装置、橡胶摩擦力加载装置固定在壳体上,壳体固定在基座上,信号采集处理装置与橡胶固定装置、橡胶移动幅度检测装置、橡胶压力加载装置、橡胶摩擦力加载装置的控制电路连接,用以采集橡胶的加热温度、橡胶移动幅度、橡胶施加的压力、橡胶加载的摩擦力;其 采用往复式摩擦,未考虑路面温度对橡胶摩擦性能的影响,无法测试水膜条件下的橡胶摩擦性能。
综上,现有的专利文献中还没有一个能够综合考虑路面温度、水膜厚度和路面种类等多因素的橡胶摩擦测试装置。因而,研发设计一种测量橡胶摩擦装置,提供复杂路况和环境条件下的测试平台,模拟不同路面温度、水膜厚度、路面种类的摩擦过程,进行轮胎橡胶的摩擦系数测试。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计一种橡胶摩擦测试装置,提供复杂路况和环境条件下的测试平台,测试路面温度、水膜厚度和路面种类对摩擦性能的影响。
本发明涉及的一种橡胶摩擦测试装置的主体结构包括电机、摩擦盘和中央管道;电机与摩擦盘连接,摩擦盘的中心穿设有中央管道,中央管道与摩擦盘连接。
本发明涉及的电机的驱动端通过轴承的90度转向切换后与联轴器连接,进一步通过联轴器与摩擦盘连接,电机设置于支架上,支架设置于基座上,电机与轴承连接,轴承的底端与基座上设置的滑环连接,滑环设置于支架的下方,轴承的顶端与联轴器连接,联轴器与摩擦盘通过摩擦盘的底部等间距式设置的若干根圆管连接;中央管道的顶端与基座上设置的框架连接并伸出框架,中央管道的底端与通过软管与摩擦盘连接,且中央管道与软管的连接处设置有气滑环,中央管道上还设置有温度计和加热管,温度计位于摩擦盘的上方,加热管位于摩擦盘的下方。
本发明涉及的摩擦盘的上表面圆周上设置有围栏,上表面上设置有摩擦带,侧壁开设有放气孔。
本发明涉及的橡胶摩擦测试装置的测试原理是:摩擦盘的上表面的温度测试范围为-40~80℃,通过液氮管道提供的液氮冷却或加热管的辐射加热控制;喷淋头根据摩擦盘的上表面面积,洒入对应量的水以形成设定厚度的水膜;摩擦盘上分别放置不同材质的模拟不同路面的摩擦带;测试时,电机带动摩擦盘旋转,固定的胶轮与旋转的摩擦 盘的上表面相互摩擦,能够研究路面温度、水膜厚度和不同路面对摩擦性能的影响。
本发明与现有技术相比,由基座、温度控制单元、路面模拟单元、动力驱动单元和中央管道组成,温度控制单元包括液氮罐和加热管,通过改变摩擦盘的表面温度,模拟轮胎在不同温度下的路面上的摩擦过程,路面模拟单元包括铝合金材质的摩擦盘,内部为空腔结构,上表面放置有大小规格与其匹配的摩擦带,二者紧密贴合,模拟轮胎在不同路面上的摩擦过程,动力驱动单元包括电机,中央管道的内部敷设有液氮输送管和加热管的线路,测试前,在摩擦盘的上方加载由胶轮、六分力传感器、角度调节设备、加压设备和驱动电机组成的胶轮测试机构和介质控制单元,介质控制单元包括喷淋头和水箱,喷淋头带有开关,喷口对准摩擦盘的上表面,喷射不同量的水模拟不同水膜厚度条件下的轮胎摩擦过程,测试时,开启电机,摩擦盘在电机驱动下旋转的同时,喷淋头向其表面喷水,形成设定厚度的水膜,六分力传感器测量胶轮在当前负荷和角度参数下的摩擦力;其结构简单,环形结构的摩擦盘减小了自重,滑环保证了测试过程的稳定性,摩擦盘与联轴器通过多根圆管连接,便于维修,能够测试路面温度、水膜厚度和路面种类对摩擦性能的影响,且测试结果准确,为不同炭黑份数或不同胶种橡胶在干湿路面的摩擦特性和一致性的研究,摩擦系数对不同参数表征的建立,轮胎摩擦性能的改善提供了依据。
附图说明:
图1为本发明的主体结构原理示意图。
图2为本发明的使用状态示意图。
图3为本发明涉及的摩擦盘的结构示意图。
图4为本发明涉及的气滑环的结构示意图。
图5为本发明涉及的温度计的结构示意图。
图6为本发明涉及的水箱的结构示意图。
图7为本发明涉及的胶轮测试机构的结构示意图。
图8为本发明涉及的胶轮测试机构的立体图。
具体实施方式:
下面通过实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例涉及的一种橡胶摩擦测试装置的主体结构包括基座1、框架2、支架3、电机4、轴承5、滑环6、联轴器7、摩擦盘8、圆管9、中央管道10、软管11、气滑环12、温度计13、加热管14、围栏15、摩擦带16和放气孔17;基座1上设置有在外的框架2和在内的支架3,支架3上设置有电机4,电机4与轴承5连接,轴承5的底端与支架3下方的基座1上设置的滑环6连接,轴承5的顶端与联轴器7连接,联轴器7与内空式圆环形结构的摩擦盘8的底部等间距式设置的12根圆管9连接,摩擦盘8的中心圆孔内设置有中央管道10,中央管道10的顶端与框架2连接并伸出框架2,中央管道10的底端通过软管11与摩擦盘8连接,中央管道10与软管11的连接处设置有气滑环12,中央管道10上设置有温度计13和加热管14,温度计13位于摩擦盘8的上方,加热管14位于摩擦盘8的下方;摩擦盘8的上表面圆周上设置有围栏15,上表面上设置有摩擦带16,侧壁开设有放气孔17。
本实施例涉及的基座1放置于桌面或地面;电机4用于控制摩擦盘8的转速;滑环6用于支撑轴承5,进而使摩擦盘8在试验过程中保持稳定的水平状态;联轴器7位于摩擦盘8的圆心下方;摩擦盘8的材质是表面厚度为3mm的铝合金,摩擦盘8的半径为30cm,环宽为8cm,空心部分的高度为7mm;圆管9的材质为铝合金,圆管9与摩擦盘8之间设置有橡胶材质的垫片,通过螺丝固定,用于提高摩擦盘8的稳定性,减少摩擦盘8给电机4传递的热量,相邻两根圆管9之间的夹角为30°;软管11的外侧包裹有隔热材料,具有保暖作用,一端固定在摩擦盘8的下表面边缘处;气滑环12的定子固定在中央管道10上,转子通过软管11与摩擦盘8连接,试验时,转子与摩擦盘8一起旋转;温度计13为辐射式温度计,量程范围为-40~80℃,以测量其正下方的摩擦盘8的上表面温度;加热管14为红外线辐射加热管,并排设置3根,相邻间距为3cm,每根功率为1500W,通过热辐射的方式为摩擦盘8传递热量,加热管14的线路 穿设于中央管道10的内部;围栏15呈弧状,高度为2-5cm,向内收口,防止摩擦盘8旋转时,其上的介质在离心力的作用下甩出摩擦盘8;摩擦带16包括粒度为36号的锆刚玉砂带,强度高,在试验过程中不会出现起皱现象,尺寸与摩擦盘8的上表面匹配,并紧密贴合在其上;放气孔17的直径为1mm,用于排放空气,试验时关闭。
实施例2:
本实施例涉及的一种橡胶摩擦测试装置使用时,将水箱18设置于框架2的顶部,水箱18的出口处设置有喷淋头19,喷淋头19正对摩擦盘8的上表面且与水箱18内设置的水泵20连接;将胶轮测试机构21设置于摩擦盘8的上方,胶轮测试机构21由胶轮211、六分力传感器212、角度调节设备213、加压设备214和驱动电机215组成,六分力传感器212设置于胶轮211的同轴区域上,角度调节设备213用以调整胶轮211的负荷和侧偏角,角度调节设备213和加压设备214由驱动电机215驱动;将液氮输送管22经由中央管道10与气滑环12连接,液氮经由液氮输送管22到达气滑环12,再通过软管11进入摩擦盘8的空腔内,对摩擦盘8进行冷却,液氮输送管22外侧包裹具有保暖作用的隔热材料,避免减少液氮输送过程中的温度损失;将温度计13通过信号采集器与计算机连接;
摩擦盘8的运行温度为-40~80℃,通过液氮输送管22提供的液氮冷却或加热管14的辐射加热控制,在0℃以下,空气中的水蒸气在摩擦盘8上凝结成霜,能够研究不同温度下路面略微湿润的情况对摩擦系数的影响;
通过喷淋头19把水喷洒在摩擦盘8的上表面,水在低温条件下结冰,能够模拟冰冻路面对摩擦系数的影响;
根据摩擦盘8的面积,通过喷淋头19喷洒相应体积的水,在摩擦盘8上形成设定厚度的水膜,能够研究不同厚度的水膜对摩擦性能的影响;
进行低温干燥条件下的试验时,在试验空间增设除湿器,以防止空气内水蒸气凝结影响测试效果;
测试过程中,温度计13的温度信号通过信号采集器传递给计算机,计算机根据温度信号控制液氮的输入量或调整加热管14的功率,以达到自动化控温的效果;
试验结果:胶轮211的摩擦力通过六分力传感器212的数据计算得到。
本实施例涉及的水箱18的形状包括漏斗形、圆柱形和矩形,材质为塑料,印制有刻度线,水箱18中装设滑石粉或其他设定介质时,也可以另外增设介质箱,添加搅拌器,能够研究不同介质对摩擦性能的影响,喷淋头19能够使用雾化喷嘴代替,以研究略微湿润的路面对摩擦系数的影响,水箱18与喷淋头19直接连接或管道式连接,水泵20能够实时控制水的投入量。
实施例3:
本实施例涉及的一种橡胶摩擦测试装置使用时,将液氮输入摩擦盘8的空腔内,通过温度计测量13摩擦盘8的上表面温度,达到-10℃时,开启电机4并通过电机4控制摩擦盘8的转速,为胶轮211输入设定的压力并调整角度,通过六分力传感器212得到胶轮211在干路面上的摩擦力;
再通过喷淋头19洒入能够形成厚度为1mm水膜的水,水在摩擦盘8的上表面结冰后,开启电机4并通过电机4控制摩擦盘8的转速,为胶轮211输入设定的压力并调整角度,通过六分力传感器212得到胶轮211在冰面上的摩擦力。
实施例4:
本实施例涉及的一种橡胶摩擦测试装置使用时,在摩擦盘8的表面上布置环形的粒度为36号的锆刚玉砂带,调节加热管14的功率,通过温度计13测量摩擦盘8的上表面温度,达到40℃时,通过喷淋头19洒入能够形成厚度为2mm水膜的水,开启电机4并通过电机4控制摩擦盘8的转速,为胶轮211输入设定的压力并调整角度,进行路面温度为40℃条件下的水滑试验,通过六分力传感器212得到胶轮211的摩擦力。
实施例5:
本实施例涉及的一种橡胶摩擦测试装置测试和验证由实施例4的水楔模型的水膜承载引起的摩擦系数的水滑模型的过程如下:
胶轮211在干燥路面上运动时,地面承载胶轮211的长度为L,
在水滑条件下,水介质对胶轮211提供承载力,地面承载胶轮211的长度减小了x,为L-x,此时,根据什么?水介质承载胶轮211的长度也为x,
水滑行驶距离L-x=v w×t,其中,t为滑移时间,v w为水滑条件下胶轮211的滑移速度,
干燥行驶距离L=v d×t,其中,v d为干燥路面下胶轮211的滑移速度,
水滑条件下摩擦系数μ w与干燥路面下摩擦系数μ d之比等于水滑条件下与干燥路面下的摩擦力之比,与承载胶轮211的长度之比正相关,即:
Figure PCTCN2022133974-appb-000001
则:
Figure PCTCN2022133974-appb-000002
从而:
Figure PCTCN2022133974-appb-000003
得到水膜承载引起的摩擦系数的水滑模型:
Figure PCTCN2022133974-appb-000004
其中,a为参数,干、湿路面的滑移速度v w和v d均可控,水滑条件下摩擦系数μ w与干燥路面下摩擦系数μ d均可测,所以,该摩擦系数的水滑模型能够由一种橡胶摩擦测试装置测试和修正。
实施例6:
本实施例涉及的一种橡胶摩擦测试装置测试和验证由胶轮211离开路面的极限情况下的粘性剪切引起的摩擦系数的水滑模型的过程如下:
物体浸在粘滞流体中时,表面附着一层流体;运动时,物体表面附近的流层间存在一定的速度梯度;物体受到的粘滞阻力由物体表面附近的流层间的内摩擦力引起,当胶轮211由于水膜承载而完全离开路面时,流体粘性对摩擦系数有很大的影响,摩擦系数与路面无关,由粘性剪切引起;
粘性剪切应力τ用牛顿粘性定律描述为:τ=ηv/h,其中,η为介质的粘度,v为滑移速度,h为水膜厚度;
粘性摩擦系数μ=F shear/F z,其中,F shear为接触面积下的总剪应力,F Z为轮胎竖直方向受到的压力;
在单位面积一定的情况下,粘性剪切应力τ=F shear/A nom,压强p nom=F z/A nom,其中,A nom为名义接触面积;
综上可得,μ=F shear/F z=τA nom/F z=τ/P nom=ηv/hP nom
由于摩擦力并非作用于全部面积,引入相对接触面积系数κ,从而,粘性剪切引起的摩擦系数μ'=κ·ηv/P nom·1/h;
说明该摩擦系数的水滑模型,能够由一种橡胶摩擦测试装置测试和验证。
实施例7:
本实施例涉及的一种橡胶摩擦测试装置测试和验证由实施例5的粘性剪切引起的摩擦系数的水滑模型μ'=κ·ηv/P nom·1/h,其中,水的粘度η已知,40℃时水的粘度为0.656×10 -3Pa·S,水膜的厚度h由喷淋头19的喷洒量控制,单位面积上的压力P nom由加压设备214控制,滑动速度v由电机4控制,均为已知的可控参数,所以,摩擦系数可测,说明该摩擦系数的水滑模型,能够由一种橡胶摩擦测试装置测试和验证。

Claims (7)

  1. 一种橡胶摩擦测试装置,其特征在于,主体结构包括与电机连接的摩擦盘以及摩擦盘中心穿设的中央管道。
  2. 根据权利要求1所述的橡胶摩擦测试装置,其特征在于,电机的驱动端通过轴承的90度转向切换后与联轴器连接,进一步通过联轴器与摩擦盘连接,电机设置于支架上,支架设置于基座上,电机与轴承连接,轴承的底端与基座上设置的滑环连接,滑环设置于支架的下方,轴承的顶端与联轴器连接,联轴器与摩擦盘通过摩擦盘的底部等间距式设置的若干根圆管连接;中央管道的顶端与基座上设置的框架连接并伸出框架,中央管道的底端与通过软管与摩擦盘连接,且中央管道与软管的连接处设置有气滑环,中央管道上还设置有温度计和加热管,温度计位于摩擦盘的上方,加热管位于摩擦盘的下方。
  3. 根据权利要求1或2所述的橡胶摩擦测试装置,其特征在于,摩擦盘的上表面圆周上设置有围栏,上表面上设置有摩擦带,侧壁开设有放气孔。
  4. 根据权利要求3所述的橡胶摩擦测试装置,其特征在于,基座放置于桌面或地面;电机用于控制摩擦盘的转速;滑环用于支撑轴承,进而使摩擦盘在试验过程中保持稳定的水平状态;联轴器位于摩擦盘的圆心下方;摩擦盘的材质是表面厚度为3mm的铝合金,摩擦盘的半径为30cm,环宽为8cm,空心部分的高度为7mm;圆管的材质为铝合金,圆管与摩擦盘之间设置有橡胶材质的垫片,通过螺丝固定,用于提高摩擦盘的稳定性,减少摩擦盘给电机传递的热量,相邻两根圆管之间的夹角为30°;软管的外侧包裹有隔热材料,具有保暖作用,一端固定在摩擦盘的下表面边缘处;气滑环的定子固定在中央管道上,转子通过软管与摩擦盘连接,试验时,转子与摩擦盘一起旋转;温度计为辐射式温度计,量程范围为-40~80℃,以测量其正下方的摩擦盘的上表面温度;加热管为红外线辐射加热管,并排设置3根,相邻间距为3cm,每根功率为1500W,通过热辐射的方式为摩擦盘传递热量,加热管的线路穿设于中央管道的内部;围栏呈弧状,高度为2-5cm,向内收口,防止摩擦盘旋转时,其上的介质在离心力的作用 下甩出摩擦盘;摩擦带包括粒度为36号的锆刚玉砂带,强度高,在试验过程中不会出现起皱现象,尺寸与摩擦盘的上表面匹配,并紧密贴合在其上;放气孔的直径为1mm,用于排放空气,试验时关闭。
  5. 根据权利要求3所述的橡胶摩擦测试装置,其特征在于,测试原理是:摩擦盘的上表面的温度测试范围为-40~80℃,通过液氮管道提供的液氮冷却或加热管的辐射加热控制;喷淋头根据摩擦盘的上表面面积,洒入对应量的水以形成设定厚度的水膜;摩擦盘上分别放置不同材质的模拟不同路面的摩擦带;测试时,电机带动摩擦盘旋转,固定的胶轮与旋转的摩擦盘的上表面相互摩擦。
  6. 根据权利要求4所述的橡胶摩擦测试装置,其特征在于,将水箱设置于框架的顶部,水箱的出口处设置有喷淋头,喷淋头正对摩擦盘的上表面且与水箱内设置的水泵连接;将胶轮测试机构设置于摩擦盘的上方,胶轮测试机构由胶轮、六分力传感器、角度调节设备、加压设备和驱动电机组成,六分力传感器设置于胶轮的同轴区域上,角度调节设备用以调整胶轮的负荷和侧偏角,角度调节设备和加压设备由驱动电机驱动;将液氮输送管经由中央管道与气滑环连接,液氮经由液氮输送管到达气滑环,再通过软管进入摩擦盘的空腔内,对摩擦盘进行冷却,液氮输送管外侧包裹具有保暖作用的隔热材料,避免减少液氮输送过程中的温度损失;将温度计通过信号采集器与计算机连接;
    摩擦盘的运行温度为-40~80℃,通过液氮输送管提供的液氮冷却或加热管的辐射加热控制,在0℃以下,空气中的水蒸气在摩擦盘上凝结成霜,能够研究不同温度下路面略微湿润的情况对摩擦系数的影响;
    通过喷淋头把水喷洒在摩擦盘的上表面,水在低温条件下结冰,能够模拟冰冻路面对摩擦系数的影响;
    根据摩擦盘的面积,通过喷淋头喷洒相应体积的水,在摩擦盘上形成设定厚度的水膜,能够研究不同厚度的水膜对摩擦性能的影响;
    进行低温干燥条件下的试验时,在试验空间增设除湿器,以防止 空气内水蒸气凝结影响测试效果;
    测试过程中,温度计的温度信号通过信号采集器传递给计算机,计算机根据温度信号控制液氮的输入量或调整加热管的功率,以达到自动化控温的效果;
    试验结果:胶轮的摩擦力通过六分力传感器的数据计算得到。
  7. 根据权利要求6所述的橡胶摩擦测试装置,其特征在于,水箱的形状包括漏斗形、圆柱形和矩形,材质为塑料,印制有刻度线,水箱中装设滑石粉或其他设定介质时,也可以另外增设介质箱,添加搅拌器,能够研究不同介质对摩擦性能的影响,喷淋头能够使用雾化喷嘴代替,以研究略微湿润的路面对摩擦系数的影响,水箱与喷淋头直接连接或管道式连接,水泵能够实时控制水的投入量。
PCT/CN2022/133974 2021-12-24 2022-11-24 一种橡胶摩擦测试装置 WO2023116330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111596697.X 2021-12-24
CN202111596697 2021-12-24

Publications (1)

Publication Number Publication Date
WO2023116330A1 true WO2023116330A1 (zh) 2023-06-29

Family

ID=82243552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133974 WO2023116330A1 (zh) 2021-12-24 2022-11-24 一种橡胶摩擦测试装置

Country Status (2)

Country Link
CN (2) CN114720369A (zh)
WO (1) WO2023116330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118190384A (zh) * 2024-03-28 2024-06-14 广东天太机器人有限公司 一种驱动轮的测试平台

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720369A (zh) * 2021-12-24 2022-07-08 青岛科技大学 一种橡胶摩擦测试装置
CN117470557B (zh) * 2023-10-08 2024-04-30 青岛茂驰橡胶制品有限公司 一种轮胎防滑检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158305A (ja) * 2010-01-29 2011-08-18 Bridgestone Corp ゴム摩擦試験機及びゴム摩擦試験方法
CN102359933A (zh) * 2011-09-25 2012-02-22 吉林大学 全天候轮胎胎面-路面摩擦特性测试系统及方法
CN104913870A (zh) * 2015-05-05 2015-09-16 上海交通大学 摩擦力测量装置及测量方法
CN206563704U (zh) * 2017-03-29 2017-10-17 黑龙江工程学院 一种桥梁路面抗滑性能测试平台
CN107655825A (zh) * 2017-11-18 2018-02-02 哈尔滨工业大学(威海) 一种轮胎橡胶高速冰面摩擦特性测试装置
CN110501249A (zh) * 2019-09-16 2019-11-26 青岛科技大学 一种可同时研究橡胶滚动和滑动摩擦行为的变温磨耗仪
CN114720369A (zh) * 2021-12-24 2022-07-08 青岛科技大学 一种橡胶摩擦测试装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158305A (ja) * 2010-01-29 2011-08-18 Bridgestone Corp ゴム摩擦試験機及びゴム摩擦試験方法
CN102359933A (zh) * 2011-09-25 2012-02-22 吉林大学 全天候轮胎胎面-路面摩擦特性测试系统及方法
CN104913870A (zh) * 2015-05-05 2015-09-16 上海交通大学 摩擦力测量装置及测量方法
CN206563704U (zh) * 2017-03-29 2017-10-17 黑龙江工程学院 一种桥梁路面抗滑性能测试平台
CN107655825A (zh) * 2017-11-18 2018-02-02 哈尔滨工业大学(威海) 一种轮胎橡胶高速冰面摩擦特性测试装置
CN110501249A (zh) * 2019-09-16 2019-11-26 青岛科技大学 一种可同时研究橡胶滚动和滑动摩擦行为的变温磨耗仪
CN114720369A (zh) * 2021-12-24 2022-07-08 青岛科技大学 一种橡胶摩擦测试装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118190384A (zh) * 2024-03-28 2024-06-14 广东天太机器人有限公司 一种驱动轮的测试平台

Also Published As

Publication number Publication date
CN114720369A (zh) 2022-07-08
CN219391765U (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2023116330A1 (zh) 一种橡胶摩擦测试装置
CN107238541B (zh) 一种用于路面材料室内试验的加速加载装置及方法
CN100533115C (zh) 一种橡胶磨耗测试设备
CN110470595B (zh) 材料表面覆冰强度在线测量装置及覆冰过程实时监控系统
JP2019518951A (ja) 氷試験デバイス
JP2008082709A (ja) タイヤ性能測定装置およびレース用タイヤの性能測定方法
JP2008014667A (ja) タイヤの雪上性能測定装置
Bhoopalam et al. Experimental investigation of pneumatic tire performance on ice: Part 1–Indoor study
CN108871815A (zh) 一种全天候、全周期轮胎性能测试方法及设备
CN103983567A (zh) 一种用于测试路面材料动态摩擦力的加速磨光仪
CN103808519B (zh) 一种高速列车制动装置的制动试验台
CN106769837A (zh) 一种冰雪条件下沥青路面抗滑性能测试平台及利用该平台评价路面抗滑性能的方法
US4938055A (en) Apparatus for testing abrasion
CN107132060A (zh) 轮胎花纹排水性实验台及实验方法
CN209311302U (zh) 一种路面抗滑能力衰减规律试件碾压装置
JP2001074613A (ja) タイヤ用雪上試験方法、タイヤ用雪上試験装置及びタイヤ用雪上試験路面
JPH10153539A (ja) 加速摩耗によって塗装された表面の耐久性を試験するための装置及びそれに用いる方法
JP4076380B2 (ja) 室内タイヤ耐久試験方法及び試験機
CN106525452A (zh) 热衰退性能的测试方法及测试系统
JP2011180096A (ja) ゴム摩擦試験機
CN116818371A (zh) 一种汽车轮胎高温工况的耐疲劳性检测装置
CN206818429U (zh) 轮胎花纹排水性实验台
CN114646478A (zh) 一种新型全天候全方位一体化轮胎性能检测研究装备
CN208443675U (zh) 基于摩擦轮副多种工况评估材料磨耗行为的装置
US11255755B2 (en) Enclosure system for indoor tire testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE