WO2023116315A1 - 钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用 - Google Patents

钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023116315A1
WO2023116315A1 PCT/CN2022/133454 CN2022133454W WO2023116315A1 WO 2023116315 A1 WO2023116315 A1 WO 2023116315A1 CN 2022133454 W CN2022133454 W CN 2022133454W WO 2023116315 A1 WO2023116315 A1 WO 2023116315A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
titanium
catalyst
silicon molecular
gold
Prior art date
Application number
PCT/CN2022/133454
Other languages
English (en)
French (fr)
Inventor
刘聿嘉
赵辰阳
朱红伟
孙冰
石宁
徐伟
Original Assignee
中国石油化工股份有限公司
中石化安全工程研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111579941.1A external-priority patent/CN116332194A/zh
Priority claimed from CN202111579946.4A external-priority patent/CN116332200A/zh
Priority claimed from CN202210239081.5A external-priority patent/CN116764676A/zh
Application filed by 中国石油化工股份有限公司, 中石化安全工程研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2023116315A1 publication Critical patent/WO2023116315A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced

Definitions

  • the invention relates to the field of hydrogen oxidation reaction, in particular to a catalyst of titanium-silicon molecular sieve and nano-gold loaded titanium-silicon molecular sieve and its preparation method and application.
  • Heteroatom molecular sieves have regular topological structures, and the introduction of framework metal atoms brings them unique acidic properties, and has become a research hotspot in the field of chemistry and chemical engineering.
  • Taramasso et al. reported the TS-1 molecular sieve for the first time: the transition metal titanium atoms replaced a small amount of skeleton silicon atoms of the all-silicon MFI structure molecular sieve, that is, the titanium atoms were embedded in the molecular sieve skeleton position in a four-coordinated form.
  • TS-1 molecular sieves can efficiently activate H2O2 molecules and organic compounds with different functional groups to undergo selective oxidation reactions, For example, olefin epoxidation, cycloolefin epoxidation, phenol hydroxylation, cyclohexanone ammoximation, etc.
  • H 2 O 2 /TS-1 catalytic oxidation process has the advantages of mild reaction conditions, clean process and high efficiency.
  • the H 2 O 2 /TS-1 catalytic oxidation system has many sets of industrial application devices, such as propylene epoxidation (HPPO) and cyclohexanone ammoximation.
  • HPPO propylene epoxidation
  • cyclohexanone ammoximation Although this catalytic system has many advantages, there are still problems in its promotion because hydrogen peroxide production equipment must be provided: hydrogen peroxide storage and transportation conditions are harsh, and on-site production equipment must be provided, which limits the process layout; in addition, high-concentration hydrogen peroxide is difficult to prepare and storage security risks.
  • H 2 hydrogen
  • oxygen oxygen
  • the purpose of the present invention is to overcome the micropore volume of TS-1 molecular sieve carrier in the prior art, the micropore specific surface area is low and the control problem of the dispersion degree of its loaded metal nanoparticles, to provide titanium silicon molecular sieve and its preparation method and nano gold loaded Catalyst of titanium silicate molecular sieve and its preparation method and application.
  • the first aspect of the present invention provides a titanium-silicon molecular sieve
  • the micropore specific surface area of the titanium-silicon molecular sieve is 320-500m 2 /g
  • the micropore volume is 0.1-0.4cm 3 /g
  • the mesopore ratio The surface area is 50-100m 2 /g
  • the mesopore volume is 0.075-0.1cm 3 /g
  • the particle size is 100-250nm
  • the ratio of the micropore specific surface area to the total specific surface area is 50%-90%.
  • the second aspect of the present invention provides a nano-gold-supported titanium-silicon molecular sieve catalyst, wherein the catalyst includes a titanium-silicon molecular sieve carrier and nano-gold loaded on the carrier; wherein, the micropore volume of the catalyst is 0.06- 0.4cm 3 /g, micropore specific surface area 160-450m 2 /g, mesopore volume 0.05-0.08cm 3 /g, mesopore specific surface area 40-85m 2 /g, particle size 100-250nm.
  • the third aspect of the present invention provides a method for preparing a nano-gold-supported titanium-silicon molecular sieve catalyst.
  • the method uses an aqueous fatty amine solution to carry out alkaline treatment on the titanium-silicon molecular sieve, and then loads nano-gold particles to obtain the catalyst;
  • the titanium-silicon molecular sieve is the titanium-silicon molecular sieve described in the first aspect.
  • the fourth aspect of the present invention provides a nano-gold-supported titanium-silicon molecular sieve catalyst prepared according to the method described in the third aspect.
  • the fifth aspect of the present invention provides a catalyst for nano-gold-supported titanium-silicon molecular sieve described in the second aspect and the fourth aspect in the olefin epoxidation reaction, cycloolefin epoxidation reaction, phenol hydroxylation reaction, cyclohexanone ammonia Application in oximation reaction.
  • the present invention supports nano-gold particles on the titanium-silicon molecular sieve with specific physical parameters, and the obtained nano-gold-loaded titanium-silicon molecular sieve catalyst has a high dispersion of nano-gold, which is applied to the gas-phase epoxidation reaction of propylene When it is used, it has high catalytic activity, the conversion rate of propylene is increased to 8%-14%, and the selectivity of propylene oxide is increased to 90%-99%.
  • Fig. 1 is the reaction pathway figure of propylene gas phase epoxidation in the present invention
  • Fig. 2 is the pore diameter distribution figure of the titanium silicon molecular sieve that preparation example 1 and preparation example 7 of the present invention obtain;
  • Fig. 3 is the aperture distribution figure of the titanium silicon molecular sieve that preparation example 1 and preparation example 8 obtain of the present invention
  • Fig. 4 is the HAADF-STEM figure of the catalyst that the embodiment of the present invention 3 obtains;
  • Figure 5 is the HAADF-STEM image of the catalyst obtained in Comparative Example 5 of the present invention.
  • the first aspect of the present invention provides a titanium-silicon molecular sieve, the micropore specific surface area of the titanium-silicon molecular sieve is 320-500m 2 /g, the micropore volume is 0.1-0.4cm 3 /g, and the mesopore specific surface area is 50-100m2 2 /g, the mesopore volume is 0.075-0.1cm 3 /g, the particle diameter is 100-250nm, and the ratio of the micropore specific surface area to the total specific surface area is 50%-90%.
  • micropores refer to pores with a diameter below 2 nm in the porous structure of the titanium-silicon molecular sieve.
  • the measurement of the micropore specific surface area and micropore volume of the titanium-silicon molecular sieve is to measure the static N2 adsorption-desorption curve of the sample at the liquid nitrogen temperature with a Micro meritics ASAP 2460 static nitrogen adsorption instrument, Calculated by t-plot analysis.
  • the measurement of the mesoporous specific surface area and mesoporous volume of the titanium-silicon molecular sieve is to measure the static N2 adsorption-desorption curve of the sample at the temperature of liquid nitrogen with a Micro meritics ASAP 2460 static nitrogen adsorption instrument. Calculated by BJH method analysis.
  • the total specific surface area of the titanium-silicon molecular sieve is tested by the BET method.
  • the particle size of the titanium-silicon molecular sieve is observed by a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM).
  • the micropore specific surface area of the titanium-silicon molecular sieve can be selected from 320m 2 /g, 350m 2 /g, 400m 2 /g, 405m 2 /g, 410m 2 /g, 445m 2 /g, 480m 2 /g, 500m 2 /g g, and any value within the range formed by any two of the above values.
  • the micropore volume of the titanium-silicon molecular sieve can be selected from 0.1cm 3 /g, 0.15cm 3 /g, 0.165cm 3 /g, 0.2cm 3 /g, 0.238cm 3 /g, 0.3cm 3 / g, 0.0.355cm 3 /g, 0.389cm 3 /g, 0.4cm 3 /g, and any value within the range formed by any two of the above values.
  • the mesoporous specific surface area of the titanium-silicon molecular sieve can be selected from 50m 2 /g, 60m 2 /g, 72m 2 /g, 80m 2 /g, 90m 2 /g, 95m 2 /g, 100m 2 /g, and any of the above Any value within the range of two numeric values.
  • the mesoporous volume of the titanium-silicon molecular sieve can be selected from 0.075cm 3 /g, 0.085cm 3 /g, 0.09cm 3 /g, 0.095cm 3 /g, 0.1cm 3 /g, and the range composed of any two of the above values Any value within .
  • the particle size of the titanium-silicon molecular sieve can be 100nm, 125nm, 140nm, 158nm, 180nm, 200nm, 215nm, 230nm, 245nm, 250nm, or any value within the range composed of any two of the above-mentioned values.
  • the proportion of the micropore specific surface area of the titanium-silicon molecular sieve to the total specific surface area can be selected from 50%, 60%, 70%, 80%, 90%, and any value within the range composed of any two values above.
  • the micropore specific surface area of the titanium-silicon molecular sieve is 350-480m 2 /g, the micropore volume is 0.13-0.37cm 3 /g, and the mesopore specific surface area is 70-100m 2 /g, the mesopore volume is 0.08-0.1cm 3 /g, the particle diameter is 150-210nm, and the ratio of the micropore specific surface area to the total specific surface area is 60%-90%.
  • the surface titanium content and silicon content of the titanium-silicon molecular sieve are measured by an X-ray photoelectron spectrometer (XPS), and the molar weights of the two are compared to obtain the surface Ti/Si (mol%) of the sample;
  • the bulk phase titanium content and silicon content of the titanium-silicon molecular sieve are measured by X-ray fluorescence spectrometer (XRF), and the molar weights of the two are compared to obtain the bulk phase Ti/Si (mol%) of the sample;
  • XRF X-ray fluorescence spectrometer
  • the surface refers to the surface layer of the titanium-silicon molecular sieve particles that can be measured by XPS, and the theoretical depth is 8-10 nm.
  • the bulk phase refers to the whole particle of the titanium-silicon molecular sieve.
  • titanium-silicon molecular sieve 145% ⁇ surface Ti/Si (mol%)/bulk phase Ti/Si (mol%) ⁇ 100% ⁇ 200%.
  • the molar ratio of titanium to silicon in the titanium-silicon molecular sieve is 0.001-0.04:1, preferably 0.005-0.025:1.
  • the preparation method of described titanium silicon molecular sieve comprises:
  • titanium silica sol (1) uniformly mixing silicon source, basic template agent, titanium source, water and alcohol compound to obtain titanium silica sol;
  • a C 1 -C 6 alkyl group refers to an alkyl group with a total of 1-6 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, One of tert-butyl, n-pentyl and n-hexyl.
  • R 1 , R 2 and R 3 are independently selected from C 1 -C 3 alkyl groups, and the C 1 -C 3 alkyl groups can be methyl, ethyl, N-propyl or isopropyl, preferably, R 1 , R 2 and R 3 are each independently selected from methyl, ethyl or n-propyl.
  • R 1 , R 2 and R 3 may be the same or different, and under preferred conditions, R 1 , R 2 and R 3 are all the same.
  • a titanium-silicon molecular sieve with a microporous structure can be formed during the hydrothermal crystallization reaction process, and the titanium-silicon molecular sieve has a large amount of micropores , showing high micropore specific surface area and micropore volume, and high surface titanium content (expressed as surface Ti/Si is higher than bulk Ti/Si), when it is used as a catalyst or catalyst carrier for the reaction, compared to Titanium-silicon molecular sieves with mesoporous channels, the confinement space created by the micropore channels is more conducive to the collision of reactant molecules with the skeleton titanium active centers on the pore wall, and then adsorption and chemical reactions occur to improve the conversion rate of reactants; secondly, The increased secondary microporous structure can provide abundant mass transfer channels to shorten the diffusion path of molecules, increase the diffusion rate of reactants and product molecules, and promote the timely desorption of product molecules to avoid side
  • the R of the compound represented by formula (I) when the R of the compound represented by formula (I) is methyl, it is in the hydrothermal crystallization reaction process, through the weaker intermolecular interaction force between the alkyl chains of the silylating reagent, Form a titanium-silicon molecular sieve with a secondary microporous structure; when the R of the compound shown in formula (I) is -SH, it is in the hydrothermal crystallization reaction process, through the silylating agent between the mercapto groups Electrostatic force forms a titanium-silicon molecular sieve with secondary microporous structure; when R of the compound shown in formula (I) 6 is-NHR 7 , it is in the hydrothermal crystallization reaction process, by silylating reagent The hydrogen bonding force between the amino groups and the flexible force of the external single-chain alkyl group (R 7 ) linked by the amino groups form a titanium-silicon molecular sieve with a secondary microporous structure.
  • the consumption of silylating agent is too high, can cause the crystallization property of titanium silica sol to deteriorate, can't obtain molecular sieve;
  • silylating agent (the compound shown in formula (I) ) consumption is too low, it will reduce the micropore specific surface area and micropore volume of the titanium-silicon molecular sieve obtained, affect the mass transfer efficiency, and then affect its catalytic activity;
  • the silicon source is SiO
  • the basic template agent contains nitrogen
  • the basic template agent does not contain nitrogen, it is calculated in OH-
  • the titanium source is calculated in TiO
  • the silicon source alkaline
  • the molar ratio of template agent, titanium source, water, alcohol compound and the compound shown in formula (I) is 1: (0.05-0.4): (0.001-0.04): (5-40): (0.1-10): ( 0.01-0.3); preferably 1: (0.1-0.3): (
  • the silicon source is selected from at least one of tetramethyl silicate, tetraethyl silicate, tetrapropyl silicate, tetrabutyl silicate, white carbon black and silica sol A sort of.
  • the basic templating agent is selected from at least one of quaternary ammonium bases, aliphatic amines and aliphatic alcohol amines, preferably tetramethylammonium hydroxide, tetraethylhydrogen At least one of ammonium oxide, tetrapropylammonium hydroxide and tetrabutylammonium hydroxide.
  • the titanium source is selected from organic titanium sources and/or inorganic titanium sources.
  • the titanium source is selected from at least one of titanium tetrachloride, titanium sulfate, titanium nitrate, tetraethyl titanate, tetrapropyl titanate and tetrabutyl titanate .
  • the alcohol compound is a C1-C4 alcohol, preferably isopropanol.
  • step (1) also includes: first stirring and mixing the silicon source, the basic template agent, and water to obtain a mixed system; then adding the mixed liquid of the titanium source and the alcohol compound into the The mixed system is stirred for the second time to obtain a mixed solution.
  • the drop rate of the mixed solution is preferably 0.01-0.5 mL/min; more preferably 0.1-0.5 mL/min.
  • the first stirring time is 0.1-2h.
  • the second stirring time is 0.5-6h, preferably 0.5-3h.
  • step (1) also includes: removing alcohol from the mixed solution; alcohol removal can remove the alcohol generated by the hydrolysis of the silicon source and the titanium source.
  • alcohol removal can remove the alcohol generated by the hydrolysis of the silicon source and the titanium source.
  • the conditions for removing alcohol include: the temperature is 30- 100°C, the time is 2-10h; the preferred temperature is 40-90°C, and the time is 4-10h.
  • step (2) further includes: adding a compound represented by formula (I) to the titanium silica sol to carry out the second step
  • the third stirring time is 0.1-24h, preferably the third stirring time is 0.5-10h, more preferably 1-3h.
  • the nucleation and growth rate of the molecular sieve at low temperature can be controlled, thereby obtaining molecular sieve particles with a smaller size, which can shorten the internal diffusion path of product molecules when they are loaded with nano-gold and used for catalytic reactions , is conducive to improving the selectivity; at the same time, the rapid temperature rise can promote the rapid hydrolysis of the silylating agent in the growth process of the molecular sieve to construct the secondary microporous structure; according to the present invention, under preferred conditions, in step (2), the water
  • the process of thermal crystallization includes: after heating the mixture to the crystallization temperature within 0.1-1h, crystallize at the crystallization temperature for 10-100h, and the crystallization temperature is 50-200°C; preferably at temperature Crystallization is carried out at 100-200°C for 20-80h; further preferably, the heating time is 0.1-0.5h; more preferably, the conditions for hydrothermal crystallization include: the temperature is 120-180°C
  • the present invention has no special limitation on the pressure of hydrothermal crystallization, which may be the autogenous pressure of the crystallization system.
  • the method further includes: washing, filtering and drying the product obtained by hydrothermal crystallization; wherein, the processes of washing, filtering and drying are respectively known to those skilled in the art.
  • the temperature of the washing can be 20-50°C
  • the washing solvent can be water
  • the amount of the washing solvent is 1-20 times the mass of the crystallized product
  • the drying conditions can be: the temperature is 40- 150°C, the time is 0.5-24h.
  • the roasting conditions include: the temperature is 400-800°C, and the time is 1-15h.
  • the second aspect of the present invention provides a nano-gold-supported titanium-silicon molecular sieve catalyst, wherein the catalyst includes a titanium-silicon molecular sieve carrier and nano-gold loaded on the carrier; wherein, the micropore volume of the catalyst is 0.06- 0.4cm 3 /g, micropore specific surface area 160-450m 2 /g, mesopore volume 0.05-0.08cm 3 /g, mesopore specific surface area 40-85m 2 /g, particle size 100-250nm.
  • the micropore specific surface area of described catalyst is to record the static N of sample at liquid nitrogen temperature after Micro meritics ASAP2460 type static nitrogen adsorption instrument After adsorption-desorption curve, pass t- The plot method is analyzed and calculated.
  • the measurement of the mesopore specific surface area and mesopore volume of the catalyst is to measure the static N2 adsorption-desorption curve of the sample at the Micro meritics ASAP2460 type static nitrogen adsorption instrument at liquid nitrogen temperature, and then use the BJH method analyzed and calculated.
  • the particle size of the catalyst is observed by a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM).
  • the micropore volume of the catalyst can be selected from 0.06cm 3 /g, 0.1cm 3 /g, 0.15cm 3 /g, 0.2cm 3 /g, 0.25cm 3 /g, 0.3cm 3 /g, 0.35cm 3 /g , 0.4cm 3 /g, and any value within the range formed by any two of the above values.
  • the micropore specific surface area of the catalyst can be selected from 160m 2 /g, 200m 2 /g, 250m 2 /g, 280m 2 /g, 300m 2 /g, 320m 2 /g, 360m 2 /g, 400m 2 /g, 420m 2 /g, 450m 2 /g, and any value within the range formed by any two of the above values.
  • the mesopore volume of the catalyst can be selected from 0.05 cm 3 /g, 0.06 cm 3 /g, 0.07 cm 3 /g, 0.08 cm 3 /g, and any value within the range composed of any two values above.
  • the mesopore specific surface area of the catalyst can be selected from 40m 2 /g, 50m 2 /g, 60m 2 /g, 70m 2 /g, 75m 2 /g, 80m 2 /g, 85m 2 /g, and any two of the above Any value within a range of numeric values.
  • the particle size of the catalyst can be selected from 100nm, 120nm, 140nm, 150nm, 180nm, 200nm, 220nm, 240nm, 250nm, and any value within the range composed of any two of the above values.
  • the micropore volume of the catalyst is 0.1-0.3 cm 3 /g
  • the micropore specific surface area is 260-410 m 2 /g
  • the mesopore volume is 0.058-0.078 cm 3 /g
  • the mesopore specific surface area is 45-80m 2 /g
  • the particle size is 150-210nm.
  • the surface titanium content and the silicon content of the catalyst are measured by an X-ray photoelectron spectrometer (XPS), and the molar weights of the two are compared to obtain the surface Ti/Si (mol%) of the sample;
  • the bulk phase titanium content and silicon content of the catalyst are measured by X-ray fluorescence spectrometer (XRF), and the molar weights of the two are compared to obtain the bulk phase Ti/Si (mol%) of the sample;
  • the surface refers to XPS
  • the surface layer of the catalyst particles that can be measured has a theoretical depth of 8-10 nm, and the bulk phase refers to the entirety of the catalyst particles.
  • more than 90% of gold in the gold nanoparticles has a valence of zero.
  • the valence of the nano-gold is measured by an X-ray photoelectron spectrometer (XPS), and the measured XPS peaks are divided into peaks by software to obtain the corresponding Au values of 0 valence, +1 valence, and +3 valence respectively.
  • the small peak of the 0-valence Au is obtained by calculating the ratio of the peak area corresponding to the 0-valence Au to the total peak area to obtain the content of the 0-valence nano-gold in the nano-gold.
  • the number of Au particles in any 50nm*50nm region on the catalyst differs by no more than 30%.
  • the number of Au particles in any 50nm*50nm region on the catalyst differs by no more than 30% means: in the HAADF-STEM photo of a single nano-gold-loaded titanium-silicon molecular sieve particle, the nano-gold-loaded titanium
  • the silicon molecular sieve is divided into several adjacent (not less than three) 50nm*50nm regions, and the number of Au particles in each 50nm*50nm region is calculated.
  • the region with the largest number of Au particles is the A1 region, and the region with the least number of Au particles For the A2 area, (the number of Au particles in the A1 area-the number of Au particles in the A2 area)/the number of Au particles in the A1 area ⁇ 30%.
  • the number of Au particles in any 50nm*50nm region on the catalyst is 5-40.
  • the number of Au particles in any 50nm*50nm region on the catalyst is 5-40 means: in the HAADF-STEM photo of a single nano-gold-loaded titanium-silicon molecular sieve particle, the nano-gold-loaded titanium The silicon molecular sieve is divided into several adjacent (not less than three) 50nm*50nm regions, and the number of Au particles in each 50nm*50nm region is 5-40.
  • the particle size of the Au particles is 0.1-5 nm.
  • the particle size of the Au particles is observed by a high-angle annular dark field scanning transmission electron microscope (HAADF-STEM); Electron microscopy (HAADF-STEM) measured.
  • the molar ratio of titanium and silicon in the catalyst is 0.001-0.04:1, preferably 0.005-0.025:1.
  • the content of the nano gold is 0.01wt%-1wt%, preferably 0.04wt%-0.8wt%, more preferably 0.04wt%- 0.5 wt%.
  • the third aspect of the present invention provides a method for preparing a nano-gold-supported titanium-silicon molecular sieve catalyst.
  • the method uses an aqueous fatty amine solution to carry out alkaline treatment on the titanium-silicon molecular sieve, and then loads nano-gold particles to obtain the catalyst;
  • the titanium-silicon molecular sieve is the titanium-silicon molecular sieve described in the first aspect.
  • the method includes:
  • the titanium-silicon molecular sieve is the titanium-silicon molecular sieve described in the first aspect.
  • the fatty amine is selected from ethylamine, n-propylamine, ethylenediamine, n-butylamine, di-n-propylamine, butylenediamine, hexamethylenediamine at least one of .
  • the titanium-silicon molecular sieve is calculated as SiO 2 , the mole of the titanium-silicon molecular sieve, the fatty amine in the fatty amine aqueous solution, and the water in the fatty amine aqueous solution The ratio is 1:(0.01-1):2-20.
  • the temperature of the mixing is 80-250° C., and the mixing time is 10-120 min.
  • the titanium-silicon molecular sieve after the alkaline treatment of the titanium-silicon molecular sieve by the fatty amine aqueous solution, the titanium-silicon molecular sieve will produce more hydroxyl defects, which is conducive to the uniform anchoring of more Au nanoparticles on the titanium-silicon molecular sieve.
  • the dispersion on the titanium-silicon molecular sieve can effectively promote the synthesis efficiency of the oxidant in the hydrogen oxidation reaction, and finally improve the reaction effect; on the other hand, the Au nanoparticles can be uniformly induced by the electrons of the titanium atoms on the molecular sieve, and tend to transform when activated It is 0-valent, and 0-valent Au can effectively catalyze hydrogen and oxygen to generate H 2 O 2 oxidant in situ and improve product selectivity.
  • the aqueous solution of the gold-containing compound is selected from an aqueous solution of chloroauric acid.
  • the concentration of the chloroauric acid aqueous solution is 0.0001-0.1M, preferably 0.0005-0.05M, more preferably 0.005-0.05M.
  • the consumption of chloroauric acid is too high, it will lead to the aggregation of nano-gold particles, causing side reactions in the reaction process, resulting in a decrease in the selectivity of the product; if the consumption of chloroauric acid is too low, the prepared nano-gold-loaded titanium
  • the catalytic activity of silicon molecular sieves is reduced; under preferred conditions, the aqueous solution of chloroauric acid is calculated as gold, and the consumption of the aqueous solution of chloroauric acid is 0.01wt%-5wt% of the titanium-silicon molecular sieve after the alkaline post-treatment, preferably 0.1wt-5wt%.
  • the pH regulator used to adjust the pH of the resulting mixture is selected from sodium hydroxide, potassium hydroxide, cesium hydroxide, urea, sodium carbonate, sodium bicarbonate , potassium carbonate, potassium bicarbonate, cesium carbonate, cesium bicarbonate at least one.
  • step (2) can also be: mixing the titanium-silicon molecular sieve after alkaline post-treatment with an aqueous solution of a gold-containing compound, adding a weakly alkaline pH regulator, and performing heat treatment When the pH of the obtained mixture is 5-6, a strong alkaline pH regulator is added to adjust the pH to 7-9 to obtain a suspension.
  • step (2) the heat treatment can increase the hydrolysis rate of the weak base, avoiding the low production efficiency caused by the slow hydrolysis.
  • the weak alkaline pH regulator is selected from urea, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, cesium carbonate, cesium bicarbonate at least one of the
  • the strong alkaline pH regulator is at least one selected from sodium hydroxide, potassium hydroxide and cesium hydroxide.
  • the temperature of the heat treatment is 50-95°C.
  • the activation conditions include: the temperature is 150-500°C, the time is 1-5h, and the activation gas is selected from any of oxygen, hydrogen, and propylene.
  • the fourth aspect of the present invention provides a nano-gold-supported titanium-silicon molecular sieve catalyst prepared according to the method described in the third aspect.
  • the catalyst includes a titanium-silicon molecular sieve carrier and nano-gold loaded on the carrier; wherein, the micropore volume of the catalyst is 0.06-0.4 cm 3 /g, and the micropore The specific surface area is 160-450m 2 /g, the mesopore volume is 0.05-0.08cm 3 /g, the mesopore specific surface area is 40-85m 2 /g, and the particle size is 100-250nm.
  • the micropore volume of the catalyst is 0.1-0.3 cm 3 /g
  • the micropore specific surface area is 260-410 m 2 /g
  • the mesopore volume is 0.058-0.078 cm 3 /g
  • the mesopore specific surface area is 45-80m 2 /g
  • the particle size is 150-210nm.
  • more than 90% of gold in the gold nanoparticles has a valence of zero.
  • the number of Au particles in any 50nm*50nm region on the catalyst differs by no more than 30%.
  • the number of Au particles in any 50nm*50nm region on the catalyst is 5-40.
  • the particle size of the Au particles is 0.1-5 nm.
  • the molar ratio of titanium and silicon in the catalyst is 0.001-0.04:1, preferably 0.005-0.025:1.
  • the content of the nano gold is 0.01wt%-1wt%, preferably 0.04wt%-0.8wt%, more preferably 0.04wt%- 0.5 wt%.
  • the fifth aspect of the present invention provides a catalyst for nano-gold supported titanium-silicon molecular sieve described in the second aspect and the fourth aspect in olefin epoxidation reaction, cycloolefin epoxidation reaction, phenol hydroxylation reaction, cyclohexanone ammonia Application in oximation reaction.
  • the olefin epoxidation reaction is a gas-phase epoxidation reaction of propylene.
  • the olefin epoxidation reaction is a process of propylene gas-phase epoxidation reaction comprising:
  • the catalyst is the nano-gold-supported titanium-silicon molecular sieve described in the second and fourth aspects above.
  • the conditions of the reaction include: the volume flow ratio of hydrogen, oxygen, and propylene is 0.5-2:0.5-2:1; further preferably, the volume flow ratio of propylene and inert gas The ratio is 1:1-10.
  • the reaction conditions further include: a temperature of 120-220° C., and a pressure of 0.1-0.5 MPa.
  • the reaction path of gas-phase epoxidation of propylene is shown in Figure 1. It can be seen from Figure 1 that Au catalyzes H 2 and O 2 to generate H 2 O 2 , and then H 2 O 2 and TS-1 form Ti- OOH active site, Ti-OOH catalyzes propylene to propylene oxide.
  • the method for the gas-phase epoxidation of propylene can adopt a continuous operation mode, specifically, after the catalyst is loaded into the reactor, the mixed gas of hydrogen, oxygen, propylene and inert gas is continuously added for reaction.
  • the present invention has no special requirements on the form of the catalyst.
  • the catalyst can be nano-gold-supported titanium-silicon molecular sieve powder, or it can be further loaded on a carrier for use. Those skilled in the art can choose according to the type of reactor.
  • the separation of the gas-phase epoxidation product of propylene and the catalyst can be adjusted according to the form of the catalyst and actual needs; Separation and other methods are used to realize the separation of products and the recovery and reuse of catalysts; when the catalyst is a nano-gold-supported titanium-silicon molecular sieve (shaped catalyst) loaded on the carrier, the shaped catalyst can be loaded in a fixed-bed reactor. Catalyst recovery.
  • the catalyst is a nano-gold-supported titanium-silicon molecular sieve (shaped catalyst) loaded on the carrier, the shaped catalyst can be loaded in a fixed-bed reactor. Catalyst recovery.
  • room temperature refers to 25 ⁇ 5°C.
  • micropore specific surface area and the micropore volume are measured at the static nitrogen adsorption instrument of Micro meritics ASAP 2460 type at liquid nitrogen temperature after the static N adsorption-desorption curve of the sample, Calculated by t-plot analysis;
  • mesopore specific surface area and mesopore volume is obtained by BJH method analysis and calculation after measuring the static N2 adsorption-desorption curve of the sample at liquid nitrogen temperature with Micro meritics ASAP 2460 static nitrogen adsorption instrument;
  • the total specific surface area is obtained by BET method test
  • the pore size distribution diagram is calculated by the BJH formula
  • micropore pore size distribution map is calculated by the t-plot method
  • the particle size was observed by high angle annular dark field scanning transmission electron microscope (HAADF-STEM);
  • XPS X-ray photoelectron spectrometer
  • XRF X-ray fluorescence spectrometer
  • the valence of nano-gold is measured by X-ray photoelectron spectrometer (XPS), and the measured XPS peak is divided into peaks by software to obtain the small peaks corresponding to Au with 0 valence, +1 valence, and +3 valence respectively.
  • XPS X-ray photoelectron spectrometer
  • the number of Au particles in the 50nm*50nm region on the titanium-silicon molecular sieve was measured by a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM).
  • Preparation examples 1-9 are used to illustrate the preparation of titanium silicon molecular sieves.
  • Tetraethyl silicate, tetrapropylammonium hydroxide and water are stirred and mixed for the first time at room temperature to obtain a mixed system, and during the stirring process, the mixed solution of tetrabutyl titanate and isopropanol Add it dropwise into the mixing system at a rate of 0.2mL/min, and carry out the second stirring for 0.5h to obtain a mixed solution;
  • tetraethyl silicate is calculated as SiO2
  • tetrapropylammonium hydroxide is calculated as N
  • tetrabutyl titanate is calculated as In terms of TiO2 , the molar ratio of tetraethyl silicate, tetrapropylammonium hydroxide, and water is 1:0.1:15; the molar ratio of tetraethyl silicate, tetrabutyl titanate, and isopropanol is 1:0.015 :3;
  • the dried product was calcined at 550°C for 6 hours to obtain titanium-silicon molecular sieve TS-1-1;
  • the physical parameters of the titanium-silicon molecular sieve TS-1-1 obtained in this preparation example are shown in Table 2, and the micropore pore size distribution diagram and the pore size distribution diagram of the titanium-silicon molecular sieve TS-1-1 are shown in Figure 2 and Figure 3 respectively It can be seen from Figure 2 that TS-1-1 molecular sieve has a large number of micropores of about 0.55nm, and it can be seen from Figure 3 that TS-1-1 molecular sieve basically does not have mesoporous channels.
  • step (2) compound (1) is replaced by compound (2), and the physical parameters of the obtained titanium-silicon molecular sieve TS-1-2 are shown in the table 2.
  • step (2) compound (1) is replaced by compound (3), and the physical parameters of the obtained titanium-silicon molecular sieve TS-1-3 are shown in the table 2.
  • step (2) compound (1) is replaced by compound (4), and the physical parameters of the obtained titanium-silicon molecular sieve TS-1-4 are shown in the table 2.
  • step (2) compound (1) is replaced by compound (5), and the physical parameters of the obtained titanium-silicon molecular sieve TS-1-5 are shown in the table 2.
  • step (2) compound (1) is replaced by compound (6), and the physical parameters of the obtained titanium-silicon molecular sieve TS-1-6 are shown in the table 2.
  • Tetraethyl silicate, tetrapropylammonium hydroxide and water are stirred and mixed for the first time at room temperature to obtain a mixed system, and during the stirring process, the mixed solution of tetrabutyl titanate and isopropanol Add it dropwise into the mixing system at a rate of 0.2mL/min, and carry out the second stirring for 0.5h to obtain a mixed solution;
  • tetraethyl silicate is calculated as SiO2
  • tetrapropylammonium hydroxide is calculated as N
  • tetrabutyl titanate is calculated as In terms of TiO2 , the molar ratio of tetraethyl silicate, tetrapropylammonium hydroxide, and water is 1:0.1:15; the molar ratio of tetraethyl silicate, tetrabutyl titanate, and isopropanol is 1:0.015 :3;
  • the dried product was calcined at 550°C for 6 hours to obtain titanium-silicon molecular sieve TS-1-7;
  • the physical parameters of the titanium-silicon molecular sieve TS-1-7 obtained in this preparation example are shown in Table 2, and the micropore size distribution diagram of the titanium-silicon molecular sieve TS-1-7 is shown in Figure 2, as can be seen from Figure 2 TS-1-7 obtained without adding the silylating agent described in the present invention also has micropore channels with a pore diameter of about 0.55 nm, but its micropore content is obviously lower than that of TS-1-1 molecular sieve.
  • step (2) Put the product obtained in step (1) into a closed stainless steel reaction kettle, and let it stand at 80° C. for 24 hours to obtain a precrystallized product;
  • the physical parameters of the titanium-silicon molecular sieve TS-1-8 obtained in this preparation example are shown in Table 2, and the pore size distribution diagram of the titanium-silicon molecular sieve TS-1-8 is shown in Figure 3, and it can be seen from Figure 3 that TS -1-8 contains micropore channels with a pore diameter of 2nm and abundant mesoporous channels with a pore size of about 38nm. Therefore, although the micropore specific surface area is not low, the ratio of the micropore specific surface area to the total specific surface area is relatively low.
  • step (2) Put the product obtained in step (1) into a closed stainless steel reaction kettle, and let it stand at 80° C. for 24 hours to obtain a precrystallized product;
  • titanium-silicon molecular sieve TS-1-1 After mixing titanium-silicon molecular sieve TS-1-1 with an aqueous solution of ethylamine, carry out high-temperature treatment to obtain the first suspension, which is filtered to obtain an alkaline post-treated titanium-silicon molecular sieve; the titanium-silicon molecular sieve is calculated as SiO , the molar ratio of the titanium silicon molecular sieve, ethylamine in the ethylamine aqueous solution, and water in the ethylamine aqueous solution is 1:0.5:10; the temperature of the high temperature treatment is 120°C, and the time is 60min;
  • the activation conditions include: the temperature is 200°C, the time is 3h, and the activation gas is a mixture of hydrogen and nitrogen (volume ratio is 1:7);
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-2 to obtain nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1 -2.
  • the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-2 are shown in Table 3.
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-3 to obtain nano-gold loaded titanium-silicon molecular sieve catalyst Au/TS-1 -3.
  • the physical parameters of the nano-gold loaded titanium-silicon molecular sieve catalyst Au/TS-1-3 are shown in Table 3, and the HAADF-STEM figure of the catalyst Au/TS-1-3 is shown in Figure 4, from Figure 4 It can be seen that the Au nanoparticles on the Au/TS-1-3 catalyst have a uniform size (about 2.4nm), and are uniformly dispersed on the titanium-silicon molecular sieve TS-1-3.
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-4 to obtain nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1 -4.
  • the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-4 are shown in Table 3.
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-5 to obtain nano-gold loaded titanium-silicon molecular sieve catalyst Au/TS-1 -5.
  • the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-5 are shown in Table 3.
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-6 to obtain nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1 -6.
  • the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-6 are shown in Table 3.
  • step (2) is changed to: 5g of titanium-silicon molecular sieve TS-1-1 after alkaline post-treatment and 100mL of aqueous solution (0.01M) of chloroauric acid (HAuCl 4 ) Mix, add urea, heat treatment at 70°C until the pH of the resulting mixture is 6, then add NaOH, adjust the pH to 8, and obtain the second suspension; obtain nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1- 1-1.
  • the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-1-1 are shown in Table 3.
  • step (2) is changed to: 5g of titanium-silicon molecular sieve TS-1-3 after alkaline post-treatment and 100mL of aqueous solution (0.01M) of chloroauric acid (HAuCl 4 ) Mix, add urea, heat treatment at 70°C until the pH of the resulting mixture is 6, then add NaOH, adjust the pH to 8, and obtain the second suspension; obtain nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1- 3-1.
  • the physical parameters of the nano-gold-supported titanium-silicon molecular sieve catalyst Au/TS-1-3-1 are shown in Table 3.
  • the difference is that the alkaline post-treatment process of step (1) is omitted, and the aqueous solution (0.01M) solution of 5g titanium-silicon molecular sieve TS-1-1 and 100mL of chloroauric acid (HAuCl 4 ) Mixing, adding NaOH, adjusting the pH of the resulting mixture to be 8 to obtain a second suspension;
  • the second suspension is filtered, and the obtained filter residue is activated to obtain nano-gold-supported titanium-silicon molecular sieve catalyst Au/TS-1-1-2;
  • the difference is that the alkaline post-treatment process of step (1) is omitted, and the aqueous solution (0.01M) solution of 5g titanium-silicon molecular sieve TS-1-3 and 100mL of chloroauric acid (HAuCl 4 ) Mixing, adding NaOH, adjusting the pH of the resulting mixture to be 8 to obtain a second suspension;
  • the second suspension is filtered, and the obtained filter residue is activated to obtain nano-gold-supported titanium-silicon molecular sieve catalyst Au/TS-1-3-2;
  • the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-3-2 are shown in Table 3, and the HAADF-STEM figure of the catalyst Au/TS-1-3-2 is shown in Figure 5, It can be seen from Figure 5 that the size of Au nanoparticles is slightly larger (about 3.8nm), and the distribution on the titanium-silicon molecular sieve TS-1-3-2 is uneven.
  • the difference is that the alkaline post-treatment process of step (1) is omitted, and the aqueous solution (0.01M) solution of 5g of titanium-silicon molecular sieve TS-1-5 and 100mL of chloroauric acid (HAuCl 4 ) Mixing, adding NaOH, adjusting the pH of the resulting mixture to be 8 to obtain a second suspension;
  • the second suspension is filtered, and the obtained filter residue is activated to obtain nano-gold-supported titanium-silicon molecular sieve catalyst Au/TS-1-5-1;
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-7 to obtain nano-gold loaded titanium-silicon molecular sieve catalyst Au/TS-1 -7, the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-7 are shown in Table 3.
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in step (1) is replaced by the titanium-silicon molecular sieve TS-1-8 to obtain nano-gold loaded titanium-silicon molecular sieve catalyst Au/TS-1 -8, the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-8 are shown in Table 3.
  • the difference is that the titanium-silicon molecular sieve TS-1-1 in the step (1) is replaced by the titanium-silicon molecular sieve TS-1-9 to obtain nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1 -9, the physical parameters of the nano-gold supported titanium-silicon molecular sieve catalyst Au/TS-1-9 are shown in Table 3.
  • the catalyst is loaded into a tubular reactor with an inner diameter of 8 mm, and then heated up to 180° C. in an N atmosphere. Enter hydrogen, oxygen, propylene to start reaction, after reacting 1h, online analysis is carried out to product; Wherein, the consumption of catalyst is 0.4g, and the flow rate of each gas, reaction temperature and pressure are as shown in Table 4, and catalytic reaction result is as shown in Table 5 Show.
  • gas chromatography is used to analyze reactants and products in the evaluation system.
  • the analysis conditions of gas chromatography are: Agilent-6890 type chromatograph, molecular sieve 5A and PoraBONDU chromatographic column, FID and TCD detector.
  • Propylene conversion % (moles of propylene in the raw material - moles of propylene in the product)/moles of propylene in the raw material ⁇ 100%
  • Propylene oxide selectivity % the number of moles of propylene oxide in the product/(the number of moles of propylene in the raw material - the number of moles of propylene in the product) ⁇ 100%
  • test examples 1-6 and test examples 7-8 From the comparison of test examples 1-6 and test examples 7-8, it can be seen that adjusting the pH step by step during the gold nano-loading process can better inhibit Au from aggregating into large particles, and further improve the conversion rate of propylene and the conversion of propylene oxide. selective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

提供一种钛硅分子筛、负载纳米金的钛硅分子筛催化剂、催化剂的制备方法及其用途。该钛硅分子筛的微孔比表面积为320~500m 2/g,微孔体积为0.1-0.4cm 3/g,介孔比表面积为50-100m 2/g,介孔体积为0.075-0.1cm 3/g,粒径为100-250nm,微孔比表面积占总比表面积的50-90%;该催化剂包括钛硅分子筛载体和负载的纳米金,催化剂的微孔体积为0.06-0.4cm 3/g,微孔比表面积为160-450m 2/g,介孔体积为0.05-0.08cm 3/g,介孔比表面积为40-85m 2/g,粒径为100-250nm;该催化剂的制备方法包括用脂肪胺水溶液对该钛硅分子筛进行碱性处理后负载纳米金粒子的步骤;该催化剂用于烯烃环氧化反应、环烯烃环氧化反应、苯酚羟基化反应、环己酮氨肟化反应。通过在具有特定物性参数的钛硅分子筛上负载纳米金颗粒,纳米金分散度高,将其用于丙烯气相环氧化反应是,具有高催化活性,丙烯的转化率提高至8%-14%,环氧丙烷选择性提高至90-99%。

Description

钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用
相关申请的交叉引用
本申请要求2021年12月22日提交的中国专利申请202111579941.1的权益,该申请的内容通过引用被合并于本文。
本申请要求2021年12月22日提交的中国专利申请202111579946.4的权益,该申请的内容通过引用被合并于本文。
本申请要求2022年03月11日提交的中国专利申请202210239081.5的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及临氢氧化反应领域,具体涉及钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用。
背景技术
杂原子分子筛具有规则的拓扑结构,且骨架金属原子的引入为其带来独特的酸性质,成为化学与化工领域的研究热点。1983年,Taramasso等首次报道了TS-1分子筛:过渡金属钛原子替换全硅MFI结构分子筛的少量骨架硅原子,即将钛原子以四配位形式嵌入到分子筛骨架位置。由于骨架钛物种具有Lewis酸性,其空轨道可接受H 2O 2分子中氧原子的核外电子,因此TS-1分子筛可高效活化H 2O 2分子和不同官能团的有机物发生选择性氧化反应,例如烯烃环氧化、环烯烃环氧化、苯酚羟基化、环己酮氨肟化等。与传统氧化工艺相比,H 2O 2/TS-1催化氧化工艺具有反应条件温和、过程清洁高效等优点。
目前H 2O 2/TS-1催化氧化体系已有多套工业应用装置,例如丙烯环氧化(HPPO)和环己酮氨肟化等。虽然此催化体系有诸多优点,但由于必须配套双氧水生产装置,其推广仍存在问题:双氧水储运条件苛刻,必须配套现场生产装置,这对工艺布局有所限制;另外,高浓度双氧水存在制备难度和存储安全隐患。为从根本上解除这一制约,研究者们考虑直接在氢气(H 2)和氧气(O 2)氛围下催化有机物发生选择性氧化反应。气相选择性氧化技术使产业布局更加灵活,而且满足清洁、高效、绿色低碳的发展需求。
为实现临氢氧化,需要能够同时完成氢氧原位合成H 2O 2和有机物氧化反应的催化剂改进。
发明内容
本发明的目的是为了克服现有技术中TS-1分子筛载体的微孔体积、微孔比表面积低以及其负载金属纳米粒子分散度的控制问题,提供钛硅分子筛及其制备方法和纳米金负载钛硅分子筛的催化剂及其制备方法和应用。
为了实现上述目的,本发明第一方面提供一种钛硅分子筛,所述钛硅分子筛的微孔比表面积为320-500m 2/g,微孔体积为0.1-0.4cm 3/g,介孔比表面积为50-100m 2/g,介孔体积为0.075-0.1cm 3/g,粒径为100-250nm,微孔比表面积占总比表面积的比例为50%-90%。
本发明第二方面提供一种纳米金负载钛硅分子筛的催化剂,其中,所述催化剂包括钛硅分子筛载体和负载在所述载体上的纳米金;其中,所述催化剂的微孔体积为0.06-0.4cm 3/g,微孔比表面积为160-450m 2/g,介孔体积为0.05-0.08cm 3/g,介孔比表面积为40-85m 2/g,粒径为100-250nm。
本发明第三方面提供一种制备纳米金负载钛硅分子筛的催化剂的方法,所述方法利用脂肪胺水溶液对钛硅分子筛进行碱性处理后负载纳米金粒子得到所述催化剂;
其中,所述钛硅分子筛为前述第一方面所述的钛硅分子筛。
本发明第四方面提供一种根据前述第三方面所述的方法制备得到的纳米金负载钛硅分子筛的催化剂。
本发明第五方面提供一种前述第二方面、第四方面所述的纳米金负载钛硅分子筛的催化剂在烯烃环氧化反应、环烯烃环氧化反应、苯酚羟基化反应、环己酮氨肟化反应中的应用。
通过上述技术方案,本发明通过在具有特定物性参数的钛硅分子筛上负载纳米金颗粒,得到的纳米金负载钛硅分子筛的催化剂中纳米金分散度高,将其应用于丙烯气相环氧化反应时,具有高催化活性,丙烯的转化率提高至8%-14%,环氧丙烷选择性提高至90%-99%。
附图说明
图1是本发明中丙烯气相环氧化的反应路径图;
图2是本发明制备例1和制备例7得到的钛硅分子筛的微孔孔径分布图;
图3是本发明制备例1和制备例8得到的钛硅分子筛的孔径分布图;
图4是本发明实施例3得到的催化剂的HAADF-STEM图;
图5是本发明对比例5得到的催化剂的HAADF-STEM图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种钛硅分子筛,所述钛硅分子筛的微孔比表面积为320-500m 2/g,微孔体积为0.1-0.4cm 3/g,介孔比表面积为50-100m 2/g,介孔体积为0.075-0.1cm 3/g,粒径为100-250nm,微孔比表面积占总比表面积的比例为50%-90%。
本发明中,微孔是指所述钛硅分子筛具有的多孔结构中,孔径在2nm以下的孔。
本发明中,所述钛硅分子筛的微孔比表面积、微孔体积的测定是在Micro meritics ASAP 2460型静态氮吸附仪在液氮温度下测得样品的静态N 2吸附-脱附曲线后,通过t-plot方法分析计算得到。
本发明中,所述钛硅分子筛的介孔比表面积、介孔体积的测定是在Micro meritics ASAP 2460型静态氮吸附仪在液氮温度下测得样品的静态N 2吸附-脱附曲线后,通过BJH方法分析计算得到。
本发明中,所述钛硅分子筛的总比表面积通过BET方法测试得到。
本发明中,所述钛硅分子筛的粒径通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)观察得到。
所述钛硅分子筛的微孔比表面积可选择320m 2/g、350m 2/g、400m 2/g、405m 2/g、410m 2/g、445m 2/g、480m 2/g、500m 2/g,以及上述任意两个数值组成的范围内的任意值。
所述钛硅分子筛的微孔体积可选择0.1cm 3/g、0.15cm 3/g、0.165cm 3/g、0.2cm 3/g、0.238cm 3/g、0.3cm 3/g、0.0.355cm 3/g、0.389cm 3/g、0.4cm 3/g,以及上述任意两个数值组成的范围内的任意值。
所述钛硅分子筛的介孔比表面积可选择50m 2/g、60m 2/g、72m 2/g、80m 2/g、90m 2/g、95m 2/g、100m 2/g,以及上述任意两个数值组成的范围内的任意值。
所述钛硅分子筛的介孔体积可选择0.075cm 3/g、0.085cm 3/g、0.09cm 3/g、0.095cm 3/g、0.1cm 3/g,以及上述任意两个数值组成的范围内的任意值。
所述钛硅分子筛的粒径可选择100nm、125nm、140nm、158nm、180nm、200nm、 215nm、230nm、245nm、250nm,以及上述任意两个数值组成的范围内的任意值。
所述钛硅分子筛的微孔比表面积占总比表面积的比例可选择50%、60%、70%、80%、90%,以及上述任意两个数值组成的范围内的任意值。
在本发明的一种优选实施方式中,所述钛硅分子筛的微孔比表面积为350-480m 2/g,微孔体积为0.13-0.37cm 3/g,介孔比表面积为70-100m 2/g,介孔体积为0.08-0.1cm 3/g,粒径为150-210nm,微孔比表面积占总比表面积的比例为60%-90%。
在本发明的一种优选实施方式中,在所述钛硅分子筛中,130%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<220%。
本发明中,所述钛硅分子筛的表面钛含量和硅含量通过X射线光电子能谱仪(XPS)测得,将二者的摩尔量进行比较即得到样品的表面Ti/Si(mol%);所述钛硅分子筛的体相钛含量和硅含量通过X射线荧光光谱仪(XRF)测得,将二者的摩尔量进行比较即得到样品的体相Ti/Si(mol%);其中,所述表面是指XPS能测到的钛硅分子筛颗粒的表面一层,理论深度为8-10nm,所述体相是指钛硅分子筛的颗粒整体。
在本发明的一种优选实施方式中,在所述钛硅分子筛中,145%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<200%。
在本发明的一种优选实施方式中,所述钛硅分子筛中钛和硅的摩尔比为0.001-0.04:1,优选为0.005-0.025:1。
根据本发明,所述钛硅分子筛的制备方法包括:
(1)将硅源、碱性模板剂、钛源、水和醇化合物混合均匀,得到钛硅溶胶;
(2)在所述钛硅溶胶中加入式(I)所示的化合物,并将得到的混合物进行水热晶化、焙烧,得到钛硅分子筛;
Figure PCTCN2022133454-appb-000001
其中,i为1-6的整数;R 1、R 2和R 3各自独立的选自C 1-C 6的烷基;R 4、R 5各自独立的选自氢、甲基、乙基;R 6选自甲基、-SH、-NHR 7;R 7选自氢或C 1-C 6的烷基。
本发明中,C 1-C 6的烷基是指碳原子总数为1-6的烷基,例如可以是甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基和正己基中的一种。
在本发明的一些优选实施方式中,R 1、R 2和R 3各自独立的选自C 1-C 3的烷基,所述C 1-C 3的烷基可以是甲基、乙基、正丙基或异丙基,优选地,R 1、R 2和R 3各自独立的选自甲基、乙基或正丙基。本发明中,R 1、R 2和R 3可以相同也可以不同,优选条件下,R 1、R 2和R 3均相同。
本发明中,通过采用式(I)所示的化合物作为硅烷化试剂,在水热晶化反应过程中,能够形成具有微孔结构的钛硅分子筛,且该钛硅分子筛的微孔量较多,表现为具有高的微孔比表面积和微孔体积,表面钛含量高(表现为表面Ti/Si较体相Ti/Si高),将其作为催化剂或催化剂载体应用于反应时,相比于具有介孔孔道的钛硅分子筛,其微孔孔道营造的限域空间更有利于反应物分子与孔壁上的骨架钛活性中心碰撞,继而吸附并发生化学反应,提高反应物转化率;其次,增多的二次微孔结构可提供丰富的传质通道以缩短分子的扩散路径,提高反应物和产物分子的扩散速率,促进产物分子的及时脱附以避免发生副反应,提高选择性;这种表面钛含量高的特征,也使反应物 和产物分子的扩散路径明显缩短,同时提高了反应物与活性中心的接触效率及产物分子的脱附和外扩散效果,进一步提高反应物转化率和产物选择性。
本发明中,当式(I)所示的化合物的R 6为甲基时,其在所述水热晶化反应过程中,通过硅烷化试剂烷基链间较弱的分子间相互作用力,形成具有二次微孔结构的钛硅分子筛;当式(I)所示的化合物的R 6为-SH时,其在所述水热晶化反应过程中,通过硅烷化试剂巯基基团间的静电作用力,形成具有二次微孔结构的钛硅分子筛;当式(I)所示的化合物的R 6为-NHR 7时,其在所述水热晶化反应过程中,通过硅烷化试剂氨基基团之间的氢键作用力,以及氨基相连的外端单链烷基(R 7)的柔性作用力,形成具有二次微孔结构的钛硅分子筛。所述二次微孔结构是指除钛硅分子筛固有微孔外,由于添加所述硅烷化试剂,得到的增加的微孔结构。
根据本发明,硅烷化试剂(式(I)所示的化合物)的用量过高,会导致钛硅溶胶的结晶性能变差,无法得到分子筛;而硅烷化试剂(式(I)所示的化合物)的用量过低,又会降低得到的钛硅分子筛的微孔比表面积、微孔体积,影响传质效率,进而影响其催化活性;优选条件下,步骤(1)中,所述硅源以SiO 2计,所述碱性模板剂含有氮元素时以N计,所述碱性模板剂不含氮元素时以OH -计,所述钛源以TiO 2计,所述硅源、碱性模板剂、钛源、水、醇化合物和式(I)所示的化合物的摩尔比为1:(0.05-0.4):(0.001-0.04):(5-40):(0.1-10):(0.01-0.3);优选为1:(0.1-0.3):(0.005-0.025):(5-25):(0.1-5):(0.01-0.2)。
在本发明的一种优选实施方式中,所述硅源选自硅酸四甲酯、硅酸四乙酯、硅酸四丙酯、硅酸四丁酯、白炭黑和硅溶胶中的至少一种。
在本发明的一种优选实施方式中,所述碱性模板剂选自季铵碱、脂肪族胺和脂肪族醇胺中的至少一种,优选为四甲基氢氧化铵、四乙基氢氧化铵、四丙基氢氧化铵和四丁基氢氧化铵中的至少一种。
在本发明的一种优选实施方式中,所述钛源选自有机钛源和/或无机钛源。
在本发明的一种优选实施方式中,所述钛源选自四氯化钛、硫酸钛、硝酸钛、钛酸四乙酯、钛酸四丙酯和钛酸四丁酯中的至少一种。
在本发明的一种优选实施方式中,所述醇化合物为C1-C4的醇,优选为异丙醇。
根据本发明,优选条件下,步骤(1)中还包括:将硅源、碱性模板剂、水进行第一搅拌混合,得到混合体系;接着将钛源和醇化合物的混合液滴加入所述混合体系进行第二搅拌,得到混合溶液。
本发明中,所述混合液的滴加速率优选为0.01-0.5mL/min;进一步优选为0.1-0.5mL/min。
本发明中,优选地,所述第一搅拌的时间为0.1-2h。
本发明中,优选地,所述第二搅拌的时间为0.5-6h,优选0.5-3h。
本发明中,优选地,步骤(1)中还包括:将所述混合溶液进行除醇;除醇能够除去硅源和钛源水解生成的醇,本发明中优选采用共沸蒸馏的方式去除体系中生成的醇,同时在除醇的过程中补充共沸蒸馏损失的水,以保证钛硅溶胶中各物质的配比满足上述要求;优选地,所述除醇的条件包括:温度为30-100℃,时间为2-10h;优选温度为40-90℃,时间为4-10h。
根据本发明,为了使硅烷化试剂能够均匀的分散在所述钛硅溶胶中,优选条件下,步骤(2)还包括:在所述钛硅溶胶中加入式(I)所示的化合物进行第三搅拌0.1-24h,优选第三搅拌的时间为0.5-10h,更优选为1-3h。
本发明中,通过快速升温,能够控制分子筛在低温状态下的成核和生长速率,从而得到尺寸较小的分子筛颗粒,其负载纳米金后用于催化反应时,能够缩短产物分子 的内扩散路径,有利于提高选择性;同时,快速升温能促使硅烷化试剂在分子筛生长过程中快速水解,以构建二次微孔结构;根据本发明,优选条件下,在步骤(2)中,所述水热晶化的过程包括:在0.1-1h内将所述混合物升温至晶化温度后,在所述晶化温度下晶化10-100h,所述晶化温度为50-200℃;优选在温度为100-200℃下进行晶化20-80h;进一步优选地,所述升温的时间为0.1-0.5h;更优选地,所述水热晶化的条件包括:温度为120-180℃,时间为20-80h;在上述优选条件下,能够平衡分子筛微孔比表面积和微孔体积;制备得到具有特定微孔比表面积以及微孔体积的分子筛。
本发明对水热晶化的压力没有特别的限制,可以是晶化体系自生压力。
根据本发明,优选条件下,所述方法还包括:将水热晶化得到的产物进行洗涤、过滤和干燥;其中,所述洗涤、过滤和干燥的工艺可以分别为本领域技术人员所知。示例性地,所述洗涤的温度可以是20-50℃,洗涤的溶剂可以是水,洗涤溶剂的用量为晶化产物质量的1-20倍;所述干燥的条件可以是:温度为40-150℃,时间为0.5-24h。
在本发明的一种优选实施方式中,在步骤(2)中,所述焙烧的条件包括:温度为400-800℃,时间为1-15h。
本发明第二方面提供一种纳米金负载钛硅分子筛的催化剂,其中,所述催化剂包括钛硅分子筛载体和负载在所述载体上的纳米金;其中,所述催化剂的微孔体积为0.06-0.4cm 3/g,微孔比表面积为160-450m 2/g,介孔体积为0.05-0.08cm 3/g,介孔比表面积为40-85m 2/g,粒径为100-250nm。
本发明中,所述催化剂的微孔比表面积、微孔体积的测定是在Micro meritics ASAP2460型静态氮吸附仪在液氮温度下测得样品的静态N 2吸附-脱附曲线后,通过t-plot方法分析计算得到。
本发明中,所述催化剂的介孔比表面积、介孔体积的测定是在Micro meritics ASAP2460型静态氮吸附仪在液氮温度下测得样品的静态N 2吸附-脱附曲线后,通过BJH方法分析计算得到。
本发明中,所述催化剂的粒径通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)观察得到。
所述催化剂的微孔体积可选择0.06cm 3/g、0.1cm 3/g、0.15cm 3/g、0.2cm 3/g、0.25cm 3/g、0.3cm 3/g、0.35cm 3/g、0.4cm 3/g,以及上述任意两个数值组成的范围内的任意值。
所述催化剂的微孔比表面积可选择160m 2/g、200m 2/g、250m 2/g、280m 2/g、300m 2/g、320m 2/g、360m 2/g、400m 2/g、420m 2/g、450m 2/g,以及上述任意两个数值组成的范围内的任意值。
所述催化剂的介孔体积可选择0.05cm 3/g、0.06cm 3/g、0.07cm 3/g、0.08cm 3/g,以及上述任意两个数值组成的范围内的任意值。
所述催化剂的介孔比表面积可选择40m 2/g、50m 2/g、60m 2/g、70m 2/g、75m 2/g、80m 2/g、85m 2/g,以及上述任意两个数值组成的范围内的任意值。
所述催化剂的粒径可选择100nm、120nm、140nm、150nm、180nm、200nm、220nm、240nm、250nm,以及上述任意两个数值组成的范围内的任意值。
在本发明的一种优选实施方式中,所述催化剂的微孔体积为0.1-0.3cm 3/g,微孔比表面积为260-410m 2/g,介孔体积为0.058-0.078cm 3/g,介孔比表面积为45-80m 2/g,粒径为150-210nm。
在本发明的一种优选实施方式中,在所述催化剂中,130%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<220%。
本发明中,所述催化剂的表面钛含量和硅含量通过X射线光电子能谱仪(XPS)测得,将二者的摩尔量进行比较即得到样品的表面Ti/Si(mol%);所述催化剂的体相钛 含量和硅含量通过X射线荧光光谱仪(XRF)测得,将二者的摩尔量进行比较即得到样品的体相Ti/Si(mol%);其中,所述表面是指XPS能测到的催化剂颗粒的表面一层,理论深度为8-10nm,所述体相是指催化剂的颗粒整体。
在本发明的一种优选实施方式中,在所述催化剂中,145%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<200%。
在本发明的一种优选实施方式中,所述纳米金中超过90%的金的化合价为0价。
本发明中,所述纳米金的化合价通过X射线光电子能谱仪(XPS)测得,将测得的XPS峰通过软件进行分峰,分别获得0价、+1价、+3价的Au对应的小峰,通过计算0价Au对应的峰面积占总峰面积的比例得到所述纳米金中0价纳米金的含量。
在本发明的一种优选实施方式中,在所述催化剂上的任意50nm*50nm区域内Au粒子的个数相差不超过30%。
本发明中,在所述催化剂上的任意50nm*50nm区域内Au粒子的个数相差不超过30%是指:在单个纳米金负载钛硅分子筛颗粒的HAADF-STEM照片内,将纳米金负载钛硅分子筛划分为相邻的若干(不少于三个)50nm*50nm的区域,计算各50nm*50nm区域Au粒子个数,其中,Au粒子个数最多区域为A1区域,Au粒子个数最少区域为A2区域,(A1区Au粒子个数-A2区Au粒子个数)/A1区Au粒子个数≤30%。
在本发明的一种优选实施方式中,在所述催化剂上的任意50nm*50nm区域内的Au粒子的个数为5-40。
本发明中,在所述催化剂上的任意50nm*50nm区域内的Au粒子的个数为5-40是指:在单个纳米金负载钛硅分子筛颗粒的HAADF-STEM照片内,将纳米金负载钛硅分子筛划分为相邻的若干(不少于三个)50nm*50nm的区域,各50nm*50nm区域Au粒子个数为5-40。
在本发明的一种优选实施方式中,所述Au粒子的粒径为0.1-5nm。
本发明中,所述Au粒子的粒径通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)观察得到;所述Au粒子在50nm*50nm区域内的个数通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)测定得到。
在本发明的一种优选实施方式中,所述催化剂中钛和硅的摩尔比为0.001-0.04:1,优选为0.005-0.025:1。
在本发明的一种优选实施方式中,基于所述催化剂的总量,所述纳米金的含量为0.01wt%-1wt%,优选为0.04wt%-0.8wt%,更优选为0.04wt%-0.5wt%。
本发明第三方面提供一种制备纳米金负载钛硅分子筛的催化剂的方法,所述方法利用脂肪胺水溶液对钛硅分子筛进行碱性处理后负载纳米金粒子得到所述催化剂;
其中,所述钛硅分子筛为前述第一方面所述的钛硅分子筛。
在本发明的一种优选实施方式中,所述方法包括:
(1)将钛硅分子筛与脂肪胺水溶液混合并过滤后得到碱性后处理的钛硅分子筛;
(2)将所述碱性后处理的钛硅分子筛与含金化合物水溶液混合,调节所得混合物的pH为7-9,得到悬浊液;
(3)将所述悬浊液进行过滤,得到的滤渣进行活化,得到所述催化剂;
其中,所述钛硅分子筛为前述第一方面所述的钛硅分子筛。
在本发明的一种优选实施方式中,在步骤(1)中,所述脂肪胺选自乙胺、正丙胺、乙二胺、正丁胺、二正丙胺、丁二胺、己二胺中的至少一种。
在本发明的一种优选实施方式中,在步骤(1)中,所述钛硅分子筛以SiO 2计,所述钛硅分子筛、脂肪胺水溶液中的脂肪胺、脂肪胺水溶液中的水的摩尔比为1:(0.01-1):2-20。
在本发明的一种优选实施方式中,在步骤(1)中,所述混合的温度为80-250℃,时间为10-120min。
本发明中,通过脂肪胺水溶液对钛硅分子筛进行碱性处理后,会使钛硅分子筛产生较多羟基缺陷,有利于更多Au纳米粒子均匀锚定在钛硅分子筛上,一方面促进了Au在钛硅分子筛上的分散,有效促进临氢氧化反应中氧化剂的合成效率,最终提高反应效果;另一方面使Au纳米粒子均匀受到分子筛上骨架钛原子的电子诱导作用,在活化时趋向于转化为0价,0价Au可有效催化氢气和氧气原位生成H 2O 2氧化剂,提高产物选择性。
在本发明的一种优选实施方式中,所述含金化合物水溶液选自氯金酸水溶液。
在本发明的一种优选实施方式中,所述氯金酸水溶液的浓度为0.0001-0.1M,优选为0.0005-0.05M,更优选为0.005-0.05M。
本发明中,氯金酸的用量过高会导致纳米金粒子的聚集,在反应过程中引发副反应,导致产物的选择性降低;氯金酸的用量过低则导致制备得到的纳米金负载钛硅分子筛的催化活性降低;优选条件下,所述氯金酸水溶液以金计,所述氯金酸水溶液的用量为所述碱性后处理的钛硅分子筛的0.01wt%-5wt%,优选为0.1wt-5wt%。
在本发明的一种优选实施方式中,在步骤(2)中,调节所得混合物的pH所用的pH调节剂选自氢氧化钠、氢氧化钾、氢氧化铯、尿素、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铯、碳酸氢铯中的至少一种。
在本发明的一种优选实施方式中,其中,步骤(2)还可以为:将所述碱性后处理的钛硅分子筛与含金化合物水溶液混合,加入弱碱性pH调节剂,进行加热处理至所得混合物的pH为5-6,再加入强碱性pH调节剂,调节pH为7-9,得到悬浊液。
本发明中,由于所述氯金酸水溶液的酸性较强,先加入弱碱性pH调节剂,可缓慢调节氯金酸溶液的pH值,减少浓度梯度,再用强碱性pH调节剂较快地将所得混合物的pH调节至所需区间内,能够避免Au的聚集而长为大颗粒,也就避免了较大Au颗粒催化的副反应发生,进而提高产物选择性。
本发明中,在步骤(2)中,所述加热处理能够提高弱碱的水解速率,避免因其水解过慢导致的制备效率过低。
在本发明的一种优选实施方式中,在步骤(2)中,所述弱碱性pH调节剂选自尿素、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铯、碳酸氢铯中的至少一种。
在本发明的一种优选实施方式中,在步骤(2)中,所述强碱性pH调节剂选自氢氧化钠、氢氧化钾、氢氧化铯中的至少一种。
在本发明的一种优选实施方式中,在步骤(2)中,所述加热处理的温度为50-95℃。
在本发明的一种优选实施方式中,在步骤(3)中,所述活化的条件包括:温度为150-500℃,时间为1-5h,活化气体选自氧气、氢气、丙烯中的任一种与氮气的混合气或氢气、丙烯、氮气的混合气;优选地,所述活化气体为氢气和氮气的混合气。
本发明第四方面提供一种根据前述第三方面所述的方法制备得到的纳米金负载钛硅分子筛的催化剂。
在本发明的一种优选实施方式中,所述催化剂包括钛硅分子筛载体和负载在所述载体上的纳米金;其中,所述催化剂的微孔体积为0.06-0.4cm 3/g,微孔比表面积为160-450m 2/g,介孔体积为0.05-0.08cm 3/g,介孔比表面积为40-85m 2/g,粒径为100-250nm。
在本发明的一种优选实施方式中,所述催化剂的微孔体积为0.1-0.3cm 3/g,微孔比表面积为260-410m 2/g,介孔体积为0.058-0.078cm 3/g,介孔比表面积为45-80m 2/g,粒径为150-210nm。
在本发明的一种优选实施方式中,在所述催化剂中,130%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<220%。
在本发明的一种优选实施方式中,在所述催化剂中,145%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<200%。
在本发明的一种优选实施方式中,所述纳米金中超过90%的金的化合价为0价。
在本发明的一种优选实施方式中,在所述催化剂上的任意50nm*50nm区域内Au粒子的个数相差不超过30%。
在本发明的一种优选实施方式中,在所述催化剂上的任意50nm*50nm区域内的Au粒子的个数为5-40。
在本发明的一种优选实施方式中,所述Au粒子的粒径为0.1-5nm。
在本发明的一种优选实施方式中,所述催化剂中钛和硅的摩尔比为0.001-0.04:1,优选为0.005-0.025:1。
在本发明的一种优选实施方式中,基于所述催化剂的总量,所述纳米金的含量为0.01wt%-1wt%,优选为0.04wt%-0.8wt%,更优选为0.04wt%-0.5wt%。
本发明第五方面提供一种前述第二方面、第四方面所述的纳米金负载钛硅分子筛的催化剂在烯烃环氧化反应、环烯烃环氧化反应、苯酚羟基化反应、环己酮氨肟化反应中的应用。
在本发明的一种优选实施方式中,所述烯烃环氧化反应为丙烯气相环氧化反应。
在本发明的一种优选实施方式中,所述烯烃环氧化反应为丙烯气相环氧化反应的过程包括:
在惰性气体保护下以及催化剂存在下,将氢气、氧气、丙烯混合进行反应,得到环氧丙烷;所述催化剂为前述第二、第四方面所述的纳米金负载钛硅分子筛。
根据本发明,优选条件下,所述反应的条件包括:所述氢气、氧气、丙烯的体积流量比之为0.5-2:0.5-2:1;进一步优选地,丙烯和惰性气体的体积流量之比为1:1-10。
在本发明的一些优选实施方式中,所述反应的条件还包括:温度为120-220℃,压力为0.1-0.5MPa。
本发明中,丙烯气相环氧化的反应路径如图1所示,从图1可以看出,Au催化H 2和O 2生成H 2O 2,后H 2O 2和TS-1形成Ti-OOH活性位,Ti-OOH催化丙烯生成环氧丙烷。
本发明中,所述丙烯气相环氧化的方法可以采用连续的操作方式,具体地,将催化剂装填于反应器后,连续加入氢气、氧气、丙烯和惰性气的混合气进行反应。
本发明对催化剂的形态没有特殊的要求,所述催化剂可以是纳米金负载钛硅分子筛粉末,也可以将其进一步负载在载体上使用,本领域技术人员可以根据反应器的种类进行选择。
本发明中,丙烯气相环氧化产物与催化剂的分离可以根据催化剂的形态以及实际需求进行调整;例如,当催化剂为纳米金负载钛硅分子筛粉末时,可以通过沉降、过滤、离心、蒸发、膜分离等方式来实现产物的分离及催化剂的回收再利用;当催化剂为负载在载体上的纳米金负载钛硅分子筛(成型催化剂)时,可以将成型催化剂装填于固定床反应器,待反应结束后回收催化剂。
以下将通过实施例对本发明进行详细描述。以下实施例中,室温是指25±5℃。
以下实施例所用原料除特别说明以外,均为化学纯试剂。
在以下各实施例及对比例中,微孔比表面积、微孔体积的测定是在Micro meritics ASAP 2460型静态氮吸附仪在液氮温度下测得样品的静态N 2吸附-脱附曲线后,通过 t-plot方法分析计算得到;
介孔比表面积、介孔体积的测定是在Micro meritics ASAP 2460型静态氮吸附仪在液氮温度下测得样品的静态N 2吸附-脱附曲线后,通过BJH方法分析计算得到;
总比表面积通过BET方法测试得到;
孔径分布图通过BJH公式计算得到;
微孔孔径分布图通过t-plot方法计算得到;
粒径通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)观察得到;
表面钛含量和硅含量通过X射线光电子能谱仪(XPS)测得;
体相钛含量和硅含量通过X射线荧光光谱仪(XRF)测得;
纳米金的化合价通过X射线光电子能谱仪(XPS)测得,将测得的XPS峰通过软件进行分峰,分别获得0价、+1价、+3价的Au对应的小峰,通过计算0价Au对应的峰面积占总峰面积的比例就能够得到所述纳米金中0价纳米金的含量;
Au粒子在钛硅分子筛上的50nm*50nm区域内的个数通过高角度环形暗场扫描透射电子显微镜(HAADF-STEM)测定得到。
以下制备例中,采用的硅烷化试剂的具体化学结构式如表1所示,其中,对应式(I)中的各取代基和参数如表1所示。化合物1-6均可通过商购获得。
表1
Figure PCTCN2022133454-appb-000002
续表1
Figure PCTCN2022133454-appb-000003
Figure PCTCN2022133454-appb-000004
制备例1-9用于说明钛硅分子筛的制备。
制备例1
(1)将硅酸四乙酯、四丙基氢氧化铵和水在室温下进行第一搅拌混合,得到混合体系,并在搅拌过程中,将钛酸四丁酯和异丙醇的混合液以0.2mL/min的速率滴加入混合体系中,进行第二搅拌0.5h,得到混合溶液;硅酸四乙酯以SiO 2计,四丙基氢氧化铵以N计,钛酸四丁酯以TiO 2计,硅酸四乙酯、四丙基氢氧化铵、水的摩尔比为1:0.1:15;硅酸四乙酯、钛酸四丁酯和异丙醇的摩尔比为1:0.015:3;
接着将混合溶液在70℃进行除醇8h,得到钛硅溶胶;
(2)在钛硅溶胶中加入化合物(1),并在室温下进行第三搅拌1.5h,得到混合物,其中,化合物(1)与硅酸四乙酯的摩尔比为0.1:1;
(3)将混合物通过0.5h升温至170℃,并在170℃下进行水热晶化24h,得到晶化产物;将晶化产物依次进行水淋洗、过滤、120℃干燥2h;
将干燥后的产物在550℃下焙烧6h,得到钛硅分子筛TS-1-1;
本制备例得到的钛硅分子筛TS-1-1的物性参数如表2所示,所述钛硅分子筛TS-1-1的微孔孔径分布图和孔径分布图分别如图2、图3所示,从图2中可以看出TS-1-1分子筛具有大量0.55nm左右的微孔,从图3中可以看出TS-1-1分子筛基本不具有介孔孔道。
制备例2
按照制备例1的方法制备钛硅分子筛,不同的是,在步骤(2)中,将化合物(1)替换为化合物(2),制得的钛硅分子筛TS-1-2的物性参数如表2所示。
制备例3
按照制备例1的方法制备钛硅分子筛,不同的是,在步骤(2)中,将化合物(1)替换为化合物(3),制得的钛硅分子筛TS-1-3的物性参数如表2所示。
制备例4
按照制备例1的方法制备钛硅分子筛,不同的是,在步骤(2)中,将化合物(1)替换为化合物(4),制得的钛硅分子筛TS-1-4的物性参数如表2所示。
制备例5
按照制备例1的方法制备钛硅分子筛,不同的是,在步骤(2)中,将化合物(1)替换为化合物(5),制得的钛硅分子筛TS-1-5的物性参数如表2所示。
制备例6
按照制备例1的方法制备钛硅分子筛,不同的是,在步骤(2)中,将化合物(1)替换为化合物(6),制得的钛硅分子筛TS-1-6的物性参数如表2所示。
制备例7
(1)将硅酸四乙酯、四丙基氢氧化铵和水在室温下进行第一搅拌混合,得到混合体系,并在搅拌过程中,将钛酸四丁酯和异丙醇的混合液以0.2mL/min的速率滴加入混合体系中,进行第二搅拌0.5h,得到混合溶液;硅酸四乙酯以SiO 2计,四丙基氢氧化铵以N计,钛酸四丁酯以TiO 2计,硅酸四乙酯、四丙基氢氧化铵、水的摩尔比为1:0.1:15;硅酸四乙酯、钛酸四丁酯和异丙醇的摩尔比为1:0.015:3;
接着将混合溶液在70℃进行除醇8h,得到钛硅溶胶;
(2)将混合物通过1℃/min的升温速率从室温升至170℃,并在170℃下进行水热晶化72h,得到晶化产物;将晶化产物依次进行水淋洗、过滤、120℃干燥2h;
将干燥后的产物在550℃下焙烧6h,得到钛硅分子筛TS-1-7;
本制备例得到的钛硅分子筛TS-1-7的物性参数如表2所示,所述钛硅分子筛TS-1-7微孔孔径分布图如图2所示,从图2中可以看出不添加本发明所述的硅烷化试剂得到的TS-1-7也具有孔径0.55nm左右的微孔孔道,但其微孔含量明显低于TS-1-1分子筛。
制备例8
(1)将31.0g硅酸四乙酯、1.8g钛酸四丁酯与15g四丙基氢氧化铵溶液(质量浓度24.4%)混合,搅拌下加入25g去离子水,并在80℃温度下水解并除去醇4小时,同时补充蒸发的水份,得到微黄色透明水溶液;
(2)将步骤(1)所得产物装入不锈钢密闭反应釜中,在80℃静置24小时,得到预晶化产物;
Figure PCTCN2022133454-appb-000005
将2.0g式(Ⅱ)所示化合物加入至上述预晶化产物中,于室温搅拌2小时,形成透明黏稠液体,将上述液体转移至不锈钢密闭反应釜中,于90℃条件下恒温12小时,然后以1℃/min的速度缓慢升温至165℃,恒温2天,然后经过滤,洗涤,120℃干燥12小时,550℃焙烧6小时,得到钛硅分子筛TS-1-8;
本制备例得到的钛硅分子筛TS-1-8的物性参数如表2所示,所述钛硅分子筛TS-1-8的孔径分布图如图3所示,从图3中可以看出TS-1-8含有孔径在2nm的微孔孔道和38nm左右的丰富介孔孔道。因此虽然其微孔比表面积不低,但是微孔比表面积占总比表面积的比例较低。
制备例9
(1)将31.0g硅酸四乙酯、1.8g钛酸四丁酯与15g四丙基氢氧化铵溶液(质量浓度24.4%)混合,搅拌下加入25g去离子水,并在80℃温度下水解并除去醇4小时,同时补充蒸发的水份,得到微黄色透明水溶液;
(2)将步骤(1)所得产物装入不锈钢密闭反应釜中,在80℃静置24小时,得到预晶化产物;
Figure PCTCN2022133454-appb-000006
将2.0g式(Ⅲ)所示化合物加入至上述预晶化产物中,于室温搅拌2小时,形成透明黏稠液体,将上述液体转移至不锈钢密闭反应釜中,于90℃条件下恒温12小时,然后以1℃/min的速度缓慢升温至165℃,恒温2天,然后经过滤,洗涤,120℃干燥12小时,550℃焙烧6小时,得到钛硅分子筛TS-1-9;
本制备例得到的钛硅分子筛TS-1-9的物性参数如表2所示。
表2
Figure PCTCN2022133454-appb-000007
Figure PCTCN2022133454-appb-000008
续表2
Figure PCTCN2022133454-appb-000009
实施例1
(1)将钛硅分子筛TS-1-1与乙胺水溶液混合后进行高温处理,得到第一悬浊液,过滤后得到碱性后处理的钛硅分子筛;所述钛硅分子筛以SiO 2计,所述钛硅分子筛、乙胺水溶液中的乙胺、乙胺水溶液中的水的摩尔比为1:0.5:10;所述高温处理的温度为120℃,时间为60min;
(2)将5g碱性后处理的钛硅分子筛TS-1-1与100mL的氯金酸(HAuCl 4)的水溶液(0.01M)溶液混合,加入NaOH,调节所得混合物的pH为8,得到第二悬浊液;
(3)将所述第二悬浊液进行过滤,得到的滤渣进行活化,得到纳米金负载钛硅分子筛催化剂Au/TS-1-1;
其中,所述活化的条件包括:温度为200℃,时间为3h,活化气体为氢气和氮气的混合气(体积比为1:7);
所述纳米金负载钛硅分子筛催化剂Au/TS-1-1的物性参数如表3所示。
实施例2
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-2,得到纳米金负载钛硅分子筛催化剂Au/TS-1-2,所述纳米金负载钛硅分子筛催化剂Au/TS-1-2的物性参数如表3所示。
实施例3
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-3,得到纳米金负载钛硅分子筛催化剂Au/TS-1-3。所述纳米金负载钛硅分子筛催化剂Au/TS-1-3的物性参数如表3所示,所述催化剂Au/TS-1-3的HAADF-STEM图如图4所示,从图4中可以看出Au/TS-1-3催化剂上的Au纳米粒子尺寸均一(2.4nm左右),且在钛硅分子筛TS-1-3上分散均匀。
实施例4
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-4,得到纳米金负载钛硅分子筛催化剂Au/TS-1-4,所述纳米金负载钛硅分子筛催化剂Au/TS-1-4的物性参数如表3所示。
实施例5
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-5,得到纳米金负载钛硅分子筛催化剂Au/TS-1-5,所述纳米金负载钛硅分子筛催化剂Au/TS-1-5的物性参数如表3所示。
实施例6
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-6,得到纳米金负载钛硅分子筛催化剂Au/TS-1-6,所述纳米金负载钛硅分子筛催化剂Au/TS-1-6的物性参数如表3所示。
实施例7
按照实施例1的方法,不同的是,步骤(2)改为:将5g碱性后处理的钛硅分子筛TS-1-1与100mL的氯金酸(HAuCl 4)的水溶液(0.01M)溶液混合,加入尿素,在70℃下进行加热处理至所得混合物的pH为6,再加入NaOH,调节pH为8,得到第二悬浊液;得到纳米金负载钛硅分子筛催化剂Au/TS-1-1-1,所述纳米金负载钛硅分子筛催化剂Au/TS-1-1-1的物性参数如表3所示。
实施例8
按照实施例3的方法,不同的是,步骤(2)改为:将5g碱性后处理的钛硅分子筛TS-1-3与100mL的氯金酸(HAuCl 4)的水溶液(0.01M)溶液混合,加入尿素,在70℃下进行加热处理至所得混合物的pH为6,再加入NaOH,调节pH为8,得到第二悬浊液;得到纳米金负载钛硅分子筛催化剂Au/TS-1-3-1,所述纳米金负载钛硅分子筛催化剂Au/TS-1-3-1的物性参数如表3所示。
实施例9
按照实施例1的方法,不同的是,省略步骤(1)的碱性后处理过程,将5g钛硅分子筛TS-1-1与100mL的氯金酸(HAuCl 4)的水溶液(0.01M)溶液混合,加入NaOH,调节所得混合物的pH为8,得到第二悬浊液;
将所述第二悬浊液进行过滤,得到的滤渣进行活化,得到纳米金负载钛硅分子筛催化剂Au/TS-1-1-2;
所述纳米金负载钛硅分子筛催化剂Au/TS-1-1-2的物性参数如表3所示。
实施例10
按照实施例3的方法,不同的是,省略步骤(1)的碱性后处理过程,将5g钛硅分子筛TS-1-3与100mL的氯金酸(HAuCl 4)的水溶液(0.01M)溶液混合,加入NaOH,调节所得混合物的pH为8,得到第二悬浊液;
将所述第二悬浊液进行过滤,得到的滤渣进行活化,得到纳米金负载钛硅分子筛催化剂Au/TS-1-3-2;
所述纳米金负载钛硅分子筛催化剂Au/TS-1-3-2的物性参数如表3所示,所述催化剂Au/TS-1-3-2的HAADF-STEM图如图5所示,从图5中可以看出,Au纳米粒子尺寸稍大(3.8nm左右),且在钛硅分子筛TS-1-3-2上分布不均。
实施例11
按照实施例5的方法,不同的是,省略步骤(1)的碱性后处理过程,将5g钛硅分子筛TS-1-5与100mL的氯金酸(HAuCl 4)的水溶液(0.01M)溶液混合,加入NaOH,调节所得混合物的pH为8,得到第二悬浊液;
将所述第二悬浊液进行过滤,得到的滤渣进行活化,得到纳米金负载钛硅分子筛催化剂Au/TS-1-5-1;
所述纳米金负载钛硅分子筛催化剂Au/TS-1-5-1的物性参数如表3所示。
对比例1
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-7,得到纳米金负载钛硅分子筛催化剂Au/TS-1-7,所述纳米金负载钛硅分子筛催化剂Au/TS-1-7的物性参数如表3所示。
对比例2
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-8,得到纳米金负载钛硅分子筛催化剂Au/TS-1-8,所述纳米金负载钛硅分子筛催化剂Au/TS-1-8的物性参数如表3所示。
对比例3
按照实施例1的方法,不同的是,将步骤(1)中的钛硅分子筛TS-1-1替换为钛硅分子筛TS-1-9,得到纳米金负载钛硅分子筛催化剂Au/TS-1-9,所述纳米金负载钛硅分子筛催化剂Au/TS-1-9的物性参数如表3所示。
表3
Figure PCTCN2022133454-appb-000010
Figure PCTCN2022133454-appb-000011
续表3
Figure PCTCN2022133454-appb-000012
Figure PCTCN2022133454-appb-000013
注:1-在单个纳米金负载钛硅分子筛颗粒的HAADF-STEM照片内,将纳米金负载钛硅分子筛划分为相邻的若干(不少于三个)50nm*50nm的区域,计算各50nm*50nm区域Au粒子个数,得到Au粒子的个数范围
2-在单个纳米金负载钛硅分子筛颗粒的HAADF-STEM照片内,将纳米金负载钛硅分子筛划分为相邻的若干(不少于三个)50nm*50nm的区域,计算各50nm*50nm区域Au粒子个数,其中,Au粒子个数最多区域为A1区域,Au粒子个数最少区域为A2区域,Au粒子的个数相差=(A1区Au粒子个数-A2区Au粒子个数)/A1区Au粒子个数
测试例
分别以实施例1-11和对比例1-3制得的纳米金负载钛硅分子筛作为催化剂,将催化剂装入内径为8mm的管式反应器,然后在N 2气氛中升温至180℃,通入氢气、氧气、丙烯开始反应,反应1h后,对产物进行在线分析;其中,催化剂的用量为0.4g,各气体的流量、反应温度和压力如表4所示,催化反应结果如表5所示。
本发明中,采用气相色谱进行评价体系中反应物和产物的分析。其中,气相色谱的分析条件为:Agilent-6890型色谱仪,分子筛5A和PoraBONDU色谱柱,FID和TCD检测器。
丙烯转化率%=(原料中丙烯的摩尔数-产物中丙烯的摩尔数)/原料中丙烯的摩尔数×100%
环氧丙烷选择性%=产物中环氧丙烷的摩尔数/(原料中丙烯的摩尔数-产物中丙烯的摩尔数)×100%
表4
Figure PCTCN2022133454-appb-000014
Figure PCTCN2022133454-appb-000015
表5
  丙烯转化率/% 环氧丙烷选择性/%
测试例1 8.9 92.2
测试例2 9.4 92.4
测试例3 12.3 93.1
测试例4 12.8 94.6
测试例5 11.5 92.9
测试例6 10.6 91.8
测试例7 13.6 97.7
测试例8 13.5 98.5
测试例9 8.2 91.5
测试例10 8.1 91.2
测试例11 8.4 90.5
测试例12 4.5 85.1
测试例13 5.3 88.6
测试例14 6.7 86.3
通过测试例1-11和测试例12-14的对比可以看出,采用本发明提供的硅烷化试剂配合特定的晶化条件,能够制得具有更大微孔体积、微孔比表面积、微孔比表面积占总比表面积的比例的钛硅分子筛,且所得钛硅分子筛表面钛含量高,能够提高丙烯的转化率以及环氧丙烷的选择性。
通过测试例1-8和测试例9-11的对比可以看出,在负载前对钛硅分子筛进行碱性后处理,能够提高金粒子的分散度和0价金含量,进一步提高丙烯的转化率以及环氧丙烷的选择性。
通过测试例1-6和测试例7-8的对比可以看出,在纳米金负载过程中分步调节pH,能更好抑制Au聚集成为大颗粒,进一步提高丙烯的转化率以及环氧丙烷的选择性。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的 技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (20)

  1. 一种钛硅分子筛,其特征在于,所述钛硅分子筛的微孔比表面积为320-500m 2/g,微孔体积为0.1-0.4cm 3/g,介孔比表面积为50-100m 2/g,介孔体积为0.075-0.1cm 3/g,粒径为100-250nm,微孔比表面积占总比表面积的比例为50%-90%。
  2. 根据权利要求1所述的分子筛,其中,所述钛硅分子筛的微孔比表面积为350-480m 2/g,微孔体积为0.13-0.37cm 3/g,介孔比表面积为70-100m 2/g,介孔体积为0.08-0.1cm 3/g,粒径为150-210nm,微孔比表面积占总比表面积的比例为60%-90%。
  3. 根据权利要求1或2所述的分子筛,其中,在所述钛硅分子筛中,130%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<220%。
  4. 根据权利要求3所述的分子筛,其中,在所述钛硅分子筛中,145%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<200%。
  5. 根据权利要求1-4中任意一项所述的分子筛,其中,所述钛硅分子筛中钛和硅的摩尔比为0.001-0.04:1,优选为0.005-0.025:1。
  6. 一种纳米金负载钛硅分子筛的催化剂,其特征在于,所述催化剂包括钛硅分子筛载体和负载在所述载体上的纳米金;其中,所述催化剂的微孔体积为0.06-0.4cm 3/g,微孔比表面积为160-450m 2/g,介孔体积为0.05-0.08cm 3/g,介孔比表面积为40-85m 2/g,粒径为100-250nm。
  7. 根据权利要求6所述的催化剂,其中,所述催化剂的微孔体积为0.1-0.3cm 3/g,微孔比表面积为260-410m 2/g,介孔体积为0.058-0.078cm 3/g,介孔比表面积为45-80m 2/g,粒径为150-210nm。
  8. 根据权利要求6或7所述的催化剂,其中,在所述催化剂中,130%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<220%。
  9. 根据权利要求8所述的催化剂,其中,在所述催化剂中,145%<表面Ti/Si(mol%)/体相Ti/Si(mol%)×100%<200%。
  10. 根据权利要求6-9中任意一项所述的催化剂,其中,所述纳米金中超过90%的金的化合价为0价。
  11. 根据权利要求6-10中任意一项所述的催化剂,其中,在所述催化剂上的任意50nm*50nm区域内Au粒子的个数相差不超过30%。
  12. 根据权利要求6-11中任意一项所述的催化剂,其中,在所述催化剂上的任意50nm*50nm区域内的Au粒子的个数为5-40;
    优选地,所述Au粒子的粒径为0.1-5nm。
  13. 根据权利要求6-12中任意一项所述的催化剂,其中,所述催化剂中钛和硅的摩尔比为0.001-0.04:1,优选为0.005-0.025:1。
  14. 根据权利要求6-13中任意一项所述的催化剂,其中,基于所述催化剂的总量,所述纳米金的含量为0.01wt%-1wt%,优选为0.04wt%-0.8wt%,更优选为0.04wt%-0.5wt%。
  15. 一种制备纳米金负载钛硅分子筛的催化剂的方法,其特征在于,所述方法利用脂肪胺水溶液对钛硅分子筛进行碱性处理后负载纳米金粒子得到所述催化剂;
    其中,所述钛硅分子筛为权利要求1-5中任意一项所述的钛硅分子筛。
  16. 根据权利要求15所述的方法,其中,所述方法包括:
    (1)将钛硅分子筛与脂肪胺水溶液混合并过滤后得到碱性后处理的钛硅分子筛;
    (2)将所述碱性后处理的钛硅分子筛与含金化合物水溶液混合,调节所得混合物的pH为7-9,得到悬浊液;
    (3)将所述悬浊液进行过滤,得到的滤渣进行活化,得到所述催化剂。
  17. 根据权利要求15或16所述的方法,其中,在步骤(1)中,所述脂肪胺选自乙胺、正丙胺、乙二胺、正丁胺、二正丙胺、丁二胺和己二胺中的至少一种;
    所述钛硅分子筛以SiO 2计,所述钛硅分子筛、脂肪胺水溶液中的脂肪胺、脂肪胺水溶液中的水的摩尔比为1:(0.01-1):2-20;
    优选地,在步骤(1)中,所述混合的温度为80-250℃,时间为10-120min;
    优选地,在步骤(2)中,所述含金化合物水溶液选自氯金酸水溶液;
    所述氯金酸水溶液的浓度为0.0001-0.1M,优选为0.0005-0.05M,更优选为0.005-0.05M;
    所述氯金酸水溶液以金计,所述氯金酸水溶液的用量为所述碱性后处理的钛硅分子筛的0.01wt%-5wt%,优选为0.1wt-5wt%。
  18. 根据权利要求15-17中任意一项所述的方法,其中,步骤(2)为:将所述碱性后处理的钛硅分子筛与含金化合物水溶液混合,加入弱碱性pH调节剂,进行加热处理至所得混合物的pH为5-6,再加入强碱性pH调节剂,调节pH为7-9,得到悬浊液;
    优选地,所述加热处理的温度为50-95℃。
  19. 一种权利要求15-18中任意一项所述的方法制得的纳米金负载钛硅分子筛的催化剂。
  20. 一种权利要求6-14和19中任意一项所述的纳米金负载钛硅分子筛的催化剂在烯烃环氧化反应、环烯烃环氧化反应、苯酚羟基化反应、环己酮氨肟化反应中的应用;
    优选地,所述烯烃环氧化反应为丙烯气相环氧化反应。
PCT/CN2022/133454 2021-12-22 2022-11-22 钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用 WO2023116315A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111579941.1A CN116332194A (zh) 2021-12-22 2021-12-22 钛硅分子筛及其制备方法和苯酚羟基化方法
CN202111579946.4A CN116332200A (zh) 2021-12-22 2021-12-22 钛硅分子筛及其制备方法和制备环己酮肟的方法、制备己内酯的方法
CN202111579946.4 2021-12-22
CN202111579941.1 2021-12-22
CN202210239081.5A CN116764676A (zh) 2022-03-11 2022-03-11 纳米金负载钛硅分子筛及其制备方法和丙烯气相环氧化的方法
CN202210239081.5 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023116315A1 true WO2023116315A1 (zh) 2023-06-29

Family

ID=86901196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133454 WO2023116315A1 (zh) 2021-12-22 2022-11-22 钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023116315A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101530814A (zh) * 2008-03-10 2009-09-16 中国科学院成都有机化学有限公司 丙烯直接氧化制备环氧丙烷的纳米金催化剂及其制备方法
CN102513151A (zh) * 2010-03-08 2012-06-27 中国科学院成都有机化学有限公司 一种高性能纳米金催化剂的制备方法
CN103183355A (zh) * 2011-12-30 2013-07-03 中国石油化工股份有限公司 一种钛硅分子筛的贵金属改性方法
CN104556115A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 钛硅分子筛合成方法
CN107840344A (zh) * 2016-09-21 2018-03-27 中国石油化工股份有限公司 一种钛硅分子筛及其制备方法和应用
CN108706716A (zh) * 2018-06-22 2018-10-26 浙江海洋大学 一种废水中含氮有机物的处理方法
CN112007690A (zh) * 2019-05-31 2020-12-01 中国石油化工股份有限公司 核壳结构钛硅材料及其制备方法和大分子酮类氨肟化反应生产酮肟的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101530814A (zh) * 2008-03-10 2009-09-16 中国科学院成都有机化学有限公司 丙烯直接氧化制备环氧丙烷的纳米金催化剂及其制备方法
CN102513151A (zh) * 2010-03-08 2012-06-27 中国科学院成都有机化学有限公司 一种高性能纳米金催化剂的制备方法
CN103183355A (zh) * 2011-12-30 2013-07-03 中国石油化工股份有限公司 一种钛硅分子筛的贵金属改性方法
CN104556115A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 钛硅分子筛合成方法
CN107840344A (zh) * 2016-09-21 2018-03-27 中国石油化工股份有限公司 一种钛硅分子筛及其制备方法和应用
CN108706716A (zh) * 2018-06-22 2018-10-26 浙江海洋大学 一种废水中含氮有机物的处理方法
CN112007690A (zh) * 2019-05-31 2020-12-01 中国石油化工股份有限公司 核壳结构钛硅材料及其制备方法和大分子酮类氨肟化反应生产酮肟的方法

Similar Documents

Publication Publication Date Title
Abedi et al. Ordered mesoporous metal–organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective aerobic oxidation in sunlight irradiation
Du et al. Ionic liquid-enhanced immobilization of biosynthesized Au nanoparticles on TS-1 toward efficient catalysts for propylene epoxidation
TWI582066B (zh) A method of producing dimethyl subunit
CN1803938B (zh) TiO2/CaCO3纳米复合颗粒和空心TiO2纳米材料及其制备方法
CN101885493B (zh) ZSM-5/β核壳型分子筛的合成方法
Song et al. Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts: Towards enhanced stability for propene epoxidation with H2 and O2
CN104001505A (zh) 类三明治空心结构金属氧化物@贵金属纳米粒子@金属氧化物催化剂、制备方法及其用途
CN103896302B (zh) 一种硅分子筛及其制备方法
CN106673008A (zh) 一种多级结构zsm‑5沸石分子筛及其合成方法、应用
TW200934728A (en) Process for the preparation of TS-1 zeolites
CN101530814A (zh) 丙烯直接氧化制备环氧丙烷的纳米金催化剂及其制备方法
CN104556130B (zh) 气相法合成ZSM-5/Silicalite核壳分子筛的方法
WO2010144558A2 (en) Nano-metal catalysts for polyol hydrogenolysis
Yuan et al. Mesoporogen-free strategy to construct hierarchical TS-1 in a highly concentrated system for gas-phase propene epoxidation with H2 and O2
CN109513458B (zh) 一种具有骨架钨原子的mfi型分子筛催化剂及制备方法和催化应用
CN107651693B (zh) 一种多级有序介孔分子筛的直接合成方法
CN103360344B (zh) 一种催化丙烯环氧化的方法
CN107670697B (zh) 可见光催化环己烷选择性氧化的催化剂及其制备方法
CN102633581A (zh) 纳米氧化钛介孔复合材料负载铂催化剂在催化氢化反应中的应用
CN109876804B (zh) 一种用于苯选择性加氢制环己烯的二氧化钛负载钌催化剂及其制备方法
CN104556109B (zh) 一种钛硅分子筛的制备方法和一种苯酚氧化方法
CN104495868B (zh) 一种大粒径钛硅分子筛的制备方法
WO2023116315A1 (zh) 钛硅分子筛和纳米金负载钛硅分子筛的催化剂及其制备方法和应用
CN105217650B (zh) 介孔钛硅分子筛及其合成方法和应用以及一种2,6‑二叔丁基苯酚氧化的方法
CN111468178A (zh) 一种金属改性zsm-5分子筛催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909630

Country of ref document: EP

Kind code of ref document: A1