WO2023116015A1 - 制氢设备和制氢设备的电解槽温度控制方法 - Google Patents

制氢设备和制氢设备的电解槽温度控制方法 Download PDF

Info

Publication number
WO2023116015A1
WO2023116015A1 PCT/CN2022/115109 CN2022115109W WO2023116015A1 WO 2023116015 A1 WO2023116015 A1 WO 2023116015A1 CN 2022115109 W CN2022115109 W CN 2022115109W WO 2023116015 A1 WO2023116015 A1 WO 2023116015A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
liquid
flow path
inlet
cooling
Prior art date
Application number
PCT/CN2022/115109
Other languages
English (en)
French (fr)
Inventor
赵会刚
罗向玉
张永辉
齐成天
Original Assignee
无锡隆基氢能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡隆基氢能科技有限公司 filed Critical 无锡隆基氢能科技有限公司
Publication of WO2023116015A1 publication Critical patent/WO2023116015A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/027Temperature
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the disclosure relates to the technical field of hydrogen production by alkaline electrolysis of water, and in particular, to a hydrogen production equipment and a method for controlling the temperature of an electrolyzer of the hydrogen production equipment.
  • Alkaline electrolyzed water hydrogen production technology has been widely used due to its low manufacturing cost, mature structural framework, and long stack life.
  • the temperature of the electrolyzer is a very important process parameter. If the temperature is too high, it will not only increase the amount of electrolyte taken away by the electrolyzed gas, but also accelerate the corrosion of the equipment and reduce the life of the equipment. If the temperature is too low, the circulation speed of the electrolyte will be affected, and the current will not be easily increased, resulting in a decrease in gas production and an increase in power consumption.
  • the purpose of the present disclosure is to provide a hydrogen production equipment and a method for controlling the temperature of the electrolyzer of the hydrogen production equipment, so as to solve the technical problem of the temperature drop of the electrolyzer in the shutdown hydrogen production equipment.
  • the present disclosure provides a hydrogen production equipment, including: a centralized cooling device, including a water exchange tank and a cooling water tank connected to each other, the heat exchange tank stores heat preservation liquid, and the centralized cooling device is configured as follows: The returned liquid passes through the heat exchange tank and the cooling water tank in turn to form cooling liquid, and at least one hydrogen production device communicates with the centralized cooling device through a cooling circulation pipeline, and the cooling circulation pipeline includes: The liquid flow path is used to make the liquid in the centralized cooling device flow out to the hydrogen production device; and the liquid return flow path is used to return the liquid from the hydrogen production device to the centralized cooling device; the cooling The circulation pipeline is configured as follows: when the hydrogen production device stops working, the liquid inlet flow path communicates with the heat exchange tank, so that the heat preservation liquid enters the hydrogen production device for heat preservation; when the hydrogen production device is normal During operation, the liquid inlet flow path communicates with the cooling water tank, so that the cooling liquid enter
  • the hydrogen production device includes an electrolytic cell, a gas-liquid separator arranged downstream of the electrolytic cell, a gas condenser arranged downstream of the gas path of the gas-liquid separator, and a gas condenser arranged in sequence in the gas-liquid separator.
  • the lye circulating pump and the lye cooler downstream of the liquid path of the liquid separator wherein the lye separated from the gas-liquid separator is pumped to the lye cooler for cooling by the lye circulating pump
  • the gas separated from the gas-liquid separator enters the gas condenser for cooling.
  • the liquid inlet flow path includes: a first flow path, which communicates with the centralized cooling device and the The gas condenser, the second flow path communicates with the centralized cooling device and the lye circulating pump, the third flow path communicates with the centralized cooling device and the lye cooler, and the first three-way valve includes a first inlet communicating with the heat exchange tank, a second inlet communicating with the cooling water tank, a first outlet communicating with the first flow path and the second flow path respectively, and a second three-way valve, It includes a third inlet communicated with the first outlet, a fourth inlet communicated with the heat exchange tank, and a second outlet communicated with the third flow path, the liquid inlet flow path is configured to: when the When the hydrogen production device stops working, the first inlet is connected to the first outlet, and the fourth inlet is connected to the second outlet, so that the heat exchange tank is connected to the first flow path, The second flow path communicates with the third flow path; when the hydrogen production device is working normally, the second inlet is connected
  • a temperature sensor for detecting the temperature of the lye is provided at the liquid inlet of the electrolytic cell, and a pneumatic diaphragm regulator with an adjustable opening V is provided between the fourth inlet and the heat exchange tank, The pneumatic diaphragm regulator is configured to adjust the magnitude of V according to the difference between the actual temperature T detected by the temperature sensor and the preset temperature T0 when the hydrogen production device stops working.
  • the pneumatic diaphragm regulator is configured as follows: when T>T0+ ⁇ T, V decreases; when T ⁇ T0- ⁇ T, V increases; when (T0- ⁇ T) ⁇ T ⁇ (T0+ ⁇ T ), V remains unchanged, where ⁇ T is the allowable temperature deviation range parameter.
  • the liquid inlet flow path is further configured to: keep V at the maximum set value when V ⁇ the maximum set value and T is still less than T0- ⁇ T; when V ⁇ the minimum set value and T When it is still greater than T0+ ⁇ T, the second inlet is connected to the first outlet, and the third inlet is connected to the second outlet until T ⁇ T0+ ⁇ T, the first The inlet is connected to the first outlet, and the fourth inlet is connected to the second outlet.
  • the hydrogen production equipment further includes a liquid replenishment device, and the liquid replenishment device can replenish heat preservation liquid to the heat exchange tank, and can replenish cooling liquid to the cooling water tank.
  • the liquid returned from the hydrogen production device can take away the heat of the hydrogen production device, and the returned liquid can be mixed with the heat preservation liquid when it enters the heat exchange tank through the liquid return flow path.
  • Heat exchange so that the temperature of the heat preservation liquid rises, that is, a part of the heat generated by the hydrogen production device during normal operation can be stored in the heat exchange tank, and then the returned liquid enters the cooling water tank, which can exchange heat with the cooling water tank. is cooled to form a coolant.
  • its liquid inlet flow path is connected with the cooling water tank to connect the cooling liquid with a lower temperature to cool the hydrogen production device.
  • the hydrogen production device stops working, its liquid inlet flow path It is connected with the heat exchange tank to connect the heat preservation liquid with higher temperature.
  • the heat preservation liquid flows through the hydrogen production device, it can heat and keep the electrolytic cell of the hydrogen production device, so as to avoid the temperature drop of the hydrogen production device that stops working. Therefore, the heat exchange between the refluxed liquid and the heat preservation liquid in the heat exchange tank, and the heat preservation liquid circulates in the hydrogen production device that is not working, can use the heat generated by the hydrogen production device that is working normally in the hydrogen production equipment for cooling
  • the working hydrogen production device is heated and kept warm to avoid waste of heat energy, shorten the start-up time of the stopped hydrogen production device, and improve the overall operating efficiency of the equipment.
  • the present disclosure also provides a method for controlling the temperature of an electrolytic cell of hydrogen production equipment
  • the hydrogen production equipment includes: a centralized cooling device, including a water exchange tank and a cooling water tank connected to each other, the heat exchange The heat preservation liquid is stored in the water tank, and the centralized cooling device is configured as follows: the returned liquid passes through the heat exchange tank and the cooling water tank in turn to form a cooling liquid, and at least one hydrogen production device passes through the cooling circulation pipeline and the cooling water tank.
  • the centralized cooling device is connected, and the cooling circulation pipeline includes: a liquid inlet flow path, used to make the liquid in the centralized cooling device flow out to the hydrogen production device; and a liquid return flow path, used to make the liquid flow from the The hydrogen production device returns to the centralized cooling device;
  • the electrolytic cell temperature control method includes: judging whether the hydrogen production device is working normally; The cooling water tank is communicated; the liquid inlet flow path of the stopped hydrogen production device is communicated with the heat exchange tank.
  • the hydrogen production device includes an electrolytic cell, a gas-liquid separator arranged downstream of the electrolytic cell, a gas condenser arranged downstream of the gas path of the gas-liquid separator, and a gas condenser arranged sequentially downstream of the gas-liquid separator.
  • the liquid inlet flow path includes: a first flow path, which communicates with the centralized cooling device With the gas condenser, the second flow path communicates with the centralized cooling device and the lye circulating pump, the third flow path communicates with the centralized cooling device and the lye cooler, and the first three-way valve , including a first inlet communicating with the heat exchange tank, a second inlet communicating with the cooling water tank, a first outlet communicating with the first flow path and the second flow path respectively, and a second tee A valve, including a third inlet communicated with the first outlet, a fourth inlet communicated with the heat exchange tank, and a second outlet communicated with the third flow path; the hydrogen producing
  • the step of communicating the liquid inlet flow path of the device with the cooling water tank includes: in the hydrogen production device in normal operation, connecting the second inlet with the first outlet, connecting the third inlet It is connected with the second outlet; the step of communicating the liquid inlet flow path of the hydrogen production device that will stop working with the heat exchange tank includes
  • a temperature sensor for detecting the temperature of the lye is provided at the liquid inlet of the electrolytic cell, and a pneumatic diaphragm regulator with an adjustable opening V is provided between the fourth inlet and the heat exchange tank,
  • the step of communicating the liquid inlet flow path of the hydrogen production device that will stop working with the heat exchange tank further includes: according to the difference between the actual temperature T detected by the temperature sensor and the preset temperature T0 And adjust the size of V.
  • the step of adjusting V according to the difference between the actual temperature T detected by the temperature sensor and the preset temperature T0 includes: when T>T0+ ⁇ T, V decreases; when T ⁇ When T0- ⁇ T, V increases; when (T0- ⁇ T) ⁇ T ⁇ (T0+ ⁇ T), V remains unchanged, where ⁇ T is the allowable temperature deviation range parameter.
  • the step of adjusting V according to the difference between the actual temperature T detected by the temperature sensor and the preset temperature T0 further includes: when V ⁇ the maximum set value, T is still less than T0- ⁇ T , keep V at the maximum set value; when V ⁇ min set value and T is still greater than T0+ ⁇ T, connect the second inlet with the first outlet, and connect the third inlet Conducting with the second outlet until T ⁇ T0+ ⁇ T, connecting the first inlet with the first outlet, and connecting the fourth inlet with the second outlet.
  • the liquid returned from the hydrogen production device can take away the heat of the hydrogen production device, and the returned liquid enters the exchange through the liquid return flow path.
  • the hot water tank can exchange heat with the heat preservation liquid, so that the temperature of the heat preservation liquid rises, that is, a part of the heat generated by the hydrogen production device during normal operation can be stored in the heat exchange water tank, and then the returned liquid enters the cooling water tank, which can It is cooled by exchanging heat with the cooling water tank to form coolant.
  • the hot water tank is connected to connect the heat preservation liquid with a higher temperature.
  • the heat preservation liquid flows through the hydrogen production device, it can heat and keep the electrolytic cell of the hydrogen production device, so as to avoid the temperature drop of the hydrogen production device that stops working.
  • the heat generated by the hydrogen production device that is normally working in the hydrogen production equipment can be used to keep the hydrogen production device that is not working to keep warm, so as to avoid the waste of heat energy and shorten the start-up time of the hydrogen production device that is not working , Improve the overall operating efficiency of the equipment.
  • Fig. 1 is the working principle figure of electrolyzer temperature control system in the embodiment of the present disclosure
  • Fig. 2 is a flow chart of the control method of the electrolytic tank temperature control system in the specific embodiment of the present disclosure.
  • 1,1'-hydrogen production device 11,11'-electrolyzer; 12,12'-gas-liquid separator; 13,13'-gas condenser; 14,14'-lye circulating pump; 15,15' - lye cooler; 16, 16' - temperature sensor;
  • 3,3'-cooling circulation pipeline 31,31'-inlet flow path; 311,311'-first flow path; 312,312'-second flow path; 313,313'-third flow path; 301 , 301'-the first three-way valve; 1a, 1a'-the first inlet; 1b, 1b'-the second inlet; 1c, 1c'-the first outlet; 302, 302'-the second three-way valve; 2a, 2a'-the third inlet; 2b, 2b'-the fourth inlet; 2c, 2c'-the second outlet; 32, 32'-return flow path; 33, 33'-pneumatic diaphragm regulator.
  • orientation words used such as “upstream and downstream” refer to upstream and downstream along the direction of gas or liquid flow, and “inner and outer” refer to the relative parts themselves. The inside and outside of the silhouette.
  • the terms “first”, “second”, and the like used in the present disclosure are for distinguishing one element from another, and do not have sequence or importance.
  • the same numerals in different drawings indicate the same or similar elements unless otherwise indicated.
  • a hydrogen production equipment may include a centralized cooling device 2 and at least one hydrogen production device. Device 2 is connected. Since the hydrogen production device has two working states of normal operation and stop operation, when the hydrogen production equipment includes multiple hydrogen production devices, only the hydrogen production device 1 and the hydrogen production device 1' are shown in Fig. 1, so as to facilitate Distinguish between two hydrogen production devices in different working states.
  • the centralized cooling device 2 may include a water exchange tank 21 and a cooling water tank 22 communicated with each other, and heat preservation liquid is stored in the heat exchange tank 21, and the centralized cooling device 2 may be configured as The liquid returned in 1' passes through the heat exchange tank 21 and the cooling water tank 22 in sequence to form cooling liquid.
  • a cavity (not shown) for accommodating heat preservation liquid may be provided in the heat exchange tank 21, and when the returned liquid passes through the heat exchange tank 21, it may flow through the outside of the cavity and contact with the heat preservation liquid in the cavity. liquid for heat exchange.
  • a cooling water return valve 23 may also be provided between the heat exchange tank 21 and the cooling water tank 22 to open or cut off the communication between the heat exchange tank 21 and the cooling water tank 22.
  • the cooling return water valve 23 is normally open , to open the communication between the heat exchange tank 21 and the cooling water tank 22, when the centralized cooling device 2 needs to be overhauled, the cooling return valve 23 can be closed to cut off the communication between the heat exchange tank 21 and the cooling water tank 22 Easy to overhaul.
  • the hydrogen production device 1 and the hydrogen production device 1' can communicate with the centralized cooling device 2 through respective cooling circulation pipelines 3 and cooling circulation pipelines 3'.
  • the cooling circulation pipeline 3, 3' includes a liquid inlet flow path 31, 31' and a liquid return flow path 32, 32', and the liquid inlet flow path 31, 31' is used to make the liquid in the centralized cooling device 2 flow out to the hydrogen production device 1, 1', the liquid return flow path 32, 32' is used to return the liquid from the hydrogen production device 1, 1' to the heat exchange tank 21 of the centralized cooling device 2, and the cooling circulation pipeline 3 is configured so that when the hydrogen production device 1 stops When working, the liquid inlet flow path 31 communicates with the cavity in the heat exchange tank 21, so that the heat preservation liquid enters the hydrogen production device 1 for heat preservation.
  • the liquid inlet flow path 31 communicates with the cooling water tank 22 , so that the cooling liquid enters the hydrogen production device 1 for cooling
  • the cooling circulation pipeline 3' is configured such that when the hydrogen production device 1' stops working, the liquid inlet flow path 31' communicates with the cavity in the heat exchange tank 21, so that The heat preservation liquid enters the hydrogen production device 1' for heat preservation.
  • the liquid inlet flow path 31' communicates with the cooling water tank 22, so that the cooling liquid enters the hydrogen production device 1' for cooling.
  • the liquid inlet flow path 31 of the hydrogen production device 1 is connected to the cooling water tank 22 and the hydrogen production device 1, so that the cooling liquid enters the hydrogen production device 1 and corrects it.
  • Each part of the cooling system is cooled, and the temperature-increased cooling liquid flows back to the centralized cooling device 2 through the liquid return flow path 32.
  • the returned liquid first passes through the heat exchange tank 21 and transfers a part of the heat to the heat preservation liquid, so that the heat preservation liquid The temperature rises, and then enters the cooling water tank 22 to be completely cooled to form cooling liquid with a lower temperature.
  • the liquid inlet flow path 31' of the hydrogen production device 1' communicates with the cavity of the heat exchange tank 21 and the hydrogen production device 1', so that the heat preservation liquid enters the hydrogen production device 1' to heat each part of it, and the heat preservation of the temperature drops
  • the liquid returns to the centralized cooling device 2 through the liquid return flow path 32'. Since the thermal insulation liquid cannot return to the cavity of the heat exchange tank 21 after returning to the centralized cooling device 2, when the cavity of the heat exchange tank 21 is connected with the liquid inlet flow path, it is necessary to use the following liquid replacement device to replace the heat exchange
  • the water tank 21 is replenished with liquid, so that there is always a certain amount of thermal insulation liquid in the cavity of the heat exchange tank 21 .
  • the return of the thermal insulation liquid to the cooling water tank 22 will cause more and more cooling liquid in the cooling water tank 22.
  • the excess cooling liquid can be discharged, or the excess cooling liquid can be discharged Enter the following liquid replenishment device, so that excess cooling liquid is replenished into the cavity of the heat exchange tank 21 as the heat preservation liquid through the liquid replenishment device.
  • the heat preservation liquid of the heat exchange tank 21 is stored in the cavity and does not flow. At this time, there is no need to replenish the water exchange tank 21 through the liquid replenishment device.
  • the hydrogen production equipment When there is only one hydrogen production device in the hydrogen production equipment, take the hydrogen production equipment only having the hydrogen production device 1 in Fig. 1 but not the hydrogen production device 1' as an example to illustrate its working process.
  • the liquid inlet flow path 31 is connected to the cooling water tank 22 and the hydrogen production device 1, so that the cooling liquid enters the hydrogen production device 1 to cool various parts thereof, and the temperature-increased cooling liquid is returned to the hydrogen production device 1.
  • the liquid flow path 32 flows back into the centralized cooling device 2, and the returned liquid first passes through the heat exchange tank 21 and transfers a part of the heat carried to the heat preservation liquid, so that the temperature of the heat preservation liquid rises, so that part of the heat generated by the hydrogen production device 1
  • the heat is stored in the heat exchange tank 21, and then enters the cooling water tank 22 to be completely cooled to form a cooling liquid with a lower temperature.
  • the liquid inlet flow path 31 communicates with the cavity of the heat exchange tank 21 and the hydrogen production device 1, so that the insulating liquid enters the hydrogen production device 1 to heat various parts thereof, thereby storing the heat in the hydrogen production device 1.
  • the heat in the heat exchange tank 21 is used to keep the hydrogen production device 1 out of operation for heat preservation.
  • the liquid returned from the hydrogen production device can take away the heat of the hydrogen production device, and the returned liquid can be in contact with the thermal insulation when entering the heat exchange tank 21 through the liquid return flow path.
  • Liquid heat exchange so that the temperature of the insulating liquid rises, that is, a part of the heat generated by the hydrogen production device during normal operation can be stored in the heat exchange tank 21, and then the returned liquid enters the cooling water tank 22, and can be connected with the cooling water tank 22 It is cooled by exchanging heat to form a cooling liquid.
  • its liquid inlet flow path is connected with the cooling water tank 22 to connect the cooling liquid with a lower temperature to cool the hydrogen production device.
  • the circuit is connected with the heat exchange tank 21 to connect the heat preservation liquid with a higher temperature.
  • the heat preservation liquid flows through the hydrogen production device, it can heat and insulate the electrolytic cell of the hydrogen production device, so as to avoid the temperature of the hydrogen production device that stops working. decline. Therefore, the heat exchange between the refluxed liquid and the thermal insulation fluid in the heat exchange tank 21, and the thermal insulation fluid circulates in the hydrogen production device that stops working can use the heat generated by the hydrogen production device that is normally working in the hydrogen production equipment to The hydrogen production device that stops working is heated and kept warm to avoid waste of heat energy, shorten the start-up time of the hydrogen production device that stops working, and improve the overall operating efficiency of the equipment.
  • the hydrogen production device 1, 1' can include an electrolyzer 11 and an electrolyzer 11', a gas-liquid separator 12, 12' arranged downstream of the electrolyzer, a gas-liquid separator arranged at the gas-liquid separator 12, 12'
  • the gas condenser 13,13' at the downstream of the gas path, and the lye circulation pump 14,14' and the lye cooler 15,15' which are arranged successively at the liquid path downstream of the gas-liquid separator 12,12', wherein, from The lye separated in the gas-liquid separator 12, 12' is pumped to the lye cooler 15, 15' through the lye circulating pump 14, 14' and returns to the electrolytic cell 11, 11' after being cooled, to be separated from the gas-liquid
  • the gas separated in the device 12, 12' enters the gas condenser 13, 13' for cooling.
  • the liquid inlet flow path 31, 31' includes a first flow path 311, 311' communicating with the centralized cooling device 2 and the gas condenser 13, 13', and communicating with the centralized cooling device 2 and the lye circulating pump 14, 14 '
  • the second flow path 312,312' is connected to the centralized cooling device 2 and the third flow path 313,313' of the alkali cooler 15,15'
  • the liquid inlet flow path 31,31' also includes a first three-way valve 301, 301' and the second three-way valve 302, 302'
  • the first three-way valve 301, 301' may include a first inlet 1a, 1a' communicating with the cavity of the heat exchange tank 21, and a first inlet 1a, 1a' communicating with the cooling water tank 22.
  • the second inlet 1b, 1b' and the first outlet 1c, 1c' communicated with the first flow path 311, 311' and the second flow path 312, 312' respectively, and the second three-way valve 302, 302' may include a The third inlet 2a, 2a' communicated with the outlet 1c, 1c', the fourth inlet 2b, 2b' communicated with the cavity of the heat exchange tank 21, and the second outlet 2c, 2c communicated with the third flow path 313, 313' '.
  • the liquid inlet flow path 31 is configured such that when the hydrogen production device 1 stops working, the first inlet 1a is connected to the first outlet 1c, and the fourth inlet 2b is connected to the second outlet 2c, so that the heat exchange tank 21 is connected to the second outlet 2c respectively.
  • the first flow path 311, the second flow path 312, and the third flow path 313 are in communication; when the hydrogen production device 1 is working normally, the second inlet 1b is connected to the first outlet 1c, and the third inlet 2a is connected to the second outlet 2c. So that the cooling water tank 22 communicates with the first flow path 311 , the second flow path 312 and the third flow path 313 respectively.
  • the liquid inlet channel 31' is configured such that when the hydrogen production device 1' stops working, the first inlet 1a' is connected to the first outlet 1c', and the fourth inlet 2b' is connected to the second outlet 2c', so that the replacement
  • the hot water tank 21 communicates with the first flow path 311', the second flow path 312' and the third flow path 313' respectively; when the hydrogen production device 1' is working normally, the second inlet 1b' is connected with the first outlet 1c',
  • the third inlet 2a' communicates with the second outlet 2c', so that the cooling water tank 22 communicates with the first flow path 311', the second flow path 312' and the third flow path 313' respectively.
  • the second inlet 1b of the first three-way valve 301 is connected to the second inlet 1b of the first three-way valve 301.
  • An outlet 1c is connected to form a cooling flow path of cooling water tank 22-second inlet 1b-first outlet 1c-first flow path 311-gas condenser 13, and cooling water tank 22-second inlet 1b-first outlet 1c -the second flow path 312-the cooling flow path of the lye circulation pump 14, so that the cooling liquid cools the gas condenser 13 and the lye circulation pump 14, and connects the third inlet 2a of the second three-way valve 302 to the second outlet 2c conduction, to form the cooling flow path of cooling water tank 22-the second inlet 1b-the first outlet 1c-the third inlet 2a-the second outlet 2c-the third flow path 313-lye cooler 15, so that the cooling liquid is
  • the lye cooler 15 is cooled, because the lye is circulated along the circulation path of the electrolyzer-gas-liquid separator-lye circulation pump-lye cooler-electrolyte all the time, therefore, the cooling liquid is circulating through the lye The pump 14 and
  • the first inlet 1a' of the first three-way valve 301' is connected with the first outlet 1c' to form the water exchange tank 21 - the first inlet 1a' - the first outlet 1c' - the first flow path 311' - the heating flow path of the gas condenser 13', and the heat exchange tank 21 - the first inlet 1a' - the first outlet 1c' - the second flow Road 312'-the heating flow path of the lye circulating pump 14', so that the insulating liquid heats and insulates the gas condenser 13' and the lye circulating pump 14', and connects the fourth inlet 2b' of the second three-way valve 302' to the
  • the second outlet 2c' is turned on to form a heating flow path of the heat exchange tank 21-the fourth inlet 2b'-the second outlet 2c'-the third flow path 313'-the alkali cooler 15
  • the heat preservation liquid is flowing through the lye
  • the circulating pump 14' and the lye cooler 15' can heat and insulate the lye so that the lye returned to the electrolytic cell 11' can maintain a certain temperature and can exchange heat with the electrolytic cell 11', thereby realizing electrolysis Heating and heat preservation of tank 11'.
  • the second inlet 1b of the first three-way valve 301 is connected with the first outlet 1c to form the cooling water tank 22-the second inlet 1b-the first outlet 1c-the first flow path 311-the cooling flow path of the gas condenser 13, and the cooling water tank 22-the second inlet 1b-the first outlet 1c-the second flow path 312-the cooling flow of the lye circulation pump 14 way, so that the cooling liquid cools the gas condenser 13 and the lye circulation pump 14, and connects the third inlet 2a of the second three-way valve 302 with the second outlet 2c to form a cooling water tank 22-second inlet 1b- The first outlet 1c-the third inlet 2a-the second outlet 2c-the third flow path 313-the cooling flow path of the lye cooler 15, so that the cooling liquid cools the lye cooler 15, because the lye is always along the electrolytic The circulation path of tank-gas
  • the first inlet 1a of the first three-way valve 301 is connected to the first outlet 1c to form the heat exchange tank 21-the first inlet 1a-the first outlet 1c-the first flow path 311-
  • the lye circulation pump 14 is heated and kept warm
  • the fourth inlet 2b of the second three-way valve 302 is connected with the second outlet 2c to form the heat exchange tank 21-the fourth inlet 2b-the second outlet 2c-the third flow path 313-The heating flow path of the lye cooler 15, so that the heat preservation liquid heats and keeps the lye cooler 15, because the lye is always along the electrolytic cell-gas-liquid separator-lye circulating pump-lye cooler-electrolysis
  • the liquid inlet place of electrolyzer 11,11' can be provided with the temperature sensor 16,16' that is used to detect the temperature of lye, to detect the temperature of the lye that is returned to the electrolyzer 11', the second Between the fourth inlet 2b, 2b' of the three-way valve 301' and the heat exchange tank 21, a pneumatic diaphragm regulator 33, 33' with an adjustable opening V can be arranged, and the pneumatic diaphragm regulator 33, 33' is configured as follows: When the hydrogen production device 1, 1' stops working, the magnitude of V is adjusted according to the difference between the actual temperature T detected by the temperature sensor 16, 16' and the preset temperature T0.
  • the pneumatic diaphragm regulator 33, 33' can be configured as follows: when T>T0+ ⁇ T, V decreases; when T ⁇ T0- ⁇ T, V increases; when (T0- ⁇ T) ⁇ T ⁇ (T0 + ⁇ T), V remains unchanged, wherein, ⁇ T is the allowable temperature deviation range parameter to allow the temperature of the lye to fluctuate within the range of T0 ⁇ T, that is, (T0- ⁇ T) ⁇ T ⁇ (T0+ ⁇ T) is Preset temperature range.
  • the fourth inlet 2b of the second three-way valve 302 is not in communication with the second outlet 2c, therefore, the pneumatic diaphragm adjustment Device 33 does not work.
  • the fourth inlet 2b' of the second three-way valve 302' is in communication with the second outlet 2c', and the pneumatic diaphragm regulator 33' can adjust the flow rate of the insulating liquid by adjusting the size of the opening V size. Specifically, when T>T0+ ⁇ T, it indicates that the actual temperature T of the lye is higher than the preset temperature range.
  • the opening V of the pneumatic diaphragm regulator 33' it is necessary to reduce the opening V of the pneumatic diaphragm regulator 33' to reduce the amount of air passing through the fourth inlet 2b'.
  • the flow rate of the insulating liquid entering the hydrogen production device 1' makes the actual temperature T of the lye drop to the preset temperature range; when T ⁇ T0- ⁇ T, it indicates that the actual temperature T of the lye is lower than the preset temperature range Therefore, it is necessary to increase the opening V of the pneumatic diaphragm regulator 33' to increase the flow rate of the insulating liquid entering the hydrogen production device 1' through the fourth inlet 2b', so that the actual temperature T of the lye can rise to the predetermined value.
  • the fourth inlet 2b of the second three-way valve 302 is not in communication with the second outlet 2c, therefore, the pneumatic diaphragm regulator 33 does not Work.
  • the fourth inlet 2b of the second three-way valve 302 is connected to the second outlet 2c, and the pneumatic diaphragm regulator 33 can adjust the flow rate of the insulating liquid by adjusting the opening V.
  • the liquid inlet channels 31, 31' can also be configured as follows: when V ⁇ the maximum set value and T is still less than T0- ⁇ T, keep V at the maximum set value; when V ⁇ the minimum set value and T is still When it is greater than T0+ ⁇ T, the second inlet 1b, 1b' is connected to the first outlet 1c, 1c', and the third inlet 2a, 2a' is connected to the second outlet 2c, 2c', so that the liquid inlet flow path 31, 31' are switched to communicate with the cooling water tank 22, so as to avoid damage to the equipment due to the continuous high temperature of the lye, until the cooling of the cooling liquid makes T ⁇ T0+ ⁇ T, the first inlet 1a, 1a' is connected to the first The outlets 1c, 1c' are connected to connect the fourth inlets 2b, 2b' with the second outlets 2c, 2c', so that the liquid inlet channels 31, 31' are switched to communicate with the heat exchange tank 21.
  • the maximum set value of V of the pneumatic diaphragm regulator 33' is set to 99%, and the minimum set value It is set to 20%.
  • T ⁇ T0- ⁇ T V continues to increase.
  • V ⁇ 99% and T is still lower than the preset temperature range, V needs to be kept at the current opening to keep the insulation fluid
  • T>T0+ ⁇ T V continues to decrease, and when V ⁇ 20% and T is still higher than the preset temperature range, it shows that even if the flow rate of the heat preservation solution is adjusted to At least it is impossible to suppress the continuous high temperature of the lye.
  • the second inlet 1b' of the first three-way valve 301' is connected with the first outlet 1c' to form a cooling water tank 22-second inlet 1b'- First outlet 1c'-first flow path 311'-cooling flow path of gas condenser 13', and cooling water tank 22-second inlet 1b'-first outlet 1c'-second flow path 312'-lye circulation pump 14' of the cooling flow path, so that the cooling liquid cools the gas condenser 13' and the lye circulation pump 14', and connects the third inlet 2a' of the second three-way valve 302' with the second outlet 2c', so as to Form the cooling flow path of the cooling water tank 22-the second inlet 1b'-the first outlet 1c'-the third inlet 2a'-the second outlet 2c'-the third flow path 313'-the alkali cooler 15', so that the cooling liquid The lye cooler 15' is cooled, and the lye with continuous high temperature can be cooled by the
  • the hydrogen production equipment can also include a liquid replenishment device (not shown), which can replenish the heat preservation liquid in the heat exchange tank 21, and can supply the heat preservation liquid to the cooling water tank 22. Add coolant.
  • the present disclosure also provides a method for controlling the temperature of the electrolytic cell of the hydrogen production equipment, wherein the hydrogen production equipment can be the hydrogen production equipment in the above technical solution, and the electrolytic cell temperature control method can be based on the above technical solution It is realized by the relevant structure of the hydrogen production equipment in it.
  • the method for controlling the temperature of the electrolyzer will be described by taking the hydrogen production device 1 to work normally and the hydrogen production device 1' to stop working as an example.
  • the method for controlling the temperature of the electrolyzer includes the following steps:
  • step S2' may be: connect the liquid inlet flow path 31 of the stopped hydrogen production device 1 with the heat exchange tank 21.
  • the liquid returned from the hydrogen production device can take away the heat of the hydrogen production device, and the returned liquid enters the exchange through the liquid return flow path.
  • the hot water tank 21 can exchange heat with the heat preservation liquid, so that the temperature of the heat preservation liquid rises, that is, a part of the heat generated by the hydrogen production device during normal operation can be stored in the heat exchange water tank 21, and then the returned liquid enters the cooling water tank 22, capable of exchanging heat with the cooling water tank 22 to be cooled to form cooling liquid.
  • the heat exchange tank 21 is connected to connect the heat preservation liquid with a higher temperature.
  • the electrolytic cell of the hydrogen production device can be heated and kept warm, so as to avoid the temperature drop of the hydrogen production device that stops working.
  • the heat generated by the hydrogen production device that is normally working in the hydrogen production equipment can be used to keep the hydrogen production device that is not working to keep warm, so as to avoid the waste of heat energy and shorten the start-up time of the hydrogen production device that is not working , Improve the overall operating efficiency of the equipment.
  • step S2 may also include step S21: in the hydrogen production device 1 in normal operation, connect the second inlet 1b to the first outlet 1c, and connect the third inlet 2a to the second outlet 2c.
  • step S21 the cooling flow path of cooling water tank 22-second inlet 1b-first outlet 1c-first flow path 311-gas condenser 13, cooling water tank 22- Second inlet 1b-first outlet 1c-second flow path 312-cooling flow path of lye circulation pump 14 and cooling water tank 22-second inlet 1b-first outlet 1c-third inlet 2a-second outlet 2c-
  • the lye in the electrolytic tank 11 maintains a certain temperature and can exchange heat with the electrolytic tank 11 , thereby realizing the cooling of the electrolytic tank 11
  • step S2' may also include step S21': in the stopped hydrogen production device 1', connect the first inlet 1a' and the first outlet 1c ' conduction, the fourth inlet 2b' and the second outlet 2c' conduction.
  • step S21' the heating of the heat exchange tank 21-the first inlet 1a'-the first outlet 1c'-the first flow path 311'-the gas condenser 13' can be formed between the centralized cooling device 2 and the hydrogen production device 1' Flow path, heat exchange tank 21-first inlet 1a'-first outlet 1c'-second flow path 312'-heating flow path of lye circulating pump 14' and heat exchange tank 21-fourth inlet 2b'-the first Second outlet 2c'-the third flow path 313'-the heating flow path of the lye cooler 15', so that the heat preservation liquid heats and insulates the gas condenser 13', the lye circulating pump 14' and the lye cooler 15' , because the lye circulates along the circulation path of the electrolyzer-gas-liquid separator-lye circulation pump-lye cooler-electrolyte all the time, therefore, the insulating liquid flows through the lye circulation pump 14' and the lye cooling
  • step S21' may be: in the stopped hydrogen production device 1, connect the first inlet 1a with the first outlet 1c, and connect the fourth inlet 2b Conducted with the second outlet 2c.
  • step S2' may also include step S22': adjust according to the difference between the actual temperature T detected by the temperature sensor 16' and the preset temperature T0 V size.
  • the pneumatic diaphragm regulator 33' can adjust the flow rate of the insulating liquid by adjusting the size of the opening V.
  • step S22' may be: adjust the magnitude of V according to the difference between the actual temperature T detected by the temperature sensor 16 and the preset temperature T0.
  • step S22' can comprise the following steps:
  • ⁇ T is the allowable temperature deviation range parameter
  • the temperature of the lye is allowed to fluctuate within the range of T0 ⁇ T, that is, (T0- ⁇ T) ⁇ T ⁇ (T0+ ⁇ T) is the preset temperature range.
  • the opening V of the pneumatic diaphragm regulator 33' can be reduced to reduce the insulating liquid entering the hydrogen production device 1' through the fourth inlet 2b' flow, so that the actual temperature T of the lye can drop to the preset temperature range; when T ⁇ T0- ⁇ T, the opening V of the pneumatic diaphragm regulator 33' can be increased to increase the amount of water entering through the fourth inlet 2b'
  • the flow rate of the insulating liquid in the hydrogen production device 1' enables the actual temperature T of the lye to rise to the preset temperature range; when (T0- ⁇ T) ⁇ T ⁇ (T0+ ⁇ T), it indicates that the current pneumatic diaphragm regulator
  • the opening V of 33' is suitable, and it is only necessary to maintain the current opening V.
  • step S22' can also include the following steps:
  • step S241' and step S242' when T ⁇ T0- ⁇ T, V can be continuously increased; when V ⁇ the maximum set value (for example, 99%) and T is still lower than the preset temperature range, V can be increased Keep at the current opening to keep the heat preservation liquid at the maximum flow rate so as to continuously heat the lye; when T>T0+ ⁇ T, it can make V continue to decrease, when V ⁇ minimum setting value (for example, 20%) and When T is still higher than the preset temperature range, the second inlet 1b' of the first three-way valve 301' is connected to the first outlet 1c', and the third inlet 2a' of the second three-way valve 302' is connected to the second The outlet 2c' is connected to form a cooling flow path of cooling water tank 22-second inlet 1b'-first outlet 1c'-first flow path 311'-gas condenser 13', cooling water tank 22-second inlet 1b'- First outlet 1c'-second flow path 312'-cooling flow path of
  • step S242' can be: when V ⁇ min setting value and T is still greater than T0+ ⁇ T, connect the second inlet 1b to the first outlet 1c , the third inlet 2a is connected to the second outlet 2c, until T ⁇ T0+ ⁇ T, the first inlet 1a is connected to the first outlet 1c, and the fourth inlet 2b is connected to the second outlet 2c.
  • references herein to "one embodiment,” “an embodiment,” or “one or more embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Additionally, please note that examples of the word “in one embodiment” herein do not necessarily all refer to the same embodiment.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the disclosure can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本公开涉及一种制氢设备和制氢设备的电解槽温度控制方法,制氢设备包括集中冷却装置,包括相互连通的换热水箱和冷却水箱,换热水箱中储存有保温液,集中冷却装置配置为回流的液体依次经过换热水箱和冷却水箱而形成为冷却液,以及至少一个制氢装置,通过冷却循环回路与集中冷却装置连通,冷却循环回路包括进液流路和回液流路,并配置为当制氢装置停止工作时,进液流路与换热水箱连通以使得保温液进入制氢装置进行保温;当制氢装置正常工作时,进液流路与冷却水箱连通以使得冷却液进入制氢装置进行冷却。通过上述技术方案,本公开提供的制氢设备和制氢设备的电解槽温度控制方法解决规模化制氢时停机的设备中电解槽温度下降的技术问题。

Description

制氢设备和制氢设备的电解槽温度控制方法
本申请要求在2021年12月22日提交中国专利局、申请号为202111583446.8、发明名称为“制氢设备和制氢设备的电解槽温度控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及碱性电解水制氢技术领域,具体地,涉及一种制氢设备和制氢设备的电解槽温度控制方法。
背景技术
碱性电解水制氢技术因其制造成本低,结构框架成熟,电堆寿命长等优势得到广泛应用。在电解水制氢过程中,电解槽温度是一个非常重要的工艺参数,温度过高不仅会使电解出的气体所带走的电解液量增加,同时也会加快设备的腐蚀,降低设备寿命,而温度过低则会影响电解液的循环速度,电流大小也不易增大,导致产气量降低,消耗电能增加。为使电解槽的温度保持在一定范围内(85℃~90℃),一般需要增加循环冷却水进行冷却,通过控制冷却水的流量来实现电解槽中电解液温度的保持。
然而,制氢设备会存在计划性停机或临时停机等情况,停机的设备中,电解槽温度会逐渐下降,下次再启动时必须先进行热机使得电解槽温度达到允许范围后才能开始工作,一般热机时间在20-30分钟左右,造成电能的增加和时间的浪费。而制氢设备运行中所产生的热量又被冷却水带走,导致热能的浪费。
发明内容
本公开的目的是提供一种制氢设备和制氢设备的电解槽温度控制方法,以解决停机的制氢设备中电解槽温度下降的技术问题。
[根据细则91更正 28.04.2023]
为了实现上述目的,本公开提供一种制氢设备,包括:集中冷却装置,包括相互连通的换热水箱和冷却水箱,所述换热水箱中储存有保温液,所述集中冷却装置配置为:回流的液体依次经过所述换热水箱和所述冷却水箱而 形成为冷却液,以及至少一个制氢装置,通过冷却循环管路与所述集中冷却装置连通,所述冷却循环管路包括:进液流路,用于使所述集中冷却装置中的液体流出至所述制氢装置;以及回液流路,用于使液体由所述制氢装置回流至所述集中冷却装置;所述冷却循环管路配置为:当所述制氢装置停止工作时,所述进液流路与所述换热水箱连通,以使得保温液进入所述制氢装置进行保温;当所述制氢装置正常工作时,所述进液流路与所述冷却水箱连通,以使得冷却液进入所述制氢装置进行冷却。
可选地,所述制氢装置包括电解槽、设置在所述电解槽下游的气液分离器、设置在所述气液分离器的气路下游的气体冷凝器、以及依次设置在所述气液分离器的液路下游的碱液循环泵和碱液冷却器,其中,从所述气液分离器中分离出的碱液经所述碱液循环泵泵送至所述碱液冷却器冷却后回到所述电解槽中,从所述气液分离器中分离出的气体进入所述气体冷凝器进行冷却,所述进液流路包括:第一流路,连通所述集中冷却装置与所述气体冷凝器,第二流路,连通所述集中冷却装置与所述碱液循环泵,第三流路,连通所述集中冷却装置与所述碱液冷却器,第一三通阀,包括与所述换热水箱连通的第一入口、与所述冷却水箱连通的第二入口以及与所述第一流路和所述第二流路分别连通的第一出口,以及第二三通阀,包括与所述第一出口连通的第三入口、与所述换热水箱连通的第四入口以及与所述第三流路连通的第二出口,所述进液流路配置为:当所述制氢装置停止工作时,所述第一入口与所述第一出口导通,所述第四入口与所述第二出口导通,以使得所述换热水箱分别与所述第一流路、所述第二流路以及所述第三流路连通;当所述制氢装置正常工作时,所述第二入口与所述第一出口导通,所述第三入口与所述第二出口导通,以使得所述冷却水箱分别与所述第一流路、所述第二流路以及所述第三流路连通。
可选地,所述电解槽的进液口处设置有用于检测碱液温度的温度传感器,所述第四入口与所述换热水箱之间设置有开度V可调的气动隔膜调节器,所述气动隔膜调节器配置为:当所述制氢装置停止工作时,根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小。
可选地,所述气动隔膜调节器配置为:当T>T0+ΔT时,V减小;当T<T0-ΔT时,V增大;当(T0-ΔT)≤T≤(T0+ΔT)时,V保持不变,其中,ΔT 为允许温度偏差范围参数。
可选地,所述进液流路还配置为:当V≥最大设定值而T仍然小于T0-ΔT时,将V保持在所述最大设定值;当V≤最小设定值而T仍然大于T0+ΔT时,将所述第二入口与所述第一出口导通,将所述第三入口与所述第二出口导通,直至T≤T0+ΔT时,将所述第一入口与所述第一出口导通,将所述第四入口与所述第二出口导通。
可选地,所述制氢设备还包括补液装置,所述补液装置能够向所述换热水箱中补充保温液,并能够向所述冷却水箱中补充冷却液。
通过上述技术方案,本公开所提供的制氢设备中,从制氢装置中回流的液体能够将制氢装置的热量带走,回流的液体经回液流路进入换热水箱时能够与保温液换热,以使得保温液的温度升高,即,制氢装置在正常工作过程中产生的一部分热量能够储存在换热水箱中,之后回流的液体进入冷却水箱,能够与冷却水箱进行换热而被冷却,以形成冷却液。当制氢装置正常工作时,其进液流路与冷却水箱连通,以将温度较低的冷却液接入,从而对制氢装置进行冷却,当制氢装置停止工作时,其进液流路与换热水箱接通,以将温度较高的保温液接入,保温液在流经制氢装置时能够对制氢装置的电解槽进行加热保温,以避免停止工作的制氢装置温度下降。因此,经过回流的液体与换热水箱中保温液的换热,以及保温液进入停止工作的制氢装置中循环,能够将制氢设备中正常工作的制氢装置所产生的热量用于对停止工作的制氢装置进行加热保温,以避免热能的浪费,缩短停止工作的制氢装置的启动时间,提高设备的整体运行效率。
[根据细则91更正 28.04.2023]
在上述技术方案的基础上,本公开还提供一种制氢设备的电解槽温度控制方法,所述制氢设备包括:集中冷却装置,包括相互连通的换热水箱和冷却水箱,所述换热水箱中储存有保温液,所述集中冷却装置配置为:回流的液体依次经过所述换热水箱和所述冷却水箱而形成为冷却液,以及至少一个制氢装置,通过冷却循环管路与所述集中冷却装置连通,所述冷却循环管路包括:进液流路,用于使所述集中冷却装置中的液体流出至所述制氢装置;以及回液流路,用于使液体由所述制氢装置回流至所述集中冷却装置;所述电解槽温度控制方法包括:判断所述制氢装置是否正常工作;将正常工作的所述制氢装置的所述进液流路与所述冷却水箱连通;将停止工作的所述制氢 装置的所述进液流路与所述换热水箱连通。
可选地,所述制氢装置包括电解槽、以及依次设置在所述电解槽下游的气液分离器、设置在所述气液分离器的气路下游的气体冷凝器、以及依次设置在所述气液分离器的液路下游的碱液循环泵和碱液冷却器,其中,从所述气液分离器中分离出的碱液经所述碱液循环泵泵送至所述碱液冷却器冷却后回到所述电解槽中,从所述气液分离器中分离出的气体进入所述气体冷凝器进行冷却,所述进液流路包括:第一流路,连通所述集中冷却装置与所述气体冷凝器,第二流路,连通所述集中冷却装置与所述碱液循环泵,第三流路,连通所述集中冷却装置与所述碱液冷却器,第一三通阀,包括与所述换热水箱连通的第一入口、与所述冷却水箱连通的第二入口以及与所述第一流路和所述第二流路分别连通的第一出口,以及第二三通阀,包括与所述第一出口连通的第三入口、与所述换热水箱连通的第四入口以及与所述第三流路连通的第二出口;所述将正常工作的所述制氢装置的所述进液流路与所述冷却水箱连通的步骤包括:在正常工作的所述制氢装置中,将所述第二入口与所述第一出口导通,将所述第三入口与所述第二出口导通;所述将停止工作的所述制氢装置的所述进液流路与所述换热水箱连通的步骤包括:在停止工作的所述制氢装置中,将所述第一入口与所述第一出口导通,将所述第四入口与所述第二出口导通。
可选地,所述电解槽的进液口处设置有用于检测碱液温度的温度传感器,所述第四入口与所述换热水箱之间设置有开度V可调的气动隔膜调节器,所述将停止工作的所述制氢装置的所述进液流路与所述换热水箱连通的步骤还包括:根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小。
可选地,所述根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小的步骤包括:当T>T0+ΔT时,V减小;当T<T0-ΔT时,V增大;当(T0-ΔT)≤T≤(T0+ΔT)时,V保持不变,其中,ΔT为允许温度偏差范围参数。
可选地,所述根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小的步骤还包括:当V≥最大设定值而T仍然小于T0-ΔT时,将V保持在所述最大设定值;当V≤最小设定值而T仍然大于 T0+ΔT时,将所述第二入口与所述第一出口导通,将所述第三入口与所述第二出口导通,直至T≤T0+ΔT时,将所述第一入口与所述第一出口导通,将所述第四入口与所述第二出口导通。
通过上述技术方案,在本公开所提供的制氢设备的电解槽温度控制方法中,从制氢装置中回流的液体能够将制氢装置的热量带走,回流的液体经回液流路进入换热水箱时能够与保温液换热,以使得保温液的温度升高,即,制氢装置在正常工作过程中产生的一部分热量能够储存在换热水箱中,之后回流的液体进入冷却水箱,能够与冷却水箱进行换热而被冷却,以形成冷却液。将正常工作的制氢装置的进液流路与冷却水箱连通,以将温度较低的冷却液接入,从而对制氢装置进行冷却,将停止工作的制氢装置的进液流路与换热水箱接通,以将温度较高的保温液接入,保温液在流经制氢装置时能够对制氢装置的电解槽进行加热保温,以避免停止工作的制氢装置温度下降。因此,通过上述方法,能够将制氢设备中正常工作的制氢装置所产生的热量用于对停止工作的制氢装置进行保温,以避免热能的浪费,缩短停止工作的制氢装置的启动时间,提高设备的整体运行效率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开具体实施方式中电解槽温度控制系统的工作原理图;
图2是本公开具体实施方式中电解槽温度控制系统的控制方法的流程图。
附图标记说明:
1,1’-制氢装置;11,11’-电解槽;12,12’-气液分离器;13,13’-气体冷凝器;14,14’-碱液循环泵;15,15’-碱液冷却器;16,16’-温度传感器;
2-集中冷却装置;21-换热水箱;22-冷却水箱;23-冷却回水阀;
3,3’-冷却循环管路;31,31’-进液流路;311,311’-第一流路;312,312’-第二流路;313,313’-第三流路;301,301’-第一三通阀;1a,1a’-第一 入口;1b,1b’-第二入口;1c,1c’-第一出口;302,302’-第二三通阀;2a,2a’-第三入口;2b,2b’-第四入口;2c,2c’-第二出口;32,32’-回液流路;33,33’-气动隔膜调节器。
具体实施例
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,在未作相反说明的情况下,使用的方位词如“上游、下游”是指沿气体或液体流动方向的上游、下游,“内、外”是指相对于相应零部件自身轮廓的内、外。本公开中使用的术语“第一”“第二”等是为了区别一个要素和另一个要素,不具有顺序性和重要性。另外,下面的描述在涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。
根据本公开的具体实施方式,提供一种制氢设备,参考图1所示,该制氢设备可以包括集中冷却装置2和至少一个制氢装置,制氢装置可以通过冷却循环管路与集中冷却装置2连通。由于制氢装置具有正常工作和停止工作两种工作状态,因此,当制氢设备包括的多个制氢装置时,仅在图1中示出制氢装置1和制氢装置1’,以便于区分两种不同工作状态的制氢装置。
参考图1所示,集中冷却装置2可以包括相互连通的换热水箱21和冷却水箱22,换热水箱21中储存有保温液,集中冷却装置2可以配置为从制氢装置1和制氢装置1’中回流的液体依次经过换热水箱21和冷却水箱22而形成为冷却液。具体地,换热水箱21中可以设置有用于容纳保温液的腔体(未示出),回流的液体在经过换热水箱21时,可以从腔体的外侧流过,并与腔体内的保温液进行换热。此外,换热水箱21和冷却水箱22之间还可以设置有冷却回水阀23,以打开或切断换热水箱21和冷却水箱22之间的连通,通常情况下,冷却回水阀23常开,以打开换热水箱21和冷却水箱22之间的连通,当需要对集中冷却装置2进行检修时,可以关闭冷却回水阀23,以切断换热水箱21和冷却水箱22之间的连通而便于检修。
[根据细则91更正 28.04.2023]
制氢装置1和制氢装置1’分别可以通过各自的冷却循环管路3和冷却循 环管路3’与集中冷却装置2连通。冷却循环管路3,3’包括进液流路31,31’和回液流路32,32’,进液流路31,31’用于使集中冷却装置2中的液体流出至制氢装置1,1’,回液流路32,32’用于使液体由制氢装置1,1’回流至集中冷却装置2的换热水箱21,冷却循环管路3配置为当制氢装置1停止工作时,进液流路31与换热水箱21内的腔体连通,以使得保温液进入制氢装置1进行保温,当制氢装置1正常工作时,进液流路31与冷却水箱22连通,以使得冷却液进入制氢装置1进行冷却,冷却循环管路3’配置为当制氢装置1’停止工作时,进液流路31’与换热水箱21内的腔体连通,以使得保温液进入制氢装置1’进行保温,当制氢装置1’正常工作时,进液流路31’与冷却水箱22连通,以使得冷却液进入制氢装置1’进行冷却。
以制氢装置1正常工作,制氢装置1’停止工作为例,制氢装置1的进液流路31连通冷却水箱22和制氢装置1,以使得冷却液进入制氢装置1中对其中的各部分进行冷却,温度升高的冷却液经回液流路32回流至集中冷却装置2中,回流的液体先经过换热水箱21并将携带的一部分热量传递给保温液,使得保温液的温度升高,再进入冷却水箱22中被完全冷却而形成温度较低的冷却液。制氢装置1’的进液流路31’连通换热水箱21的腔体与制氢装置1’,以使得保温液进入制氢装置1’中对其中的各部分进行加热,温度降低的保温液经回液流路32’回流至集中冷却装置2中。由于保温液回流至集中冷却装置2之后无法回流到换热水箱21的腔体中,因此,当换热水箱21的腔体与进液流路连通时,需通过下述的补液装置对换热水箱21进行补液,以使得换热水箱21的腔体内始终存有一定量的保温液。此外,保温液回流至冷却水箱22中会导致冷却水箱22中的冷却液越来越多,当冷却水箱22内的冷却液过多时,可以将多余的冷却液排出,或将多余的冷却液排入下述的补液装置,以通过该补液装置将多余的冷却液补入换热水箱21的腔体中作为保温液。制氢设备中的多个制氢装置均正常工作时,换热水箱21的保温液储存在腔体中不流动,此时,无需通过补液装置对换热水箱21进行补液。
当制氢设备中仅具有一个制氢装置时,以制氢设备仅具有图1中的制氢装置1而不具有制氢装置1’为例,来说明其工作过程。当制氢装置1正常工作时,进液流路31连通冷却水箱22和制氢装置1,以使得冷却液进入制氢 装置1中对其中的各部分进行冷却,温度升高的冷却液经回液流路32回流至集中冷却装置2中,回流的液体先经过换热水箱21并将携带的一部分热量传递给保温液,使得保温液的温度升高,以将制氢装置1所产生的一部分热量储存在换热水箱21中,再进入冷却水箱22中被完全冷却而形成温度较低的冷却液。当制氢装置1停止工作时,进液流路31连通换热水箱21的腔体与制氢装置1,以使得保温液进入制氢装置1中对其中的各部分进行加热,从而将储存在换热水箱21中的热量用于对停止工作的制氢装置1的保温。
通过上述技术方案,本公开所提供的制氢设备中,从制氢装置中回流的液体能够将制氢装置的热量带走,回流的液体经回液流路进入换热水箱21时能够与保温液换热,以使得保温液的温度升高,即,制氢装置在正常工作过程中产生的一部分热量能够储存在换热水箱21中,之后回流的液体进入冷却水箱22,能够与冷却水箱22进行换热而被冷却,以形成冷却液。当制氢装置正常工作时,其进液流路与冷却水箱22连通,以将温度较低的冷却液接入,从而对制氢装置进行冷却,当制氢装置停止工作时,其进液流路与换热水箱21接通,以将温度较高的保温液接入,保温液在流经制氢装置时能够对制氢装置的电解槽进行加热保温,以避免停止工作的制氢装置温度下降。因此,经过回流的液体与换热水箱21中保温液的换热,以及保温液进入停止工作的制氢装置中循环,能够将制氢设备中正常工作的制氢装置所产生的热量用于对停止工作的制氢装置进行加热保温,以避免热能的浪费,缩短停止工作的制氢装置的启动时间,提高设备的整体运行效率。
参考图1所示,制氢装置1,1’可以包括电解槽11和电解槽11’、设置在电解槽下游的气液分离器12,12’、设置在气液分离器12,12’的气路下游的气体冷凝器13,13’、以及依次设置在气液分离器12,12’的液路下游的碱液循环泵14,14’和碱液冷却器15,15’,其中,从气液分离器12,12’中分离出的碱液经碱液循环泵14,14’泵送至碱液冷却器15,15’冷却后回到电解槽11,11’中,从气液分离器12,12’中分离出的气体进入气体冷凝器13,13’进行冷却。
参考图1所示,进液流路31,31’包括连通集中冷却装置2与气体冷凝 器13,13’的第一流路311,311’,连通集中冷却装置2与碱液循环泵14,14’的第二流路312,312’,连通集中冷却装置2与碱液冷却器15,15’的第三流路313,313’,进液流路31,31’还包括第一三通阀301,301’和第二三通阀302,302’,第一三通阀301,301’可以包括与换热水箱21的腔体连通的第一入口1a,1a’、与冷却水箱22连通的第二入口1b,1b’以及与第一流路311,311’和第二流路312,312’分别连通的第一出口1c,1c’,第二三通阀302,302’可以包括与第一出口1c,1c’连通的第三入口2a,2a’、与换热水箱21的腔体连通的第四入口2b,2b’以及与第三流路313,313’连通的第二出口2c,2c’。进液流路31配置为:当制氢装置1停止工作时,第一入口1a与第一出口1c导通,第四入口2b与第二出口2c导通,以使得换热水箱21分别与第一流路311、第二流路312以及第三流路313连通;当制氢装置1正常工作时,第二入口1b与第一出口1c导通,第三入口2a与第二出口2c导通,以使得冷却水箱22分别与第一流路311、第二流路312以及第三流路313连通。进液流路31’配置为:当制氢装置1’停止工作时,第一入口1a’与第一出口1c’导通,第四入口2b’与第二出口2c’导通,以使得换热水箱21分别与第一流路311’、第二流路312’以及第三流路313’连通;当制氢装置1’正常工作时,第二入口1b’与第一出口1c’导通,第三入口2a’与第二出口2c’导通,以使得冷却水箱22分别与第一流路311’、第二流路312’以及第三流路313’连通。
以制氢装置1正常工作,制氢装置1’停止工作为例,为了使制氢装置1的进液流路31与冷却水箱22连通,将第一三通阀301的第二入口1b与第一出口1c导通,以形成冷却水箱22-第二入口1b-第一出口1c-第一流路311-气体冷凝器13的冷却流路,以及冷却水箱22-第二入口1b-第一出口1c-第二流路312-碱液循环泵14的冷却流路,使得冷却液对气体冷凝器13和碱液循环泵14进行冷却,将第二三通阀302的第三入口2a与第二出口2c导通,以形成冷却水箱22-第二入口1b-第一出口1c-第三入口2a-第二出口2c-第三流路313-碱液冷却器15的冷却流路,使得冷却液对碱液冷却器15进行冷却,由于碱液始终沿着电解槽-气液分离器-碱液循环泵-碱液冷却器-电解槽的循环路径进行循环,因此,冷却液在流经碱液循环泵14和碱液冷却器15时能够对碱液进行冷却,使得回流至电解槽11中的碱液保持一定的温度而 能够与电解槽11发生换热,从而实现对电解槽11的冷却。为了使制氢装置1’的进液流路31’与换热水箱21连通,将第一三通阀301’的第一入口1a’与第一出口1c’导通,以形成换热水箱21-第一入口1a’-第一出口1c’-第一流路311’-气体冷凝器13’的加热流路,以及换热水箱21-第一入口1a’-第一出口1c’-第二流路312’-碱液循环泵14’的加热流路,使得保温液对气体冷凝器13’和碱液循环泵14’进行加热保温,将第二三通阀302’的第四入口2b’与第二出口2c’导通,以形成换热水箱21-第四入口2b’-第二出口2c’-第三流路313’-碱液冷却器15’的加热流路,使得保温液对碱液冷却器15’进行加热保温,由于碱液始终沿着电解槽-气液分离器-碱液循环泵-碱液冷却器-电解槽的循环路径进行循环,因此,保温液在流经碱液循环泵14’和碱液冷却器15’时能够对碱液进行加热保温,使得回流至电解槽11’中的碱液保持一定的温度而能够与电解槽11’发生换热,从而实现对电解槽11’的加热保温。
当制氢设备中仅具有一个制氢装置1时,制氢装置1正常工作时,第一三通阀301的第二入口1b与第一出口1c导通,以形成冷却水箱22-第二入口1b-第一出口1c-第一流路311-气体冷凝器13的冷却流路,以及冷却水箱22-第二入口1b-第一出口1c-第二流路312-碱液循环泵14的冷却流路,使得冷却液对气体冷凝器13和碱液循环泵14进行冷却,将第二三通阀302的第三入口2a与第二出口2c导通,以形成冷却水箱22-第二入口1b-第一出口1c-第三入口2a-第二出口2c-第三流路313-碱液冷却器15的冷却流路,使得冷却液对碱液冷却器15进行冷却,由于碱液始终沿着电解槽-气液分离器-碱液循环泵-碱液冷却器-电解槽的循环路径进行循环,因此,冷却液在流经碱液循环泵14和碱液冷却器15时能够对碱液进行冷却,使得回流至电解槽11中的碱液保持一定的温度而能够与电解槽11发生换热,从而实现对电解槽11的冷却。制氢装置1停止工作时,将第一三通阀301的第一入口1a与第一出口1c导通,以形成换热水箱21-第一入口1a-第一出口1c-第一流路311-气体冷凝器13的加热流路,以及换热水箱21-第一入口1a-第一出口1c-第二流路312-碱液循环泵14的加热流路,使得保温液对气体冷凝器13和碱液循环泵14进行加热保温,将第二三通阀302的第四入口2b与第二出口2c导通,以形成换热水箱21-第四入口2b-第二出口2c-第三流路313-碱液冷却器15的加热流路,使得保温液对碱液冷却器15进行加热保温,由于碱液始 终沿着电解槽-气液分离器-碱液循环泵-碱液冷却器-电解槽的循环路径进行循环,因此,保温液在流经碱液循环泵14和碱液冷却器15时能够对碱液进行加热保温,使得回流至电解槽11中的碱液保持一定的温度而能够与电解槽11发生换热,从而实现对电解槽11的加热保温。
参考图1所示,电解槽11,11’的进液口处可以设置有用于检测碱液温度的温度传感器16,16’,以检测回流至电解槽11’中的碱液的温度,第二三通阀301’的第四入口2b,2b’与换热水箱21之间可以设置有开度V可调的气动隔膜调节器33,33’,气动隔膜调节器33,33’配置为:当制氢装置1,1’停止工作时,根据温度传感器16,16’所检测到的实际温度T与预设温度T0的差值而调节V的大小。具体地,气动隔膜调节器33,33’可以配置为:当T>T0+ΔT时,V减小;当T<T0-ΔT时,V增大;当(T0-ΔT)≤T≤(T0+ΔT)时,V保持不变,其中,ΔT为允许温度偏差范围参数,以允许碱液的温度在T0±ΔT的范围内波动,即(T0-ΔT)≤T≤(T0+ΔT)为预设温度范围。
以制氢装置1正常工作,制氢装置1’停止工作为例,在制氢装置1中,第二三通阀302的第四入口2b不与第二出口2c导通,因此,气动隔膜调节器33不工作。在制氢装置1’中,第二三通阀302’的第四入口2b’与第二出口2c’导通,气动隔膜调节器33’能够通过调节开度V的大小而调节保温液的流量大小。具体地,当T>T0+ΔT时,表明碱液的实际温度T高于预设温度范围,因此,需减小气动隔膜调节器33’的开度V,以减小通过第四入口2b’而进入制氢装置1’中的保温液的流量,使得碱液的实际温度T能够下降至预设温度范围;当T<T0-ΔT时,表明碱液的实际温度T低于预设温度范围,因此,需增大气动隔膜调节器33’的开度V,以增加通过第四入口2b’而进入制氢装置1’中的保温液的流量,使得碱液的实际温度T能够上升至预设温度范围;当(T0-ΔT)≤T≤(T0+ΔT)时,表明碱液的实际温度T在预设温度范围内,即表明当前的气动隔膜调节器33’开度V合适,只需保持当前的开度V即可。
当制氢设备中仅具有一个制氢装置1时,制氢装置1正常工作时,第二三通阀302的第四入口2b不与第二出口2c导通,因此,气动隔膜调节器33不工作。当制氢装置1停止工作时,第二三通阀302的第四入口2b与第二 出口2c导通,气动隔膜调节器33能够通过调节开度V的大小而调节保温液的流量大小。
此外,进液流路31,31’还可以配置为:当V≥最大设定值而T仍然小于T0-ΔT时,将V保持在最大设定值;当V≤最小设定值而T仍然大于T0+ΔT时,将第二入口1b,1b’与第一出口1c,1c’导通,将第三入口2a,2a’与第二出口2c,2c’导通,以使得进液流路31,31’切换至与冷却水箱22连通,从而避免碱液温度持续过高而损坏设备,直至通过冷却液的冷却而使得T≤T0+ΔT时,将第一入口1a,1a’与第一出口1c,1c’导通,将第四入口2b,2b’与第二出口2c,2c’导通,以使得进液流路31,31’切换至与换热水箱21连通。
以制氢装置1正常工作,制氢装置1’停止工作为例,在制氢装置1’中,将气动隔膜调节器33’的V的最大设定值设定为99%,最小设定值设定为20%,当T<T0-ΔT时,使得V持续增大,当V≥99%而T仍然低于预设温度范围时,需将V保持在当前开度,以将保温液保持在最大流量从而对碱液进行持续加热;当T>T0+ΔT时,使得V持续减小,当V≤20%而T仍然高于预设温度范围时,表明即使将保温液的流量调节至最小也无法抑制碱液温度的持续过高,此时,将第一三通阀301’的第二入口1b’与第一出口1c’导通,以形成冷却水箱22-第二入口1b’-第一出口1c’-第一流路311’-气体冷凝器13’的冷却流路,以及冷却水箱22-第二入口1b’-第一出口1c’-第二流路312’-碱液循环泵14’的冷却流路,使得冷却液对气体冷凝器13’和碱液循环泵14’进行冷却,将第二三通阀302’的第三入口2a’与第二出口2c’导通,以形成冷却水箱22-第二入口1b’-第一出口1c’-第三入口2a’-第二出口2c’-第三流路313’-碱液冷却器15’的冷却流路,使得冷却液对碱液冷却器15’进行冷却,持续高温的碱液在流经碱液循环泵14’和碱液冷却器15’时能够被冷却液冷却,直至碱液的实际温度T降低至预设温度范围时,将第一三通阀301’切换至第一入口1a’与第一出口1c,1c’导通,将第二三通阀302’切换至第四入口2b’与第二出口2c’导通,以使得进液流路31’切换至与换热水箱21连通,从而通过保温液对制氢装置1’进行保温。
为了确保集中冷却装置2中的冷却液和保温液的储存量,制氢设备还可以包括补液装置(未示出),补液装置能够向换热水箱21中补充保温液, 并能够向冷却水箱22中补充冷却液。
在上述技术方案的基础上,本公开还提供一种制氢设备的电解槽温度控制方法,其中,制氢设备可以为上述技术方案中的制氢设备,电解槽温度控制方法可以基于上述技术方案中的制氢设备的相关结构而实现。在下文中,当制氢设备包括多个制氢装置时,将以制氢装置1正常工作,制氢装置1’停止工作为例,对电解槽温度控制方法进行描述。
当制氢设备包括多个制氢装置时,参考图2所示,电解槽温度控制方法包括以下步骤:
S1:判断制氢装置是否正常工作;
S2:将正常工作的制氢装置1的进液流路31与冷却水箱22连通;
S2’:将停止工作的制氢装置1’的进液流路31’与换热水箱21连通。
当制氢设备仅包括一个制氢装置1时,相应地,步骤S2’可以为:将停止工作的制氢装置1的进液流路31与换热水箱21连通。
通过上述技术方案,在本公开所提供的制氢设备的电解槽温度控制方法中,从制氢装置中回流的液体能够将制氢装置的热量带走,回流的液体经回液流路进入换热水箱21时能够与保温液换热,以使得保温液的温度升高,即,制氢装置在正常工作过程中产生的一部分热量能够储存在换热水箱21中,之后回流的液体进入冷却水箱22,能够与冷却水箱22进行换热而被冷却,以形成冷却液。将正常工作的制氢装置的进液流路与冷却水箱22连通,以将温度较低的冷却液接入,从而对制氢装置进行冷却,将停止工作的制氢装置的进液流路与换热水箱21接通,以将温度较高的保温液接入,保温液在流经制氢装置时能够对制氢装置的电解槽进行加热保温,以避免停止工作的制氢装置温度下降。因此,通过上述方法,能够将制氢设备中正常工作的制氢装置所产生的热量用于对停止工作的制氢装置进行保温,以避免热能的浪费,缩短停止工作的制氢装置的启动时间,提高设备的整体运行效率。
参考图2所示,步骤S2还可以包括步骤S21:在正常工作的制氢装置1中,将第二入口1b与第一出口1c导通,将第三入口2a与第二出口2c导通。
通过步骤S21,能够在集中冷却装置2和制氢装置1之间形成冷却水箱 22-第二入口1b-第一出口1c-第一流路311-气体冷凝器13的冷却流路、冷却水箱22-第二入口1b-第一出口1c-第二流路312-碱液循环泵14的冷却流路以及冷却水箱22-第二入口1b-第一出口1c-第三入口2a-第二出口2c-第三流路313-碱液冷却器15的冷却流路,以使得冷却液对气体冷凝器13、碱液循环泵14以及碱液冷却器15进行冷却,由于碱液始终沿着电解槽-气液分离器-碱液循环泵-碱液冷却器-电解槽的循环路径进行循环,因此,冷却液在流经碱液循环泵14和碱液冷却器15时能够对碱液进行冷却,使得回流至电解槽11中的碱液保持一定的温度而能够与电解槽11发生换热,从而实现对电解槽11的冷却。
当制氢设备包括多个制氢装置时,参考图2所示,步骤S2’还可以包括步骤S21’:在停止工作的制氢装置1’中,将第一入口1a’与第一出口1c’导通,将第四入口2b’与第二出口2c’导通。
通过步骤S21’,能够在集中冷却装置2和制氢装置1’之间形成换热水箱21-第一入口1a’-第一出口1c’-第一流路311’-气体冷凝器13’的加热流路、换热水箱21-第一入口1a’-第一出口1c’-第二流路312’-碱液循环泵14’的加热流路以及换热水箱21-第四入口2b’-第二出口2c’-第三流路313’-碱液冷却器15’的加热流路,以使得保温液对气体冷凝器13’、碱液循环泵14’以及碱液冷却器15’进行加热保温,由于碱液始终沿着电解槽-气液分离器-碱液循环泵-碱液冷却器-电解槽的循环路径进行循环,因此,保温液在流经碱液循环泵14’和碱液冷却器15’时能够对碱液进行加热保温,使得回流至电解槽11’中的碱液保持一定的温度而能够与电解槽11’发生换热,从而实现对电解槽11’的加热保温。
当制氢设备仅包括一个制氢装置1时,相应地,步骤S21’可以为:在停止工作的制氢装置1中,将第一入口1a与第一出口1c导通,将第四入口2b与第二出口2c导通。
当制氢设备包括多个制氢装置时,参考图2所示,步骤S2’还可以包括步骤S22’:根据温度传感器16’所检测到的实际温度T与预设温度T0的差值而调节V的大小。
通过步骤S22’,使得气动隔膜调节器33’能够通过调节开度V的大小而调节保温液的流量大小。
当制氢设备仅包括一个制氢装置1时,相应地,步骤S22’可以为:根据温度传感器16所检测到的实际温度T与预设温度T0的差值而调节V的大小。
参考图2所示,步骤S22’可以包括以下步骤:
S231’:当T>T0+ΔT时,V减小;
S232’:当T<T0-ΔT时,V增大;
S233’:当(T0-ΔT)≤T≤(T0+ΔT)时,V保持不变。
其中,ΔT为允许温度偏差范围参数,以允许碱液的温度在T0±ΔT的范围内波动,即(T0-ΔT)≤T≤(T0+ΔT)为预设温度范围。
通过步骤S231’至S233’,当T>T0+ΔT时,能够减小气动隔膜调节器33’的开度V,以减小通过第四入口2b’而进入制氢装置1’中的保温液的流量,使得碱液的实际温度T能够下降至预设温度范围;当T<T0-ΔT时,能够增大气动隔膜调节器33’的开度V,以增加通过第四入口2b’而进入制氢装置1’中的保温液的流量,使得碱液的实际温度T能够上升至预设温度范围;当(T0-ΔT)≤T≤(T0+ΔT)时,表明当前的气动隔膜调节器33’开度V合适,只需保持当前的开度V即可。
当制氢设备包括多个制氢装置时,参考图2所示,步骤S22’还可以包括以下步骤:
S241’:当V≥最大设定值而T仍然小于T0-ΔT时,将V保持在最大设定值;
S242’:当V≤最小设定值而T仍然大于T0+ΔT时,将第二入口1b’与第一出口1c’导通,将第三入口2a’与第二出口2c’导通,直至T≤T0+ΔT时,将第一入口1a’与第一出口1c’导通,将第四入口2b’与第二出口2c’导通。
通过步骤S241’和步骤S242’,当T<T0-ΔT时,能够使得V持续增大,当V≥最大设定值(例如99%)而T仍然低于预设温度范围时,能够将V保持在当前开度,以将保温液保持在最大流量从而对碱液进行持续加热;当T>T0+ΔT时,能够使得V持续减小,当V≤最小设定值(例如20%)而T仍然高于预设温度范围时,能够使得第一三通阀301’的第二入口1b’与第一出口1c’导通,第二三通阀302’的第三入口2a’与第二出口2c’导通,以形成冷却水箱22-第二入口1b’-第一出口1c’-第一流路311’-气体冷凝器13’的冷 却流路、冷却水箱22-第二入口1b’-第一出口1c’-第二流路312’-碱液循环泵14’的冷却流路以及冷却水箱22-第二入口1b’-第一出口1c’-第三入口2a’-第二出口2c’-第三流路313’-碱液冷却器15’的冷却流路,而使得冷却液对气体冷凝器13’、碱液循环泵14’以及碱液冷却器15’进行冷却,持续高温的碱液在流经碱液循环泵14’和碱液冷却器15’时能够被冷却液冷却,直至碱液的实际温度T降低至预设温度范围时,能够使得第一三通阀301’切换至第一入口1a’与第一出口1c,1c’导通,将第二三通阀302’切换至第四入口2b’与第二出口2c’导通,而使得进液流路31’切换至与换热水箱21连通,从而通过保温液对制氢装置1’进行保温。
当制氢设备仅包括一个制氢装置1时,相应地,步骤S242’可以为:当V≤最小设定值而T仍然大于T0+ΔT时,将第二入口1b与第一出口1c导通,将第三入口2a与第二出口2c导通,直至T≤T0+ΔT时,将第一入口1a与第一出口1c导通,将第四入口2b与第二出口2c导通。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
以上所描述的实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (11)

  1. [根据细则91更正 28.04.2023]
    一种制氢设备,其特征在于,包括:
    集中冷却装置,包括相互连通的换热水箱和冷却水箱,所述换热水箱中储存有保温液,所述集中冷却装置配置为:回流的液体依次经过所述换热水箱和所述冷却水箱而形成为冷却液,以及
    至少一个制氢装置,通过冷却循环管路与所述集中冷却装置连通,所述冷却循环管路包括:
    进液流路,用于使所述集中冷却装置中的液体流出至所述制氢装置;以及
    回液流路,用于使液体由所述制氢装置回流至所述集中冷却装置;
    所述冷却循环管路配置为:当所述制氢装置停止工作时,所述进液流路与所述换热水箱连通,以使得保温液进入所述制氢装置进行保温;当所述制氢装置正常工作时,所述进液流路与所述冷却水箱连通,以使得冷却液进入所述制氢装置进行冷却。
  2. 根据权利要求1所述的制氢设备,其特征在于,所述制氢装置包括电解槽、设置在所述电解槽下游的气液分离器、设置在所述气液分离器的气路下游的气体冷凝器、以及依次设置在所述气液分离器的液路下游的碱液循环泵和碱液冷却器,其中,从所述气液分离器中分离出的碱液经所述碱液循环泵泵送至所述碱液冷却器冷却后回到所述电解槽中,从所述气液分离器中分离出的气体进入所述气体冷凝器进行冷却,
    所述进液流路包括:
    第一流路,连通所述集中冷却装置与所述气体冷凝器,
    第二流路,连通所述集中冷却装置与所述碱液循环泵,
    第三流路,连通所述集中冷却装置与所述碱液冷却器,
    第一三通阀,包括与所述换热水箱连通的第一入口、与所述冷却水箱连通的第二入口以及与所述第一流路和所述第二流路分别连通的第一出口,以及
    第二三通阀,包括与所述第一出口连通的第三入口、与所述换热水箱连通的第四入口以及与所述第三流路连通的第二出口,
    所述进液流路配置为:当所述制氢装置停止工作时,所述第一入口与所 述第一出口导通,所述第四入口与所述第二出口导通,以使得所述换热水箱分别与所述第一流路、所述第二流路以及所述第三流路连通;当所述制氢装置正常工作时,所述第二入口与所述第一出口导通,所述第三入口与所述第二出口导通,以使得所述冷却水箱分别与所述第一流路、所述第二流路以及所述第三流路连通。
  3. 根据权利要求2所述的制氢设备,其特征在于,所述电解槽的进液口处设置有用于检测碱液温度的温度传感器,
    所述第四入口与所述换热水箱之间设置有开度V可调的气动隔膜调节器,所述气动隔膜调节器配置为:当所述制氢装置停止工作时,根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小。
  4. 根据权利要求3所述的制氢设备,其特征在于,所述气动隔膜调节器配置为:
    当T>T0+ΔT时,V减小;
    当T<T0-ΔT时,V增大;
    当(T0-ΔT)≤T≤(T0+ΔT)时,V保持不变,
    其中,ΔT为允许温度偏差范围参数。
  5. 根据权利要求4所述的制氢设备,其特征在于,所述进液流路还配置为:
    当V≥最大设定值而T仍然小于T0-ΔT时,将V保持在所述最大设定值;
    当V≤最小设定值而T仍然大于T0+ΔT时,将所述第二入口与所述第一出口导通,将所述第三入口与所述第二出口导通,直至T≤T0+ΔT时,将所述第一入口与所述第一出口导通,将所述第四入口与所述第二出口导通。
  6. 根据权利要求1所述的制氢设备,其特征在于,所述制氢设备还包括补液装置,所述补液装置能够向所述换热水箱中补充保温液,并能够向所述冷却水箱中补充冷却液。
  7. [根据细则91更正 28.04.2023]
    一种制氢设备的电解槽温度控制方法,其特征在于,所述制氢设备包括:
    集中冷却装置,包括相互连通的换热水箱和冷却水箱,所述换热水箱中储存有保温液,所述集中冷却装置配置为:回流的液体依次经过所述换热水箱和所述冷却水箱而形成为冷却液,以及
    至少一个制氢装置,通过冷却循环管路与所述集中冷却装置连通,所述冷却循环管路包括:
    进液流路,用于使所述集中冷却装置中的液体流出至所述制氢装置;以及
    回液流路,用于使液体由所述制氢装置回流至所述集中冷却装置;
    所述电解槽温度控制方法包括:
    判断所述制氢装置是否正常工作;
    将正常工作的所述制氢装置的所述进液流路与所述冷却水箱连通;
    将停止工作的所述制氢装置的所述进液流路与所述换热水箱连通。
  8. 根据权利要求7所述的电解槽温度控制方法,其特征在于,所述制氢装置包括电解槽、以及依次设置在所述电解槽下游的气液分离器、设置在所述气液分离器的气路下游的气体冷凝器、以及依次设置在所述气液分离器的液路下游的碱液循环泵和碱液冷却器,其中,从所述气液分离器中分离出的碱液经所述碱液循环泵泵送至所述碱液冷却器冷却后回到所述电解槽中,从所述气液分离器中分离出的气体进入所述气体冷凝器进行冷却,
    所述进液流路包括:
    第一流路,连通所述集中冷却装置与所述气体冷凝器,
    第二流路,连通所述集中冷却装置与所述碱液循环泵,
    第三流路,连通所述集中冷却装置与所述碱液冷却器,
    第一三通阀,包括与所述换热水箱连通的第一入口、与所述冷却水箱连通的第二入口以及与所述第一流路和所述第二流路分别连通的第一出口,以及
    第二三通阀,包括与所述第一出口连通的第三入口、与所述换热水箱连通的第四入口以及与所述第三流路连通的第二出口;
    所述将正常工作的所述制氢装置的所述进液流路与所述冷却水箱连通的步骤包括:
    在正常工作的所述制氢装置中,将所述第二入口与所述第一出口导通,将所述第三入口与所述第二出口导通;
    所述将停止工作的所述制氢装置的所述进液流路与所述换热水箱连通的步骤包括:
    在停止工作的所述制氢装置中,将所述第一入口与所述第一出口导通,将所述第四入口与所述第二出口导通。
  9. 根据权利要求8所述的电解槽温度控制方法,其特征在于,所述电解槽的进液口处设置有用于检测碱液温度的温度传感器,所述第四入口与所述换热水箱之间设置有开度V可调的气动隔膜调节器,
    所述将停止工作的所述制氢装置的所述进液流路与所述换热水箱连通的步骤还包括:
    根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小。
  10. 根据权利要求9所述的电解槽温度控制方法,其特征在于,所述根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小的步骤包括:
    当T>T0+ΔT时,V减小;
    当T<T0-ΔT时,V增大;
    当(T0-ΔT)≤T≤(T0+ΔT)时,V保持不变,其中,ΔT为允许温度偏差范围参数。
  11. 根据权利要求10所述的电解槽温度控制方法,其特征在于,所述根据所述温度传感器所检测到的实际温度T与预设温度T0的差值而调节V的大小的步骤还包括:
    当V≥最大设定值而T仍然小于T0-ΔT时,将V保持在所述最大设定值;
    当V≤最小设定值而T仍然大于T0+ΔT时,将所述第二入口与所述第一出口导通,将所述第三入口与所述第二出口导通,直至T≤T0+ΔT时,将所述第一入口与所述第一出口导通,将所述第四入口与所述第二出口导通。
PCT/CN2022/115109 2021-12-22 2022-08-26 制氢设备和制氢设备的电解槽温度控制方法 WO2023116015A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111583446.8 2021-12-22
CN202111583446.8A CN114318389B (zh) 2021-12-22 2021-12-22 制氢设备和制氢设备的电解槽温度控制方法

Publications (1)

Publication Number Publication Date
WO2023116015A1 true WO2023116015A1 (zh) 2023-06-29

Family

ID=81054265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115109 WO2023116015A1 (zh) 2021-12-22 2022-08-26 制氢设备和制氢设备的电解槽温度控制方法

Country Status (2)

Country Link
CN (1) CN114318389B (zh)
WO (1) WO2023116015A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536710A (zh) * 2023-06-30 2023-08-04 中石油深圳新能源研究院有限公司 热熔盐换热装置和气液分离装置
CN117888143A (zh) * 2024-01-12 2024-04-16 航天长征化学工程股份有限公司 一种耦合电解制氢能效控制系统及能效控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318389B (zh) * 2021-12-22 2023-11-07 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法
CN114875439A (zh) * 2022-05-23 2022-08-09 阳光氢能科技有限公司 制氢系统及其热管理方法、装置
CN114959740B (zh) * 2022-06-16 2023-06-23 清华四川能源互联网研究院 规模化碱性电解水制氢的停机电解槽保温系统
CN115857318A (zh) * 2023-02-08 2023-03-28 长春绿动氢能科技有限公司 电解槽的温度控制方法、装置及电解制氢系统控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499517A (zh) * 2019-09-30 2019-11-26 长江勘测规划设计研究有限责任公司 水电站电解制氢智能温控冷却供水系统
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN113699538A (zh) * 2021-08-31 2021-11-26 中国华能集团清洁能源技术研究院有限公司 一种带储热的电解制氢系统及其运行方法
WO2021248898A1 (zh) * 2020-06-08 2021-12-16 阳光电源股份有限公司 一种可再生能源制氢和储氢系统及其控制方法
CN114318389A (zh) * 2021-12-22 2022-04-12 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175969A (ja) * 1984-02-21 1985-09-10 Matsushita Electric Works Ltd ヒ−トポンプ式太陽熱温水器
JP5528903B2 (ja) * 2010-05-12 2014-06-25 矢崎エナジーシステム株式会社 吸収式冷暖房給湯システム
JP2013187159A (ja) * 2012-03-09 2013-09-19 Hitachi Ltd 電池システム及びその温度制御方法
CN203190853U (zh) * 2012-10-30 2013-09-11 蚌埠市正园电子科技有限公司 换热器
CN104100419B (zh) * 2014-05-20 2016-11-02 北京工业大学 改善制氢机制氢速率和评价的装置及控制方法
CN106784960B (zh) * 2016-12-30 2020-01-21 上海恒劲动力科技有限公司 一种一体式可逆燃料电池系统
CN106871483A (zh) * 2017-03-31 2017-06-20 武汉地质资源环境工业技术研究院有限公司 一种氢能和太阳能互补的热泵系统
WO2020208949A1 (ja) * 2019-04-09 2020-10-15 パナソニックIpマネジメント株式会社 水素システム
CN111364052A (zh) * 2020-04-03 2020-07-03 中国华能集团清洁能源技术研究院有限公司 一种宽功率电解水制氢系统及方法
CN213472772U (zh) * 2020-11-20 2021-06-18 河南中氢动力研究院有限公司 一种用于装甲车的辅助氢能动力装备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110499517A (zh) * 2019-09-30 2019-11-26 长江勘测规划设计研究有限责任公司 水电站电解制氢智能温控冷却供水系统
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
WO2021248898A1 (zh) * 2020-06-08 2021-12-16 阳光电源股份有限公司 一种可再生能源制氢和储氢系统及其控制方法
CN113699538A (zh) * 2021-08-31 2021-11-26 中国华能集团清洁能源技术研究院有限公司 一种带储热的电解制氢系统及其运行方法
CN114318389A (zh) * 2021-12-22 2022-04-12 无锡隆基氢能科技有限公司 制氢设备和制氢设备的电解槽温度控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536710A (zh) * 2023-06-30 2023-08-04 中石油深圳新能源研究院有限公司 热熔盐换热装置和气液分离装置
CN117888143A (zh) * 2024-01-12 2024-04-16 航天长征化学工程股份有限公司 一种耦合电解制氢能效控制系统及能效控制方法

Also Published As

Publication number Publication date
CN114318389A (zh) 2022-04-12
CN114318389B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2023116015A1 (zh) 制氢设备和制氢设备的电解槽温度控制方法
CN106558713B (zh) 一种燃料电池低温启动系统及运行方法
CN112899706B (zh) 一种水电解制氢系统及其控制方法
CN112899726A (zh) 一种水电解制氢系统及其控制方法
CN114087904B (zh) 电制氢余热利用装置和方法
WO2019037309A1 (zh) 一种冷却装置及液冷散热系统
CN116470187A (zh) 适用于浸没式液冷储能系统的电芯均温系统及方法
CN216592931U (zh) 电制氢余热利用装置
CN115029718A (zh) 制氢系统及其控制方法
CN115513572A (zh) 一种储能电池组半导体温度控制系统
CN109584950B (zh) 用于仪表的冷却降温系统
CN115323419A (zh) 一种碱性电解水制氢设备及其控制方法
JP2006105452A (ja) コージェネレーションシステムおよびその制御方法
CN113097540A (zh) 一种侧置散热器热管理系统并带有冷启动的燃料电池
CN220367944U (zh) 基于燃料电池发电系统的热量利用系统
WO2020015372A1 (zh) 丝绸织机压缩空气降温装置及方法
CN114959740B (zh) 规模化碱性电解水制氢的停机电解槽保温系统
CN211848158U (zh) 氯碱设备的热管理系统
CN218238517U (zh) 一种高温气冷堆核岛冷水能量回收系统
CN217600892U (zh) 一种电镀线生产的节能优化系统
CN219099343U (zh) 自适应控温的电解水制氢系统
CN220653846U (zh) 数据中心高温冷源降温系统
CN215680781U (zh) 充电冷却和供热系统及换电站
CN211813459U (zh) 一种电极水冷却系统和一种多晶硅还原系统
CN117352901B (zh) 一种储能柜冷却系统和冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909340

Country of ref document: EP

Kind code of ref document: A1