WO2020015372A1 - 丝绸织机压缩空气降温装置及方法 - Google Patents

丝绸织机压缩空气降温装置及方法 Download PDF

Info

Publication number
WO2020015372A1
WO2020015372A1 PCT/CN2019/078207 CN2019078207W WO2020015372A1 WO 2020015372 A1 WO2020015372 A1 WO 2020015372A1 CN 2019078207 W CN2019078207 W CN 2019078207W WO 2020015372 A1 WO2020015372 A1 WO 2020015372A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
compressed air
condensation
cooling device
component
Prior art date
Application number
PCT/CN2019/078207
Other languages
English (en)
French (fr)
Inventor
俞水荣
俞金键
王春花
Original Assignee
江苏华佳丝绸股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华佳丝绸股份有限公司 filed Critical 江苏华佳丝绸股份有限公司
Priority to DE212019000151.3U priority Critical patent/DE212019000151U1/de
Publication of WO2020015372A1 publication Critical patent/WO2020015372A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing

Definitions

  • the invention relates to the field of silk, in particular to a compressed air cooling device and method for a silk loom.
  • the air supply system of the existing pneumatic weaving equipment generally requires special drying and cooling equipment, which has large energy consumption, high cost, environmental pollution and high error rate.
  • one object of the present invention is to provide a compressed air cooling device and method for a silk loom, which can solve the problems of large energy consumption, large cost, environmental pollution and high error rate.
  • a compressed air cooling device for a silk loom includes an air compressor, an air storage tank, and a cooling structure.
  • the cooling structure includes a first pipeline, a second pipeline, and a condensation component.
  • a first pipeline is in communication with the second pipeline, the first pipeline is in communication with the air compressor, the second pipeline is in communication with the air storage tank, and the air compressed by the air compressor It flows through the condensing component, and the condensing component comes into contact with the cooling liquid to cool down.
  • the condensation assembly includes a first condensation pipe, a second condensation pipe, and a third condensation pipe, and two ends of the third condensation pipe are respectively connected to the first condensation pipe and the second condensation pipe.
  • the pipeline is connected.
  • the number of the third condensation pipes is at least two, and at least two ends of the third condensation pipes are in communication with the first condensation pipe and the second condensation pipe, respectively.
  • the third condensation pipes are parallel to each other, and the third condensation pipes are located below the liquid level of the cooling liquid.
  • the cooling structure further includes a drainage component, the drainage component includes a drainage pipe and a solenoid valve, the drainage pipe is connected to the second pipeline, and the solenoid valve controls the drainage pipe and the second pipeline Continuity of the pipeline.
  • the temperature reducing structure further includes a first pressure gauge, and the first pressure gauge is in communication with the first pipeline.
  • the cooling structure further includes a second pressure gauge, and the second pressure gauge is in communication with the second pipeline.
  • the compressed air cooling device of the silk loom further includes a reservoir, the reservoir is filled with a cooling liquid, and the cooling structure is partially contained in the reservoir.
  • a water outlet is provided in the reservoir, and the water outlet is connected to a domestic water pipeline.
  • the storage tank further includes a control valve, which controls the opening and closing of the water outlet and the domestic water pipeline.
  • a method for cooling compressed air of a silk loom includes the following steps: a compressor compresses the air; cools the compressed air through a condensing component that is in contact with a cooling liquid; a solenoid valve controls the compressed air inside the condensing component to drain water periodically; Compressed air is introduced into the air tank.
  • the compressed air By passing the compressed air through a condensing pipe installed in the flowing water path, the compressed air is cooled and stabilized.
  • the condensing component By passing the compressed air into the condensing component, the condensing component contacts the flowing water for cold and heat exchange, thereby reducing the volume of compressed air, reducing the volume of the air storage chamber, and increasing the pressure of the air storage, thereby meeting the requirements of the loom.
  • Power solves the problem of insufficient power of small air pressure looms in summer, saves electricity, reduces investment in cooling equipment, saves equipment, improves equipment utilization, and has a good cooling effect.
  • the warm water in the cooling pool is used as domestic water. Utilization reduces environmental pollution and reduces energy consumption and production costs of the enterprise.
  • FIG. 1 is a schematic diagram of a preferred embodiment of a compressed air cooling device for a silk loom according to the present invention
  • FIG. 2 is a schematic diagram of a cooling structure in the compressed air cooling device of the silk loom shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a reservoir in the compressed air cooling device of the silk loom shown in FIG. 1;
  • FIG. 4 is a flowchart of a method for cooling compressed air by a silk loom.
  • 100 compressed air cooling device for silk loom; 10, air compressor; 20, air storage tank; 30, cooling structure; 31, first pipeline; 32, second pipeline; 33, condensation component; 331 First condensing pipe; 332; second condensing pipe; 333; third condensing pipe; 34; drainage assembly; 341; drainage pipe; 342; solenoid valve; 35; first pressure gauge; 36; second pressure Table; 40. Reservoir.
  • a component when a component is called “fixed to” another component, it may be directly on another component or a centered component may exist.
  • a component When a component is considered to be “connected” to another component, it can be directly connected to another component or a centered component may exist at the same time.
  • a component When a component is considered to be “set on” another component, it can be directly set on another component or a centered component may exist at the same time.
  • the terms “vertical”, “horizontal”, “left”, “right” and similar expressions used herein are for illustrative purposes only.
  • a compressed air cooling device 100 for a silk loom includes an air compressor 10, an air storage tank 20, and a cooling structure 30.
  • the cooling structure 30 includes a first pipe 31, a second pipe 32, and a condensation component 33. Both ends of the condensation component 33 are in communication with the first pipe 31 and the second pipe 32, respectively.
  • the first pipeline 31 is in communication with the air compressor 10
  • the second pipeline 32 is in communication with the air storage tank 20, and the air compressed by the air compressor 10 flows through the condensation component 33.
  • the condensing unit 33 comes into contact with the cooling liquid to cool down. By passing the compressed air through a condensing pipe installed in the flowing water path, the compressed air is cooled and stabilized.
  • the condensing component 33 By passing the compressed air into the condensing component 33, specifically, the condensing component 33 is in contact with a flowing water stream or other cooling liquid for cold and heat exchange, thereby reducing the volume of compressed air, reducing the volume of the air storage chamber and increasing the storage capacity.
  • the air pressure meets the power of the loom, and solves the problem of insufficient power of the small air pressure loom in the summer. At the same time, it saves equipment, improves the utilization rate of the equipment, has a good cooling effect, reduces environmental pollution, and reduces energy consumption and Cost of production.
  • the condensation component 33 includes a first condensation line 331, a second condensation line 332, and a third condensation line 333, and both ends of the third condensation line 333 are respectively connected to the first condensation line 331.
  • the number of the third condensing pipes 333 is at least two, and the two ends of the third condensing pipes 333 are respectively connected with the first condensing pipe 331 and
  • the second condensing pipes 332 communicate with each other, and the third condensing pipes 333 are parallel to each other to improve the cooling efficiency of the compressed air and accelerate the cold and heat exchange between the compressed air and the cooling liquid.
  • the temperature reducing structure 30 further includes a drainage component 34, which includes a drainage pipe 341 and a solenoid valve 342, the drainage pipe 341 is connected to the second pipeline 32, and the solenoid valve 342 controls an office
  • the on-off of the drain pipe 341 and the second pipe 32 may be provided with the solenoid valve 342 so as to periodically control the on-off of the drain pipe 341 and the second pipe 32 to achieve the Periodic drainage.
  • it can be set to 1 hour and 60 times, each time 1-3 seconds, so as to discharge the condensed water in the compressed air and reduce the humidity of the compressed air.
  • Other cooling equipment generally uses gas-liquid contact cooling, and the compressed air has high humidity.
  • the temperature reducing structure 30 further includes a first pressure gauge 35 and a second pressure gauge 36.
  • the first pressure gauge 35 is in communication with the first pipeline 31, and the second pressure gauge 36 is in communication with the first pressure gauge 36.
  • the two pipes 32 communicate. Monitor the pressure indicator of the first pipeline 31 through the first pressure gauge 35 and monitor the pressure indicator of the second pipeline 32 through the second pressure gauge 36 to determine the first pipe.
  • the pressure difference between the circuit 31 and the second pipeline 32 facilitates the management of the operator.
  • the silk loom compressed air cooling device 100 further includes a reservoir 40, and the reservoir 40 is filled with a cooling liquid, and the cooling structure 30 is partially contained in the reservoir 40.
  • the water storage port 40 is provided with a water outlet, and the water outlet is connected to a domestic water pipeline or a hot water and steam preheating pipeline to improve energy utilization efficiency and save power consumption.
  • the reservoir 40 further includes a control valve, which controls the opening and closing of the water outlet and the domestic water pipeline, and can artificially control whether or not the reservoir 40 supplies water.
  • a control valve which controls the opening and closing of the water outlet and the domestic water pipeline, and can artificially control whether or not the reservoir 40 supplies water.
  • the control valve blocks the water outlet and the domestic water pipeline.
  • the control valve controls the water outlet and the domestic water pipeline to communicate with each other.
  • a method for cooling compressed air of a silk loom including the following steps:
  • S3 The solenoid valve controls the compressed air inside the condensing component to drain periodically;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Looms (AREA)

Abstract

一种丝绸织机压缩空气降温装置,包括空压机(10)、储气罐(20)及降温结构(30),降温结构(30)包括第一管路(31)、第二管路(32)及冷凝组件(33),冷凝组件(33)两端分别与第一管路(31)和第二管路(32)连通,第一管路(31)与空压机(10)连通,第二管路(32)与储气罐(20)连通,空压机(10)压缩后的空气流经冷凝组件(33),冷凝组件(33)与冷却液体接触进行降温。通过将压缩后的空气通入冷凝组件(33)中,冷凝组件(33)与流动的水流接触进行冷热交换,从而降低压缩空气的体积,减小储气气室容积并提高储气压力,满足织布机的动力,解决了夏天气压小织布机动力不足的问题,同时降温效果好。

Description

丝绸织机压缩空气降温装置及方法 技术领域
本发明涉及丝绸领域,尤其涉及一种丝绸织机压缩空气降温装置及方法。
背景技术
目前,随着社会的发展和人民生活水平的进步,越来越多的丝绸制品应用人们的日常生活中,提高了人民生活品质,同时为了提高生产效率,越来越多的丝绸织机应用到工厂中,随着传统化石能源的枯竭,可再生能源的利用受到越来越多的重视,在我国,风电已经成为继火电、水电之后的第三大电能来源。到目前为止,电能存储技术可以分为两大类:一是物理储能,比如抽水蓄能、压缩空气储能以及飞轮储能等,另一类是电化学储能,比如电池、燃料电池以及电解氢等。然而,适合大规模风电存储的成熟技术只有两种,抽水蓄能技术和压缩空气储能技术。
随着分布式能量系统的发展以及减小储气气室容积和提高储气压力的需要,小规模分布式的压缩空气储能系统越来越被更多的人关注,在传统压缩空气冷却器的基础上,如何减少能耗、降低成本?这是人们一直亟需解决的技术难题!
现有气动织布设备的供气系统一般需要专用的干燥和冷却设备,能耗大,成本大,污染环境且出错率高。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种丝绸 织机压缩空气降温装置及方法,其能解决能耗大,成本大,污染环境且出错率高的问题。
本发明的目的之一采用如下技术方案实现:
一种丝绸织机压缩空气降温装置,包括空压机、储气罐及降温结构,所述降温结构包括第一管路、第二管路及冷凝组件,所述冷凝组件两端分别与所述第一管路和所述第二管路连通,所述第一管路与所述空压机连通,所述第二管路与所述储气罐连通,所述空压机压缩后的空气流经所述冷凝组件,所述冷凝组件与冷却液体接触进行降温。
进一步地,所述冷凝组件包括第一冷凝管路、第二冷凝管路及第三冷凝管路,所述第三冷凝管路两端分别与所述第一冷凝管路和所述第二冷凝管路连通。
进一步地,所述第三冷凝管路的数量为至少两个,至少两所述第三冷凝管路两端分别与所述第一冷凝管路和所述第二冷凝管路连通。
进一步地,所述第三冷凝管路之间相互平行,所述第三冷凝管路位于冷却液体液面以下。
进一步地,所述降温结构还包括排水组件,所述排水组件包括排水管及电磁阀,所述排水管与所述第二管路连接,所述电磁阀控制所述排水管与所述第二管路的通断。
进一步地,所述降温结构还包括第一压力表,所述第一压力表与所述第一管路连通。
进一步地,所述降温结构还包括第二压力表,所述第二压力表与所述第二管路连通。
进一步地,所述丝绸织机压缩空气降温装置还包括蓄水池,所述蓄水池内充有冷却用液体,所述降温结构部分收容于所述蓄水池内。
进一步地,所述蓄水池的设有出水口,所述出水口连接生活用水管路。
进一步地,所述蓄水池还包括控制阀,所述控制阀控制所述出水口和所述生活用水管路的通断。
一种丝绸织机压缩空气降温方法,包括以下步骤:压缩机对空气进行压缩;将压缩后的空气通过与冷却液接触的冷凝组件进行降温;电磁阀控制冷凝组件内部的压缩空气定期排水;将压缩空气导入储气罐中。
相比现有技术,本发明的有益效果在于:
通过将压缩空气通过设置于流动水路的冷凝管,实现压缩空气的冷却,更趋平稳。通过将压缩后的空气通入冷凝组件中,冷凝组件与流动的水流接触进行冷热交换,从而降低压缩空气的体积,减小储气气室容积并提高储气压力,从而满足织布机的动力,解决了夏天气压小织布机动力不足的问题,节省了电能,减少冷却设备的投入,同时节省了设备,提高了设备利用率,降温效果好,将冷却池中的温水作为生活用水再利用,减少环境污染,降低了企业的能耗和生产成本。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明丝绸织机压缩空气降温装置中一较佳实施例的示意图;
图2为图1所示丝绸织机压缩空气降温装置中一降温结构的示意图;
图3为图1所示丝绸织机压缩空气降温装置中一蓄水池的示意图;
图4为一种丝绸织机压缩空气降温方法的流程图。
图中:100、丝绸织机压缩空气降温装置;10、空压机;20、储气罐;30、降温结构;31、第一管路;32、第二管路;33、冷凝组件;331、第一冷凝管路;332、第二冷凝管路;333、第三冷凝管路;34、排水组件;341、排水管;342、电磁阀;35、第一压力表;36、第二压力表;40、蓄水池。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用 的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1-3,一种丝绸织机压缩空气降温装置100包括空压机10、储气罐20及降温结构30。
所述降温结构30包括第一管路31、第二管路32及冷凝组件33,所述冷凝组件33两端分别与所述第一管路31和所述第二管路32连通,所述第一管路31与所述空压机10连通,所述第二管路32与所述储气罐20连通,所述空压机10压缩后的空气流经所述冷凝组件33,所述冷凝组件33与冷却液体接触进行降温。通过将压缩空气通过设置于流动水路的冷凝管,实现压缩空气的冷却,更趋平稳。通过将压缩后的空气通入冷凝组件33中,具体的,冷凝组件33与流动的水流或其他冷却液体接触进行冷热交换,从而降低压缩空气的体积,减小储气气室容积并提高储气压力,从而满足织布机的动力,解决了夏天气压小织布机动力不足的问题,同时节省了设备,提高了设备利用率,降温效果好,减少环境污染,降低了企业的能耗和生产成本。
优选的,所述冷凝组件33包括第一冷凝管路331、第二冷凝管路332及第三冷凝管路333,所述第三冷凝管路333两端分别与所述 第一冷凝管路331和所述第二冷凝管路332连通,具体的,所述第三冷凝管路333与所述第一冷凝管路331和所述第二冷凝管路332垂直,所述第三冷凝管路333位于冷却液体液面下进行冷热交换,所述第三冷凝管路333的数量为至少两个,至少两所述第三冷凝管路333两端分别与所述第一冷凝管路331和所述第二冷凝管路332连通,所述第三冷凝管路333之间相互平行,提高压缩空气的冷却效率,加快压缩空气与冷却液体的冷热交换。
优选的,所述降温结构30还包括排水组件34,所述排水组件34包括排水管341及电磁阀342,所述排水管341与所述第二管路32连接,所述电磁阀342控制所述排水管341与所述第二管路32的通断,可设置所述电磁阀342从而定期控制所述排水管341与所述第二管路32的通断,实现所述排水管341的定期排水,如实际操作过程中,可设置为1小时60次,每次排气1-3秒,从而排出压缩空气中的冷凝水,降低压缩空气的潮湿度。其他冷却设备一般采用气液接触冷却,压缩空气湿度高。
优选的,所述降温结构30还包括第一压力表35及第二压力表36,所述第一压力表35与所述第一管路31连通,所述第二压力表36与所述第二管路32连通。通过所述第一压力表35监测所述第一管路31的压力示数,通过所述第二压力表36监测所述第二管路32的压力示数,从而判断出所述第一管路31与所述第二管路32的压力差,便于操作人员的管理。
优选的,所述丝绸织机压缩空气降温装置100还包括蓄水池40, 所述蓄水池40内充有冷却用液体,所述降温结构30部分收容于所述蓄水池40内,所述蓄水池40的设有出水口,所述出水口连接生活用水管路或热水、蒸汽预热管路,提高能源利用效率,节省电能消耗。
优选的,所述蓄水池40还包括控制阀,所述控制阀控制所述出水口和所述生活用水管路的通断,可人为控制所述蓄水池40是否供水,当所述空压机10停止时,所述控制阀隔断所述出水口和所述生活用水管路,当所述空压机10工作时,所述控制阀控制所述出水口和所述生活用水管路连通,操作性强,结构新颖,设计巧妙,适用性强,便于推广。
请参阅图4,一种丝绸织机压缩空气降温方法,包括以下步骤:
S1:压缩机对空气进行压缩;
S2:将压缩后的空气通过与冷却液接触的冷凝组件进行降温;
S3:电磁阀控制冷凝组件内部的压缩空气定期排水;
S4:将压缩空气导入储气罐中。
将压缩后的空气通入冷凝组件中,冷凝组件与流动的水流接触进行冷热交换,从而降低压缩空气的体积,减小储气气室容积并提高储气压力,从而满足织布机的动力,解决了夏天气压小织布机动力不足的问题,同时节省了设备,提高了设备利用率,降温效果好,减少环境污染,降低了企业的能耗和生产成本。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种丝绸织机压缩空气降温装置,包括空压机、储气罐及降温结构,其特征在于:所述降温结构包括第一管路、第二管路及冷凝组件,所述冷凝组件两端分别与所述第一管路和所述第二管路连通,所述第一管路与所述空压机连通,所述第二管路与所述储气罐连通,所述空压机压缩后的空气流经所述冷凝组件,所述冷凝组件与冷却液体接触进行降温。
  2. 如权利要求1所述的丝绸织机压缩空气降温装置,其特征在于:所述冷凝组件包括第一冷凝管路、第二冷凝管路及第三冷凝管路,所述第三冷凝管路两端分别与所述第一冷凝管路和所述第二冷凝管路连通。
  3. 如权利要求2所述的丝绸织机压缩空气降温装置,其特征在于:所述第三冷凝管路的数量为至少两个,至少两所述第三冷凝管路两端分别与所述第一冷凝管路和所述第二冷凝管路连通。
  4. 如权利要求3所述的丝绸织机压缩空气降温装置,其特征在于:所述第三冷凝管路之间相互平行,所述第三冷凝管路位于冷却液体液面以下。
  5. 如权利要求1所述的丝绸织机压缩空气降温装置,其特征在于:所述降温结构还包括排水组件,所述排水组件包括排水管及电磁阀,所述排水管与所述第二管路连接,所述电磁阀控制所述排水管与所述第二管路的通断。
  6. 如权利要求1所述的丝绸织机压缩空气降温装置,其特征在于:所述降温结构还包括第一压力表,所述第一压力表与所述第一管路连 通。
  7. 如权利要求1所述的丝绸织机压缩空气降温装置,其特征在于:所述降温结构还包括第二压力表,所述第二压力表与所述第二管路连通。
  8. 如权利要求1所述的丝绸织机压缩空气降温装置,其特征在于:所述丝绸织机压缩空气降温装置还包括蓄水池,所述蓄水池内充有冷却用液体,所述降温结构部分收容于所述蓄水池内,所述蓄水池的设有出水口,所述出水口连接生活用水管路。
  9. 如权利要求8所述的丝绸织机压缩空气降温装置,其特征在于:所述蓄水池还包括控制阀,所述控制阀控制所述出水口和所述生活用水管路的通断。
  10. 一种丝绸织机压缩空气降温方法,其特征在于,包括以下步骤:
    S1:压缩机对空气进行压缩;
    S2:将压缩后的空气通过与冷却液接触的冷凝组件进行降温;
    S3:电磁阀控制冷凝组件内部的压缩空气定期排水;
    S4:将压缩空气导入储气罐中。
PCT/CN2019/078207 2018-07-18 2019-03-15 丝绸织机压缩空气降温装置及方法 WO2020015372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212019000151.3U DE212019000151U1 (de) 2018-07-18 2019-03-15 Druckluftabkühlungsvorrichtung einer Seidenwebmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810790432.5 2018-07-18
CN201810790432.5A CN108757394A (zh) 2018-07-18 2018-07-18 丝绸织机压缩空气降温装置及方法

Publications (1)

Publication Number Publication Date
WO2020015372A1 true WO2020015372A1 (zh) 2020-01-23

Family

ID=63970301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078207 WO2020015372A1 (zh) 2018-07-18 2019-03-15 丝绸织机压缩空气降温装置及方法

Country Status (3)

Country Link
CN (1) CN108757394A (zh)
DE (1) DE212019000151U1 (zh)
WO (1) WO2020015372A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757394A (zh) * 2018-07-18 2018-11-06 江苏华佳丝绸股份有限公司 丝绸织机压缩空气降温装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122806A (en) * 1975-04-19 1976-10-27 Tokico Ltd Air compressor
US4838343A (en) * 1988-01-11 1989-06-13 Bogue Kenneth D Portable apparatus for cooling compressed air
CN203783858U (zh) * 2014-04-24 2014-08-20 中国大唐集团新能源股份有限公司 一种压缩空气储能发电装置
CN104208979A (zh) * 2014-09-02 2014-12-17 苏州市君威医疗设备有限公司 一种应用于空气压缩机的干燥冷凝系统
CN104481849A (zh) * 2014-11-11 2015-04-01 无锡市张泾机械设备厂 一种制桶设备的气源系统
CN104654663A (zh) * 2014-10-14 2015-05-27 青岛大学 换热装置
CN108087242A (zh) * 2018-01-10 2018-05-29 苏州森保林科技有限公司 一种纺织用的节能减排空压机
CN108757394A (zh) * 2018-07-18 2018-11-06 江苏华佳丝绸股份有限公司 丝绸织机压缩空气降温装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204494076U (zh) * 2015-02-02 2015-07-22 骏马化纤股份有限公司 压缩空气自动排水装置
CN204849211U (zh) * 2015-07-01 2015-12-09 青岛天一集团红旗纺织机械有限公司 喷气织机供气装置及喷气织机
CN208918782U (zh) * 2018-07-18 2019-05-31 江苏华佳丝绸股份有限公司 丝绸织机压缩空气降温装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51122806A (en) * 1975-04-19 1976-10-27 Tokico Ltd Air compressor
US4838343A (en) * 1988-01-11 1989-06-13 Bogue Kenneth D Portable apparatus for cooling compressed air
CN203783858U (zh) * 2014-04-24 2014-08-20 中国大唐集团新能源股份有限公司 一种压缩空气储能发电装置
CN104208979A (zh) * 2014-09-02 2014-12-17 苏州市君威医疗设备有限公司 一种应用于空气压缩机的干燥冷凝系统
CN104654663A (zh) * 2014-10-14 2015-05-27 青岛大学 换热装置
CN104481849A (zh) * 2014-11-11 2015-04-01 无锡市张泾机械设备厂 一种制桶设备的气源系统
CN108087242A (zh) * 2018-01-10 2018-05-29 苏州森保林科技有限公司 一种纺织用的节能减排空压机
CN108757394A (zh) * 2018-07-18 2018-11-06 江苏华佳丝绸股份有限公司 丝绸织机压缩空气降温装置及方法

Also Published As

Publication number Publication date
DE212019000151U1 (de) 2020-07-30
CN108757394A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN206959110U (zh) 一种太阳能光伏光热一体化联合空气源热泵供暖系统
CN107014110B (zh) 分布式水汽冷热电联供装置及方法
CN109442818B (zh) 一种冷却水流量分配水利平衡系统
CN108317767B (zh) 一种质子交换膜燃料电池余热利用系统及方法
CN101270935A (zh) 太阳能喷射电压缩热泵复合式空调机组
CN112701771A (zh) 一种近零能耗零碳建筑多能互补供能系统及方法
CN208257647U (zh) 一种换流阀冷却系统
CN201265955Y (zh) 废热回收制取高温热水系统
CN112760666A (zh) 一种氢冷机组制氢补氢系统及其工作方法
CN203501589U (zh) 新型蓄能恒温恒压冷冻站系统装置
CN102927638B (zh) 冰蓄冷水蓄热系统
WO2020015372A1 (zh) 丝绸织机压缩空气降温装置及方法
CN104236199A (zh) 高效节能冷冻机系统及在生产中的综合应用技术
CN204214065U (zh) 消防水池水蓄冷系统
CN108826744A (zh) 用超临界水氧化系统余能进行冷热电多联供的系统
CN208918782U (zh) 丝绸织机压缩空气降温装置
CN202902525U (zh) 冰蓄冷水蓄热系统
CN211345956U (zh) 液化天然气冷能制冰装置
CN217083063U (zh) 一种基于自由冷却的北方工艺冷水供应系统
CN216591885U (zh) 一种空气能热电联供供暖系统
CN217906260U (zh) 一种卷烟工艺冷却水系统
CN201964708U (zh) 一种蓄冷设备
CN101738056A (zh) 电冰箱式冷/暖空调-发电与淋浴的多功能系统装置
CN114497800A (zh) 一种应用于储能电站的多级冷却系统及控制方法
CN208124667U (zh) 一种质子交换膜燃料电池余热利用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837558

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19837558

Country of ref document: EP

Kind code of ref document: A1