WO2023116013A1 - 图像获取装置及参数确定方法 - Google Patents

图像获取装置及参数确定方法 Download PDF

Info

Publication number
WO2023116013A1
WO2023116013A1 PCT/CN2022/114909 CN2022114909W WO2023116013A1 WO 2023116013 A1 WO2023116013 A1 WO 2023116013A1 CN 2022114909 W CN2022114909 W CN 2022114909W WO 2023116013 A1 WO2023116013 A1 WO 2023116013A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image acquisition
welding
attenuation
spectrum
Prior art date
Application number
PCT/CN2022/114909
Other languages
English (en)
French (fr)
Inventor
冯雪
张金松
岳孟坤
王锦阳
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023116013A1 publication Critical patent/WO2023116013A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Definitions

  • the present disclosure relates to the field of optical technology, and in particular to an image acquisition device and a parameter determination method.
  • Welding is an indispensable key processing technology in modern industry and manufacturing industry.
  • the welding process involves coupling behaviors such as complex materials, physics, chemistry, and mechanics.
  • Intelligent welding represented by automatic welding is gradually replacing traditional manual welding. This puts forward an urgent demand for real-time, online and non-contact welding process monitoring in the welding process. .
  • weld pool is the core and most challenging key technology.
  • Welding pool is a key indicator for evaluating welding quality and optimizing welding process, and it is also a key factor affecting weld quality.
  • the direct observation of the welding pool has always been a technical problem in engineering.
  • an image acquisition device is provided, the device is used to acquire an image of a weld puddle, and the device includes:
  • An image acquisition module configured to acquire images
  • the filter module is arranged at the acquisition end of the image acquisition module, and includes a narrow-band filter for filtering out radiated light.
  • the central wavelength of the narrow-band filter is related to the spectral response of the image acquisition module, welding process There is a correlation between the spectrum of the weld pool and the spectrum of the arc light;
  • the attenuation module is arranged at the acquisition end of the image acquisition module, and includes an optical attenuation sheet for attenuating radiated light.
  • the attenuation distance in the plane has a correlation.
  • the device further includes a laser emitting module, configured to emit a surface laser to irradiate the weld pool to suppress radiated light.
  • the laser emission module includes:
  • a collimated laser is used to generate laser light, the wavelength of the laser light is related to the central wavelength of the narrowband filter;
  • a beam expander arranged at the front end of the collimated laser, is used to generate the surface laser.
  • the device also includes:
  • the protective lens is arranged at the acquisition end of the image acquisition module, and the protective lens is made of high temperature resistant, wear-resistant and transparent materials.
  • the device also includes:
  • An adjustable bracket is used to fix the image acquisition module and the laser emission module, wherein the fixed positions of the image acquisition module and the laser emission module are adjustable.
  • the central wavelength of the narrow-band filter is any extreme value of the product of the sum of the spectrum of the weld pool and the spectrum of the arc light during the welding process and the spectral response of the image acquisition module or the minimum of extreme values.
  • the correlation between the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the weld pool at the initial stage of welding and the attenuation distance in the plane where the weld pool is located includes:
  • D(r) represents the light attenuation rate at the attenuation distance r from the attenuation center in the plane where the weld pool is located
  • represents the standard deviation of the light intensity distribution of the weld pool at the initial stage of welding
  • represents the preset parameter and 0 ⁇ 1.
  • a method for determining parameters comprising:
  • Determining the normalized light intensity distribution of the welding pool image, and fitting the normalized light intensity distribution, determining the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the welding pool at the initial stage of welding and welding The correlation relationship between the attenuation distance in the plane where the molten pool is located is used to determine the light attenuation rate parameter of the optical attenuation sheet.
  • the central wavelength of the narrow-band filter is any extreme value of the product of the sum of the spectrum of the weld pool and the spectrum of the arc light during the welding process and the spectral response of the image acquisition module or the minimum of extreme values.
  • the correlation between the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the weld pool at the initial stage of welding and the attenuation distance in the plane where the weld pool is located includes:
  • D(r) represents the light attenuation rate at the attenuation distance r away from the attenuation center in the plane where the weld pool is located
  • represents the standard deviation of the light intensity distribution of the weld pool at the initial stage of welding
  • represents the preset parameter and 0 ⁇ 1.
  • a filter module including a narrow-band filter is installed at the acquisition end of the image acquisition module to filter out radiated light, and the central wavelength of the narrow-band filter and the spectral response and welding process of the image acquisition module are set.
  • the central wavelength of the narrow-band filter and the spectral response and welding process of the image acquisition module are set.
  • the attenuation module comprising the optical attenuation sheet at the acquisition end of the image acquisition module to attenuate the radiation light
  • setting the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the welding pool at the initial stage of welding and the plane where the welding pool is located The attenuation distance within has a correlation, which makes the light intensity of the collected image uniform, avoids the phenomenon of large-area overexposure, and then realizes high-quality observation of the molten pool area.
  • Fig. 1 shows a block diagram of an image acquisition device according to an embodiment of the present disclosure.
  • Fig. 2 shows a schematic diagram of an image acquisition device according to an embodiment of the present disclosure.
  • Fig. 3 shows a flowchart of a parameter determination method according to an embodiment of the present disclosure.
  • Figure 4 shows a schematic diagram of typical arc and weld pool spectra during GMAW welding.
  • Fig. 5 shows a schematic diagram of the spectral response curve of the camera.
  • FIG. 6 shows a schematic diagram of light transmittance of a narrowband filter according to an embodiment of the present disclosure.
  • Fig. 7a shows a schematic diagram of an optical attenuation sheet according to an embodiment of the present disclosure.
  • Fig. 7b shows a schematic diagram of the light attenuation degree of the optical attenuation sheet according to an embodiment of the present disclosure.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • FIG. 1 shows a block diagram of an image acquisition device according to an embodiment of the present disclosure.
  • the device is used to obtain the image of the weld pool, as shown in Figure 1, the device includes:
  • An image acquisition module 10 configured to acquire images
  • the filter module 20 is arranged at the acquisition end of the image acquisition module 10, and includes a narrow-band filter for filtering out radiated light.
  • the central wavelength of the narrow-band filter is related to the spectral response and welding of the image acquisition module There is a correlation between the spectrum of the weld pool and the spectrum of the arc light during the process;
  • the attenuation module 30 is arranged at the acquisition end of the image acquisition module 10, and includes an optical attenuation sheet for attenuating radiated light.
  • the attenuation distance in the plane of the cell has a correlation.
  • the radiated light is filtered out by setting a filter module including a narrow-band filter at the acquisition end of the image acquisition module, and setting the central wavelength of the narrow-band filter and the center wavelength of the image acquisition module
  • the spectral response, the spectrum of the welding pool during the welding process, and the spectrum of the arc light have a correlation, which can better filter out the high-temperature thermal radiation and The high-radiation arc light interference of the arc
  • the attenuation module including the optical attenuation sheet at the acquisition end of the image acquisition module to attenuate the radiation light, the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the welding pool at the initial stage of welding and
  • the attenuation distance in the plane where the welding pool is located has a correlation, which makes the light intensity of the collected image uniform, avoids large-area overexposure, and then realizes high-quality observation of the molten pool area.
  • the image acquisition device of the embodiment of the present disclosure can be applied to the image acquisition of the welding pool in various welding methods, such as TIG (Tungsten Inert Gas, non-melting inert gas tungsten shielded welding), GTAW (Gas Tungsten Arc Welding, Argon arc welding), GMAW (Gas Metal Arc Welding, melting pole gas arc welding), MIG (Melt Inert-gas Welding, melting pole inert gas shielding welding), MAG welding (Metal Active Gas Arc Welding, melting pole active gas shielded arc welding) welding) and other arc welding methods, which are not limited in the embodiments of the present disclosure.
  • TIG Transmission Inert Gas, non-melting inert gas tungsten shielded welding
  • GTAW Gas Tungsten Arc Welding, Argon arc welding
  • GMAW Gas Metal Arc Welding, melting pole gas arc welding
  • MIG Melt Inert-gas
  • the main factors affecting the observation of the molten pool include: (1) arc light interference caused by arc discharge and heating;
  • the image acquisition device is designed according to the arc light and thermal radiation characteristics of the molten pool to eliminate the high-temperature thermal radiation of the molten pool and the high-radiation arc light interference of the arc, and to make the collected image uniform in intensity and avoid large-area overexposure. Improve the accuracy of image acquisition of the weld pool during the welding process.
  • the image acquisition module in the embodiment of the present disclosure may include a camera, and the embodiment of the present disclosure does not limit the specific type of the camera, which may be a black-and-white camera or a color camera; it may be a monocular camera or a multi-eye camera; it may be It can be a CCD (Charge-coupled Device) camera, or a CMOS (Complementary Metal Oxide Semiconductor) camera, or any combination of them.
  • the collection end of the image collection module may be a lens of a camera.
  • the narrow-band filter and the optical attenuation sheet can be sequentially arranged at the front end of the camera lens, and the camera can collect the melt pool image through the narrow-band filter and the optical attenuation sheet to ensure that the image acquisition module has a higher signal-to-noise ratio,
  • the camera can better filter out the high-temperature thermal radiation of the molten pool and the high-radiation arc light interference of the arc, so that the light intensity of the collected image is uniform, and large-area overexposure is avoided, thereby achieving high-quality imaging of the molten pool area. observe.
  • the narrow-band filter in the embodiment of the present disclosure can be subdivided from the band-pass filter.
  • the narrow-band filter allows optical signals to pass through in a specific wavelength band, while the optical signals on both sides that deviate from this wavelength band are blocked.
  • the passband of the narrowband filter is relatively narrow, generally below 5% of the central wavelength value. For example, if the central wavelength is 450nm, the bandwidth of the narrowband filter can be set to below 20nm, preferably 10nm.
  • the central wavelength of the narrow-band filter is any extreme value of the product of the sum of the spectrum of the weld pool and the spectrum of the arc light during the welding process and the spectral response of the image acquisition module or the minimum of extreme values.
  • the central wavelength of the narrow-band filter has a correlation with the spectral response of the image acquisition module, the spectrum of the weld pool during the welding process, and the spectrum of the arc light.
  • H( ⁇ ) can be shown in formula 1:
  • Q( ⁇ ) is the spectral response of the image acquisition module
  • f( ⁇ ) represents the spectrum of the weld pool during the welding process
  • g( ⁇ ) represents the spectrum of the arc light during the welding process.
  • the minimum value H min ( ⁇ ) ( ⁇ min ⁇ ⁇ ⁇ ⁇ max ) of H( ⁇ ) can be calculated, and the wavelength corresponding to the minimum value can be obtained. If there are multiple minimum values at the same time, take The minimum value min ⁇ H min ( ⁇ ) ⁇ corresponding to the minimum value among the minimum values is taken as the central wavelength ⁇ 0 of the optimal imaging.
  • the optical attenuation sheet in the embodiment of the present disclosure can be made into a sheet shape by utilizing the light absorption characteristics of the material, and placed on the optical path to attenuate the light intensity.
  • the optical attenuation sheet of the embodiment of the present disclosure It may be a radially graded central filter, the optical attenuation rate varies with distance from the center to the outside, for example, the optical attenuation rate may be inversely correlated with the distance from the center, ie, the optical attenuation rate decreases as the distance increases.
  • the correlation between the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the weld pool at the initial stage of welding and the attenuation distance in the plane where the weld pool is located can be shown in formula 2:
  • D(r) represents the light attenuation rate at the attenuation distance r away from the attenuation center in the plane where the weld pool is located
  • represents the standard deviation of the light intensity distribution of the weld pool at the initial stage of welding
  • represents the preset parameter and 0 ⁇ 1.
  • the above-mentioned central wavelength of the narrow-band filter has a correlation with the spectral response of the image acquisition module, the spectrum of the weld pool and the spectrum of the arc light during the welding process, and the light attenuation rate of the optical attenuation sheet
  • the introduction of specific formulas related to the light intensity distribution of the weld pool at the initial stage of welding and the attenuation distance in the plane where the weld pool is located is exemplary.
  • each correlation can be realized by other formulas , which is not limited by the embodiments of the present disclosure.
  • the image acquisition apparatus in the embodiment of the present disclosure may also include other implementation manners, which will be described as examples below.
  • the device may further include a laser emitting module, configured to emit a surface laser to irradiate the weld pool to suppress radiated light.
  • the laser emitting module may include:
  • a collimated laser is used to generate laser light, the wavelength of the laser light is related to the central wavelength of the narrowband filter;
  • a beam expander arranged at the front end of the collimated laser, is used to generate the surface laser.
  • the wavelength of the laser light emitted by the collimated laser may be consistent with the central wavelength of the narrow-band filter.
  • the laser emitting surface of the laser emitting module irradiates the welding pool with laser light, which can suppress the radiated light and perform laser compensation on the welding pool.
  • the beam expander in the embodiment of the present disclosure can be in the form of a lens, etc., and the laser beam emitted by the collimated laser is expanded by the beam expander to obtain a surface laser, which increases the irradiation range, so that the entire area of the welding pool, especially the welding arc The area outside the area can maintain the same light intensity as the welding arc area, thereby improving the accuracy of image acquisition.
  • the device may also include:
  • the protective lens is arranged at the acquisition end of the image acquisition module, and the protective lens is made of high temperature resistant, wear-resistant and transparent materials.
  • a protective lens in front of the camera lens by setting a protective lens in front of the camera lens, and selecting a protective lens made of high temperature resistant, wear-resistant, and transparent materials, splash resistance in high temperature environments can be achieved, and damage to the lens, narrow-band filter, and optical attenuation can be avoided. piece.
  • the device may also include:
  • An adjustable bracket is used to fix the image acquisition module and the laser emission module, wherein the fixed positions of the image acquisition module and the laser emission module are adjustable.
  • the adjustable bracket in the embodiment of the present disclosure can be provided with a rotating structure to realize the rotation of the image acquisition module and the laser emission module in any direction, and can be provided with a telescopic structure to realize the expansion and contraction of the image acquisition module and the laser emission module , the adjustable bracket in the embodiment of the present disclosure can also include a driving structure, which can drive the rotating structure and the telescopic structure to move, and adjust the direction, position, and telescopic length according to the received direction command, position command, and length command, so as to quickly build the environment, and Accurate collection of images is achieved.
  • a driving structure which can drive the rotating structure and the telescopic structure to move, and adjust the direction, position, and telescopic length according to the received direction command, position command, and length command, so as to quickly build the environment, and Accurate collection of images is achieved.
  • FIG. 2 shows a schematic diagram of an image acquisition device according to an embodiment of the present disclosure.
  • the camera 10 of the embodiment of the present disclosure can be set on an adjustable bracket 50, and the adjustable bracket 50 realizes changes in direction and position through a rotating structure, so as to align the lens 110 of the camera with the welding molten pool.
  • the narrow-band filter 210 , the optical attenuation sheet 310 and the protective lens 60 of the embodiment of the present disclosure can be sequentially arranged at the front end of the lens 110 , so as to use the narrow-band filter 210 to filter out arc light. and molten pool radiant light, the optical attenuation sheet 310 is used to attenuate the central high-brightness radiation to obtain an image of uniform brightness, and the protective lens 60 is used to protect the narrow-band filter 210 , the optical attenuation sheet 310 and the lens 110 .
  • the collimating laser 410 can be set on the adjustable support 50 , and the adjustable support 50 can change its direction and position through a rotating structure, so as to align the collimating laser 410 to the welding pool.
  • the beam expander 420 may be arranged at the front end of the collimated laser 410 to expand the laser beam emitted by the collimated laser 410 to obtain surface laser light.
  • the embodiment of the present disclosure can carry out welding and real-time monitoring and image acquisition of the molten pool image, and use the acquired image to analyze the welded molten pool, for example, the temperature of the welded molten pool during the welding process can be obtained field, deformation field, etc.
  • the embodiment of the present disclosure filters out radiation light by setting a filter module including a narrow-band filter at the acquisition end of the image acquisition module, and setting the central wavelength of the narrow-band filter and the spectrum of the image acquisition module
  • a filter module including a narrow-band filter at the acquisition end of the image acquisition module
  • the central wavelength of the narrow-band filter and the spectrum of the image acquisition module There is a correlation between the response, the spectrum of the welding pool during the welding process, and the spectrum of the arc light, which can better filter out the high-temperature heat radiation and arc of the molten pool while ensuring that the image acquisition module has a high signal-to-noise ratio and photosensitivity.
  • High radiation arc light interference and attenuating radiation light by setting an attenuation module including an optical attenuation sheet at the acquisition end of the image acquisition module, setting the light attenuation rate of the optical attenuation sheet and the light intensity distribution and welding of the welding pool at the initial stage of welding
  • the attenuation distance in the plane where the molten pool is located has a correlation, which makes the light intensity of the collected image uniform, avoids large-area overexposure, and realizes high-quality observation of the molten pool area.
  • FIG. 3 shows a flow chart of a method for determining parameters according to an embodiment of the present disclosure.
  • the method may include:
  • Step S11 obtaining the radiation spectrogram of the welding pool and the spectrogram of the arc light during the welding process;
  • Step S12 performing normalization processing on the radiation spectrum graph and the arc light spectrum graph respectively, to obtain the spectrum of the welding pool and the arc light spectrum during the welding process;
  • Step S13 acquiring the spectral response of the image acquisition module, and determining the central wavelength of the narrow-band filter according to the correlation between the spectral response of the image acquisition module, the spectrum of the weld pool during the welding process, and the spectrum of the arc light;
  • the central wavelength of the narrow-band filter is any extreme value of the product of the sum of the spectrum of the weld pool and the spectrum of the arc light during the welding process and the spectral response of the image acquisition module or the minimum of extreme values.
  • Step S14 acquiring the weld pool image during the welding process
  • Step S15 determining the normalized light intensity distribution of the welding pool image, and fitting the normalized light intensity distribution, determining the light attenuation rate of the optical attenuation sheet and the light intensity of the welding pool at the initial stage of welding
  • the correlation between the distribution and the attenuation distance in the plane where the welding pool is located is used to determine the light attenuation rate parameters of the optical attenuation sheet.
  • the radiation spectrum diagram and the spectrum diagram of the arc arc light are respectively normalized to obtain the welding pool in the welding process.
  • the spectrum and the spectrum of the arc light, the spectral response of the image acquisition module is obtained, and the central wavelength of the narrow-band filter is determined according to the spectral response of the image acquisition module, the spectrum of the welding pool in the welding process and the spectrum of the arc arc.
  • the light intensity distribution of the weld pool and the attenuation distance in the plane where the weld pool is located have a correlation to determine the light attenuation rate parameters of the optical attenuation sheet, and the obtained parameters can be used to realize the configuration of the image acquisition device, thereby improving the accuracy of High-quality observations of the melt pool region.
  • Embodiments of the present disclosure can use the obtained parameters to realize the configuration of the image acquisition device, for example, by setting a filter module including a narrow-band filter at the acquisition end of the image acquisition module to filter out radiation light, and setting the center of the narrow-band filter
  • the wavelength has a correlation with the spectral response of the image acquisition module, the spectrum of the weld pool during the welding process, and the spectrum of the arc light, which can better filter the image while ensuring that the image acquisition module has a higher signal-to-noise ratio and photosensitivity.
  • the attenuation module including the optical attenuation sheet at the acquisition end of the image acquisition module to attenuate the radiation light
  • the light attenuation rate of the optical attenuation sheet and the initial stage of welding are set.
  • the method for determining parameters in the embodiments of the present disclosure may be implemented by a processing component.
  • the processing component includes but is not limited to a single processor, or discrete components, or a combination of a processor and discrete components.
  • the processor may include a controller in an electronic device having the function of executing instructions, and the processor may be implemented in any suitable manner, for example, by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs) ), digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic components.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the executable instructions can be executed by hardware circuits such as logic gates, switches, application specific integrated circuits (ASIC), programmable logic controllers, and embedded microcontrollers.
  • the method for determining parameters in the embodiments of the present disclosure can be implemented by a terminal.
  • the terminal is also called a user equipment (User Equipment, UE), a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal, MT), etc.
  • UE User Equipment
  • MS Mobile Station
  • MT Mobile Terminal
  • UE User Equipment
  • MT Mobile Terminal
  • examples of some terminals are: mobile phone (Mobile Phone), tablet computer, notebook computer, handheld computer, mobile Internet device (Mobile Internet device, MID), wearable device, virtual reality (Virtual Reality, VR) device, augmented reality ( Augmented reality (AR) equipment, wireless terminals in Industrial Control, wireless terminals in Selfdriving, wireless terminals in Remote Medical Surgery, wireless terminals in Smart Grid , wireless terminals in Transportation Safety, wireless terminals in Smart City, wireless terminals in Smart Home, wireless terminals in Internet of Vehicles, etc.
  • mobile phone Mobile Phone
  • tablet computer notebook computer
  • handheld computer mobile Internet device
  • mobile Internet device Mobile Internet device
  • MID mobile Internet device
  • VR Virtual Reality
  • AR Augmented reality
  • wireless terminals in Industrial Control wireless terminals in Selfdriving
  • wireless terminals in Remote Medical Surgery wireless terminals in Smart Grid
  • wireless terminals in Transportation Safety wireless terminals in Smart City, wireless terminals in Smart Home, wireless terminals in Internet of Vehicles, etc.
  • the embodiment of the present disclosure takes the GMAW welding method as an example for introduction, and it should be understood that the embodiment of the present disclosure does not limit the welding method.
  • Figure 4 shows a schematic diagram of a typical arc and weld pool spectrum during GMAW welding.
  • the embodiment of the present disclosure can use a spectrometer to collect the radiation spectrum of the molten pool itself and the spectrum of the arc light during the welding process in advance, and store them in the storage module, and the processing component can directly obtain the radiation spectrum of the molten pool itself from the storage module and the spectrogram of the arc light, of course, the processing component can also control the spectrometer to directly collect the radiation spectrogram of the melting pool itself and the spectrogram of the arc light, which is not limited in this embodiment of the present disclosure.
  • a storage module may include a computer-readable storage medium, which may be a tangible device that can hold and store instructions for use by an instruction execution device.
  • a computer readable storage medium may be, for example, but is not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing.
  • Computer-readable storage media include: portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or flash memory), static random access memory (SRAM), programmable read-only memory (PROM), portable compact disk read-only memory (CD-ROM), digital versatile disk (DVD), memory stick, floppy disk, mechanically encoded device , such as a punched card with instructions stored thereon, or a raised structure in a groove, and any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory static random access memory
  • SRAM static random access memory
  • PROM programmable read-only memory
  • CD-ROM compact disk read-only memory
  • DVD digital versatile disk
  • memory stick floppy disk
  • mechanically encoded device such as a punched card with instructions stored thereon, or a raised structure in a groove, and any suitable combination of the foregoing
  • computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., pulses of light through fiber optic cables), or transmitted electrical signals.
  • Fig. 5 shows a schematic diagram of the spectral response curve of the camera.
  • the camera can be a CMOS camera.
  • the radiation spectrum function f( ⁇ ) of the molten pool during the welding process can be obtained by normalizing the radiation spectrum of the molten pool, and the normalized spectrum of the arc light can be obtained by The spectral function g( ⁇ ) of the arc light in the welding process, in order to reduce the influence of strong light radiation, the spectral response of the camera can be reduced as much as possible, and the spectral response curve Q( ⁇ ) of the camera can be obtained.
  • the camera In order to ensure the signal-to-noise ratio, the camera’s Photosensitivity, you can select the part where Q( ⁇ ) is greater than the preset value, for example, Q( ⁇ ) ⁇ 0.4, and consider the cut-off photosensitivity band of the camera at the same time, as shown in Figure 5, to obtain the imaging interval [ ⁇ min , ⁇ max ], where , ⁇ min is about 400nm, and ⁇ max is about 820nm.
  • the minimum value H min ( ⁇ )( ⁇ min ⁇ max ) of H( ⁇ ) can be calculated, and the wavelength corresponding to the minimum value can be obtained. If there are multiple minimum values at the same time, then Take the minimum value min ⁇ H min ( ⁇ ) ⁇ corresponding to the minimum value among the minimum values, and take the wavelength at this time as the central wavelength ⁇ 0 of the optimal imaging.
  • FIG. 6 shows a schematic diagram of light transmittance of a narrowband filter according to an embodiment of the present disclosure.
  • the designed central band of the narrowband filter is 450nm. If the bandwidth is 10nm, the characteristic curve of the designed narrowband filter can be shown in FIG. 6 .
  • the image of the weld pool can be collected in advance through the camera and stored in the storage module, and the processing component can be used to obtain the image of the weld pool in the storage module, or the camera can be controlled to directly collect the image of the weld pool.
  • the present disclosure Examples are not limited.
  • the embodiment of the present disclosure may determine the normalized light intensity distribution of the weld puddle image by using the acquired weld puddle image, and use a preset distribution function to simulate the normalized light intensity distribution. Combined, the correlation between the light attenuation rate of the optical attenuation sheet and the light intensity distribution of the weld pool at the initial stage of welding and the attenuation distance in the plane of the weld pool is determined, so as to determine the light attenuation rate parameter of the optical attenuation sheet.
  • the radiation intensity of the center arc and the thermal radiation area of the molten pool can be approximately expressed as a Gaussian distribution, and the light intensity of the molten pool center (arc center) is expressed as formula 3:
  • represents the standard deviation of the light intensity distribution
  • r represents the distance to the center of the molten pool
  • I(r) represents the light intensity at the distance r.
  • this embodiment of the present disclosure may use formula 3 as a preset distribution function to fit the normalized light intensity distribution.
  • the attenuation distribution of the attenuation sheet is D(r)
  • the transmittance is G(r)
  • G(r) 1 ⁇ D(r).
  • Equation 4 the light intensity distribution after attenuation is shown in Equation 4:
  • I'(r) represents the light intensity distribution after attenuation.
  • is the light intensity uniformity evaluation factor (preset parameter), and the smaller ⁇ indicates the better effect, then formula 2 can be obtained, namely:
  • the standard deviation ⁇ of the light intensity distribution is determined, and the radial attenuation center density attenuation sheet is designed according to formula 2, an image with greatly reduced brightness and uniform light intensity can be obtained.
  • FIG. 7a shows a schematic diagram of an optical attenuation sheet according to an embodiment of the present disclosure.
  • FIG. 7b shows a schematic diagram of the light attenuation degree of the optical attenuation sheet according to an embodiment of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

本公开涉及一种图像获取装置及参数确定方法,所述装置用于获取焊接熔池的图像,所述装置包括:图像采集模块,用于采集图像;滤光模块,设置于所述图像采集模块的采集端,包括窄带滤光片,用于滤除辐射光,所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系;衰减模块,设置于所述图像采集模块的采集端,包括光学衰减片,用于衰减辐射光。本公开实施例可以在确保图像采集模块具有较高信噪比、感光灵敏度的情况下较好地滤除熔池的高温热辐射及电弧的高辐射弧光干扰,使得采集的图像光强均一化,避免出现大面积过曝光现象,进而实现对熔池区域进行高质量观测。

Description

图像获取装置及参数确定方法 技术领域
本公开涉及光学技术领域,尤其涉及一种图像获取装置及参数确定方法。
背景技术
焊接是现代工业和制造业中必不可缺的关键加工技术,焊接过程涉及复杂材料、物理、化学、力学等耦合行为。工业的发展对焊接工艺和质量提出了更高的要求,以自动化焊接为代表的智能焊接正逐步替代传统的人工焊接,这对焊接过程实时、在线、非接触式的焊接过程监控提出了急切需求。对于焊接监控而言,焊接熔池的观测是最核心也最具挑战的关键技术。焊接熔池是评估焊接质量、优化焊接工艺的关键指标,也是影响焊缝质量的关键因素。焊接熔池的直接观测一直是工程中的技术难题,由于融化熔池的高温热辐射及电弧焊枪的高辐射弧光干扰,会导致传统光学成像系统(如CMOS相机)出现大面积过曝光现象,无法对熔池区域进行高质量观测,更无法获取熔池区域的基本特征。
发明内容
根据本公开的一方面,提供了一种图像获取装置,所述装置用于获取焊接熔池的图像,所述装置包括:
图像采集模块,用于采集图像;
滤光模块,设置于所述图像采集模块的采集端,包括窄带滤光片,用于滤除辐射光,所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系;
衰减模块,设置于所述图像采集模块的采集端,包括光学衰减片,用于衰减辐射光,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系。
在一种可能的实施方式中,所述装置还包括激光发射模块,用于发出面激光照射焊接熔池,以抑制辐射光。
在一种可能的实施方式中,所述激光发射模块包括:
准直激光器,用于产生激光,所述激光的波长与所述窄带滤光片的中心波长相关;
扩束器,设置在所述准直激光器前端,用于产生所述面激光。
在一种可能的实施方式中,所述装置还包括:
防护镜片,设置于所述图像采集模块的采集端,所述防护镜片由耐高温、耐磨、透明材料制成。
在一种可能的实施方式中,所述装置还包括:
可调支架,用于固定所述图像采集模块及所述激光发射模块,其中,所述图像采集 模块及所述激光发射模块的固定位置可调。
在一种可能的实施方式中,所述窄带滤光片的中心波长为焊接过程中焊接熔池的光谱及电弧弧光的光谱之和与所述图像采集模块的光谱响应之积的任意一个极值或极值中的最小值。
在一种可能的实施方式中,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系包括:
Figure PCTCN2022114909-appb-000001
其中,D(r)表示与衰减中心相距焊接熔池所在平面内的衰减距离r处的光衰减率,σ表示焊接初始阶段焊接熔池的光强分布的标准差,α表示预设参数且0<α<1。
根据本公开的一方面,提供了一种参数确定方法,所述方法包括:
获取焊接过程的焊接熔池的辐射光谱图及电弧弧光的光谱图;
对所述辐射光谱图及电弧弧光的光谱图分别进行归一化处理,得到焊接过程中焊接熔池的光谱及电弧弧光的光谱;
获取图像采集模块的光谱响应,并根据所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱的相关关系确定窄带滤光片的中心波长;
获取焊接过程中的焊接熔池图像;
确定所述焊接熔池图像的归一化光强分布,并对所述归一化光强分布进行拟合,确定光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系,以确定光学衰减片的光衰减率参数。
在一种可能的实施方式中,所述窄带滤光片的中心波长为焊接过程中焊接熔池的光谱及电弧弧光的光谱之和与所述图像采集模块的光谱响应之积的任意一个极值或极值中的最小值。
在一种可能的实施方式中,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系包括:
Figure PCTCN2022114909-appb-000002
其中,D(r)表示与焊接熔池所在平面内的衰减中心相距衰减距离r处的光衰减率,σ表示焊接初始阶段焊接熔池的光强分布的标准差,α表示预设参数且0<α<1。
本公开实施例通过在图像采集模块的采集端设置包括窄带滤光片的滤光模块滤除辐射光,并设置所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系,可以在确保图像采集模块具有较高信噪比、感光灵敏度的情况下较好地滤除熔池的高温热辐射及电弧的高辐射弧光干扰,并通过在所述图像采集模块的采集端设置包括光学衰减片的衰减模块衰减辐射光,设置学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系,使得采集的图像光强均一化,避免出现大面积过曝光现象,进而实现 对熔池区域进行高质量观测。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1示出了根据本公开一实施例的图像获取装置的框图。
图2示出了根据本公开一实施例的图像获取装置的示意图。
图3示出了根据本公开一实施例的参数确定方法的流程图。
图4示出了GMAW焊接过程中的典型电弧和熔池光谱示意图。
图5示出了相机的光谱响应曲线示意图。
图6示出了根据本公开一实施例的窄带滤波片的光透过率示意图。
图7a示出了根据本公开一实施例的光学衰减片的示意图。
图7b示出了根据本公开一实施例的光学衰减片的光衰减度示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在本公开的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关 系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
请参阅图1,图1示出了根据本公开一实施例的图像获取装置的框图。
所述装置用于获取焊接熔池的图像,如图1所示,所述装置包括:
图像采集模块10,用于采集图像;
滤光模块20,设置于所述图像采集模块10的采集端,包括窄带滤光片,用于滤除辐射光,所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系;
衰减模块30,设置于所述图像采集模块10的采集端,包括光学衰减片,用于衰减辐射光,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系。
本公开实施例的图像获取装置,通过在图像采集模块的采集端设置包括窄带滤光片的滤光模块滤除辐射光,并设置所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系,可以在确保图像采集模块具有较高信噪比、感光灵敏度的情况下较好地滤除熔池的高温热辐射及电弧的高辐射弧光干扰,并通过在所述图像采集模块的采集端设置包括光学衰减片的衰减模块衰减辐射光,设置学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系,使得采集的图像光强均一化,避免出现大面积过曝光现象,进而实现对熔池区域进行高质量观测。
本公开实施例的图像获取装置可以应用于多种焊接方式的焊接熔池图像采集中,例如可以包括TIG(Tungsten Inert Gas,非熔化极惰性气体钨极保护焊)、GTAW(Gas Tungsten Arc Welding,氩弧焊)、GMAW(Gas Metal Arc Welding,熔化极气体保护焊)、MIG(Melt Inert-gas Welding,熔化极惰性气体保护焊)、MAG焊(Metal Active Gas Arc Welding,熔化极活性气体保护电弧焊)等电弧焊接方式,对此,本公开实施例不做限定。对于GAMW和GTMW等电弧焊焊接方式,影响熔池观测的主要因素包括:(1)电弧放电和加热导致的弧光干扰;(2)熔池受热融化产生的过高热辐射,因此,本公开实施例针对电弧弧光及熔池热辐射特征设计了图像获取装置,以消除熔池的高温热辐射及电弧的高辐射弧光干扰,并使得采集的图像光强均一化,避免出现大面积过曝光现象,以提高焊接过程中对焊接熔池的图像采集的准确性。
本公开实施例的图像采集模块可以包括相机,本公开实施例对相机的具体类型不做 限定,可以是黑白相机,也可以是彩色相机;可以是单目相机,也可以是多目相机;可以是CCD(Charge-coupled Device,电荷耦合元件)相机,也可以是CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)相机,亦可以是他们之间的任意组合。示例性的,图像采集模块的采集端可以为相机的镜头。示例性的,窄带滤光片、光学衰减片可以依次设置在相机镜头的前端,相机可以通过窄带滤光片、光学衰减片采集熔池图像,以在确保图像采集模块具有较高信噪比、感光灵敏度的情况下较好地滤除熔池的高温热辐射及电弧的高辐射弧光干扰,使得采集的图像光强均一化,避免出现大面积过曝光现象,进而实现对熔池区域进行高质量观测。
本公开实施例的窄带滤光片,可以是从带通滤光片中细分出来的,窄带滤光片在特定的波段允许光信号通过,而偏离这个波段以外的两侧光信号被阻止,窄带滤光片的通带相对来说比较窄,一般为中心波长值的5%以下,例如,若中心波长为450nm,则窄带滤光片的带宽可以设置为20nm以下,优选的可以为10nm。
在一种可能的实施方式中,所述窄带滤光片的中心波长为焊接过程中焊接熔池的光谱及电弧弧光的光谱之和与所述图像采集模块的光谱响应之积的任意一个极值或极值中的最小值。
示例性的,所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系H(λ)可以如公式1所示:
H(λ)=Q(λ)×[f(λ)+g(λ)]       公式1
其中,Q(λ)为所述图像采集模块的光谱响应,f(λ)表示焊接过程中焊接熔池的光谱,g(λ)表示焊接过程中电弧弧光的光谱。
示例性的,可以计算H(λ)的极小值H min(λ)(λ min≤λ≤λ max),并获取极小值所对应的波长,若同时存在多个极小值,则取极小值中的最小值所对应的最小值min{H min(λ)},将此时的波长作为最优成像的中心波长λ 0
本公开实施例中的光学衰减片,可以是利用物质对光的吸收特性,制成片状,放在光路上,可以将光强衰减的这种片状元件,本公开实施例的光学衰减片可以为径向渐变中心滤波片,其光学衰减率从中心到外部随距离变化,例如,光学衰减率与距离中心的距离可以呈反相关性,即,随着距离的增加,光学衰减率减少。
在一种可能的实施方式中,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系可以如公式2所示:
Figure PCTCN2022114909-appb-000003
其中,D(r)表示与焊接熔池所在平面内的衰减中心相距衰减距离r处的光衰减率,σ表示焊接初始阶段焊接熔池的光强分布的标准差,α表示预设参数且0<α<1。
当然,以上对所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系、及所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系的 具体公式介绍是是示例性的,在其他实施方式中,各相关关系可以通过其他的公式实现,对此,本公开实施例不做限定。
当然,本公开实施例的图像获取装置还可以包括其他实现方式,下面进行示例性介绍。
在一种可能的实施方式中,所述装置还可以包括激光发射模块,用于发出面激光照射焊接熔池,以抑制辐射光。
在一种可能的实施方式中,所述激光发射模块可以包括:
准直激光器,用于产生激光,所述激光的波长与所述窄带滤光片的中心波长相关;
扩束器,设置在所述准直激光器前端,用于产生所述面激光。
示例性的,准直激光器发出的激光的波长可以与窄带滤光片的中心波长一致。
本公开实施例通过激光发射模块发出面激光照射焊接熔池,可以抑制辐射光,并对焊接熔池进行激光补偿。
本公开实施例的扩束器可以为透镜等形式,通过扩束器对准直激光器发射的激光进行扩束得到面激光,增大了照射范围,使得焊接熔池的整个区域,特别是焊接电弧之外的区域,均能够保持与焊接电弧区域相同的光强度,从而提高图像采集的准确性。
在一种可能的实施方式中,所述装置还可以包括:
防护镜片,设置于所述图像采集模块的采集端,所述防护镜片由耐高温、耐磨、透明材料制成。
本公开实施例通过在相机镜头前方设置防护镜片,并选用由耐高温、耐磨、透明材料制成的防护镜片,可以实现高温环境下的防飞溅,避免损坏镜头、窄带滤光片、光学衰减片。
在一种可能的实施方式中,所述装置还可以包括:
可调支架,用于固定所述图像采集模块及所述激光发射模块,其中,所述图像采集模块及所述激光发射模块的固定位置可调。
本公开实施例的可调支架可以设置旋转结构,实现所述图像采集模块及所述激光发射模块任意方向的旋转,并可以设置伸缩结构,实现所述图像采集模块及所述激光发射模块的伸缩,本公开实施例的可调支架还可以包括驱动结构,可以驱动旋转结构及伸缩结构动作,根据接收的方向指令、位置指令、长度指令调整方向、位置及伸缩长度,从而快速进行环境搭建,并实现图像的准确采集。
下面对图像获取装置的可能实现方式进行示例性介绍。
请参阅图2,图2示出了根据本公开一实施例的图像获取装置的示意图。
在一个示例中,如图2所示,本公开实施例的相机10可以设置在可调支架50上,可调支架50通过旋转结构实现方向、位置的改变,以将相机的镜头110对准焊接熔池。
在一个示例中,如图2所示,本公开实施例的窄带滤光片210、光学衰减片310及防护镜片60可以依次设置在镜头110的前端,以利用窄带滤光片210滤除电弧弧光和熔池辐射光,利用光学衰减片310衰减中心高亮度辐射,获取均一化亮度的图像,并利用防护镜片 60对窄带滤光片210、光学衰减片310及镜头110进行防护。
在一个示例中,如图2所示,准直激光器410可以设置在可调支架50上,可调支架50通过旋转结构实现方向、位置的改变,以将准直激光器410对准焊接熔池。
在一个示例中,如图2所示,扩束器420可以设置在准直激光器410的前端,以对准直激光器410发出的激光进行扩束,得到面激光。
在配置好图像获取装置后,本公开实施例可以进行焊接并对熔池图像进行实时监测和图像获取,并利用获取的图像对焊接熔池进行分析,例如可以获取焊接过程中焊接熔池的温度场、形变场等。
通过以上装置,本公开实施例通过在图像采集模块的采集端设置包括窄带滤光片的滤光模块滤除辐射光,并设置所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系,可以在确保图像采集模块具有较高信噪比、感光灵敏度的情况下较好地滤除熔池的高温热辐射及电弧的高辐射弧光干扰,并通过在所述图像采集模块的采集端设置包括光学衰减片的衰减模块衰减辐射光,设置学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系,使得采集的图像光强均一化,避免出现大面积过曝光现象,进而实现对熔池区域进行高质量观测。
下面对图像获取模块中各个参数的标定过程进行示例性介绍。
请参阅图3,图3示出了根据本公开一实施例的参数确定方法的流程图。
如图3所示,所述方法可以包括:
步骤S11,获取焊接过程的焊接熔池的辐射光谱图及电弧弧光的光谱图;
步骤S12,对所述辐射光谱图及电弧弧光的光谱图分别进行归一化处理,得到焊接过程中焊接熔池的光谱及电弧弧光的光谱;
步骤S13,获取图像采集模块的光谱响应,并根据所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱的相关关系确定窄带滤光片的中心波长;
在一种可能的实施方式中,所述窄带滤光片的中心波长为焊接过程中焊接熔池的光谱及电弧弧光的光谱之和与所述图像采集模块的光谱响应之积的任意一个极值或极值中的最小值。
步骤S14,获取焊接过程中的焊接熔池图像;
步骤S15,确定所述焊接熔池图像的归一化光强分布,并对所述归一化光强分布进行拟合,确定光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系,以确定光学衰减片的光衰减率参数。
本公开实施例通过获取焊接过程的焊接熔池的辐射光谱图及电弧弧光的光谱图,对所述辐射光谱图及电弧弧光的光谱图分别进行归一化处理,得到焊接过程中焊接熔池的光谱及电弧弧光的光谱,获取图像采集模块的光谱响应,并根据所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱的相关关系确定窄带滤光片的中心波长,获取焊接过程中的焊接熔池图像,确定所述焊接熔池图像的归一化光强分布, 并对所述归一化光强分布进行拟合,确定光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系,以确定光学衰减片的光衰减率参数,可以利用获得的参数实现图像获取装置的配置,从而提高对熔池区域进行高质量观测。
本公开实施例可以利用获得的参数实现图像获取装置的配置,例如通过在图像采集模块的采集端设置包括窄带滤光片的滤光模块滤除辐射光,并设置所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系,可以在确保图像采集模块具有较高信噪比、感光灵敏度的情况下较好地滤除熔池的高温热辐射及电弧的高辐射弧光干扰;并通过在所述图像采集模块的采集端设置包括光学衰减片的衰减模块衰减辐射光,设置学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系,使得采集的图像光强均一化,避免出现大面积过曝光现象,进而实现对熔池区域进行高质量观测。
本公开实施例的参数确定方法可以通过处理组件实现,在一个示例中,处理组件包括但不限于单独的处理器,或者分立元器件,或者处理器与分立元器件的组合。所述处理器可以包括电子设备中具有执行指令功能的控制器,所述处理器可以按任何适当的方式实现,例如,被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现。在所述处理器内部,可以通过逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器等硬件电路执行所述可执行指令。
本公开实施例的参数确定方法可以通过终端实现,在一个示例中,终端又称之为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(Mobile Phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internetdevice,MID)、可穿戴设备,虚拟现实(Virtual Reality,VR)设备、增强现实(Augmentedreality,AR)设备、工业控制(Industrial Control)中的无线终端、无人驾驶(Selfdriving)中的无线终端、远程手术(Remote medical Surgery)中的无线终端、智能电网(Smart Grid)中的无线终端、运输安全(Transportation Safety)中的无线终端、智慧城市(Smart City)中的无线终端、智慧家庭(Smart Home)中的无线终端、车联网中的无线终端等。
下面对所述方法的各个步骤进行示例性介绍。
本公开实施例以GMAW焊接方式为例进行介绍,应该明白的是,本公开实施例对焊接方式不做限定。
请参阅图4,图4示出了GMAW焊接过程中的典型电弧和熔池光谱示意图。
示例性的,本公开实施例可以提前利用光谱仪采集焊接过程的熔池自身辐射光谱图及电弧弧光的光谱图,并存储在存储模块中,处理组件可以直接从存储模块中获取熔池 自身辐射光谱图及电弧弧光的光谱图,当然,处理组件也可以控制光谱仪直接采集熔池自身辐射光谱图及电弧弧光的光谱图,对此,本公开实施例不做限定。
在一个示例中,存储模块可以包括计算机可读存储介质,计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、可编程只读存储器(PROM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
图5示出了相机的光谱响应曲线示意图。
在一个示例中,相机可以为CMOS相机,本公开实施例可以将熔池辐射光谱图归一化得到焊接过程中熔池的辐射光谱函数f(λ),将电弧弧光的光谱图归一化得到焊接过程中电弧弧光的光谱函数g(λ),为降低强光辐射的影响,可以尽可能降低相机的光谱响应,可以获取相机光谱响应曲线Q(λ),为保证信噪比,保证相机的感光灵敏度,可以选取Q(λ)大于预设值的部分,例如Q(λ)≥0.4,同时考虑相机的截止感光波段,如图5所示,获取成像区间[λ minmax],其中,λ min为400nm左右,λ max为820nm左右。
在一个示例中,可以计算H(λ)的极小值H min(λ)(λ min≤λ≤λ max),并获取极小值所对应的波长,若同时存在多个极小值,则取极小值中的最小值所对应的最小值min{H min(λ)},将此时的波长作为最优成像的中心波长λ 0
图6示出了根据本公开一实施例的窄带滤波片的光透过率示意图。
示例性地,如计算得到的λ 0=450nm,则设计的窄带滤波中心波段即为450nm,若带宽为10nm,则设计的窄带滤波片的特征曲线可以如图6所示。
本公开实施例可以通过相机提前采集焊接熔池图像,并存储在存储模块中,利用处理组件获取存储模块中的焊接熔池图像,也可以控制相机直接采集焊接熔池图像,对此,本公开实施例不做限定。
在一个示例中,本公开实施例可以在利用获取的焊接熔池图像确定所述焊接熔池图像的归一化光强分布,并利用预设分布函数对所述归一化光强分布进行拟合,确定光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系,以确定光学衰减片的光衰减率参数。
示例性的,中心弧光和熔池热辐射区域的辐射光强可近似表示为高斯分布,熔池中心(弧光中心)的光强表示为公式3:
Figure PCTCN2022114909-appb-000004
其中,σ表示光强分布的标准差,r表示到熔池中心区域的距离,I(r)表示距离r处的光强。
示例性的,本公开实施例可以利用公式3作为预设分布函数对所述归一化光强分布进行拟合。
在一个示例中,可以假设衰减片的衰减度分布为D(r),透过率为G(r),并且满足G(r)=1-D(r)。
在一个示例中,经过衰减后的光强分布如公式4所示:
Figure PCTCN2022114909-appb-000005
其中,I′(r)表示衰减后的光强分布。
在一个示例中,若要获取均一化光场,则可以有:I′(r)=A,其中A为常数。
在一个示例中,令
Figure PCTCN2022114909-appb-000006
其中α为光强均一化评价因子(预设参数),α越小表明效果越好,则可以得到公式2,即:
Figure PCTCN2022114909-appb-000007
因此,只要在初始时刻获取得到光强分布,确定光强分布的标准差σ,按照公式2设计径向衰减中心密度衰减片,就可以获取得到亮度大大降低,光强均一化的图像。
请参阅图7a,图7a示出了根据本公开一实施例的光学衰减片的示意图。
请参阅图7b,图7b示出了根据本公开一实施例的光学衰减片的光衰减度示意图。
如图7a及图7b所示,随着焊接熔池所在平面内的衰减距离的增大(即远离中心点距离越大),衰减度越来越小,即透光率越来越大。
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种图像获取装置,其特征在于,所述装置用于获取焊接熔池的图像,所述装置包括:
    图像采集模块,用于采集图像;
    滤光模块,设置于所述图像采集模块的采集端,包括窄带滤光片,用于滤除辐射光,所述窄带滤光片的中心波长与所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱具有相关关系;
    衰减模块,设置于所述图像采集模块的采集端,包括光学衰减片,用于衰减辐射光,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有相关关系。
  2. 根据权利要求1所述的装置,其特征在于,所述装置还包括激光发射模块,用于发出面激光照射焊接熔池,以抑制辐射光。
  3. 根据权利要求2所述的装置,其特征在于,所述激光发射模块包括:
    准直激光器,用于产生激光,所述激光的波长与所述窄带滤光片的中心波长相关;
    扩束器,设置在所述准直激光器前端,用于产生所述面激光。
  4. 根据权利要求1所述的装置,其特征在于,所述装置还包括:
    防护镜片,设置于所述图像采集模块的采集端,所述防护镜片由耐高温、耐磨、透明材料制成。
  5. 根据权利要求2或3任一项所述的装置,其特征在于,所述装置还包括:
    可调支架,用于固定所述图像采集模块及所述激光发射模块,其中,所述图像采集模块及所述激光发射模块的固定位置可调。
  6. 根据权利要求1所述的装置,其特征在于,所述窄带滤光片的中心波长为焊接过程中焊接熔池的光谱及电弧弧光的光谱之和与所述图像采集模块的光谱响应之积的任意一个极值或极值中的最小值。
  7. 根据权利要求1所述的装置,其特征在于,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系包括:
    Figure PCTCN2022114909-appb-100001
    其中,D(r)表示焊接熔池所在平面内与衰减中心相距衰减距离r处的光衰减率,σ表示焊接初始阶段焊接熔池的光强分布的标准差,α表示预设参数且0<α<1。
  8. 一种参数确定方法,其特征在于,所述方法包括:
    获取焊接过程的焊接熔池的辐射光谱图及电弧弧光的光谱图;
    对所述辐射光谱图及电弧弧光的光谱图分别进行归一化处理,得到焊接过程中焊接熔池的光谱及电弧弧光的光谱;
    获取图像采集模块的光谱响应,并根据所述图像采集模块的光谱响应、焊接过程中焊接熔池的光谱及电弧弧光的光谱的相关关系确定窄带滤光片的中心波长;
    获取焊接过程中的焊接熔池图像;
    确定所述焊接熔池图像的归一化光强分布,并对所述归一化光强分布进行拟合,确定光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系,以确定光学衰减片的光衰减率参数。
  9. 根据权利要求8所述的方法,其特征在于,所述窄带滤光片的中心波长为焊接过程中焊接熔池的光谱及电弧弧光的光谱之和与所述图像采集模块的光谱响应之积的任意一个极值或极值中的最小值。
  10. 根据权利要求8所述的方法,其特征在于,所述光学衰减片的光衰减率与焊接初始阶段焊接熔池的光强分布及焊接熔池所在平面内的衰减距离具有的相关关系包括:
    Figure PCTCN2022114909-appb-100002
    其中,D(r)表示与焊接熔池所在平面内衰减中心相距衰减距离r处的光衰减率,σ表示焊接初始阶段焊接熔池的光强分布的标准差,α表示预设参数且0<α<1。
PCT/CN2022/114909 2021-12-20 2022-08-25 图像获取装置及参数确定方法 WO2023116013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111564412.4A CN114160974B (zh) 2021-12-20 2021-12-20 图像获取装置及参数确定方法
CN202111564412.4 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023116013A1 true WO2023116013A1 (zh) 2023-06-29

Family

ID=80487592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114909 WO2023116013A1 (zh) 2021-12-20 2022-08-25 图像获取装置及参数确定方法

Country Status (2)

Country Link
CN (1) CN114160974B (zh)
WO (1) WO2023116013A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160974B (zh) * 2021-12-20 2023-03-31 清华大学 图像获取装置及参数确定方法
CN114841999B (zh) * 2022-07-01 2022-10-11 湖南科天健光电技术有限公司 一种调整焊接区域监控图像的方法和系统
CN115415649A (zh) * 2022-09-06 2022-12-02 上海工程技术大学 基于长波滤光的gmaw熔滴熔池图像识别方法和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301340A (ja) * 1999-04-21 2000-10-31 Toshiba Corp 自動溶接装置
CN102974918A (zh) * 2012-11-26 2013-03-20 清华大学 一种基于多光谱分光摄影的视觉监控系统
CN109444134A (zh) * 2018-07-10 2019-03-08 南京理工大学 基于光谱分析的熔池视觉最佳成像波段选择方法
CN113030174A (zh) * 2021-04-09 2021-06-25 清华大学 基于分区滤波的温度变形测量方法及系统
CN214079689U (zh) * 2020-12-18 2021-08-31 北京博清科技有限公司 一种焊接熔池的观测系统
CN114160974A (zh) * 2021-12-20 2022-03-11 清华大学 图像获取装置及参数确定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782429A (zh) * 2010-01-20 2010-07-21 哈尔滨工业大学 非对称电弧光谱强度多角度测量装置及方法
CN105983795B (zh) * 2015-03-04 2018-06-01 大族激光科技产业集团股份有限公司 一种可同时观察焊接熔池及焊件表面的方法
CN205342169U (zh) * 2016-01-26 2016-06-29 唐山英莱科技有限公司 明弧焊接监控系统
CN107817047B (zh) * 2016-09-13 2021-04-16 南京理工大学 一种多检测头分区检测的熔池光强检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301340A (ja) * 1999-04-21 2000-10-31 Toshiba Corp 自動溶接装置
CN102974918A (zh) * 2012-11-26 2013-03-20 清华大学 一种基于多光谱分光摄影的视觉监控系统
CN109444134A (zh) * 2018-07-10 2019-03-08 南京理工大学 基于光谱分析的熔池视觉最佳成像波段选择方法
CN214079689U (zh) * 2020-12-18 2021-08-31 北京博清科技有限公司 一种焊接熔池的观测系统
CN113030174A (zh) * 2021-04-09 2021-06-25 清华大学 基于分区滤波的温度变形测量方法及系统
CN114160974A (zh) * 2021-12-20 2022-03-11 清华大学 图像获取装置及参数确定方法

Also Published As

Publication number Publication date
CN114160974A (zh) 2022-03-11
CN114160974B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2023116013A1 (zh) 图像获取装置及参数确定方法
JP5279479B2 (ja) 溶接領域の監視装置および監視方法
CA1121469A (en) Method and apparatus for monitoring arc welding
CN104668739B (zh) 一种熔化极气体保护焊焊缝识别视觉传感器
TW200402524A (en) Measuring method and device for bead cut shape of electric resistance welded tube
US20070081233A1 (en) Scanning laser microscope apparatus and light-amount detection unit
JP5496976B2 (ja) 撮影装置、撮影プログラム、及び撮影方法
US10718715B2 (en) Microscopy system, microscopy method, and computer-readable storage medium
CN107860713B (zh) 光谱稳定性优化装置、系统和方法
CN101795810B (zh) 激光焊接质量评价方法及其装置
CN111795910A (zh) 粒子尺寸测定装置及测定方法
JP2022163001A (ja) 積層造形システムのための軸上温度センサを較正するための装置および方法
CN113301264B (zh) 一种图像亮度调整方法、装置、电子设备及存储介质
US11125703B2 (en) Radiation detection device and computer program
JP2017020876A (ja) 形状測定装置及び形状測定方法
JPWO2019146021A1 (ja) レーザ加工方法及びレーザ加工システム
JP5233458B2 (ja) 画像編集装置及び画像編集プログラム
CN111385466B (zh) 自动聚焦方法、装置、设备及存储介质
JP6576061B2 (ja) レーザビームの強度分布測定装置およびレーザビームの強度分布測定方法
JPWO2019240011A1 (ja) 放射線検出装置、コンピュータプログラム及び位置決め方法
JP2012242134A (ja) 形状測定装置およびこれに用いる光学フィルタ
CN107430265A (zh) 高内涵成像系统以及操作高内涵成像系统的方法
KR101559755B1 (ko) 고에너지밀도플라즈마 엑스선영상 분석장치 및 분석방법
CN112935539A (zh) 加工过程监测方法和系统
JP2020080309A (ja) 試料を検査するための荷電粒子顕微鏡、およびこの荷電粒子顕微鏡の収差を決定する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909339

Country of ref document: EP

Kind code of ref document: A1