WO2023115475A1 - 液晶天线 - Google Patents

液晶天线 Download PDF

Info

Publication number
WO2023115475A1
WO2023115475A1 PCT/CN2021/140931 CN2021140931W WO2023115475A1 WO 2023115475 A1 WO2023115475 A1 WO 2023115475A1 CN 2021140931 W CN2021140931 W CN 2021140931W WO 2023115475 A1 WO2023115475 A1 WO 2023115475A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
side electrode
substrate
liquid crystal
encapsulation
Prior art date
Application number
PCT/CN2021/140931
Other languages
English (en)
French (fr)
Inventor
唐国强
方家
郑洋
王亚丽
刘宗民
曲峰
李必奇
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/140931 priority Critical patent/WO2023115475A1/zh
Priority to US17/923,757 priority patent/US20240222856A1/en
Priority to CN202180004155.0A priority patent/CN116648823A/zh
Publication of WO2023115475A1 publication Critical patent/WO2023115475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present application relates to the technical field of mobile communication, and in particular to a liquid crystal antenna.
  • the liquid crystal molecules in the liquid crystal layer need to rely on their own elastic force to return to the initial test state. This takes a long time, which greatly affects the efficiency of switching frequency of the liquid crystal antenna and limits its application range.
  • Embodiments of the present application provide a liquid crystal antenna, including:
  • liquid crystal layer located between the first substrate and the second substrate
  • a first electrode located on a side of the first substrate close to the liquid crystal layer
  • a second electrode located on a side of the second substrate close to the liquid crystal layer
  • a feeder located on a side of the second substrate away from the second electrode, and electrically connected to the second electrode
  • an encapsulation layer located between the first substrate and the second substrate and surrounding the liquid crystal layer
  • the side electrode group includes a plurality of side electrodes.
  • the direction of the electric field formed by the side electrodes in the group of side electrodes intersects the direction of the electric field formed by the first electrode and the second electrode.
  • the set of side electrodes includes a first side electrode and a second side electrode
  • the first side electrode and the second side electrode are disposed opposite to each other, and both are located on a side of the encapsulation layer away from the liquid crystal layer.
  • the side electrode group includes a first side electrode and a second side electrode
  • the orthographic projections of the first side electrode and the second side electrode on the first substrate are respectively the same as
  • the orthographic projection of the encapsulation layer on the first substrate overlaps, and the orthographic projection of the first side electrode on the first substrate and the orthographic projection of the second side electrode on the first substrate The projections do not overlap each other.
  • the first side electrode and the second side electrode are disposed opposite to each other.
  • both the first side electrode and the second side electrode are located on the first electrode and are insulated from the first electrode.
  • the orthographic projection of the second electrode on the first substrate overlaps with the orthographic projection of the encapsulation layer on the first substrate;
  • Both the first side electrode and the second side electrode are located on a side of the second electrode away from the second substrate and are insulated from the second electrode.
  • the orthographic projection of the second electrode on the first substrate and the orthographic projection of the encapsulation layer on the first substrate do not overlap each other;
  • Both the first side electrode and the second side electrode are located on the side of the second substrate away from the feeder line, the orthographic projection of the first side electrode on the second substrate and the second electrode
  • the orthographic projections on the second substrate do not overlap each other, and the orthographic projections of the second side electrodes on the second substrate and the orthographic projections of the second electrodes on the second substrate do not overlap each other. stack.
  • one of the first side electrode and the second side electrode is located on the first electrode and is insulated from the first electrode, and the other is located on the second side electrode.
  • the electrode is away from the side of the second substrate and is insulated from the second electrode.
  • one of the first side electrode and the second side electrode is located on the first electrode and is insulated from the first electrode, and the other is located on the second side electrode.
  • the side of the substrate away from the feeder line, and its orthographic projection on the second substrate and the orthographic projection of the second electrode on the second substrate do not overlap each other.
  • the encapsulation layer includes two oppositely disposed first encapsulation parts and two oppositely disposed second encapsulation parts, the first encapsulation parts and the second encapsulation parts are connected;
  • the material of the first encapsulation part is a conductive material
  • the material of the second encapsulation part is an insulating material
  • the first side electrode is in direct contact with one of the first encapsulation parts
  • the second side electrode is in direct contact with the other.
  • One of the first package parts is in direct contact.
  • the side electrode group includes a first side electrode, a second side electrode, a third side electrode and a fourth side electrode;
  • Both the first side electrode and the second side electrode are located on the first electrode and are insulated from the first electrode; the third side electrode and the fourth side electrode are both located on the package layer away from the side of the first substrate.
  • both the third side electrode and the fourth side electrode are located on a side of the second substrate away from the feeder line;
  • both the third side electrode and the fourth side electrode are located on a side of the second electrode away from the second substrate, and are insulated from the second electrode.
  • the orthographic projection of the first side electrode on the first substrate and the orthographic projection of the third side electrode on the first substrate overlap, and the second side electrode
  • the orthographic projection of the electrode on the first substrate overlaps with the orthographic projection of the fourth side electrode on the first substrate.
  • the encapsulation layer includes two opposite first encapsulation parts and two opposite second encapsulation parts, the first encapsulation parts and the second encapsulation parts are connected;
  • the material of the first encapsulation part is a conductive material, and the material of the second encapsulation part is an insulating material;
  • the first side electrode and the third side electrode are respectively in direct contact with one of the first encapsulation parts, and the second side electrode and the fourth side electrode are respectively in direct contact with the other first encapsulation part. touch.
  • the side electrode group further includes a fifth side electrode and a sixth side electrode, the fifth side electrode and the sixth side electrode are arranged oppositely, and the fifth side electrode is located at One of the first encapsulating parts is on a side away from the liquid crystal layer, and the sixth side electrode is located on a side of the other first encapsulating part away from the liquid crystal layer.
  • FIG. 1 to 14 are structural schematic diagrams of fourteen kinds of liquid crystal antennas provided in the embodiments of the present application.
  • the reconfigurable antenna means that the relationship between the array elements in the multi-antenna array can be flexibly changed according to the actual situation, rather than fixed. It mainly realizes reconfigurable antenna performance by adjusting state-variable devices.
  • Reconfigurable antennas can be divided into frequency reconfigurable antennas, pattern reconfigurable antennas, polarization reconfigurable antennas and multi-electromagnetic parameter reconfigurable antennas according to their functions. By changing the structure of the reconfigurable antenna, one or several of the antenna's frequency, lobe pattern, polarization mode and other parameters can be reconfigured. Because of its advantages of small size, multiple functions, and easy implementation of diversity applications, it has become a research hotspot.
  • the frequency reconfigurable liquid crystal antenna has received extensive attention.
  • the dielectric constant of the liquid crystal layer can be changed. Therefore, the working frequency of the frequency reconfigurable liquid crystal antenna can be changed.
  • the liquid crystal antenna reconfigures the working frequency, it is necessary to remove the voltage applied to both ends of the liquid crystal layer of the liquid crystal antenna, and wait for the liquid crystal molecules in the liquid crystal layer to return to the initial state, and then apply another voltage across the liquid crystal layer of the liquid crystal antenna. voltage to achieve frequency reconstruction.
  • the liquid crystal molecules in the liquid crystal layer need to rely on their own elastic force to return to the initial test state. This time is called the relaxation time, and the relaxation time is longer, which affects the efficiency of the antenna switching frequency. , limiting its application in products.
  • an embodiment of the present application provides a liquid crystal antenna, as shown in FIG. 1 , including:
  • the first substrate 1 and the second substrate 4 arranged oppositely;
  • the liquid crystal layer 3 is located between the first substrate 1 and the second substrate 4;
  • the first electrode 2 is located on the side of the first substrate 1 close to the liquid crystal layer 3;
  • the second electrode 6 is located on the side of the second substrate 4 close to the liquid crystal layer 3;
  • the feeder 5 is located on the side of the second substrate 4 away from the second electrode 6, and is electrically connected to the second electrode 6;
  • the encapsulation layer 7 is located between the first substrate 1 and the second substrate 4 and surrounds the liquid crystal layer 3;
  • the side electrode group includes a plurality of side electrodes (such as 101 and 102).
  • first substrate 1 and second substrate 4 may both be flexible substrates; for example, flexible polyimide (PI) or polyethylene terephthalate (PET).
  • first substrate 1 and second substrate 4 may both be rigid substrates, such as glass.
  • the specific structure of the liquid crystal molecules in the liquid crystal layer 3 is not limited here. It should be noted that the types and performances of the liquid crystal molecules in the liquid crystal layer 3 may be similar to those in the liquid crystal display panel.
  • the liquid crystal molecules in the liquid crystal layer 3 need to have a lower viscosity so that when a voltage is applied on the second electrode 6 and the first electrode 2, the liquid crystal molecules in the liquid crystal layer 3 have a faster response speed;
  • the liquid crystal molecules in the layer 3 need to have a relatively high elastic coefficient, so as to help restore the initial state of the liquid crystal by virtue of liquid crystal elasticity after the vertical electric field formed by the second electrode 6 and the first electrode 2 is removed.
  • the liquid crystal molecules in the liquid crystal layer 3 are a mixture of various liquid crystal molecules, so that the liquid crystal layer 3 can meet different performance requirements.
  • second electrode 6 and first electrode 2 can form vertical electric field, by changing the voltage that is applied on second electrode 6 and first electrode 2, can adjust the strength of this vertical electric field, the change of electric field strength can change the liquid crystal layer 3
  • the deflection angle of the liquid crystal molecules changes the dielectric constant of the liquid crystal layer 3. It can be understood that when the dielectric constant of the liquid crystal layer 3 (as a radiation element) in the liquid crystal antenna changes, the operating frequency of the liquid crystal antenna changes accordingly. In practical applications, every time the strength of the above-mentioned vertical electric field is adjusted, the liquid crystal molecules in the liquid crystal layer 3 need to return to the initial state first, and then re-deflect according to the new electric field.
  • the second electrode 6 may be a patterned electrode layer, or the second electrode 6 may be a monolithic electrode layer.
  • the specific structure of the second electrode 6 is not limited here, and may be determined according to actual requirements.
  • the structure of the first electrode 2 may be the same as that of the second electrode 6 , or the structure of the first electrode 2 may be different from that of the second electrode 6 .
  • the details can be determined according to actual needs.
  • the first electrode 2 can be set as a full-surface electrode layer to play an auxiliary supporting role for the liquid crystal layer.
  • the above feeder 5 refers to the transmission line connecting the electrodes of the liquid crystal antenna and the transceiver device.
  • the feeder 5 is electrically connected to the second electrode 6 through the via hole 8 in the second substrate 4 .
  • the aforementioned via hole 8 is not a hole structure, but a connection electrode formed in the hole structure.
  • the opening exposes a part of the second electrode 6, and the opening is filled by forming a connecting electrode and electrically connecting the second electrode 6 and the feeder line 5, because the connecting electrode is in the opening. Formed in, so it is called via hole 8.
  • the feeder 5 and the second electrode 6 can also be electrically connected in other ways, which is not limited here.
  • the encapsulation layer 3 is used to fix the first substrate 1 and the second substrate 4 together, and encapsulate the liquid crystal layer 3 between the first substrate 1 and the second substrate 4 to prevent liquid crystal molecules in the liquid crystal layer 3 from leaking out.
  • the encapsulation layer 3 may be in direct contact with the first substrate 1 and the second substrate 4, or the encapsulation layer 3 may be in contact with the second electrode 6 or the first electrode 2 on both sides of the liquid crystal layer 3, which is not limited here. , specifically determined according to the electrode structures on both sides of the liquid crystal layer 3 .
  • the side electrode group including a plurality of side electrodes (such as 101 and 102 ), is configured to assist the liquid crystal molecules 31 in the liquid crystal layer 3 to return to an initial state when the operating frequency of the liquid crystal antenna is switched.
  • the direction of the electric field formed by the side electrodes (such as 101 and 102 ) in the side electrode group intersects the direction of the electric field strength formed by the first electrode 2 and the second electrode 6 .
  • each side electrode in the side electrode group can be located outside the liquid crystal layer 3; for example, the orthographic projection of each side electrode on the first substrate 1 and the orthographic projection of the encapsulation layer 7 on the first substrate 1 are set to overlap, or , setting each side electrode to be located on the side of the encapsulation layer 7 away from the liquid crystal layer 3 .
  • the field strength directions of the two electric fields are determined by the relative positions of the respective electrodes.
  • the first electrode 2 and the second electrode 6 are arranged oppositely along the direction perpendicular to the first substrate 1, the electric field formed by the two is a vertical electric field, and the field strength direction of the electric field is the vertical direction.
  • the above-mentioned included angle is determined by the positions of the side electrodes in the side electrode group.
  • the initial state of the liquid crystal molecules 31 in the liquid crystal layer 3 is a horizontal state
  • the potential difference between the second electrode 6 and the first electrode 2 is A1
  • a vertical electric field is formed
  • the liquid crystal molecules 31 in the liquid crystal layer 3 deflect along the vertical direction, and the deflection angle is a; at this time, the dielectric constant of the liquid crystal antenna is ⁇ 1.
  • the potential difference between the second electrode 6 and the first electrode 2 is zero, and a voltage is applied to the side electrodes in the side electrode group, and the side electrodes (such as 101 and 102) in the side electrode group
  • the electric field direction formed intersects with the electric field direction of the original vertical electric field.
  • the electric field formed by the side electrodes (such as 101 and 102) in the side electrode group is a horizontal electric field
  • the liquid crystal molecules 31 whose deflection angle a is assisted by the horizontal electric field recover to In the initial horizontal state, a voltage is applied on the second electrode 6 and the first electrode 2, and the potential difference between the two is A2, and the liquid crystal molecules 31 in the liquid crystal layer 3 are deflected again, and the deflection angle is b; at this time, the liquid crystal The dielectric constant of the antenna is ⁇ 2.
  • the dielectric constant of the liquid crystal layer 3 in the liquid crystal antenna changes from ⁇ 1 to ⁇ 2, and the working frequency band of the liquid crystal antenna also changes accordingly.
  • the initial state of the liquid crystal molecules 31 shown in FIG. The initial state is not limited, and may be determined according to actual conditions.
  • the side electrode group by setting the side electrode group to include a plurality of side electrodes, when the operating frequency of the liquid crystal antenna is switched, the side electrodes assist the liquid crystal molecules in the liquid crystal layer 3 to return to the initial state, shortening the relaxation time , improving the efficiency of switching the operating frequency of the liquid crystal antenna.
  • the side electrode group includes a first side electrode 101 and a second side electrode 102; the first side electrode 101 and the second side electrode 102 are arranged oppositely, and Located on the side of the encapsulation layer 7 away from the liquid crystal layer 3 .
  • the first side electrode 101 and the second side electrode 102 may be directly fixed on the side of the encapsulation layer 7 away from the liquid crystal layer 3 .
  • the encapsulation layer 7 may include two first encapsulation parts arranged opposite to each other.
  • the material of the first encapsulation part is a conductive material with conductivity.
  • the first side electrode 101 and the second side electrode 102 are fixed on the two first side electrodes respectively.
  • the two first packaging parts with conductivity are equivalent to increasing the size of the first side electrode 101 and the second side electrode 102.
  • the liquid crystal in the liquid crystal layer 3 The molecules 31 can be completely placed in the electric field formed by the side electrode group, which can better shorten the relaxation time and improve the switching efficiency of the liquid crystal antenna when switching the working frequency.
  • the first encapsulation part can be made conductive by doping conductive particles 71 in the material of the first encapsulation part.
  • the conductive particles 71 may be gold balls or other microspheres with conductive properties.
  • the first side electrode 101 and the second side electrode 102 are respectively fixed on two first packaging parts with conductivity, and the first side electrode 101 and the second side electrode 102 are all located on the side of the encapsulation layer 7 away from the liquid crystal layer 3, since the electric field formed by the two first encapsulation parts with conductivity can cover each liquid crystal molecule 31 in the liquid crystal layer 3, it can make The actual size of the first side electrode 101 and the second side electrode 102 located on the outside of the encapsulation layer 7 is small, and is used to connect the external power supply terminal. It can be understood that at this time, the first side electrode 101 and the second side electrode 102 can be both as connection terminals.
  • the first side electrode 101 and the second side electrode 102 located outside the encapsulation layer 7 are provided in the form of wires or terminals to ensure that the relaxation time of the liquid crystal antenna can be shortened, Improving the efficiency of switching the working frequency of the liquid crystal antenna can also avoid the situation that the first side electrode 101 and the second side electrode 102 are too large and cannot be firmly fixed on the outside of the encapsulation layer 7 .
  • first side electrodes 101 and second side electrodes 102 there is no limitation on the shapes and sizes of the above-mentioned first side electrodes 101 and second side electrodes 102 , which are determined according to actual conditions, and the drawings provided in the embodiments of the present application are only examples.
  • the first side electrode 101 and the second side electrode 102 can form a horizontal electric field, and when the liquid crystal antenna needs to switch the operating frequency, a voltage can be applied across the first side electrode 101 and the second side electrode 102 to pass the horizontal electric field. The electric field assists the liquid crystal molecules 31 in the liquid crystal layer 3 to return to the initial horizontal state. It should be noted that the voltage value applied to both ends of the first side electrode 101 and the second side electrode 102 can be determined according to specific conditions, and is not limited here.
  • the orthographic projection on the first substrate 1 overlaps with the orthographic projection of the encapsulation layer 3 on the first substrate 1 respectively, and the orthographic projection of the first side electrode 101 on the first substrate 1 and the orthographic projection of the second side electrode 102 on the first substrate 1 The projections do not overlap each other.
  • the first side electrode 101 and the second side electrode 102 are arranged opposite to each other.
  • first side electrode 101 and the second side electrode 102 means that the first side electrode 101 overlaps the second side electrode 102 in a direction perpendicular to the second side electrode 102 .
  • relative setting in the embodiments of this application is similar to that here, and will not be described in detail elsewhere.
  • both the first side electrode 101 and the second side electrode 102 are located on the first electrode 2 and are insulated from the first electrode 2 .
  • a part of the encapsulation layer 3 is located on the first side electrode 101 between the second substrate 4 and in direct contact with the first side electrode 101 between the second substrate 4 and in direct contact with the first side electrode 101.
  • a part of the encapsulation layer 3 is located between the second side electrode 102 and the second substrate 4 and in direct contact with the second side electrode 102, on the first electrode 2
  • the encapsulation layer 3 is located between the first electrode 2 and the second substrate 4 , and is in direct contact with the first electrode 2 .
  • the orthographic projection of the second electrode 6 on the first substrate 1 and the orthographic projection of the encapsulation layer 7 on the first substrate 1 overlap;
  • Both the first side electrode 101 and the second side electrode 102 are located on a side of the second electrode 6 away from the second substrate 4 and are insulated from the second electrode 6 .
  • the second electrode 6 and the first side electrode 102 are avoided. Contact between the electrodes 101 and avoid contact between the second electrode 6 and the second side electrode 102 .
  • both the first side electrode 101 and the second side electrode 102 are arranged on the second electrode 6 and the package between layers 7. In this way, there is an overlapping area between the orthographic projection of the first side electrode 101 on the second substrate 4 and the orthographic projection of the second electrode 6 on the second substrate 4, so that the orthographic projection of the second side electrode 102 on the second substrate 4 There is an overlapping area between the projection and the orthographic projection of the second electrode 6 on the second substrate 4 .
  • the orthographic projection of the second electrode 6 on the first substrate 1 and the orthographic projection of the encapsulation layer 7 on the first substrate 1 do not overlap each other;
  • Both the first side electrode 101 and the second side electrode 102 are located on the side of the second substrate 4 away from the feeder 5, the orthographic projection of the first side electrode 101 on the second substrate 4 and the projection of the second electrode 6 on the second substrate 4
  • the orthographic projections do not overlap each other, and the orthographic projections of the second side electrodes 102 on the second substrate 4 and the orthographic projections of the second electrode 6 on the second substrate 4 do not overlap each other.
  • the orthographic projection of the second electrode 6 on the second substrate 4 only covers the central area of the second substrate 4, like this, the first side electrode 101 and the second side electrode 102 can be arranged directly in contact with the second The two substrates 4 are in contact.
  • one of the first side electrode 101 and the second side electrode 102 is located on the first electrode 2 and is insulated from the first electrode 2, and the other is located on the second side electrode 2.
  • the electrode 6 is located away from the side of the second substrate 4 and is insulated from the second electrode 6 .
  • one of the first side electrode 101 and the second side electrode 102 is located on the first electrode 2 and is insulated from the first electrode 2 , and the other is located on the side of the second substrate 4 away from the feeder line 8 , and its orthographic projection on the second substrate 4 and the orthographic projection of the second electrode 6 on the second substrate 4 do not overlap each other.
  • the side electrode group when the side electrode group includes two side electrodes, one of the side electrodes can be arranged between the liquid crystal layer 3 and the first electrode 2, and the side electrode and the first electrode 2 are insulated.
  • the first packaging part is connected to the second packaging part;
  • the material of the first encapsulation part is conductive material
  • the material of the second encapsulation part is insulating material
  • the first side electrode 101 is in direct contact with one of the first encapsulation parts
  • the second side electrode 102 is in direct contact with the other first encapsulation part.
  • FIGS. 1-3 , 5 , and 7-9 Only the first package portion with conductivity is drawn in FIGS. 1-3 , 5 , and 7-9 .
  • the conductive first encapsulation can be The portion is also used as a part of the side electrode, which greatly increases the coverage space of the electric field formed by the side electrode, so that the liquid crystal molecules 31 in the liquid crystal layer 3 can be completely in the electric field, which is more conducive to the return of the liquid crystal molecules 31 to the initial state. State, thereby shortening the relaxation time of the liquid crystal antenna, improving the efficiency of switching the operating frequency of the liquid crystal antenna, and expanding the application field of the liquid crystal antenna.
  • the side electrode group includes a first side electrode 101 , a second side electrode 102 , a third side electrode 103 and a fourth side electrode 104 ;
  • Both the first side electrode 101 and the second side electrode 102 are located on the first electrode 2 and are insulated from the first electrode 2; the third side electrode 103 and the fourth side electrode 104 are both located on the packaging layer 7 away from the first substrate 1 side.
  • Both the third side electrode 103 and the fourth side electrode 104 are located on the side of the encapsulation layer 7 away from the first substrate 1 including two situations:
  • both the third side electrode 103 and the fourth side electrode 104 are located on the side of the second substrate 4 away from the feeder line 8 ;
  • both the third side electrode 103 and the fourth side electrode 104 are located on the side of the second electrode 6 away from the second substrate 4 , and are insulated from the second electrode 6 .
  • the orthographic projection of the second electrode 6 on the second substrate 4 covers the second substrate 4 .
  • the orthographic projection of the first side electrode 101 on the first substrate 1 and the orthographic projection of the third side electrode 103 on the first substrate 1 overlap,
  • the orthographic projection of the second side electrode 102 on the first substrate 1 overlaps with the orthographic projection of the fourth side electrode 104 on the first substrate 1 .
  • the voltage values applied to the first side electrode 101 and the third side electrode 103 can be set to be the same, and the voltage values applied to the second side electrode 102 and the fourth side electrode 104 can be set to be the same.
  • the voltage value is the same.
  • the direction of the formed electric field is parallel to the direction in which the first side electrode 101 points to the second side electrode 102 , and parallel to the direction in which the third side electrode 103 points to the fourth side electrode 104 .
  • the encapsulation layer 1 includes two first encapsulation parts and two second encapsulation parts oppositely arranged, and the first encapsulation parts and the second encapsulation parts are connected ;
  • the material of the first packaging part is a conductive material, and the material of the second packaging part is an insulating material;
  • the first side electrode 101 and the third side electrode 103 are respectively in direct contact with one of the first packaging parts, and the second side electrode 102 and the fourth side electrode 104 are respectively in direct contact with the other first packaging part.
  • the first encapsulation part has conductivity, as shown in FIG.
  • the first encapsulation portion between them is regarded as an integral electrode; another voltage is applied on the second side electrode 102 and the fourth side electrode 104 at the same time, and the second side electrode 102, the fourth side electrode 104 and the two between
  • the first encapsulation part of the first package is used as another integral electrode, so that all liquid crystal molecules in the liquid crystal layer 3 are in the electric field, and the electric field direction of the electric field is the same as that of the vertical electric field formed between the first electrode and the second electrode.
  • the direction of the electric field is almost vertical, which is more conducive to shortening the relaxation time of the liquid crystal molecules and improving the efficiency of switching the operating frequency of the liquid crystal antenna.
  • the side electrode group further includes a fifth side electrode 105 and a sixth side electrode 106, the fifth side electrode 105 and the sixth side electrode 106 are arranged oppositely, and The fifth side electrode 105 is located on a side of one of the first encapsulation parts away from the liquid crystal layer 3 , and the sixth side electrode 106 is located on a side of the other first encapsulation part away from the liquid crystal layer 3 .
  • the fifth side electrode 105 and the sixth side electrode 106 are respectively fixed on the two first packaging parts with conductivity, and the fifth side electrode 105 and the sixth side electrode 106 are all located on the side of the encapsulation layer 7 away from the liquid crystal layer 3, since the electric field formed by the two first encapsulation parts with conductivity can cover each liquid crystal molecule 31 in the liquid crystal layer 3, it can make The actual size of the fifth side electrode 105 and the sixth side electrode 106 located outside the encapsulation layer 7 is relatively small, and they are used to connect external power supply terminals. It can be understood that at this time, the fifth side electrode 105 and the sixth side electrode 106 can be both as connection terminals.
  • the fifth side electrode 105 and the sixth side electrode 106 located outside the encapsulation layer 7 are arranged in the form of wires or terminals to ensure that the relaxation time of the liquid crystal antenna can be shortened. Improving the efficiency of switching the operating frequency of the liquid crystal antenna can also avoid the situation that the fifth side electrode 105 and the sixth side electrode 106 are too large and cannot be firmly fixed on the outside of the packaging layer 7 .
  • first side electrode 101 the second side electrode 102, the third side electrode 103, the fourth side electrode 104, the fifth side electrode 105 and the sixth side electrode 106. , determined according to the actual situation.
  • the third side electrode 103 and the fourth side electrode 104 are located on a side of the second substrate 4 away from the feeder line 5 .
  • the third side electrode 103 and the fourth side electrode 104 are located on the side of the second electrode 6 away from the second electrode 4, and pass between the second insulating layer 10 and the second electrode. Insulation settings.

Landscapes

  • Liquid Crystal (AREA)

Abstract

本申请提供了一种液晶天线,涉及移动通信技术领域,包括相对设置的第一基板和第二基板;液晶层,位于所述第一基板和所述第二基板之间;第一电极,位于所述第一基板靠近所述液晶层的一侧;第二电极,位于所述第二基板靠近所述液晶层的一侧;馈线,位于所述第二基板远离所述第二电极的一侧,且和所述第二电极电连接;封装层,位于所述第一基板和所述第二基板之间,且围绕所述液晶层;侧电极组,包括多个侧电极。本申请通过设置侧电极组包括多个侧电极,在液晶天线切换工作频率的情况下,通过侧电极辅助液晶层中的液晶分子回复到初始状态,缩短了弛豫时间,提高了液晶天线切换工作频率的效率。

Description

液晶天线 技术领域
本申请涉及移动通信技术领域,尤其涉及一种液晶天线。
背景技术
随着移动通信技术的不断发展,可重构液晶天线越来越引起人们的广泛关注。相关技术中,通过改变施加在液晶天线的液晶层两端的电压,可以改变液晶层的介电常数,从而能够改变液晶天线的工作频率。
然而,在重构液晶天线的工作频率时,液晶层中的液晶分子需要依靠自身弹性力回复到初试状态,这一时间较长,很大程度上影响了液晶天线切换频率的效率,限制了其应用范围。
目前,亟需设计一种新的液晶天线,以解决上述问题。
发明内容
本申请的实施例提供了一种液晶天线,包括:
相对设置的第一基板和第二基板;
液晶层,位于所述第一基板和所述第二基板之间;
第一电极,位于所述第一基板靠近所述液晶层的一侧;
第二电极,位于所述第二基板靠近所述液晶层的一侧;
馈线,位于所述第二基板远离所述第二电极的一侧,且和所述第二电极电连接;
封装层,位于所述第一基板和所述第二基板之间,且围绕所述液晶层;
侧电极组,包括多个侧电极。
在本申请的一些实施例中,所述侧电极组中的所述侧电极形成的电场方向与所述第一电极和所述第二电极形成的电场方向相交。
在本申请的一些实施例中,所述侧电极组包括第一侧电极和第二侧电极;
所述第一侧电极和所述第二侧电极相对设置、且均位于所述封装层远离所述液晶层的一侧。
在本申请的一些实施例中,所述侧电极组包括第一侧电极和第二侧电极,所述第一侧电极和所述第二侧电极在所述第一基板上的正投影分别与所述封装层在所述第一基板上的正投影交叠,且所述第一侧电极在所述第一基板 上的正投影和所述第二侧电极在所述第一基板上的正投影互不交叠。
在本申请的一些实施例中,所述第一侧电极和所述第二侧电极相对设置。
在本申请的一些实施例中,所述第一侧电极和所述第二侧电极均位于所述第一电极上、且与所述第一电极绝缘设置。
在本申请的一些实施例中,所述第二电极在所述第一基板上的正投影和所述封装层在所述第一基板上的正投影交叠;
所述第一侧电极和所述第二侧电极均位于所述第二电极远离所述第二基板的一侧、且与所述第二电极绝缘设置。
在本申请的一些实施例中,所述第二电极所述第一基板上的正投影和所述封装层在所述第一基板上的正投影互不交叠;
所述第一侧电极和所述第二侧电极均位于所述第二基板远离所述馈线的一侧,所述第一侧电极在所述第二基板上的正投影和所述第二电极在所述第二基板上的正投影互不交叠,所述第二侧电极在所述第二基板上的正投影和所述第二电极在所述第二基板上的正投影互不交叠。
在本申请的一些实施例中,所述第一侧电极和所述第二侧电极其中的一个位于所述第一电极上、且与所述第一电极绝缘设置,另一个位于所述第二电极远离所述第二基板的一侧、且与所述第二电极绝缘设置。
在本申请的一些实施例中,所述第一侧电极和所述第二侧电极其中的一个位于所述第一电极上、且与所述第一电极绝缘设置,另一个位于所述第二基板远离所述馈线的一侧、且其在所述第二基板上的正投影和所述第二电极在所述第二基板上的正投影互不交叠。
在本申请的一些实施例中,所述封装层包括相对设置的两个第一封装部和相对设置的两个第二封装部,所述第一封装部和所述第二封装部连接;
所述第一封装部的材料为导电材料,所述第二封装部的材料为绝缘材料,所述第一侧电极和其中一个所述第一封装部直接接触,所述第二侧电极和另一个所述第一封装部直接接触。
在本申请的一些实施例中,所述侧电极组包括第一侧电极、第二侧电极、第三侧电极和第四侧电极;
所述第一侧电极和所述第二侧电极均位于所述第一电极上且均和所述第一电极绝缘设置;所述第三侧电极和所述第四侧电极均位于所述封装层远离所述第一基板的一侧。
在本申请的一些实施例中,所述第三侧电极和所述第四侧电极均位于所 述第二基板远离所述馈线的一侧;
或,所述第三侧电极和所述第四侧电极均位于所述第二电极远离所述第二基板的一侧,且与所述第二电极绝缘设置。
在本申请的一些实施例中,所述第一侧电极在所述第一基板上的正投影和所述第三侧电极在所述第一基板上的正投影交叠,所述第二侧电极在所述第一基板上的正投影和所述第四侧电极在所述第一基板上的正投影交叠。
在本申请的一些实施例中,所述封装层包括相对设置的两个第一封装部和相对设置的两个第二封装部,所述第一封装部和所述第二封装部连接;所述第一封装部的材料为导电材料,所述第二封装部的材料为绝缘材料;
所述第一侧电极和所述第三侧电极分别与其中一个所述第一封装部直接接触,所述第二侧电极和所述第四侧电极分别与另一个所述第一封装部直接接触。
在本申请的一些实施例中,所述侧电极组还包括第五侧电极和第六侧电极,所述第五侧电极和所述第六侧电极相对设置,且所述第五侧电极位于其中一个所述第一封装部远离所述液晶层的一侧,所述第六侧电极位于另一个所述第一封装部远离所述液晶层的一侧。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1-图14分别为本申请实施例提供的十四种液晶天线的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案 进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本申请的示意性图解,并非一定是按比例绘制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
在本申请的实施例中,采用“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行部分,仅为了清楚描述本申请实施例的技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
可重构天线是指多天线阵列中各阵元之间的关系是可以根据实际情况灵活可变的,而非固定的。它主要是通过调整状态可变器件,实现天线性能的可重构。可重构天线按功能可分为频率可重构天线、方向图可重构天线、极化可重构天线和多电磁参数可重构天线。通过改变可重构天线的结构可以使天线的频率、波瓣图、极化方式等多种参数中的一种或几种实现重构。因其具有体积小、功能多、易于实现分集应用的优点,已经成为研究热点。
其中,在频率可重构天线中,频率可重构液晶天线受到广泛关注,相关技术中,通过改变施加在频率可重构液晶天线的液晶层两端的电压,可以改变液晶层的介电常数,从而能够改变频率可重构液晶天线的工作频率。在液晶天线重构工作频率时,需要先撤掉施加在液晶天线的液晶层两端的电压,待液晶层中的液晶分子回复到初始状态,然后再重新在 液晶天线的液晶层两端施加另外一个电压,以实现频率的重构。然而,在重构液晶天线的工作频率时,液晶层中的液晶分子需要依靠自身弹性力回复到初试状态,这一时间称作弛豫时间,弛豫时间较长,影响了天线切换频率的效率,限制了其在产品上的应用。
基于此,本申请的实施例提供了一种液晶天线,参考图1所示,包括:
相对设置的第一基板1和第二基板4;
液晶层3,位于第一基板1和第二基板4之间;
第一电极2,位于第一基板1靠近液晶层3的一侧;
第二电极6,位于第二基板4靠近液晶层3的一侧;
馈线5,位于第二基板4远离第二电极6的一侧,且和第二电极6电连接;
封装层7,位于第一基板1和第二基板4之间,且围绕液晶层3;
侧电极组,包括多个侧电极(例如101和102)。
在示例性的实施例中,上述第一基板1和第二基板4可以均为柔性基板;例如,柔性聚酰亚胺(PI)或者聚对苯二甲酸乙二醇酯(PET)。或者,上述第一基板1和第二基板4可以均为刚性基板,例如:玻璃。
这里对于上述液晶层3中的液晶分子的具体结构不进行限定。需要说明的是,上述液晶层3中的液晶分子的种类和性能可以和液晶显示面板中的液晶分子类似。例如,液晶层3中的液晶分子需要具备较低的黏度,以便于在第二电极6和第一电极2上施加电压时,液晶层3中的液晶分子具有较快的响应速度;另外,液晶层3中的液晶分子需要具备较高的弹性系数,以有助于在第二电极6和第一电极2形成的垂直电场撤去之后,依靠液晶弹性恢复液晶的初始状态。另外,液晶层3中的液晶分子是多种液晶分子的混合物,以便于液晶层3可以满足不同性能的需求。
上述第二电极6和第一电极2可以形成垂直电场,通过改变施加在第二电极6和第一电极2上的电压,可以调节该垂直电场的强度,电场强度的变化可以改变液晶层3中的液晶分子偏转的角度,从而改变了液晶层3的介电常数,可以理解,当液晶天线中液晶层3(作为辐射阵子)的介电常数改变之后,液晶天线的工作频率随之改变。在实际应用中,每调节一次上述垂直电场的强度,液晶层3中的液晶分子需要先回复到初始状态,再根据新的电场重新发生偏转。
在示例性的实施例中,上述第二电极6可以为图案化的电极层,或者, 上述第二电极6可以为整面性的电极层。这里对第二电极6的具体结构不进行限定,具体可以根据实际需求确定。
第一电极2的结构可以和第二电极6的结构相同,或者,第一电极2的结构可以和第二电极6的结构不同。具体可以根据实际需求确定。
另外,当第一基板1为柔性基板时,可以设置第一电极2为整面性的电极层,以对液晶层起到辅助的支撑作用。
上述馈线5是指连接液晶天线的电极以及收发设备之间的传输线。
在示例性的实施例中,馈线5通过第二基板4中的过孔8与第二电极6电连接。可以理解,上述过孔8并不是孔洞结构,而是在孔洞结构中形成的连接电极。具体的,在第二基板4中具有贯穿的开口,开口暴露出第二电极6的部分区域,通过形成连接电极填充该开口并将第二电极6和馈线5电连接,由于该连接电极在开口中形成,故而称作过孔8。
当然,馈线5和第二电极6还可以通过其它方式电连接,这里不进行限定。
上述封装层3用于将第一基板1和第二基板4固定在一起,且将液晶层3封装在第一基板1和第二基板4之间,避免液晶层3中的液晶分子漏出。
需要说明的是,封装层3可以直接与第一基板1和第二基板4接触,或者,封装层3可以和液晶层3两侧的第二电极6或第一电极2接触,这里不进行限定,具体根据液晶层3两侧的电极结构确定。
侧电极组,包括多个侧电极(例如101和102),被配置为在液晶天线切换工作频率的情况下,辅助液晶层3中的液晶分子31回复到初始状态。
示例性的,参考图1或图2所示,侧电极组中的侧电极(例如101和102)形成的电场方向与第一电极2和第二电极6形成的电场场强方向相交。
需要说明的是,为了使得侧电极组中的各侧电极形成的电场与第二电极6和第一电极2形成的电场相交,以便于液晶层3中的液晶分子31能够快速的回复到初始状态,侧电极组中的各侧电极可以均位于液晶层3的外侧;例如,设置各侧电极在第一基板1上的正投影和封装层7在第一基板1上的正投影交叠,或者,设置各侧电极位于封装层7远离液晶层3的一侧。
上述电场方向相交的含义为:第一电极2和第二电极6形成的电场的方向和侧电极组中的侧电极形成的电场方向具有一定夹角,且这里对于该夹角的具体角度不进行限定。
在实际应用中,两个电场的场强方向由各自的电极的相对位置确定。例 如,如图2所示,第一电极2和第二电极6沿垂直于第一基板1的方向相对设置,两者形成的电场为垂直电场,电场的场强方向为竖直方向。在第一电极2和第二电极6的位置确定的情况下,上述夹角由侧电极组中的侧电极的位置确定。
在示例性的实施例中,参考图1所示,液晶层3中的液晶分子31的初始状态为水平状态,在第二电极6和第一电极2之间的电势差为A1,并形成垂直电场时,液晶层3中的液晶分子31沿竖直方向发生偏转,且其偏转角为a;此时,液晶天线的介电常数为α1。在液晶天线切换其工作频率时,第二电极6和第一电极2之间的电势差为零,在侧电极组中的侧电极上施加电压,侧电极组中的侧电极(例如101和102)形成的电场方向和原垂直电场的电场方向相交,例如,侧电极组中的侧电极(例如101和102)形成的电场为水平电场,该水平电场辅助偏转角为a的液晶分子31重新恢复到初始的水平状态,再在第二电极6和第一电极2上施加电压,两者之间的电势差为A2,液晶层3中的液晶分子31再次发生偏转,偏转角为b;此时,液晶天线的介电常数为α2。这样,液晶天线中的液晶层3的介电常数从α1变为α2,液晶天线的工作频段也随之发生变化。
需要说明的是,图1中所示的液晶分子31的初始状态为水平状态,在实际应用中,液晶分子31的初始状态还可以是竖直站立的状态,或者其它状态,这里对液晶分子的初始状态不进行限定,具体可以根据实际情况确定。
在本申请的实施例中,通过设置侧电极组包括多个侧电极,在液晶天线切换工作频率的情况下,通过侧电极辅助液晶层3中的液晶分子回复到初始状态,缩短了弛豫时间,提高了液晶天线切换工作频率的效率。
在本申请的一些实施例中,参考图1或图2所示,侧电极组包括第一侧电极101和第二侧电极102;第一侧电极101和第二侧电极102相对设置、且均位于封装层7远离液晶层3的一侧。
示例性的,第一侧电极101和第二侧电极102可以直接固定在封装层7远离液晶层3的侧面上。
示例性,封装层7可以包括相对设置的两个第一封装部,第一封装部的材料为导电材料,具有导电性,第一侧电极101和第二侧电极102分别固定在两个第一封装部上,这样,具有导电性的两个第一封装部相当于增大了第一侧电极101和第二侧电极102的尺寸,在侧电极上施加电压后,使得液晶层3中的液晶分子31能够完全的处于侧电极组形成的电场中,更好的缩短 弛豫时间,提高液晶天线在切换工作频率时的切换效率。
其中,可以通过在第一封装部的材料中掺杂导电微粒71,使得第一封装部具有导电性。导电微粒71可以为金球或者其它具有导电性能的微球。
在示例性的实施例中,参考图1和图2所示,当第一侧电极101和第二侧电极102分别固定在具有导电性的两个第一封装部上,且第一侧电极101和第二侧电极102均位于封装层7远离液晶层3的一侧的情况下,由于具有导电性的两个第一封装部形成的电场能够覆盖液晶层3中的各液晶分子31,可以使得位于封装层7外侧的第一侧电极101和第二侧电极102的实际尺寸较小,用于连接外界的供电端,可以理解,此时,第一侧电极101和第二侧电极102可以均作为连接端子。
另外,在设置有导电第一封装部的情况下,将位于封装层7外侧的第一侧电极101和第二侧电极102设置成导线或者端子的形态,确保能够缩短液晶天线的弛豫时间,提高液晶天线切换工作频率的效率,还能够避免由于第一侧电极101和第二侧电极102尺寸过大,在封装层7外侧固定不牢的情况。
需要说明的是,这里对于上述第一侧电极101和第二侧电极102的形状和尺寸均不作限制,具体根据实际情况确定,本申请的实施例提供的附图仅供示例。
示例性的,第一侧电极101和第二侧电极102可以形成水平电场,在液晶天线需要切换工作频率时,可以在第一侧电极101和第二侧电极102两端施加电压,以通过水平电场辅助液晶层3中的液晶分子31恢复到初始的水平状态。需要说明的是,第一侧电极101和第二侧电极102两端施加的电压值可以根据具体情况确定,这里不进行限制。
在本申请的一些实施例中,参考图3-图10所示,侧电极组包括第一侧电极101和第二侧电极102,第一侧电极101和第二侧电极102在第一基板1上的正投影分别与封装层3在第一基板1上的正投影交叠,且第一侧电极101在第一基板1上的正投影和第二侧电极102在第一基板1上的正投影互不交叠。
示例性的,参考图3、图4、图5和图6所示,第一侧电极101和第二侧电极102相对设置。
上述第一侧电极101和第二侧电极102相对设置的含义为:第一侧电极101在沿垂直于第二侧电极102的方向上和第二侧电极102交叠。本申请的 实施例中关于“相对设置”的含义均与此处类似,其它地方不再赘述。
在本申请的一些实施例中,参考图3和图4所示,第一侧电极101和第二侧电极102均位于第一电极2上、且与第一电极2绝缘设置。
在实际应用中,通过在第一电极2和第一侧电极101之间、第一电极2和第二侧电极102之间设置第一绝缘层9,从而避免第一电极2和第一侧电极101之间接触、避免第一电极2和第二侧电极102之间接触。
在示例性的实施例中,在第一侧电极101和第二侧电极102均位于第一电极2上、且与第一电极2绝缘设置的情况下,一部分封装层3位于第一侧电极101和第二基板4之间且和第一侧电极101直接接触,一部分封装层3位于第二侧电极102和第二基板4之间且和第二侧电极102直接接触,在第一电极2上未设置侧电极的区域,封装层3位于第一电极2和第二基板4之间,且和第一电极2直接接触。
在本申请的一些实施例中,参考图5所示,第二电极6在第一基板1上的正投影和封装层7在第一基板1上的正投影交叠;
第一侧电极101和第二侧电极102均位于第二电极6远离第二基板4的一侧、且与第二电极6绝缘设置。
在实际应用中,通过分别在第二电极6和第一侧电极101之间、第二电极6和第二侧电极102之间设置第二绝缘层10,从而避免第二电极6和第一侧电极101之间接触、避免第二电极6和第二侧电极102之间接触。
在示例性的实施例中,由于第二电极6在第二基板4上的正投影覆盖第二基板4,故而将第一侧电极101和第二侧电极102均设置在第二电极6和封装层7之间。这样,使得第一侧电极101在第二基板4上的正投影和第二电极6在第二基板4上的正投影存在交叠区,使得第二侧电极102在第二基板4上的正投影和第二电极6在第二基板4上的正投影存在交叠区。
在本申请的一些实施例中,参考图6所示,第二电极6第一基板1上的正投影和封装层7在第一基板1上的正投影互不交叠;
第一侧电极101和第二侧电极102均位于第二基板4远离馈线5的一侧,第一侧电极101在第二基板4上的正投影和第二电极6在第二基板4上的正投影互不交叠,第二侧电极102在第二基板4上的正投影和第二电极6在第二基板4上的正投影互不交叠。
在示例性的实施例中,由于第二电极6在第二基板4上的正投影只覆盖第二基板4的中央区域,这样,可以设置第一侧电极101和第二侧电极102 直接和第二基板4接触。
在本申请的一些实施例中,参考图8所示,第一侧电极101和第二侧电极102其中的一个位于第一电极2上、且与第一电极2绝缘设置,另一个位于第二电极6远离第二基板4的一侧、且与第二电极6绝缘设置。
在本申请的一些实施例中,参考图7、图9和图10所示,第一侧电极101和第二侧电极102其中的一个位于第一电极2上、且与第一电极2绝缘设置,另一个位于第二基板4远离馈线8的一侧、且其在第二基板4上的正投影和第二电极6在第二基板4上的正投影互不交叠。
在本申请的实施例中,在侧电极组包括两个侧电极的情况下,可以设置其中一个侧电极位于液晶层3和第一电极2之间,且侧电极和第一电极2之间绝缘设置;设置另一个侧电极位于液晶层3和第二电极6之间(或者在第二电极6在第二基板4上的正投影覆盖第二基板4的中央区域的情况下,设置另一个侧电极位于液晶层3和第二基板4之间),这样,侧电极组中的两个侧电极形成的电场的方向为第一侧电极101指向第二侧电极102的方向(或第二侧电极102指向第一侧电极101的方向),从而该侧电极形成的电场方向和第二电极与第一电极形成的电场方向具有一定夹角,在侧电极上施加电压之后,液晶层3中的液晶分子31在该电场的作用下,结合液晶分子31自身的弹性,快速的回复到初始状态,从而降低了液晶天线中液晶分子31的弛豫时间,提高液晶天线切换工作频率的效率。
在本申请的一些实施例中,参考图1-图3、图5、图7-图9所示,封装层7包括相对设置的两个第一封装部和相对设置的两个第二封装部,第一封装部和第二封装部连接;
第一封装部的材料为导电材料,第二封装部的材料为绝缘材料,第一侧电极101和其中一个第一封装部直接接触,第二侧电极102和另一个第一封装部直接接触。
其中,图1-图3、图5、图7-图9中仅绘制出了具有导电性的第一封装部。
在本申请的实施例中,通过设置封装层7中的第一封装部的材料为导电材料,这样,在侧电极和第一封装部直接接触的情况下,可以将具有导电性的第一封装部也当作侧电极的一部分,很大程度上提高了侧电极形成的电场的覆盖空间,使得液晶层3中的液晶分子31能够完全的处于该电场中,更有利于液晶分子31回复到初始状态,从而缩短了液晶天线的弛豫时间,提 高了液晶天线切换工作频率的效率,进而扩大液晶天线的应用领域。
在本申请的一些实施例中,参考图11和图12所示,侧电极组包括第一侧电极101、第二侧电极102、第三侧电极103和第四侧电极104;
第一侧电极101和第二侧电极102均位于第一电极2上且均和第一电极2之间绝缘设置;第三侧电极103和第四侧电极104均位于封装层7远离第一基板1的一侧。
第三侧电极103和第四侧电极104均位于封装层7远离第一基板1的一侧包括两种情况:
第一种情况,参考图12所示,第三侧电极103和第四侧电极104均位于第二基板4远离馈线8的一侧;
第二种情况,第三侧电极103和第四侧电极104均位于第二电极6远离第二基板4的一侧,且与第二电极6绝缘设置。此时,第二电极6在第二基板4上的正投影覆盖第二基板4。
在本申请的一些实施例中,参考图11和图12所示,第一侧电极101在第一基板1上的正投影和第三侧电极103在第一基板1上的正投影交叠,第二侧电极102在第一基板1上的正投影和第四侧电极104在第一基板1上的正投影交叠。
在实际应用中,参考图11和图12所示,可以设置施加在第一侧电极101和第三侧电极103上的电压值相同,设置施加在第二侧电极102和第四侧电极104上的电压值相同。这样,形成的电场方向平行于第一侧电极101指向第二侧电极102的方向,平行于第三侧电极103指向第四侧电极104的方向。
在本申请的一些实施例中,参考率图11所示,封装层1包括相对设置的两个第一封装部和相对设置的两个第二封装部,第一封装部和第二封装部连接;第一封装部的材料为导电材料,第二封装部的材料为绝缘材料;
第一侧电极101和第三侧电极103分别与其中一个第一封装部直接接触,第二侧电极102和第四侧电极104分别与另一个第一封装部直接接触。
这样,由于第一封装部具有导电性,参考图11所示,在第一侧电极101和第三侧电极103上施加同一电压,可以把第一侧电极101、第三侧电极103以及两者之间的第一封装部当作一个整体的电极;在第二侧电极102和第四侧电极104上同时施加另一个电压,把第二侧电极102、第四侧电极104和两个之间的第一封装部当作另一个整体的电极,从而可以使得液晶层3中所 有的液晶分子均处于该电场中,该电场的电场方向与第一电极和第二电极之间形成的垂直电场的电场方向几乎垂直,从而更有利于缩短液晶分子的弛豫时间,提高液晶天线切换工作频率的效率。
在本申请的一些实施例中,参考图13和图14所示,侧电极组还包括第五侧电极105和第六侧电极106,第五侧电极105和第六侧电极106相对设置,且第五侧电极105位于其中一个第一封装部远离液晶层3的一侧,第六侧电极106位于另一个第一封装部远离液晶层3的一侧。
在示例性的实施例中,参考图13和图14所示,当第五侧电极105和第六侧电极106分别固定在具有导电性的两个第一封装部上,且第五侧电极105和第六侧电极106均位于封装层7远离液晶层3的一侧的情况下,由于具有导电性的两个第一封装部形成的电场能够覆盖液晶层3中的各液晶分子31,可以使得位于封装层7外侧的第五侧电极105和第六侧电极106的实际尺寸较小,用于连接外界的供电端,可以理解,此时,第五侧电极105和第六侧电极106可以均作为连接端子。
另外,在设置有导电第一封装部的情况下,将位于封装层7外侧的第五侧电极105和第六侧电极106设置成导线或者端子的形态,确保能够缩短液晶天线的弛豫时间,提高液晶天线切换工作频率的效率,还能够避免由于第五侧电极105和第六侧电极106尺寸过大,在封装层7外侧固定不牢的情况。
需要说明的是,这里对于上述第一侧电极101、第二侧电极102、第三侧电极103、第四侧电极104、第五侧电极105和第六侧电极106的形状和尺寸均不作限制,具体根据实际情况确定。
在示例性的实施例中,参考图13所示,第三侧电极103和第四侧电极104位于第二基板4远离馈线5的一侧。
在示例性的实施例中,参考图14所示,第三侧电极103和第四侧电极104位于第二电极6远离第二4的一侧,且通过第二绝缘层10和第二电极之间绝缘设置。
在本申请的实施例中,通过设置如图14所示的具有导电性的两个第一封装部和多个侧电极,可以根据情况在位于液晶层3左侧的多个侧电极中的至少一个上施加一电压,在位于液晶层3右侧的多个侧电极中的至少一个上施加另外一电压,从而形成一个与第一电极和第二电极之间 形成的垂直电场的电场方向相交的横向电场,其中,该横向电场的电场方向可以根据施加电压的侧电极的具体位置确定。
需要说明的是,本申请的实施例提供的各侧电极上施加的具体电压值这里不做限定,具体可以根据实际情况确定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种液晶天线,其中,包括:
    相对设置的第一基板和第二基板;
    液晶层,位于所述第一基板和所述第二基板之间;
    第一电极,位于所述第一基板靠近所述液晶层的一侧;
    第二电极,位于所述第二基板靠近所述液晶层的一侧;
    馈线,位于所述第二基板远离所述第二电极的一侧,且和所述第二电极电连接;
    封装层,位于所述第一基板和所述第二基板之间,且围绕所述液晶层;
    侧电极组,包括多个侧电极。
  2. 根据权利要求1所述的液晶天线,其中,所述侧电极组中的所述侧电极形成的电场方向与所述第一电极和所述第二电极形成的电场方向相交。
  3. 根据权利要求2所述的液晶天线,其中,所述侧电极组包括第一侧电极和第二侧电极;
    所述第一侧电极和所述第二侧电极相对设置、且均位于所述封装层远离所述液晶层的一侧。
  4. 根据权利要求2所述的液晶天线,其中,所述侧电极组包括第一侧电极和第二侧电极,所述第一侧电极和所述第二侧电极在所述第一基板上的正投影分别与所述封装层在所述第一基板上的正投影交叠,且所述第一侧电极在所述第一基板上的正投影和所述第二侧电极在所述第一基板上的正投影互不交叠。
  5. 根据权利要求4所述的液晶天线,其中,所述第一侧电极和所述第二侧电极相对设置。
  6. 根据权利要求5所述的液晶天线,其中,所述第一侧电极和所述第二侧电极均位于所述第一电极上、且与所述第一电极绝缘设置。
  7. 根据权利要求5所述的液晶天线,其中,所述第二电极在所述第一基板上的正投影和所述封装层在所述第一基板上的正投影交叠;
    所述第一侧电极和所述第二侧电极均位于所述第二电极远离所述第二基板的一侧、且与所述第二电极绝缘设置。
  8. 根据权利要求5所述的液晶天线,其中,所述第二电极所述第一基板上的正投影和所述封装层在所述第一基板上的正投影互不交叠;
    所述第一侧电极和所述第二侧电极均位于所述第二基板远离所述馈线 的一侧,所述第一侧电极在所述第二基板上的正投影和所述第二电极在所述第二基板上的正投影互不交叠,所述第二侧电极在所述第二基板上的正投影和所述第二电极在所述第二基板上的正投影互不交叠。
  9. 根据权利要求4所述的液晶天线,其中,所述第一侧电极和所述第二侧电极其中的一个位于所述第一电极上、且与所述第一电极绝缘设置,另一个位于所述第二电极远离所述第二基板的一侧、且与所述第二电极绝缘设置。
  10. 根据权利要求4所述的液晶天线,其中,所述第一侧电极和所述第二侧电极其中的一个位于所述第一电极上、且与所述第一电极绝缘设置,另一个位于所述第二基板远离所述馈线的一侧、且其在所述第二基板上的正投影和所述第二电极在所述第二基板上的正投影互不交叠。
  11. 根据权利要求3-10中任一项所述的液晶天线,其中,所述封装层包括相对设置的两个第一封装部和相对设置的两个第二封装部,所述第一封装部和所述第二封装部连接;
    所述第一封装部的材料为导电材料,所述第二封装部的材料为绝缘材料,所述第一侧电极和其中一个所述第一封装部直接接触,所述第二侧电极和另一个所述第一封装部直接接触。
  12. 根据权利要求2所述的液晶天线,其中,所述侧电极组包括第一侧电极、第二侧电极、第三侧电极和第四侧电极;
    所述第一侧电极和所述第二侧电极均位于所述第一电极上且均和所述第一电极绝缘设置;所述第三侧电极和所述第四侧电极均位于所述封装层远离所述第一基板的一侧。
  13. 根据权利要求12所述的液晶天线,其中,所述第三侧电极和所述第四侧电极均位于所述第二基板远离所述馈线的一侧;
    或,所述第三侧电极和所述第四侧电极均位于所述第二电极远离所述第二基板的一侧,且与所述第二电极绝缘设置。
  14. 根据权利要求12所述的液晶天线,其中,所述第一侧电极在所述第一基板上的正投影和所述第三侧电极在所述第一基板上的正投影交叠,所述第二侧电极在所述第一基板上的正投影和所述第四侧电极在所述第一基板上的正投影交叠。
  15. 根据权利要求14所述的液晶天线,其中,所述封装层包括相对设置的两个第一封装部和相对设置的两个第二封装部,所述第一封装部和所述 第二封装部连接;所述第一封装部的材料为导电材料,所述第二封装部的材料为绝缘材料;
    所述第一侧电极和所述第三侧电极分别与其中一个所述第一封装部直接接触,所述第二侧电极和所述第四侧电极分别与另一个所述第一封装部直接接触。
  16. 根据权利要求15所述的液晶天线,其中,所述侧电极组还包括第五侧电极和第六侧电极,所述第五侧电极和所述第六侧电极相对设置,且所述第五侧电极位于其中一个所述第一封装部远离所述液晶层的一侧,所述第六侧电极位于另一个所述第一封装部远离所述液晶层的一侧。
PCT/CN2021/140931 2021-12-23 2021-12-23 液晶天线 WO2023115475A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/140931 WO2023115475A1 (zh) 2021-12-23 2021-12-23 液晶天线
US17/923,757 US20240222856A1 (en) 2021-12-23 2021-12-23 Liquid crystal antenna
CN202180004155.0A CN116648823A (zh) 2021-12-23 2021-12-23 液晶天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140931 WO2023115475A1 (zh) 2021-12-23 2021-12-23 液晶天线

Publications (1)

Publication Number Publication Date
WO2023115475A1 true WO2023115475A1 (zh) 2023-06-29

Family

ID=86901006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140931 WO2023115475A1 (zh) 2021-12-23 2021-12-23 液晶天线

Country Status (3)

Country Link
US (1) US20240222856A1 (zh)
CN (1) CN116648823A (zh)
WO (1) WO2023115475A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216886A (zh) * 2017-07-06 2019-01-15 群创光电股份有限公司 辐射装置
CN110235301A (zh) * 2017-01-31 2019-09-13 三星电子株式会社 基于液晶的高频装置和高频开关
WO2020199238A1 (zh) * 2019-04-04 2020-10-08 信利半导体有限公司 一种液晶移相器、液晶天线及液晶移相器的制作方法
CN113782958A (zh) * 2021-01-15 2021-12-10 友达光电股份有限公司 天线装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110235301A (zh) * 2017-01-31 2019-09-13 三星电子株式会社 基于液晶的高频装置和高频开关
CN109216886A (zh) * 2017-07-06 2019-01-15 群创光电股份有限公司 辐射装置
WO2020199238A1 (zh) * 2019-04-04 2020-10-08 信利半导体有限公司 一种液晶移相器、液晶天线及液晶移相器的制作方法
CN113782958A (zh) * 2021-01-15 2021-12-10 友达光电股份有限公司 天线装置

Also Published As

Publication number Publication date
US20240222856A1 (en) 2024-07-04
CN116648823A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US10637133B2 (en) Antenna structure, driving method thereof, and antenna system
WO2020030135A1 (zh) 液晶移相器及其操作方法、液晶天线和通信设备
CN107528121B (zh) 天线结构及其操作方法、天线设备
CN102736352B (zh) 电子产品及其液晶变焦透镜
CN108490706B (zh) 液晶移相器及其制造方法、液晶天线及电子装置
WO2021259142A1 (zh) 移相器及天线
CN208818972U (zh) 移相器及液晶天线
CN208384288U (zh) 液晶移相器及液晶天线
US20220140491A1 (en) Reconfigurable antenna and method for manufacturing the same
CN108321541B (zh) 天线结构及其驱动方法和通信装置
EP3425725A1 (en) Control panel and radiation device comprising the same
US11742556B2 (en) MEMS phase shifter including a substrate with a coplanar waveguide signal structure formed thereon and electrically insulated from a metal film bridge
WO2023115475A1 (zh) 液晶天线
US20210376434A1 (en) Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus
KR20090010357A (ko) 알에프 스위치
TWI750005B (zh) 天線裝置
TWI749987B (zh) 天線結構及陣列天線模組
US20230170154A1 (en) MEMS Structure-Based Adjustable Capacitor
CN114824698A (zh) 一种移相器
CN116581539A (zh) 天线
JP6478397B2 (ja) フェーズドアレイアンテナ
CN114300821A (zh) 一种移相器、天线
CN112448159A (zh) 一种显示模组、显示装置以及制作方法
CN208272126U (zh) 全波振子水平极化全向天线
JP2011166416A (ja) アンテナ装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004155.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17923757

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968617

Country of ref document: EP

Kind code of ref document: A1