WO2023115332A1 - 显示装置及其驱动方法 - Google Patents

显示装置及其驱动方法 Download PDF

Info

Publication number
WO2023115332A1
WO2023115332A1 PCT/CN2021/140080 CN2021140080W WO2023115332A1 WO 2023115332 A1 WO2023115332 A1 WO 2023115332A1 CN 2021140080 W CN2021140080 W CN 2021140080W WO 2023115332 A1 WO2023115332 A1 WO 2023115332A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
brightness
emitting
double
data
Prior art date
Application number
PCT/CN2021/140080
Other languages
English (en)
French (fr)
Inventor
朱明毅
韩影
孟松
杨飞
王俪蓉
董志强
李天集
许静波
李盼
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180004077.4A priority Critical patent/CN116649011A/zh
Priority to GB2319941.7A priority patent/GB2622730A/en
Priority to PCT/CN2021/140080 priority patent/WO2023115332A1/zh
Publication of WO2023115332A1 publication Critical patent/WO2023115332A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]

Definitions

  • Embodiments of the present disclosure relate to a display device and a driving method thereof.
  • Organic light-emitting diode Organic Light-Emitting Diode (Organic Light-Emitting Diode, OLED) display panel has the advantages of thin thickness, light weight, wide viewing angle, active light emission, continuously adjustable light color, low cost, fast response speed, low energy consumption, low driving voltage, and low operating temperature. With the advantages of wide range, simple production process, high luminous efficiency and flexible display, it is more and more widely used in display fields such as mobile phones, tablet computers, and digital cameras.
  • At least some embodiments of the present disclosure provide a display device, which includes: a display substrate including a light emitting region and a plurality of pixel units located in the light emitting region, wherein the light emitting region includes a single-side light emitting region and at least A double-sided light-emitting area, each pixel unit in the plurality of pixel units includes a plurality of sub-pixels; and at least one optical sensing unit, corresponding to the at least one double-sided light-emitting area from the non-display side of the display substrate , configured to sense the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation, and provide sensed brightness information of the at least one double-sided light-emitting area to perform brightness compensation on the light-emitting area.
  • the display device further includes: a standard brightness determination unit configured to determine the brightness of the at least one double-sided light-emitting region according to the display data of the sub-pixels in the at least one double-sided light-emitting region standard luminance information; a gain determination unit configured to determine luminance gain data according to the standard luminance information and the sensed luminance information; and a luminance compensation unit configured to perform an operation on the light-emitting area according to the luminance gain data Perform brightness compensation.
  • a standard brightness determination unit configured to determine the brightness of the at least one double-sided light-emitting region according to the display data of the sub-pixels in the at least one double-sided light-emitting region standard luminance information
  • a gain determination unit configured to determine luminance gain data according to the standard luminance information and the sensed luminance information
  • a luminance compensation unit configured to perform an operation on the light-emitting area according to the luminance gain data Perform brightness compensation.
  • the at least one double-sided light-emitting area includes multiple double-sided light-emitting areas
  • the at least one optical sensing unit includes multiple optical sensing units
  • the multiple The double-sided light-emitting areas correspond one-to-one to the plurality of optical sensing units.
  • the gain determining unit is configured to determine the brightness gain data according to the standard brightness information and the sensed brightness information, including: the gain determining unit It is configured to determine a plurality of local luminance gain data according to the standard luminance information and the sensed luminance information of the plurality of double-sided light emitting regions; value as the brightness gain data.
  • the gain determining unit is configured to determine the brightness gain data according to the standard brightness information and the sensed brightness information, including: the gain determining unit It is configured to determine a plurality of local luminance difference data according to the standard luminance information and the sensed luminance information of the plurality of double-sided light emitting regions; and use the maximum or average value of the plurality of local luminance difference data as brightness difference data; and, determining the brightness gain data according to the brightness difference data.
  • the light emitting region includes a plurality of light emitting subregions corresponding to the plurality of double-sided light emitting regions;
  • the gain determining unit is configured to information and the sensed brightness information, and determining the brightness gain data includes: the gain determining unit is configured to determine according to the standard brightness information and the sensed brightness information of the plurality of double-sided light emitting regions Local brightness gain data of the plurality of light-emitting subregions;
  • the brightness compensation unit is configured to perform brightness compensation on the light-emitting region according to the brightness gain data, including: the brightness compensation unit is configured to perform brightness compensation on the light-emitting area according to the multiple local luminance gain data of a plurality of luminous subregions, and respectively perform brightness compensation on the plurality of luminous subregions.
  • the light emitting region further includes a transition region between adjacent light emitting subregions;
  • the gain determining unit is configured to measuring luminance information, determining the luminance gain data, further comprising: the gain determination unit is further configured to determine the local luminance gain data of the transition region according to the local luminance gain data of the adjacent light-emitting subregion;
  • the brightness compensation unit is configured to perform brightness compensation on the light-emitting region according to the brightness gain data, and further includes: the brightness compensation unit is also configured to perform brightness compensation on the transition region according to the local brightness gain data of the transition region Perform brightness compensation.
  • the gain determining unit is configured to determine the brightness gain data according to the standard brightness information and the sensed brightness information, including: the gain determining unit It is configured to determine the degradation degree estimation data of each sub-pixel in the light-emitting area according to the accumulated display information of each sub-pixel in the light-emitting area; according to the standard luminance information of the at least one double-sided light-emitting area and The sensed luminance information determines the degradation degree calculation data of the sub-pixels in the at least one double-sided light-emitting area; according to the degradation degree estimation data and the degradation degree calculation data, determining the degradation degree correction data; determining the degradation degree of each sub-pixel in the single-side light-emitting area according to the degradation degree estimation data of each sub-pixel in the single-side light-emitting area and the degradation-level correction data calculation data; and, according to the degradation degree calculation data of each sub-pixel in the light-emitting area, determine individual brightness gain data of
  • the display device provided by some embodiments of the present disclosure further includes: a sensing processor configured to drive the at least one optical sensing unit to sense the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation. light to obtain the sensed brightness information of the at least one double-sided light-emitting area.
  • a sensing processor configured to drive the at least one optical sensing unit to sense the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation. light to obtain the sensed brightness information of the at least one double-sided light-emitting area.
  • the display device provided by some embodiments of the present disclosure further includes: a bridge circuit board, wherein the at least one optical sensing unit is electrically connected to the sensing processor through the bridge circuit board.
  • the display device includes a standard brightness determination unit, a gain determination unit and a brightness compensation unit
  • the standard brightness determination unit, the gain determination unit and the The brightness compensation unit is set in the sensing processor.
  • the display device provided by some embodiments of the present disclosure further includes: a timing controller; wherein, when the display device includes a standard brightness determination unit, a gain determination unit, and a brightness compensation unit, the standard brightness determination unit, The gain determination unit and the brightness compensation unit are provided in the timing controller.
  • the at least one double-sided light emitting region includes a plurality of double-sided light emitting regions, and the plurality of double-sided light emitting regions are uniformly distributed in the light emitting region.
  • each sub-pixel in the plurality of sub-pixels includes a light-emitting element; layer and a second electrode, the first electrode is closer to the non-display side than the second electrode, the first electrode is an opaque electrode, and the second electrode is a transparent electrode; the at least one double-sided light emitting
  • the light-emitting element in the area includes a third electrode, a second light-emitting functional layer and a fourth electrode stacked in sequence, the third electrode is closer to the non-display side than the fourth electrode, and the third electrode is at least partially A transparent electrode, the transparent part of the third electrode allows the light emitted by the second light-emitting functional layer to pass through and be emitted to the non-display side, and the fourth electrode is a transparent electrode.
  • the second electrode is basically the same as the fourth electrode
  • the first light-emitting functional layer is basically the same as the second light-emitting functional layer
  • the third electrode is basically the same as the first electrode; the ratio of the area of the transparent part of the third electrode to the area of the third electrode is in the range of [5%, 20%].
  • At least some embodiments of the present disclosure further provide a driving method of a display device, wherein the display device includes: a display substrate including a light emitting region and a plurality of pixel units located in the light emitting region, wherein the light emitting region includes A single-sided light-emitting area and at least one double-sided light-emitting area, each of the plurality of pixel units includes a plurality of sub-pixels; and at least one optical sensing unit, connected from the non-display side of the display substrate to the at least one One double-sided light-emitting area corresponds to, and is configured to sense the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation, and provide the sensed brightness information of the at least one double-sided light-emitting area for the The light-emitting area performs brightness compensation; the driving method includes: controlling the at least one optical sensing unit to sense the light emitted by the sub-pixels in the at least one double-sided light-e
  • the display device further includes: a standard brightness determining unit configured to determine the at least one Standard luminance information of a double-sided light-emitting area; a gain determination unit configured to determine luminance gain data based on the standard luminance information and the sensed luminance information; and a luminance compensation unit configured to determine luminance gain data based on the luminance gain data , performing brightness compensation on the light-emitting area; performing brightness compensation on the light-emitting area according to the sensed brightness information of the at least one double-sided light-emitting area, including: according to the sub-pixels in the at least one double-sided light-emitting area determining the standard luminance information of the at least one double-sided light-emitting area; determining the luminance gain data according to the standard luminance information and the sensed luminance information; and determining the luminance gain data according to the luminance gain data
  • the light emitting area performs brightness compensation.
  • the at least one double-sided light-emitting area includes a plurality of double-sided light-emitting areas
  • the at least one optical sensing unit includes a plurality of optical sensing units
  • the plurality of The double-sided light-emitting areas correspond one-to-one to the plurality of optical sensing units.
  • determining the brightness gain data according to the standard brightness information and the sensed brightness information includes: according to the standard of the plurality of double-sided light emitting regions The brightness information and the sensed brightness information determine a plurality of local brightness gain data; and use the maximum or average value of the plurality of local brightness gain data as the brightness gain data.
  • determining the brightness gain data according to the standard brightness information and the sensed brightness information includes: according to the standard of the plurality of double-sided light emitting regions The brightness information and the sensed brightness information determine a plurality of local brightness difference data; use the maximum or average value of the plurality of local brightness difference data as the brightness difference data; and determine the brightness gain according to the brightness difference data data.
  • the light emitting region includes a plurality of light emitting subregions corresponding to the plurality of double-sided light emitting regions; according to the standard brightness information and the sensed brightness information , determining the luminance gain data, comprising: determining local luminance gain data of the plurality of light-emitting subregions according to the standard luminance information and the sensed luminance information of the plurality of double-sided light-emitting regions;
  • the gain data, performing brightness compensation on the light emitting area includes: respectively performing brightness compensation on the plurality of light emitting subregions according to the local brightness gain data of the plurality of light emitting subregions.
  • the light emitting region further includes a transition region between adjacent light emitting subregions; the brightness is determined according to the standard brightness information and the sensed brightness information
  • the gain data further includes: determining the local luminance gain data of the transition region according to the local luminance gain data of the adjacent luminous subregion; and performing brightness compensation on the luminous region according to the luminance gain data, further comprising: Perform brightness compensation on the transition region according to the local brightness gain data of the transition region.
  • determining the luminance gain data according to the standard luminance information and the sensed luminance information includes: according to the cumulative display of each sub-pixel in the light-emitting region information, determining the degradation degree estimation data of each sub-pixel in the light emitting region; determining the at least one double-sided light emitting region according to the standard brightness information and the sensed brightness information of the at least one double-sided light emitting region The degradation degree calculation data of the sub-pixels in the at least one double-sided light-emitting area; determine the degradation degree correction data according to the degradation degree estimation data and the degradation degree calculation data of the sub-pixels in the at least one double-sided light-emitting area; Deterioration degree estimation data of each sub-pixel in the area and the degradation degree correction data, determining the degradation degree calculation data of each sub-pixel in the single-sided light-emitting area; and according to the degradation of each sub-pixel in the light-emitting area Level calculation data, determining individual luminance gain
  • 1 is a schematic diagram of a lifetime curve of an OLED display unit
  • FIG. 2A is a schematic front view of a display device provided by at least some embodiments of the present disclosure.
  • FIG. 2B is a schematic diagram of a rear structure of a display device provided by at least some embodiments of the present disclosure
  • FIG. 2C is a schematic diagram of the rear structure of another display device provided by at least some embodiments of the present disclosure.
  • FIG. 2D is a schematic diagram of the rear structure of another display device provided by at least some embodiments of the present disclosure.
  • FIG. 2E is a partial cross-sectional schematic diagram of a display device provided by at least some embodiments of the present disclosure.
  • Fig. 3 is a schematic cross-sectional structure diagram of a light-emitting element in a display substrate provided by at least some embodiments of the present disclosure
  • FIG. 4A is a schematic block diagram of a display device provided by at least some embodiments of the present disclosure.
  • FIG. 4B is a schematic structural block diagram of another display device provided by at least some embodiments of the present disclosure.
  • FIG. 5A is a schematic diagram of a light-emitting partition of a display substrate provided by at least some embodiments of the present disclosure
  • FIG. 5B is a schematic diagram of another light-emitting partition of a display substrate provided by at least some embodiments of the present disclosure.
  • FIG. 6A is a schematic diagram of a light emitting zone and a transition zone of a display substrate provided by at least some embodiments of the present disclosure
  • FIG. 6B is a schematic diagram of another light-emitting area and a transition area of a display substrate provided by at least some embodiments of the present disclosure.
  • Fig. 7 is a schematic diagram of a sub-pixel degradation model provided by at least some embodiments of the present disclosure.
  • Fig. 8 is a flowchart of a driving method provided by at least some embodiments of the present disclosure.
  • FIG. 9 is an exemplary flowchart corresponding to step S200 shown in FIG. 8 provided by at least some embodiments of the present disclosure.
  • FIG. 10 is an exemplary flowchart corresponding to steps S210 to S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure
  • FIG. 11 is another exemplary flowchart corresponding to steps S210 to S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure.
  • FIG. 12 is another exemplary flowchart corresponding to steps S210 to S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure
  • FIG. 13 is another exemplary flowchart corresponding to steps S210 to S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure
  • FIG. 14 is another exemplary flowchart corresponding to steps S210 to S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure.
  • Fig. 15 is another exemplary flowchart corresponding to step S210 to step S230 shown in Fig. 9 provided by at least some embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram of a lifetime curve of an OLED display unit. As shown in FIG. 1 , as the display time increases, the display brightness of the OLED display unit gradually decreases. With the use of the OLED display device, the deterioration degree of each OLED display unit is not the same, which easily leads to abnormal display problems such as uneven brightness of the display screen and reduces the display quality. Therefore, it is necessary to perform brightness compensation on the OLED display device.
  • the display device includes a display substrate and at least one optical sensing unit; the display substrate includes a light-emitting area and a plurality of pixel units located in the light-emitting area, the light-emitting area includes a single-sided light-emitting area and at least one double-sided light-emitting area, and the plurality of pixels
  • Each pixel unit in the unit includes a plurality of sub-pixels; the at least one optical sensing unit corresponds to at least one double-sided light-emitting area from the non-display side of the display substrate, and senses that the sub-pixels in the at least one double-sided light-emitting area are working and provide the sensed brightness information of the at least one double-sided light-emitting area to perform brightness compensation on the light-emitting area.
  • Some embodiments of the present disclosure also provide a driving method corresponding to the above-mentioned display device.
  • the display device provided by the embodiments of the present disclosure, through the double-sided light-emitting design of the display substrate and the optical sensing unit arranged on the non-display side of the display substrate, can obtain the double-sided light-emitting area without affecting the display screen.
  • the brightness information is sensed to compensate the brightness of the light-emitting area of the display substrate, so that abnormal display problems such as uneven brightness caused by sub-pixel degradation can be improved, thereby improving display quality.
  • FIG. 2A is a schematic diagram of the front structure of a display device provided by at least some embodiments of the present disclosure
  • FIG. 2B is a schematic diagram of the rear structure of a display device provided by at least some embodiments of the present disclosure
  • FIG. 2C is a schematic diagram of the rear structure of a display device provided by at least some embodiments of the present disclosure
  • Figure 2D is a schematic diagram of the rear structure of another display device provided by at least some embodiments of the present disclosure
  • Figure 2E is a partial cross-section of a display device provided by at least some embodiments of the present disclosure Architecture diagram.
  • the display device includes a display substrate and at least one optical sensing unit.
  • the display substrate includes a light emitting area (shown as a gray area in the display substrate in FIGS. 2A-2E ) and a plurality of pixel units located in the light emitting area.
  • the plurality of pixel units are arranged in an array.
  • the light-emitting area includes a single-sided light-emitting area and at least one double-sided light-emitting area (the area other than the double-sided light-emitting area in the light-emitting area is a single-sided light-emitting area) .
  • FIGS. 2B-2E show the situation that the light-emitting area of the display substrate includes three double-sided light-emitting areas; it should be noted that embodiments of the present disclosure include but are not limited thereto. More or less double-sided light-emitting areas.
  • the shapes and areas of the respective double-sided light emitting regions may be the same or approximately the same, and embodiments of the present disclosure include but are not limited thereto.
  • each pixel unit in the light emitting area includes a plurality of sub-pixels for display.
  • the plurality of sub-pixels may include red sub-pixels, green sub-pixels and blue sub-pixels; for example, in other examples, the plurality of sub-pixels may include red sub-pixels, green sub-pixels, blue sub-pixels subpixel and white subpixel. It should be noted that the embodiments of the present disclosure do not limit the number and types of sub-pixels included in each pixel unit.
  • each sub-pixel may include a light emitting element and a pixel circuit for driving the light emitting element to emit light.
  • light-emitting elements in different color sub-pixels can emit light of corresponding colors; for example, light-emitting elements in a red sub-pixel can emit red light, light-emitting elements in a green sub-pixel can emit green light, blue
  • the light-emitting elements in the sub-pixels can emit blue light
  • the light-emitting elements in the white sub-pixels can emit white light.
  • the light-emitting elements in the sub-pixels of different colors are all light-emitting elements that can emit white light.
  • the sub-pixels of different colors also include color filter layers corresponding to different colors; for example, the red sub-pixel It also includes a red color film layer.
  • the red color film layer is used to convert the white light emitted by the light-emitting element in the red sub-pixel into red light.
  • the green sub-pixel also includes a green color film layer.
  • the white light emitted by the light-emitting element in the blue sub-pixel is converted into green light
  • the blue sub-pixel also includes a blue color film layer
  • the blue color film layer is used to convert the white light emitted by the light-emitting element in the blue sub-pixel into blue light; of course, it can be understood that , in the case that the pixel unit includes white sub-pixels, the color filter layer may be omitted in the white sub-pixels. It should be noted that the embodiments of the present disclosure do not limit the types and specific structures of the light emitting elements and pixel circuits in each sub-pixel.
  • Fig. 3 is a schematic cross-sectional structure diagram of a light emitting element in a display substrate provided by at least some embodiments of the present disclosure.
  • the light-emitting element in the single-sided light-emitting area includes a first electrode 101, a first light-emitting functional layer 102, and a second electrode 103 stacked in sequence, and the first electrode 101 is closer to the display substrate than the second electrode 103.
  • the non-display side that is, the side toward which the dotted arrow points downward in FIG.
  • the light-emitting element in the double-sided light-emitting area includes a third electrode 201, a second light-emitting functional layer 202, and a fourth electrode 203 stacked in sequence.
  • the third electrode 201 is closer to the non-display side of the display substrate than the fourth electrode 203 .
  • the first electrode 101 is an opaque electrode.
  • the material of the first electrode 101 may include metal materials, such as a combination or at least one of gold, silver, copper, aluminum, molybdenum, gold alloys, silver alloys, copper alloys, aluminum alloys, molybdenum alloys, etc.
  • the second electrode 103 is a transparent electrode, so that the second electrode 103 allows the light emitted by the first light-emitting functional layer 102 to pass through and emit to the display side of the display substrate (shown by the upward dotted arrow in FIG. 3 ).
  • the material of the second electrode 103 may include a transparent conductive material, such as indium tin oxide (ITO), zinc tin oxide (IZO), indium gallium tin oxide (IGZO), indium zinc tin oxide (IZTO), etc.
  • ITO indium tin oxide
  • IZO zinc tin oxide
  • IGZO indium gallium tin oxide
  • IZTO indium zinc tin oxide
  • the third electrode 201 is an at least partially transparent electrode.
  • the third electrode 201 includes a non-transparent portion 201a and a transparent portion 201b, and the transparent portion 201b of the third electrode 201 allows the light emitted by the second light-emitting functional layer 202 to pass through and be emitted to The non-display side of the substrate is displayed (shown by the downward dashed arrow in FIG. 3 ).
  • the third electrode 201 may only include the transparent portion 201b, that is, the third electrode 201 may be a transparent electrode.
  • the fourth electrode 203 is a transparent electrode, so that the fourth electrode 203 allows the light emitted by the second light-emitting functional layer 202 to pass through and emit to the display side of the display substrate (shown by the upward dotted arrow in FIG. 3 ).
  • the material of the non-transparent portion 201a of the third electrode 201 may include metal materials, such as gold, silver, copper, aluminum, molybdenum, gold alloys, silver alloys, copper alloys, aluminum alloys, molybdenum alloys, etc. At least one, which is not limited by embodiments of the present disclosure.
  • the material of the transparent portion 201b of the third electrode 201 and the fourth electrode 203 may include transparent conductive materials, such as indium tin oxide (ITO), zinc tin oxide (IZO), indium gallium tin oxide (IGZO), indium tin oxide A combination or at least one of zinc-tin (IZTO) and the like, which is not limited in embodiments of the present disclosure.
  • transparent conductive materials such as indium tin oxide (ITO), zinc tin oxide (IZO), indium gallium tin oxide (IGZO), indium tin oxide A combination or at least one of zinc-tin (IZTO) and the like, which is not limited in embodiments of the present disclosure.
  • both the first light-emitting functional layer 102 and the second light-emitting functional layer 202 may include common organic light-emitting functional layers and inorganic light-emitting functional layers (for example, quantum wells, such as GaN/InGaN quantum wells, GaAs/InGaAs quantum wells, etc.) Any one of quantum dot light-emitting functional layers and the like.
  • the organic light-emitting functional layer may include an organic light-emitting layer, and may also include an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer, etc. These layers may use common materials and structures, which will not be repeated here. It should be noted that the materials of the light-emitting functional layers (the first light-emitting functional layer 102 or the second light-emitting functional layer 202 ) of the light-emitting elements in different color sub-pixels may be different.
  • the second electrode 103 and the fourth electrode 203 are basically the same (that is, the shape, material, thickness, structure, etc. are basically the same), the first light-emitting functional layer 102 and the second light-emitting functional layer 202 are basically the same (that is, the shape, material, thickness , structure, etc.
  • the third electrode 201 is basically the same as the first electrode 101, that is, the shape and thickness of the third electrode 201 are basically the same as the shape and thickness of the first electrode 101, and at the same time,
  • the material and structure of the non-transparent portion 201a of the third electrode 201 are substantially the same as those of the first electrode 101 . That is to say, for sub-pixels with the same luminous color in the single-side light-emitting area and the double-side light-emitting area, the only difference between the light-emitting elements is that the first electrode 101 is an opaque electrode, while the third electrode 201 is at least partially transparent. the electrodes.
  • the value range of the ratio of the area of the transparent portion 201b of the third electrode 201 to the area of the third electrode 201 is [5% ,20%], thus, it can be ensured that the sub-pixels with the same light emitting color in the single-side light-emitting area and the double-side light-emitting area have basically the same lifetime curve, which is convenient for brightness compensation.
  • the range of the ratio of the area of the transparent portion 201b of the third electrode 201 to the area of the third electrode 201 may be [5%, 10%].
  • the at least one optical sensing unit corresponds to the at least one double-sided light emitting region from the non-display side of the display substrate.
  • the at least one optical sensing unit is configured to sense the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation, and provide the sensed brightness information of the at least one double-sided light-emitting area for brightness of the light-emitting area. compensate.
  • the orthographic projection of the at least one double-sided light-emitting area on the at least one optical sensing unit overlaps with the photosensitive surface of the at least one optical sensing unit , thus, the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation can be sensed by the at least one optical sensing unit.
  • a light guide (such as a reflector, etc.) is also provided between the at least one double-sided light-emitting area and the at least one optical sensing unit (corresponding to the at least one double-sided light-emitting area, but Not limited thereto), the light guide is used to guide the light emitted by the sub-pixels in the at least one double-sided light-emitting area into the at least one optical sensing unit for sensing by the at least one optical sensing unit.
  • the at least one optical sensing unit may adopt an optical lens or a photosensitive element (for example, a visible light surface sensing element), etc.
  • Embodiments of the present disclosure include but are not limited thereto.
  • the display device may further include a sensing processor configured to drive the at least one optical sensing unit to sense the at least one double-sided light emitting The sub-pixels in the area emit light during operation to obtain the sensing brightness information of the at least one double-sided light-emitting area.
  • a sensing processor configured to drive the at least one optical sensing unit to sense the at least one double-sided light emitting The sub-pixels in the area emit light during operation to obtain the sensing brightness information of the at least one double-sided light-emitting area.
  • the display device may further include a sensing processor (Sense Processor), and the sensing processor is configured to drive the at least one optical sensing unit to sense the at least one The sub-pixels in one double-sided light-emitting area emit light during operation, so as to obtain the sensing brightness information of the at least one double-sided light-emitting area.
  • Sense Processor Sense Processor
  • the display device may further include a gate driver (Gate Driver) and a data driver (Data Driver, also referred to as “Source Driver”).
  • the gate driver is connected to the pixel circuit in each sub-pixel on the display substrate through a gate line (not shown) on the display substrate, and is configured to provide scanning signals to each sub-pixel on the display substrate;
  • the driver is connected to the pixel circuits in each sub-pixel on the display substrate through data lines (not shown in the figure) on the display substrate, and is configured to provide data signals to each sub-pixel on the display substrate.
  • the gate driver can be implemented by a bound integrated circuit driver chip.
  • the gate driver can also be directly integrated on the display substrate in the form of a gate driver circuit to form a GOA (Gate driver On Array).
  • a data driver can be implemented by a bonded integrated circuit driver chip.
  • FIGS. 2A-2D exemplarily show that a gate driver is disposed on one side of the display substrate for single-side driving.
  • gate drivers may also be provided on opposite sides of the display side plate to perform double-sided driving or cross-driving, which is not limited in the embodiments of the present disclosure.
  • the display device may further include a driving system, such as a timing controller (Time Controller).
  • a timing controller Time Controller
  • the timing controller is configured to control driving of the above-mentioned sensing processor and gate driver, and provide display data to the data driver.
  • the sensing processor and the data driver can be arranged on a bridge circuit board (such as the bridge circuit in FIGS. 2A-2D shown in panel 1).
  • the sensing processor and the data driver are electrically connected to the driving system (for example, a timing controller) through the bridge circuit board 1 .
  • the bridge circuit board 1 can also be provided with a gate passline (Gate Passline), and the gate driver can communicate with the drive system (eg, Gate Passline) on the bridge circuit board 1 through the gate passline. , timing controller) electrical connection.
  • the at least one optical sensing unit in order to improve the integration of the display device, can be integrated on another bridge circuit board (such as the bridge bridge in FIG. 2D-2E shown on board 2).
  • the at least one optical sensing unit is electrically connected to the sensing processor through the bridge circuit board 2 .
  • FIG. 4A is a schematic structural block diagram of a display device provided by at least some embodiments of the present disclosure
  • FIG. 4B is a schematic structural block diagram of another display device provided by at least some embodiments of the present disclosure.
  • the display device 400 may also include a standard brightness determination unit 450, a gain A determination unit 460 and a brightness compensation unit 470 .
  • configurations of the display substrate 410 , at least one optical sensing unit 420 , the sensing processor 430 and the timing controller 440 may refer to the related descriptions of the aforementioned embodiments shown in FIGS. 2A-2E , which will not be repeated here.
  • the standard brightness determining unit 450 is configured to determine the standard brightness information of the at least one double-sided light emitting region of the display substrate 410 according to the display data of the sub-pixels in the at least one double-sided light emitting region.
  • the standard brightness determination unit 450 can search and determine at least one double-sided light emitting function of the display substrate 410 based on the pre-stored correspondence between display data and standard brightness information (for example, stored in a lookup table). Standard luminance information corresponding to the display data of the sub-pixels in the region, so as to obtain the standard luminance information of the at least one double-sided light emitting region.
  • the corresponding relationship between display data and standard brightness information can be determined through testing when the display device 400 leaves the factory, or can refer to the test results of the initial use stage of a display device with the same specifications as the display device 400.
  • Embodiments of the present disclosure include But not limited to this.
  • the gain determining unit 460 is configured according to the standard brightness information and the sensed brightness information of the at least one double-sided light emitting region (the sensed brightness information of the at least one double-sided light emitting region is provided by the at least one optical sensing unit) , to determine the brightness gain data.
  • the gain determining unit 460 may first calculate the brightness difference data according to the standard brightness information and the sensed brightness information of the at least one double-sided light-emitting area, and then determine the brightness gain data according to the brightness difference data.
  • the luminance difference data can be calculated according to the following formula (1):
  • ⁇ L represents the brightness difference data of any double-sided light-emitting area
  • L_initial represents the standard brightness information of any double-sided light-emitting area
  • L_aging represents the standard brightness information of any double-sided light-emitting area.
  • the gain determining unit 460 may search and determine brightness gain data corresponding to the calculated brightness difference data based on the pre-stored correspondence between brightness difference data and standard brightness information (for example, stored in a lookup table).
  • the correspondence between the brightness difference data and the standard brightness information may refer to the brightness compensation test results of a display device for testing with the same specifications as the display device 400 , and embodiments of the present disclosure include but are not limited thereto.
  • the brightness compensation unit 470 is configured to perform brightness compensation on the light emitting area of the display substrate 410 according to the brightness gain data.
  • the brightness compensation unit 470 can compensate the display data of the sub-pixels in the entire light-emitting area of the display substrate 410 according to the brightness gain data, and provide the compensated display data to the data driver for The brightness compensation of the entire light-emitting area of the display substrate 410 is realized.
  • the brightness compensation unit 470 can adjust the power supply voltage (for example, the first power supply voltage ELVDD and the second power supply voltage At least one of ELVSS, wherein the first power supply voltage ELVDD and the second power supply voltage ELVSS are used to generate the driving current for driving the light-emitting element to emit light) for compensation, and provide the compensated power supply voltage to the sub-pixels in the entire light-emitting area to The brightness compensation of the entire light-emitting area of the display substrate 410 is realized.
  • the present disclosure includes but is not limited thereto, that is, in practical applications, any feasible manner may be used to perform brightness compensation according to the brightness gain data.
  • the standard brightness determination unit 450 the gain determination unit 460 and the brightness compensation unit 470 can be implemented by hardware, software, firmware or any combination thereof.
  • the standard brightness determination unit 450, the gain determination unit 460 and the brightness compensation unit 470 can all be set in the sensing processor 430 (for example, integrated in the sensing processor 430 ), that is, as a part of the sensing processor 430; thus, the sensing processor 430 can not only realize the function of the aforementioned sensing processor, but also realize the functions of the standard brightness determination unit 450, the gain determination unit 460 and the brightness compensation unit 470 .
  • the sensing processor 430 can not only realize the function of the aforementioned sensing processor, but also realize the functions of the standard brightness determination unit 450, the gain determination unit 460 and the brightness compensation unit 470 .
  • the standard brightness determination unit 450, the gain determination unit 460 and the brightness compensation unit 470 can all be set in the timing controller 440 (for example, integrated in the timing controller 440) , that is, as a part of the timing controller 440; thus, the timing controller 440 can not only realize the functions of the aforementioned timing controller, but also realize the functions of the standard brightness determination unit 450, the gain determination unit 460 and the brightness compensation unit 470. It should be noted that the present disclosure includes but is not limited to this. For example, in still some embodiments, some of the standard brightness determination unit 450 , the gain determination unit 460 and the brightness compensation unit 470 can be integrated in the sensing processor 430 , and the other part can be integrated in the timing controller 440 .
  • the standard brightness determination unit 450 , the gain determination unit 460 and the brightness compensation unit 470 may be wholly or partially integrated in the aforementioned data driver.
  • one or more (including all) of the standard brightness determination unit 450, the gain determination unit 460, and the brightness compensation unit 470 may be a separate unit, which may be configured in, for example, the sensing between the processor 430 and the timing controller 440 , which is not limited in the present disclosure. It can be understood that the embodiment of the present disclosure does not limit the arrangement and implementation of the standard brightness determination unit 450 , the gain determination unit 460 and the brightness compensation unit 470 .
  • At least one double-sided light-emitting region on the display substrate 410 may only include one double-sided light-emitting region, and correspondingly, the at least one optical sensing unit 420 may only include one optical sensing unit, and the double-sided light emitting area corresponds to the optical sensing unit.
  • the standard brightness determination unit 450 can determine the standard brightness information of the double-sided light-emitting region according to the display data of the sub-pixels in the double-sided light-emitting region; the gain determination unit 460 can determine the standard brightness information of the double-sided light-emitting region according to the standard brightness information and sensed brightness information (the sensed brightness information of the double-sided light-emitting area is provided by the optical sensing unit) to determine the brightness gain data; the brightness compensation unit 470 can perform brightness adjustment on the light-emitting area of the display substrate 410 according to the brightness gain data Compensation (that is, global brightness compensation), that is, each sub-pixel in the light-emitting area of the display substrate 410 performs brightness compensation according to the brightness gain data.
  • the brightness gain data Compensation that is, global brightness compensation
  • At least one double-sided light-emitting area on the display substrate 410 may include multiple double-sided light-emitting areas, and the at least one optical sensing unit 420 may It includes a plurality of optical sensing units, and the plurality of double-sided light-emitting areas correspond to the plurality of optical sensing units one by one.
  • various working principles of the aforementioned standard brightness determination unit 450 , gain determination unit 460 and brightness compensation unit 470 will be further described in combination with this situation.
  • the standard brightness determining unit 450 may respectively determine the standard brightness information of the multiple double-sided light-emitting regions according to the display data of the sub-pixels in the multiple double-sided light-emitting regions.
  • the gain determining unit 460 may determine multiple Local luminance gain data (each double-sided luminous area corresponds to a local luminance gain data), and the maximum or average value of the multiple local luminance gain data is used as the luminance gain data;
  • the standard luminance information and sensing luminance information of each double-sided light-emitting area are calculated, and the luminance difference data of each double-sided light-emitting area (that is, the local luminance difference data, the calculation method of the local luminance difference data can refer to the aforementioned formula (1)), and then according to each double-sided
  • the luminance difference data of the luminous area determines the local luminance gain data corresponding to each double-sided luminous area.
  • the brightness compensation unit 470 can perform global brightness compensation on the light-emitting area of the display substrate 410 according to the brightness gain data, that is, each sub-pixel in the light-emitting area of the display substrate 410 performs brightness compensation according to the brightness gain data.
  • the brightness compensation unit 470 can also perform brightness compensation on the single-side light-emitting area of the display substrate 410 according to the brightness gain data, and simultaneously perform brightness compensation on each double-side light-emitting area according to the local brightness gain data corresponding to each double-side light-emitting area. .
  • the standard brightness determining unit 450 may respectively determine the standard brightness information of the multiple double-sided light-emitting regions according to the display data of the sub-pixels in the multiple double-sided light-emitting regions.
  • the gain determining unit 460 may determine multiple Local brightness difference data (each double-sided light-emitting area corresponds to a local brightness difference data, the calculation method of local brightness difference data can refer to the aforementioned formula (1)), the maximum value or average value of the multiple local brightness difference data is used as the brightness difference data, and determine brightness gain data according to the brightness difference data.
  • the brightness compensation unit 470 can perform global brightness compensation on the light-emitting area of the display substrate 410 according to the brightness gain data, that is, each sub-pixel in the light-emitting area of the display substrate 410 performs brightness compensation according to the brightness gain data.
  • the brightness compensation unit 470 can also perform brightness compensation on the single-side light-emitting area of the display substrate 410 according to the brightness gain data, and simultaneously perform brightness compensation on each double-side light-emitting area according to the local brightness gain data corresponding to each double-side light-emitting area. .
  • the light emitting area of the display substrate 410 may be divided into a plurality of light emitting subregions corresponding to the plurality of double-sided light emitting areas.
  • FIG. 5A is a schematic diagram of a light emitting zone of a display substrate provided by at least some embodiments of the present disclosure
  • FIG. 5B is a schematic diagram of a light emitting zone of another display substrate provided by at least some embodiments of the present disclosure.
  • the shape of the light-emitting region of the display substrate can be a rectangle.
  • the light-emitting region of the display substrate can be divided into M*N light-emitting subregions (such as A1-A3 in FIG.
  • each light-emitting subregion may include, for example, a double-sided light-emitting area.
  • the multiple double-sided light-emitting areas can be evenly distributed or roughly uniformly distributed in the light-emitting area; further, each double-sided light-emitting area can also be located at its near the center of the illuminated partition. It should be noted that the embodiments of the present disclosure include but are not limited thereto.
  • the standard brightness determining unit 450 may respectively determine standard brightness information of the multiple double-sided light-emitting regions according to the display data of the sub-pixels in the multiple double-sided light-emitting regions.
  • the gain determining unit 460 may determine the respective brightness information and the sensed brightness information of the plurality of double-sided light-emitting regions (the sensed brightness information of the plurality of double-sided light-emitting regions is respectively provided by the plurality of optical sensing units).
  • Local luminance gain data corresponding to a plurality of double-sided luminous regions that is, determine the local luminance gain data of the plurality of luminous partitions respectively (the local luminance gain data corresponding to each double-sided luminous region is the corresponding local luminance gain data of each double-sided luminous region.
  • the luminance difference data of each double-sided luminous region can be calculated first according to the standard luminance information and the sensed luminance information of each double-sided luminous region (that is, the local luminance difference data, the local The calculation method of brightness difference data can refer to the aforementioned formula (1)), and then according to the brightness difference data of each double-sided light-emitting area, determine the local brightness gain data corresponding to each double-sided light-emitting area, that is, determine the local brightness gain data corresponding to each double-sided light-emitting area.
  • Local luminance gain data of the luminous partition corresponding to the luminous area can be calculated first according to the standard luminance information and the sensed luminance information of each double-sided luminous region (that is, the local luminance difference data, the local The calculation method of brightness difference data can refer to the aforementioned formula (1)), and then according to the brightness difference data of each double-sided light-emitting area, determine the local brightness gain data corresponding to each double-sided light-emitting area, that is, determine the local brightness
  • the brightness compensation unit 470 can respectively perform brightness compensation (that is, partition brightness compensation) on the plurality of light-emitting regions according to the local brightness gain data of the plurality of light-emitting regions, that is, the sub-pixels in each light-emitting region of the display substrate 410 respectively according to The local luminance gain data of each light-emitting subregion is used for luminance compensation. Therefore, targeted brightness compensation can be performed on the sub-pixels at different positions of the display substrate, reducing the brightness difference of the display screen and improving the display quality.
  • brightness compensation that is, partition brightness compensation
  • the shape of the light-emitting region of the display substrate and the way of dividing the light-emitting regions can be set according to actual needs, which are not limited by the embodiments of the present disclosure.
  • part or all of the light-emitting subregions may include, for example, a plurality of double-sided light-emitting regions.
  • the described brightness compensation method performs brightness compensation on this part or all of the light-emitting subregions (for example, it can be performed according to the maximum or average value of the local brightness gain data corresponding to the multiple double-sided light-emitting regions in the part or all of the light-emitting subregions.
  • embodiments of the present disclosure include but are not limited thereto.
  • the light-emitting area of the display substrate 410 can be divided into a plurality of light-emitting subregions corresponding to the plurality of double-sided light-emitting regions one-to-one, and a transition region between adjacent light-emitting subregions.
  • FIG. 6A is a schematic diagram of a light-emitting subregion and a transition region of a display substrate provided by at least some embodiments of the present disclosure
  • FIG. 6B is a schematic diagram of another light-emitting partition and transition region of a display substrate provided by at least some embodiments of the present disclosure.
  • the shape of the light-emitting region of the display substrate can be rectangular.
  • the light-emitting region of the display substrate can be divided into a plurality of light-emitting subregions and the transition between adjacent light-emitting subregions.
  • Each light-emitting subregion may include, for example, a double-sided light-emitting area.
  • the light-emitting area of the display substrate may include 1*3 light-emitting subregions (as shown in A1-A3 in FIG. 6A ) and two transition areas B1 and B2, wherein the transition area B1 Located between the adjacent light emitting subregion A1 and the light emitting subregion A2, the transition region B2 is located between the adjacent light emitting subregion A2 and the light emitting subregion A3.
  • the light emitting area of the display substrate may include 2*3 light emitting subregions (as shown in A1-A6 in FIG. 6A) and a plurality of transition areas B1-B9, wherein the transition area B1 is located between the adjacent light emitting subregion A1 and the light emitting subregion A2, the transition area B2 is located between the adjacent light emitting subregion A2 and the light emitting subregion A3, the transition area B3 is located between the adjacent light emitting subregion A1 and the light emitting subregion A4, the transition The area B5 is located between the adjacent light emitting subregion A2 and the light emitting subregion A5, the transition area B7 is located between the adjacent light emitting subregion A3 and the light emitting subregion A6, and the transition area B8 is located between the adjacent light emitting subregion A4 and the light emitting subregion A5, The transition region B9 is located between the adjacent light-emitting subregions A5 and A6.
  • the transition region B4 can be regarded as integral with any one of the transition regions B1, B3, B5, and B8.
  • the transition region B4 when the transition region B4 is regarded as integral with the transition region B1, it can be considered that the transition region B4 is also Located between the adjacent light-emitting subregions A1 and A2; on the other hand, the transition region B4 can also be regarded as located between the adjacent light-emitting subregions A1, A2, A4 and A5.
  • transition region B6 is similar to the situation of the transition region B4, that is, on the one hand, the transition region B6 can be regarded as being integral with any of the transition regions B2, B5, B7, and B9; on the other hand, the transition region B6 is also It can be regarded as being located between the adjacent light emitting subregions A2, A3, A5 and A6.
  • the standard brightness determining unit 450 may respectively determine standard brightness information of the multiple double-sided light-emitting regions according to the display data of the sub-pixels in the multiple double-sided light-emitting regions.
  • the gain determining unit 460 may determine the respective brightness information and the sensed brightness information of the plurality of double-sided light-emitting regions (the sensed brightness information of the plurality of double-sided light-emitting regions is respectively provided by the plurality of optical sensing units).
  • Local luminance gain data corresponding to a plurality of double-sided luminous regions that is, determine the local luminance gain data of the plurality of luminous partitions respectively (the local luminance gain data corresponding to each double-sided luminous region is the corresponding local luminance gain data of each double-sided luminous region.
  • the luminance difference data of each double-sided luminous region can be calculated first according to the standard luminance information and the sensed luminance information of each double-sided luminous region (that is, the local luminance difference data, the local The calculation method of brightness difference data can refer to the aforementioned formula (1)), and then according to the brightness difference data of each double-sided light-emitting area, determine the local brightness gain data corresponding to each double-sided light-emitting area, that is, determine the local brightness gain data corresponding to each double-sided light-emitting area.
  • Local luminance gain data of the luminous partition corresponding to the luminous area can be calculated first according to the standard luminance information and the sensed luminance information of each double-sided luminous region (that is, the local luminance difference data, the local The calculation method of brightness difference data can refer to the aforementioned formula (1)), and then according to the brightness difference data of each double-sided light-emitting area, determine the local brightness gain data corresponding to each double-sided light-emitting area, that is, determine the local brightness
  • the gain determining unit 460 can also determine the local luminance gain data of the transition region between the adjacent luminous subregions according to the local luminance gain data of the adjacent luminous subregions; For the local brightness gain data, an interpolation method (for example, including but not limited to linear interpolation method, bilinear interpolation method, etc.) is used to calculate the local brightness gain data of the transition region between the adjacent light-emitting subregions.
  • the brightness compensation unit 470 can not only perform brightness compensation on the plurality of light-emitting subregions according to the local brightness gain data of the plurality of light-emitting regions, but also perform brightness compensation on each transition region according to the local brightness gain data of each transition region. Brightness compensation.
  • the setting of the transition area and its brightness compensation method can avoid the occurrence of the above problems, thereby further reducing the brightness difference of the display screen and improving the display quality.
  • the local luminance gain data of the transition area B1 can be calculated according to the local luminance gain data of the light emitting subregion A1 and the light emitting subregion A2 by using the linear interpolation method;
  • the local luminance gain data of the light-emitting subregion A3 is calculated by using a linear interpolation method to calculate the local luminance gain data of the transition area B2.
  • the local luminance gain data of the transition area B1 can be calculated by using the linear interpolation method according to the local luminance gain data of the luminous subregion A1 and the luminous subregion A2, and the local luminance gain data of the transition region B1 can be calculated according to the local luminance gain data of the luminous subregion A2.
  • the local luminance gain data of the transition area B5 can be calculated by linear interpolation according to the local luminance gain data of the luminous subregion A2 and the luminous subregion A5, and the local luminance gain data of the luminous subregion A3 and the luminous subregion A6 can be calculated by linear interpolation
  • the local luminance gain data of the transition area B7 can be calculated according to the local luminance gain data of the luminous subregion A4 and the luminous subregion A5, and the local luminance gain data of the transition area B8 can be calculated by using the linear interpolation method.
  • Local luminance gain data adopt linear interpolation method to calculate the local luminance gain data of transition area B9; Region B4 is considered to be integrated with any of the transition regions B1, B3, B5, and B8), on the other hand, according to the local luminance gain data of the light-emitting subregion A1, the light-emitting sub-region A2, the light-emitting sub-region A4 and the light-emitting subregion A5, adopt The bilinear interpolation method calculates the local luminance gain data of the transition area B4 (that is, the transition area B4 is considered to be located between the adjacent light-emitting subregions A1, A2, A4 and A5); similarly, the transition area B6
  • the local luminance gain data of can be consistent with the local luminance gain data of any one of the transition areas B2, B5, B7, B9 (that is, the transition area B6 is considered to be integrated with any one of the transition areas B2, B5, B7, B9),
  • the bilinear interpolation method can be used to calculate the local
  • the display device 400 may include a data accumulation calculation unit (not shown in FIG. 4A ), and the data accumulation calculation unit is used to record the accumulation display information of each sub-pixel in the light-emitting area; for example, the accumulation display information may be the actual display
  • the display data actually used includes the display data before compensation and/or the display data after compensation used in the previous stage, embodiments of the present disclosure include but are not limited thereto.
  • T represents the accumulated display time
  • xi represents the display data
  • t i represents the display data
  • the standard brightness determining unit 450 may determine the standard brightness information of the at least one double-sided light-emitting region according to the display data of the sub-pixels in the at least one double-sided light-emitting region.
  • the gain determination unit 460 may: determine the degradation degree estimation data of each sub-pixel in the light-emitting area according to the accumulated display information of each sub-pixel in the light-emitting area; (The sensing luminance information of the at least one double-sided light-emitting area is respectively provided by the at least one optical sensing unit), determine the degradation degree calculation data of the sub-pixels in the at least one double-sided light-emitting area; according to the at least one double-sided light-emitting area Deterioration degree estimation data and degradation degree calculation data of the sub-pixels in the area are used to determine the degradation degree correction data; and, according to the calculation data of the degradation degree of each sub-pixel in the light-emitting area, determine the individual luminance gain data of each sub-pixel in the light-emitting
  • the brightness compensation unit 470 can perform brightness compensation (ie, individual brightness compensation) on each sub-pixel in the light-emitting region according to the individual brightness gain data of each sub-pixel in the light-emitting region. Therefore, targeted individual brightness compensation can be performed on each sub-pixel of the display substrate, the abnormal display problem caused by the degradation of the sub-pixel can be alleviated, and the display quality can be improved.
  • brightness compensation ie, individual brightness compensation
  • Fig. 7 is a schematic diagram of a sub-pixel degradation model provided by at least some embodiments of the present disclosure.
  • the sub-pixel degradation model in FIG. 7 shows the corresponding relationship between the display brightness of the sub-pixel and its accumulated display information (for example, the aforementioned accumulated display time);
  • the device is tested and stored in, for example, a look-up table. For example, as shown in FIG.
  • its cumulative display information can be characterized by the cumulative display time T_Aging (for example, obtained by recording and converting by the cumulative calculation unit), and thus, according to the corresponding The relationship curve determines the estimated data of the degree of deterioration thereof, for example, the estimated data of the degree of deterioration thereof can be characterized by using T_Aging or the estimated display brightness L_Calculate corresponding to T_Aging.
  • T_Aging for example, the display luminance when the display time is 0 in FIG. 7
  • the sensed luminance information for example, the sensed display luminance L_Sense in FIG.
  • the calculation data of the degree of degradation can be characterized by using L_Sense or the equivalent cumulative display time T_Aging' corresponding to L_Sense; it can be understood that the estimated data of the degree of degradation It is usually consistent with the representation method of the calculation data of the degree of degradation.
  • the deterioration degree correction data can be determined according to the deterioration degree estimation data and the deterioration degree calculation data of the sub-pixels in the at least one double-sided light-emitting area; for example, the deterioration degree estimation data (for example, the cumulative display time T_Aging ) and deterioration degree calculation data (for example, equivalent cumulative display time T_Aging') for proportional correction,. Therefore, the degradation degree calculation data of each sub-pixel in the single-side light-emitting area can be determined based on the degradation-degree estimation data of each sub-pixel in the single-side light-emitting area and the degradation-level correction data. Furthermore, the individual luminance gain data of each sub-pixel in the light-emitting area can be determined according to the calculation data of the degree of degradation of each sub-pixel in the light-emitting area.
  • test pictures of different colors can be lighted on the display substrate 410, so as to determine the brightness of each color sub-pixel accordingly. gain data.
  • the red test picture, the green test picture and the blue test picture can be lighted up on the display substrate 410 respectively, so that the optical sensor can With the cooperation of measurement unit 420, standard brightness determination unit 450, gain determination unit 460 and brightness compensation unit 470, the brightness gain data of each color sub-pixel is determined, and the brightness gain data on the display substrate 410 is adjusted according to the brightness gain data of each color sub-pixel Brightness compensation is performed for each color sub-pixel.
  • the brightness compensation test can be performed on a test display device with the same specifications as the display device 400, and various required corresponding relationships can be determined by modeling (for example, the aforementioned embodiment The corresponding relationship between display data and standard brightness information, the corresponding relationship between brightness difference data and standard brightness information, the corresponding relationship between display brightness and accumulated display information, etc.) for the brightness compensation process of the display device 400 .
  • the display device may be any product or component with a display function such as a monitor, a television, an electronic paper display device, a mobile phone, a tablet computer, a notebook computer, a digital photo frame, and a navigator.
  • the display device may also include other conventional components or structures.
  • those skilled in the art may set other conventional components or structures (such as signal decoding circuits, voltage conversion circuit, etc.), which is not limited in the embodiments of the present disclosure.
  • the embodiment of the present disclosure provides a double-sided light-emitting design of the display substrate and an optical sensing unit arranged on the non-display side of the display substrate, so that the sensing brightness of the double-sided light-emitting area can be obtained without affecting the display screen.
  • Information is used to compensate the brightness of the light-emitting area of the display substrate, so that abnormal display problems such as uneven brightness caused by sub-pixel degradation can be improved, and the display quality can be improved.
  • the display device is the display device provided in any one of the foregoing embodiments.
  • the display device includes a display substrate and at least one optical sensing unit;
  • the display substrate includes a light-emitting area and a plurality of pixel units located in the light-emitting area, and each pixel in the plurality of pixel units
  • the unit includes a plurality of sub-pixels;
  • the at least one optical sensing unit corresponds to the at least one double-sided light-emitting area from the non-display side of the display substrate, and is configured to sense the sub-pixels in the at least one double-sided light-emitting area to emit light during operation. and provide the sensed luminance information of the at least one double-sided light-emitting area to perform brightness compensation on the light-emitting area.
  • Fig. 8 is a flowchart of a driving method provided by at least some embodiments of the present disclosure
  • Fig. 9 is an exemplary flowchart corresponding to step S200 shown in Fig. 8 provided by at least some embodiments of the present disclosure.
  • the driving method includes the following steps S100 and S200:
  • Step S100 Control the at least one optical sensing unit to sense the light emitted by the sub-pixels in the at least one double-sided light-emitting area during operation.
  • test pictures of different colors can be lighted on the display substrate, and the at least one optical sensing unit can be controlled to sense the light emitted by sub-pixels of different colors in the at least one double-sided light-emitting area, so as to obtain Sensing luminance information of sub-pixels of different colors in the at least one double-sided light-emitting area.
  • Step S200 Perform brightness compensation on the light emitting region based on the sensed brightness information of the at least one double-sided light emitting region.
  • the sensed brightness information of the at least one double-sided light emitting region includes the sensed brightness information of different color sub-pixels in the at least one double-sided light emitting region; in this case, based on the at least one double-sided light emitting region, Sensing luminance information of sub-pixels of different colors in the surface light-emitting area respectively performs brightness compensation for sub-pixels of different colors in the light-emitting area.
  • the display device may further include a standard brightness determination unit, a gain determination unit, and a brightness compensation unit.
  • the standard luminance determining unit is configured to determine standard luminance information of the at least one double-sided light emitting region according to the display data of the sub-pixels in the at least one double-sided light emitting region of the display substrate;
  • the gain determining unit is configured to determine the standard brightness information of the at least one double-sided light emitting region according to the at least one
  • the standard luminance information and the sensed luminance information of the surface luminous area determine luminance gain data;
  • the luminance compensation unit is configured to perform luminance compensation on the luminous area of the display substrate according to the luminance gain data.
  • step S200 in the aforementioned driving method may include the following steps S210 to S230.
  • Step S210 According to the display data of the sub-pixels in the at least one double-sided light-emitting region, determine standard brightness information of the at least one double-sided light-emitting region.
  • the corresponding relationship between display data and standard brightness information can be determined through testing when the display device leaves the factory, or can refer to the test results of the initial use stage of the display device for testing with the same specifications as the display device. Embodiments of the present disclosure include but not limited to this.
  • Step S220 Determine brightness gain data according to the standard brightness information and the sensed brightness information.
  • the brightness difference data can be calculated according to the standard brightness information and the sensed brightness information of the at least one double-sided light-emitting area (for details, please refer to the aforementioned formula (1)), and then according to the brightness difference data Determine luma gain data.
  • the luminance gain data corresponding to the calculated luminance difference data may be searched and determined based on the pre-stored correspondence between the luminance difference data and the standard luminance information (for example, stored in the form of a lookup table).
  • Step S230 Perform brightness compensation on the light-emitting area according to the brightness gain data.
  • the display data of the sub-pixels in the entire light-emitting area of the display substrate can be compensated according to the brightness gain data, and the compensated display data can be provided to the data driver to realize the entire light emission of the display substrate area for brightness compensation.
  • the power supply voltage (for example, at least one of the first power supply voltage ELVDD and the second power supply voltage ELVSS) applied to the sub-pixels in the entire light emitting area of the display substrate may be adjusted according to the brightness gain data, wherein The first power supply voltage ELVDD and the second power supply voltage ELVSS are used to generate the driving current for driving the light-emitting element to emit light) for compensation, and provide the compensated power supply voltage to the sub-pixels in the entire light-emitting area, so as to realize the entire light emission of the display substrate area for brightness compensation.
  • the embodiments of the present disclosure include but are not limited thereto, that is, in practical applications, any feasible manner may be used to perform brightness compensation according to the brightness gain data.
  • FIG. 10 is an exemplary flow chart corresponding to step S210 to step S230 shown in FIG. 9 provided at least some embodiments of the present disclosure.
  • at least one double-sided light emitting region on the display substrate may only include one double-sided light emitting region, and correspondingly, the at least one optical sensing unit may only include one optical sensing unit , and the double-sided light-emitting area corresponds to the optical sensing unit.
  • the double-sided light-emitting area corresponds to the optical sensing unit.
  • step S210 may include step S211: according to the display data of sub-pixels in a double-sided light-emitting area, determine the standard luminance information of the double-sided light-emitting area;
  • step S220 may include step S221: Determine luminance gain data according to the standard luminance information and sensed luminance information of the double-sided light-emitting area;
  • step S230 may include step S231: perform brightness compensation (ie, global brightness compensation) on the light-emitting area of the display substrate according to the brightness gain data. That is, each sub-pixel in the light-emitting area of the display substrate performs brightness compensation according to the brightness gain data.
  • brightness compensation ie, global brightness compensation
  • At least one double-sided light-emitting area on the display substrate may include multiple double-sided light-emitting areas
  • the at least one optical sensing unit may include multiple an optical sensing unit
  • the plurality of double-sided light-emitting areas correspond to the plurality of optical sensing units one-to-one.
  • FIG. 11 is another exemplary flowchart corresponding to steps S210 to S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure
  • FIG. 12 is another exemplary flowchart provided by at least some embodiments of the present disclosure corresponding to FIG. An exemplary flow chart from step S210 to step S230 shown in 9, FIG.
  • FIG. 13 is another exemplary flow chart corresponding to step S210 to step S230 shown in FIG. 9 provided by at least some embodiments of the present disclosure
  • FIG. 14 is another exemplary flowchart corresponding to step S210 to step S230 shown in FIG. 9 for at least some embodiments of the present disclosure
  • FIG. 15 is another exemplary flowchart corresponding to FIG. 9 provided for at least some embodiments of the present disclosure.
  • FIGS. 11 to 15 the specific details of the driving method in this case (for example, step S210 to step S230 ) will be further described.
  • the multiple double-sided light-emitting areas can be evenly distributed or roughly uniformly distributed in the light-emitting area; further, each double-sided light-emitting area can also be located at its near the center of the illuminated partition. It should be noted that the embodiments of the present disclosure include but are not limited thereto.
  • step S210 may include step S212: according to the display data of the sub-pixels in the multiple double-sided light-emitting areas, respectively determine the standard brightness information of the multiple double-sided light-emitting areas;
  • step S220 may include step S222: according to the standard luminance information and the sensed luminance information of the multiple double-sided light-emitting areas (the sensed luminance information of the multiple double-sided light-emitting areas is respectively provided by the multiple optical sensing units), determine multiple local brightness gain data (each double-sided luminous area corresponds to a local brightness gain data), and the maximum or average value of the multiple local brightness gain data is used as the brightness gain data;
  • step S230 may include step S232: according to the brightness The gain data is used to perform brightness compensation (global brightness compensation) on the light-emitting area of the display substrate.
  • step S210 may include step S213: according to the display data of the sub-pixels in the multiple double-sided light-emitting areas, respectively determine the standard brightness information of the multiple double-sided light-emitting areas;
  • Step S220 may include step S223: according to the standard luminance information and sensed luminance information of the multiple double-sided light-emitting areas (the sensed luminance information of the multiple double-sided light-emitting areas is respectively provided by the multiple optical sensing units), determine Multiple local brightness difference data (each double-sided light-emitting area corresponds to a local brightness difference data, the calculation method of local brightness difference data can refer to the aforementioned formula (1)), the maximum or average value of the multiple local brightness difference data As the brightness difference data, brightness gain data is determined according to the brightness difference data; step S230 may include step S233: performing global brightness compensation on the light-emitting area of the display substrate according to the brightness gain data.
  • the light emitting area of the display substrate can be divided into a plurality of light emitting regions corresponding to the plurality of double-sided light emitting regions. In this case, as shown in FIG.
  • step S230 may include step S234: performing brightness compensation (ie, subregional brightness compensation) on the plurality of light emitting subregions according to the local luminance gain data of the plurality of light emitting subregions. Therefore, targeted brightness compensation can be performed on the sub-pixels at different positions of the display substrate, reducing the brightness difference of the display screen and improving the display quality.
  • brightness compensation ie, subregional brightness compensation
  • the shape of the light-emitting region of the display substrate and the way of dividing the light-emitting regions can be set according to actual needs, which are not limited by the embodiments of the present disclosure.
  • part or all of the light-emitting subregions may include, for example, a plurality of double-sided light-emitting regions.
  • Brightness compensation method for this part or all of the light-emitting subregions for example, brightness compensation can be performed according to the maximum or average value of the local brightness gain data corresponding to the multiple double-sided light-emitting regions in the part or all of the light-emitting subregions
  • embodiments of the present disclosure include but are not limited to.
  • the light-emitting area of the display substrate can be divided into a plurality of light-emitting subregions corresponding to the plurality of double-sided light-emitting regions one-to-one, and a plurality of light-emitting subregions located between adjacent light-emitting subregions. transition zone.
  • step S210 may include step S215 : according to the display data of the sub-pixels in the multiple double-sided light-emitting areas, respectively determine the standard brightness information of the multiple double-sided light-emitting areas.
  • Step S220 may include step S225: according to the standard luminance information and the sensed luminance information of the multiple double-sided light-emitting areas (the sensed luminance information of the multiple double-sided light-emitting areas is respectively provided by the multiple optical sensing units), respectively Determine the local luminance gain data of the plurality of light-emitting subregions (that is, determine the local luminance gain data corresponding to the plurality of double-sided light-emitting areas, respectively, and the local luminance gain data corresponding to each double-sided light-emitting area is each double-sided light-emitting area.
  • Step S230 may include step S235: according to the local luminance gain data of the plurality of luminous subregions, perform brightness compensation on the plurality of luminous subregions; and, according to the local luminance gain data of each transition region, respectively perform brightness compensation on each transition region .
  • the setting and its brightness compensation method can avoid the occurrence of the above problems, thereby further reducing the brightness difference of the display screen and improving the display quality.
  • step S210 may include step S216: according to the display data of the sub-pixels in at least one double-sided light-emitting area, determine the standard brightness information of the at least one double-sided light-emitting area.
  • Step S220 may include the following steps S226A to S226: Step S226A, according to the accumulated display information of each sub-pixel in the light-emitting region, determine the degradation degree estimation data of each sub-pixel in the light-emitting region; step S226B, according to the at least one double-sided The standard luminance information and the sensed luminance information of the light-emitting area (the sensed luminance information of the at least one double-sided light-emitting area is respectively provided by the at least one optical sensing unit), determining the degradation of the sub-pixels in the at least one double-sided light-emitting area Degree calculation data; step S226C, determine the degradation degree correction data according to the degradation degree estimation data and the degradation degree calculation data of the sub-pixels in the at least one double-sided light-emitting area; step S226D, according to the The degradation degree estimation data and the degradation degree correction data determine the degradation degree calculation data of each sub-pixel in the single-sided light-emitting area; and step S
  • Step S230 may include step S236: according to the individual brightness gain data of each sub-pixel in the light-emitting region, perform brightness compensation (ie individual brightness compensation) on each sub-pixel in the light-emitting region. Therefore, targeted individual brightness compensation can be performed on each sub-pixel of the display substrate, the abnormal display problem caused by the degradation of the sub-pixel can be alleviated, and the display quality can be improved.
  • step S236 according to the individual brightness gain data of each sub-pixel in the light-emitting region, perform brightness compensation (ie individual brightness compensation) on each sub-pixel in the light-emitting region. Therefore, targeted individual brightness compensation can be performed on each sub-pixel of the display substrate, the abnormal display problem caused by the degradation of the sub-pixel can be alleviated, and the display quality can be improved.
  • the flow of the above driving method may include more or less steps or operations, and these steps or operations may be executed sequentially or in parallel.
  • the flow of the driving method described above includes multiple steps or operations appearing in a specific order, it should be clearly understood that the sequence of the multiple steps or operations is not limited.
  • the driving method described above can be performed once or multiple times according to predetermined conditions.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种显示装置及其驱动方法。该显示装置包括显示基板和至少一个光学感测单元;该显示基板包括发光区域和位于发光区域中的多个像素单元,发光区域包括单面发光区域和至少一个双面发光区域,该多个像素单元中的每个像素单元包括多个子像素;该至少一个光学感测单元从显示基板的非显示侧与至少一个双面发光区域对应,感测该至少一个双面发光区域中的子像素在工作中发出的光,并提供该至少一个双面发光区域的感测亮度信息以对发光区域进行亮度补偿。

Description

显示装置及其驱动方法 技术领域
本公开的实施例涉及一种显示装置及其驱动方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板具有厚度薄、重量轻、宽视角、主动发光、发光颜色连续可调、成本低、响应速度快、能耗小、驱动电压低、工作温度范围宽、生产工艺简单、发光效率高及可柔性显示等优点,在手机、平板电脑、数码相机等显示领域的应用越来越广泛。
发明内容
本公开至少一些实施例提供了一种显示装置,该显示装置包括:显示基板,包括发光区域和位于所述发光区域中的多个像素单元,其中,所述发光区域包括单面发光区域和至少一个双面发光区域,所述多个像素单元中的每个像素单元包括多个子像素;以及至少一个光学感测单元,从所述显示基板的非显示侧与所述至少一个双面发光区域对应,被配置为感测所述至少一个双面发光区域中的子像素在工作中发出的光,并提供所述至少一个双面发光区域的感测亮度信息以对所述发光区域进行亮度补偿。
例如,本公开一些实施例提供的显示装置,还包括:标准亮度确定单元,被配置为根据所述至少一个双面发光区域中的子像素的显示数据,确定所述至少一个双面发光区域的标准亮度信息;增益确定单元,被配置为根据所述标准亮度信息和所述感测亮度信息,确定亮度增益数据;以及亮度补偿单元,被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿。
例如,在本公开一些实施例提供的显示装置中,所述至少一个双面发光区域包括多个双面发光区域,所述至少一个光学感测单元包括多个光学感测单元,所述多个双面发光区域与所述多个光学感测单元一一对应。
例如,在本公开一些实施例提供的显示装置中,所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:所述增益确定单元被配置为根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度增益数据;以及,将所述多个局部亮度增益数据的最大值或平均值作为所述亮度增益数据。
例如,在本公开一些实施例提供的显示装置中,所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:所述增益确定单元被配置为根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度差异数据;将所述多个局部亮度差异数据的最大值或平均值作为亮度差异数据;以 及,根据所述亮度差异数据确定所述亮度增益数据。
例如,在本公开一些实施例提供的显示装置中,所述发光区域包括与所述多个双面发光区域一一对应的多个发光分区;所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:所述增益确定单元被配置为根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述多个发光分区的局部亮度增益数据;所述亮度补偿单元被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:所述亮度补偿单元被配置为根据所述多个发光分区的局部亮度增益数据,分别对所述多个发光分区进行亮度补偿。
例如,在本公开一些实施例提供的显示装置中,所述发光区域还包括位于相邻的发光分区之间的过渡区域;所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,还包括:所述增益确定单元还被配置为根据所述相邻的发光分区的局部亮度增益数据,确定所述过渡区域的局部亮度增益数据;所述亮度补偿单元被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿,还包括:所述亮度补偿单元还被配置为根据所述过渡区域的局部亮度增益数据,对所述过渡区域进行亮度补偿。
例如,在本公开一些实施例提供的显示装置中,所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:所述增益确定单元被配置为根据所述发光区域中的各个子像素的累积显示信息,确定所述发光区域中的各个子像素的劣化程度估计数据;根据所述至少一个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述至少一个双面发光区域中的子像素的劣化程度计算数据;根据所述至少一个双面发光区域中的子像素的所述劣化程度估计数据和所述劣化程度计算数据,确定劣化程度修正数据;根据所述单面发光区域中的各个子像素的劣化程度估计数据和所述劣化程度修正数据,确定所述单面发光区域中的各个子像素的劣化程度计算数据;以及,根据所述发光区域中的各个子像素的劣化程度计算数据,确定所述发光区域中的各个子像素的个体亮度增益数据;所述亮度补偿单元被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:所述亮度补偿单元被配置为根据所述发光区域中的各个子像素的个体亮度增益数据,分别对所述发光区域中的各个子像素进行亮度补偿。
例如,本公开一些实施例提供的显示装置,还包括:感测处理器,被配置为驱动所述至少一个光学感测单元感测所述至少一个双面发光区域中的子像素在工作中发出的光,以获得所述至少一个双面发光区域的所述感测亮度信息。
例如,本公开一些实施例提供的显示装置,还包括:桥接电路板,其中,所述至少一个光学感测单元通过所述桥接电路板与所述感测处理器电连接。
例如,在本公开一些实施例提供的显示装置中,在所述显示装置包括标准亮度确定单元、增益确定单元和亮度补偿单元的情况下,所述标准亮度确定单元、所述增益确定单元和所述亮度补偿单元设置在所述感测处理器中。
例如,本公开一些实施例提供的显示装置,还包括:时序控制器;其中,在所述显示 装置包括标准亮度确定单元、增益确定单元和亮度补偿单元的情况下,所述标准亮度确定单元、所述增益确定单元和所述亮度补偿单元设置在所述时序控制器中。
例如,在本公开一些实施例提供的显示装置中,所述至少一个双面发光区域包括多个双面发光区域,所述多个双面发光区域在所述发光区域中均匀分布。
例如,在本公开一些实施例提供的显示装置中,所述多个子像素中的每个子像素包括发光元件;所述单面发光区域中的发光元件包括依次层叠的第一电极、第一发光功能层和第二电极,所述第一电极比所述第二电极更靠近所述非显示侧,所述第一电极为不透明电极,所述第二电极为透明电极;所述至少一个双面发光区域中的发光元件包括依次层叠的第三电极、第二发光功能层和第四电极,所述第三电极比所述第四电极更靠近所述非显示侧,所述第三电极为至少部分透明的电极,所述第三电极的透明部分允许所述第二发光功能层发出的光透过并发射至所述非显示侧,所述第四电极为透明电极。
例如,在本公开一些实施例提供的显示装置中,对于所述单面发光区域的任意一个子像素中的发光元件和所述至少一个双面发光区域中的与所述单面发光区域的所述任意一个子像素具有相同发光颜色的一个子像素中的发光元件,所述第二电极与所述第四电极基本相同,所述第一发光功能层与所述第二发光功能层基本相同,除了所述透明部分外,所述第三电极与所述第一电极基本相同;所述第三电极的透明部分的面积占所述第三电极的面积的比例的取值范围为[5%,20%]。
本公开至少一些实施例还提供一种显示装置的驱动方法,其中,所述显示装置包括:显示基板,包括发光区域和位于所述发光区域中的多个像素单元,其中,所述发光区域包括单面发光区域和至少一个双面发光区域,所述多个像素单元中的每个像素单元包括多个子像素;以及至少一个光学感测单元,从所述显示基板的非显示侧与所述至少一个双面发光区域对应,被配置为感测所述至少一个双面发光区域中的子像素在工作中发出的光,并提供所述至少一个双面发光区域的感测亮度信息以对所述发光区域进行亮度补偿;所述驱动方法包括:控制所述至少一个光学感测单元感测所述至少一个双面发光区域中的子像素在工作中发出的光,并基于所述至少一个双面发光区域的感测亮度信息对所述发光区域进行亮度补偿。
例如,在本公开一些实施例提供的驱动方法中,所述显示装置还包括:标准亮度确定单元,被配置为根据所述至少一个双面发光区域中的子像素的显示数据,确定所述至少一个双面发光区域的标准亮度信息;增益确定单元,被配置为根据所述标准亮度信息和所述感测亮度信息,确定亮度增益数据;以及亮度补偿单元,被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿;根据所述至少一个双面发光区域的所述感测亮度信息对所述发光区域进行亮度补偿,包括:根据所述至少一个双面发光区域中的子像素的显示数据,确定所述至少一个双面发光区域的所述标准亮度信息;根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据;以及根据所述亮度增益数据,对所述发光区域进行亮度补偿。
例如,在本公开一些实施例提供的驱动方法中,所述至少一个双面发光区域包括多个双面发光区域,所述至少一个光学感测单元包括多个光学感测单元,所述多个双面发光区域与所述多个光学感测单元一一对应。
例如,在本公开一些实施例提供的驱动方法中,根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度增益数据;以及将所述多个局部亮度增益数据的最大值或平均值作为所述亮度增益数据。
例如,在本公开一些实施例提供的驱动方法中,根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度差异数据;将所述多个局部亮度差异数据的最大值或平均值作为亮度差异数据;以及根据所述亮度差异数据确定所述亮度增益数据。
例如,在本公开一些实施例提供的驱动方法中,所述发光区域包括与所述多个双面发光区域一一对应的多个发光分区;根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述多个发光分区的局部亮度增益数据;根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:根据所述多个发光分区的局部亮度增益数据,分别对所述多个发光分区进行亮度补偿。
例如,在本公开一些实施例提供的驱动方法中,所述发光区域还包括位于相邻的发光分区之间的过渡区域;根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,还包括:根据所述相邻的发光分区的局部亮度增益数据,确定所述过渡区域的局部亮度增益数据;根据所述亮度增益数据,对所述发光区域进行亮度补偿,还包括:根据所述过渡区域的局部亮度增益数据,对所述过渡区域进行亮度补偿。
例如,在本公开一些实施例提供的驱动方法中,根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:根据所述发光区域中的各个子像素的累积显示信息,确定所述发光区域中的各个子像素的劣化程度估计数据;根据所述至少一个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述至少一个双面发光区域中的子像素的劣化程度计算数据;根据所述至少一个双面发光区域中的子像素的所述劣化程度估计数据和所述劣化程度计算数据,确定劣化程度修正数据;根据所述单面发光区域中的各个子像素的劣化程度估计数据和所述劣化程度修正数据,确定所述单面发光区域中的各个子像素的劣化程度计算数据;以及根据所述发光区域中的各个子像素的劣化程度计算数据,确定所述发光区域中的各个子像素的个体亮度增益数据;根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:根据所述发光区域中的各个子像素的个体亮度增益数据,分别对所述发光区域中的各个子像素进行亮度补偿。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种OLED显示单元的寿命曲线示意图;
图2A为本公开至少一些实施例提供的一种显示装置的正面架构示意图;
图2B为本公开至少一些实施例提供的一种显示装置的背面架构示意图;
图2C为本公开至少一些实施例提供的另一种显示装置的背面架构示意图;
图2D为本公开至少一些实施例提供的又一种显示装置的背面架构示意图;
图2E为本公开至少一些实施例提供的一种显示装置的部分截面架构示意图;
图3为本公开至少一些实施例提供的一种显示基板中的发光元件的截面结构示意图;
图4A为本公开至少一些实施例提供的一种显示装置的结构示意框图;
图4B为本公开至少一些实施例提供的另一种显示装置的结构示意框图;
图5A为本公开至少一些实施例提供的一种显示基板的发光分区示意图;
图5B为本公开至少一些实施例提供的另一种显示基板的发光分区示意图;
图6A为本公开至少一些实施例提供的一种显示基板的发光分区和过渡区域的示意图;
图6B为本公开至少一些实施例提供的另一种显示基板的发光分区和过渡区域的示意图;
图7为本公开至少一些实施例提供的一种子像素劣化模型的示意图;
图8为本公开至少一些实施例提供的一种驱动方法的流程图;
图9为本公开至少一些实施例提供的一种对应于图8中所示的步骤S200的示例性流程图;
图10为本公开至少一些实施例提供的一种对应于图9中所示的步骤S210至步骤S230的示例性流程图;
图11为本公开至少一些实施例提供的另一种对应于图9中所示的步骤S210至步骤S230的示例性流程图;
图12为本公开至少一些实施例提供的再一种对应于图9中所示的步骤S210至步骤S230的示例性流程图;
图13为本公开至少一些实施例提供的又一种对应于图9中所示的步骤S210至步骤S230的示例性流程图;
图14为本公开至少一些实施例提供的又一种对应于图9中所示的步骤S210至步骤S230的示例性流程图;以及
图15为本公开至少一些实施例提供的又一种对应于图9中所示的步骤S210至步骤S230的示例性流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附 图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面通过几个具体的实施例对本公开进行说明。为了保持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部(元)件的详细说明。当本公开实施例的任一部(元)件在一个以上的附图中出现时,该部(元)件在每个附图中由相同或类似的参考标号表示。
图1为一种OLED显示单元的寿命曲线示意图。如图1所示,随着显示时间增加,OLED显示单元的显示亮度逐渐下降。随着OLED显示装置的使用,其中的各OLED显示单元的劣化程度不尽相同,容易导致显示画面亮度不均匀等异常显示问题以致降低显示质量,因此,需要对OLED显示装置进行亮度补偿。
本公开至少一些实施例提供了一种显示装置。该显示装置包括显示基板和至少一个光学感测单元;该显示基板包括发光区域和位于发光区域中的多个像素单元,发光区域包括单面发光区域和至少一个双面发光区域,该多个像素单元中的每个像素单元包括多个子像素;该至少一个光学感测单元从显示基板的非显示侧与至少一个双面发光区域对应,感测该至少一个双面发光区域中的子像素在工作中发出的光,并提供该至少一个双面发光区域的感测亮度信息以对发光区域进行亮度补偿。
本公开的一些实施例还提供对应于上述显示装置的驱动方法。
本公开的实施例提供的显示装置,通过显示基板的双面发光设计并搭配设置于显示基板的非显示侧的光学感测单元,可以在不影响显示画面的状况下,获得双面发光区域的感测亮度信息以对显示基板的发光区域进行亮度补偿,从而可以改善子像素劣化导致的亮度不均匀等异常显示问题,进而改善显示质量。
下面结合附图对本公开的一些实施例及其示例进行详细说明。
图2A为本公开至少一些实施例提供的一种显示装置的正面架构示意图,图2B为本公开至少一些实施例提供的一种显示装置的背面架构示意图,图2C为本公开至少一些实施例提供的另一种显示装置的背面架构示意图,图2D为本公开至少一些实施例提供的又一种显示装置的背面架构示意图;图2E为本公开至少一些实施例提供的一种显示装置的部分截面 架构示意图。
例如,如图2A-2E所示,该显示装置包括显示基板和至少一个光学感测单元。例如,显示基板包括发光区域(如图2A-2E中的显示基板中的灰色区域所示)和位于发光区域中的多个像素单元。例如,在发光区域中,该多个像素单元阵列排布。
例如,在一些实施例中,如图2B-2E所示,发光区域包括单面发光区域和至少一个双面发光区域(发光区域中除了双面发光区域之外的区域即为单面发光区域)。示例性地,图2B-2E示出了显示基板的发光区域包括三个双面发光区域的情形;需要说明的是,本公开的实施例包括但不限于此,例如,发光区域也可以包括数量更多或更少的双面发光区域。例如,各个双面发光区域的形状和面积可以相同或大致相同,本公开的实施例包括但不限于此。
例如,在一些实施例中,发光区域中的每个像素单元包括用于显示的多个子像素。例如,在一些示例中,该多个子像素可以包括红色子像素、绿色子像素和蓝色子像素;例如,在另一些示例中,该多个子像素可以包括红色子像素、绿色子像素、蓝色子像素和白色子像素。需要说明的是,本公开的实施例对每个像素单元包括的子像素的数量和种类不作限制。
例如,在一些实施例中,每个子像素可以包括发光元件和用于驱动该发光元件发光的像素电路。例如,在一些示例中,不同颜色子像素中的发光元件可以发出相应颜色的光;例如,红色子像素中的发光元件可以发出红光,绿色子像素中的发光元件可以发出绿光,蓝色子像素中的发光元件可以发出蓝光,白色子像素中的发光元件可以发出白光。例如,在另一些示例中,不同颜色子像素中的发光元件均为可以发出白光的发光元件,在此情况下,不同颜色子像素还包括与不同颜色对应的彩膜层;例如,红色子像素还包括红色彩膜层,红色彩膜层用于将红色子像素中的发光元件发出的白光转化为红光,绿色子像素还包括绿色彩膜层,绿色彩膜层用于将绿色子像素中的发光元件发出的白光转化为绿光,蓝色子像素还包括蓝色彩膜层,蓝色彩膜层用于将蓝色子像素中的发光元件发出的白光转化为蓝光;当然,可以理解的是,在像素单元包括白色子像素的情况下,白色子像素中可以省略彩膜层。需要说明的是,本公开的实施例对各个子像素中的发光元件及像素电路的种类和具体结构均不作限制。
图3为本公开至少一些实施例提供的一种显示基板中的发光元件的截面结构示意图。例如,如图3所示,单面发光区域中的发光元件包括依次层叠的第一电极101、第一发光功能层102和第二电极103,第一电极101比第二电极103更靠近显示基板的非显示侧(即图3中向下的虚线箭头朝向的一侧);双面发光区域中的发光元件包括依次层叠的第三电极201、第二发光功能层202和第四电极203,第三电极201比第四电极203更靠近显示基板的非显示侧。
例如,第一电极101为不透明电极。例如,第一电极101的材料可以包括金属材料等,例如金、银、铜、铝、钼、金合金、银合金、铜合金、铝合金、钼合金等之中的组合或至 少一种,本公开的实施例对此不作限制。例如,第二电极103为透明电极,从而,第二电极103允许第一发光功能层102发出的光透过并发射至显示基板的显示侧(如图3中向上的虚线箭头所示)。例如,第二电极103的材料可以包括透明导电材料,例如可以包括氧化铟锡(ITO)、氧化锌锡(IZO)、氧化铟镓锡(IGZO)、氧化铟锌锡(IZTO)等之中的组合或至少一种,本公开的实施例对此不作限制。
例如,第三电极201为至少部分透明的电极。例如,在一些示例中,如图3所示,第三电极201包括非透明部分201a和透明部分201b,第三电极201的透明部分201b允许第二发光功能层202发出的光透过并发射至显示基板的非显示侧(如图3中向下的虚线箭头所示)。例如,在另一些示例中,第三电极201可以仅包括透明部分201b,也即,第三电极201可以为透明电极。例如,第四电极203为透明电极,从而,第四电极203允许第二发光功能层202发出的光透过并发射至显示基板的显示侧(如图3中向上的虚线箭头所示)。例如,第三电极201的非透明部分201a的材料可以包括金属材料等,例如金、银、铜、铝、钼、金合金、银合金、铜合金、铝合金、钼合金等之中的组合或至少一种,本公开的实施例对此不作限制。例如,第三电极201的透明部分201b和第四电极203的材料可以包括透明导电材料,例如可以包括氧化铟锡(ITO)、氧化锌锡(IZO)、氧化铟镓锡(IGZO)、氧化铟锌锡(IZTO)等之中的组合或至少一种,本公开的实施例对此不作限制。
例如,第一发光功能层102和第二发光功能层202均可以包括常见的有机发光功能层、无机发光功能层(例如,量子阱等,例如GaN/InGaN量子阱、GaAs/InGaAs量子阱等)和量子点发光功能层等中的任意一种。例如,有机发光功能层可以包括有机发光层,还可以包括电子注入层、电子传输层、空穴注入层和空穴传输层等,这些层可以采用常见的材料和结构,在此不再赘述。需要说明的是,不同颜色子像素中的发光元件的发光功能层(第一发光功能层102或第二发光功能层202)的材料可以不同。
例如,在一些实施例中,对于单面发光区域的任意一个子像素中的发光元件和双面发光区域中的与单面发光区域的该任意一个子像素具有相同发光颜色的一个子像素中的发光元件,第二电极103与第四电极203基本相同(即形状、材料、厚度、结构等基本相同),第一发光功能层102与第二发光功能层202基本相同(即形状、材料、厚度、结构等基本相同);除了透明部分201b外,第三电极201与第一电极101基本相同,也即,第三电极201的形状和厚度与第一电极101的形状和厚度基本相同,同时,在第三电极201包括非透明部分201a的情况下,第三电极201的非透明部分201a的材料和结构与第一电极101的材料和结构基本相同。也就是说,对于单面发光区域和双面发光区域中的发光颜色相同的子像素而言,其发光元件的区别仅在于:第一电极101为不透明电极,而第三电极201为至少部分透明的电极。
例如,在一些实施例中,第三电极201的透明部分201b的面积占第三电极201的面积(即非透明部分201a和透明部分201b的面积之和)的比例的取值范围为[5%,20%],从而,可以确保单面发光区域和双面发光区域中的发光颜色相同的子像素具有基本一致的寿命曲 线,进而便于进行亮度补偿。例如,在一些示例中,第三电极201的透明部分201b的面积占第三电极201的面积的比例的取值范围可以为[5%,10%]。
例如,在一些实施例中,如图2B-2E所示,该至少一个光学感测单元从显示基板的非显示侧与该至少一个双面发光区域对应。该至少一个光学感测单元被配置为感测该至少一个双面发光区域中的子像素在工作中发出的光,并提供该至少一个双面发光区域的感测亮度信息以对发光区域进行亮度补偿。例如,在一些示例中,该至少一个双面发光区域在该至少一个光学感测单元(与该至少一个双面发光区域对应)上的正投影和该至少一个光学感测单元的感光面交叠,从而,该至少一个双面发光区域中的子像素在工作中发出的光能够被该至少一个光学感测单元所感测。例如,在另一些示例中,在该至少一个双面发光区域和该至少一个光学感测单元(与该至少一个双面发光区域对应)之间还设置有导光件(例如反射镜等,但不限于此),该导光件用于将该至少一个双面发光区域中的子像素在工作中发出的光导入该至少一个光学感测单元,以便该至少一个光学感测单元进行感测。例如,该至少一个光学感测单元可以采用光学镜头或者光敏感应元件(例如,可见光光面感应元件)等,本公开的实施例包括但不限于此。
例如,在一些实施例中,如图2A-2D所示,该显示装置还可以包括感测处理器,感测处理器被配置为驱动该至少一个光学感测单元感测该至少一个双面发光区域中的子像素在工作中发出的光,以获得该至少一个双面发光区域的感测亮度信息。
例如,在一些实施例中,如图2A-2D所示,该显示装置还可以包括感测处理器(Sense Processor),感测处理器被配置为驱动该至少一个光学感测单元感测该至少一个双面发光区域中的子像素在工作中发出的光,以获得该至少一个双面发光区域的感测亮度信息。
例如,在一些实施例中,如图2A-2D所示,该显示装置还可以包括栅极驱动器(Gate Driver)和数据驱动器(Data Driver,也称为“Source Driver”)。例如,栅极驱动器通过显示基板上的栅线(图中未示出)与显示基板上的各个子像素中的像素电路连接,且被配置为向显示基板上的各个子像素提供扫描信号;数据驱动器通过显示基板上的数据线(图中未示出)与显示基板上的各个子像素中的像素电路连接,且被配置为向显示基板上的各个子像素提供数据信号。例如,栅极驱动器可以通过绑定的集成电路驱动芯片实现,当然,也可以将栅极驱动器以栅极驱动电路的形式直接集成在显示基板上构成GOA(Gate driver On Array)。例如,数据驱动器可以通过绑定的集成电路驱动芯片实现。需要说明的是,图2A-2D示例性地示出了在显示基板的一侧设置栅极驱动器以进行单侧驱动。在实际应用中,也可以在显示侧板相对的两侧分别设置栅极驱动器,以进行双侧驱动或者交叉驱动,本公开的实施例对此不作限制。
例如,在一些实施例中,如图2A-2D所示,该显示装置还可以包括驱动系统,例如时序控制器(Time Controller)等。例如,时序控制器被配置为控制上述感测处理器和栅极驱动器的驱动,以及向数据驱动器提供显示数据。
例如,在一些实施例中,如图2A-2D所示,为了提高显示装置的整合性,可以将感测 处理器和数据驱动器设置于一桥接电路板上(如图2A-2D中的桥接电路板1所示)。感测处理器和数据驱动器通过该桥接电路板1与驱动系统(例如,时序控制器)电连接。例如,如图2A-2D所示,该桥接电路板1上还可以设置有栅极通道线(Gate Passline),栅极驱动器可以通过该桥接电路板1上的栅极通道线与驱动系统(例如,时序控制器)电连接。
例如,在一些实施例中,如图2D-2E所示,为了提高显示装置的整合性,可以将该至少一个光学感测单元整合于另一桥接电路板上(如图2D-2E中的桥接电路板2所示)。该至少一个光学感测单元通过桥接电路板2与感测处理器电连接。
图4A为本公开至少一些实施例提供的一种显示装置的结构示意框图,图4B为本公开至少一些实施例提供的另一种显示装置的结构示意框图。例如,如图4A和图B所示,除了显示基板410、至少一个光学感测单元420、感测处理器430和时序控制器440之外,显示装置400还可以包括标准亮度确定单元450、增益确定单元460和亮度补偿单元470。例如,显示基板410、至少一个光学感测单元420、感测处理器430和时序控制器440的配置可以参考前述图2A-2E所示实施例的相关描述,在此不再重复赘述。
例如,该标准亮度确定单元450被配置为根据显示基板410的至少一个双面发光区域中的子像素的显示数据,确定该至少一个双面发光区域的标准亮度信息。例如,在一些实施例中,标准亮度确定单元450中可以基于预先存储的显示数据与标准亮度信息的对应关系(例如,以查找表的方式存储),查找确定显示基板410的至少一个双面发光区域中的子像素的显示数据对应的标准亮度信息,从而得到该至少一个双面发光区域的标准亮度信息。例如,显示数据与标准亮度信息的对应关系可以在显示装置400出厂时通过测试确定,或者可以参考与显示装置400规格相同的测试用显示装置的初始使用阶段的测试结果,本公开的实施例包括但不限于此。
例如,该增益确定单元460被配置为根据该至少一个双面发光区域的标准亮度信息和感测亮度信息(该至少一个双面发光区域的感测亮度信息由该至少一个光学感测单元提供),确定亮度增益数据。例如,在一些实施例中,增益确定单元460可以先根据该至少一个双面发光区域的标准亮度信息和感测亮度信息,计算出亮度差异数据,再根据该亮度差异数据确定亮度增益数据。例如,可以根据以下公式(1)计算亮度差异数据:
ΔL=L_initial–L_aging                       (1),
其中,ΔL表示任一双面发光区域的亮度差异数据,L_initial表示该任一双面发光区域的标准亮度信息,L_aging表示该任一双面发光区域的标准亮度信息。例如,增益确定单元460可以基于预先存储的亮度差异数据与标准亮度信息的对应关系(例如,以查找表的方式存储),查找确定计算得到的亮度差异数据对应的亮度增益数据。例如,亮度差异数据与标准亮度信息的对应关系可以参考与显示装置400规格相同的测试用显示装置的亮度补偿测试结果,本公开的实施例包括但不限于此。
例如,该亮度补偿单元470被配置为根据亮度增益数据,对显示基板410的发光区域进行亮度补偿。例如,在一些实施例中,该亮度补偿单元470可以根据亮度增益数据,对 显示基板410的整个发光区域中的子像素的显示数据进行补偿,并将补偿后的显示数据提供至数据驱动器,以实现对显示基板410的整个发光区域进行亮度补偿。例如,在另一些实施例中,该亮度补偿单元470可以根据亮度增益数据,对施加至显示基板410的整个发光区域中的子像素的电源电压(例如,第一电源电压ELVDD和第二电源电压ELVSS至少之一,其中,第一电源电压ELVDD和第二电源电压ELVSS用于生成驱动发光元件发光的驱动电流)进行补偿,并将补偿后的电源电压提供至整个发光区域中的子像素,以实现对显示基板410的整个发光区域进行亮度补偿。需要说明的是,本公开包括但不限于此,也即,在实际应用中,可以采用任意可行的方式以根据亮度增益数据进行亮度补偿。
需要说明的是,在图4A所示的显示装置400中,标准亮度确定单元450、增益确定单元460和亮度补偿单元470均可以通过硬件、软件、固件或其任何组合实现。
例如,在一些实施例中,如图4A所示,标准亮度确定单元450、增益确定单元460和亮度补偿单元470均可以设置在感测处理器430中(例如,集成在感测处理器430中),即作为感测处理器430的一部分;从而,感测处理器430不仅可以实现前述感测处理器的功能,还可以实现标准亮度确定单元450、增益确定单元460和亮度补偿单元470的功能。例如,在另一些实施例中,如图4B所示,标准亮度确定单元450、增益确定单元460和亮度补偿单元470均可以设置在时序控制器440中(例如,集成在时序控制器440中),即作为时序控制器440的一部分;从而,时序控制器440不仅可以实现前述时序控制器的功能,还可以实现标准亮度确定单元450、增益确定单元460和亮度补偿单元470的功能。需要说明的是,本公开包括但不限于此。例如,在再一些实施例中,标准亮度确定单元450、增益确定单元460和亮度补偿单元470三者中的一部分可以集成在感测处理器430中,另一部分集成在时序控制器440中。例如,在又一些实施例中,标准亮度确定单元450、增益确定单元460和亮度补偿单元470三者可以整体或部分集成在前述数据驱动器中。例如,在又一些实施例中,标准亮度确定单元450、增益确定单元460和亮度补偿单元470三者中的一个或多个(包括全部)可以是单独设置的单元,其可以设置在例如感测处理器430和时序控制器440之间,本公开对此不作限制。可以理解的是,本公开的实施例对标准亮度确定单元450、增益确定单元460和亮度补偿单元470三者的设置和实现方式不作限制。
例如,在一些实施例中,在显示装置400中,显示基板410上的至少一个双面发光区域可以仅包括一个双面发光区域,相应地,该至少一个光学感测单元420可以仅包括一个光学感测单元,并且该双面发光区域与该光学感测单元对应。在此情况下,标准亮度确定单元450可以根据该双面发光区域中的子像素的显示数据,确定该双面发光区域的标准亮度信息;增益确定单元460可以根据该双面发光区域的标准亮度信息和感测亮度信息(该双面发光区域的感测亮度信息由该光学感测单元提供),确定亮度增益数据;亮度补偿单元470可以根据亮度增益数据,对显示基板410的发光区域进行亮度补偿(即全局亮度补偿),也即,显示基板410的发光区域中的各个子像素均根据该亮度增益数据进行亮度补偿。
例如,在另一些实施例中,如图4A所示,在显示装置400中,显示基板410上的至少一个双面发光区域可以包括多个双面发光区域,该至少一个光学感测单元420可以包括多个光学感测单元,并且该多个双面发光区域与该多个光学感测单元一一对应。以下,结合此种情况对前述标准亮度确定单元450、增益确定单元460和亮度补偿单元470的各种工作原理进行更进一步的说明。
例如,在一些实施例中,标准亮度确定单元450可以根据该多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息。增益确定单元460可以根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),确定多个局部亮度增益数据(每个双面发光区域对应一个局部亮度增益数据),并将该多个局部亮度增益数据的最大值或平均值作为亮度增益数据;例如,可以先根据每个双面发光区域的标准亮度信息和感测亮度信息,计算每个双面发光区域的亮度差异数据(即局部亮度差异数据,局部亮度差异数据的计算方式可以参考前述公式(1)),再根据每个双面发光区域的亮度差异数据,确定每个双面发光区域对应的局部亮度增益数据。亮度补偿单元470可以根据亮度增益数据,对显示基板410的发光区域进行全局亮度补偿,也即,显示基板410的发光区域中的各个子像素均根据该亮度增益数据进行亮度补偿。当然,亮度补偿单元470也可以根据亮度增益数据,对显示基板410的单面发光区域进行亮度补偿,同时根据各个双面发光区域对应的局部亮度增益数据,分别对各个双面发光区域进行亮度补偿。
例如,在另一些实施例中,标准亮度确定单元450可以根据该多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息。增益确定单元460可以根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),确定多个局部亮度差异数据(每个双面发光区域对应一个局部亮度差异数据,局部亮度差异数据的计算方式可以参考前述公式(1)),将该多个局部亮度差异数据的最大值或平均值作为亮度差异数据,并根据亮度差异数据确定亮度增益数据。亮度补偿单元470可以根据亮度增益数据,对显示基板410的发光区域进行全局亮度补偿,也即,显示基板410的发光区域中的各个子像素均根据该亮度增益数据进行亮度补偿。当然,亮度补偿单元470也可以根据亮度增益数据,对显示基板410的单面发光区域进行亮度补偿,同时根据各个双面发光区域对应的局部亮度增益数据,分别对各个双面发光区域进行亮度补偿。
例如,在再一些实施例中,显示基板410的发光区域可以划分为与该多个双面发光区域一一对应的多个发光分区。图5A为本公开至少一些实施例提供的一种显示基板的发光分区示意图,图5B为本公开至少一些实施例提供的另一种显示基板的发光分区示意图。例如,如图5A-5B所示,显示基板的发光区域的形状可以为矩形,在此情况下,可以将显示基板的发光区域划分为M*N个发光分区(如图5A中的A1-A3以及图5B中的A1-A6所示,图5A-5B中的点划线可视为不同发光分区的分界线),其中,M、N均为正整数(图5A示出 了M=1且N=3的情形,图5B示出了M=2且N=3的情形);每个发光分区可以包括例如一个双面发光区域。可以理解的是,为了实现较佳的亮度补偿效果,可以使得该多个双面发光区域在发光区域中均匀分布或者大致均匀分布;进一步地,还可以使得每个双面发光区域位于其所在的发光分区的中心附近。需要说明的是,本公开的实施例包括但不限于此。
在此情况下,标准亮度确定单元450可以根据该多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息。增益确定单元460可以根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),分别确定该多个双面发光区域对应的局部亮度增益数据,也即,分别确定该多个发光分区的局部亮度增益数据(每个双面发光区域对应的局部亮度增益数据即为每个双面发光区域对应的发光分区的局部亮度增益数据);例如,可以先根据每个双面发光区域的标准亮度信息和感测亮度信息,计算每个双面发光区域的亮度差异数据(即局部亮度差异数据,局部亮度差异数据的计算方式可以参考前述公式(1)),再根据每个双面发光区域的亮度差异数据,确定每个双面发光区域对应的局部亮度增益数据,也即,确定每个双面发光区域对应的发光分区的局部亮度增益数据。亮度补偿单元470可以根据该多个发光分区的局部亮度增益数据,分别对该多个发光分区进行亮度补偿(即分区亮度补偿),也即,显示基板410的各个发光分区中的子像素分别根据各个发光分区的局部亮度增益数据进行亮度补偿。从而,可以对显示基板的不同位置的子像素进行有针对性的亮度补偿,减小显示画面的亮度差异,改善显示质量。
需要说明的是,在实际应用中,显示基板的发光区域的形状以及发光分区的划分方式均可以根据实际需要进行设置,本公开的实施例对此均不作限制。另外,还需要说明的是,部分或全部的发光分区可以包括例如多个双面发光区域,在此情况下,可以将该部分或全部的发光分区分别视为一个发光区域,并根据前述实施例所描述的亮度补偿方式对该部分或全部的发光分区进行亮度补偿(例如,可以根据该部分或全部的发光分区中的多个双面发光区域对应的局部亮度增益数据的最大值或平均值进行亮度补偿),本公开的实施例包括但不限于此。
例如,在又一些实施例中,显示基板410的发光区域可以划分为与该多个双面发光区域一一对应的多个发光分区以及位于相邻的发光分区之间的过渡区域。图6A为本公开至少一些实施例提供的一种显示基板的发光分区和过渡区域的示意图,图6B为本公开至少一些实施例提供的另一种显示基板的发光分区和过渡区域的示意图。例如,如图6A-6B所示,显示基板的发光区域的形状可以为矩形,在此情况下,可以将显示基板的发光区域划分为多个发光分区以及位于相邻的发光分区之间的过渡区域,每个发光分区可以包括例如一个双面发光区域。
具体地,例如,如图6A所示,显示基板的发光区域可以包括1*3个发光分区(如图6A中的A1-A3所示)以及两个过渡区域B1和B2,其中,过渡区域B1位于相邻的发光分区A1和发光分区A2之间,过渡区域B2位于相邻的发光分区A2和发光分区A3之间。
具体地,又例如,如图6B所示,显示基板的发光区域可以包括2*3个发光分区(如图6A中的A1-A6所示)以及多个过渡区域B1-B9,其中,过渡区域B1位于相邻的发光分区A1和发光分区A2之间,过渡区域B2位于相邻的发光分区A2和发光分区A3之间,过渡区域B3位于相邻的发光分区A1和发光分区A4之间,过渡区域B5位于相邻的发光分区A2和发光分区A5之间,过渡区域B7位于相邻的发光分区A3和发光分区A6之间,过渡区域B8位于相邻的发光分区A4和发光分区A5之间,过渡区域B9位于相邻的发光分区A5和发光分区A6之间。一方面,过渡区域B4可以视为与过渡区域B1、B3、B5、B8中任一是一体的,例如,在将过渡区域B4视为与过渡区域B1一体的情况下,可以认为过渡区域B4也位于相邻的发光分区A1和发光分区A2之间;另一方面,过渡区域B4也可以视为位于相邻的发光分区A1、发光分区A2、发光分区A4和发光分区A5之间。过渡区域B6的情况与过渡区域B4的情况类似,也即,一方面,过渡区域B6可以视为与过渡区域B2、B5、B7、B9中任一是一体的,另一方面,过渡区域B6也可以视为位于相邻的发光分区A2、发光分区A3、发光分区A5和发光分区A6之间。
在此情况下,标准亮度确定单元450可以根据该多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息。增益确定单元460可以根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),分别确定该多个双面发光区域对应的局部亮度增益数据,也即,分别确定该多个发光分区的局部亮度增益数据(每个双面发光区域对应的局部亮度增益数据即为每个双面发光区域对应的发光分区的局部亮度增益数据);例如,可以先根据每个双面发光区域的标准亮度信息和感测亮度信息,计算每个双面发光区域的亮度差异数据(即局部亮度差异数据,局部亮度差异数据的计算方式可以参考前述公式(1)),再根据每个双面发光区域的亮度差异数据,确定每个双面发光区域对应的局部亮度增益数据,也即,确定每个双面发光区域对应的发光分区的局部亮度增益数据。进一步地,增益确定单元460还可以根据相邻的发光分区的局部亮度增益数据,确定位于该相邻的发光分区之间的过渡区域的局部亮度增益数据;例如,可以根据相邻的发光分区的局部亮度增益数据,采用插值法(例如,包括但不限于线性插值法、双线性插值法等)计算位于该相邻的发光分区之间的过渡区域的局部亮度增益数据。相应地,亮度补偿单元470不仅可以根据该多个发光分区的局部亮度增益数据,分别对该多个发光分区进行亮度补偿,还可以根据各个过渡区域的局部亮度增益数据,分别对各个过渡区域进行亮度补偿。可以理解的是,在显示基板的发光区域仅包括不同发光分区的情况下(如图5A-5B所示),可能存在相邻的发光分区的局部亮度增益数据差异过大而导致的显示画面视觉上出现分区的问题,过渡区域的设置及其亮度补偿方式可以避免上述问题的发生,从而,进一步减小显示画面的亮度差异,改善显示质量。
具体地,例如,在图6A所示的实施例中,可以根据发光分区A1和发光分区A2的局部亮度增益数据,采用线性插值法计算过渡区域B1的局部亮度增益数据;可以根据发光分 区A2和发光分区A3的局部亮度增益数据,采用线性插值法计算过渡区域B2的局部亮度增益数据。
具体地,又例如,在图6B所示的实施例中,可以根据发光分区A1和发光分区A2的局部亮度增益数据,采用线性插值法计算过渡区域B1的局部亮度增益数据,可以根据发光分区A2和发光分区A3的局部亮度增益数据,采用线性插值法计算过渡区域B2的局部亮度增益数据,可以根据发光分区A1和发光分区A4的局部亮度增益数据,采用线性插值法计算过渡区域B3的局部亮度增益数据,可以根据发光分区A2和发光分区A5的局部亮度增益数据,采用线性插值法计算过渡区域B5的局部亮度增益数据,可以根据发光分区A3和发光分区A6的局部亮度增益数据,采用线性插值法计算过渡区域B7的局部亮度增益数据,可以根据发光分区A4和发光分区A5的局部亮度增益数据,采用线性插值法计算过渡区域B8的局部亮度增益数据,可以根据发光分区A5和发光分区A6的局部亮度增益数据,采用线性插值法计算过渡区域B9的局部亮度增益数据;过渡区域B4的局部亮度增益数据可以与过渡区域B1、B3、B5、B8中任一的局部亮度增益数据一致(即将过渡区域B4视为与过渡区域B1、B3、B5、B8中任一是一体的),另一方面,可以根据发光分区A1、发光分区A2、发光分区A4和发光分区A5的局部亮度增益数据,采用双线性插值法计算过渡区域B4的局部亮度增益数据(即将过渡区域B4视为位于相邻的发光分区A1、发光分区A2、发光分区A4和发光分区A5之间);类似地,过渡区域B6的局部亮度增益数据可以与过渡区域B2、B5、B7、B9中任一的局部亮度增益数据一致(即将过渡区域B6视为与过渡区域B2、B5、B7、B9中任一是一体的),另一方面,可以根据发光分区A2、发光分区A3、发光分区A5和发光分区A6的局部亮度增益数据,采用双线性插值法计算过渡区域B6的局部亮度增益数据(即将过渡区域B6视为位于相邻的发光分区A2、发光分区A3、发光分区A5和发光分区A6之间)。
例如,在又一些实施例中,对于图4A所示的显示装置400,可以结合数据累积算法,对显示基板410的发光区域中的各个子像素进行个体亮度补偿。例如,显示装置400可以包括数据累积计算单元(图4A中未示出),数据累积计算单元用于记录发光区域中的各个子像素的累积显示信息;例如,累积显示信息可以为实际使用的显示数据及其持续时长的累积,实际使用的显示数据包括在之前阶段使用的补偿前的显示数据和/或补偿后的显示数据,本公开的实施例包括但不限于此。例如,可以使用累积显示时间表征累积显示信息;例如,累积显示时间可以表示为T=∑ iC ix it i,其中,T表示累积显示时间,x i表示显示数据,t i表示显示数据x i的持续时长,C i表示显示数据x i的权重;权重C i可以通过对与显示装置400规格相同的测试用显示装置进行测试而确定,或者,也可以根据实际需要进行设置。需要说明的是,本公开的实施例包括但不限于此。
在此情况下,标准亮度确定单元450可以根据该至少一个双面发光区域中的子像素的显示数据,确定该至少一个双面发光区域的标准亮度信息。增益确定单元460可以:根据发光区域中的各个子像素的累积显示信息,确定发光区域中的各个子像素的劣化程度估计 数据;根据该至少一个双面发光区域的标准亮度信息和感测亮度信息(该至少一个双面发光区域的感测亮度信息分别由该至少一个光学感测单元提供),确定该至少一个双面发光区域中的子像素的劣化程度计算数据;根据该至少一个双面发光区域中的子像素的劣化程度估计数据和劣化程度计算数据,确定劣化程度修正数据;根据单面发光区域中的各个子像素的劣化程度估计数据和该劣化程度修正数据,确定单面发光区域中的各个子像素的劣化程度计算数据;以及,根据发光区域中的各个子像素的劣化程度计算数据,确定发光区域中的各个子像素的个体亮度增益数据。相应地,亮度补偿单元470可以根据发光区域中的各个子像素的个体亮度增益数据,分别对发光区域中的各个子像素进行亮度补偿(即个体亮度补偿)。从而,可以对显示基板的各个子像素进行有针对性的个体亮度补偿,减轻子像素劣化导致的异常显示问题,改善显示质量。
图7为本公开至少一些实施例提供的一种子像素劣化模型的示意图。图7中的子像素劣化模型示出了子像素的显示亮度与其累积显示信息(例如,前述累积显示时间)的对应关系;例如,该对应关系可以通过对与显示装置400规格相同的测试用显示装置进行测试而得到,并以例如查找表的方式进行存储。例如,如图7所示,对于任一子像素,其累积显示信息可以使用累积显示时间T_Aging(例如,由累积计算单元记录并换算而得到)进行表征,从而,可以根据图7所示的对应关系曲线,确定其劣化程度估计数据,例如,其劣化程度估计数据可以使用T_Aging或者T_Aging对应的估计显示亮度L_Calculate进行表征。另外,还可以根据该至少一个双面发光区域的标准亮度信息(例如,图7中显示时间为0时的显示亮度)和感测亮度信息(例如,图7中的感测显示亮度L_Sense),确定该至少一个双面发光区域中的子像素的劣化程度计算数据,例如,劣化程度计算数据可以使用L_Sense或者L_Sense对应的等效累积显示时间T_Aging’进行表征;可以理解的是,劣化程度估计数据和劣化程度计算数据的表征方式通常是一致的。在此基础上,可以根据该至少一个双面发光区域中的子像素的劣化程度估计数据和劣化程度计算数据,确定劣化程度修正数据;例如,可以根据劣化程度估计数据(例如,累积显示时间T_Aging)和劣化程度计算数据(例如,等效累积显示时间T_Aging’)进行比例修正,。从而,可以根据单面发光区域中的各个子像素的劣化程度估计数据和该劣化程度修正数据,确定单面发光区域中的各个子像素的劣化程度计算数据。进而,可以根据发光区域中的各个子像素的劣化程度计算数据,确定发光区域中的各个子像素的个体亮度增益数据。
需要说明的是,在本公开的实施例中,可以根据显示基板410中的子像素的颜色种类设置,在显示基板410上点亮不同颜色的测试画面,以相应确定每种颜色子像素的亮度增益数据。例如,以显示基板410包括红色子像素、绿色子像素和蓝色子像素为例,可以在显示基板410上分别点亮红色测试画面、绿色测试画面和蓝色测试画面,从而,可以通过光学感测单元420、标准亮度确定单元450、增益确定单元460和亮度补偿单元470的配合,确定每种颜色子像素的亮度增益数据,并根据每种颜色子像素的亮度增益数据对显示基板410上的每种颜色子像素进行亮度补偿。还需要说明的是,在本公开的实施例中,可以通过 对与显示装置400规格相同的测试用显示装置进行亮度补偿测试,并建模确定各种所需的对应关系(例如,前述实施例中的显示数据与标准亮度信息的对应关系、亮度差异数据与标准亮度信息的对应关系、显示亮度与累积显示信息的对应关系等),以用于显示装置400的亮度补偿过程。
例如,本公开的实施例提供的显示装置可以为:显示器、电视、电子纸显示装置、手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。需要说明的是,该显示装置还可以包括其他常规部件或结构,例如,为实现显示装置的必要功能,本领域技术人员可以根据具体应用场景设置其他的常规部件或结构(例如信号解码电路、电压转换电路等),本公开的实施例对此不做限制。
本公开的实施例提供的通过显示基板的双面发光设计并搭配设置于显示基板的非显示侧的光学感测单元,可以在不影响显示画面的状况下,获得双面发光区域的感测亮度信息以对显示基板的发光区域进行亮度补偿,从而可以改善子像素劣化导致的亮度不均匀等异常显示问题,进而改善显示质量。
本公开的一些实施例还提供了一种显示装置的驱动方法。例如,该显示装置为前述任一实施例提供的显示装置。例如,如图2A-2E所示,该显示装置包括显示基板和至少一个光学感测单元;显示基板包括发光区域和位于发光区域中的多个像素单元,该多个像素单元中的每个像素单元包括多个子像素;该至少一个光学感测单元从显示基板的非显示侧与该至少一个双面发光区域对应,被配置为感测该至少一个双面发光区域中的子像素在工作中发出的光,并提供该至少一个双面发光区域的感测亮度信息以对发光区域进行亮度补偿。
图8为本公开至少一些实施例提供的一种驱动方法的流程图,图9为本公开至少一些实施例提供的一种对应于图8中所示的步骤S200的示例性流程图。
例如,如图8所示,该驱动方法包括以下步骤S100和步骤S200:
步骤S100:控制该至少一个光学感测单元感测该至少一个双面发光区域中的子像素在工作中发出的光。
例如,在一些示例中,可以在显示基板上点亮不同颜色的测试画面,并控制该至少一个光学感测单元感测该至少一个双面发光区域中的不同颜色子像素发出的光,以得到该至少一个双面发光区域中的不同颜色子像素的感测亮度信息。
步骤S200:基于该至少一个双面发光区域的感测亮度信息对发光区域进行亮度补偿。
例如,在一些示例中,该至少一个双面发光区域的感测亮度信息包括该至少一个双面发光区域中的不同颜色子像素的感测亮度信息;在此情况下,可以基于该至少一个双面发光区域中的不同颜色子像素的感测亮度信息,分别对发光区域中的不同颜色子像素进行亮度补偿。
例如,在一些实施例中,如图4A所示,该显示装置还可以包括标准亮度确定单元、增益确定单元和亮度补偿单元。该标准亮度确定单元被配置为根据显示基板的至少一个双面发光区域中的子像素的显示数据,确定该至少一个双面发光区域的标准亮度信息;增益确 定单元被配置为根据该至少一个双面发光区域的标准亮度信息和感测亮度信息,确定亮度增益数据;该亮度补偿单元被配置为根据亮度增益数据,对显示基板的发光区域进行亮度补偿。在此情况下,如图9所示,前述驱动方法中的步骤S200可以包括以下步骤S210至步骤S230。
步骤S210:根据至少一个双面发光区域中的子像素的显示数据,确定该至少一个双面发光区域的标准亮度信息。
例如,在一些示例中,可以基于预先存储的显示数据与标准亮度信息的对应关系(例如,以查找表的方式存储),查找确定显示基板的至少一个双面发光区域中的子像素的显示数据对应的标准亮度信息,从而得到该至少一个双面发光区域的标准亮度信息。例如,显示数据与标准亮度信息的对应关系可以在显示装置出厂时通过测试确定,或者可以参考与显示装置规格相同的测试用显示装置的初始使用阶段的测试结果,本公开的实施例包括但不限于此。
步骤S220:根据该标准亮度信息和该感测亮度信息,确定亮度增益数据。
例如,在一些示例中,可以先根据该至少一个双面发光区域的标准亮度信息和感测亮度信息,计算出亮度差异数据(具体细节可以参考前述公式(1)),再根据该亮度差异数据确定亮度增益数据。例如,可以基于预先存储的亮度差异数据与标准亮度信息的对应关系(例如,以查找表的方式存储),查找确定计算得到的亮度差异数据对应的亮度增益数据。
步骤S230:根据该亮度增益数据,对发光区域进行亮度补偿。
例如,在一些示例中,可以根据亮度增益数据,对显示基板的整个发光区域中的子像素的显示数据进行补偿,并将补偿后的显示数据提供至数据驱动器,以实现对显示基板的整个发光区域进行亮度补偿。例如,在另一些示例中,可以根据亮度增益数据,对施加至显示基板的整个发光区域中的子像素的电源电压(例如,第一电源电压ELVDD和第二电源电压ELVSS至少之一,其中,第一电源电压ELVDD和第二电源电压ELVSS用于生成驱动发光元件发光的驱动电流)进行补偿,并将补偿后的电源电压提供至整个发光区域中的子像素,以实现对显示基板的整个发光区域进行亮度补偿。需要说明的是,本公开的实施例包括但不限于此,也即,在实际应用中,可以采用任意可行的方式以根据亮度增益数据进行亮度补偿。
图10为本公开至少一些实施例提供的一种对应于图9中所示的步骤S210至步骤S230的示例性流程图。例如,在一些实施例中,在显示装置中,显示基板上的至少一个双面发光区域可以仅包括一个双面发光区域,相应地,该至少一个光学感测单元可以仅包括一个光学感测单元,并且该双面发光区域与该光学感测单元对应。在此情况下,如图10所示,步骤S210可以包括步骤S211:根据一个双面发光区域中的子像素的显示数据,确定该双面发光区域的标准亮度信息;步骤S220可以包括步骤S221:根据该双面发光区域的标准亮度信息和感测亮度信息,确定亮度增益数据;步骤S230可以包括步骤S231:根据该亮度增益 数据,对显示基板的发光区域进行亮度补偿(即全局亮度补偿)。也即,显示基板的发光区域中的各个子像素均根据该亮度增益数据进行亮度补偿。
例如,在另一些实施例中,如图4A所示,在显示装置中,显示基板上的至少一个双面发光区域可以包括多个双面发光区域,该至少一个光学感测单元可以包括多个光学感测单元,并且该多个双面发光区域与该多个光学感测单元一一对应。图11为本公开至少一些实施例提供的另一种对应于图9中所示的步骤S210至步骤S230的示例性流程图,图12为本公开至少一些实施例提供的再一种对应于图9中所示的步骤S210至步骤S230的示例性流程图,图13为本公开至少一些实施例提供的又一种对应于图9中所示的步骤S210至步骤S230的示例性流程图,图14为本公开至少一些实施例提供的又一种对应于图9中所示的步骤S210至步骤S230的示例性流程图,图15为本公开至少一些实施例提供的又一种对应于图9中所示的步骤S210至步骤S230的示例性流程图。以下,结合图11至图15,对此种情况下的驱动方法(例如,步骤S210至步骤S230)的具体细节进行更进一步的说明。可以理解的是,为了实现较佳的亮度补偿效果,可以使得该多个双面发光区域在发光区域中均匀分布或者大致均匀分布;进一步地,还可以使得每个双面发光区域位于其所在的发光分区的中心附近。需要说明的是,本公开的实施例包括但不限于此。
例如,在一些示例中,如图11所示,步骤S210可以包括步骤S212:根据多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息;步骤S220可以包括步骤S222:根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),确定多个局部亮度增益数据(每个双面发光区域对应一个局部亮度增益数据),并将该多个局部亮度增益数据的最大值或平均值作为亮度增益数据;步骤S230可以包括步骤S232:根据该亮度增益数据,对显示基板的发光区域进行亮度补偿(全局亮度补偿)。当然,在实际应用中,也可以根据亮度增益数据,对显示基板的单面发光区域进行亮度补偿,同时根据各个双面发光区域对应的局部亮度增益数据,分别对各个双面发光区域进行亮度补偿。
例如,在另一些示例中,如图12所示,步骤S210可以包括步骤S213:根据多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息;步骤S220可以包括步骤S223:根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),确定多个局部亮度差异数据(每个双面发光区域对应一个局部亮度差异数据,局部亮度差异数据的计算方式可以参考前述公式(1)),将该多个局部亮度差异数据的最大值或平均值作为亮度差异数据,并根据亮度差异数据确定亮度增益数据;步骤S230可以包括步骤S233:根据该亮度增益数据,对显示基板的发光区域进行全局亮度补偿。当然,在实际应用中,也可以根据亮度增益数据,对显示基板的单面发光区域进行亮度补偿,同时根据各个双面发光区域对应的局部亮度增益数据,分别对各个双面发光区域进行亮度补偿。
例如,在再一些示例中,如图5A-5B所示,显示基板的发光区域可以划分为与该多个 双面发光区域一一对应的多个发光分区。在此情况下,如图13所示,步骤S210可以包括步骤S214:根据多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息;步骤S220可以包括步骤S224:根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),分别确定该多个发光分区的局部亮度增益数据(也即,分别确定该多个双面发光区域对应的局部亮度增益数据,每个双面发光区域对应的局部亮度增益数据即为每个双面发光区域对应的发光分区的局部亮度增益数据);步骤S230可以包括步骤S234:根据该多个发光分区的局部亮度增益数据,分别对该多个发光分区进行亮度补偿(即分区亮度补偿)。从而,可以对显示基板的不同位置的子像素进行有针对性的亮度补偿,减小显示画面的亮度差异,改善显示质量。需要说明的是,在实际应用中,显示基板的发光区域的形状以及发光分区的划分方式均可以根据实际需要进行设置,本公开的实施例对此均不作限制。还需要说明的是,部分或全部的发光分区可以包括例如多个双面发光区域,在此情况下,可以将该部分或全部的发光分区分别视为一个发光区域,并根据前述实施例所描述的亮度补偿方式对该部分或全部的发光分区进行亮度补偿(例如,可以根据该部分或全部的发光分区中的多个双面发光区域对应的局部亮度增益数据的最大值或平均值进行亮度补偿),本公开的实施例包括但不限于此。
例如,在又一些示例中,如图6A-6B所示,显示基板的发光区域可以划分为与该多个双面发光区域一一对应的多个发光分区以及位于相邻的发光分区之间的过渡区域。在此情况下,如图14所示,步骤S210可以包括步骤S215:根据多个双面发光区域中的子像素的显示数据,分别确定该多个双面发光区域的标准亮度信息。步骤S220可以包括步骤S225:根据该多个双面发光区域的标准亮度信息和感测亮度信息(该多个双面发光区域的感测亮度信息分别由该多个光学感测单元提供),分别确定该多个发光分区的局部亮度增益数据(也即,分别确定该多个双面发光区域对应的局部亮度增益数据,每个双面发光区域对应的局部亮度增益数据即为每个双面发光区域对应的发光分区的局部亮度增益数据);以及,根据相邻的发光分区的局部亮度增益数据,确定位于该相邻的发光分区之间的过渡区域的局部亮度增益数据。步骤S230可以包括步骤S235:根据该多个发光分区的局部亮度增益数据,分别对该多个发光分区进行亮度补偿;以及,根据各个过渡区域的局部亮度增益数据,分别对各个过渡区域进行亮度补偿。可以理解的是,在显示基板的发光区域仅包括不同发光分区的情况下,可能存在相邻的发光分区的局部亮度增益数据差异过大而导致的显示画面视觉上出现分区的问题,过渡区域的设置及其亮度补偿方式可以避免上述问题的发生,从而,进一步减小显示画面的亮度差异,改善显示质量。
例如,在又一些示例中,可以结合数据累积算法,对显示基板的发光区域中的各个子像素进行个体亮度补偿。例如,显示装置可以包括数据累积计算单元,数据累积计算单元用于记录发光区域中的各个子像素的累积显示信息。在此情况下,如图15所示,步骤S210可以包括步骤S216:根据至少一个双面发光区域中的子像素的显示数据,确定该至少一个 双面发光区域的标准亮度信息。步骤S220可以包括以下步骤S226A至步骤S226:步骤S226A,根据发光区域中的各个子像素的累积显示信息,确定发光区域中的各个子像素的劣化程度估计数据;步骤S226B,根据该至少一个双面发光区域的标准亮度信息和感测亮度信息(该至少一个双面发光区域的感测亮度信息分别由该至少一个光学感测单元提供),确定该至少一个双面发光区域中的子像素的劣化程度计算数据;步骤S226C,根据该至少一个双面发光区域中的子像素的劣化程度估计数据和劣化程度计算数据,确定劣化程度修正数据;步骤S226D,根据单面发光区域中的各个子像素的劣化程度估计数据和该劣化程度修正数据,确定单面发光区域中的各个子像素的劣化程度计算数据;以及步骤S226E,根据发光区域中的各个子像素的劣化程度计算数据,确定发光区域中的各个子像素的个体亮度增益数据。步骤S230可以包括步骤S236:根据发光区域中的各个子像素的个体亮度增益数据,分别对发光区域中的各个子像素进行亮度补偿(即个体亮度补偿)。从而,可以对显示基板的各个子像素进行有针对性的个体亮度补偿,减轻子像素劣化导致的异常显示问题,改善显示质量。
需要说明的是,本公开的实施例提供的驱动方法的更多细节可以参考前述显示装置的实施例中的相应描述,在此不再重复赘述。
需要说明的是,在本公开的实施例中,上述驱动方法的流程可以包括更多或更少的步骤或操作,这些步骤或操作可以顺序执行或并行执行。虽然上文描述的驱动方法的流程包括特定顺序出现的多个步骤或操作,但是应该清楚地了解,多个步骤或操作的顺序并不受限制。上文描述的驱动方法可以执行一次,也可以按照预定条件执行多次。
本公开的实施例提供的驱动方法的技术效果参考前述实施例中关于显示装置的相应描述,在此不再赘述。
对于本公开,有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种显示装置,包括:
    显示基板,包括发光区域和位于所述发光区域中的多个像素单元,其中,所述发光区域包括单面发光区域和至少一个双面发光区域,所述多个像素单元中的每个像素单元包括多个子像素;以及
    至少一个光学感测单元,从所述显示基板的非显示侧与所述至少一个双面发光区域对应,被配置为感测所述至少一个双面发光区域中的子像素在工作中发出的光,并提供所述至少一个双面发光区域的感测亮度信息以对所述发光区域进行亮度补偿。
  2. 根据权利要求1所述的显示装置,还包括:
    标准亮度确定单元,被配置为根据所述至少一个双面发光区域中的子像素的显示数据,确定所述至少一个双面发光区域的标准亮度信息;
    增益确定单元,被配置为根据所述标准亮度信息和所述感测亮度信息,确定亮度增益数据;以及
    亮度补偿单元,被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿。
  3. 根据权利要求2所述的显示装置,其中,所述至少一个双面发光区域包括多个双面发光区域,所述至少一个光学感测单元包括多个光学感测单元,所述多个双面发光区域与所述多个光学感测单元一一对应。
  4. 根据权利要求3所述的显示装置,其中,所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    所述增益确定单元被配置为:
    根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度增益数据;以及,
    将所述多个局部亮度增益数据的最大值或平均值作为所述亮度增益数据。
  5. 根据权利要求3所述的显示装置,其中,所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    所述增益确定单元被配置为:
    根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度差异数据;
    将所述多个局部亮度差异数据的最大值或平均值作为亮度差异数据;以及,
    根据所述亮度差异数据确定所述亮度增益数据。
  6. 根据权利要求3所述的显示装置,其中,所述发光区域包括与所述多个双面发光区域一一对应的多个发光分区;
    所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    所述增益确定单元被配置为根据所述多个双面发光区域的所述标准亮度信息和所述感 测亮度信息,确定所述多个发光分区的局部亮度增益数据;
    所述亮度补偿单元被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:
    所述亮度补偿单元被配置为根据所述多个发光分区的局部亮度增益数据,分别对所述多个发光分区进行亮度补偿。
  7. 根据权利要求6所述的显示装置,其中,所述发光区域还包括位于相邻的发光分区之间的过渡区域;
    所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,还包括:
    所述增益确定单元还被配置为根据所述相邻的发光分区的局部亮度增益数据,确定所述过渡区域的局部亮度增益数据;
    所述亮度补偿单元被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿,还包括:
    所述亮度补偿单元还被配置为根据所述过渡区域的局部亮度增益数据,对所述过渡区域进行亮度补偿。
  8. 根据权利要求2或3所述的显示装置,其中,
    所述增益确定单元被配置为根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    所述增益确定单元被配置为:
    根据所述发光区域中的各个子像素的累积显示信息,确定所述发光区域中的各个子像素的劣化程度估计数据;
    根据所述至少一个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述至少一个双面发光区域中的子像素的劣化程度计算数据;
    根据所述至少一个双面发光区域中的子像素的所述劣化程度估计数据和所述劣化程度计算数据,确定劣化程度修正数据;
    根据所述单面发光区域中的各个子像素的劣化程度估计数据和所述劣化程度修正数据,确定所述单面发光区域中的各个子像素的劣化程度计算数据;以及
    根据所述发光区域中的各个子像素的劣化程度计算数据,确定所述发光区域中的各个子像素的个体亮度增益数据;
    所述亮度补偿单元被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:
    所述亮度补偿单元被配置为根据所述发光区域中的各个子像素的个体亮度增益数据,分别对所述发光区域中的各个子像素进行亮度补偿。
  9. 根据权利要求1-8任一项所述的显示装置,还包括:
    感测处理器,被配置为驱动所述至少一个光学感测单元感测所述至少一个双面发光区 域中的子像素在工作中发出的光,以获得所述至少一个双面发光区域的所述感测亮度信息。
  10. 根据权利要求9所述的显示装置,还包括:桥接电路板,其中,
    所述至少一个光学感测单元通过所述桥接电路板与所述感测处理器电连接。
  11. 根据权利要求9或10所述的显示装置,其中,在所述显示装置包括标准亮度确定单元、增益确定单元和亮度补偿单元的情况下,所述标准亮度确定单元、所述增益确定单元和所述亮度补偿单元设置在所述感测处理器中。
  12. 根据权利要求1-10任一项所述的显示装置,还包括:时序控制器;其中,在所述显示装置包括标准亮度确定单元、增益确定单元和亮度补偿单元的情况下,所述标准亮度确定单元、所述增益确定单元和所述亮度补偿单元设置在所述时序控制器中。
  13. 根据权利要求1-12任一项所述的显示装置,其中,所述至少一个双面发光区域包括多个双面发光区域,所述多个双面发光区域在所述发光区域中均匀分布。
  14. 根据权利要求1-13任一项所述的显示装置,其中,所述多个子像素中的每个子像素包括发光元件;
    所述单面发光区域中的发光元件包括依次层叠的第一电极、第一发光功能层和第二电极,所述第一电极比所述第二电极更靠近所述非显示侧,所述第一电极为不透明电极,所述第二电极为透明电极;
    所述至少一个双面发光区域中的发光元件包括依次层叠的第三电极、第二发光功能层和第四电极,所述第三电极比所述第四电极更靠近所述非显示侧,所述第三电极为至少部分透明的电极,所述第三电极的透明部分允许所述第二发光功能层发出的光透过并发射至所述非显示侧,所述第四电极为透明电极。
  15. 根据权利要求14所述的显示装置,其中,对于所述单面发光区域的任意一个子像素中的发光元件和所述至少一个双面发光区域中的与所述单面发光区域的所述任意一个子像素具有相同发光颜色的一个子像素中的发光元件,
    所述第二电极与所述第四电极基本相同,所述第一发光功能层与所述第二发光功能层基本相同,
    除了所述透明部分外,所述第三电极与所述第一电极基本相同;
    所述第三电极的透明部分的面积占所述第三电极的面积的比例的取值范围为[5%,20%]。
  16. 一种显示装置的驱动方法,其中,
    所述显示装置包括:
    显示基板,包括发光区域和位于所述发光区域中的多个像素单元,其中,所述发光区域包括单面发光区域和至少一个双面发光区域,所述多个像素单元中的每个像素单元包括多个子像素;以及
    至少一个光学感测单元,从所述显示基板的非显示侧与所述至少一个双面发光区域对应,被配置为感测所述至少一个双面发光区域中的子像素在工作中发出的光,并提供所述 至少一个双面发光区域的感测亮度信息以对所述发光区域进行亮度补偿;
    所述驱动方法包括:
    控制所述至少一个光学感测单元感测所述至少一个双面发光区域中的子像素在工作中发出的光,并基于所述至少一个双面发光区域的感测亮度信息对所述发光区域进行亮度补偿。
  17. 根据权利要求16所述的驱动方法,其中,
    所述显示装置还包括:
    标准亮度确定单元,被配置为根据所述至少一个双面发光区域中的子像素的显示数据,确定所述至少一个双面发光区域的标准亮度信息;
    增益确定单元,被配置为根据所述标准亮度信息和所述感测亮度信息,确定亮度增益数据;以及
    亮度补偿单元,被配置为根据所述亮度增益数据,对所述发光区域进行亮度补偿;
    根据所述至少一个双面发光区域的所述感测亮度信息对所述发光区域进行亮度补偿,包括:
    根据所述至少一个双面发光区域中的子像素的显示数据,确定所述至少一个双面发光区域的所述标准亮度信息;
    根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据;以及
    根据所述亮度增益数据,对所述发光区域进行亮度补偿。
  18. 根据权利要求17所述的驱动方法,其中,所述至少一个双面发光区域包括多个双面发光区域,所述至少一个光学感测单元包括多个光学感测单元,所述多个双面发光区域与所述多个光学感测单元一一对应。
  19. 根据权利要求18所述的驱动方法,其中,根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度增益数据;以及
    将所述多个局部亮度增益数据的最大值或平均值作为所述亮度增益数据。
  20. 根据权利要求18所述的驱动方法,其中,根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定多个局部亮度差异数据;
    将所述多个局部亮度差异数据的最大值或平均值作为亮度差异数据;以及
    根据所述亮度差异数据确定所述亮度增益数据。
  21. 根据权利要求18所述的驱动方法,其中,所述发光区域包括与所述多个双面发光区域一一对应的多个发光分区;
    根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    根据所述多个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述多个发光分区的局部亮度增益数据;
    根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:
    根据所述多个发光分区的局部亮度增益数据,分别对所述多个发光分区进行亮度补偿。
  22. 根据权利要求21所述的驱动方法,其中,所述发光区域还包括位于相邻的发光分区之间的过渡区域;
    根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,还包括:
    根据所述相邻的发光分区的局部亮度增益数据,确定所述过渡区域的局部亮度增益数据;
    根据所述亮度增益数据,对所述发光区域进行亮度补偿,还包括:
    根据所述过渡区域的局部亮度增益数据,对所述过渡区域进行亮度补偿。
  23. 根据权利要求17或18所述的驱动方法,其中,
    根据所述标准亮度信息和所述感测亮度信息,确定所述亮度增益数据,包括:
    根据所述发光区域中的各个子像素的累积显示信息,确定所述发光区域中的各个子像素的劣化程度估计数据;
    根据所述至少一个双面发光区域的所述标准亮度信息和所述感测亮度信息,确定所述至少一个双面发光区域中的子像素的劣化程度计算数据;
    根据所述至少一个双面发光区域中的子像素的所述劣化程度估计数据和所述劣化程度计算数据,确定劣化程度修正数据;
    根据所述单面发光区域中的各个子像素的劣化程度估计数据和所述劣化程度修正数据,确定所述单面发光区域中的各个子像素的劣化程度计算数据;以及
    根据所述发光区域中的各个子像素的劣化程度计算数据,确定所述发光区域中的各个子像素的个体亮度增益数据;
    根据所述亮度增益数据,对所述发光区域进行亮度补偿,包括:
    根据所述发光区域中的各个子像素的个体亮度增益数据,分别对所述发光区域中的各个子像素进行亮度补偿。
PCT/CN2021/140080 2021-12-21 2021-12-21 显示装置及其驱动方法 WO2023115332A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180004077.4A CN116649011A (zh) 2021-12-21 2021-12-21 显示装置及其驱动方法
GB2319941.7A GB2622730A (en) 2021-12-21 2021-12-21 Display device and driving method therefor
PCT/CN2021/140080 WO2023115332A1 (zh) 2021-12-21 2021-12-21 显示装置及其驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/140080 WO2023115332A1 (zh) 2021-12-21 2021-12-21 显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2023115332A1 true WO2023115332A1 (zh) 2023-06-29

Family

ID=86900804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140080 WO2023115332A1 (zh) 2021-12-21 2021-12-21 显示装置及其驱动方法

Country Status (3)

Country Link
CN (1) CN116649011A (zh)
GB (1) GB2622730A (zh)
WO (1) WO2023115332A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160086537A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light-emitting display and method of compensating for degradation of the same
CN106887212A (zh) * 2017-03-28 2017-06-23 京东方科技集团股份有限公司 一种oled显示装置及其亮度调节方法
CN110972506A (zh) * 2019-01-04 2020-04-07 京东方科技集团股份有限公司 显示面板及其操作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160086537A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light-emitting display and method of compensating for degradation of the same
CN106887212A (zh) * 2017-03-28 2017-06-23 京东方科技集团股份有限公司 一种oled显示装置及其亮度调节方法
CN110972506A (zh) * 2019-01-04 2020-04-07 京东方科技集团股份有限公司 显示面板及其操作方法

Also Published As

Publication number Publication date
CN116649011A (zh) 2023-08-25
GB202319941D0 (en) 2024-02-07
GB2622730A (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US20240169920A1 (en) Display device and electronic apparatus
US10861388B2 (en) Display panel and driving method thereof, display device
US11462156B2 (en) Display device and method of driving display device
US7609240B2 (en) Light generating device, display apparatus having the same and method of driving the same
US10249251B2 (en) Display device
US11164502B2 (en) Display panel and driving method thereof and display device
CN109272935B (zh) 显示面板的驱动方法、驱动芯片及显示装置
WO2016041306A1 (zh) 有机电致发光显示器件、其驱动方法及显示装置
US9835909B2 (en) Display device having cyclically-arrayed sub-pixels
CN103165077A (zh) 显示单元和电子装置
CN111091788A (zh) 显示设备及其驱动方法
US9293114B2 (en) Liquid crystal display apparatus, method of driving liquid crystal display apparatus, and electronic apparatus
US8884996B2 (en) Display device and electronic unit having a plurality of potential lines maintained at gray-scale potentials
JP2011082213A (ja) 表示パネルおよびモジュールならびに電子機器
US20030122496A1 (en) Organic electro luminescent display device
WO2023115332A1 (zh) 显示装置及其驱动方法
CN113314574A (zh) 显示装置
CN114863876A (zh) 显示面板及其显示驱动方法以及电子设备
CN115148089A (zh) 显示面板及显示装置
JP2012098575A (ja) 表示装置の輝度むら調整方法、表示装置及び電子機器
JP4792788B2 (ja) 温度情報検出方法、表示装置、温度情報検出装置、及び、プログラム
TWI762157B (zh) 顯示面板的驅動電路及其操作方法
KR100774905B1 (ko) 전계발광소자를 이용한 광원장치의 구동방법
CN112562575A (zh) 驱动方法及显示装置
CN115705815A (zh) 显示面板和包括显示面板的显示设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180004077.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18004345

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202319941

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211221