WO2023112799A1 - Sensor and measurement device - Google Patents

Sensor and measurement device Download PDF

Info

Publication number
WO2023112799A1
WO2023112799A1 PCT/JP2022/045135 JP2022045135W WO2023112799A1 WO 2023112799 A1 WO2023112799 A1 WO 2023112799A1 JP 2022045135 W JP2022045135 W JP 2022045135W WO 2023112799 A1 WO2023112799 A1 WO 2023112799A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive material
sensor
housing
insulating housing
Prior art date
Application number
PCT/JP2022/045135
Other languages
French (fr)
Japanese (ja)
Inventor
宏紀 中沢
貴史 丸山
健太 池田
悠樹 柄澤
沛宇 夏
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022188927A external-priority patent/JP2023089942A/en
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023112799A1 publication Critical patent/WO2023112799A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G12INSTRUMENT DETAILS
    • G12BCONSTRUCTIONAL DETAILS OF INSTRUMENTS, OR COMPARABLE DETAILS OF OTHER APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G12B15/00Cooling
    • G12B15/06Cooling by contact with heat-absorbing or radiating masses, e.g. heat-sink

Definitions

  • the present invention relates to sensors and measuring devices.
  • JP2011-060496A discloses an IC socket with a housing. At least a portion of the housing is made of a material with good thermal conductivity. This IC socket accommodates a semiconductor device and has contacts that come into contact with the leads of the semiconductor device.
  • the heat generated at the contact when a large current flows through the semiconductor device flows through the insulating plate to the housing and is released from the housing.
  • Parts related to measurement are housed inside the housing of this device. Temperatur drift of parts and the like can become large.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a sensor and a measuring device capable of suppressing temperature drift of an output signal caused by an increase in internal temperature.
  • a sensor comprises a housing, a first thermally conductive material provided on an inner surface of the housing, an electronic component provided inside the housing, and the first thermally conductive material. a second thermally conductive material connecting the materials.
  • the first thermally conductive material has a higher thermal conductivity than the housing and has a larger area than the second thermally conductive material when viewed from the inner surface side of the housing.
  • the heat generated by the electronic components inside the housing is transferred to the first thermally conductive material provided on the inner surface of the housing via the second thermally conductive material. Then, the heat transferred to the first thermally conductive material is released to the outside of the housing through the housing.
  • the electronic component Efficiency of dissipating generated heat is enhanced.
  • the first thermally conductive material provided on the inner surface of the housing can be used without being restricted by the mounting area of the electronic components.
  • the area can be widened when viewed from the inner surface side.
  • the heat from the electronic component can be directly transmitted to a wide area of the housing by the first thermally conductive material having higher thermal conductivity than the housing, so that the electronic component can spread over a wide area of the housing. Heat is diffused, and the heat dissipation effect of the housing can be enhanced.
  • FIG. 1 is a block diagram showing the sensor according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the sensor according to the first embodiment.
  • FIG. 3 is a plan view showing the substrate of the sensor according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing the sensor according to the second embodiment.
  • FIG. 5 is a cross-sectional view showing a sensor as a comparative example.
  • FIG. 6 is a block diagram showing a measuring device according to the third embodiment.
  • FIG. 1 is a block diagram showing a sensor 10 according to the first embodiment.
  • the sensor 10 is a device that detects a physical quantity occurring in a measurement target as a detected quantity.
  • the sensor 10 of the first embodiment constitutes a current sensor that detects the measurement current I flowing through the measurement conductor 12 that is the object to be measured.
  • the sensor 10 may be a sensor that detects a physical quantity such as voltage or temperature that occurs in a measurement target as a detection quantity that is a quantity to be detected.
  • a measuring device for measuring a measurement value related to a measurement target such as a voltmeter, a power meter, or a thermometer, which incorporates these sensors, may be configured.
  • the sensor 10 comprises a circular ring-shaped magnetic core 14 into which the measuring conductor 12 is inserted.
  • a feedback winding 16 is wound around the magnetic core 14 , and a fluxgate element 18 is provided on a part of the magnetic core 14 .
  • the fluxgate element 18 is provided in part of the magnetic core 14 , but the first embodiment is not limited to this.
  • a portion of the magnetic core 14 may be provided with a Hall element or sensing winding.
  • An excitation circuit 20 and a detection circuit 22 are connected to the fluxgate element 18, and the excitation circuit 20 sends to the detection circuit 22 a signal with a frequency 2f that is twice the excitation frequency f.
  • a signal output from the detection circuit 22 is transmitted to one end of the feedback winding 16 via the amplifier circuit 24 .
  • the amplifier circuit 24 is composed of electronic components that generate heat, such as operational amplifiers 26, power transistors, or ICs.
  • This electronic component includes a shunt resistor 30, which will be described later.
  • the other end of the feedback winding 16 is connected to one end of a shunt resistor 30 forming a generator 28 that generates an output signal indicating the detection result, and the other end of the shunt resistor 30 is connected to a GND line 32. It is One end of the shunt resistor 30 is connected to an output terminal 34, and the voltage generated between one end and the other end of the shunt resistor 30 is output from the output terminal 34 as an output signal generated by the generator 28. do.
  • the detection result includes the voltage generated between one end and the other end of the shunt resistor 30 as well as a signal after the voltage has been processed by a circuit such as amplification or filter.
  • the first embodiment the case where one end of the shunt resistor 30 is connected to the output terminal 34 will be described, but the first embodiment is not limited to this.
  • one end of the shunt resistor 30 may be connected to the output terminal 38 via an additional circuit 36 such as an A/D converter or output amplifier.
  • an additional circuit 36 such as an A/D converter or output amplifier.
  • the additional circuit 36 of the A/D converter and/or the output amplifier shall be included in the generator 28 .
  • the magnetic flux ⁇ cannot be canceled from the DC current to the low frequency range. Therefore, the residual magnetic flux ( ⁇ - ⁇ ') that cannot be canceled remains in the magnetic core 14 that constitutes the magnetic circuit.
  • This residual magnetic flux ( ⁇ - ⁇ ') is detected by the fluxgate element 18.
  • the fluxgate element 18 forms an output for canceling the residual magnetic flux ( ⁇ - ⁇ ') together with the excitation circuit 20 and the detection circuit 22, and this output is passed through the amplifier circuit 24 as a secondary feedback current to the feedback winding. 16.
  • a secondary current I2 is output from the feedback winding 16 to which the secondary feedback current is input, and the secondary current I2 flows through the shunt resistor 30 that constitutes the generator 28 .
  • This secondary current I2 is converted by the shunt resistor 30 into a voltage proportional to the measured current I, and the converted voltage is output from the output terminal 34 as an output signal.
  • the sensor 10 outputs from the output terminal 34 the detected amount indicating the magnitude of the measurement current I flowing through the measurement conductor 12 as the output signal generated by the generator 28 .
  • FIG. 2 is a cross-sectional view showing the sensor 10 according to the first embodiment.
  • the sensor 10 has an insulating housing 40 that constitutes a housing.
  • the insulating housing 40 is made of synthetic resin, which is an insulator having no conductivity.
  • the insulating housing 40 has a cover 42 and a cover 44 .
  • the covers 42, 44 are formed in a container shape.
  • the covers 42 and 44 are fixed by screwing at a plurality of locations with the openings facing each other.
  • the insulating housing 40 having the housing space 46 inside is formed by the covers 42 and 44 .
  • Cylindrical struts 48 are formed at a plurality of locations on the inner surface 44A of the cover 44 .
  • a substrate 50 is supported on each post 48 .
  • the substrate 50 is fixed to the cover 44 by screwing a screw (not shown) through the substrate 50 into the post 48 .
  • the electronic components include power transistors, ICs, etc., in addition to the operational amplifier 26 and the shunt resistor 30 .
  • the substrate 50 is housed inside the insulating housing 40 composed of the cover 42 and the cover 44 . Accordingly, a generator 28 that generates an output signal, which is a signal indicating the detection result, is provided inside the insulating housing 40 .
  • the substrate 50 has a surface 50A on which the operational amplifier 26 and the shunt resistor 30 are mounted on the cover 42 side. Further, the substrate 50 has a rear surface 50B on which a wiring pattern for forming an electronic circuit is formed, for example, is arranged on the cover 44 side. A gap is ensured between the inner surface 44A of the cover 44 and the rear surface 50B of the substrate 50 by a support column 48 that supports the substrate 50 .
  • a thermally conductive material 62 that is a first thermally conductive material is provided on the inner surface 42A of the cover 42 .
  • a heat conductive material 64 is provided on the inner surface 44A of the cover 44 .
  • thermally conductive material 62 and the thermally conductive material 64 have higher thermal conductivity than the insulating housing 40 .
  • the thermally conductive material 66 provided on the inner surface of the insulating housing 40 has electrical conductivity. This prevents electromagnetic waves from entering the accommodation space 46 from the outside.
  • thermally conductive material 62 provided on the inner surface 42A of the cover 42 and the thermally conductive material 64 provided on the inner surface 44A of the cover 44 in the state where the insulating housing 40 is formed by the cover 42 and the cover 44. is configured to form a gap.
  • the peripheral wall 70 of the cover 42 does not comprise the thermally conductive material 62 and the peripheral wall 72 of the cover 44 does not comprise the thermally conductive material 64 .
  • thermally conductive material 62 and the thermally conductive material 64 are configured so as not to be connected to each other. That is, both thermally conductive materials 62 , 64 are configured so as not to form a loop surrounding substrate 50 .
  • This configuration can prevent the formation of a one-turn coil. This suppresses the generation of an induced current due to the magnetic flux from the measurement conductor 12 in the conductive layer composed of the thermally conductive material 62 and the thermally conductive material 64 . Therefore, the measurement accuracy can be improved as compared with the case where the induced current flows in the conductive layer composed of the two thermally conductive materials 62 and 64.
  • the thermally conductive material 66 provided on the inner surface of the insulating housing 40 is made of metal, and compared to the case where the thermally conductive material 66 is made of a material other than metal, the housing space is protected from the outside. The effect of suppressing electromagnetic waves from entering 46 is enhanced.
  • the thermally conductive material 66 provided on the inner surface of the insulating housing 40 is made of plating. In other words, the thermally conductive material 66 is provided on the inner surface of the insulating housing 40 by plating the inner surfaces 42A and 44A of the covers 42 and 44 .
  • thermally conductive material 66 by plating, a uniform thermally conductive material 66 is formed on the inner surface of the insulating housing 40 regardless of the presence or absence of unevenness. Furthermore, by plating the inner surface of the insulating housing 40 , the thermally conductive material 66 is formed over a wide area of the insulating housing 40 .
  • the thermally conductive material 66 formed by this plating process is formed thin, and the thermally conductive material 66 can be rephrased as a conductive thin film.
  • the plating that constitutes the thermally conductive material 66 is, for example, a layer formed of copper, aluminum, tin, or a combination of these alloys, or a layer of copper, aluminum, tin, or a combination of these alloys. Consists of things.
  • FIG. 3 is a plan view showing the substrate 50 of the sensor 10 according to the first embodiment.
  • the substrate 50 housed in the insulating housing 40 is formed in a rectangular shape, and the substrate 50 has a circular hole 80 formed therein.
  • the magnetic core 14 described above is arranged on the outer periphery of the circular hole 80 .
  • the cover 42 is formed with a circular ring-shaped bulging portion in which the magnetic core 14 is arranged.
  • a first insertion hole into which the measurement conductor 12 to be measured can be inserted is formed inside the circular ring-shaped bulging portion.
  • a second insertion hole is formed in a portion of the cover 44 corresponding to the first insertion hole.
  • the measuring conductor 12 As a result, by inserting the measuring conductor 12 (see FIG. 1) to be measured into each insertion hole formed in the insulating housing 40, the measuring conductor 12 is connected to the magnetic core provided inside the insulating housing 40. 14 to be inserted.
  • the board 50 constitutes a printed wiring board.
  • a printed pattern 52 is formed on the surface 50A of the substrate 50, and lands and the like to which electronic components are soldered are formed on the printed pattern 52. As shown in FIG.
  • an electronic circuit is formed by the printed pattern 52 on the surface 50A of the substrate 50 and the wiring pattern electrically connected to the printed pattern 52.
  • the electronic parts to be soldered include the operational amplifier 26, the power transistor, the IC, etc. that constitute the amplifier circuit 24 described above.
  • Another electronic component is the shunt resistor 30 described above.
  • the wiring pattern that connects the land to which the lead of the operational amplifier 26 is soldered and the land to which the lead of the shunt resistor 30 is soldered is formed thinner than the wiring pattern that connects other electronic components.
  • the wiring pattern that electrically connects the operational amplifier 26 and the shunt resistor 30 has a larger thermal resistance than other wiring patterns, and heat is transmitted from the operational amplifier 26 to the shunt resistor 30 via the wiring pattern. the heat generated is suppressed.
  • the GND line 32 (see FIG. 1) formed by the wiring pattern of the substrate 50 is electrically connected to the thermally conductive material 66 .
  • the operational amplifier 26 is arranged in the vicinity of the circular hole 80. Also, the shunt resistor 30 is arranged at a position obliquely away from the operational amplifier 26 . As a result, the distance from the operational amplifier 26 to the shunt resistor 30 is made larger than when the operational amplifier 26 and the shunt resistor 30 are arranged side by side.
  • the operational amplifier 26 is a flat package type molded with synthetic resin, and the surface 26A of the operational amplifier 26 is flat. Also, the shunt resistor 30 is of the platform package type, and the surface 30A of the shunt resistor 30 is flat.
  • the operational amplifier 26 is connected to the thermally conductive material 62 provided on the inner surface 42A of the cover 42 that constitutes the insulating housing 40 via the thermally conductive material 90 that is the second thermally conductive material.
  • the operational amplifier 26 provided inside the insulating housing 40 and the thermally conductive material 66 provided on the inner surface of the insulating housing 40 are connected by the thermally conductive material 90 .
  • thermally conductive material 90 is composed of TIM (Thermal Interface Material) as an example.
  • the shunt resistor 30 is connected via a thermally conductive material 92 to the thermally conductive material 62 provided on the inner surface 42A of the cover 42 that constitutes the insulating housing 40 .
  • the thermally conductive materials 90, 92 are made of thermally conductive sheets, and the thermally conductive materials 90, 92 are rubber-like sheet bodies. Also, the thermally conductive materials 90 and 92 are made of silicone rubber having elasticity, thermal conductivity, electrical insulation, and flame retardancy.
  • thermally conductive materials 90 and 92 is Sarcon.
  • the sarcon has a thermal conductivity k of 1 W/m°C or more and 5 W/m°C or less.
  • the thermally conductive material 90 is formed in substantially the same shape as the surface 26A of the operational amplifier 26. This thermally conductive material 90 has a smaller area than the thermally conductive material 62 when viewed from the inner surface side of the insulating housing 40 .
  • One surface 90A of the thermally conductive material 90 is in surface contact with the surface 26A of the operational amplifier 26, and the other surface 90B is in surface contact with the thermally conductive material 62 provided on the cover 42.
  • the thermally conductive material 92 is formed in substantially the same shape as the surface 30A of the shunt resistor 30.
  • One surface 92A of the thermally conductive material 92 is in surface contact with the surface 30A of the shunt resistor 30, and the other surface 92B is in surface contact with the thermally conductive material 62 provided on the cover 42. .
  • the thermally conductive materials 90, 92 are compressed while the cover 42 is screwed to the cover 44, and the compressibility is determined according to the specifications of the thermally conductive materials 90, 92. As a result, the thermally conductive materials 90 and 92 are pressed against the surface 26A of the operational amplifier 26 or the surface 30A of the shunt resistor 30 with a predetermined pressure on one side 90A and 92A, and the other sides 90B and 92B against the thermally conductive material 62. Pressed with a specified pressure.
  • the thermally conductive material 90 has substantially the same shape as the surface 26A of the operational amplifier 26, and the thermally conductive material 90 is arranged on the operational amplifier 26.
  • the thermally conductive material 90 is not limited to this.
  • the thermally conductive material 90 is formed larger than the surface 26A of the operational amplifier 26, and the portion of the thermally conductive material 90 extending to the outer periphery of the surface 26A of the operational amplifier 26 is brought into contact with the leads extending from the operational amplifier 26. good too. In this case, heat transferred to the leads of op amp 26 can escape through thermally conductive material 90 .
  • thermally conductive material 92 has substantially the same shape as the surface 30A of the shunt resistor 30 and the thermally conductive material 92 is arranged on the shunt resistor 30 will be described. It is not limited.
  • the thermally conductive material 92 is formed larger than the surface 30A of the shunt resistor 30, and the portion of the thermally conductive material 92 extending to the outer periphery of the surface 30A of the shunt resistor 30 extends from the shunt resistor 30. may be brought into contact with the lead. In this case, heat transferred to the leads of shunt resistor 30 can escape through thermally conductive material 92 .
  • the sensor 10 in the first embodiment includes an insulating housing 40, a thermally conductive material 62 provided on the inner surface of the insulating housing 40, an operational amplifier 26 and a thermally conductive material 66 provided inside the insulating housing 40. and a thermally conductive material 90 connecting the .
  • the thermally conductive material 62 has a higher thermal conductivity than the insulating housing 40 and has a wider area than the thermally conductive material 90 when viewed from the inner surface side of the insulating housing 40 .
  • the heat generated by the operational amplifier 26 and the shunt resistor 30 inside the insulating housing 40 is transferred to the thermally conductive material 90 having a thermal conductivity k of 1 W/m° C. or more and 5 W/m° C. or less, for example. , 92 to the thermally conductive material 62 provided on the inner surface of the insulating housing 40 .
  • the heat transferred to the thermally conductive material 62 is released to the outside of the insulating housing 40 through the insulating housing 40 .
  • the heat generated by the operational amplifier 26 is released to the housing space 46 inside the insulating housing 40, it is transferred to the insulating housing 40 via the air having a thermal conductivity k of 0.03 W/m°C. , the heat dissipation efficiency of the heat generated in the operational amplifier 26 is increased as compared with the case where the heat is emitted to the outside from the insulating housing.
  • the thermally conductive material 62 and the thermally conductive material 90 connected to each other is not restricted by the mounting area of the operational amplifier 26, and the insulating housing 40 The area can be widened when viewed from the inner surface 42A side.
  • the heat from the operational amplifier 26 can be directly transmitted to a wide range of the insulating housing 40 by the thermally conductive material 62 having a higher thermal conductivity than the insulating housing 40, so that the heat can be transferred to a wide range of the insulating housing 40. It can diffuse heat and enhance the heat dissipation effect.
  • FIG. 5 is a cross-sectional view showing a sensor 200 as a comparative example.
  • the same reference numerals are assigned to the same or equivalent portions as those of the first embodiment and the second embodiment described later.
  • the operational amplifier 26 and the shunt resistor 30 are covered with the sheet metal 104 .
  • Op-amp 26 is connected to sheet metal 104 via comparative thermally conductive material 202 .
  • the heat generated by the operational amplifier 26 is transmitted to the sheet metal 104 through the comparative example thermally conductive material 202 and released from the sheet metal 104 to the housing space 46 inside the insulating housing 40 .
  • the heat generated by the operational amplifier 26 is released into the housing space 46 inside the insulating housing 40 , then transmitted to the insulating housing 40 through the air in the housing space 46 . will be released to the outside.
  • the thermal conductivity of air is lower than that of the thermally conductive material 90 (see FIG. 2). Therefore, the sensor 200 has poor heat radiation efficiency, and the heat generated by the operational amplifier 26 can affect the shunt resistor 30 .
  • the heat generated by the operational amplifier 26 can be efficiently released to the outside of the insulating housing 40 as described above.
  • the insulating housing 40 may be a conductive housing.
  • the sensor 10 of the first embodiment constitutes a current sensor that detects the measurement current I flowing through the measurement conductor 12 .
  • the insulating housing 40 is made of synthetic resin, which is a non-conductive insulator, in order to ensure insulation.
  • Such an insulating housing 40 has poor heat dissipation, and when heat is released inside the insulating housing 40 , the heat tends to stay inside the insulating housing 40 . As a result, the influence of temperature drift increases, the operating temperature range becomes narrower than the specified value, and the maximum measured current becomes smaller than the specified value.
  • the output value changes. Offsets can occur and sensitivity drift can occur. This can degrade detection reproducibility and detection accuracy.
  • the usable temperature or the maximum detectable current specified by the standard may be limited.
  • the insulating housing 40 having insulating properties it is possible to improve heat dissipation even if the insulating housing 40 having insulating properties is used. Therefore, it is possible to reduce the influence of the temperature drift described above, widen the operating temperature range, and increase the maximum measurement current while ensuring insulation from the outside.
  • the generator 28 that generates a signal indicating the detection result is provided inside the insulating housing 40 .
  • the heat from the operational amplifier 26 is generated in the generating section 28 compared to the case where the heat generated in the operational amplifier 26 can be released inside the insulating housing 40 and transferred to the generating section 28. It is possible to suppress the influence on the output signal indicating the result.
  • the generation unit 28 includes the shunt resistor 30, and the resistance value of the shunt resistor 30 can vary with changes in temperature.
  • the resistance value of the shunt resistor 30 fluctuates, the output voltage fluctuates, which can affect the detection result.
  • the heat generated by the operational amplifier 26 is released to the outside of the insulating housing 40 to suppress the temperature change of the shunt resistor 30 that constitutes the generating unit 28 and reduce the fluctuation of the detection result. can be suppressed.
  • the insulating housing 40 is made of an insulator, and the thermally conductive material 62 has electrical conductivity.
  • the intrusion of electromagnetic waves from the outside can be suppressed by the thermally conductive material 62 having electrical conductivity. .
  • the influence of electromagnetic waves from the outside on the detection result it is possible to suppress the influence of electromagnetic waves from the outside on the detection result.
  • the sensor 10 of the first embodiment constitutes a current sensor that detects the measured current I by the magnetic flux ⁇ generated in the magnetic core 14.
  • the sensor 10 of the first embodiment by suppressing the invasion of electromagnetic waves from the outside, it is possible to suppress the influence of the electromagnetic waves on the magnetic core 14 and enhance the effect of suppressing the influence on the detection result.
  • the thermally conductive material 62 having electrical conductivity is electrically connected to the GND line 32 formed by the wiring pattern of the substrate 50 . Therefore, it is possible to reduce common mode noise that indicates the influence of the common mode voltage.
  • the thermally conductive material 62 is made of metal.
  • the thermally conductive material 66 is made of a material other than metal, the effect of preventing electromagnetic waves from entering the insulating housing 40 from the outside can be enhanced.
  • the thermally conductive material 62 is composed of plating formed on the inner surface of the insulating housing 40 .
  • the thermally conductive material 62 can be formed in close contact with a wide range of the insulating housing 40 by plating the inner surface of the insulating housing 40 .
  • the heat transferred to the thermally conductive material 66 can be diffused over a wide range, thereby promoting heat transfer to the insulating housing 40 .
  • the thermally conductive material 62 can be formed by plating, even if the insulating housing 40 has unevenness, the thermally conductive material 62 can be uniformly formed along the inner surface of the insulating housing 40. can. This makes it easier to form the thermally conductive material 62 than in the case where a metal sheet is provided on the inner surface of the insulating housing 40 .
  • the thermally conductive material 62 formed by this plating process is formed thin. Therefore, compared to the case where the thermally conductive material 62 is made of sheet metal, the weight of the insulating housing 40 can be reduced.
  • the thermally conductive material 90 is composed of a thermally conductive sheet.
  • the shunt resistor 30 constituting the generator 28 is connected to the thermally conductive material 62 provided on the inner surface of the insulating housing 40 via the thermally conductive material 92. there is Therefore, the heat generated by the shunt resistor 30 can be released from the insulating housing 40 to the outside through the thermally conductive material 92 and the thermally conductive material 62 .
  • FIG. 4 is a diagram showing the sensor 100 according to the second embodiment.
  • a sensor 100 according to the second embodiment is partially different from the sensor 10 according to the first embodiment. Parts that are the same as or equivalent to those in the first embodiment are denoted by the same reference numerals, descriptions thereof are omitted, and only different parts are described.
  • FIG. 4 is a cross-sectional view showing the sensor 100 according to the second embodiment.
  • a sheet metal 104 is sandwiched between the thermally conductive material 102, which is the second thermally conductive material, provided between the operational amplifier 26 and the thermally conductive material 62 on the substrate 50 of the sensor 100. ing.
  • the thermally conductive material 102 provided between the operational amplifier 26 and the thermally conductive material 62 is separated from the component-side thermally conductive material 106 located on the operational amplifier 26 side and the thermally conductive material 62 side. and a shared thermally conductive material 108 disposed in the .
  • a sheet metal 104 is positioned between the component-side thermally conductive material 106 and the shared thermally conductive material 108 . As a result, the sheet metal 104 is sandwiched between the thermally conductive material 102 .
  • a shared thermally conductive material 108 is provided along the upper surface of the sheet metal 104 .
  • a shared thermally conductive material 108 extends from the top of the operational amplifier 26 to the top of the shunt resistor 30 .
  • the component-side thermally conductive material 106 and the shared thermally conductive material 108 have different thickness dimensions and the same material as the thermally conductive material 90 in comparison with the thermally conductive material 90 of the first embodiment.
  • Each thermally conductive material 106, 108 is arranged between the operational amplifier 26 and the thermally conductive material 62 in a compressed state, as in the first embodiment.
  • the component-side thermally conductive material 106 adheres to the surface 26A of the operational amplifier 26 in surface contact and adheres to the sheet metal 104 in surface contact.
  • the shared thermal conductive material 108 adheres to the sheet metal 104 in surface contact and adheres to the thermal conductive material 62 in surface contact.
  • the sheet metal 104 is composed of a metal plate material.
  • the sheet metal 104 has a length such that one end extends outside the operational amplifier 26 and the other end extends outside the shunt resistor 30 .
  • a one-end extension 104A extending toward the substrate 50 and a one-end extension 104B extending from the one-end extension 104A and extending along the substrate 50 are formed. It is The one-end extending portion 104B is in contact with the printed pattern 52 of the substrate 50, and is soldered to the GND line 32 (see FIG. 1) of the printed pattern 52, for example.
  • the other end side extension part 104C extending toward the substrate 50 side and the other end side extension part extending from the other end side extension part 104C and extending along the substrate 50 are provided.
  • 104D are formed.
  • the other end side extension portion 104D is fixed in contact with the substrate 50 .
  • the sheet metal 104 covers the operational amplifier 26 and the shunt resistor 30.
  • the sheet metal 104 constitutes a shield that blocks electromagnetic waves. This suppresses electromagnetic waves from entering the electronic circuit formed on the substrate 50 .
  • a resistance-side thermally-conductive material 110 is arranged above the shunt resistor 30, and the resistance-side thermally-conductive material 110 supports a portion of the sheet metal 104 described above. Between the sheet metal 104 supported by the resistive thermally conductive material 110 and the thermally conductive material 62 is the shared thermally conductive material 108 previously described.
  • the resistance-side thermally conductive material 110 has a different thickness dimension than the thermally conductive material 92 of the first embodiment, and is made of the same material as the thermally conductive material 92 .
  • the resistance-side thermally conductive material 110 is arranged between the shunt resistor 30 and the thermally conductive material 62 in a compressed state, as in the first embodiment. As a result, the resistance-side thermally conductive material 110 adheres to the surface 30A of the shunt resistor 30 in surface contact and adheres to the sheet metal 104 in surface contact.
  • the same or equivalent parts as those of the first embodiment can achieve the same effects as those of the first embodiment.
  • the sheet metal 104 is sandwiched between the thermally conductive materials 102 .
  • the thickness dimension from one surface to the other surface of the thermally conductive material 102 can be increased by the thickness of the sheet metal 104 .
  • the sheet metal 104 arranged between the component-side thermally conductive material 106 and the shared thermally conductive material 108 is larger than the surface 26A of the operational amplifier 26.
  • the heat transferred from the operational amplifier 26 to the sheet metal 104 through the component-side thermally conductive material 106 diffuses over the entire sheet metal 104 larger than the surface 26A of the operational amplifier 26, and then through the shared thermally conductive material 108. , can be transmitted over a wide area of the thermally conductive material 62 . As a result, heat can be dissipated from a wide range of the insulating housing 40 in which the thermally conductive material 62 is provided on the inner surface of the insulating housing 40 .
  • the heat dissipation effect can be enhanced.
  • the insulating housing 40 may be a conductive housing.
  • FIG. 6 is a block diagram showing a measuring device 300 according to the third embodiment.
  • the measuring device 300 includes a measuring device main body 301 and a sensor 302.
  • the sensor 302 is configured with the sensor 10 of the first embodiment or the sensor 100 of the second embodiment.
  • the sensor 10 has the configuration described in the first embodiment, and the sensor 100 has the configuration described in the second embodiment.
  • the measurement device main body 301 includes an operation unit 304 , a measurement unit 305 , a processing unit 306 , a display unit 307 and a storage unit 308 .
  • the sensor 302 is connected to the measuring section 305 of the measuring device body 301 via a cable 303 .
  • the storage unit 308 stores operation programs, measurement result data, and the like.
  • the processing unit 306 operates according to the operation program stored in the storage unit 308 to control the measurement unit 305 and the display unit 307 .
  • the measurement unit 305 operates according to the control from the processing unit 306, and based on the detected amount of magnetism acquired from the sensor 302 (an output signal capable of specifying the current value of the measurement current), the measurement conductor 12 (Fig. 1) is executed to measure the current value of the measurement current I flowing through.
  • the operation unit 304 includes operation switches for instructing the setting of measurement conditions and the start and end of measurement by the measuring device 300, and the operation unit 304 outputs an operation signal to the processing unit 306 according to the switch operation.
  • a display unit 307 receives a signal from the processing unit 306 and displays measurement results and the like.
  • the processing unit 306 comprehensively controls the measuring device body 301 . Specifically, the processing unit 306 controls the measurement unit 305 to execute the measurement process described above. Further, the processing unit 306 causes the display unit 307 to display the measurement result obtained by the measurement unit 305 , generates measurement result data that can identify the measurement result, and stores the measurement result data in the storage unit 308 .
  • a measuring device 300 in the third embodiment includes a sensor 302 and a measuring section 305 that measures a measured value related to the measurement conductor 12, which is the object to be measured, based on the output signal of the sensor 302.
  • the sensor 302 of the measuring device 300 is configured like the sensor 10 of the first embodiment or the sensor 100 of the second embodiment. Therefore, this measuring device 300 has the same effect as the first embodiment or the second embodiment.
  • the measuring device 300 performs measurement based on the detected amount acquired from the sensor 302 . Therefore, the measurement apparatus 300 can perform measurement while suppressing the temperature drift of the output signal caused by the rise in the internal temperature of the sensor 302 .
  • the third embodiment shows the measuring device 300 that displays the measured value on the display unit 307
  • the third embodiment is not limited to this structure.
  • the measuring device 300 may be a device that outputs measured values to the outside in a wired or wireless manner.
  • the third embodiment shows the measuring device 300 in which the sensor 302 is provided outside the measuring device main body 301, the third embodiment is not limited to this configuration.
  • measurement device 300 may be a device that incorporates sensor 302 .
  • the measurement device 300 that performs communication between the sensor 302 and the measurement unit 305 using the cable 303 is shown, but the third embodiment is not limited to this configuration.
  • the measuring device 300 may be a device that communicates between the sensor 302 and the measuring section 305 using wireless communication means instead of the cable 303 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

This sensor comprises a housing, a first thermally conductive material provided to an inner surface of the housing, and a second thermally conductive material connecting the first thermally conductive material and an electronic component provided in the interior of the housing. The first thermally conductive material has a higher thermal conductivity than the housing and has a wider area than the second thermally conductive material when viewed from the inside of the housing.

Description

センサ及び測定装置Sensors and measuring devices
 本発明は、センサ及び測定装置に関する。 The present invention relates to sensors and measuring devices.
 JP2011-060496Aには、ハウジングを備えたICソケットが開示されている。ハウジングは、少なくとも一部が熱伝導性の良い材料で形成されている。このICソケットは、半導体装置を収容するものであり、半導体装置のリードに接するコンタクトを備える。 JP2011-060496A discloses an IC socket with a housing. At least a portion of the housing is made of a material with good thermal conductivity. This IC socket accommodates a semiconductor device and has contacts that come into contact with the leads of the semiconductor device.
 半導体装置に大電流が流れた際にコンタクトで発生した熱は、絶縁板を介してハウジングに流れ、ハウジングから放出される。 The heat generated at the contact when a large current flows through the semiconductor device flows through the insulating plate to the housing and is released from the housing.
 しかしながら、このICソケットを装置に採用した場合、半導体装置に流れる電流によって発生した熱は、ICソケットのハウジングから装置の筐体内部に放出される。 However, when this IC socket is used in a device, the heat generated by the current flowing through the semiconductor device is released from the housing of the IC socket into the housing of the device.
 この装置の筐体の内部には、測定に関わる部品等が収容されており、測定に関わる部品等が筐体内に放出された熱の影響を受けると、筐体内の温度が上昇することに伴って部品等の温度ドリフトが大きくなり得る。 Parts related to measurement are housed inside the housing of this device. temperature drift of parts and the like can become large.
 本発明は、上記の問題点に鑑みてなされたものであり、内部温度の上昇に起因する出力信号の温度ドリフトを抑制可能なセンサ及び測定装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a sensor and a measuring device capable of suppressing temperature drift of an output signal caused by an increase in internal temperature.
 本発明のある態様のセンサは、筐体と、前記筐体の内面に設けられた第一の熱伝導性材料と、前記筐体の内部に設けられた電子部品と前記第一の熱伝導性材料を接続する第二の熱伝導性材料と、を備える。前記第一の熱伝導性材料は、前記筐体より熱伝導率が高く、前記筐体の内面側から見て前記第二の熱伝導性材料よりも面積が広い。 A sensor according to one aspect of the present invention comprises a housing, a first thermally conductive material provided on an inner surface of the housing, an electronic component provided inside the housing, and the first thermally conductive material. a second thermally conductive material connecting the materials. The first thermally conductive material has a higher thermal conductivity than the housing and has a larger area than the second thermally conductive material when viewed from the inner surface side of the housing.
 この態様において、筐体内部の電子部品で生じた熱は、第二の熱伝導性材料を介して、筐体の内面に設けられた第一の熱伝導性材料に伝達される。そして、第一の熱伝導性材料に伝達された熱は、筐体を介して、筐体の外部へ放出される。 In this aspect, the heat generated by the electronic components inside the housing is transferred to the first thermally conductive material provided on the inner surface of the housing via the second thermally conductive material. Then, the heat transferred to the first thermally conductive material is released to the outside of the housing through the housing.
 このため、電子部品で生じた熱が筐体の内部空間に放出され、その放出された熱が筐体内部の空気を介して筐体から外部へ放出される場合と比較して、電子部品で生じた熱の放熱効率が高まる。 For this reason, compared to the case where the heat generated by the electronic component is radiated into the internal space of the housing, and the radiated heat is radiated from the housing to the outside through the air inside the housing, the electronic component Efficiency of dissipating generated heat is enhanced.
 これにより、筐体の内部に設けられた測定に関わる部品等が受ける熱の影響を小さくすることができる。 As a result, it is possible to reduce the influence of heat on the parts related to measurement provided inside the housing.
 したがって、筐体の内部温度の上昇に起因する出力信号の温度ドリフトの抑制が可能となる。 Therefore, it is possible to suppress the temperature drift of the output signal caused by the rise in the internal temperature of the housing.
 また、第一の熱伝導性材料と第二の熱伝導性材料を接続して用いることで、筐体の内面に設けた第一の熱伝導性材料を電子部品の実装面積に縛られず筐体の内面側から見て面積を広くできる。そして、電子部品からの熱を、筐体よりも熱伝導率の高い第一の熱伝導性材料によって筐体の広い範囲に直接伝達させることができるので、筐体の広い範囲に電子部品からの熱が拡散され、筐体の放熱効果を高めることができる。 In addition, by connecting the first thermally conductive material and the second thermally conductive material and using them, the first thermally conductive material provided on the inner surface of the housing can be used without being restricted by the mounting area of the electronic components. The area can be widened when viewed from the inner surface side. Further, the heat from the electronic component can be directly transmitted to a wide area of the housing by the first thermally conductive material having higher thermal conductivity than the housing, so that the electronic component can spread over a wide area of the housing. Heat is diffused, and the heat dissipation effect of the housing can be enhanced.
図1は、第一実施形態に係るセンサを示すブロック図である。FIG. 1 is a block diagram showing the sensor according to the first embodiment. 図2は、第一実施形態に係るセンサを示す断面図である。FIG. 2 is a cross-sectional view showing the sensor according to the first embodiment. 図3は、第一実施形態に係るセンサの基板を示す平面図である。FIG. 3 is a plan view showing the substrate of the sensor according to the first embodiment. 図4は、第二実施形態に係るセンサを示す断面図である。FIG. 4 is a cross-sectional view showing the sensor according to the second embodiment. 図5は、比較例としてのセンサを示す断面図である。FIG. 5 is a cross-sectional view showing a sensor as a comparative example. 図6は、第三実施形態に係る測定装置を示すブロック図である。FIG. 6 is a block diagram showing a measuring device according to the third embodiment.
 以下、添付図面を参照しながら本発明の各実施形態について説明する。本明細書においては、全体を通じて、同一又は同等の要素には同一の符号を付する。 Each embodiment of the present invention will be described below with reference to the accompanying drawings. Throughout this specification, the same or equivalent elements are given the same reference numerals.
 <第一実施形態>
 まず、図1から図3を参照して、第一実施形態に係るセンサ10について説明する。図1は、第一実施形態に係るセンサ10を示すブロック図である。
<First Embodiment>
First, a sensor 10 according to the first embodiment will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is a block diagram showing a sensor 10 according to the first embodiment.
 図1に示すように、センサ10は、測定対象に生ずる物理量を検出量として検出する装置である。第一実施形態のセンサ10は、一例として、測定対象である測定導体12に流れる測定電流Iを検出する電流センサを構成する。 As shown in FIG. 1, the sensor 10 is a device that detects a physical quantity occurring in a measurement target as a detected quantity. As an example, the sensor 10 of the first embodiment constitutes a current sensor that detects the measurement current I flowing through the measurement conductor 12 that is the object to be measured.
 なお、第一実施形態では、センサ10が電流センサを構成する場合について説明するが、第一実施形態は、これに限定されるものではない。第一実施形態に係るセンサ10は、検出すべき量である検出量として、測定対象に生ずる電圧又は温度などの物理量を検出するセンサであってもよい。また、これらのセンサを内蔵した電圧計、電力計、又は温度計など、測定対象に関する測定値を測定する測定装置を構成してもよい。 In the first embodiment, the case where the sensor 10 constitutes a current sensor will be described, but the first embodiment is not limited to this. The sensor 10 according to the first embodiment may be a sensor that detects a physical quantity such as voltage or temperature that occurs in a measurement target as a detection quantity that is a quantity to be detected. Moreover, a measuring device for measuring a measurement value related to a measurement target, such as a voltmeter, a power meter, or a thermometer, which incorporates these sensors, may be configured.
 (ブロック説明)
 センサ10は、測定導体12が挿入される円形リング状の磁気コア14を備えている。磁気コア14には、帰還巻線16が巻かれており、磁気コア14の一部には、フラックスゲート素子18が設けられている。
(Block description)
The sensor 10 comprises a circular ring-shaped magnetic core 14 into which the measuring conductor 12 is inserted. A feedback winding 16 is wound around the magnetic core 14 , and a fluxgate element 18 is provided on a part of the magnetic core 14 .
 なお、第一実施形態では、磁気コア14の一部にフラックスゲート素子18を設けた場合について説明するが、第一実施形態は、これに限定されるものではない。例えば、磁気コア14の一部にホール素子又は検出巻線を設けてもよい。 In the first embodiment, the case where the fluxgate element 18 is provided in part of the magnetic core 14 will be described, but the first embodiment is not limited to this. For example, a portion of the magnetic core 14 may be provided with a Hall element or sensing winding.
 フラックスゲート素子18には、励磁回路20及び検波回路22が接続されており、励磁回路20は、励磁周波数fの二倍の周波数2fの信号を検波回路22に送る。検波回路22から出力される信号は、アンプ回路24を介して、帰還巻線16の一端に伝送される。 An excitation circuit 20 and a detection circuit 22 are connected to the fluxgate element 18, and the excitation circuit 20 sends to the detection circuit 22 a signal with a frequency 2f that is twice the excitation frequency f. A signal output from the detection circuit 22 is transmitted to one end of the feedback winding 16 via the amplifier circuit 24 .
 アンプ回路24は、オペアンプ26、パワートランジスタ、又はICなどの発熱する電子部品で構成される。この電子部品としては、後述するシャント抵抗器30が含まれる。 The amplifier circuit 24 is composed of electronic components that generate heat, such as operational amplifiers 26, power transistors, or ICs. This electronic component includes a shunt resistor 30, which will be described later.
 帰還巻線16の他端は、検出結果を示す出力信号を生成する生成部28を構成するシャント抵抗器30の一端に接続されており、シャント抵抗器30の他端は、GNDライン32に接続されている。また、シャント抵抗器30の一端は、出力端子34に接続されており、シャント抵抗器30の一端及び他端の間に生ずる電圧を、生成部28で生成される出力信号として出力端子34から出力する。なお、検出結果は、シャント抵抗器30の一端及び他端の間に生ずる電圧のほか、当該電圧を増幅又はフィルタなどの回路により処理した後の信号を含む。 The other end of the feedback winding 16 is connected to one end of a shunt resistor 30 forming a generator 28 that generates an output signal indicating the detection result, and the other end of the shunt resistor 30 is connected to a GND line 32. It is One end of the shunt resistor 30 is connected to an output terminal 34, and the voltage generated between one end and the other end of the shunt resistor 30 is output from the output terminal 34 as an output signal generated by the generator 28. do. The detection result includes the voltage generated between one end and the other end of the shunt resistor 30 as well as a signal after the voltage has been processed by a circuit such as amplification or filter.
 なお、第一実施形態では、シャント抵抗器30の一端を出力端子34に接続する場合について説明するが、第一実施形態は、これに限定されるものではない。 In the first embodiment, the case where one end of the shunt resistor 30 is connected to the output terminal 34 will be described, but the first embodiment is not limited to this.
 例えば、シャント抵抗器30の一端を、A/D変換器又は出力アンプなどの追加回路36を介して、出力端子38に接続してもよい。この場合、A/D変換器及び/又は出力アンプの追加回路36は、生成部28に含むものとする。 For example, one end of the shunt resistor 30 may be connected to the output terminal 38 via an additional circuit 36 such as an A/D converter or output amplifier. In this case, the additional circuit 36 of the A/D converter and/or the output amplifier shall be included in the generator 28 .
 (動作説明)
 磁気コア14を挿通する測定導体12に測定電流Iが流れると、この測定導体12に流れる測定電流Iによって磁気コア14の内部に磁束Φが発生する。すると、磁気コア14の内部で発生した磁束Φを打ち消すために、二次側の帰還巻線16に二次電流I2が流れる。帰還巻線16に二次電流I2が流れることにより、磁気コア14の内部に磁束Φ’が発生する。
(Description of operation)
When the measurement current I flows through the measurement conductor 12 passing through the magnetic core 14 , the measurement current I flowing through the measurement conductor 12 generates a magnetic flux Φ inside the magnetic core 14 . Then, in order to cancel the magnetic flux Φ generated inside the magnetic core 14, a secondary current I2 flows through the feedback winding 16 on the secondary side. A magnetic flux Φ′ is generated inside the magnetic core 14 by the secondary current I2 flowing through the feedback winding 16 .
 ここで、DC電流から低周波領域までは、磁束Φをキャンセルできない。このため、キャンセルできなかった残留磁束(Φ-Φ’)は、磁気回路を構成する磁気コア14内に残る。 Here, the magnetic flux Φ cannot be canceled from the DC current to the low frequency range. Therefore, the residual magnetic flux (Φ-Φ') that cannot be canceled remains in the magnetic core 14 that constitutes the magnetic circuit.
 この残留磁束(Φ-Φ’)は、フラックスゲート素子18で検出される。フラックスゲート素子18は、励磁回路20及び検波回路22と共に残留磁束(Φ-Φ’)を相殺するための出力を形成し、この出力を、アンプ回路24を介して二次帰還電流として帰還巻線16に印加する。 This residual magnetic flux (Φ-Φ') is detected by the fluxgate element 18. The fluxgate element 18 forms an output for canceling the residual magnetic flux (Φ-Φ') together with the excitation circuit 20 and the detection circuit 22, and this output is passed through the amplifier circuit 24 as a secondary feedback current to the feedback winding. 16.
 二次帰還電流が入力された帰還巻線16からは、二次電流I2が出力され、二次電流I2は、生成部28を構成するシャント抵抗器30に流れる。この二次電流I2は、シャント抵抗器30において、測定電流Iに比例した電圧に変換され、変換された電圧は、出力端子34から出力信号として出力される。 A secondary current I2 is output from the feedback winding 16 to which the secondary feedback current is input, and the secondary current I2 flows through the shunt resistor 30 that constitutes the generator 28 . This secondary current I2 is converted by the shunt resistor 30 into a voltage proportional to the measured current I, and the converted voltage is output from the output terminal 34 as an output signal.
 このように、センサ10は、測定導体12に流れる測定電流Iの大きさを示す検出量を、生成部28で生成される出力信号として出力端子34から出力する。 In this way, the sensor 10 outputs from the output terminal 34 the detected amount indicating the magnitude of the measurement current I flowing through the measurement conductor 12 as the output signal generated by the generator 28 .
 (装置の構成)
 図2は、第一実施形態に係るセンサ10を示す断面図である。
(Equipment configuration)
FIG. 2 is a cross-sectional view showing the sensor 10 according to the first embodiment.
 図2に示すように、センサ10は、筐体を構成する絶縁筐体40を有する。絶縁筐体40は、導電性を有しない絶縁体である合成樹脂で形成される。絶縁筐体40は、カバー42とカバー44とを備える。カバー42、44は、容器状に形成されている。 As shown in FIG. 2, the sensor 10 has an insulating housing 40 that constitutes a housing. The insulating housing 40 is made of synthetic resin, which is an insulator having no conductivity. The insulating housing 40 has a cover 42 and a cover 44 . The covers 42, 44 are formed in a container shape.
 カバー42、44は、開口部が対向した状態において、複数個所がねじ止めされることによって固定される。これにより、両カバー42、44によって内部に収容空間46を有する絶縁筐体40が形成される。 The covers 42 and 44 are fixed by screwing at a plurality of locations with the openings facing each other. As a result, the insulating housing 40 having the housing space 46 inside is formed by the covers 42 and 44 .
 カバー44の内面44Aには、円筒状の支柱48が複数個所に形成されている。各支柱48には、基板50が支持されている。基板50は、当該基板50を挿通する図示しないねじが支柱48にねじ込まれることによってカバー44に固定されている。 Cylindrical struts 48 are formed at a plurality of locations on the inner surface 44A of the cover 44 . A substrate 50 is supported on each post 48 . The substrate 50 is fixed to the cover 44 by screwing a screw (not shown) through the substrate 50 into the post 48 .
 基板50の表面50Aには、図1に示した、オペアンプ26と、生成部28を構成するシャント抵抗器30を含む電子部品が搭載されている。 On the surface 50A of the substrate 50, electronic components including the operational amplifier 26 and the shunt resistor 30 forming the generator 28 shown in FIG.
 ここで、電子部品には、オペアンプ26及びシャント抵抗器30の他に、パワートランジスタ、又はICなどが含まれる。 Here, the electronic components include power transistors, ICs, etc., in addition to the operational amplifier 26 and the shunt resistor 30 .
 この基板50は、カバー42及びカバー44で構成される絶縁筐体40の内部に収容される。これにより、絶縁筐体40の内部には、検出結果を示す信号である出力信号を生成する生成部28が設けられる。 The substrate 50 is housed inside the insulating housing 40 composed of the cover 42 and the cover 44 . Accordingly, a generator 28 that generates an output signal, which is a signal indicating the detection result, is provided inside the insulating housing 40 .
 基板50は、オペアンプ26及びシャント抵抗器30を搭載した表面50Aがカバー42側に配置されている。また、基板50は、例えば電子回路を形成する為の配線パターンが形成された裏面50Bがカバー44側に配置されている。カバー44の内面44Aと基板50の裏面50Bとの間には、基板50を支持する支柱48によって間隙が確保されている。 The substrate 50 has a surface 50A on which the operational amplifier 26 and the shunt resistor 30 are mounted on the cover 42 side. Further, the substrate 50 has a rear surface 50B on which a wiring pattern for forming an electronic circuit is formed, for example, is arranged on the cover 44 side. A gap is ensured between the inner surface 44A of the cover 44 and the rear surface 50B of the substrate 50 by a support column 48 that supports the substrate 50 .
 カバー42の内面42Aには、第一の熱伝導性材料である熱伝導性材料62が設けられている。また、カバー44の内面44Aには、熱伝導性材料64が設けられている。これにより、カバー42とカバー44とで絶縁筐体40を形成した状態において、絶縁筐体40の内面には、熱伝導性材料62及び熱伝導性材料64を含む熱伝導性材料66が設けられる。 A thermally conductive material 62 that is a first thermally conductive material is provided on the inner surface 42A of the cover 42 . A heat conductive material 64 is provided on the inner surface 44A of the cover 44 . Thus, in a state where the insulating housing 40 is formed by the cover 42 and the cover 44, the thermally conductive material 66 including the thermally conductive material 62 and the thermally conductive material 64 is provided on the inner surface of the insulating housing 40. .
 また、熱伝導性材料62と熱伝導性材料64とは、絶縁筐体40よりも熱伝導率が高い。 Also, the thermally conductive material 62 and the thermally conductive material 64 have higher thermal conductivity than the insulating housing 40 .
 絶縁筐体40の内面に設けられた熱伝導性材料66は、導電性を有する。これにより、外部から収容空間46内への電磁波の侵入を抑制する。 The thermally conductive material 66 provided on the inner surface of the insulating housing 40 has electrical conductivity. This prevents electromagnetic waves from entering the accommodation space 46 from the outside.
 カバー42とカバー44とで絶縁筐体40を形成した状態において、カバー42の内面42Aに設けられた熱伝導性材料62と、カバー44の内面44Aに設けられた熱伝導性材料64との間には、間隙が形成されるように構成されている。 Between the thermally conductive material 62 provided on the inner surface 42A of the cover 42 and the thermally conductive material 64 provided on the inner surface 44A of the cover 44 in the state where the insulating housing 40 is formed by the cover 42 and the cover 44. is configured to form a gap.
 具体的に説明すると、第一実施形態において、カバー42の周壁70は、熱伝導性材料62を備えず、カバー44の周壁72は、熱伝導性材料64を備えない。 Specifically, in the first embodiment, the peripheral wall 70 of the cover 42 does not comprise the thermally conductive material 62 and the peripheral wall 72 of the cover 44 does not comprise the thermally conductive material 64 .
 これにより、熱伝導性材料62と熱伝導性材料64とは、互いに接続されないように構成されている。すなわち、両熱伝導性材料62、64が基板50を包囲するループを形成しないように構成されている。 Accordingly, the thermally conductive material 62 and the thermally conductive material 64 are configured so as not to be connected to each other. That is, both thermally conductive materials 62 , 64 are configured so as not to form a loop surrounding substrate 50 .
 この構成によって、ワンターンコイルの形成を防止できる。これにより、熱伝導性材料62と熱伝導性材料64とが構成する導電層において、測定導体12からの磁束による誘起電流の発生が抑制される。したがって、両熱伝導性材料62、64が構成する導電層に誘起電流が流れる場合と比較して、測定精度を向上することができる。 This configuration can prevent the formation of a one-turn coil. This suppresses the generation of an induced current due to the magnetic flux from the measurement conductor 12 in the conductive layer composed of the thermally conductive material 62 and the thermally conductive material 64 . Therefore, the measurement accuracy can be improved as compared with the case where the induced current flows in the conductive layer composed of the two thermally conductive materials 62 and 64. FIG.
 また、絶縁筐体40の内面に設けられた熱伝導性材料66は、金属で形成されており、熱伝導性材料66が金属以外の材質で形成される場合と比較して、外部から収容空間46内への電磁波の侵入抑制効果が高められている。 In addition, the thermally conductive material 66 provided on the inner surface of the insulating housing 40 is made of metal, and compared to the case where the thermally conductive material 66 is made of a material other than metal, the housing space is protected from the outside. The effect of suppressing electromagnetic waves from entering 46 is enhanced.
 そして、絶縁筐体40の内面に設けられた熱伝導性材料66は、メッキで構成されている。すなわち、カバー42、44の内面42A、44Aにメッキ処理を施すことによって、絶縁筐体40の内面に熱伝導性材料66が設けられている。 The thermally conductive material 66 provided on the inner surface of the insulating housing 40 is made of plating. In other words, the thermally conductive material 66 is provided on the inner surface of the insulating housing 40 by plating the inner surfaces 42A and 44A of the covers 42 and 44 .
 また、メッキ処理で熱伝導性材料66を形成することで、凹凸の有無に関わらず、絶縁筐体40の内面に均一な熱伝導性材料66が形成される。さらに、絶縁筐体40の内面にメッキ処理を施すことによって、絶縁筐体40の広い範囲に熱伝導性材料66が形成される。 In addition, by forming the thermally conductive material 66 by plating, a uniform thermally conductive material 66 is formed on the inner surface of the insulating housing 40 regardless of the presence or absence of unevenness. Furthermore, by plating the inner surface of the insulating housing 40 , the thermally conductive material 66 is formed over a wide area of the insulating housing 40 .
 このメッキ処理で形成される熱伝導性材料66は、薄肉に形成され、熱伝導性材料66は、導電性薄膜と言い換えることができる。 The thermally conductive material 66 formed by this plating process is formed thin, and the thermally conductive material 66 can be rephrased as a conductive thin film.
 熱伝導性材料66を構成するメッキは、例えば、銅、アルミニウム、錫、又はこれらを組み合わせた合金で形成された層、あるいは、銅、アルミニウム、錫、又はこれらを組み合わせた合金を層として重ねたもので構成される。 The plating that constitutes the thermally conductive material 66 is, for example, a layer formed of copper, aluminum, tin, or a combination of these alloys, or a layer of copper, aluminum, tin, or a combination of these alloys. Consists of things.
 図3は、第一実施形態に係るセンサ10の基板50を示す平面図である。 FIG. 3 is a plan view showing the substrate 50 of the sensor 10 according to the first embodiment.
 図3に示すように、絶縁筐体40に収容される基板50は、長方形状に形成されており、基板50には、円形穴80が形成されている。円形穴80の外周部には、前述した磁気コア14が配置されるように構成されている。 As shown in FIG. 3, the substrate 50 housed in the insulating housing 40 is formed in a rectangular shape, and the substrate 50 has a circular hole 80 formed therein. The magnetic core 14 described above is arranged on the outer periphery of the circular hole 80 .
 また、図示は省略するが、カバー42には、磁気コア14が配置される円形リング状の膨出部が形成されている。この円形リング状の膨出部の内側には、測定対象となる測定導体12を挿入可能な第一挿入穴が形成されている。この第一挿入穴に対応するカバー44の部位には、第二挿入穴が形成されている。 Although not shown, the cover 42 is formed with a circular ring-shaped bulging portion in which the magnetic core 14 is arranged. A first insertion hole into which the measurement conductor 12 to be measured can be inserted is formed inside the circular ring-shaped bulging portion. A second insertion hole is formed in a portion of the cover 44 corresponding to the first insertion hole.
 これにより、測定対象となる測定導体12(図1参照)を絶縁筐体40に形成された各挿入穴へ挿入することで、測定導体12を、絶縁筐体40の内部に設けられた磁気コア14に挿入できるよう構成されている。 As a result, by inserting the measuring conductor 12 (see FIG. 1) to be measured into each insertion hole formed in the insulating housing 40, the measuring conductor 12 is connected to the magnetic core provided inside the insulating housing 40. 14 to be inserted.
 図2及び図3に示すように、基板50は、プリント配線基板を構成する。基板50の表面50Aには、プリントパターン52が形成されており、プリントパターン52には、電子部品がはんだ付けされるランド等が形成されている。 As shown in FIGS. 2 and 3, the board 50 constitutes a printed wiring board. A printed pattern 52 is formed on the surface 50A of the substrate 50, and lands and the like to which electronic components are soldered are formed on the printed pattern 52. As shown in FIG.
 これにより、電子部品のリードをランドにはんだ付けすることで、基板50の表面50Aのプリントパターン52、及びプリントパターン52に電気的に接続された配線パターンによって電子回路が形成される。 Thus, by soldering the leads of the electronic component to the lands, an electronic circuit is formed by the printed pattern 52 on the surface 50A of the substrate 50 and the wiring pattern electrically connected to the printed pattern 52.
 はんだ付けされる電子部品としては、前述したアンプ回路24を構成するオペアンプ26、パワートランジスタ、又はICなどが挙げられる。また、他の電子部品としては、前述したシャント抵抗器30が挙げられる。 The electronic parts to be soldered include the operational amplifier 26, the power transistor, the IC, etc. that constitute the amplifier circuit 24 described above. Another electronic component is the shunt resistor 30 described above.
 オペアンプ26のリードがはんだ付けされるランドと、シャント抵抗器30のリードがはんだ付けられるランドとを結ぶ配線パターンは、他の電子部品を接続する配線パターンよりも細く形成されている。これにより、オペアンプ26とシャント抵抗器30とを電気的に接続する配線パターンは、他の配線パターンと比較して、熱抵抗が大きく、オペアンプ26から配線パターンを介してシャント抵抗器30に伝達される熱が抑制される。 The wiring pattern that connects the land to which the lead of the operational amplifier 26 is soldered and the land to which the lead of the shunt resistor 30 is soldered is formed thinner than the wiring pattern that connects other electronic components. As a result, the wiring pattern that electrically connects the operational amplifier 26 and the shunt resistor 30 has a larger thermal resistance than other wiring patterns, and heat is transmitted from the operational amplifier 26 to the shunt resistor 30 via the wiring pattern. the heat generated is suppressed.
 そして、基板50の配線パターンが構成するGNDライン32(図1参照)は、熱伝導性材料66に電気的に接続される。 The GND line 32 (see FIG. 1) formed by the wiring pattern of the substrate 50 is electrically connected to the thermally conductive material 66 .
 図3に示すように、オペアンプ26は、円形穴80の近傍に配置されている。また、シャント抵抗器30は、オペアンプ26から斜め方向に離れた位置に配置されている。これにより、オペアンプ26からシャント抵抗器30までの離間距離は、オペアンプ26とシャント抵抗器30とが近接して横並びに配置された場合と比較して、大きくなるように構成されている。 As shown in FIG. 3, the operational amplifier 26 is arranged in the vicinity of the circular hole 80. Also, the shunt resistor 30 is arranged at a position obliquely away from the operational amplifier 26 . As a result, the distance from the operational amplifier 26 to the shunt resistor 30 is made larger than when the operational amplifier 26 and the shunt resistor 30 are arranged side by side.
 図2に示したように、オペアンプ26は、合成樹脂でモールディングされたフラットパッケージタイプであり、オペアンプ26の表面26Aは平坦である。また、シャント抵抗器30はプラットパッケージタイプであり、シャント抵抗器30の表面30Aは平坦である。 As shown in FIG. 2, the operational amplifier 26 is a flat package type molded with synthetic resin, and the surface 26A of the operational amplifier 26 is flat. Also, the shunt resistor 30 is of the platform package type, and the surface 30A of the shunt resistor 30 is flat.
 オペアンプ26は、第二の熱伝導性材料である熱伝導性材料90を介して、絶縁筐体40を構成するカバー42の内面42Aに設けられた熱伝導性材料62に接続されている。これにより、絶縁筐体40の内部に設けられたオペアンプ26と絶縁筐体40の内面に設けられた熱伝導性材料66とは、熱伝導性材料90で接続される。 The operational amplifier 26 is connected to the thermally conductive material 62 provided on the inner surface 42A of the cover 42 that constitutes the insulating housing 40 via the thermally conductive material 90 that is the second thermally conductive material. As a result, the operational amplifier 26 provided inside the insulating housing 40 and the thermally conductive material 66 provided on the inner surface of the insulating housing 40 are connected by the thermally conductive material 90 .
 なお、熱伝導性材料90は、一例として、TIM(Thermal Interface Material)で構成される。 It should be noted that the thermally conductive material 90 is composed of TIM (Thermal Interface Material) as an example.
 また、シャント抵抗器30は、熱伝導性材料92を介して、絶縁筐体40を構成するカバー42の内面42Aに設けられた熱伝導性材料62に接続されている。 Also, the shunt resistor 30 is connected via a thermally conductive material 92 to the thermally conductive material 62 provided on the inner surface 42A of the cover 42 that constitutes the insulating housing 40 .
 熱伝導性材料90、92は、熱伝導シートで形成されており、熱伝導性材料90、92は、ゴム状のシート体である。また、熱伝導性材料90、92は、弾性、熱伝導性、電気絶縁性、及び難燃性を有するシリコーンゴムで形成される。 The thermally conductive materials 90, 92 are made of thermally conductive sheets, and the thermally conductive materials 90, 92 are rubber-like sheet bodies. Also, the thermally conductive materials 90 and 92 are made of silicone rubber having elasticity, thermal conductivity, electrical insulation, and flame retardancy.
 熱伝導性材料90、92としては、一例として、サーコンが挙げられる。サーコンに関しては、熱伝導率kが1W/m℃以上5W/m℃以下である。 An example of the thermally conductive materials 90 and 92 is Sarcon. The sarcon has a thermal conductivity k of 1 W/m°C or more and 5 W/m°C or less.
 熱伝導性材料90は、オペアンプ26の表面26Aと略同形状に形成されている。この熱伝導性材料90は、絶縁筐体40の内面側から見て、熱伝導性材料62よりも面積が狭い。 The thermally conductive material 90 is formed in substantially the same shape as the surface 26A of the operational amplifier 26. This thermally conductive material 90 has a smaller area than the thermally conductive material 62 when viewed from the inner surface side of the insulating housing 40 .
 熱伝導性材料90は、一面90Aがオペアンプ26の表面26Aに面接触した状態で密着するとともに、他面90Bがカバー42に設けられた熱伝導性材料62に面接触した状態で密着する。 One surface 90A of the thermally conductive material 90 is in surface contact with the surface 26A of the operational amplifier 26, and the other surface 90B is in surface contact with the thermally conductive material 62 provided on the cover 42.
 また、熱伝導性材料92は、シャント抵抗器30の表面30Aと略同形状に形成されている。熱伝導性材料92は、一面92Aがシャント抵抗器30の表面30Aに面接触した状態で密着するとともに、他面92Bがカバー42に設けられた熱伝導性材料62に面接触した状態で密着する。 Also, the thermally conductive material 92 is formed in substantially the same shape as the surface 30A of the shunt resistor 30. One surface 92A of the thermally conductive material 92 is in surface contact with the surface 30A of the shunt resistor 30, and the other surface 92B is in surface contact with the thermally conductive material 62 provided on the cover 42. .
 熱伝導性材料90、92は、カバー42をカバー44にねじ止めした状態で、圧縮されており、圧縮率は、熱伝導性材料90、92の仕様に応じて定められる。これにより、熱伝導性材料90、92は、一面90A、92Aがオペアンプ26の表面26A又はシャント抵抗器30の表面30Aに所定圧で押し付けられるとともに、他面90B、92Bが熱伝導性材料62に所定圧で押し付けられる。 The thermally conductive materials 90, 92 are compressed while the cover 42 is screwed to the cover 44, and the compressibility is determined according to the specifications of the thermally conductive materials 90, 92. As a result, the thermally conductive materials 90 and 92 are pressed against the surface 26A of the operational amplifier 26 or the surface 30A of the shunt resistor 30 with a predetermined pressure on one side 90A and 92A, and the other sides 90B and 92B against the thermally conductive material 62. Pressed with a specified pressure.
 なお、第一実施形態では、熱伝導性材料90をオペアンプ26の表面26Aと略同形状とし、熱伝導性材料90がオペアンプ26上に配置される場合について説明するが、第一実施形態は、これに限定されるものではない。 In the first embodiment, the thermally conductive material 90 has substantially the same shape as the surface 26A of the operational amplifier 26, and the thermally conductive material 90 is arranged on the operational amplifier 26. However, in the first embodiment, It is not limited to this.
 例えば、熱伝導性材料90をオペアンプ26の表面26Aよりも大きく形成し、オペアンプ26の表面26Aの外周部に延出した熱伝導性材料90の部分をオペアンプ26から延出したリードに接触させてもよい。この場合、オペアンプ26のリードに伝達された熱を、熱伝導性材料90を介して逃がすことができる。 For example, the thermally conductive material 90 is formed larger than the surface 26A of the operational amplifier 26, and the portion of the thermally conductive material 90 extending to the outer periphery of the surface 26A of the operational amplifier 26 is brought into contact with the leads extending from the operational amplifier 26. good too. In this case, heat transferred to the leads of op amp 26 can escape through thermally conductive material 90 .
 また、熱伝導性材料92をシャント抵抗器30の表面30Aと略同形状とし、熱伝導性材料92がシャント抵抗器30上に配置される場合について説明するが、第一実施形態は、これに限定されるものではない。 In addition, the case where the thermally conductive material 92 has substantially the same shape as the surface 30A of the shunt resistor 30 and the thermally conductive material 92 is arranged on the shunt resistor 30 will be described. It is not limited.
 例えば、熱伝導性材料92をシャント抵抗器30の表面30Aよりも大きく形成し、シャント抵抗器30の表面30Aの外周部に延出した熱伝導性材料92の部分をシャント抵抗器30から延出したリードに接触させてもよい。この場合、シャント抵抗器30のリードに伝達された熱を、熱伝導性材料92を介して逃がすことができる。 For example, the thermally conductive material 92 is formed larger than the surface 30A of the shunt resistor 30, and the portion of the thermally conductive material 92 extending to the outer periphery of the surface 30A of the shunt resistor 30 extends from the shunt resistor 30. may be brought into contact with the lead. In this case, heat transferred to the leads of shunt resistor 30 can escape through thermally conductive material 92 .
 (作用及び効果)
 次に、第一実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the first embodiment will be described.
 第一実施形態におけるセンサ10は、絶縁筐体40と、絶縁筐体40の内面に設けられた熱伝導性材料62と、絶縁筐体40の内部に設けられたオペアンプ26と熱伝導性材料66を接続する熱伝導性材料90と、を備える。熱伝導性材料62は、絶縁筐体40よりも熱伝導率が高く、絶縁筐体40の内面側から見て熱伝導性材料90よりも面積が広い。 The sensor 10 in the first embodiment includes an insulating housing 40, a thermally conductive material 62 provided on the inner surface of the insulating housing 40, an operational amplifier 26 and a thermally conductive material 66 provided inside the insulating housing 40. and a thermally conductive material 90 connecting the . The thermally conductive material 62 has a higher thermal conductivity than the insulating housing 40 and has a wider area than the thermally conductive material 90 when viewed from the inner surface side of the insulating housing 40 .
 この構成によれば、絶縁筐体40の内部のオペアンプ26とシャント抵抗器30で発生した熱は、一例として、熱伝導率kが1W/m℃以上5W/m℃以下の熱伝導性材料90、92を介して、絶縁筐体40の内面に設けられた熱伝導性材料62に伝達される。そして、熱伝導性材料62に伝達された熱は、絶縁筐体40を介して、絶縁筐体40の外部へ放出される。 According to this configuration, the heat generated by the operational amplifier 26 and the shunt resistor 30 inside the insulating housing 40 is transferred to the thermally conductive material 90 having a thermal conductivity k of 1 W/m° C. or more and 5 W/m° C. or less, for example. , 92 to the thermally conductive material 62 provided on the inner surface of the insulating housing 40 . The heat transferred to the thermally conductive material 62 is released to the outside of the insulating housing 40 through the insulating housing 40 .
 このため、オペアンプ26で生じた熱が絶縁筐体40の内部の収容空間46に放出された後、熱伝導率kが0.03W/m℃の空気を介して、絶縁筐体40に伝達され、絶縁筐体から外部へ放出される場合と比較して、オペアンプ26で生じた熱の放熱効率が高まる。 Therefore, after the heat generated by the operational amplifier 26 is released to the housing space 46 inside the insulating housing 40, it is transferred to the insulating housing 40 via the air having a thermal conductivity k of 0.03 W/m°C. , the heat dissipation efficiency of the heat generated in the operational amplifier 26 is increased as compared with the case where the heat is emitted to the outside from the insulating housing.
 これにより、絶縁筐体40の内部に設けられた測定に関わる電子部品等が受ける熱の影響を小さくすることができる。 As a result, it is possible to reduce the influence of heat on electronic components and the like related to measurement provided inside the insulating housing 40 .
 したがって、絶縁筐体40の内部温度の上昇に起因する出力信号の温度ドリフトの抑制が可能となる。 Therefore, it is possible to suppress the temperature drift of the output signal caused by the rise in the internal temperature of the insulating housing 40 .
 また、熱伝導性材料62と熱伝導性材料90を互いに接続して用いることで、絶縁筐体40の内面42Aに設けた熱伝導性材料62をオペアンプ26の実装面積に縛られず絶縁筐体40の内面42A側から見て面積を広くできる。そして、オペアンプ26からの熱を、絶縁筐体40よりも熱伝導率の高い熱伝導性材料62によって絶縁筐体40の広い範囲に直接伝達させることができるので、絶縁筐体40の広い範囲に熱を拡散し、放熱効果を高めることができる。 In addition, by using the thermally conductive material 62 and the thermally conductive material 90 connected to each other, the thermally conductive material 62 provided on the inner surface 42A of the insulating housing 40 is not restricted by the mounting area of the operational amplifier 26, and the insulating housing 40 The area can be widened when viewed from the inner surface 42A side. The heat from the operational amplifier 26 can be directly transmitted to a wide range of the insulating housing 40 by the thermally conductive material 62 having a higher thermal conductivity than the insulating housing 40, so that the heat can be transferred to a wide range of the insulating housing 40. It can diffuse heat and enhance the heat dissipation effect.
 (比較例)
 図5は、比較例としてのセンサ200を示す断面図である。図5では、第一実施形態及び後述する第二実施形態と同一又は同等部分については、同符号が付されている。
(Comparative example)
FIG. 5 is a cross-sectional view showing a sensor 200 as a comparative example. In FIG. 5, the same reference numerals are assigned to the same or equivalent portions as those of the first embodiment and the second embodiment described later.
 図5に示すように、比較例に係るセンサ200は、オペアンプ26及びシャント抵抗器30が板金104で覆われている。オペアンプ26は、比較例熱伝導性材料202を介して、板金104に接続されている。 As shown in FIG. 5 , in the sensor 200 according to the comparative example, the operational amplifier 26 and the shunt resistor 30 are covered with the sheet metal 104 . Op-amp 26 is connected to sheet metal 104 via comparative thermally conductive material 202 .
 オペアンプ26で発生した熱は、比較例熱伝導性材料202を介して、板金104に伝達され、板金104から絶縁筐体40内部の収容空間46に放出される。 The heat generated by the operational amplifier 26 is transmitted to the sheet metal 104 through the comparative example thermally conductive material 202 and released from the sheet metal 104 to the housing space 46 inside the insulating housing 40 .
 このセンサ200では、オペアンプ26で生じた熱が、絶縁筐体40の内部の収容空間46に放出された後、収容空間46の空気を介して、絶縁筐体40に伝達され、絶縁筐体40から外部へ放出されることとなる。 In this sensor 200 , the heat generated by the operational amplifier 26 is released into the housing space 46 inside the insulating housing 40 , then transmitted to the insulating housing 40 through the air in the housing space 46 . will be released to the outside.
 ここで、前述したように、空気の熱伝導率は、熱伝導性材料90(図2参照)の熱伝導率よりも低い。このため、このセンサ200は、放熱効率が悪く、オペアンプ26で生じた熱がシャント抵抗器30に影響を与え得る。 Here, as described above, the thermal conductivity of air is lower than that of the thermally conductive material 90 (see FIG. 2). Therefore, the sensor 200 has poor heat radiation efficiency, and the heat generated by the operational amplifier 26 can affect the shunt resistor 30 .
 しかしながら、第一実施の形態のセンサ10にあっては、前述したようにオペアンプ26で生じた熱を効率良く絶縁筐体40の外部に放出することができる。 However, in the sensor 10 of the first embodiment, the heat generated by the operational amplifier 26 can be efficiently released to the outside of the insulating housing 40 as described above.
 したがって、絶縁筐体40の内部温度の上昇に起因する出力信号の温度ドリフトの抑制が可能となる。 Therefore, it is possible to suppress the temperature drift of the output signal caused by the rise in the internal temperature of the insulating housing 40 .
 なお、以上の第一実施形態において、絶縁筐体40は導電性を有する筐体であってもよい。 It should be noted that in the first embodiment described above, the insulating housing 40 may be a conductive housing.
 そして、第一実施形態のセンサ10は、測定導体12に流れる測定電流Iを検出する電流センサを構成する。このセンサ10は、絶縁性を確保するために絶縁筐体40が非導電性の絶縁体である合成樹脂によって形成されている。 The sensor 10 of the first embodiment constitutes a current sensor that detects the measurement current I flowing through the measurement conductor 12 . In this sensor 10, the insulating housing 40 is made of synthetic resin, which is a non-conductive insulator, in order to ensure insulation.
 このような絶縁筐体40は、放熱性が悪く、絶縁筐体40の内部に熱が放出されると、その熱が絶縁筐体40の内部に籠りがちである。これにより、温度ドリフトの影響が大きくなったり、使用温度範囲が規定値より狭くなったり、測定最大電流が規定値より小さくなったりする。 Such an insulating housing 40 has poor heat dissipation, and when heat is released inside the insulating housing 40 , the heat tends to stay inside the insulating housing 40 . As a result, the influence of temperature drift increases, the operating temperature range becomes narrower than the specified value, and the maximum measured current becomes smaller than the specified value.
 具体的に説明すると、オペアンプ26から放出され絶縁筐体40の内部に籠った熱がシャント抵抗器30又は出力に追加的に設けられる追加回路36の電子部品の温度を上昇させると、出力値にオフセットが生じたり、感度ドリフトが生じたりし得る。これにより、検出再現性及び検出確度が悪化し得る。 Specifically, when the heat emitted from the operational amplifier 26 and trapped inside the insulating housing 40 raises the temperature of the shunt resistor 30 or the electronic components of the additional circuit 36 additionally provided at the output, the output value changes. Offsets can occur and sensitivity drift can occur. This can degrade detection reproducibility and detection accuracy.
 また、絶縁筐体40の内部温度の上昇により、規格により定められた使用可能温度又検出可能な最大電流が制限され得る。 Also, due to the rise in the internal temperature of the insulating housing 40, the usable temperature or the maximum detectable current specified by the standard may be limited.
 これに対して、第一実施形態に係るセンサ10では、絶縁性を有する絶縁筐体40を用いても、放熱性の向上が可能となる。このため、外部との絶縁性を確保しつつ、前述した温度ドリフトの影響を小さくしたり、使用温度範囲を広げたり、測定最大電流を大きくしたりすることができる。 On the other hand, in the sensor 10 according to the first embodiment, it is possible to improve heat dissipation even if the insulating housing 40 having insulating properties is used. Therefore, it is possible to reduce the influence of the temperature drift described above, widen the operating temperature range, and increase the maximum measurement current while ensuring insulation from the outside.
 また、検出再現性及び検出確度の向上、規格により定められた使用可能温度及び検出可能な最大電流を大きくすることが可能となる。 In addition, it is possible to improve detection reproducibility and detection accuracy, and increase the usable temperature and maximum detectable current specified by the standard.
 また、第一実施形態において、絶縁筐体40の内部には、検出結果を示す信号を生成する生成部28が設けられている。 In addition, in the first embodiment, the generator 28 that generates a signal indicating the detection result is provided inside the insulating housing 40 .
 この構成によれば、オペアンプ26で発生した熱が絶縁筐体40の内部に放出され、生成部28に伝達され得る場合と比較して、オペアンプ26からの熱が生成部28で生成される検出結果を示す出力信号に与える影響を抑制することが可能となる。 According to this configuration, the heat from the operational amplifier 26 is generated in the generating section 28 compared to the case where the heat generated in the operational amplifier 26 can be released inside the insulating housing 40 and transferred to the generating section 28. It is possible to suppress the influence on the output signal indicating the result.
 ここで、第一実施形態において、生成部28はシャント抵抗器30を備えており、シャント抵抗器30は、温度変化に伴って抵抗値が変動し得る。シャント抵抗器30の抵抗値が変動すると、出力電圧が変動し、検出結果に影響が生じ得る。 Here, in the first embodiment, the generation unit 28 includes the shunt resistor 30, and the resistance value of the shunt resistor 30 can vary with changes in temperature. When the resistance value of the shunt resistor 30 fluctuates, the output voltage fluctuates, which can affect the detection result.
 そこで、第一実施形態では、オペアンプ26で発生した熱を、絶縁筐体40の外部へ放出することで、生成部28を構成するシャント抵抗器30の温度変化を抑制し、検出結果の変動を抑制することが可能となる。 Therefore, in the first embodiment, the heat generated by the operational amplifier 26 is released to the outside of the insulating housing 40 to suppress the temperature change of the shunt resistor 30 that constitutes the generating unit 28 and reduce the fluctuation of the detection result. can be suppressed.
 また、第一実施形態において、絶縁筐体40は、絶縁体で形成され、熱伝導性材料62は、導電性を有する。 Also, in the first embodiment, the insulating housing 40 is made of an insulator, and the thermally conductive material 62 has electrical conductivity.
 この構成によれば、軽量化のために合成樹脂の絶縁体で形成された絶縁筐体40において、外部からの電磁波の侵入を、導電性を有した熱伝導性材料62によって抑制することができる。これにより、外部からの電磁波が検出結果に与える影響を抑制することができる。 According to this configuration, in the insulating housing 40 formed of a synthetic resin insulator for weight reduction, the intrusion of electromagnetic waves from the outside can be suppressed by the thermally conductive material 62 having electrical conductivity. . As a result, it is possible to suppress the influence of electromagnetic waves from the outside on the detection result.
 ここで、第一実施形態のセンサ10は、磁気コア14に生じた磁束Φによって測定電流Iを検出する電流センサを構成する。このような構成において、外部からの電磁波の侵入を抑制することで、電磁波が磁気コア14に与える影響を抑制し、検出結果への影響抑制効果を高めることが可能となる。 Here, the sensor 10 of the first embodiment constitutes a current sensor that detects the measured current I by the magnetic flux Φ generated in the magnetic core 14. In such a configuration, by suppressing the invasion of electromagnetic waves from the outside, it is possible to suppress the influence of the electromagnetic waves on the magnetic core 14 and enhance the effect of suppressing the influence on the detection result.
 そして、第一実施形態では、導電性を有する熱伝導性材料62は、基板50の配線パターンが構成するGNDライン32に電気的に接続されている。このため、同相電圧による影響を示すコモンモードノイズを低減することができる。 Then, in the first embodiment, the thermally conductive material 62 having electrical conductivity is electrically connected to the GND line 32 formed by the wiring pattern of the substrate 50 . Therefore, it is possible to reduce common mode noise that indicates the influence of the common mode voltage.
 また、第一実施形態において、熱伝導性材料62は、金属で形成される。 Also, in the first embodiment, the thermally conductive material 62 is made of metal.
 この構成によれば、熱伝導性材料66が金属以外の材料で形成される場合と比較して、外部から絶縁筐体40の内部への電磁波の侵入防止効果を高めることができる。 According to this configuration, compared to the case where the thermally conductive material 66 is made of a material other than metal, the effect of preventing electromagnetic waves from entering the insulating housing 40 from the outside can be enhanced.
 また、第一実施形態において、熱伝導性材料62は、絶縁筐体40の内面に形成されたメッキで構成される。 Also, in the first embodiment, the thermally conductive material 62 is composed of plating formed on the inner surface of the insulating housing 40 .
 この構成によれば、絶縁筐体40の内面にメッキ処理を施すことで、絶縁筐体40の広い範囲に熱伝導性材料62を密着して形成することができる。これにより、熱伝導性材料66に伝達された熱を広範囲に拡散することができるので、絶縁筐体40への熱の伝達を促進することができる。 According to this configuration, the thermally conductive material 62 can be formed in close contact with a wide range of the insulating housing 40 by plating the inner surface of the insulating housing 40 . As a result, the heat transferred to the thermally conductive material 66 can be diffused over a wide range, thereby promoting heat transfer to the insulating housing 40 .
 また、メッキ処理で熱伝導性材料62を形成することができるので、絶縁筐体40に凹凸があっても、熱伝導性材料62を絶縁筐体40の内面に沿って均一に形成することができる。これにより、絶縁筐体40の内面に板金を設ける場合と比較して、熱伝導性材料62の形成を容易に行うことができる。 Moreover, since the thermally conductive material 62 can be formed by plating, even if the insulating housing 40 has unevenness, the thermally conductive material 62 can be uniformly formed along the inner surface of the insulating housing 40. can. This makes it easier to form the thermally conductive material 62 than in the case where a metal sheet is provided on the inner surface of the insulating housing 40 .
 このメッキ処理で形成される熱伝導性材料62は、薄肉に形成される。このため、熱伝導性材料62が板金で構成される場合と比較して、絶縁筐体40の軽量化を図ることができる。 The thermally conductive material 62 formed by this plating process is formed thin. Therefore, compared to the case where the thermally conductive material 62 is made of sheet metal, the weight of the insulating housing 40 can be reduced.
 また、第一実施形態において、熱伝導性材料90は、熱伝導シートで構成される。 Also, in the first embodiment, the thermally conductive material 90 is composed of a thermally conductive sheet.
 この構成によれば、熱伝導性材料がグリース等で構成される場合と比較して、グリース等が基板50に付着した際に生じ得る不具合の未然に抑制することが可能となる。 According to this configuration, it is possible to prevent problems that may occur when grease or the like adheres to the substrate 50, compared to the case where the thermally conductive material is made of grease or the like.
 なお、第一実施形態にあっては、生成部28を構成するシャント抵抗器30が熱伝導性材料92を介して、絶縁筐体40の内面に設けられた熱伝導性材料62に接続されている。このため、シャント抵抗器30で発生した熱を、熱伝導性材料92及び熱伝導性材料62を介して、絶縁筐体40から外部へ放出することができる。 In addition, in the first embodiment, the shunt resistor 30 constituting the generator 28 is connected to the thermally conductive material 62 provided on the inner surface of the insulating housing 40 via the thermally conductive material 92. there is Therefore, the heat generated by the shunt resistor 30 can be released from the insulating housing 40 to the outside through the thermally conductive material 92 and the thermally conductive material 62 .
 この構成により、検出値の温度ドリフトの抑制効果を高めることが可能となる。 With this configuration, it is possible to enhance the effect of suppressing the temperature drift of the detected value.
 <第二実施形態>
 図4は、第二実施形態に係るセンサ100を示す図である。第二実施形態に係るセンサ100は、第一実施形態のセンサ10と比較して、一部が異なる。第一実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。
<Second embodiment>
FIG. 4 is a diagram showing the sensor 100 according to the second embodiment. A sensor 100 according to the second embodiment is partially different from the sensor 10 according to the first embodiment. Parts that are the same as or equivalent to those in the first embodiment are denoted by the same reference numerals, descriptions thereof are omitted, and only different parts are described.
 図4は、第二実施形態に係るセンサ100を示す断面図である。 FIG. 4 is a cross-sectional view showing the sensor 100 according to the second embodiment.
 図4に示すように、センサ100の基板50におけるオペアンプ26と熱伝導性材料62との間に設けられた第二の熱伝導性材料である熱伝導性材料102には、板金104が挟み込まれている。 As shown in FIG. 4, a sheet metal 104 is sandwiched between the thermally conductive material 102, which is the second thermally conductive material, provided between the operational amplifier 26 and the thermally conductive material 62 on the substrate 50 of the sensor 100. ing.
 具体的に説明すると、オペアンプ26と熱伝導性材料62との間に設けられた熱伝導性材料102は、オペアンプ26側に配置された部品側熱伝導性材料106と、熱伝導性材料62側に配置された共有熱伝導性材料108とを含んで構成される。部品側熱伝導性材料106と共有熱伝導性材料108との間には、板金104が配置されている。これにより、熱伝導性材料102は、板金104が挟み込まれている。 Specifically, the thermally conductive material 102 provided between the operational amplifier 26 and the thermally conductive material 62 is separated from the component-side thermally conductive material 106 located on the operational amplifier 26 side and the thermally conductive material 62 side. and a shared thermally conductive material 108 disposed in the . A sheet metal 104 is positioned between the component-side thermally conductive material 106 and the shared thermally conductive material 108 . As a result, the sheet metal 104 is sandwiched between the thermally conductive material 102 .
 共有熱伝導性材料108は、板金104の上面に沿って設けられている。共有熱伝導性材料108は、オペアンプ26の上部からシャント抵抗器30の上部にわたって設けられている。 A shared thermally conductive material 108 is provided along the upper surface of the sheet metal 104 . A shared thermally conductive material 108 extends from the top of the operational amplifier 26 to the top of the shunt resistor 30 .
 部品側熱伝導性材料106及び共有熱伝導性材料108は、第一実施形態の熱伝導性材料90と比較して、厚み寸法が異なり、材質は、熱伝導性材料90と同じである。 The component-side thermally conductive material 106 and the shared thermally conductive material 108 have different thickness dimensions and the same material as the thermally conductive material 90 in comparison with the thermally conductive material 90 of the first embodiment.
 各熱伝導性材料106、108は、第一実施形態と同様に、圧縮された状態でオペアンプ26と熱伝導性材料62との間に配置されている。これにより、部品側熱伝導性材料106は、オペアンプ26の表面26Aに面接触した状態で密着するとともに、板金104に面接触した状態で密着する。また、共有熱伝導性材料108は、板金104に面接触した状態で密着するとともに、熱伝導性材料62に面接触した状態で密着する。 Each thermally conductive material 106, 108 is arranged between the operational amplifier 26 and the thermally conductive material 62 in a compressed state, as in the first embodiment. As a result, the component-side thermally conductive material 106 adheres to the surface 26A of the operational amplifier 26 in surface contact and adheres to the sheet metal 104 in surface contact. Further, the shared thermal conductive material 108 adheres to the sheet metal 104 in surface contact and adheres to the thermal conductive material 62 in surface contact.
 板金104は、金属製の板材で構成されている。板金104は、一端部がオペアンプ26よりも外側に延出するととともに、他端部がシャント抵抗器30よりも外側に延出する長さを有する。 The sheet metal 104 is composed of a metal plate material. The sheet metal 104 has a length such that one end extends outside the operational amplifier 26 and the other end extends outside the shunt resistor 30 .
 板金104の一端部には、基板50側に延出する一端側延出部104Aと、一端側延出部104Aから延出して基板50に沿って延在する一端側延在部104Bとが形成されている。一端側延在部104Bは、基板50のプリントパターン52に接しており、一端側延在部104Bは、一例として、プリントパターン52のGNDライン32(図1参照)にはんだ付けされる。 At one end of the metal plate 104, a one-end extension 104A extending toward the substrate 50 and a one-end extension 104B extending from the one-end extension 104A and extending along the substrate 50 are formed. It is The one-end extending portion 104B is in contact with the printed pattern 52 of the substrate 50, and is soldered to the GND line 32 (see FIG. 1) of the printed pattern 52, for example.
 板金104の他端部には、基板50側に延出する他端側延出部104Cと、他端側延出部104Cから延出して基板50に沿って延在する他端側延在部104Dとが形成されている。他端側延在部104Dは、基板50に接した状態で固定されている。 At the other end of the metal plate 104, the other end side extension part 104C extending toward the substrate 50 side and the other end side extension part extending from the other end side extension part 104C and extending along the substrate 50 are provided. 104D are formed. The other end side extension portion 104D is fixed in contact with the substrate 50 .
 板金104は、オペアンプ26及びシャント抵抗器30を覆う。板金104は、電磁波を遮断するシールドを構成する。これにより、基板50に形成された電子回路への電磁波の侵入を抑制する。 The sheet metal 104 covers the operational amplifier 26 and the shunt resistor 30. The sheet metal 104 constitutes a shield that blocks electromagnetic waves. This suppresses electromagnetic waves from entering the electronic circuit formed on the substrate 50 .
 シャント抵抗器30の上部には、抵抗側熱伝導性材料110が配置されており、抵抗側熱伝導性材料110は、前述した板金104の一部を支持する。抵抗側熱伝導性材料110に支持された板金104と熱伝導性材料62との間には、前述した共有熱伝導性材料108が配置されている。 A resistance-side thermally-conductive material 110 is arranged above the shunt resistor 30, and the resistance-side thermally-conductive material 110 supports a portion of the sheet metal 104 described above. Between the sheet metal 104 supported by the resistive thermally conductive material 110 and the thermally conductive material 62 is the shared thermally conductive material 108 previously described.
 抵抗側熱伝導性材料110は、第一実施形態の熱伝導性材料92と比較して、厚み寸法が異なり、材質は、熱伝導性材料92と同じである。 The resistance-side thermally conductive material 110 has a different thickness dimension than the thermally conductive material 92 of the first embodiment, and is made of the same material as the thermally conductive material 92 .
 抵抗側熱伝導性材料110は、第一実施形態と同様に、圧縮された状態でシャント抵抗器30と熱伝導性材料62との間に配置されている。これにより、抵抗側熱伝導性材料110は、シャント抵抗器30の表面30Aに面接触した状態で密着するとともに、板金104に面接触した状態で密着する。 The resistance-side thermally conductive material 110 is arranged between the shunt resistor 30 and the thermally conductive material 62 in a compressed state, as in the first embodiment. As a result, the resistance-side thermally conductive material 110 adheres to the surface 30A of the shunt resistor 30 in surface contact and adheres to the sheet metal 104 in surface contact.
 (作用及び効果)
 次に、第二実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the second embodiment will be described.
 第二実施形態におけるセンサ100において、第一実施形態と同一又は同等部分に関しては、第一実施形態と同様の作用効果を奏することができる。 In the sensor 100 of the second embodiment, the same or equivalent parts as those of the first embodiment can achieve the same effects as those of the first embodiment.
 また、第二実施形態におけるセンサ100において、熱伝導性材料102には、板金104が挟み込まれている。 Further, in the sensor 100 of the second embodiment, the sheet metal 104 is sandwiched between the thermally conductive materials 102 .
 この構成によれば、板金104が熱伝導性材料102によって挟み込まれていない場合と比較して、オペアンプ26から熱伝導性材料62への熱の移動を促進することができる。これにより、絶縁筐体40の外部への放熱効果を高めることができる。 According to this configuration, heat transfer from the operational amplifier 26 to the thermally conductive material 62 can be facilitated compared to the case where the sheet metal 104 is not sandwiched between the thermally conductive materials 102 . Thereby, the heat radiation effect to the outside of the insulating housing 40 can be enhanced.
 また、熱伝導性材料102に板金104を挟み込むことによって、板金104の厚みの分だけ熱伝導性材料102の一面から他面までの厚み寸法を大きくすることができる。 In addition, by sandwiching the sheet metal 104 between the thermally conductive materials 102 , the thickness dimension from one surface to the other surface of the thermally conductive material 102 can be increased by the thickness of the sheet metal 104 .
 このため、オペアンプ26から熱伝導性材料62までの隙間が大きい場合であっても、熱伝導性材料102とオペアンプ26との密着性、及び熱伝導性材料102と熱伝導性材料62との密着性を確保しつつ、放熱効果を得ることができる。 Therefore, even if the gap from the operational amplifier 26 to the thermally conductive material 62 is large, the adhesion between the thermally conductive material 102 and the operational amplifier 26 and the adhesion between the thermally conductive material 102 and the thermally conductive material 62 It is possible to obtain a heat dissipation effect while ensuring the property.
 そして、第二実施形態にあっては、部品側熱伝導性材料106と共有熱伝導性材料108との間に配置された板金104は、オペアンプ26の表面26Aよりも大きい。 Then, in the second embodiment, the sheet metal 104 arranged between the component-side thermally conductive material 106 and the shared thermally conductive material 108 is larger than the surface 26A of the operational amplifier 26.
 このため、オペアンプ26から部品側熱伝導性材料106を介して板金104に伝達された熱を、オペアンプ26の表面26Aよりも大きい板金104全体に拡散した後、共有熱伝導性材料108を介して、熱伝導性材料62の広範囲に伝達することができる。これにより、絶縁筐体40の内面に熱伝導性材料62が設けられた絶縁筐体40の広範囲から放熱することができる。 Therefore, the heat transferred from the operational amplifier 26 to the sheet metal 104 through the component-side thermally conductive material 106 diffuses over the entire sheet metal 104 larger than the surface 26A of the operational amplifier 26, and then through the shared thermally conductive material 108. , can be transmitted over a wide area of the thermally conductive material 62 . As a result, heat can be dissipated from a wide range of the insulating housing 40 in which the thermally conductive material 62 is provided on the inner surface of the insulating housing 40 .
 したがって、板金104がオペアンプ26の表面26Aと同じ大きさに形成された場合と比較して、放熱効果を高めることができる。 Therefore, compared to the case where the sheet metal 104 is formed to have the same size as the surface 26A of the operational amplifier 26, the heat dissipation effect can be enhanced.
 なお、以上の第二実施形態において、絶縁筐体40は導電性を有する筐体であってもよい。 It should be noted that in the second embodiment described above, the insulating housing 40 may be a conductive housing.
 <第三実施形態>
 まず、図6を参照して、第一実施形態に係る測定装置300について説明する。図6は、第三実施形態に係る測定装置300を示すブロック図である。
<Third Embodiment>
First, a measuring device 300 according to the first embodiment will be described with reference to FIG. FIG. 6 is a block diagram showing a measuring device 300 according to the third embodiment.
 図6に示すように、測定装置300は、測定装置本体301とセンサ302とを備える。センサ302は、第一実施形態のセンサ10又は第二実施形態のセンサ100で構成される。センサ10は、第一実施形態で説明した構成を備え、センサ100は、第二実施形態で説明した構成を備える。 As shown in FIG. 6, the measuring device 300 includes a measuring device main body 301 and a sensor 302. The sensor 302 is configured with the sensor 10 of the first embodiment or the sensor 100 of the second embodiment. The sensor 10 has the configuration described in the first embodiment, and the sensor 100 has the configuration described in the second embodiment.
 測定装置本体301は、操作部304、測定部305、処理部306、表示部307、及び記憶部308を備えている。センサ302は、ケーブル303を経由して測定装置本体301の測定部305に接続される。 The measurement device main body 301 includes an operation unit 304 , a measurement unit 305 , a processing unit 306 , a display unit 307 and a storage unit 308 . The sensor 302 is connected to the measuring section 305 of the measuring device body 301 via a cable 303 .
 記憶部308は、動作プログラムや測定結果のデータ等を記憶する。処理部306は、記憶部308に記憶された動作プログラムに従って動作して、測定部305及び表示部307を制御する。 The storage unit 308 stores operation programs, measurement result data, and the like. The processing unit 306 operates according to the operation program stored in the storage unit 308 to control the measurement unit 305 and the display unit 307 .
 測定部305は、処理部306からの制御に従って動作し、センサ302から取得した磁気の検出量(測定電流の電流値を特定可能な出力信号)に基づいて、測定対象である測定導体12(図1参照)に流れる測定電流Iの電流値を測定する測定処理を実行する。 The measurement unit 305 operates according to the control from the processing unit 306, and based on the detected amount of magnetism acquired from the sensor 302 (an output signal capable of specifying the current value of the measurement current), the measurement conductor 12 (Fig. 1) is executed to measure the current value of the measurement current I flowing through.
 操作部304は、測定装置300による測定条件の設定や測定開始及び終了などを指示する為の操作スイッチを備え、操作部304は、スイッチ操作に応じた操作信号を処理部306に出力する。表示部307は、処理部306からの信号を受けて測定結果などを表示する。 The operation unit 304 includes operation switches for instructing the setting of measurement conditions and the start and end of measurement by the measuring device 300, and the operation unit 304 outputs an operation signal to the processing unit 306 according to the switch operation. A display unit 307 receives a signal from the processing unit 306 and displays measurement results and the like.
 処理部306は、測定装置本体301を総括的に制御する。具体的に説明すると、処理部306は、測定部305を制御して上記の測定処理を実行させる。また、処理部306は、測定部305による測定結果を表示部307に表示させるとともに、測定結果を特定可能な測定結果データを生成して記憶部308に記憶させる。 The processing unit 306 comprehensively controls the measuring device body 301 . Specifically, the processing unit 306 controls the measurement unit 305 to execute the measurement process described above. Further, the processing unit 306 causes the display unit 307 to display the measurement result obtained by the measurement unit 305 , generates measurement result data that can identify the measurement result, and stores the measurement result data in the storage unit 308 .
 (作用及び効果)
 次に、第三実施形態による作用効果について説明する。
(Action and effect)
Next, functions and effects of the third embodiment will be described.
 第三実施形態における測定装置300は、センサ302と、センサ302の出力信号に基づいて測定対象である測定導体12に関する測定値を測定する測定部305と、を備えている。 A measuring device 300 in the third embodiment includes a sensor 302 and a measuring section 305 that measures a measured value related to the measurement conductor 12, which is the object to be measured, based on the output signal of the sensor 302.
 この構成において、測定装置300のセンサ302は、第一実施形態のセンサ10又第二実施形態のセンサ100のように構成されている。このため、この測定装置300は、第一実施形態又は第二実施形態と同様の効果を奏する。 In this configuration, the sensor 302 of the measuring device 300 is configured like the sensor 10 of the first embodiment or the sensor 100 of the second embodiment. Therefore, this measuring device 300 has the same effect as the first embodiment or the second embodiment.
 そして、測定装置300は、センサ302から取得した検出量に基づいて測定を行う。このため、測定装置300は、センサ302の内部温度の上昇に起因する出力信号の温度ドリフトを抑制した測定を行うことができる。 Then, the measuring device 300 performs measurement based on the detected amount acquired from the sensor 302 . Therefore, the measurement apparatus 300 can perform measurement while suppressing the temperature drift of the output signal caused by the rise in the internal temperature of the sensor 302 .
 なお、第三実施形態では、測定値を表示部307に表示する測定装置300を示したが、第三実施形態は、この構造に限定されるものではない。例えば、測定装置300は、測定値を有線又は無線で外部に出力する装置であってもよい。 Although the third embodiment shows the measuring device 300 that displays the measured value on the display unit 307, the third embodiment is not limited to this structure. For example, the measuring device 300 may be a device that outputs measured values to the outside in a wired or wireless manner.
 また、第三実施形態では、センサ302が測定装置本体301の外部に設けられた測定装置300を示したが、第三実施形態は、この構成に限定されるものではない。例えば、測定装置300は、センサ302を内蔵する装置であってもよい。 In addition, although the third embodiment shows the measuring device 300 in which the sensor 302 is provided outside the measuring device main body 301, the third embodiment is not limited to this configuration. For example, measurement device 300 may be a device that incorporates sensor 302 .
 また、第三実施形態では、センサ302と測定部305との通信をケーブル303で行う測定装置300を示したが、第三実施形態は、この構成に限定されるものではない。例えば、測定装置300は、ケーブル303の代わりに、無線の通信手段を用いてセンサ302と測定部305との間で通信する装置であってもよい。 Also, in the third embodiment, the measurement device 300 that performs communication between the sensor 302 and the measurement unit 305 using the cable 303 is shown, but the third embodiment is not limited to this configuration. For example, the measuring device 300 may be a device that communicates between the sensor 302 and the measuring section 305 using wireless communication means instead of the cable 303 .
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of application examples of the present invention, and the technical scope of the present invention is not limited to the specific configurations of the above embodiments. do not have.
 本願は2021年12月16日に日本国特許庁に出願された特願2021-204401に基づく優先権を主張するとともに、2022年11月28日に日本国特許庁に出願された特願2022-188927に基づく優先権を主張し、これらの出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2021-204401 filed with the Japan Patent Office on December 16, 2021, and Japanese Patent Application No. 2022- filed with the Japan Patent Office on November 28, 2022. 188927, the entire contents of these applications are incorporated herein by reference.
 10、100、200、302  センサ
 26  オペアンプ
 28  生成部
 30  シャント抵抗器
 40  絶縁筐体
 42  カバー
 42A  内面
 62、64、66、90、92、102  熱伝導性材料
 104  板金
 106  部品側熱伝導性材料
 108  共有熱伝導性材料
 110  抵抗側熱伝導性材料
 300 測定装置
 305 測定部
10, 100, 200, 302 sensor 26 operational amplifier 28 generator 30 shunt resistor 40 insulating housing 42 cover 42A inner surface 62, 64, 66, 90, 92, 102 thermally conductive material 104 sheet metal 106 component side thermally conductive material 108 Shared thermally conductive material 110 Resistance-side thermally conductive material 300 Measuring device 305 Measuring part

Claims (8)

  1.  筐体と、
     前記筐体の内面に設けられた第一の熱伝導性材料と、
     前記筐体の内部に設けられた電子部品と前記第一の熱伝導性材料を接続する第二の熱伝導性材料と、を備え、
     前記第一の熱伝導性材料は、前記筐体よりも熱伝導率が高く、前記筐体の内面側から見て前記第二の熱伝導性材料よりも面積が広い、
     センサ。
    a housing;
    a first thermally conductive material provided on the inner surface of the housing;
    a second thermally conductive material connecting the electronic component provided inside the housing and the first thermally conductive material;
    The first thermally conductive material has a higher thermal conductivity than the housing and has a larger area than the second thermally conductive material when viewed from the inner surface of the housing.
    sensor.
  2.  請求項1に記載のセンサであって、
     前記筐体の内部には、検出結果を示す信号を生成する生成部が設けられている、
     センサ。
    A sensor according to claim 1, wherein
    A generating unit that generates a signal indicating a detection result is provided inside the housing,
    sensor.
  3.  請求項1又は請求項2に記載のセンサであって、
     前記筐体は、絶縁体で形成され、
     前記第一の熱伝導性材料は、導電性を有する、
     センサ。
    A sensor according to claim 1 or claim 2,
    The housing is made of an insulator,
    The first thermally conductive material has electrical conductivity,
    sensor.
  4.  請求項1から請求項3のいずれか一項に記載のセンサであって、
     前記第一の熱伝導性材料は、金属で形成される、
     センサ。
    A sensor according to any one of claims 1 to 3,
    the first thermally conductive material is formed of metal;
    sensor.
  5.  請求項1から請求項4のいずれか一項に記載のセンサであって、
     前記第一の熱伝導性材料は、前記内面に形成されたメッキで構成される、
     センサ。
    A sensor according to any one of claims 1 to 4,
    The first thermally conductive material is composed of a plating formed on the inner surface,
    sensor.
  6.  請求項1から請求項5のいずれか一項に記載のセンサであって、
     前記第二の熱伝導性材料は、熱伝導シートで構成される、
     センサ。
    A sensor according to any one of claims 1 to 5,
    The second thermally conductive material is composed of a thermally conductive sheet,
    sensor.
  7.  請求項1から請求項6のいずれか一項に記載のセンサであって、
     前記第二の熱伝導性材料には、板金が挟み込まれている、
     センサ。
    A sensor according to any one of claims 1 to 6,
    A sheet metal is sandwiched between the second thermally conductive materials,
    sensor.
  8.  請求項1から請求項7のいずれか一項に記載のセンサと、
    前記センサの出力信号に基づいて測定対象に関する測定値を測定する測定部と、
     を備えている測定装置。
    a sensor according to any one of claims 1 to 7;
    a measurement unit that measures a measurement value related to a measurement target based on the output signal of the sensor;
    A measuring device with
PCT/JP2022/045135 2021-12-16 2022-12-07 Sensor and measurement device WO2023112799A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-204401 2021-12-16
JP2021204401 2021-12-16
JP2022188927A JP2023089942A (en) 2021-12-16 2022-11-28 Sensor and measurement device
JP2022-188927 2022-11-28

Publications (1)

Publication Number Publication Date
WO2023112799A1 true WO2023112799A1 (en) 2023-06-22

Family

ID=86774599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045135 WO2023112799A1 (en) 2021-12-16 2022-12-07 Sensor and measurement device

Country Status (1)

Country Link
WO (1) WO2023112799A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179830A (en) * 1997-12-18 1999-07-06 Toray Ind Inc Composite molded product and member for electrical and electronic equipment
JP2001208586A (en) * 2000-01-24 2001-08-03 Hitachi Ltd Air flow rate-measuring device
CN2534775Y (en) * 2002-04-03 2003-02-05 英业达股份有限公司 Heat conduction radiating structure for electronic element of circuit board
JP2005136272A (en) * 2003-10-31 2005-05-26 Hitachi Cable Ltd Semiconductor device for mounting high frequency component
JP2009123859A (en) * 2007-11-14 2009-06-04 Onkyo Corp Semiconductor device
JP2016040458A (en) * 2014-08-12 2016-03-24 株式会社堀場製作所 Information processing device for exhaust gas measurement, exhaust gas measurement system and program
JP2017096740A (en) * 2015-11-24 2017-06-01 日置電機株式会社 Current sensor
WO2020162117A1 (en) * 2019-02-08 2020-08-13 パナソニックIpマネジメント株式会社 Heat conducting sheet and electronic device using same
JP2022003657A (en) * 2020-06-23 2022-01-11 日本精機株式会社 Instrument casing
JP2022158213A (en) * 2021-04-01 2022-10-17 株式会社デンソー electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179830A (en) * 1997-12-18 1999-07-06 Toray Ind Inc Composite molded product and member for electrical and electronic equipment
JP2001208586A (en) * 2000-01-24 2001-08-03 Hitachi Ltd Air flow rate-measuring device
CN2534775Y (en) * 2002-04-03 2003-02-05 英业达股份有限公司 Heat conduction radiating structure for electronic element of circuit board
JP2005136272A (en) * 2003-10-31 2005-05-26 Hitachi Cable Ltd Semiconductor device for mounting high frequency component
JP2009123859A (en) * 2007-11-14 2009-06-04 Onkyo Corp Semiconductor device
JP2016040458A (en) * 2014-08-12 2016-03-24 株式会社堀場製作所 Information processing device for exhaust gas measurement, exhaust gas measurement system and program
JP2017096740A (en) * 2015-11-24 2017-06-01 日置電機株式会社 Current sensor
WO2020162117A1 (en) * 2019-02-08 2020-08-13 パナソニックIpマネジメント株式会社 Heat conducting sheet and electronic device using same
JP2022003657A (en) * 2020-06-23 2022-01-11 日本精機株式会社 Instrument casing
JP2022158213A (en) * 2021-04-01 2022-10-17 株式会社デンソー electronic device

Similar Documents

Publication Publication Date Title
US9529013B2 (en) Current sensor
US8089291B2 (en) Electromagnetic wave generation source searching method and current probe used therefor
WO2010140318A1 (en) Electronic device and noise current measuring method
KR19980080610A (en) Current sensor
JP7003134B2 (en) Combination of conductive elements such as bushings and connector cables
JP6650045B2 (en) Current sensor
JP2014165165A (en) Electronic component and electronic control device
WO2023112799A1 (en) Sensor and measurement device
KR101843249B1 (en) Electric component module and method for measuring shielding therein
JP2014229829A (en) Electronic device
JP2023089942A (en) Sensor and measurement device
JP2008211043A (en) Electronic equipment
JP2014062826A (en) Battery internal resistance measurement device
JP2011191071A (en) Humidity sensor
JP6314010B2 (en) Current sensor
JPWO2019167104A1 (en) Semiconductor device
JP5458319B2 (en) Current sensor
US10477669B2 (en) Circuit substrate
JPWO2018179408A1 (en) Temperature measuring device
TWI495882B (en) Method for measuring pcb radiated emission
JP2024077454A (en) Electrical Equipment
JP2903005B2 (en) Heat dissipation mechanism of semiconductor device mounted on printed circuit board
US4782299A (en) Methods of arc and corona monitoring for high voltage generators
JP7315505B2 (en) Inductive load control circuit
JP2014239089A (en) Electronic circuit and heat sink attachment detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907326

Country of ref document: EP

Kind code of ref document: A1