WO2023112573A1 - 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液 - Google Patents

硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液 Download PDF

Info

Publication number
WO2023112573A1
WO2023112573A1 PCT/JP2022/042180 JP2022042180W WO2023112573A1 WO 2023112573 A1 WO2023112573 A1 WO 2023112573A1 JP 2022042180 W JP2022042180 W JP 2022042180W WO 2023112573 A1 WO2023112573 A1 WO 2023112573A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
cured product
compounds
producing
Prior art date
Application number
PCT/JP2022/042180
Other languages
English (en)
French (fr)
Inventor
俊栄 青島
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023112573A1 publication Critical patent/WO2023112573A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers

Definitions

  • the present invention relates to a method for producing a cured product, a method for producing a laminate, a method for producing a semiconductor device, and a treatment liquid.
  • Polyimide and other resins are used in a variety of applications due to their excellent heat resistance and insulating properties.
  • the above applications are not particularly limited, but taking semiconductor devices for mounting as an example, patterns containing these resins can be used as materials for insulating films and sealing materials, or as protective films. . Patterns containing these resins are also used as base films and coverlays for flexible substrates.
  • the cyclized resin such as polyimide is used in the form of a resin composition containing a precursor of the cyclized resin such as a polyimide precursor, or in the form of a resin composition containing the cyclized resin.
  • a resin composition is applied to a substrate, for example, by coating or the like, and then, if necessary, by performing exposure, development, heating, or the like, a cyclized resin (for example, a resin in which a polyimide precursor is imidized ) can be formed on the substrate.
  • the resin composition can be applied by a known coating method, etc., and can be developed to form fine patterns, patterns with complicated shapes, etc., so that the degree of freedom in designing the cured product is high.
  • Patent Document 1 a photosensitive polyimide layer on a substrate is exposed and photocured in an appropriate pattern, and then developed to remove the unexposed portion with a developer, and then the photocured polyimide pattern layer
  • the formed substrate is immersed in a photocurable polyimide pattern layer forming rinse solution containing at least 5 to 30% by volume of a primary aliphatic amino compound and 2 to 20% by volume of an aprotic basic solvent.
  • the substrate is rinsed, and finally, the substrate having the photocurable polyimide layer removed from the rinse is heat-treated at a high temperature.
  • Patent Document 2 describes a photosensitive resin composition containing a heterocyclic ring-containing polymer precursor, a thermal base generator, and an organic compound containing a Group 4 element.
  • the present invention provides a method for producing a cured product that provides a cured product having excellent chemical resistance, a method for producing a laminate including the method for producing the cured product, and a method for producing the cured product or a method for producing the laminate. It is an object of the present invention to provide a method for manufacturing a semiconductor device containing the above, and to provide a processing liquid used in the method for manufacturing a cured product.
  • ⁇ 4> The method for producing a cured product according to ⁇ 2> or ⁇ 3>, wherein the heating step is a step of accelerating curing of the film by the action of the compound having the Group 4 element.
  • ⁇ 5> The cured product according to any one of ⁇ 1> to ⁇ 4>, wherein the treatment liquid is a rinse liquid, and the treatment step is a rinse step of washing the film with the treatment liquid. manufacturing method.
  • ⁇ 6> Between the film formation step and the treatment step, an exposure step of selectively exposing the film, and a development step of developing the exposed film with a developer to form a patterned film.
  • the method for producing a cured product according to any one of ⁇ 1> to ⁇ 5> including steps.
  • ⁇ 7> An exposure step of selectively exposing the film is provided between the film formation step and the treatment step, and the treatment step develops the film using the treatment liquid as a developer to form a pattern.
  • the method for producing a cured product according to any one of ⁇ 1> to ⁇ 5> which is a step of forming a shaped film.
  • ⁇ 9> The method for producing a cured product according to any one of ⁇ 6> to ⁇ 8>, wherein the development is negative development.
  • the treatment liquid contains at least one compound selected from the group consisting of a compound having a titanium atom and a compound having a zirconium atom as the compound having the Group 4 element.
  • a method for producing a cured product according to any one of. ⁇ 11> The treatment liquid contains at least one compound selected from the group consisting of titanocene compounds, tetraalkoxytitanium compounds, titanium acylate compounds, titanium chelate compounds and zirconocene compounds as the compound containing the Group 4 element.
  • ⁇ 12> A method for producing a laminate, wherein the method for producing a cured product according to any one of ⁇ 1> to ⁇ 11> is repeated multiple times.
  • a method for producing a semiconductor device comprising the method for producing a cured product according to any one of ⁇ 1> to ⁇ 11>, or the method for producing a laminate according to ⁇ 12> or ⁇ 13>.
  • a cured product comprising a film forming step of applying a resin composition containing a cyclized resin or its precursor onto a substrate to form a film, and a treatment step of contacting the film with a treatment liquid.
  • a treatment liquid used in the manufacturing method A treatment liquid containing a compound having a Group 4 element.
  • the treatment liquid according to ⁇ 15>, wherein the method for producing the cured product further includes a heating step of heating the film after the treatment step.
  • the method for producing a cured product includes the film forming step, an exposure step of selectively exposing the film formed by the film forming step, and a patterned film by developing the exposed film with a developer.
  • a method for producing a cured product that provides a cured product having excellent chemical resistance a method for producing a laminate including the method for producing the cured product, and a method for producing the cured product or the laminate
  • a method for manufacturing a semiconductor device including a manufacturing method, and a treatment liquid used in the above-described method for manufacturing a cured product.
  • a numerical range represented by the symbol "to” means a range including the numerical values before and after "to” as lower and upper limits, respectively.
  • the term "process” is meant to include not only independent processes, but also processes that are indistinguishable from other processes as long as the desired effects of the process can be achieved.
  • a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent.
  • alkyl group includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
  • exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams, unless otherwise specified.
  • Light used for exposure includes actinic rays or radiation such as emission line spectra of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light), X-rays, and electron beams.
  • (meth)acrylate means both or either of “acrylate” and “methacrylate”
  • (meth)acrylic means both “acrylic” and “methacrylic”
  • (meth)acryloyl means either or both of “acryloyl” and “methacryloyl”.
  • Me in the structural formulas represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • total solid content refers to the total mass of all components of the composition excluding the solvent.
  • the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured using a gel permeation chromatography (GPC) method, unless otherwise specified, and are defined as polystyrene conversion values.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are, for example, HLC-8220GPC (manufactured by Tosoh Corporation), guard column HZ-L, TSKgel Super HZM-M, TSKgel It can be obtained by connecting Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation) in series. Unless otherwise stated, their molecular weights were determined using THF (tetrahydrofuran) as an eluent.
  • THF tetrahydrofuran
  • NMP N-methyl-2-pyrrolidone
  • detection in GPC measurement uses a UV ray (ultraviolet) wavelength detector of 254 nm.
  • UV ray ultraviolet
  • a third layer or element may be interposed between the reference layer and the other layer, and the reference layer and the other layer need not be in contact with each other.
  • the direction in which the layers are stacked with respect to the base material is referred to as "upper", or when there is a resin composition layer, the direction from the base material to the resin composition layer is referred to as “upper”. and the opposite direction is called “down”.
  • the composition may contain two or more compounds corresponding to each component contained in the composition.
  • the content of each component in the composition means the total content of all compounds corresponding to that component.
  • the temperature is 23° C.
  • the pressure is 101,325 Pa (1 atm)
  • the relative humidity is 50% RH, unless otherwise stated. Combinations of preferred aspects are more preferred aspects herein.
  • the method for producing a cured product of the present invention includes a film forming step of applying a resin composition containing a cyclized resin or a precursor thereof to a substrate to form a film, and bringing the film into contact with a treatment liquid. a treatment step, wherein the treatment liquid contains a compound having a Group 4 element.
  • a cured product is obtained using a resin composition containing a cyclized resin or a precursor thereof and a compound having a Group 4 element (hereinafter also referred to as a "group 4 element-containing compound"). It is When the resin composition contains the Group 4 element-containing compound, the resulting cured film has an increased glass transition temperature, and a cured product having excellent chemical resistance can be obtained. It is considered that this is because the orientation of the cyclized resin is improved in the cured film.
  • the Group 4 element-containing compound is sensitized even under yellow light, for example, so when the resin composition contains the Group 4 element-containing compound, the resin composition is stored under light-shielding conditions, red light There were restrictions on storage conditions and usage conditions, such as using under low temperatures.
  • the method for producing a cured product of the present invention includes a step of bringing a treatment liquid containing a Group 4 element-containing compound into contact with a film made of a resin composition.
  • the group 4 element-containing compound or the compound containing the group 4 element derived therefrom or the ions or the like permeate the film from the treatment liquid, so that the orientation of the cyclized resin is improved in the subsequent heating process.
  • the glass transition temperature rises and a cured product having excellent chemical resistance can be obtained.
  • a cured product having excellent chemical resistance can be obtained even if the resin composition does not contain a compound having a group 4 element. Therefore, the acceptable storage conditions and usage conditions for the resin composition are widened. In addition, it is easy to improve the storage stability of the resin composition.
  • substrates have increased in area from 8-inch wafer sizes to 12-inch and panel-level sizes.
  • the number of layers to be laminated is gradually increasing from one layer to two layers, three layers, four layers, and five layers in order to install wiring such as copper wiring. Due to the increase in the area of the substrate (base material) during manufacturing and the increase in the number of polyimide layers, the warping of wafers and panels has become noticeable. It is desired to do so. Also, for the purpose of suppressing thermal damage to other materials in the device, speeding up the manufacturing process, realizing energy saving, etc., it is desired to lower the heating temperature in the above heating.
  • the method for producing a cured product of the present invention even when heating at a low temperature (for example, 230 ° C. or lower, further 200 ° C. or lower, 180 ° C. or lower, etc.) in the heating step, the orientation of the above-mentioned cyclized resin It is thought that a cured product with excellent chemical resistance can be obtained by improving the properties. Therefore, the method for producing a cured product of the present invention is considered to be useful even when heating at such a low temperature is required.
  • a low temperature for example, 230 ° C. or lower, further 200 ° C. or lower, 180 ° C. or lower, etc.
  • a cured product having a high glass transition temperature can be obtained as described above. Therefore, it is considered that the decomposition or modification of the cyclized resin itself is less likely to occur in the cured product, and the peeling of the laminate is less likely to occur. As a result, it is considered that the cured product obtained by the method for producing a cured product of the present invention is likely to maintain the insulating property as described above. Therefore, the method for producing a cured product of the present invention is considered to be useful even when long-term use and use under severe environments as described above are required.
  • Patent Documents 1 and 2 do not describe a treatment liquid containing a Group 4 element-containing compound.
  • the method for producing a cured product of the present invention will be described in detail below.
  • the method for producing a cured product of the present invention includes a film forming step of applying the resin composition onto a substrate to form a film. Details of the resin composition used in the present invention will be described later.
  • the type of base material can be appropriately determined according to the application, and includes semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, and deposited films. , magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals, and substrates having metal layers formed by plating, vapor deposition, etc.) paper, SOG (Spin On Glass), TFT (Thin Film Transistor) array substrates, mold substrates, plasma display panel (PDP) electrode plates, etc., and are not particularly limited.
  • semiconductor manufacturing base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical films, ceramic materials, and deposited films.
  • magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe (for example, substrates formed from metals, and substrates having metal layers formed by plating, vapor deposition, etc.
  • a semiconductor fabrication substrate is particularly preferable, and a silicon substrate, a Cu substrate and a mold substrate are more preferable.
  • these substrates may be provided with a layer such as an adhesion layer or an oxide layer made of hexamethyldisilazane (HMDS) or the like on the surface.
  • HMDS hexamethyldisilazane
  • the shape of the substrate is not particularly limited, and may be circular or rectangular.
  • the diameter is, for example, 100 to 450 mm, preferably 200 to 450 mm.
  • the short side length is, for example, 100 to 1000 mm, preferably 200 to 700 mm.
  • the base material for example, a plate-like base material (substrate), preferably a panel-like base material (substrate) is used.
  • the resin layer or metal layer serves as the base material.
  • Coating is preferable as a means of applying the resin composition onto the substrate.
  • a coating method such as an inkjet method is exemplified.
  • a spin coating method, a slit coating method, a spray coating method, or an inkjet method is preferable from the viewpoint of uniformity of film thickness, and a spin coating method and a slit coating method are preferable from the viewpoint of uniformity of film thickness and productivity.
  • a coating method is preferred.
  • a film having a desired thickness can be obtained by adjusting the solid content concentration and application conditions of the resin composition according to the method.
  • the coating method can be appropriately selected depending on the shape of the substrate. Spin coating, spray coating, ink jet method, etc.
  • slit coating and spray coating are preferable for rectangular substrates.
  • method, inkjet method, and the like are preferred.
  • spin coating for example, it can be applied at a rotation speed of 500 to 3,500 rpm for about 10 seconds to 3 minutes.
  • a method of transferring a film formed on a temporary support in advance by the application method described above onto a base material can also be used.
  • the transfer method the manufacturing methods described in paragraphs 0023 and 0036 to 0051 of JP-A-2006-023696 and paragraphs 0096-0108 of JP-A-2006-047592 can also be suitably used in the present invention.
  • a step of removing excess film at the edge of the substrate may be performed.
  • processes include edge bead rinsing (EBR), back rinsing, and the like.
  • a pre-wetting step may also be employed in which various solvents are applied to the base material before applying the resin composition to the base material to improve the wettability of the base material, and then the resin composition is applied.
  • the film may be subjected to a step of drying the formed film (layer) (drying step) in order to remove the solvent.
  • the method for producing a cured product of the present invention may include a drying step of drying the film formed by the film forming step.
  • the drying step is preferably performed after the film-forming step and before the treatment step (when the method for producing a cured product includes an exposure step, which will be described later, before the exposure step).
  • the drying temperature of the film in the drying step is preferably 50 to 150°C, more preferably 70 to 130°C, even more preferably 90 to 110°C.
  • the drying time is exemplified from 30 seconds to 20 minutes, preferably from 1 minute to 10 minutes, more preferably from 2 minutes to 7 minutes.
  • the method for producing a cured product of the present invention includes a treatment step of bringing the film into contact with the treatment liquid.
  • the treatment liquid used in the treatment step contains a Group 4 element-containing compound.
  • the Group 4 element in the Group 4 element-containing compound is not particularly limited, but is preferably titanium, zirconium or hafnium, more preferably titanium or zirconium, and still more preferably titanium.
  • the number of Group 4 elements contained in the structure of the Group 4 element-containing compound is not particularly limited, but is preferably 1 to 4, more preferably 1 to 2.
  • the aspect which has only one group 4 element is also one of the preferable aspects of this invention.
  • the Group 4 element-containing compound may have only one Group 4 element, or may have two or more Group 4 elements, and an embodiment having only one Group 4 element is also one of the preferred embodiments of the present invention.
  • the treatment liquid preferably contains at least one compound selected from the group consisting of a compound containing a titanium atom, a compound containing zirconium, and a compound containing hafnium as a Group 4 element-containing compound. and zirconium-containing compounds, and more preferably contain a titanium atom-containing compound.
  • organic ligands include cyclopentadienyl anions having 5 to 20 carbon atoms and derivatives thereof, acetylacetone and derivatives thereof, alkoxy anions and derivatives thereof, carboxy anions and derivatives thereof, and the like.
  • the organic ligand is not particularly limited, but is preferably a hydrocarbon group optionally substituted with a halogen atom, or a group consisting of a combination of a hydrocarbon group and a heteroatom.
  • Preferred heteroatoms are oxygen, sulfur and nitrogen atoms.
  • a group represented by a combination with at least one group selected from is preferred.
  • the hydrocarbon group optionally substituted with a halogen atom includes a saturated aliphatic hydrocarbon group optionally substituted with a halogen atom, an unsaturated aliphatic hydrocarbon group optionally substituted with a halogen atom, a halogen
  • Aromatic hydrocarbon groups optionally substituted by atoms include saturated aliphatic hydrocarbon groups optionally substituted by halogen atoms or unsaturated aliphatic hydrocarbon groups optionally substituted by halogen atoms preferable.
  • the number of carbon atoms in the hydrocarbon group is preferably 1-20, more preferably 1-10, and even more preferably 1-4.
  • the halogen atom which may substitute the hydrocarbon group includes a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like, and a fluorine atom is preferable.
  • R represents a hydrocarbon group that may be substituted with a halogen atom as described above, and R when there is a plurality of R in one organic ligand, and each organic ligand when there are a plurality of organic ligands Each R in the child may be the same or different.
  • Such organic ligands preferably include an ethoxy group, a propoxy group, an isopropoxy group, a trifluoromethylsulfonyloxy group, an acetylacetonate group and the like. It is also preferred in the present invention that at least one of the organic ligands is a cyclic group. In the above aspect, it is also a more preferable aspect that at least two of them are cyclic groups.
  • the cyclic group is preferably a hydrocarbon cyclic group.
  • the cyclic group is preferably selected from a 5-membered cyclic group and a 6-membered cyclic group. It is more preferably selected from 5-membered cyclic groups.
  • the 6-membered cyclic group includes a phenyl group which may be substituted with a halogen atom, and the phenyl group may be further substituted with a group having a heteroatom such as a pyrrole group.
  • the 6-membered cyclic group is preferably a 2,6-difluoro-3-(pyrrol-1-yl)phenyl group.
  • the Group 4 element-containing compound used in the present invention preferably contains 2 to 4 cyclic groups in one molecule. From the viewpoint of chemical resistance after forming a cured film, it is preferable that the amount of residual organic ligands in the film is small.
  • any compound having a Group 4 metal element that dissolves in the treatment liquid can be used, but the boiling point of the preferred organic ligand is preferably 30° C. to 350° C. at normal pressure (1 atm). , more preferably 80°C to 270°C, still more preferably 100°C to 230°C.
  • Preferred examples of the Group 4 element-containing compound include titanocene compounds, tetraalkoxytitanium compounds, titanium acylate compounds, titanium chelate compounds and zirconocene compounds.
  • titanocene compounds, tetraalkoxytitanium compounds, titanium acylate compounds, or titanium chelate compounds are preferred, and titanocene compounds or titanium chelate compounds are more preferred. Titanium chelate compounds are more preferred. Details of the ligand in the titanium chelate compound are as described above.
  • zirconocene compounds, zirconium chelate compounds, zirconium acylate compounds, hafnocene compounds and the like can also be used.
  • the molecular weight of the Group 4 element-containing compound is preferably 50 to 2,000, more preferably 100 to 1,000.
  • the Group 4 element-containing compound may be a compound having photosensitivity or heat resistance.
  • the Group 4 element-containing compound is also preferably a compound capable of initiating radical photopolymerization.
  • the polymerization of the unreacted radically polymerizable groups in the film progresses, for example, in the heating step, post-development exposure step, etc., which are performed after the processing step.
  • having the ability to initiate photoradical polymerization means being able to generate free radicals capable of initiating radical polymerization by irradiation with light.
  • radicals By confirming the presence or absence of disappearance of the cross-linking agent, the presence or absence of photoradical polymerization initiation ability can be confirmed.
  • an appropriate method can be selected according to the type of the radical cross-linking agent. For example, HPLC measurement (high performance liquid chromatography) may be used.
  • Such compounds include metallocene compounds containing Group 4 elements, and more preferably titanocene compounds.
  • Commercially available products may be used as such compounds, and examples of commercially available products include Irgacure 784 (manufactured by BASF) and Omnirad 784 (manufactured by IGM Resins).
  • Group 4 element-containing compound examples include K-1 to K-7, bis(2,4-pentanedionato)bis(2-propanolato)titanium (IV), and the like used in Examples described later.
  • the present invention is not limited to this.
  • titanium-containing compounds such as tetra-n-propoxytitanium, tetra-i-propoxytitanium, tetra-n-butoxytitanium, tetra-i-butoxytitanium, tetra-sec-butoxytitanium , tetra-t-butoxy titanium, triethoxy mono (acetylacetonato) titanium, tri-n-propoxy mono (acetylacetonato) titanium, tri-i-propoxy mono (acetylacetonato) titanium, tri-n- Butoxy mono (acetylacetonato) titanium, tri-sec-butoxy mono (acetylacetonato) titanium, tri-t-butoxy mono (acetylacetonato) titanium, diethoxy bis (acetylacetonato) titanium, di- n-propoxy bis (acetylacetonato) titanium, di-i-propoxy bis (
  • zirconium-containing compounds such as tetraethoxyzirconium, tetra-i-propoxyzirconium, tetra-n-butoxyzirconium, tetra-i-butoxyzirconium, tetra-sec-butoxyzirconium, tetra- t-butoxyzirconium triethoxy mono(acetylacetonato)zirconium, tri-n-propoxy mono(acetylacetonato)zirconium, tri-i-propoxy mono(acetylacetonato)zirconium, tri-n-butoxy mono (acetylacetonato) zirconium, tri-sec-butoxy mono (acetylacetonato) zirconium, tri-t-butoxy mono (acetylacetonato) zirconium, diethoxy bis (acetylacetonato) zirconium, di-n-
  • Group 4 element-containing compound compounds described in paragraphs 0146 to 0157 of International Publication No. 2020/116238 are also included, but the present invention is not limited thereto.
  • the content of the Group 4 element-containing compound is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less, relative to the total mass of the treatment liquid. preferable. Although the lower limit of the content is not particularly limited, it is preferably 0.05% by mass or more, more preferably 0.1% by mass or more.
  • the content of the Group 4 element-containing compound is preferably 30 to 100% by mass, more preferably 50 to 100% by mass, more preferably 70 to 100% by mass, based on the total solid content of the treatment liquid. % is more preferred.
  • the treatment liquid may contain only one Group 4 element-containing compound, or may contain two or more thereof. When there are two or more Group 4 element-containing compounds, the total is preferably within the above range.
  • the treatment liquid may further contain a basic compound.
  • a basic compound an organic base is preferable from the viewpoint of reliability when it remains in the film after curing (adhesion to the substrate when the cured product is further heated).
  • a basic compound having an amino group is preferable, and primary amine, secondary amine, tertiary amine, ammonium salt, tertiary amide, etc. are preferable.
  • the basic compound is preferably one that does not easily remain in the cured film (obtained cured product). It is preferable that the remaining amount is difficult to decrease before. Therefore, the boiling point of the basic compound is preferably 30° C. to 350° C., more preferably 80° C. to 270° C., even more preferably 100° C. to 230° C.
  • the boiling point of the basic compound is preferably higher than the boiling point of the organic solvent contained in the treatment liquid minus 20°C, and more preferably higher than the boiling point of the organic solvent contained in the treatment liquid.
  • the basic compound used preferably has a boiling point of 80° C. or higher, more preferably 100° C. or higher.
  • the treatment liquid may contain only one type of basic compound, or may contain two or more types.
  • basic compounds include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N, N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N , N-diisopropylethylamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide, ethylenediamine, butanediamine, 1,5-diaminopentane, N-methylhexy
  • the content of the basic compound is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total mass of the treatment liquid.
  • the lower limit of the content is not particularly limited, it is preferably 0.1% by mass or more, for example.
  • the content of the basic compound is preferably 70 to 100% by mass with respect to the total solid content of the treatment liquid.
  • the treatment liquid may contain only one type of basic compound, or may contain two or more types of basic compounds. When two or more kinds of basic compounds are used, the total is preferably within the above range.
  • the treatment liquid may contain a base generator.
  • the base generator used in the resin composition according to the present invention, which will be described later, can be used without particular limitation.
  • the base generator may be a photobase generator or a thermal base generator, but is preferably a thermal base generator.
  • the content of the base generator is preferably 0.01 to 20% by mass, more preferably 0.02 to 15% by mass, based on the total solid content of the treatment liquid. more preferably 0.05 to 10% by mass.
  • One type of base generator may be used, or two or more types may be used. When two or more base generators are used, the total is preferably within the above range.
  • the content of the base generator is preferably 10% by mass or less, more preferably 5% by mass or less, relative to the total mass of the treatment liquid.
  • the lower limit of the content is not particularly limited, it is preferably 0.1% by mass or more, for example.
  • the content of the base generator is preferably 70 to 100% by mass with respect to the total solid content of the treatment liquid.
  • the treatment liquid may contain only one type of base generator, or may contain two or more types. When two or more base generators are used, the total is preferably within the above range.
  • the treatment liquid may contain a solvent.
  • solvents include water and organic solvents, with organic solvents being preferred.
  • Organic solvents include esters, ethers, ketones, cyclic hydrocarbons, alcohols, and amides. Esters such as ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone , ⁇ -valerolactone, alkyl alkyloxyacetate (e.g.
  • methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate e.g. methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • 3-alkyloxypropionate alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • 2-alkyloxypropionate alkyl esters e.g. methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate
  • Preferable examples include propyl acid, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, and ethyl 2-oxobutanoate.
  • Ethers such as diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) , propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like.
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • propylene glycol monopropyl ether acetate and the like.
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone and the like.
  • Preferred examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene and anisole, cyclic terpenes such as limonene, and dimethyl sulfoxide and the like as sulfoxides.
  • Suitable alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol, propylene glycol, methylisobutylcarbinol, triethylene glycol and the like.
  • Suitable amides include N-methylpyrrolidone, N-ethylpyrrolidone, dimethylformamide and the like.
  • these basic compounds can be used as solvents and basic compounds. Among these, when the processing liquid is used as a developer, ketones or sulfoxides are preferable as the solvent. is preferred.
  • the content of the solvent with respect to the total weight of the treatment liquid is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more. preferable.
  • the content of the organic solvent relative to the total weight of the treatment liquid is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. It is even more preferable to have Only one kind of solvent may be used, or two or more kinds thereof may be used. When two or more solvents are used, the total is preferably within the above range.
  • the treatment liquid may further contain other components.
  • Other components include, for example, known surfactants and known antifoaming agents.
  • An exposure step of selectively exposing the film and a developing step of developing the exposed film with a developer to form a patterned film are included between the film forming step and the processing step.
  • the aspect in which the film forming step, the exposure step, the developing step and the treatment step are performed is also referred to as aspect A.
  • the treatment step is a step of bringing the patterned film obtained by the development step into contact with the treatment liquid.
  • the resin composition contains a precursor of the cyclized resin, and that the cyclization rate of the precursor of the cyclized resin in the film during the treatment step is 70% or less.
  • the cyclization rate of the precursor of the cyclized resin in the film at the start of the treatment process is preferably within the above range, and the cyclization rate need not be within the above range in all of the treatment steps.
  • the cyclization rate is more preferably 50% or less, still more preferably 40% or less, and particularly preferably 30% or less.
  • the cyclization rate (imidization rate in the case of a polyimide precursor) can be calculated by the following method, for example, in the case of a polyimide precursor.
  • the infrared absorption spectrum of the polyimide precursor is measured to determine the peak intensity P1 near 1377 cm ⁇ 1 which is the absorption peak derived from the imide structure.
  • the infrared absorption spectrum is measured again to obtain the peak intensity P2 near 1377 cm ⁇ 1 .
  • the imidization rate of the polyimide precursor can be determined according to the following formula.
  • Imidation rate (%) (peak intensity P1/peak intensity P2) x 100
  • the method of supplying the treatment liquid is not particularly limited as long as the treatment liquid can be brought into contact with the film.
  • a method of supplying the processing liquid onto a patterned film and a mode of supplying the processing liquid onto a patterned film are exemplified.
  • the supply method is not particularly limited, and includes a method of immersing the substrate in the processing liquid, a method of supplying the substrate with a paddle (liquid heap), a method of supplying the processing liquid to the substrate by showering, and a method of supplying the processing liquid onto the substrate.
  • a method of continuously supplying the processing liquid by means of a straight nozzle or the like can be mentioned.
  • the paddle supply has an effect that the film swells so that the subsequent processing liquid can easily permeate, and the shower supply and the spray supply have an effect of increasing the removability of the non-image area.
  • the treatment liquid may be used in at least one of the combined methods.
  • a liquid containing no group 4 element-containing compound onto the pattern for example, a rinse liquid containing no group 4 element-containing compound is supplied onto the patterned film to form a pattern. After washing), the treatment process using the treatment liquid may be performed.
  • the method of supplying the treatment liquid containing no Group 4 element-containing compound onto the pattern in the above embodiment is not particularly limited, but a paddle supply method can be used.
  • the method of supplying the treatment liquid onto the pattern in the above-described mode is not particularly limited, but preferred examples include supply by a shower, supply by a straight nozzle, and the like.
  • the pattern swells and the group 4 element-containing compound in the treatment liquid supplied later becomes easier to permeate into the pattern, resulting in chemical resistance. It is considered that effects such as improvement can be obtained more easily.
  • the processing liquid from a shower, a straight nozzle, or the like, the removability (rinsability) of development scum and the like may be excellent.
  • the method of supplying the processing liquid in the processing step includes a process in which the processing liquid is continuously supplied to the substrate, a process in which the processing liquid is kept in a substantially stationary state on the substrate, and a process in which the processing liquid is kept on the substrate in a substantially stationary state.
  • a process of vibrating with sound waves or the like and a process of combining them can be adopted.
  • the processing step is preferably a step of supplying the processing liquid to the pattern after development by a method of widely radiating the processing liquid by spraying, showering, or the like, or a step of continuously supplying the processing liquid.
  • development in the development step is performed by puddle development, and at least one supply of the processing liquid in the processing step is performed by shower supply or continuous supply by a straight nozzle or the like.
  • the puddle development swells the pattern, making it easier for the Group 4 element-containing compound in the treatment liquid to permeate the pattern, making it easier to obtain effects such as improved elongation at break.
  • the treatment time in the treatment step (that is, the time during which the treatment liquid is in contact with the pattern) is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the treatment solution during the treatment step is not particularly defined, but it is preferably 10 to 45°C, more preferably 18 to 30°C.
  • the method for producing a cured product of the present invention may include an exposure step of selectively exposing the film formed in the film forming step.
  • Selectively exposing means exposing a portion of the film.
  • the film is formed with exposed regions (exposed portions) and non-exposed regions (non-exposed portions).
  • the amount of exposure is not particularly defined as long as the resin composition can be cured. For example, it is preferably 50 to 10,000 mJ/cm 2 and more preferably 200 to 8,000 mJ/cm 2 in terms of exposure energy at a wavelength of 365 nm. .
  • the exposure wavelength can be appropriately determined in the range of 190-1,000 nm, preferably 240-550 nm.
  • Light sources for exposure include the following.
  • the numbers in parentheses represent the exposure wavelength.
  • (1) Semiconductor laser (wavelength 830nm, 532nm, 488nm, 405nm, 375nm, 355nm etc.), (2) metal halide lamp, (3) high pressure mercury lamp, g-line (wavelength 436nm), h-line (wavelength 405nm), i-line (wavelength 365 nm), broad (three wavelengths of g, h, i lines), (4) excimer laser, KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm), F2 excimer laser (wavelength 157 nm), ( 5) extreme ultraviolet (EUV) (wavelength 13.6 nm), (6) electron beam, (7) YAG laser second harmonic 532 nm, third harmonic 355 nm, and the like.
  • EUV extreme ultraviolet
  • the resin composition For the resin composition, exposure with a high-pressure mercury lamp is particularly preferred, and exposure with i-line is particularly preferred. Thereby, particularly high exposure sensitivity can be obtained.
  • the method of exposure is not particularly limited as long as at least a part of the film made of the resin composition is exposed. Examples thereof include exposure using a photomask and exposure by a laser direct imaging method.
  • the film may be subjected to a step of heating after exposure (post-exposure heating step). That is, the method for producing a cured product of the present invention may include a post-exposure heating step of heating the exposed film in the exposure step.
  • the post-exposure heating step can be performed after the exposure step and before the development step.
  • the heating temperature in the post-exposure heating step is preferably 50°C to 140°C, more preferably 60°C to 120°C.
  • the heating time in the post-exposure heating step is preferably 30 seconds to 300 minutes, more preferably 1 minute to 10 minutes.
  • the heating rate in the post-exposure heating step is preferably from 1 to 12° C./min, more preferably from 2 to 10° C./min, still more preferably from 3 to 10° C./min, from the temperature at the start of heating to the maximum heating temperature. Also, the rate of temperature increase may be appropriately changed during heating.
  • the heating means in the post-exposure heating step is not particularly limited, and known hot plates, ovens, infrared heaters and the like can be used. It is also preferable to perform the heating in an atmosphere of low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon.
  • the method for producing a cured product of the present invention may include a developing step of developing the film exposed in the exposure step with a developer to form a patterned film. By performing development, one of the exposed portion and the non-exposed portion of the film is removed to form a patterned film.
  • development in which the unexposed portion of the film is removed by the development process is called negative development
  • development in which the exposed portion of the film is removed by the development process is called positive development.
  • development in the development step is preferably negative development.
  • a developer is a liquid used to form an image by removing unexposed or exposed areas.
  • a developer containing an organic solvent can be used as the developer used in the development step.
  • Organic solvents used in the developer include esters, ethers, ketones, cyclic hydrocarbons, alcohols, and amides.
  • Esters such as ethyl acetate, n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -caprolactone , ⁇ -valerolactone, alkyl alkyloxyacetate (e.g.
  • methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate e.g. methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.
  • 3-alkyloxypropionate alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • 2-alkyloxypropionate alkyl esters e.g. methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate
  • Preferable examples include propyl acid, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutanoate, and ethyl 2-oxobutanoate.
  • Ethers such as diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME) , propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate and the like.
  • PGME propylene glycol monomethyl ether
  • PMEA propylene glycol monomethyl ether acetate
  • propylene glycol monopropyl ether acetate and the like.
  • ketones include methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone and the like.
  • Preferred examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene and anisole, cyclic terpenes such as limonene, and dimethyl sulfoxide as sulfoxides.
  • Suitable alcohols include methanol, ethanol, propanol, isopropanol, butanol, pentanol, octanol, diethylene glycol, propylene glycol, methylisobutylcarbinol, triethylene glycol and the like.
  • Suitable amides include N-methylpyrrolidone, N-ethylpyrrolidone, dimethylformamide and the like.
  • the solvent for the developer can be used alone or in combination of two or more.
  • a developer containing at least one selected from the group consisting of cyclopentanone, ⁇ -butyrolactone, dimethylsulfoxide, N-methyl-2-pyrrolidone, and cyclohexanone is particularly preferred, and cyclopentanone and ⁇ -butyrolactone. and dimethylsulfoxide is more preferred, and a developer containing cyclopentanone is most preferred.
  • the content of the solvent with respect to the total weight of the developer is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and 90% by mass or more. is particularly preferred. Moreover, the content may be 100% by mass.
  • the developer may contain at least one compound selected from the group consisting of a Group 4 element-containing compound, a basic compound, and a base generator. Preferred aspects of the Group 4 element-containing compound, basic compound, and base generator are the same as the preferred aspects of these components contained in the treatment liquid described above.
  • the processing liquid used in the processing steps described above may be used.
  • an aspect in which the developer does not contain a group 4 element-containing compound is also one of the preferred aspects of the present invention. According to the above aspect, variation in pattern shape may be suppressed.
  • the developer may further contain other components.
  • Other components include, for example, known surfactants and known antifoaming agents.
  • the method of supplying the developer is not particularly limited as long as the desired pattern can be formed.
  • the type of nozzle is not particularly limited, and straight nozzles, shower nozzles, spray nozzles and the like can be mentioned.
  • a method of supplying the developer with a straight nozzle or a method of continuously supplying the developer with a spray nozzle is preferable from the viewpoint of permeability of the developer, removability of non-image areas, and efficiency in manufacturing.
  • the method of supplying the developer with a spray nozzle is more preferable.
  • the substrate is spun to remove the developer from the substrate.
  • a step of removing from above may be employed, and this step may be repeated multiple times.
  • the method of supplying the developer in the development process includes a process in which the developer is continuously supplied to the base material, a process in which the developer is kept substantially stationary on the base material, and a process in which the developer exceeds the developer on the base material.
  • a process of vibrating with sound waves or the like and a process of combining them can be adopted.
  • the embodiment in which the developing solution is supplied to the film after exposure by showering or is continuously supplied is also one of the preferred embodiments of the present invention.
  • the development time is preferably 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • the temperature of the developer during development is not particularly limited, but is preferably 10 to 45°C, more preferably 18 to 30°C.
  • the treatment liquid is preferably a rinse liquid.
  • a rinsing liquid is a liquid used for washing a film, for example, a liquid used for washing a patterned film after exposure and development.
  • the treatment step is preferably a rinse step of washing the film with the treatment liquid.
  • the rinsing step is preferably a rinsing step of washing the patterned film after the exposure step and the development step with the treatment liquid.
  • the patterned film can be washed with the processing liquid by supplying the processing liquid onto the patterned film after the development step by the above-described method of supplying the processing liquid.
  • the method for producing a cured product of the present invention has an exposure step of selectively exposing the film between the film forming step and the treatment step, and the treatment step includes developing the treatment liquid. It is also preferable to form a patterned film by developing the film as a liquid.
  • an aspect in which the film forming step, the exposure step, and the developing step of forming a patterned film by developing the film using the processing solution as the developing solution are also referred to as aspect B.
  • the exposure step in the above aspect B is the same as the exposure step in the above aspect A, and preferred aspects are also the same.
  • the developing step in the above aspect B is the same as the developing step in the above aspect A except that a processing liquid is used as the developer, and the preferred aspects are also the same.
  • Aspect B above further includes a second treatment step of contacting the patterned film with a second treatment solution after the treatment step (development step), wherein the second treatment solution contains a Group 4 element
  • the second treatment solution contains a Group 4 element
  • the second treatment liquid is preferably a rinse liquid.
  • the second treatment step is preferably a rinse step of washing the patterned film with the treatment liquid.
  • the method for producing a cured product of the present invention preferably includes a heating step of heating the film.
  • the method for producing a cured product of the present invention may include a heating step of heating a pattern obtained by another method without performing the developing step or a film obtained by the film forming step.
  • a resin such as a polyimide precursor is cyclized into a resin such as polyimide.
  • cross-linking of unreacted cross-linkable groups in the specific resin or polymerizable compounds other than the specific resin also progresses.
  • the heating temperature (maximum heating temperature) in the heating step is preferably 50 to 450°C, more preferably 120 to 230°C, even more preferably 150 to 230°C.
  • the heating temperature in this case is preferably 150 to 200 ° C., more preferably 150 to 190 ° C., and further preferably 150 to 180 ° C. preferable.
  • the heating step is a step of accelerating curing of the film by the action of the compound containing the Group 4 element (that is, the compound containing the Group 4 element contained in at least one of the developer and the processing solution) by heating.
  • it is a step of promoting cyclization of the precursor of the cyclized resin in the film, and more preferably a step of promoting imidization of the polyimide precursor in the film. .
  • Heating in the heating step is preferably carried out at a temperature rising rate of 1 to 12° C./min from the temperature at the start of heating to the maximum heating temperature.
  • the rate of temperature increase is more preferably 2 to 10°C/min, still more preferably 3 to 10°C/min.
  • By setting the temperature increase rate to 1°C/min or more it is possible to prevent excessive volatilization of the acid or solvent while ensuring productivity.
  • the residual stress of the object can be relaxed.
  • the temperature at the start of heating is preferably 20°C to 150°C, more preferably 20°C to 130°C, and even more preferably 25°C to 120°C.
  • the temperature at the start of heating refers to the temperature at which the process of heating up to the maximum heating temperature is started.
  • the temperature of the film (layer) after drying is, for example, 30 to 200° C. higher than the boiling point of the solvent contained in the resin composition. It is preferable to raise the temperature from a low temperature.
  • the heating time (heating time at the highest heating temperature) is preferably 5 minutes to 360 minutes, more preferably 10 minutes to 300 minutes, even more preferably 15 minutes to 240 minutes.
  • the heating temperature is preferably 30° C. or higher, more preferably 80° C. or higher, further preferably 100° C. or higher, from the viewpoint of adhesion between layers. 120° C. or higher is particularly preferred.
  • the upper limit of the heating temperature is preferably 350° C. or lower, more preferably 250° C. or lower, still more preferably 240° C. or lower, particularly preferably 230° C. or lower, and 200° C. or lower. It can also be 180° C. or less.
  • Heating may be done in stages. As an example, the temperature is raised from 25° C. to 120° C. at 3° C./min, held at 120° C. for 60 minutes, heated from 120° C. to 180° C. at 2° C./min, and held at 180° C. for 120 minutes. , may be performed. It is also preferable to carry out the treatment while irradiating ultraviolet rays as described in US Pat. No. 9,159,547. Such a pretreatment process can improve the properties of the film.
  • the pretreatment step is preferably performed for a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
  • the pretreatment may be performed in two or more steps.
  • the first pretreatment step may be performed in the range of 100 to 150°C, and then the second pretreatment step may be performed in the range of 150 to 200°C. good. Further, cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5°C/min.
  • the heating step is preferably carried out in an atmosphere of low oxygen concentration, such as by flowing an inert gas such as nitrogen, helium or argon, or under reduced pressure, in order to prevent decomposition of the specific resin.
  • the oxygen concentration is preferably 50 ppm (volume ratio) or less, more preferably 20 ppm (volume ratio) or less.
  • a heating means in the heating step is not particularly limited, and examples thereof include a hot plate, an infrared furnace, an electric heating oven, a hot air oven, an infrared oven and the like.
  • the film after the treatment step may be subjected to a post-development exposure step of exposing the pattern after the development step.
  • the method for producing a cured product of the present invention may include a post-development exposure step of exposing the film after the treatment step.
  • the post-development exposure step for example, a reaction in which cyclization of a polyimide precursor or the like proceeds by exposure of a photobase generator, or a reaction in which elimination of an acid-decomposable group proceeds by exposure of a photoacid generator is promoted. can do.
  • the post-development exposure step at least part of the film after the treatment step may be exposed, but it is preferable to expose the entire film after the treatment step.
  • the exposure amount in the post-development exposure step is preferably 50 to 20,000 mJ/cm 2 , more preferably 100 to 15,000 mJ/cm 2 in terms of exposure energy at the wavelength to which the photosensitive compound is sensitive. preferable.
  • the post-development exposure step can be performed using, for example, the light source used in the exposure step described above, and broadband light is preferably used.
  • the film after the treatment step (preferably the film after the heating step) may be subjected to a metal layer forming step for forming a metal layer on the pattern. That is, the method for producing a cured product of the present invention preferably includes a metal layer forming step of forming a metal layer on the film after the treatment step (preferably the film after the heating step).
  • the metal layer is not particularly limited, and existing metal species can be used. Examples include copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold, tungsten, tin, silver, and alloys containing these metals. copper and aluminum are more preferred, and copper is even more preferred.
  • the method of forming the metal layer is not particularly limited, and existing methods can be applied.
  • use the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, JP-A-2004-101850, US Patent No. 7888181B2, US Patent No. 9177926B2 can do.
  • photolithography, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), lift-off, electroplating, electroless plating, etching, printing, and a combination thereof can be considered.
  • a patterning method combining sputtering, photolithography and etching, and a patterning method combining photolithography and electroplating can be used.
  • a preferred embodiment of plating is electroplating using a copper sulfate or copper cyanide plating solution.
  • the thickness of the metal layer is preferably 0.01 to 50 ⁇ m, more preferably 1 to 10 ⁇ m, at the thickest part.
  • Fields to which the cured product of the present invention can be applied include insulating films for electronic devices, interlayer insulating films for rewiring layers, and stress buffer films.
  • pattern formation by etching of a sealing film, a substrate material (a base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting as described above may be used.
  • the method for producing the cured product of the present invention or the cured product of the present invention can also be used for the production of plates such as offset plates or screen plates, for etching molded parts, for protective lacquers and dielectrics in electronics, especially microelectronics. It can also be used for the production of layers and the like.
  • the laminate of the invention is preferably a structure having a plurality of layers comprising the cured product of the invention.
  • the laminate may be a laminate containing two or more layers made of a cured product, or may be a laminate obtained by laminating three or more layers.
  • the two or more layers of the cured product contained in the laminate at least one is a layer made of the cured product of the present invention, and the shrinkage of the cured product, or the deformation of the cured product due to the shrinkage, etc. From the viewpoint of suppression, it is also preferable that all the layers contained in the laminate are layers made of the cured product of the present invention.
  • the method for producing the laminate of the present invention preferably includes the method for producing the cured product of the present invention, and more preferably includes repeating the method for producing the cured product of the present invention multiple times.
  • the laminate of the present invention includes two or more layers made of the cured product, and a metal layer between any of the layers made of the cured product.
  • the metal layer is preferably formed by the metal layer forming step. That is, it is preferable that the method for producing a laminate of the present invention further includes a metal layer forming step of forming a metal layer on the layer made of the cured product between the methods for producing the cured product that are performed multiple times. Preferred aspects of the metal layer forming step are as described above.
  • the laminate for example, a laminate containing at least a layer structure in which three layers of a layer made of the first cured product, a metal layer, and a layer made of the second cured product are laminated in this order is preferable. be done.
  • both the layer comprising the first cured product and the layer comprising the second cured product are layers comprising the cured product of the present invention.
  • the resin composition used for forming the layer composed of the first cured product and the resin composition used for forming the layer composed of the second cured product may be compositions having the same composition. However, it may be a composition having a different composition.
  • the metal layer in the laminate of the present invention is preferably used as a metal wiring such as a rewiring layer.
  • the method for manufacturing the laminate of the present invention includes a lamination step.
  • the lamination step means that the surface of the pattern (resin layer) or metal layer is again subjected to (a) film formation step (layer formation step), (b) exposure step, (c) development step, (d) treatment step, ( e) A series of steps including heating steps in this order.
  • the film formation step (a), the treatment step (d), and the heating step (e) may be repeated.
  • (f) a metal layer forming step may be included after the (e) heating step.
  • the lamination step may further include the drying step and the like as appropriate.
  • a surface activation treatment process may be further performed.
  • a plasma treatment is exemplified as the surface activation treatment. Details of the surface activation treatment will be described later.
  • the lamination step is preferably performed 2 to 20 times, more preferably 2 to 9 times.
  • Each of the layers described above may have the same composition, shape, film thickness, etc., or may differ from each other.
  • a cured product (resin layer) of the resin composition so as to cover the metal layer after providing the metal layer.
  • a film forming step, (b) an exposure step, (c) a developing step, (d) a processing step, (e) a heating step, and (f) a metal layer forming step are repeated in this order
  • a film forming step, (d) the treating step, (e) the heating step, and (f) the metal layer forming step are repeated in this order
  • a mode in which the treatment step, (e) the heating step, and (f) the metal layer forming step are repeated in this order may be mentioned.
  • the resin composition layer (resin layer) and the metal layer can be alternately laminated.
  • the method for producing a laminate of the present invention preferably includes a surface activation treatment step of subjecting at least part of the metal layer and the resin composition layer to surface activation treatment.
  • the surface activation treatment step is usually performed after the metal layer formation step, but after the development step, the resin composition layer may be subjected to the surface activation treatment step before the metal layer formation step.
  • the surface activation treatment may be performed only on at least part of the metal layer, may be performed only on at least part of the resin composition layer after exposure, or may be performed on the metal layer and the resin composition layer after exposure. Both may be done at least partially, respectively.
  • the surface activation treatment is preferably performed on at least part of the metal layer, and it is preferable to perform the surface activation treatment on part or all of the area of the metal layer on which the resin composition layer is formed.
  • the surface of the metal layer By subjecting the surface of the metal layer to the surface activation treatment in this manner, the adhesiveness to the resin composition layer (film) provided on the surface can be improved.
  • the resin composition layer when the resin composition layer is cured, such as in the case of negative development, it is less likely to be damaged by surface treatment, and the adhesion is likely to be improved.
  • Specific examples of the surface activation treatment include plasma treatment of various source gases (oxygen, hydrogen, argon, nitrogen, nitrogen/hydrogen mixed gas, argon/oxygen mixed gas, etc.), corona discharge treatment, and CF 4 /O 2 . , NF 3 /O 2 , SF 6 , NF 3 , NF 3 /O 2 etching treatment, surface treatment by ultraviolet (UV) ozone method, immersion in hydrochloric acid aqueous solution to remove the oxide film, and then amino groups and thiol groups.
  • UV ultraviolet
  • the energy is preferably 500-200,000 J/m 2 , more preferably 1,000-100,000 J/m 2 , most preferably 10,000-50,000 J/m 2 .
  • the present invention also discloses a method for producing a semiconductor device including the method for producing the cured product of the present invention or the method for producing the laminate of the present invention.
  • a semiconductor device using a resin composition for forming an interlayer insulating film for a rewiring layer can refer to the descriptions of paragraphs 0213 to 0218 of JP-A-2016-027357 and the description of FIG. is incorporated herein.
  • the resin composition is a resin composition used in the method for producing a cured product of the present invention, the method for producing a laminate of the present invention, or the method for producing a semiconductor device of the present invention.
  • the resin composition includes a cyclized resin or precursor thereof. Details of each component contained in the resin composition will be described below.
  • the resin composition of the present invention contains at least one resin (specific resin) selected from the group consisting of cyclized resins and precursors thereof, and preferably contains a precursor of the cyclized resin.
  • the cyclized resin is preferably a resin containing an imide ring structure or an oxazole ring structure in its main chain structure.
  • the main chain represents the relatively longest connecting chain in the resin molecule.
  • a precursor of a cyclized resin is a resin that undergoes a change in chemical structure by an external stimulus to become a cyclized resin, preferably a resin that undergoes a change in chemical structure by heat to become a cyclized resin.
  • a resin that becomes a cyclized resin by forming a ring structure is more preferable.
  • Precursors of the cyclized resin include polyimide precursors and the like. That is, the resin composition of the present invention preferably contains at least one resin (specific resin) selected from the group consisting of polyimide precursors as the specific resin. Moreover, the specific resin preferably has a polymerizable group, and more preferably contains a radically polymerizable group. When the specific resin has a radically polymerizable group, the resin composition of the present invention preferably contains a radical polymerization initiator described later, and contains a radical polymerization initiator described later and a radical cross-linking agent described later. is more preferred.
  • a sensitizer described later can be included.
  • a negative photosensitive film is formed from the resin composition of the present invention.
  • the specific resin may have a polarity conversion group such as an acid-decomposable group.
  • the resin composition of the present invention preferably contains a photoacid generator, which will be described later. From such a resin composition of the present invention, for example, a chemically amplified positive photosensitive film or negative photosensitive film is formed.
  • polyimide precursor Although the type of the polyimide precursor used in the present invention is not particularly limited, it preferably contains a repeating unit represented by the following formula (2).
  • a 1 and A 2 each independently represent an oxygen atom or -NH-
  • R 111 represents a divalent organic group
  • R 115 represents a tetravalent organic group
  • R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group.
  • a 1 and A 2 in formula (2) each independently represent an oxygen atom or —NH—, preferably an oxygen atom.
  • R 111 in formula (2) represents a divalent organic group.
  • the divalent organic group include straight-chain or branched aliphatic groups, groups containing cyclic aliphatic groups and aromatic groups, straight-chain or branched aliphatic groups having 2 to 20 carbon atoms, A cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferable, and a group containing an aromatic group having 6 to 20 carbon atoms is more preferable.
  • the hydrocarbon group in the chain may be substituted with a group containing a heteroatom, and in the cyclic aliphatic group and the aromatic group, the ring-membered hydrocarbon group is a heteroatom.
  • may be substituted with a group containing Groups represented by -Ar- and -Ar-L-Ar- are exemplified as preferred embodiments of the present invention, and groups represented by -Ar-L-Ar- are particularly preferred.
  • Ar is each independently an aromatic group
  • L is a single bond or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO -, -S-, -SO 2 - or -NHCO-, or a group consisting of a combination of two or more of the above. Preferred ranges for these are as described above.
  • R 111 is preferably derived from a diamine.
  • Diamines used in the production of polyimide precursors include linear or branched aliphatic, cyclic aliphatic or aromatic diamines. Only one type of diamine may be used, or two or more types may be used. Specifically, a linear or branched aliphatic group having 2 to 20 carbon atoms, a cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 3 to 20 carbon atoms, or a group consisting of a combination thereof is preferably a diamine containing, more preferably a diamine containing an aromatic group having 6 to 20 carbon atoms. In the straight-chain or branched aliphatic group, the hydrocarbon group in the chain may be substituted with a group containing a heteroatom. may be substituted with a group containing Examples of groups containing aromatic groups include:
  • * represents a binding site with other structures.
  • diamines include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane or 1,6-diaminohexane; ,3-diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis(aminomethyl)cyclohexane, bis-(4- aminocyclohexyl)methane, bis-(3-aminocyclohexyl)methane, 4,4′-diamino-3,3′-dimethylcyclohexylmethane and isophoronediamine; m- or p-phenylenediamine, diaminotoluene, 4,4′- or 3,3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether, 3, 3,3
  • diamines (DA-1) to (DA-18) described in paragraphs 0030 to 0031 of International Publication No. 2017/038598.
  • diamines having two or more alkylene glycol units in the main chain described in paragraphs 0032 to 0034 of International Publication No. 2017/038598 are preferably used.
  • R 111 is preferably represented by -Ar-L-Ar- from the viewpoint of the flexibility of the resulting organic film.
  • Ar is each independently an aromatic group
  • L is an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- , —SO 2 — or —NHCO—, or a group consisting of a combination of two or more of the above.
  • Ar is preferably a phenylene group
  • L is preferably an aliphatic hydrocarbon group having 1 or 2 carbon atoms which may be substituted with a fluorine atom, -O-, -CO-, -S- or -SO 2 - .
  • the aliphatic hydrocarbon group here is preferably an alkylene group.
  • R 111 is preferably a divalent organic group represented by the following formula (51) or (61).
  • a divalent organic group represented by Formula (61) is more preferable.
  • Equation (51) In formula (51), R 50 to R 57 are each independently a hydrogen atom, a fluorine atom or a monovalent organic group, and at least one of R 50 to R 57 is a fluorine atom, a methyl group or a trifluoro It is a methyl group, and each * independently represents a binding site to the nitrogen atom in formula (2).
  • the monovalent organic groups represented by R 50 to R 57 include unsubstituted alkyl groups having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms), A fluorinated alkyl group and the like can be mentioned.
  • R 58 and R 59 are each independently a fluorine atom, a methyl group, or a trifluoromethyl group, and * is each independently a binding site to the nitrogen atom in formula (2) show.
  • Diamines that give the structure of formula (51) or formula (61) include 2,2′-dimethylbenzidine, 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 2,2′- bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl and the like. These may be used alone or in combination of two or more.
  • R 115 in formula (2) represents a tetravalent organic group.
  • a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or (6) is more preferable.
  • each * independently represents a binding site to another structure.
  • R 112 is a single bond or a divalent linking group, a single bond, or an aliphatic hydrocarbon group having 1 to 10 carbon atoms which may be substituted with a fluorine atom, —O—, -CO-, -S-, -SO 2 -, and -NHCO-, and preferably a group selected from combinations thereof, having 1 to 1 carbon atoms optionally substituted by a single bond or a fluorine atom 3 alkylene group, -O-, -CO-, -S- and -SO 2 -, and -CH 2 -, -C(CF 3 ) 2 -, -C( It is more preferably a divalent group selected from the group consisting of CH 3 ) 2 -, -O-, -CO-, -S- and -SO 2 -.
  • R 115 includes a tetracarboxylic acid residue remaining after removal of an anhydride group from a tetracarboxylic dianhydride.
  • the polyimide precursor may contain only one type of tetracarboxylic dianhydride residue as a structure corresponding to R115 , or may contain two or more types thereof.
  • the tetracarboxylic dianhydride is preferably represented by the following formula (O).
  • R 115 represents a tetravalent organic group.
  • the preferred range of R 115 is synonymous with R 115 in formula (2), and the preferred range is also the same.
  • tetracarboxylic dianhydrides include pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 3,3′,4,4′- Diphenyl sulfide tetracarboxylic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′ ,4,4′-diphenylmethanetetracarboxylic dianhydride, 2,2′,3,3′-diphenylmethanetetracarboxylic dianhydride, 2,3,3′,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride,
  • Preferable examples also include the tetracarboxylic dianhydrides (DAA-1) to (DAA-5) described in paragraph 0038 of International Publication No. 2017/038598.
  • R 111 and R 115 has an OH group. More specifically, R 111 includes residues of bisaminophenol derivatives.
  • R 113 and R 114 in formula (2) each independently represent a hydrogen atom or a monovalent organic group.
  • the monovalent organic group preferably includes a linear or branched alkyl group, a cyclic alkyl group, an aromatic group, or a polyalkyleneoxy group.
  • At least one of R 113 and R 114 preferably contains a polymerizable group, more preferably both contain a polymerizable group. It is also preferred that at least one of R 113 and R 114 contains two or more polymerizable groups.
  • the polymerizable group is a group capable of undergoing a cross-linking reaction by the action of heat, radicals, or the like, and is preferably a radically polymerizable group.
  • the polymerizable group examples include a group having an ethylenically unsaturated bond, an alkoxymethyl group, a hydroxymethyl group, an acyloxymethyl group, an epoxy group, an oxetanyl group, a benzoxazolyl group, a blocked isocyanate group, and an amino group. be done.
  • a group having an ethylenically unsaturated bond is preferred.
  • Groups having an ethylenically unsaturated bond include a vinyl group, an allyl group, an isoallyl group, a 2-methylallyl group, a group having an aromatic ring directly bonded to a vinyl group (e.g., a vinylphenyl group), and a (meth)acrylamide group.
  • a (meth)acryloyloxy group a group represented by the following formula (III), and the like, and a group represented by the following formula (III) is preferable.
  • R 200 represents a hydrogen atom, a methyl group, an ethyl group or a methylol group, preferably a hydrogen atom or a methyl group.
  • * represents a binding site with another structure.
  • R 201 represents an alkylene group having 2 to 12 carbon atoms, —CH 2 CH(OH)CH 2 —, a cycloalkylene group or a polyalkyleneoxy group.
  • R 201 examples include ethylene, propylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, octamethylene, alkylene groups such as dodecamethylene, 1,2-butanediyl, 1, 3-butanediyl group, —CH 2 CH(OH)CH 2 —, polyalkyleneoxy group, ethylene group, alkylene group such as propylene group, —CH 2 CH(OH)CH 2 —, cyclohexyl group, polyalkylene An oxy group is more preferred, and an alkylene group such as an ethylene group, a propylene group, or a polyalkyleneoxy group is even more preferred.
  • alkylene groups such as dodecamethylene, 1,2-butanediyl, 1, 3-butanediyl group, —CH 2 CH(OH)CH 2 —, polyalkyleneoxy group, ethylene group, alkylene group such as propylene group, —CH 2 CH(OH)CH 2
  • a polyalkyleneoxy group refers to a group in which two or more alkyleneoxy groups are directly bonded.
  • the alkylene groups in the plurality of alkyleneoxy groups contained in the polyalkyleneoxy group may be the same or different.
  • the arrangement of the alkyleneoxy groups in the polyalkyleneoxy group may be a random arrangement or a block arrangement. Alternatively, it may be arranged in a pattern such as an alternating pattern.
  • the number of carbon atoms in the alkylene group (including the number of carbon atoms in the substituent when the alkylene group has a substituent) is preferably 2 or more, more preferably 2 to 10, and 2 to 6.
  • the said alkylene group may have a substituent.
  • Preferred substituents include alkyl groups, aryl groups, and halogen atoms.
  • the number of alkyleneoxy groups contained in the polyalkyleneoxy group is preferably 2 to 20, more preferably 2 to 10, and even more preferably 2 to 6.
  • a group to which an oxy group is bonded is preferable, a polyethyleneoxy group or a polypropyleneoxy group is more preferable, and a polyethyleneoxy group is still more preferable.
  • the ethyleneoxy groups and the propyleneoxy groups may be arranged randomly, or may be arranged to form blocks. , may be arranged in a pattern such as alternately. Preferred embodiments of the number of repetitions of ethyleneoxy groups and the like in these groups are as described above.
  • the polyimide precursor when R 113 is a hydrogen atom, or when R 114 is a hydrogen atom, the polyimide precursor may form a tertiary amine compound having an ethylenically unsaturated bond and a counter salt. good.
  • tertiary amine compounds having ethylenically unsaturated bonds include N,N-dimethylaminopropyl methacrylate.
  • R 113 and R 114 may be a polarity conversion group such as an acid-decomposable group.
  • the acid-decomposable group is not particularly limited as long as it is decomposed by the action of an acid to generate an alkali-soluble group such as a phenolic hydroxy group or a carboxyl group. , a tertiary alkyl ester group and the like are preferable, and from the viewpoint of exposure sensitivity, an acetal group or a ketal group is more preferable.
  • acid-decomposable groups include tert-butoxycarbonyl, isopropoxycarbonyl, tetrahydropyranyl, tetrahydrofuranyl, ethoxyethyl, methoxyethyl, ethoxymethyl, trimethylsilyl, and tert-butoxycarbonylmethyl. groups, trimethylsilyl ether groups, and the like. From the viewpoint of exposure sensitivity, an ethoxyethyl group or a tetrahydrofuranyl group is preferred.
  • the polyimide precursor preferably has a fluorine atom in its structure.
  • the content of fluorine atoms in the polyimide precursor is preferably 10% by mass or more, and preferably 20% by mass or less.
  • the polyimide precursor may be copolymerized with an aliphatic group having a siloxane structure.
  • an aliphatic group having a siloxane structure there is an embodiment using bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane, or the like as the diamine.
  • the repeating unit represented by formula (2) is preferably a repeating unit represented by formula (2-A). That is, at least one polyimide precursor used in the present invention is preferably a precursor having a repeating unit represented by formula (2-A). By including the repeating unit represented by the formula (2-A) in the polyimide precursor, it becomes possible to further widen the width of the exposure latitude.
  • a 1 and A 2 represent an oxygen atom
  • R 111 and R 112 each independently represent a divalent organic group
  • R 113 and R 114 each independently represents a hydrogen atom or a monovalent organic group
  • at least one of R 113 and R 114 is a group containing a polymerizable group, and both are preferably groups containing a polymerizable group.
  • a 1 , A 2 , R 111 , R 113 and R 114 are each independently synonymous with A 1 , A 2 , R 111 , R 113 and R 114 in formula (2), and preferred ranges are also the same.
  • R 112 has the same definition as R 112 in formula (5), and the preferred range is also the same.
  • the polyimide precursor may contain one type of repeating unit represented by formula (2), but may contain two or more types. It may also contain structural isomers of the repeating unit represented by formula (2). It goes without saying that the polyimide precursor may also contain other types of repeating units in addition to the repeating units of formula (2) above.
  • the total content of repeating units represented by formula (2) is 50 mol% or more of all repeating units.
  • the total content is more preferably 70 mol % or more, still more preferably 90 mol % or more, and particularly preferably more than 90 mol %.
  • the upper limit of the total content is not particularly limited, and all repeating units in the polyimide precursor excluding terminals may be repeating units represented by formula (2).
  • the weight average molecular weight (Mw) of the polyimide precursor is preferably 5,000 to 100,000, more preferably 10,000 to 50,000, still more preferably 15,000 to 40,000. Also, the number average molecular weight (Mn) is preferably 2,000 to 40,000, more preferably 3,000 to 30,000, still more preferably 4,000 to 20,000.
  • the polyimide precursor preferably has a molecular weight distribution of 1.5 or more, more preferably 1.8 or more, and even more preferably 2.0 or more. Although the upper limit of the polyimide precursor's molecular weight dispersity is not particularly defined, it is preferably 7.0 or less, more preferably 6.5 or less, and even more preferably 6.0 or less.
  • the molecular weight dispersity is a value calculated by weight average molecular weight/number average molecular weight.
  • the weight average molecular weight, number average molecular weight, and degree of dispersion of at least one polyimide precursor are preferably within the above ranges. It is also preferable that the weight-average molecular weight, the number-average molecular weight, and the degree of dispersion calculated from the multiple types of polyimide precursors as one resin are within the ranges described above.
  • Polyimide precursors for example, a method of reacting a tetracarboxylic dianhydride and a diamine at a low temperature, a method of reacting a tetracarboxylic dianhydride and a diamine at a low temperature to obtain a polyamic acid, a condensing agent or an alkylating agent.
  • a method of esterification using a tetracarboxylic dianhydride and an alcohol to obtain a diester, followed by a reaction with a diamine in the presence of a condensing agent; can be obtained by acid-halogenating the dicarboxylic acid using a halogenating agent and reacting it with a diamine.
  • the method of obtaining a diester from a tetracarboxylic dianhydride and an alcohol, then acid-halogenating the remaining dicarboxylic acid with a halogenating agent, and reacting it with a diamine is more preferred.
  • Examples of the condensing agent include dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3-benzotriazole, N, N'-disuccinimidyl carbonate, trifluoroacetic anhydride and the like can be mentioned.
  • the alkylating agent include N,N-dimethylformamide dimethyl acetal, N,N-dimethylformamide diethyl acetal, N,N-dialkylformamide dialkyl acetal, trimethyl orthoformate and triethyl orthoformate.
  • halogenating agent examples include thionyl chloride, oxalyl chloride, phosphorus oxychloride and the like.
  • an organic solvent in the reaction.
  • One type of organic solvent may be used, or two or more types may be used.
  • the organic solvent can be appropriately determined according to the raw material, but pyridine, diethylene glycol dimethyl ether (diglyme), N-methylpyrrolidone, N-ethylpyrrolidone, ethyl propionate, dimethylacetamide, dimethylformamide, tetrahydrofuran, ⁇ -butyrolactone, and the like. is exemplified.
  • a basic compound In the method for producing a polyimide precursor, it is preferable to add a basic compound during the reaction.
  • One type of basic compound may be used, or two or more types may be used.
  • the basic compound can be appropriately determined depending on the raw material, but triethylamine, diisopropylethylamine, pyridine, 1,8-diazabicyclo[5.4.0]undec-7-ene, N,N-dimethyl-4-amino Pyridine and the like are exemplified.
  • terminal blocking agents include monoalcohols, phenols, thiols, thiophenols, monoamines, and the like. It is more preferable to use monoalcohols, phenols and monoamines from the viewpoint of their properties.
  • Preferred monoalcohol compounds include primary alcohols such as methanol, ethanol, propanol, butanol, hexanol, octanol, dodecinol, benzyl alcohol, 2-phenylethanol, 2-methoxyethanol, 2-chloromethanol and furfuryl alcohol, and isopropanol. , 2-butanol, cyclohexyl alcohol, cyclopentanol and 1-methoxy-2-propanol, and tertiary alcohols such as t-butyl alcohol and adamantane alcohol.
  • Preferable phenolic compounds include phenols such as phenol, methoxyphenol, methylphenol, naphthalene-1-ol, naphthalene-2-ol, and hydroxystyrene.
  • Preferred monoamine compounds include aniline, 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6- aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 1- Carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-amin
  • Preferred capping agents for amino groups are carboxylic acid anhydrides, carboxylic acid chlorides, carboxylic acid bromide, sulfonic acid chlorides, sulfonic anhydrides, sulfonic acid carboxylic acid anhydrides, etc., more preferably carboxylic acid anhydrides and carboxylic acid chlorides. preferable.
  • Preferred carboxylic anhydride compounds include acetic anhydride, propionic anhydride, oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, and the like. is mentioned.
  • Preferred compounds of carboxylic acid chlorides include acetyl chloride, acrylic acid chloride, propionyl chloride, methacrylic acid chloride, pivaloyl chloride, cyclohexanecarbonyl chloride, 2-ethylhexanoyl chloride, cinnamoyl chloride, and 1-adamantanecarbonyl chloride. , heptafluorobutyryl chloride, stearic acid chloride, benzoyl chloride, and the like.
  • the method for producing a polyimide precursor may include a step of depositing a solid. Specifically, after filtering off the water absorption by-products of the dehydration condensation agent coexisting in the reaction solution as necessary, water, aliphatic lower alcohol, or a poor solvent such as a mixture thereof, the obtained A polyimide precursor or the like can be obtained by adding a polymer component and depositing the polymer component, depositing it as a solid, and drying it. In order to improve the degree of purification, operations such as redissolution, reprecipitation, drying, etc. of the polyimide precursor may be repeated. Furthermore, a step of removing ionic impurities using an ion exchange resin may be included.
  • the content of the specific resin in the resin composition of the present invention is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more with respect to the total solid content of the resin composition. is more preferable, and 50% by mass or more is even more preferable.
  • the content of the resin in the resin composition of the present invention is preferably 99.5% by mass or less, more preferably 99% by mass or less, more preferably 98% by mass, based on the total solid content of the resin composition. % or less, more preferably 97 mass % or less, and even more preferably 95 mass % or less.
  • the resin composition of the present invention may contain only one type of specific resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present invention preferably contains at least two resins.
  • the resin composition of the present invention may contain a total of two or more of the specific resin and other resins described later, or may contain two or more of the specific resins. It is preferable to include two or more kinds.
  • the resin composition of the present invention contains two or more specific resins, for example, two or more polyimides that are polyimide precursors and have different dianhydride-derived structures (R 115 in the above formula (2)) It preferably contains a precursor.
  • the resin composition of the present invention may contain the specific resin described above and other resins different from the specific resin (hereinafter also simply referred to as "other resins").
  • Other resins include phenolic resins, polyamides, epoxy resins, polysiloxanes, resins containing siloxane structures, (meth)acrylic resins, (meth)acrylamide resins, urethane resins, butyral resins, styryl resins, polyether resins, and polyester resins. etc.
  • a resin composition having excellent applicability can be obtained, and a pattern (cured product) having excellent solvent resistance can be obtained.
  • a high polymerizable group value having a weight average molecular weight of 20,000 or less for example, the molar amount of the polymerizable group in 1 g of the resin is 1 ⁇ 10 ⁇ 3 mol/g or more
  • the coating properties of the resin composition and the solvent resistance of the pattern (cured product) can be improved. can.
  • the content of the other resins is preferably 0.01% by mass or more, and 0.05% by mass or more, relative to the total solid content of the resin composition. More preferably, it is more preferably 1% by mass or more, even more preferably 2% by mass or more, even more preferably 5% by mass or more, and further preferably 10% by mass or more. More preferred.
  • the content of other resins in the resin composition of the present invention is preferably 80% by mass or less, more preferably 75% by mass or less, based on the total solid content of the resin composition. It is more preferably 60% by mass or less, even more preferably 50% by mass or less.
  • the content of other resins may be low.
  • the content of the other resin is preferably 20% by mass or less, more preferably 15% by mass or less, and 10% by mass or less relative to the total solid content of the resin composition. is more preferable, 5% by mass or less is even more preferable, and 1% by mass or less is even more preferable.
  • the lower limit of the content is not particularly limited as long as it is 0% by mass or more.
  • the resin composition of the present invention may contain only one kind of other resin, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition preferably contains a polymerizable compound.
  • Polymerizable compounds include radical cross-linking agents or other cross-linking agents.
  • the resin composition preferably contains a radical cross-linking agent.
  • a radical cross-linking agent is a compound having a radically polymerizable group.
  • the radically polymerizable group a group containing an ethylenically unsaturated bond is preferred.
  • Examples of the group containing an ethylenically unsaturated bond include groups containing an ethylenically unsaturated bond such as a vinyl group, an allyl group, a vinylphenyl group, a (meth)acryloyl group, a maleimide group, and a (meth)acrylamide group.
  • the group containing an ethylenically unsaturated bond is preferably a (meth)acryloyl group, a (meth)acrylamide group, or a vinylphenyl group, and more preferably a (meth)acryloyl group from the viewpoint of reactivity.
  • the radical cross-linking agent is preferably a compound having one or more ethylenically unsaturated bonds, more preferably a compound having two or more.
  • the radical cross-linking agent may have 3 or more ethylenically unsaturated bonds.
  • the compound having two or more ethylenically unsaturated bonds is preferably a compound having 2 to 15 ethylenically unsaturated bonds, more preferably a compound having 2 to 10 ethylenically unsaturated bonds, and 2 to 6.
  • the resin composition of the present invention contains a compound having two ethylenically unsaturated bonds and a compound having three or more ethylenically unsaturated bonds. It is also preferred to include
  • the molecular weight of the radical cross-linking agent is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
  • the lower limit of the molecular weight of the radical cross-linking agent is preferably 100 or more.
  • radical cross-linking agent examples include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), their esters, and amides. They are esters of saturated carboxylic acids and polyhydric alcohol compounds, and amides of unsaturated carboxylic acids and polyhydric amine compounds.
  • addition reaction products of unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as a hydroxy group, an amino group, or a sulfanyl group with monofunctional or polyfunctional isocyanates or epoxies, or monofunctional or polyfunctional is also preferably used.
  • addition reaction products of unsaturated carboxylic acid esters or amides having electrophilic substituents such as isocyanate groups and epoxy groups with monofunctional or polyfunctional alcohols, amines, and thiols, and halogeno groups
  • substitution reaction products of unsaturated carboxylic acid esters or amides having a leaving substituent such as a tosyloxy group and monofunctional or polyfunctional alcohols, amines, and thiols.
  • paragraphs 0113 to 0122 of JP-A-2016-027357 can be referred to, and the contents thereof are incorporated herein.
  • the radical cross-linking agent is preferably a compound having a boiling point of 100°C or higher under normal pressure.
  • Compounds having a boiling point of 100° C. or higher under normal pressure include compounds described in paragraph 0203 of International Publication No. 2021/112189. The contents of which are incorporated herein.
  • Preferred radical cross-linking agents other than those described above include radically polymerizable compounds described in paragraphs 0204 to 0208 of International Publication No. 2021/112189. The contents of which are incorporated herein.
  • dipentaerythritol triacrylate (commercially available as KAYARAD D-330 (manufactured by Nippon Kayaku Co., Ltd.)), dipentaerythritol tetraacrylate (commercially available as KAYARAD D-320 (Nippon Kayaku ( Ltd.), A-TMMT (manufactured by Shin-Nakamura Chemical Co., Ltd.), dipentaerythritol penta(meth)acrylate (commercially available as KAYARAD D-310 (manufactured by Nippon Kayaku Co., Ltd.)), dipenta Erythritol hexa(meth)acrylate (commercially available products are KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.) and A-DPH (manufactured by Shin-Nakamura Chemical Co., Ltd.)), and their (meth)acryloyl groups are ethylene glycol,
  • radical cross-linking agents examples include SR-494, a tetrafunctional acrylate having four ethyleneoxy chains, manufactured by Sartomer, SR-209, a bifunctional methacrylate having four ethyleneoxy chains, manufactured by Sartomer. 231, 239, Nippon Kayaku Co., Ltd.
  • DPCA-60 a hexafunctional acrylate having 6 pentyleneoxy chains, TPA-330, a trifunctional acrylate having 3 isobutyleneoxy chains, urethane oligomer UAS-10 , UAB-140 (manufactured by Nippon Paper Industries), NK Ester M-40G, NK Ester 4G, NK Ester M-9300, NK Ester A-9300, UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Japan Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.), Blenmer PME400 (manufactured by NOF Corporation), etc. mentioned.
  • radical cross-linking agents examples include urethane acrylates such as those described in JP-B-48-041708, JP-A-51-037193, JP-B-02-032293, JP-B-02-016765, Urethane compounds having an ethylene oxide skeleton described in JP-B-58-049860, JP-B-56-017654, JP-B-62-039417 and JP-B-62-039418 are also suitable.
  • compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238 are used. can also
  • the radical cross-linking agent may be a radical cross-linking agent having an acid group such as a carboxy group or a phosphoric acid group.
  • a radical cross-linking agent having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid. is more preferable.
  • the aliphatic polyhydroxy compound is pentaerythritol or dipentaerythritol is a compound.
  • Examples of commercially available products include polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd. such as M-510 and M-520.
  • the acid value of the radical cross-linking agent having an acid group is preferably 0.1-300 mgKOH/g, particularly preferably 1-100 mgKOH/g. If the acid value of the radical cross-linking agent is within the above range, the handleability in production is excellent, and furthermore the developability is excellent. Moreover, the polymerizability is good. The acid value is measured according to JIS K 0070:1992.
  • the resin composition preferably uses a bifunctional methacrylate or acrylate.
  • Specific compounds include triethylene glycol diacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol diacrylate, PEG (polyethylene glycol) 200 diacrylate, PEG200 dimethacrylate, PEG600 diacrylate, and PEG600 diacrylate.
  • PEG200 diacrylate is a polyethylene glycol diacrylate having a polyethylene glycol chain formula weight of about 200.
  • a monofunctional radical cross-linking agent can be preferably used as the radical cross-linking agent from the viewpoint of suppressing warpage associated with the elastic modulus control of the pattern (cured product).
  • Monofunctional radical cross-linking agents include n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, carbitol (meth)acrylate, cyclohexyl (meth)acrylate, ) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, N-methylol (meth) acrylamide, glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc.
  • N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam
  • allyl glycidyl ether are preferably used.
  • the monofunctional radical cross-linking agent a compound having a boiling point of 100° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
  • Other di- or higher functional radical cross-linking agents include allyl compounds such as diallyl phthalate and triallyl trimellitate.
  • a radical cross-linking agent When a radical cross-linking agent is contained, its content is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the resin composition of the present invention. More preferably, the lower limit is 5% by mass or more. The upper limit is more preferably 50% by mass or less, and even more preferably 30% by mass or less.
  • a single radical cross-linking agent may be used alone, or a mixture of two or more may be used. When two or more are used in combination, the total amount is preferably within the above range.
  • the resin composition contains another cross-linking agent different from the radical cross-linking agent described above.
  • the other cross-linking agent refers to a cross-linking agent other than the above-described radical cross-linking agent, and the above-described photoacid generator or photobase generator reacts with other compounds in the composition or reacts with them.
  • the compound has a plurality of groups in the molecule that promote the reaction forming covalent bonds with the product, and covalent bonds are formed with other compounds or reaction products thereof in the composition. Compounds having a plurality of groups in the molecule, the reaction of which is promoted by the action of an acid or base, are preferred.
  • the acid or base is preferably an acid or base generated from a photoacid generator or a photobase generator in the exposure step.
  • a photoacid generator or a photobase generator in the exposure step.
  • cross-linking agents compounds having at least one group selected from the group consisting of an acyloxymethyl group, a methylol group, an ethylol group and an alkoxymethyl group are preferred.
  • a compound having a structure in which at least one group selected from the group consisting of groups is directly bonded to a nitrogen atom is more preferred.
  • cross-linking agents include, for example, amino group-containing compounds such as melamine, glycoluril, urea, alkylene urea, and benzoguanamine, which are reacted with formaldehyde or formaldehyde and alcohol, and the hydrogen atoms of the amino groups are converted into acyloxymethyl groups, methylol groups,
  • a compound having a structure substituted with an ethylol group or an alkoxymethyl group can be mentioned.
  • the method for producing these compounds is not particularly limited as long as they have the same structure as the compounds produced by the above methods. Oligomers formed by self-condensation of methylol groups of these compounds may also be used.
  • a melamine-based crosslinking agent is a melamine-based crosslinking agent
  • a glycoluril, urea or alkyleneurea-based crosslinking agent is a urea-based crosslinking agent
  • an alkyleneurea-based crosslinking agent is an alkyleneurea-based crosslinking agent.
  • a cross-linking agent using benzoguanamine is called a benzoguanamine-based cross-linking agent.
  • the resin composition of the present invention preferably contains at least one compound selected from the group consisting of urea-based cross-linking agents and melamine-based cross-linking agents. More preferably, it contains at least one compound selected from the group consisting of agents.
  • an alkoxymethyl group or an acyloxymethyl group is directly substituted on the nitrogen atom of the aromatic group or the following urea structure, or on the triazine. It can be cited as a structural example.
  • the alkoxymethyl group or acyloxymethyl group of the above compound preferably has 2 to 5 carbon atoms, preferably 2 or 3 carbon atoms, and more preferably 2 carbon atoms.
  • the total number of alkoxymethyl groups and acyloxymethyl groups in the above compound is preferably 1-10, more preferably 2-8, and particularly preferably 3-6.
  • the molecular weight of the compound is preferably 1500 or less, preferably 180-1200.
  • R 100 represents an alkyl group or an acyl group.
  • R 101 and R 102 each independently represent a monovalent organic group and may combine with each other to form a ring.
  • Examples of compounds in which an alkoxymethyl group or an acyloxymethyl group is directly substituted by an aromatic group include compounds represented by the following general formula.
  • X represents a single bond or a divalent organic group
  • each R 104 independently represents an alkyl group or an acyl group
  • R 103 represents a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group , or a group that decomposes under the action of an acid to produce an alkali-soluble group (e.g., a group that leaves under the action of an acid, a group represented by —C(R 4 ) 2 COOR 5 (R 4 is independently It represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 5 represents a group that leaves under the action of an acid.)).
  • R 105 each independently represents an alkyl group or alkenyl group, a, b and c are each independently 1 to 3, d is 0 to 4, e is 0 to 3, f is 0 to 3 , a+d is 5 or less, b+e is 4 or less, and c+f is 4 or less.
  • R 5 in the group represented by —C(R 4 ) 2 COOR 5 a group that is decomposed by the action of an acid to produce an alkali-soluble group, a group that is eliminated by the action of an acid, and —C(R 36 )(R 37 )(R 38 ), —C(R 36 )(R 37 )(OR 39 ), —C(R 01 )(R 02 )(OR 39 ), and the like.
  • R 36 to R 39 each independently represent an alkyl group, cycloalkyl group, aryl group, aralkyl group or alkenyl group.
  • R 36 and R 37 may combine with each other to form a ring.
  • alkyl group an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 5 carbon atoms is more preferable.
  • the above alkyl group may be linear or branched.
  • a cycloalkyl group having 3 to 12 carbon atoms is preferable, and a cycloalkyl group having 3 to 8 carbon atoms is more preferable.
  • the cycloalkyl group may have a monocyclic structure or a polycyclic structure such as a condensed ring.
  • the aryl group is preferably an aromatic hydrocarbon group having 6 to 30 carbon atoms, more preferably a phenyl group.
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and an aralkyl group having 7 to 16 carbon atoms is more preferable.
  • the aralkyl group is intended to be an aryl group substituted with an alkyl group, and preferred embodiments of these alkyl and aryl groups are the same as the preferred embodiments of the alkyl and aryl groups described above.
  • the alkenyl group is preferably an alkenyl group having 3 to 20 carbon atoms, more preferably an alkenyl group having 3 to 16 carbon atoms. Moreover, these groups may further have a known substituent within the range in which the effects of the present invention can be obtained.
  • R 01 and R 02 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the group that is decomposed by the action of an acid to form an alkali-soluble group or the group that is eliminated by the action of an acid is preferably a tertiary alkyl ester group, an acetal group, a cumyl ester group, an enol ester group, or the like. More preferred are tertiary alkyl ester groups and acetal groups.
  • the compound having at least one group selected from the group consisting of acyloxymethyl group, methylol group, ethylol group and alkoxymethyl group includes at least one group selected from the group consisting of urea bond and urethane bond.
  • compounds having A preferred embodiment of the above compound is the above-described crosslinking except that the polymerizable group is not a radically polymerizable group but at least one group selected from the group consisting of an acyloxymethyl group, a methylol group, an ethylol group and an alkoxymethyl group. It is the same as the preferred embodiment of agent U.
  • Specific examples of compounds having at least one group selected from the group consisting of an acyloxymethyl group, a methylol group and an ethylol group include the following structures.
  • Examples of the compound having an acyloxymethyl group include compounds obtained by changing the alkoxymethyl group of the following compounds to an acyloxymethyl group.
  • Compounds having an alkoxymethyl group or acyloxymethyl in the molecule include, but are not limited to, the following compounds.
  • the compound containing at least one of an alkoxymethyl group and an acyloxymethyl group a commercially available one or a compound synthesized by a known method may be used. From the viewpoint of heat resistance, compounds in which an alkoxymethyl group or acyloxymethyl group is directly substituted on an aromatic ring or a triazine ring are preferred.
  • melamine-based cross-linking agents include hexamethoxymethylmelamine, hexaethoxymethylmelamine, hexapropoxymethylmelamine, and hexabutoxybutylmelamine.
  • urea-based cross-linking agents include monohydroxymethylated glycoluril, dihydroxymethylated glycoluril, trihydroxymethylated glycoluril, tetrahydroxymethylated glycoluril, monomethoxymethylated glycoluril, and dimethoxymethylated glycol.
  • Uril trimethoxymethylated glycoluril, tetramethoxymethylated glycoluril, monoethoxymethylated glycoluril, diethoxymethylated glycoluril, triethoxymethylated glycoluril, tetraethoxymethylated glycoluril, monopropoxymethylated glycoluril , dipropoxymethylated glycoluril, tripropoxymethylated glycoluril, tetrapropoxymethylated glycoluril, monobutoxymethylated glycoluril, dibutoxymethylated glycoluril, tributoxymethylated glycoluril, or tetrabutoxymethylated glycoluril glycoluril-based crosslinkers such as uril; urea-based cross-linking agents such as bismethoxymethylurea, bisethoxymethylurea, bispropoxymethylurea, bisbutoxymethylurea; monohydroxymethylated ethyleneurea or dihydroxymethylated ethyleneurea, monomethoxymethylated ethyleneurea, dimethoxymethylated
  • benzoguanamine-based cross-linking agents include monohydroxymethylated benzoguanamine, dihydroxymethylated benzoguanamine, trihydroxymethylated benzoguanamine, tetrahydroxymethylated benzoguanamine, monomethoxymethylated benzoguanamine, dimethoxymethylated benzoguanamine, and trimethoxymethylated benzoguanamine.
  • tetramethoxymethylated benzoguanamine monoethoxymethylated benzoguanamine, Diethoxymethylated benzoguanamine, Triethoxymethylated benzoguanamine, Tetraethoxymethylated benzoguanamine, Monopropoxymethylated benzoguanamine, Dipropoxymethylated benzoguanamine, Tripropoxymethylated benzoguanamine, Tetrapropoxymethylated benzoguanamine, Monobutoxymethylated benzoguanamine, Dibutoxy methylated benzoguanamine, tributoxymethylated benzoguanamine, tetrabutoxymethylated benzoguanamine and the like.
  • the compound having at least one group selected from the group consisting of a methylol group and an alkoxymethyl group includes at least one group selected from the group consisting of a methylol group and an alkoxymethyl group on an aromatic ring (preferably a benzene ring).
  • Compounds to which a seed group is directly attached are also preferably used. Specific examples of such compounds include benzenedimethanol, bis(hydroxymethyl)cresol, bis(hydroxymethyl)dimethoxybenzene, bis(hydroxymethyl)diphenyl ether, bis(hydroxymethyl)benzophenone, hydroxymethylphenyl hydroxymethylbenzoate.
  • suitable commercial products include 46DMOC, 46DMOEP (manufactured by Asahi Organic Chemicals Industry Co., Ltd.), DML-PC, DML-PEP, DML-OC, and DML-OEP.
  • DML-34X DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP -Z, DML-BPC, DMLBisOC-P, DMOM-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML -BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (Honshu Chemical Industry Co., Ltd.), Nikalac (registered
  • the resin composition of the present invention preferably contains at least one compound selected from the group consisting of epoxy compounds, oxetane compounds, and benzoxazine compounds as another cross-linking agent.
  • Epoxy compound (compound having an epoxy group) -
  • the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy group undergoes a cross-linking reaction at 200° C. or less and does not undergo a dehydration reaction resulting from the cross-linking, so film shrinkage does not easily occur. Therefore, containing an epoxy compound is effective for low-temperature curing and suppression of warpage of the resin composition of the present invention.
  • the epoxy compound preferably contains a polyethylene oxide group.
  • the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2-15.
  • epoxy compounds include bisphenol A type epoxy resin; bisphenol F type epoxy resin; propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, butylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether.
  • alkylene glycol type epoxy resins such as trimethylolpropane triglycidyl ether or polyhydric alcohol hydrocarbon type epoxy resins
  • polyalkylene glycol type epoxy resins such as polypropylene glycol diglycidyl ether
  • epoxy groups such as polymethyl (glycidyloxypropyl) siloxane Examples include, but are not limited to, containing silicones and the like.
  • Epiclon (registered trademark) 850-S Epiclon (registered trademark) HP-4032, Epiclon (registered trademark) HP-7200, Epiclon (registered trademark) HP-820, Epiclon (registered trademark) HP-4700, Epiclon (registered trademark) HP-4770, Epiclon (registered trademark) EXA-830LVP, Epiclon (registered trademark) EXA-8183, Epiclon (registered trademark) EXA-8169, Epiclon (registered trademark) N-660, Epiclon (registered trademark) N-665-EXP-S, Epiclon (registered trademark) N-740 (trade name, manufactured by DIC Corporation), Ricaresin (registered trademark) BEO-20E, Jamaicaresin (registered trademark) BEO-60E, Ricaresin (registered trademark) ) HBE-100, Ricaresin (registered trademark) DME-100, Ricaresin (registered trademark)
  • n is an integer of 1-5 and m is an integer of 1-20.
  • n 1 to 2 and m is 3 to 7 from the viewpoint of achieving both heat resistance and elongation improvement.
  • oxetane compound compound having an oxetanyl group
  • the oxetane compounds include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl)methoxy]methyl ⁇ benzene, 3-ethyl-3-(2-ethylhexylmethyl)oxetane, 1,4-benzenedicarboxylic acid-bis[(3-ethyl-3-oxetanyl)methyl]ester and the like can be mentioned.
  • Aron oxetane series manufactured by Toagosei Co., Ltd. eg, OXT-121, OXT-221
  • OXT-121, OXT-221 can be suitably used, and these can be used alone or in combination of two or more. good.
  • a benzoxazine compound (compound having a benzoxazolyl group)-
  • a benzoxazine compound is preferable because it is a cross-linking reaction derived from a ring-opening addition reaction, so that degassing does not occur during curing, and thermal shrinkage is reduced to suppress warping.
  • benzoxazine compounds include Pd-type benzoxazine, Fa-type benzoxazine (these are trade names, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adducts of polyhydroxystyrene resins, phenol novolac-type dihydrobenzoxazines, oxazine compounds. These may be used alone or in combination of two or more.
  • the content of the other cross-linking agent is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition of the present invention. It is more preferably 5 to 15% by mass, particularly preferably 1.0 to 10% by mass.
  • Other cross-linking agents may be contained alone, or may be contained in two or more. When two or more other cross-linking agents are contained, the total is preferably within the above range.
  • the resin composition preferably contains a polymerization initiator capable of initiating polymerization by light and/or heat.
  • a photopolymerization initiator is preferably a photoradical polymerization initiator.
  • the radical photopolymerization initiator is not particularly limited and can be appropriately selected from known radical photopolymerization initiators.
  • a photoradical polymerization initiator having photosensitivity to light in the ultraviolet region to the visible region is preferred. It may also be an activator that produces an active radical by producing some action with a photoexcited sensitizer.
  • the radical photopolymerization initiator contains at least one compound having a molar extinction coefficient of at least about 50 L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 within the wavelength range of about 240 to 800 nm (preferably 330 to 500 nm). is preferred.
  • the molar extinction coefficient of a compound can be measured using known methods. For example, it is preferable to measure with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian) using an ethyl acetate solvent at a concentration of 0.01 g/L.
  • any known compound can be used as the photoradical polymerization initiator.
  • halogenated hydrocarbon derivatives e.g., compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
  • acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives, etc.
  • ketone compounds include compounds described in paragraph 0087 of JP-A-2015-087611, the content of which is incorporated herein.
  • Kayacure-DETX-S manufactured by Nippon Kayaku Co., Ltd. is also suitably used.
  • a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can be suitably used as the radical photopolymerization initiator. More specifically, for example, aminoacetophenone-based initiators described in JP-A-10-291969 and acylphosphine oxide-based initiators described in Japanese Patent No. 4225898 can be used. incorporated.
  • ⁇ - ⁇ Omnirad 184 ⁇ Omnirad 1173 ⁇ Omnirad 2959 ⁇ Omnirad 127( ⁇ IGM Resins B.V. ⁇ ) ⁇ IRGACURE 184(IRGACURE ⁇ ) ⁇ DAROCUR 1173 ⁇ IRGACURE 500 ⁇ IRGACURE -2959 and IRGACURE 127 (trade names, both manufactured by BASF) can be used.
  • ⁇ -Aminoketone initiators include Omnirad 907, Omnirad 369, Omnirad 369E, Omnirad 379EG (manufactured by IGM Resins B.V.), IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names, all of which are BASF company) can be used.
  • acylphosphine oxide-based initiators for example, compounds described in paragraphs 0161 to 0163 of International Publication No. 2021/112189 can also be suitably used. The contents of which are incorporated herein.
  • the photoradical polymerization initiator is more preferably an oxime compound.
  • an oxime compound By using an oxime compound, the exposure latitude can be improved more effectively.
  • Oxime compounds are particularly preferred because they have a wide exposure latitude (exposure margin) and also act as photocuring accelerators.
  • oxime compound examples include compounds described in JP-A-2001-233842, compounds described in JP-A-2000-080068, compounds described in JP-A-2006-342166, J. Am. C. S. Compounds described in Perkin II (1979, pp.1653-1660); C. S. Compounds described in Perkin II (1979, pp.156-162), compounds described in Journal of Photopolymer Science and Technology (1995, pp.202-232), compounds described in JP-A-2000-066385, Compounds described in JP-A-2004-534797, compounds described in JP-A-2017-019766, compounds described in Patent No.
  • Preferred oxime compounds include, for example, compounds having the following structures, 3-(benzoyloxy(imino))butan-2-one, 3-(acetoxy(imino))butan-2-one, 3-(propionyloxy( imino))butan-2-one, 2-(acetoxy(imino))pentan-3-one, 2-(acetoxy(imino))-1-phenylpropan-1-one, 2-(benzoyloxy(imino)) -1-phenylpropan-1-one, 3-((4-toluenesulfonyloxy)imino)butan-2-one, and 2-(ethoxycarbonyloxy(imino))-1-phenylpropan-1-one, etc.
  • an oxime compound an oxime-based radical photopolymerization initiator
  • DFI-091 manufactured by Daito Chemix Co., Ltd.
  • SpeedCure PDO manufactured by SARTOMER ARKEMA
  • an oxime compound having the following structure can be used.
  • photoradical polymerization initiators examples include oxime compounds having a fluorene ring described in paragraphs 0169 to 0171 of International Publication No. 2021/112189, and oximes having a skeleton in which at least one benzene ring of a carbazole ring is a naphthalene ring.
  • Compounds, oxime compounds having fluorine atoms can also be used. The contents of which are incorporated herein.
  • an oxime compound having a nitro group an oxime compound having a benzofuran skeleton, and a substituent having a hydroxy group on the carbazole skeleton described in paragraphs 0208 to 0210 of International Publication No. 2021/020359 are used. Bound oxime compounds can also be used. The contents of which are incorporated herein.
  • an oxime compound having an aromatic ring group Ar 2 OX1 in which an electron-withdrawing group is introduced into the aromatic ring (hereinafter also referred to as oxime compound OX) can be used.
  • the electron-withdrawing group of the aromatic ring group Ar OX1 include an acyl group, a nitro group, a trifluoromethyl group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and a cyano group.
  • a benzoyl group may have a substituent.
  • substituents include halogen atoms, cyano groups, nitro groups, hydroxy groups, alkyl groups, alkoxy groups, aryl groups, aryloxy groups, heterocyclic groups, heterocyclic oxy groups, alkenyl groups, alkylsulfanyl groups, arylsulfanyl groups, It is preferably an acyl group or an amino group, more preferably an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a heterocyclic oxy group, an alkylsulfanyl group, an arylsulfanyl group or an amino group.
  • a sulfanyl group or an amino group is more preferred.
  • the oxime compound OX is preferably at least one selected from the compounds represented by the formula (OX1) and the compounds represented by the formula (OX2), more preferably the compound represented by the formula (OX2). preferable.
  • R X1 is an alkyl group, alkenyl group, alkoxy group, aryl group, aryloxy group, heterocyclic group, heterocyclicoxy group, alkylsulfanyl group, arylsulfanyl group, alkylsulfinyl group, arylsulfinyl group, alkylsulfonyl a group, an arylsulfonyl group, an acyl group, an acyloxy group, an amino group, a phosphinoyl group, a carbamoyl group or a sulfamoyl group
  • R X2 is an alkyl group, alkenyl group, alkoxy group, aryl group, aryloxy group, heterocyclic group,
  • R X12 is an electron-withdrawing group
  • R X10 , R X11 , R X13 and R X14 are preferably hydrogen atoms.
  • oxime compound OX examples include compounds described in paragraphs 0083 to 0105 of Japanese Patent No. 4600600, the contents of which are incorporated herein.
  • oxime compounds having specific substituents shown in JP-A-2007-269779 and oxime compounds having a thioaryl group shown in JP-A-2009-191061. incorporated herein.
  • photoradical polymerization initiators include trihalomethyltriazine compounds, benzyldimethylketal compounds, ⁇ -hydroxyketone compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triaryl selected from the group consisting of imidazole dimers, onium salt compounds, benzothiazole compounds, benzophenone compounds, acetophenone compounds and derivatives thereof, cyclopentadiene-benzene-iron complexes and salts thereof, halomethyloxadiazole compounds, and 3-aryl-substituted coumarin compounds; are preferred.
  • More preferred radical photopolymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds, and acetophenone compounds.
  • At least one compound selected from the group consisting of trihalomethyltriazine compounds, ⁇ -aminoketone compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferred, and metallocene compounds or oxime compounds are even more preferred. .
  • radical photopolymerization initiator compounds described in paragraphs 0175 to 0179 of International Publication No. 2021/020359 can be used. The contents of which are incorporated herein.
  • radical photopolymerization initiator a difunctional or trifunctional or higher radical photopolymerization initiator may be used.
  • a radical photopolymerization initiator two or more radicals are generated from one molecule of the radical photopolymerization initiator, so good sensitivity can be obtained.
  • the crystallinity is lowered, the solubility in a solvent or the like is improved, and precipitation becomes difficult over time, and the stability over time of the resin composition can be improved.
  • Specific examples of bifunctional or trifunctional or higher photoradical polymerization initiators include Japanese Patent Publication No. 2010-527339, Japanese Patent Publication No. 2011-524436, International Publication No.
  • a photopolymerization initiator When a photopolymerization initiator is included, its content is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition of the present invention. , More preferably 0.5 to 15% by mass, still more preferably 1.0 to 10% by mass. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more photopolymerization initiators are contained, the total amount is preferably within the above range. In addition, since the photopolymerization initiator may also function as a thermal polymerization initiator, the crosslinking by the photopolymerization initiator may be further advanced by heating with an oven, a hot plate, or the like.
  • the resin composition may contain a sensitizer.
  • a sensitizer absorbs specific actinic radiation and enters an electronically excited state.
  • the sensitizer in an electronically excited state comes into contact with a thermal radical polymerization initiator, a photoradical polymerization initiator, or the like, and causes electron transfer, energy transfer, heat generation, or the like.
  • the thermal radical polymerization initiator and the photoradical polymerization initiator undergo chemical changes and are decomposed to generate radicals, acids or bases.
  • Usable sensitizers include benzophenones, Michler's ketones, coumarins, pyrazole azos, anilinoazos, triphenylmethanes, anthraquinones, anthracenes, anthrapyridones, benzylidenes, oxonols, and pyrazolotriazole azos. , pyridone azo, cyanine, phenothiazine, pyrrolopyrazole azomethine, xanthene, phthalocyanine, penzopyran, and indigo compounds.
  • Sensitizers include, for example, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzal)cyclopentane, 2,6-bis(4'-diethylaminobenzal) Cyclohexanone, 2,6-bis(4'-diethylaminobenzal)-4-methylcyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamyl denindanone, p-dimethylaminobenzylideneindanone, 2-(p-dimethylaminophenylbiphenylene)-benzothiazole, 2-(p-dimethylaminophenylvinylene)benzothiazole, 2-(p-dimethylaminophenylvinylene)iso naphthothiazole,
  • the content of the sensitizer is preferably 0.01 to 20% by mass, preferably 0.1 to 15% by mass, based on the total solid content of the resin composition. more preferably 0.5 to 10% by mass.
  • the sensitizers may be used singly or in combination of two or more.
  • the resin composition may contain a chain transfer agent.
  • the chain transfer agent is defined, for example, in Kobunshi Dictionary, 3rd edition (edited by Kobunshi Gakkai, 2005), pp. 683-684.
  • Chain transfer agents include, for example, a group of compounds having —S—S—, —SO 2 —S—, —NO—, SH, PH, SiH, and GeH in the molecule, RAFT (Reversible Addition Fragmentation Chain Transfer )
  • Dithiobenzoate, trithiocarbonate, dithiocarbamate, xanthate compounds and the like having a thiocarbonylthio group used for polymerization are used. They can either donate hydrogen to less active radicals to generate radicals, or they can be oxidized and then deprotonated to generate radicals.
  • thiol compounds can be preferably used.
  • chain transfer agent can also use the compounds described in paragraphs 0152 to 0153 of International Publication No. 2015/199219, the contents of which are incorporated herein.
  • the content of the chain transfer agent is preferably 0.01 to 20 parts by mass, and 0.1 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the resin composition. More preferably, 0.5 to 5 parts by mass is even more preferable.
  • One type of chain transfer agent may be used, or two or more types may be used. When two or more chain transfer agents are used, the total is preferably within the above range.
  • the resin composition preferably contains a photoacid generator.
  • a photoacid generator is a compound that generates at least one of Bronsted acid and Lewis acid upon irradiation with light of 200 nm to 900 nm.
  • the light to be irradiated is preferably light with a wavelength of 300 nm to 450 nm, more preferably light with a wavelength of 330 nm to 420 nm.
  • the photoacid generator is preferably a photoacid generator capable of generating an acid upon exposure.
  • generated acids include hydrogen halides, carboxylic acids, sulfonic acids, sulfinic acids, thiosulfinic acids, phosphoric acid, phosphoric monoesters, phosphoric diesters, boron derivatives, phosphorus derivatives, antimony derivatives, halogen peroxides, Sulfonamide and the like are preferred.
  • Examples of the photoacid generator used in the resin composition of the present invention include quinone diazide compounds, oxime sulfonate compounds, organic halogenated compounds, organic borate compounds, disulfone compounds, and onium salt compounds.
  • Organic halogen compounds, oxime sulfonate compounds and onium salt compounds are preferred from the viewpoint of sensitivity and storage stability, and oxime esters are preferred from the viewpoint of the mechanical properties of the film to be formed.
  • quinonediazide compounds include monovalent or polyvalent hydroxy compounds in which quinonediazide sulfonic acids are ester-bonded, monovalent or polyvalent amino compounds in which quinonediazide sulfonic acids are bonded via sulfonamides, and polyhydroxypolyamino compounds. Examples thereof include quinonediazide sulfonic acids bound by ester bonds and/or sulfonamides. Although not all the functional groups of these polyhydroxy compounds, polyamino compounds, and polyhydroxypolyamino compounds may be substituted with quinonediazide, it is preferred that 40 mol % or more of all functional groups on average be substituted with quinonediazide. .
  • hydroxy compounds include phenol, trihydroxybenzophenone, 4-methoxyphenol, isopropanol, octanol, t-Bu alcohol, cyclohexanol, naphthol, Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP- PA, TrisP-SA, TrisOCR-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylenetris-FR -CR, BisRS-26X, DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML-PC, DML-PTBP, DML-34X, DML-EP, DML-POP, Dimethylol-BisOC-P, DML -PFP, DML-PSBP, DML-MTrisPC, TriML
  • amino compounds include aniline, methylaniline, diethylamine, butylamine, 1,4-phenylenediamine, 1,3-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4 '-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, and the like, but are not limited thereto.
  • polyhydroxypolyamino compounds include 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane and 3,3'-dihydroxybenzidine, but are not limited thereto. .
  • the quinonediazide compound preferably contains a phenol compound and an ester with a 4-naphthoquinonediazide sulfonyl group. This makes it possible to obtain higher sensitivity to i-line exposure and higher resolution.
  • the content of the quinonediazide compound used in the resin composition is preferably 1 to 50 parts by mass, more preferably 10 to 40 parts by mass, relative to 100 parts by mass of the resin.
  • the content of the quinonediazide compound is preferably 1 to 50 parts by mass, more preferably 10 to 40 parts by mass, relative to 100 parts by mass of the resin.
  • the photoacid generator is preferably a compound containing an oximesulfonate group (hereinafter also simply referred to as "oximesulfonate compound").
  • oximesulfonate compound is not particularly limited as long as it has an oxime sulfonate group. The contents of which are incorporated herein.
  • organic halogenated compounds examples include compounds described in paragraphs 0042 to 0043 of JP-A-2015-087409. The contents of which are incorporated herein.
  • the photoacid generator is preferably used in an amount of 0.1 to 20% by mass, more preferably 0.5 to 18% by mass, and 0.5 to 10% by mass, based on the total solid content of the resin composition. It is more preferably used, more preferably 0.5 to 3% by mass, and even more preferably 0.5 to 1.2% by mass.
  • a photo-acid generator may be used individually by 1 type, or may be used in combination of multiple types. In the case of a combination of multiple types, the total amount thereof is preferably within the above range.
  • the resin composition may contain a base generator.
  • the base generator is a compound capable of generating a base by physical or chemical action.
  • Preferred base generators for the resin composition of the present invention include thermal base generators and photobase generators.
  • the resin composition preferably contains a base generator.
  • the base generator may be an ionic base generator or a non-ionic base generator. Examples of bases generated from base generators include secondary amines and tertiary amines.
  • base generator used in the present invention
  • known base generators include carbamoyloxime compounds, carbamoylhydroxylamine compounds, carbamic acid compounds, formamide compounds, acetamide compounds, carbamate compounds, benzylcarbamate compounds, nitrobenzylcarbamate compounds, sulfonamide compounds, imidazole derivative compounds, and amine imides.
  • compounds, pyridine derivative compounds, ⁇ -aminoacetophenone derivative compounds, quaternary ammonium salt derivative compounds, pyridinium salts, ⁇ -lactone ring derivative compounds, amineimide compounds, phthalimide derivative compounds, acyloxyimino compounds, and the like can be used.
  • Specific compounds of the nonionic base generator include compounds represented by Formula (B1), Formula (B2), or Formula (B3).
  • Rb 1 , Rb 2 and Rb 3 are each independently an organic group having no tertiary amine structure, a halogen atom or a hydrogen atom. However, Rb 1 and Rb 2 are not hydrogen atoms at the same time. Also, none of Rb 1 , Rb 2 and Rb 3 has a carboxy group.
  • the tertiary amine structure refers to a structure in which all three bonds of a trivalent nitrogen atom are covalently bonded to a hydrocarbon-based carbon atom. Therefore, when the bonded carbon atom is a carbon atom forming a carbonyl group, that is, when forming an amide group together with the nitrogen atom, this is not the case.
  • Rb 1 , Rb 2 and Rb 3 preferably contains a cyclic structure, more preferably at least two of them contain a cyclic structure.
  • the cyclic structure may be either a single ring or a condensed ring, preferably a single ring or a condensed ring in which two single rings are condensed.
  • the monocyclic ring is preferably a 5- or 6-membered ring, more preferably a 6-membered ring.
  • the monocyclic ring is preferably a cyclohexane ring and a benzene ring, more preferably a cyclohexane ring.
  • Rb 1 and Rb 2 each represent a hydrogen atom, an alkyl group (preferably having 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, and even more preferably 3 to 12 carbon atoms), an alkenyl group (having 2 to 24 carbon atoms). preferably 2 to 18, more preferably 3 to 12), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, even more preferably 6 to 10), or an arylalkyl group (having 6 to 10 carbon atoms 7 to 25 are preferred, 7 to 19 are more preferred, and 7 to 12 are even more preferred). These groups may have substituents to the extent that the effects of the present invention are exhibited.
  • Rb 1 and Rb 2 may combine with each other to form a ring.
  • the ring to be formed is preferably a 4- to 7-membered nitrogen-containing heterocyclic ring.
  • Rb 1 and Rb 2 are particularly linear, branched or cyclic alkyl groups (having preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, and still more preferably 3 to 12 carbon atoms) which may have a substituent.
  • cycloalkyl group (having preferably 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 3 to 12 carbon atoms) which may have a substituent, more preferably having a substituent A cyclohexyl group, which may be
  • Rb 3 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, 6 to 10 are more preferred), alkenyl groups (preferably 2 to 24 carbon atoms, more preferably 2 to 12, more preferably 2 to 6), arylalkyl groups (preferably 7 to 23 carbon atoms, more preferably 7 to 19 preferably 7 to 12), arylalkenyl groups (preferably 8 to 24 carbon atoms, more preferably 8 to 20, more preferably 8 to 16), alkoxyl groups (preferably 1 to 24 carbon atoms, 2 to 18 is more preferred, and 3 to 12 are even more preferred), an aryloxy group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, and even more preferably 6 to 12), or an arylalkyloxy group (preferably 7 to 12 carbon atoms).
  • an aryl group preferably
  • Rb 3 may further have a substituent as long as the effects of the present invention are exhibited.
  • the compound represented by formula (B1) is preferably a compound represented by formula (B1-1) or formula (B1-2) below.
  • Rb 11 and Rb 12 and Rb 31 and Rb 32 are respectively the same as Rb 1 and Rb 2 in formula (B1).
  • Rb 13 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an alkenyl group (preferably 2 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, 3 to 12 is more preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 12), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19, 7 to 12 are more preferable), and may have a substituent within the range in which the effects of the present invention are exhibited.
  • Rb 13 is preferably an arylalkyl group.
  • Rb 33 and Rb 34 each independently represents a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms , more preferably 2 to 8, more preferably 2 to 3), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 10), an arylalkyl group (7 to 23 is preferred, 7 to 19 are more preferred, and 7 to 11 are even more preferred), and a hydrogen atom is preferred.
  • an alkyl group preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, and even more preferably 1 to 3 carbon atoms
  • an alkenyl group preferably 2 to 12 carbon atoms , more preferably 2 to 8, more preferably 2 to 3
  • an aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 10
  • Rb 35 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 is more preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, even more preferably 6 to 12), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 , 7 to 12 are more preferred), and aryl groups are preferred.
  • the compound represented by formula (B1-1) is also preferably the compound represented by formula (B1-1a).
  • Rb 11 and Rb 12 have the same definitions as Rb 11 and Rb 12 in formula (B1-1).
  • Rb 15 and Rb 16 are hydrogen atoms, alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6, even more preferably 1 to 3), alkenyl groups (preferably 2 to 12 carbon atoms, 2 to 6 more preferably 2 to 3), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, even more preferably 6 to 10), an arylalkyl group (preferably 7 to 23 carbon atoms, 7 to 19 are more preferred, and 7 to 11 are even more preferred), and a hydrogen atom or a methyl group is preferred.
  • Rb 17 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 is more preferred), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 12), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19, 7 to 12 are more preferable), and aryl groups are particularly preferable.
  • an alkyl group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms
  • an alkenyl group preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 is more preferred
  • an aryl group preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 12
  • L is a divalent hydrocarbon group having a saturated hydrocarbon group on a linking chain path connecting adjacent oxygen atoms and carbon atoms, wherein the number of atoms on the linking chain path is represents a hydrocarbon group of 3 or more.
  • RN1 and RN2 each independently represent a monovalent organic group.
  • the term “connected chain” refers to the shortest (minimum number of atoms) of atomic chains on a path connecting two atoms or groups of atoms to be connected.
  • L is composed of a phenylene ethylene group, has an ethylene group as a saturated hydrocarbon group
  • the linking chain is composed of four carbon atoms, and on the route of the linking chain
  • the number of atoms of (that is, the number of atoms constituting the linking chain, hereinafter also referred to as "linking chain length" or “linking chain length”) is 4.
  • the number of carbon atoms in L (including carbon atoms other than carbon atoms in the connecting chain) in formula (B3) is preferably 3-24.
  • the upper limit is more preferably 12 or less, still more preferably 10 or less, and particularly preferably 8 or less. More preferably, the lower limit is 4 or more.
  • the upper limit of the linking chain length of L is preferably 12 or less, more preferably 8 or less, further preferably 6 or less, and 5 The following are particularly preferred.
  • the linking chain length of L is preferably 4 or 5, most preferably 4.
  • Specific preferred compounds of the base generator include, for example, the compounds described in paragraphs 0102 to 0168 of WO2020/066416, and the compounds described in paragraphs 0143 to 0177 of WO2018/038002. mentioned.
  • the base generator preferably contains a compound represented by the following formula (N1).
  • RN1 and RN2 each independently represent a monovalent organic group
  • RC1 represents a hydrogen atom or a protecting group
  • L represents a divalent linking group
  • L is a divalent linking group, preferably a divalent organic group.
  • the linking chain length of the linking group is preferably 1 or more, more preferably 2 or more.
  • the upper limit is preferably 12 or less, more preferably 8 or less, and even more preferably 5 or less.
  • the linking chain length is the number of atoms present in the atomic arrangement that provides the shortest path between two carbonyl groups in the formula.
  • R N1 and R N2 each independently represent a monovalent organic group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, more preferably 3 to 12 carbon atoms), and a hydrocarbon group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms), specifically, an aliphatic hydrocarbon group (preferably 1 to 24 carbon atoms, 1 to 12 is more preferable, 1 to 10 are more preferable) or an aromatic hydrocarbon group (preferably 6 to 22 carbon atoms, more preferably 6 to 18, more preferably 6 to 10), and an aliphatic hydrocarbon groups are preferred.
  • a monovalent organic group preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, more preferably 3 to 12 carbon atoms
  • a hydrocarbon group preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, more preferably 1 to 10 carbon atoms
  • an aliphatic hydrocarbon group preferably 1 to
  • an aliphatic hydrocarbon group as R N1 and R N2 because the generated base is highly basic.
  • the aliphatic hydrocarbon group and the aromatic hydrocarbon group may have a substituent, and the aliphatic hydrocarbon group and the aromatic hydrocarbon group are in the aliphatic hydrocarbon chain or in the aromatic ring, You may have an oxygen atom in the substituent.
  • an aspect in which the aliphatic hydrocarbon group has an oxygen atom in the hydrocarbon chain is exemplified.
  • Aliphatic hydrocarbon groups constituting R N1 and R N2 include linear or branched chain alkyl groups, cyclic alkyl groups, groups related to combinations of chain alkyl groups and cyclic alkyl groups, and oxygen atoms in the chains.
  • Alkyl groups having The linear or branched chain alkyl group preferably has 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, and still more preferably 3 to 12 carbon atoms.
  • Linear or branched chain alkyl groups are, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, isopropyl group, isobutyl group, secondary butyl group, tertiary butyl group, isopentyl group, neopentyl group, tertiary pentyl group, isohexyl group and the like.
  • the cyclic alkyl group preferably has 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms.
  • Cyclic alkyl groups include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl groups.
  • Groups associated with a combination of a chain alkyl group and a cyclic alkyl group preferably have 4 to 24 carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 4 to 12 carbon atoms.
  • Groups related to combinations of chain alkyl groups and cyclic alkyl groups include, for example, a cyclohexylmethyl group, a cyclohexylethyl group, a cyclohexylpropyl group, a methylcyclohexylmethyl group, and an ethylcyclohexylethyl group.
  • the alkyl group having an oxygen atom in the chain preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • An alkyl group having an oxygen atom in the chain may be chain or cyclic, and may be linear or branched.
  • R 1 N1 and R 2 N2 are preferably alkyl groups having 5 to 12 carbon atoms.
  • a group having a cyclic alkyl group or an alkyl group having 1 to 8 carbon atoms is preferable.
  • RN1 and RN2 may be linked to each other to form a ring structure.
  • the chain may have an oxygen atom or the like.
  • the cyclic structure formed by R N1 and R N2 may be a monocyclic ring or a condensed ring, but is preferably a monocyclic ring.
  • the cyclic structure to be formed is preferably a 5- or 6-membered ring containing a nitrogen atom in formula (N1), such as pyrrole ring, imidazole ring, pyrazole ring, pyrroline ring, pyrrolidine ring, imidazolidine ring, A pyrazolidine ring, a piperidine ring, a piperazine ring, a morpholine ring and the like can be mentioned, and a pyrroline ring, a pyrrolidine ring, a piperidine ring, a piperazine ring and a morpholine ring are preferably mentioned.
  • N1 nitrogen atom in formula (N1)
  • R C1 represents a hydrogen atom or a protecting group, preferably a hydrogen atom.
  • the protective group is preferably a protective group that is decomposed by the action of an acid or a base, and preferably includes a protective group that is decomposed by an acid.
  • protecting groups include chain or cyclic alkyl groups or chain or cyclic alkyl groups having an oxygen atom in the chain.
  • Chain or cyclic alkyl groups include methyl group, ethyl group, isopropyl group, tert-butyl group, cyclohexyl group and the like.
  • the chain alkyl group having an oxygen atom in the chain specifically includes an alkyloxyalkyl group, more specifically a methyloxymethyl (MOM) group, an ethyloxyethyl (EE) group, and the like. mentioned.
  • Cyclic alkyl groups having an oxygen atom in the chain include epoxy group, glycidyl group, oxetanyl group, tetrahydrofuranyl group, tetrahydropyranyl (THP) group and the like.
  • the divalent linking group constituting L is not particularly defined, but is preferably a hydrocarbon group, more preferably an aliphatic hydrocarbon group.
  • the hydrocarbon group may have substituents and may have atoms of types other than carbon atoms in the hydrocarbon chain. More specifically, it is preferably a divalent hydrocarbon linking group which may have an oxygen atom in the chain, and a divalent aliphatic hydrocarbon which may have an oxygen atom in the chain group, a divalent aromatic hydrocarbon group, or a group related to a combination of a divalent aliphatic hydrocarbon group which may have an oxygen atom in the chain and a divalent aromatic hydrocarbon group, A divalent aliphatic hydrocarbon group which may have an oxygen atom in the chain is more preferred.
  • the divalent hydrocarbon linking group preferably has 1 to 24 carbon atoms, more preferably 2 to 12 carbon atoms, and even more preferably 2 to 6 carbon atoms.
  • the divalent aliphatic hydrocarbon group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the divalent aromatic hydrocarbon group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and still more preferably 6 to 10 carbon atoms.
  • a group related to a combination of a divalent aliphatic hydrocarbon group and a divalent aromatic hydrocarbon group preferably has 7 to 22 carbon atoms, more preferably 7 to 18, and 7 to 10 is more preferred.
  • linking group L examples include a linear or branched chain alkylene group, a cyclic alkylene group, a group related to a combination of a chain alkylene group and a cyclic alkylene group, and an alkylene group having an oxygen atom in the chain.
  • a linear or branched chain alkenylene group, a cyclic alkenylene group, an arylene group and an arylene alkylene group are preferred.
  • the linear or branched chain alkylene group preferably has 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 4 carbon atoms.
  • the cyclic alkylene group preferably has 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms.
  • the group associated with the combination of a chain alkylene group and a cyclic alkylene group preferably has 4 to 24 carbon atoms, more preferably 4 to 12 carbon atoms, and even more preferably 4 to 6 carbon atoms.
  • An alkylene group having an oxygen atom in the chain may be chain or cyclic, and may be linear or branched.
  • the alkylene group having an oxygen atom in the chain preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 3 carbon atoms.
  • the linear or branched chain alkenylene group preferably has 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 2 to 3 carbon atoms.
  • the linear or branched chain alkenylene group preferably has 1 to 10 C ⁇ C bonds, more preferably 1 to 6, even more preferably 1 to 3.
  • the cyclic alkenylene group preferably has 3 to 12 carbon atoms, more preferably 3 to 6 carbon atoms.
  • the number of C ⁇ C bonds in the cyclic alkenylene group is preferably 1-6, more preferably 1-4, even more preferably 1-2.
  • the arylene group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and even more preferably 6 to 10 carbon atoms.
  • the arylene alkylene group preferably has 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms, and even more preferably 7 to 11 carbon atoms.
  • a chain alkylene group, a cyclic alkylene group, an alkylene group having an oxygen atom in the chain, a chain alkenylene group, an arylene group, and an arylene alkylene group are preferable, and a 1,2-ethylene group and a propanediyl group (especially 1, 3-propanediyl group), cyclohexanediyl group (especially 1,2-cyclohexanediyl group), vinylene group (especially cis-vinylene group), phenylene group (1,2-phenylene group), phenylenemethylene group (especially 1,2-phenylene methylene group) and ethyleneoxyethylene group (especially 1,2-ethyleneoxy-1,2-ethylene group) are more preferable.
  • base generators include the following, but the present invention should not be construed as being limited thereto.
  • the molecular weight of the nonionic base generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
  • the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
  • Specific preferred compounds of the ionic base generator include, for example, compounds described in paragraphs 0148 to 0163 of International Publication No. 2018/038002.
  • ammonium salts include the following compounds, but the present invention is not limited thereto.
  • iminium salts include the following compounds, but the present invention is not limited thereto.
  • the content of the base generator is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the resin in the resin composition.
  • the lower limit is more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more.
  • the upper limit is more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, and may be 5 parts by mass or less, or may be 4 parts by mass or less.
  • One or two or more base generators can be used. When two or more kinds are used, the total amount is preferably within the above range.
  • the resin composition preferably contains a solvent. Any known solvent can be used as the solvent.
  • the solvent is preferably an organic solvent.
  • Organic solvents include compounds such as esters, ethers, ketones, cyclic hydrocarbons, sulfoxides, amides, ureas and alcohols.
  • Esters such as ethyl acetate, n-butyl acetate, isobutyl acetate, hexyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone , ⁇ -caprolactone, ⁇ -valerolactone, alkyl alkyloxyacetates (e.g. methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (e.g.
  • 3-alkyloxypropionic acid alkyl esters e.g., methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
  • 2-alkyloxypropionate alkyl esters e.g., methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, 2-alkyl propyl oxypropionate (e.g., methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate)
  • 2-alkyloxy- Methyl 2-methylpropionate and ethyl 2-alkyloxy-2-methylpropionate e.g., methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.
  • ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, Methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol Preferred examples include monobutyl ether acetate
  • Suitable ketones include, for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, 3-methylcyclohexanone, levoglucosenone, dihydrolevoglucosenone and the like.
  • Suitable examples of cyclic hydrocarbons include aromatic hydrocarbons such as toluene, xylene and anisole, and cyclic terpenes such as limonene.
  • Suitable sulfoxides include, for example, dimethyl sulfoxide.
  • Suitable ureas include N,N,N',N'-tetramethylurea, 1,3-dimethyl-2-imidazolidinone, and the like.
  • Alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-pentanol, 1-hexanol, benzyl alcohol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-ethoxyethanol, Diethylene glycol monoethyl ether, diethylene glycol monohexyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether, polyethylene glycol monomethyl ether, polypropylene glycol, tetraethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monobenzyl ether, ethylene glycol monophenyl ether, methylphenyl carbinol, n-amyl alcohol, methyl amyl alcohol, diacetone alcohol and the like.
  • a combination of dimethyl sulfoxide and ⁇ -butyrolactone or a combination of N-methyl-2-pyrrolidone and ethyl lactate is particularly
  • the content of the solvent is preferably such that the total solid concentration of the resin composition is 5 to 80% by mass, more preferably 5 to 75% by mass. It is more preferable to make the amount to be 10 to 70% by mass, and even more preferably to be 20 to 70% by mass.
  • the solvent content may be adjusted according to the desired thickness of the coating and the method of application.
  • the resin composition may contain only one type of solvent, or may contain two or more types. When two or more solvents are contained, the total is preferably within the above range.
  • the resin composition preferably contains a metal adhesion improver for improving adhesion to metal materials used for electrodes, wiring, and the like.
  • metal adhesion improvers include alkoxysilyl group-containing silane coupling agents, aluminum-based adhesion aids, titanium-based adhesion aids, compounds having a sulfonamide structure and compounds having a thiourea structure, phosphoric acid derivative compounds, and ⁇ -ketoesters. compounds, amino compounds, and the like.
  • silane coupling agent examples include compounds described in paragraph 0316 of International Publication No. 2021/112189 and compounds described in paragraphs 0067 to 0078 of JP-A-2018-173573, the contents of which are herein described. incorporated. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP-A-2011-128358. Moreover, it is also preferable to use the following compound as a silane coupling agent. In the following formulas, Me represents a methyl group and Et represents an ethyl group.
  • silane coupling agents include, for example, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycid.
  • xypropyltrimethoxysilane 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane Silane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2 -(aminoethyl)-3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimeth
  • Aluminum-based adhesion promoters include aluminum tris(ethylacetoacetate), aluminum tris(acetylacetonate), ethylacetoacetate aluminum diisopropylate, and the like.
  • the content of the metal adhesion improver is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.01 to 30 parts by mass with respect to 100 parts by mass of the specific resin. It is in the range of 5 to 5 parts by mass. When it is at least the above lower limit value, the adhesiveness between the pattern and the metal layer is improved, and when it is at most the above upper limit value, the heat resistance and mechanical properties of the pattern are improved.
  • One type of metal adhesion improver may be used, or two or more types may be used. When two or more types are used, the total is preferably within the above range.
  • the resin composition preferably further contains a migration inhibitor.
  • a migration inhibitor By including the migration inhibitor, it becomes possible to effectively suppress the migration of metal ions derived from the metal layer (metal wiring) into the film.
  • Migration inhibitors are not particularly limited, but heterocyclic rings (pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperidine ring, piperazine ring, morpholine ring, 2H-pyran ring and 6H-pyran ring, triazine ring), compounds having thioureas and sulfanyl groups, hindered phenolic compounds , salicylic acid derivative-based compounds, and hydrazide derivative-based compounds.
  • heterocyclic rings pyrrole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring,
  • triazole compounds such as 1,2,4-triazole, benzotriazole, 3-amino-1,2,4-triazole, 3,5-diamino-1,2,4-triazole, 1H-tetrazole, 5- Tetrazole compounds such as phenyltetrazole and 5-amino-1H-tetrazole can be preferably used.
  • An ion trapping agent that captures anions such as halogen ions can also be used.
  • migration inhibitors include the following compounds.
  • the content of the migration inhibitor is preferably 0.01 to 5.0% by mass, based on the total solid content of the resin composition, and 0.05 to 2.0%. 0% by mass, more preferably 0.1 to 1.0% by mass.
  • migration inhibitor Only one type of migration inhibitor may be used, or two or more types may be used. When two or more migration inhibitors are used, the total is preferably within the above range.
  • the resin composition preferably contains a polymerization inhibitor.
  • Polymerization inhibitors include phenol compounds, quinone compounds, amino compounds, N-oxyl free radical compounds, nitro compounds, nitroso compounds, heteroaromatic compounds, metal compounds and the like.
  • Specific compounds of the polymerization inhibitor include compounds described in paragraph 0310 of International Publication No. 2021/112189, p-hydroquinone, o-hydroquinone, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1- Oxyl free radical, phenoxazine, and the like. The contents of which are incorporated herein.
  • the content of the polymerization inhibitor is preferably 0.01 to 20% by mass with respect to the total solid content of the resin composition of the present invention, and 0.02 to It is more preferably 15% by mass, and even more preferably 0.05 to 10% by mass.
  • polymerization inhibitor Only one type of polymerization inhibitor may be used, or two or more types may be used. When two or more polymerization inhibitors are used, the total is preferably within the above range.
  • the resin composition preferably contains an acid scavenger in order to reduce performance changes over time from exposure to heating.
  • the acid scavenger refers to a compound that can scavenge the generated acid when present in the system, and is preferably a compound with low acidity and high pKa.
  • the acid scavenger is preferably a compound having an amino group, preferably a primary amine, secondary amine, tertiary amine, ammonium salt, tertiary amide, etc. Primary amine, secondary amine, tertiary amine, ammonium salt. are preferred, and secondary amines, tertiary amines and ammonium salts are more preferred.
  • acid scavengers include compounds having an imidazole structure, diazabicyclo structure, onium structure, trialkylamine structure, aniline structure or pyridine structure, alkylamine derivatives having hydroxyl groups and/or ether bonds, and anilines having hydroxyl groups and/or ether bonds. Derivatives and the like can be mentioned preferably.
  • the acid scavenger is a salt having a cation selected from ammonium, diazonium, iodonium, sulfonium, phosphonium, pyridinium, etc., and an anion of an acid less acidic than the acid generated by the acid generator. is preferred.
  • acid scavengers having an imidazole structure include imidazole, 2,4,5-triphenylimidazole, benzimidazole, 2-phenylbenzimidazole and the like.
  • Acid scavengers having a diazabicyclo structure include 1,4-diazabicyclo[2,2,2]octane, 1,5-diazabicyclo[4,3,0]non-5-ene, 1,8-diazabicyclo[5,4 ,0]undecar-7-ene and the like.
  • Acid scavengers having an onium structure include tetrabutylammonium hydroxide, triarylsulfonium hydroxide, phenacylsulfonium hydroxide, sulfonium hydroxides having a 2-oxoalkyl group, specifically triphenylsulfonium hydroxide, tris ( t-butylphenyl)sulfonium hydroxide, bis(t-butylphenyl)iodonium hydroxide, phenacylthiophenium hydroxide, 2-oxopropylthiophenium hydroxide and the like.
  • acid scavengers having a trialkylamine structure include tri(n-butyl)amine and tri(n-octyl)amine.
  • Acid scavengers having an aniline structure include 2,6-diisopropylaniline, N,N-dimethylaniline, N,N-dibutylaniline and N,N-dihexylaniline.
  • acid scavengers having a pyridine structure include pyridine and 4-methylpyridine.
  • alkylamine derivatives having hydroxyl groups and/or ether bonds include ethanolamine, diethanolamine, triethanolamine, N-phenyldiethanolamine, tris(methoxyethoxyethyl)amine and the like.
  • aniline derivatives having hydroxyl groups and/or ether bonds include N,N-bis(hydroxyethyl)aniline.
  • preferred acid scavengers include ethanolamine, diethanolamine, triethanolamine, ethylamine, diethylamine, triethylamine, hexylamine, dodecylamine, cyclohexylamine, cyclohexylmethylamine, cyclohexyldimethylamine, aniline, N-methylaniline, N , N-dimethylaniline, diphenylamine, pyridine, butylamine, isobutylamine, dibutylamine, tributylamine, dicyclohexylamine, DBU (diazabicycloundecene), DABCO (1,4-diazabicyclo[2.2.2]octane), N,N-diisopropylethylamine, tetramethylammonium hydroxide, ethylenediamine, 1,5-diaminopentane, N-methylhexylamine, N-methyldicyclohexyl
  • acid scavengers may be used singly or in combination of two or more.
  • the content of the acid scavenger is usually 0.001 to 10% by mass, preferably 0.01 to 5, based on the total solid content of the resin composition. % by mass.
  • the acid generator/acid scavenger (molar ratio) is more preferably 5.0-200, still more preferably 7.0-150.
  • the resin composition may contain various additives such as surfactants, higher fatty acid derivatives, thermal polymerization initiators, inorganic particles, ultraviolet absorbers, organic titanium compounds, as long as the effects of the present invention can be obtained. , antioxidants, anti-agglomerating agents, phenolic compounds, other polymer compounds, plasticizers and other auxiliaries (eg, antifoaming agents, flame retardants, etc.) and the like can be added. Properties such as film physical properties can be adjusted by appropriately containing these components. These components are, for example, described in JP 2012-003225, paragraph number 0183 and later (corresponding US Patent Application Publication No.
  • the total blending amount is preferably 3% by mass or less of the solid content of the resin composition.
  • surfactant various surfactants such as fluorine-based surfactants, silicone-based surfactants, and hydrocarbon-based surfactants can be used.
  • the surfactant may be a nonionic surfactant, a cationic surfactant, or an anionic surfactant.
  • the liquid properties (especially fluidity) when prepared as a coating liquid can be further improved, and the uniformity of coating thickness and liquid saving can be further improved. That is, when a film is formed using a coating liquid to which a composition containing a surfactant is applied, the interfacial tension between the surface to be coated and the coating liquid is reduced, and the wettability to the surface to be coated is improved. , the coatability to the surface to be coated is improved. Therefore, it is possible to more preferably form a film having a uniform thickness with little unevenness in thickness.
  • Fluorinated surfactants include compounds described in paragraph 0328 of WO2021/112189. The contents of which are incorporated herein.
  • the fluorosurfactant has a repeating unit derived from a (meth)acrylate compound having a fluorine atom and 2 or more (preferably 5 or more) alkyleneoxy groups (preferably ethyleneoxy groups and propyleneoxy groups) (meta)
  • a fluorine-containing polymer compound containing a repeating unit derived from an acrylate compound can also be preferably used, and the following compounds are also exemplified as fluorine-based surfactants used in the present invention.
  • the weight average molecular weight of the above compound is preferably 3,000 to 50,000, more preferably 5,000 to 30,000.
  • a fluorine-containing polymer having an ethylenically unsaturated group in a side chain can also be used as a fluorine-based surfactant. Specific examples include compounds described in paragraphs 0050 to 0090 and paragraphs 0289 to 0295 of JP-A-2010-164965, the contents of which are incorporated herein.
  • Commercially available products include Megafac RS-101, RS-102 and RS-718K manufactured by DIC Corporation.
  • the fluorine content in the fluorine-based surfactant is preferably 3-40% by mass, more preferably 5-30% by mass, and particularly preferably 7-25% by mass.
  • a fluorosurfactant having a fluorine content within this range is effective in terms of uniformity of the thickness of the coating film and saving liquid, and has good solubility in the composition.
  • Silicone-based surfactants, hydrocarbon-based surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants are described in paragraphs 0329 to 0334 of WO 2021/112189, respectively. compound. The contents of which are incorporated herein.
  • the surfactant content is preferably 0.001 to 2.0% by mass, more preferably 0.005 to 1.0% by mass, based on the total solid content of the resin composition.
  • a higher fatty acid derivative such as behenic acid or behenic acid amide may be added to the resin composition in order to prevent polymerization inhibition caused by oxygen, and may be unevenly distributed on the surface of the resin composition during the drying process after coating. good.
  • the content of the higher fatty acid derivative is preferably 0.1 to 10% by mass relative to the total solid content of the resin composition. Only one type of higher fatty acid derivative may be used, or two or more types thereof may be used. When two or more higher fatty acid derivatives are used, the total is preferably within the above range.
  • the resin composition may contain a thermal polymerization initiator, particularly a thermal radical polymerization initiator.
  • a thermal radical polymerization initiator is a compound that generates radicals by heat energy and initiates or promotes a polymerization reaction of a polymerizable compound. By adding a thermal radical polymerization initiator, the polymerization reaction of the resin and the polymerizable compound can be advanced, so that the solvent resistance can be further improved.
  • the photopolymerization initiator described above may also have a function of initiating polymerization by heat, and may be added as a thermal polymerization initiator.
  • thermal radical polymerization initiators include compounds described in paragraphs 0074 to 0118 of JP-A-2008-063554, the contents of which are incorporated herein.
  • thermal polymerization initiator When a thermal polymerization initiator is included, its content is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the resin composition. is 0.5 to 15% by mass.
  • One type of thermal polymerization initiator may be contained, or two or more types may be contained. When two or more thermal polymerization initiators are contained, the total amount is preferably within the above range.
  • the resin composition may contain inorganic particles.
  • inorganic particles include calcium carbonate, calcium phosphate, silica, kaolin, talc, titanium dioxide, alumina, barium sulfate, calcium fluoride, lithium fluoride, zeolite, molybdenum sulfide, and glass.
  • the average particle diameter of the inorganic particles is preferably 0.01 to 2.0 ⁇ m, more preferably 0.02 to 1.5 ⁇ m, still more preferably 0.03 to 1.0 ⁇ m, and 0.04 to 0.5 ⁇ m. Especially preferred.
  • the average particle size of the inorganic particles is the primary particle size and the volume average particle size.
  • the volume average particle size can be measured by a dynamic light scattering method using Nanotrac WAVE II EX-150 (manufactured by Nikkiso Co., Ltd.). If the above measurement is difficult, the centrifugal sedimentation light transmission method, X-ray transmission method, or laser diffraction/scattering method can be used.
  • the resin composition may contain an ultraviolet absorber.
  • an ultraviolet absorber As the ultraviolet absorber, salicylate-based, benzophenone-based, benzotriazole-based, substituted acrylonitrile-based, and triazine-based ultraviolet absorbers can be used. Specific examples of UV absorbers include compounds described in paragraphs 0341 to 0342 of WO2021/112189. The contents of which are incorporated herein.
  • One type of ultraviolet absorber may be used alone, or two or more types may be used in combination.
  • the content of the ultraviolet absorber is preferably 0.001% by mass or more and 1% by mass or less with respect to the total solid mass of the resin composition, and 0.01 More preferably, the content is not less than 0.1% by mass and not more than 0.1% by mass.
  • the resin composition may contain an organic titanium compound. By containing the organic titanium compound in the resin composition, it is possible to form a resin layer having excellent chemical resistance even when cured at a low temperature.
  • Organotitanium compounds that can be used include those in which organic groups are attached to titanium atoms through covalent or ionic bonds. Specific examples of organotitanium compounds are shown below in I) to VII).
  • I) Titanium chelate compound Among them, a titanium chelate compound having two or more alkoxy groups is more preferable because the storage stability of the resin composition is good and a good curing pattern can be obtained.
  • titanium bis(triethanolamine) diisopropoxide titanium di(n-butoxide) bis(2,4-pentanedionate), titanium diisopropoxide bis(2,4-pentanedionate ), titanium diisopropoxide bis(tetramethylheptanedionate), titanium diisopropoxide bis(ethylacetoacetate), and the like.
  • Tetraalkoxytitanium compounds for example titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetra(2-ethylhexoxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide.
  • titanium tetramethoxypropoxide titanium tetramethylphenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearyloxide, titanium tetrakis[bis ⁇ 2,2-(allyloxymethyl) butoxide ⁇ ] and the like.
  • Titanocene compounds for example, pentamethylcyclopentadienyltitanium trimethoxide, bis( ⁇ 5-2,4-cyclopentadien-1-yl)bis(2,6-difluorophenyl)titanium, bis( ⁇ 5-2, 4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium and the like.
  • Monoalkoxy titanium compounds for example, titanium tris(dioctylphosphate) isopropoxide, titanium tris(dodecylbenzenesulfonate) isopropoxide and the like.
  • Titanium oxide compounds for example, titanium oxide bis(pentanedionate), titanium oxide bis(tetramethylheptanedionate), phthalocyanine titanium oxide and the like.
  • the organotitanium compound at least one compound selected from the group consisting of I) titanium chelate compounds, II) tetraalkoxytitanium compounds, and III) titanocene compounds provides better chemical resistance. It is preferable from the viewpoint of performance.
  • titanium diisopropoxide bis(ethylacetoacetate), titanium tetra(n-butoxide) and bis( ⁇ 5-2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H) -pyrrol-1-yl)phenyl)titanium is preferred.
  • the blending amount is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 2 parts by mass, per 100 parts by mass of the specific resin.
  • the amount is 0.05 parts by mass or more, the resulting cured pattern exhibits good heat resistance and chemical resistance more effectively. Excellent.
  • the resin composition may contain an antioxidant.
  • an antioxidant By containing an antioxidant as an additive, it is possible to improve the elongation properties of the cured film and the adhesion to metal materials.
  • Antioxidants include phenol compounds, phosphite ester compounds, thioether compounds and the like. Specific examples of antioxidants include compounds described in paragraphs 0348 to 0357 of WO2021/112189. The contents of which are incorporated herein.
  • the content of the antioxidant is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, relative to the resin.
  • the content is 0.1 parts by mass or more, it is easy to obtain the effect of improving elongation characteristics and adhesion to metal materials even in a high-temperature and high-humidity environment.
  • the interaction with the agent or sensitizer enhances the sensitivity of the resin composition.
  • Only one kind of antioxidant may be used, or two or more kinds thereof may be used. When two or more kinds are used, it is preferable that the total amount thereof is within the above range.
  • the resin composition may contain an anti-aggregation agent as needed.
  • Anti-aggregating agents include sodium polyacrylate and the like.
  • Anti-aggregation agents may be used alone or in combination of two or more.
  • the content of the anti-aggregation agent is preferably 0.01% by mass or more and 10% by mass or less with respect to the total solid mass of the resin composition, and 0.02 It is more preferable that the amount is not less than 5% by mass and not more than 5% by mass.
  • the resin composition may contain a phenolic compound as needed.
  • phenolic compounds include Bis-Z, BisP-EZ, TekP-4HBPA, TrisP-HAP, TrisP-PA, BisOCHP-Z, BisP-MZ, BisP-PZ, BisP-IPZ, BisOCP-IPZ, BisP-CP, BisRS-2P, BisRS-3P, BisP-OCHP, methylenetris-FR-CR, BisRS-26X (these are trade names, manufactured by Honshu Chemical Industry Co., Ltd.), BIP-PC, BIR-PC, BIR-PTBP, BIR -BIPC-F (these are trade names, manufactured by Asahi Organic Chemicals Industry Co., Ltd.) and the like.
  • a phenolic compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the phenolic compound is preferably 0.01% by mass or more and 30% by mass or less with respect to the total solid mass of the resin composition, and 0.02 More preferably, the content is not less than 20% by mass and not more than 20% by mass.
  • Other polymer compounds include siloxane resins, (meth)acrylic polymers obtained by copolymerizing (meth)acrylic acid, novolac resins, resol resins, polyhydroxystyrene resins, and copolymers thereof.
  • Other polymer compounds may be modified products into which cross-linking groups such as methylol groups, alkoxymethyl groups and epoxy groups have been introduced.
  • polymer compounds may be used singly or in combination of two or more.
  • the content of the other polymer compound is preferably 0.01% by mass or more and 30% by mass or less with respect to the total solid mass of the resin composition. , 0.02% by mass or more and 20% by mass or less.
  • the viscosity of the resin composition of the present invention can be adjusted by adjusting the solid content concentration of the resin composition. From the viewpoint of coating film thickness, it is preferably 1,000 mm 2 /s to 12,000 mm 2 /s, more preferably 2,000 mm 2 /s to 10,000 mm 2 /s, and 3,000 mm 2 /s to 8,000 mm. 2 /s is more preferred. If it is the said range, it will become easy to obtain a coating film with high uniformity. If it is less than 1,000 mm 2 /s, it is difficult to apply the film to a film thickness required for , for example, a rewiring insulating film. .
  • the water content of the resin composition of the present invention is preferably less than 2.0% by mass, more preferably less than 1.5% by mass, and even more preferably less than 1.0% by mass. If it is 2.0% or more, the storage stability of the resin composition may deteriorate.
  • Methods for maintaining the moisture content include adjusting the humidity in the storage conditions and reducing the porosity of the storage container during storage.
  • the metal content of the resin composition of the present invention is preferably less than 5 mass ppm (parts per million), more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
  • metals include sodium, potassium, magnesium, calcium, iron, copper, chromium, and nickel, but metals contained as complexes of organic compounds and metals are excluded. When multiple metals are included, the total of these metals is preferably within the above range.
  • a raw material having a low metal content is selected as a raw material constituting the resin composition of the present invention.
  • Examples include a method of performing filter filtration on the raw material constituting the product, and performing distillation under conditions in which contamination is suppressed as much as possible by lining the inside of the apparatus with polytetrafluoroethylene or the like.
  • the content of halogen atoms is preferably less than 500 ppm by mass, more preferably less than 300 ppm by mass, and less than 200 ppm by mass from the viewpoint of wiring corrosion. is more preferred.
  • those present in the form of halogen ions are preferably less than 5 ppm by mass, more preferably less than 1 ppm by mass, and even more preferably less than 0.5 ppm by mass.
  • Halogen atoms include chlorine and bromine atoms. It is preferable that the total amount of chlorine atoms and bromine atoms or chlorine ions and bromine ions is within the above ranges.
  • ion exchange treatment and the like are preferably mentioned.
  • a conventionally known container can be used as the container for the resin composition of the present invention.
  • the inner wall of the container is a multi-layer bottle composed of 6 types and 6 layers of resin, and 6 types of resin are used. It is also preferred to use bottles with a seven-layer structure. Examples of such a container include the container described in JP-A-2015-123351.
  • a cured product of this resin composition By curing the resin composition of the present invention, a cured product of this resin composition can be obtained.
  • the cured product of the present invention is a cured product obtained by curing the resin composition of the present invention. Curing of the resin composition is preferably by heating, and the heating temperature is more preferably in the range of 120°C to 400°C, further preferably in the range of 140°C to 380°C, and 170°C. It is particularly preferred to be in the range of -350°C.
  • the form of the cured product of the resin composition is not particularly limited, and can be selected from a film (membrane) form, a rod form, a spherical form, a pellet form, and the like, according to the application.
  • the cured product is preferably in the form of a film (membrane).
  • this cured product can be used according to the application, such as the formation of a protective film on the wall surface, the formation of via holes for conduction, the adjustment of impedance, capacitance or internal stress, and the provision of heat dissipation function. You can also choose the shape.
  • the film thickness of the cured product (film made of the cured product) is preferably 0.5 ⁇ m or more and 150 ⁇ m or less.
  • the shrinkage ratio when the resin composition of the present invention is cured is preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less.
  • the imidization reaction rate of the cured product of the resin composition is preferably 70% or higher, more preferably 80% or higher, and even more preferably 90% or higher. If it is less than 70%, the cured product may have poor mechanical properties.
  • the elongation at break of the cured product of the resin composition is preferably 30% or more, more preferably 40% or more, and even more preferably 50% or more.
  • the glass transition temperature (Tg) of the cured product of the resin composition is preferably 180° C. or higher, more preferably 210° C. or higher, and even more preferably 230° C. or higher.
  • the resin composition can be prepared by mixing the components described above.
  • the mixing method is not particularly limited, and conventionally known methods can be used. Mixing can be performed by mixing with a stirring blade, mixing with a ball mill, mixing by rotating the tank itself, or the like.
  • the temperature during mixing is preferably 10-30°C, more preferably 15-25°C.
  • the filter pore size is, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon. HDPE (high density polyethylene) is more preferable when the material of the filter is polyethylene.
  • a filter that has been pre-washed with an organic solvent may be used.
  • multiple types of filters may be connected in series or in parallel for use. When multiple types of filters are used, filters with different pore sizes or materials may be used in combination.
  • connection mode for example, a mode in which an HDPE filter with a pore size of 1 ⁇ m is connected in series as a first stage and an HDPE filter with a pore size of 0.2 ⁇ m as a second stage are connected in series.
  • various materials may be filtered multiple times. When filtering multiple times, circulation filtration may be used. Moreover, you may filter by pressurizing. When performing filtration under pressure, the pressure to be applied may be, for example, 0.01 MPa or more and 1.0 MPa or less, preferably 0.03 MPa or more and 0.9 MPa or less, and more preferably 0.05 MPa or more and 0.7 MPa or less. , more preferably 0.05 MPa or more and 0.5 MPa or less.
  • impurities may be removed using an adsorbent.
  • You may combine filter filtration and the impurity removal process using an adsorbent.
  • a known adsorbent can be used as the adsorbent. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • the resin composition filled in the bottle may be subjected to a degassing step under reduced pressure.
  • the treatment liquid of the present invention comprises a film forming step of applying a resin composition containing a cyclized resin or its precursor onto a substrate to form a film, and a treatment step of bringing the treatment liquid into contact with the film.
  • the details of the components contained in the treatment liquid are the same as the details of the components contained in the treatment liquid used in the treatment step in the method for producing a cured product of the present invention described above, and the preferred embodiments are also the same.
  • the details of the method for producing the cured product and the details of each step included therein are the same as the details of the method for producing the cured product of the present invention described above and the details of each step included therein, and are preferable. Aspects are also the same.
  • the method for producing the cured product in the treatment liquid of the present invention further includes a heating step of heating the film after the treatment step.
  • the method for producing a cured product in the treatment liquid of the present invention includes the film forming step, an exposure step of selectively exposing the film formed by the film forming step, and developing the exposed film with a developer. It is preferable that the processing step includes a developing step of forming a patterned film using the above step, and the processing step is a rinsing step of washing the patterned film with the processing liquid.
  • the details of the film forming step, exposure step, developing step, treatment step, and heating step are those of the film forming step, exposure step, development step, treatment step, and heating step in the above-described method for producing a cured product of the present invention.
  • the details are the same, and the preferred embodiments are also the same.
  • the details of the rinsing step are the same as the details when the treatment step is the rinsing step in the above-described method for producing a cured product of the present invention, and preferred embodiments are also the same.
  • ⁇ Synthesis Example 1 Synthesis of polymer P-1> 155.1 g of 4,4′-oxydiphthalic dianhydride (ODPA) was placed in a separable flask, and 134.0 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of ⁇ -butyrolactone were added. A reaction mixture was obtained by adding 79.1 g of pyridine while stirring at room temperature. After the end of heat generation due to the reaction, the mixture was allowed to cool to room temperature and allowed to stand still for 16 hours.
  • ODPA 4,4′-oxydiphthalic dianhydride
  • HEMA 2-hydroxyethyl methacrylate
  • ⁇ -butyrolactone 400 ml of ⁇ -butyrolactone
  • a precipitate formed in the reaction mixture was removed by filtration to obtain a reaction liquid.
  • the resulting reaction solution was added to 3 liters of ethyl alcohol to produce a precipitate consisting of crude polymer.
  • the resulting crude polymer was collected by filtration and dissolved in 1.5 liters of tetrahydrofuran to obtain a crude polymer solution.
  • the obtained crude polymer solution was dropped into 28 liters of water to precipitate the polymer, and the resulting precipitate was collected by filtration and dried in a vacuum to obtain a powdery polymer P-1.
  • Mw weight average molecular weight
  • Synthesis of Polymer P-2> In Synthesis Example 1, except that 147.1 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride was used instead of 155.1 g of 4,4'-oxydiphthalic dianhydride. Polymer P-2 was obtained by carrying out the reaction in the same manner as described in 1 above. When the weight average molecular weight (Mw) of this polymer P-2 was measured, it was 22,000.
  • the polyimide precursor was collected by filtration, added to 4 liters of water, stirred again for 30 minutes, and collected by filtration again.
  • the resulting polyimide precursor was then dried under reduced pressure at 45° C. for 3 days to obtain polymer P-3.
  • Mw weight average molecular weight
  • Synthesis of polymer P-5> 73.5 g of 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 4,4′-oxydiphthalic acid were used instead of 155.1 g of 4,4′-oxydiphthalic dianhydride.
  • Polymer P-5 was obtained by carrying out the reaction in the same manner as described in Synthesis Example 1, except that a mixture of 77.5 g of dianhydride was used. The weight average molecular weight (Mw) of this polymer P-5 was measured to be 22,000.
  • Synthesis of Polymer P-6> a mixture of 54.5 g of pyromellitic dianhydride and 77.5 g of 4,4'-oxydiphthalic dianhydride was used instead of 155.1 g of 4,4'-oxydiphthalic dianhydride.
  • Polymer P-6 was obtained by carrying out the reaction in the same manner as in Synthesis Example 1, except for the above. When the weight average molecular weight (Mw) of this polymer P-6 was measured, it was 22,000.
  • Synthesis of Polymer P-7> The method described in Synthesis Example 1, except that 148.8 g of 2,2'-bis(trifluoromethyl)benzidine was used in place of 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in Synthesis Example 1.
  • Polymer P-7 was obtained by performing the reaction in the same manner as above. When the weight average molecular weight (Mw) of this polymer P-7 was measured, it was 20,000.
  • each resin composition was obtained by mixing the components shown in the table below.
  • the components shown in the table below were mixed to obtain comparative compositions.
  • the content of the components described in the table was the amount described in "parts by mass” in the table.
  • the content of the solvent was adjusted so that the solid content concentration of the composition was the value (% by mass) described in the table.
  • the resulting resin composition and comparative composition were filtered under pressure through a polytetrafluoroethylene filter having a filter pore size of 0.45 ⁇ m.
  • the description of "-" indicates that the composition does not contain the corresponding component.
  • I-1 Irgacure OXE-01 (manufactured by BASF)
  • I-2 3,5-bis (4-diethylaminobenzylidene) -1-methyl-4-azacyclohexanone
  • I-3 Irgacure 784 (manufactured by BASF)
  • I-4 the following compounds
  • I-5 2-((benzoyloxy)imino)-1-phenylpropan-1-one
  • ⁇ A-1 WPBG-140 (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • ⁇ A-2 N-cyclohexyl-N,N-dimethyl-N-phenacylammonium Maleate
  • ⁇ A-3 the following compounds
  • ⁇ A-4 the following compounds
  • ⁇ A-5 the following compounds
  • a developer or a rinse was prepared by mixing each component described in the column of "Developer” or “Rinse” in the table. For examples in which only one component is listed in the “developer” or “rinse” column of the table, that component was used alone as the developer or rinse. Also, a processing liquid PL-1 was prepared by mixing the components shown in the table below.
  • the prepared resin composition or comparative composition was applied onto a silicon wafer by spin coating.
  • the above silicon wafer was dried on a hot plate for 5 minutes at the temperature described in "PB temperature (°C)" in the table. to form a resin composition layer having a uniform thickness.
  • the entire surface of the resin composition layer on the silicon wafer was exposed to i-line using a stepper. The exposure amount was 500 mJ/cm 2 .
  • the film was developed for 60 seconds with the developer described in the "Developer" column of the table, and rinsed for 60 seconds with the rinse liquid described in the "Rinse” column of the table.
  • the methods of supplying the developing solution and the rinsing solution were the methods described in the "supplying method” column of the table, respectively. However, in the examples with “-" in the “solvent” and “group 4 element-containing compound” columns of the "developer” in the table, development with the developer was not performed. After that, for the examples in which the treatment liquid is described as "PL-1" or the like in the column of "Treatment after rinsing", the treatment liquid described in the table was brought into contact with the resin composition layer for 60 seconds.
  • the resin composition layer is heated using a hot plate in a nitrogen atmosphere at a heating rate of 10 ° C./min, and after reaching the temperature described in "Cure temperature (° C.)" in the table, "Cure The temperature was maintained for the time described in "Time (min)” to form a cured film.
  • the obtained cured film was immersed in the following chemicals under the following conditions, and the dissolution rate was calculated.
  • DMSO dimethyl sulfoxide
  • TMAH tetramethylammonium hydroxide
  • the film thickness of the cured film before and after was compared, and the dissolution rate (nm/min) was calculated.
  • the obtained dissolution rate values were evaluated according to the following evaluation criteria and described in the "Chemical resistance" column. It can be said that the lower the dissolution rate, the better the chemical resistance.
  • C The dissolution rate was 500 nm/min or more.
  • each resin composition or comparative composition was applied onto a silicon wafer by spin coating.
  • the silicon wafer coated with the resin composition layer was dried on a hot plate for 5 minutes at the temperature described in "PB temperature (°C)" in the table, and a film thickness ( ⁇ m) column in the table was applied to the silicon wafer.
  • a uniform resin composition layer having a thickness described in 1 was formed.
  • the resin composition layer on the silicon wafer is exposed using a stepper (Nikon NSR 2005 i9C) at an exposure wavelength of 365 nm and an exposure energy of 500 mJ/cm 2 to form an exposed photosensitive resin composition layer (resin layer ) was developed with the developer described in the table for 60 seconds and rinsed with the rinse liquid described in the table to form holes with a diameter of 10 ⁇ m.
  • the methods of supplying the developing solution and the rinsing solution were the methods described in the "supplying method" column of the table, respectively. However, in the examples with "-" in the "solvent” and “group 4 element-containing compound” columns of the "developer” in the table, development with the developer was not performed.
  • the treatment liquid described in the table was brought into contact with the resin composition layer for 60 seconds. Then, in a nitrogen atmosphere, the temperature was raised at a temperature increase rate of 10 ° C./min, and after reaching the heating temperature described in the "Cure temperature (° C.)" column of the table, "Cure time (min)” in the table. It was heated for the heating time described in the column. After cooling to room temperature, the resin composition or the same composition as the comparative composition is again applied to the surface of the resin layer, and the patterned film is heated for 3 hours from the application of the resin composition in the same manner as described above. A laminated body (1) having two resin layers was formed by repeating the procedure up to.
  • each resin composition or comparative composition was applied onto a silicon wafer by spin coating.
  • the silicon wafer coated with the resin composition layer was dried on a hot plate for 5 minutes at the temperature described in "PB temperature (°C)" in the table, and a film thickness ( ⁇ m) column in the table was applied to the silicon wafer.
  • a uniform resin composition layer having a thickness described in 1 was formed.
  • the resin composition layer on the silicon wafer was exposed at an exposure wavelength of 365 nm with an exposure energy of 500 mJ/cm 2 , and the exposed resin composition layer (resin layer) was exposed. was developed for 60 seconds with the developer described in 1.
  • the methods of supplying the developing solution and the rinsing solution were the methods described in the "supplying method” column of the table, respectively. However, in the examples with "-" in the “solvent” and “group 4 element-containing compound” columns of the "developer” in the table, development with the developer was not performed. After that, for the examples in which the treatment liquid is described as "PL-1" or the like in the column of "Treatment after rinsing", the treatment liquid described in the table was brought into contact with the resin composition layer for 60 seconds.
  • a cured product having excellent chemical resistance can be obtained according to the method for producing a cured product according to the present invention.
  • the method for producing a cured product according to Comparative Example 1 does not include the step of bringing the treatment liquid containing the Group 4 element-containing compound into contact with the film formed from the composition. In such an example, it can be seen that the chemical resistance of the resulting cured product is poor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

耐薬品性に優れた硬化物が得られる硬化物の製造方法、上記硬化物の製造方法を含む積層体の製造方法及び上記硬化物の製造方法又は上記積層体の製造方法を含む半導体デバイスの製造方法を提供すること、また、上記硬化物の製造方法において用いられる処理液を提供すること。 硬化物の製造方法は、環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、処理液と、上記膜とを接触させる処理工程、を含み、上記処理液が、第4族元素を有する化合物を含む。

Description

硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液
 本発明は、硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液に関する。
 ポリイミド等の樹脂は、耐熱性及び絶縁性等に優れるため、様々な用途に適用されている。上記用途としては、特に限定されないが、実装用の半導体デバイスを例に挙げると、これらの樹脂を含むパターンを、絶縁膜や封止材の材料、又は、保護膜として利用すること等が挙げられる。また、これらの樹脂を含むパターンは、フレキシブル基板のベースフィルムやカバーレイなどとしても用いられている。
 例えば上述した用途において、ポリイミド等の環化樹脂は、ポリイミド前駆体等の環化樹脂の前駆体を含む樹脂組成物の形態、又は、環化樹脂を含む樹脂組成物の形態で用いられる。
 このような樹脂組成物を、例えば塗布等により基材に適用し、その後、必要に応じて露光、現像、加熱等を行うことにより、環化樹脂(例えば、ポリイミド前駆体がイミド化された樹脂)を含む硬化物を基材上に形成することができる。
 樹脂組成物は、公知の塗布方法等により適用可能であり、現像により微細なパターン、複雑な形状のパターン等を形成できるため、硬化物の設計の自由度が高いなど、製造上の適応性に優れるといえる。ポリイミド等が有する高い性能に加え、このような製造上の適応性に優れる観点から、ポリイミド前駆体を含む樹脂組成物を用いた硬化物の製造方法について、産業上の応用展開がますます期待されている。
 例えば、特許文献1には、基板上の感光性ポリイミド層を露光して適当なパターン状に光硬化し、次いで未露光部分を現像液で除去する現像を行った後、光硬化したポリイミドパターン層の形成された基板を、1級の脂肪族アミノ化合物5~30容量%と、非プロトン性塩基性溶媒2~20容量%とを少なくとも含有する光硬化ポリイミドパターン層形成用リンス液に浸漬して、上記基板をリンスし、最後に、上記リンス液から取り出された光硬化ポリイミド層を有する基板を、高温で加熱処理することを特徴とするパターン形成法が記載されている。
 特許文献2には、複素環含有ポリマー前駆体と、熱塩基発生剤と、第4族元素を含む有機化合物を含む感光性樹脂組成物が記載されている。
特開平1-221741号公報 国際公開第2018/025738号
 本発明は、耐薬品性に優れた硬化物が得られる硬化物の製造方法、上記硬化物の製造方法を含む積層体の製造方法、及び、上記硬化物の製造方法又は上記積層体の製造方法を含む半導体デバイスの製造方法を提供すること、また、上記硬化物の製造方法において用いられる処理液を提供することを目的とする。
 本発明の代表的な実施態様の例を以下に示す。
<1> 環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、
 処理液と、上記膜とを接触させる処理工程、を含み、
 上記処理液が、第4族元素を有する化合物を含む
 硬化物の製造方法。
<2> 上記処理工程後に、上記膜を加熱する加熱工程を更に含む、<1>に記載の硬化物の製造方法。
<3> 上記加熱工程における加熱の温度が、120~230℃である、<2>に記載の硬化物の製造方法。
<4> 上記加熱工程が、加熱により、上記第4族元素を有する化合物の作用により、上記膜の硬化を促進する工程である、<2>又は<3>に記載の硬化物の製造方法。
<5> 上記処理液がリンス液であり、かつ、上記処理工程が、上記膜を上記処理液により洗浄するリンス工程である、<1>~<4>のいずれか1つに記載の硬化物の製造方法。
<6> 上記膜形成工程と、上記処理工程との間に、上記膜を選択的に露光する露光工程、及び、現像液により上記露光後の膜を現像してパターン状の膜を形成する現像工程を含む、<1>~<5>のいずれか1つに記載の硬化物の製造方法。
<7> 上記膜形成工程と、上記処理工程との間に、上記膜を選択的に露光する露光工程を有し、上記処理工程が、上記処理液を現像液として上記膜を現像してパターン状の膜を形成する工程である、<1>~<5>のいずれか1つに記載の硬化物の製造方法。
<8> 上記現像において、上記現像液が上記露光後の膜に対してシャワーにより供給、又は、連続供給される、<6>又は<7>に記載の硬化物の製造方法。
<9> 上記現像がネガ型現像である、<6>~<8>のいずれか1つに記載の硬化物の製造方法。
<10> 上記処理液が、上記第4族元素を有する化合物として、チタン原子を有する化合物及びジルコニウムを有する化合物よりなる群から選ばれた少なくとも1種の化合物を含む、<1>~<9>のいずれか1つに記載の硬化物の製造方法。
<11> 上記処理液が、上記第4族元素を有する化合物として、チタノセン化合物、テトラアルコキシチタン化合物、チタンアシレート化合物、チタンキレート化合物及びジルコノセン化合物よりなる群から選ばれた少なくとも1種の化合物を含む、<1>~<10>のいずれか1つに記載の硬化物の製造方法。
<12> <1>~<11>のいずれか1つに記載の硬化物の製造方法を複数回繰り返す、積層体の製造方法。
<13> 上記複数回の硬化物の製造方法の間に、上記硬化物上に金属層を形成する金属層形成工程を更に含む、<12>に記載の積層体の製造方法。
<14> <1>~<11>のいずれか1つに記載の硬化物の製造方法、又は、<12>若しくは<13>に記載の積層体の製造方法を含む、半導体デバイスの製造方法。
<15> 環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、処理液と、上記膜とを接触させる処理工程を含む硬化物の製造方法において用いられる処理液であって、
 第4族元素を有する化合物を含む
 処理液。
<16> 上記硬化物の製造方法が、上記処理工程後に、上記膜を加熱する加熱工程を更に含む、<15>に記載の処理液。
<17> 上記硬化物の製造方法が、上記膜形成工程、上記膜形成工程により形成された膜を選択的に露光する露光工程、現像液により上記露光後の膜を現像してパターン状の膜を形成する現像工程を含み、上記処理工程が、上記パターン状の膜を上記処理液により洗浄するリンス工程である、<15>又は<16>に記載の処理液。
 本発明によれば、耐薬品性に優れた硬化物が得られる硬化物の製造方法、上記硬化物の製造方法を含む積層体の製造方法、及び、上記硬化物の製造方法又は上記積層体の製造方法を含む半導体デバイスの製造方法、上記硬化物の製造方法において用いられる処理液が提供される。
 以下、本発明の主要な実施形態について説明する。しかしながら、本発明は、明示した実施形態に限られるものではない。
 本明細書において「~」という記号を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を意味する。
 本明細書において「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成できる限りにおいて、他の工程と明確に区別できない工程も含む意味である。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有しない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた露光も含む。また、露光に用いられる光としては、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等の活性光線又は放射線が挙げられる。
 本明細書において、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の両方、又は、いずれかを意味し、「(メタ)アクリル」は、「アクリル」及び「メタクリル」の両方、又は、いずれかを意味し、「(メタ)アクリロイル」は、「アクリロイル」及び「メタクリロイル」の両方、又は、いずれかを意味する。
 本明細書において、構造式中のMeはメチル基を表し、Etはエチル基を表し、Buはブチル基を表し、Phはフェニル基を表す。
 本明細書において、全固形分とは、組成物の全成分から溶剤を除いた成分の総質量をいう。また本明細書において、固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量百分率である。
 本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に述べない限り、ゲル浸透クロマトグラフィ(GPC)法を用いて測定した値であり、ポリスチレン換算値として定義される。本明細書において、重量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、HLC-8220GPC(東ソー(株)製)を用い、カラムとしてガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000、及び、TSKgel Super HZ2000(以上、東ソー(株)製)を直列に連結して用いることによって求めることができる。それらの分子量は特に述べない限り、溶離液としてTHF(テトラヒドロフラン)を用いて測定したものとする。ただし、溶解性が低い場合など、溶離液としてTHFが適していない場合にはNMP(N-メチル-2-ピロリドン)を用いることもできる。また、GPC測定における検出は特に述べない限り、UV線(紫外線)の波長254nm検出器を使用したものとする。
 本明細書において、積層体を構成する各層の位置関係について、「上」又は「下」と記載したときには、注目している複数の層のうち基準となる層の上側又は下側に他の層があればよい。すなわち、基準となる層と上記他の層の間に、更に第3の層や要素が介在していてもよく、基準となる層と上記他の層は接している必要はない。また、特に断らない限り、基材に対し層が積み重なっていく方向を「上」と称し、又は、樹脂組成物層がある場合には、基材から樹脂組成物層へ向かう方向を「上」と称し、その反対方向を「下」と称する。なお、このような上下方向の設定は、本明細書中における便宜のためであり、実際の態様においては、本明細書における「上」方向は、鉛直上向きと異なることもありうる。
 本明細書において、特段の記載がない限り、組成物は、組成物に含まれる各成分として、その成分に該当する2種以上の化合物を含んでもよい。また、特段の記載がない限り、組成物における各成分の含有量とは、その成分に該当する全ての化合物の合計含有量を意味する。
 本明細書において、特に述べない限り、温度は23℃、気圧は101,325Pa(1気圧)、相対湿度は50%RHである。
 本明細書において、好ましい態様の組み合わせは、より好ましい態様である。
(硬化物の製造方法)
 本発明の硬化物の製造方法は、環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、処理液と、上記膜とを接触させる処理工程、を含み、上記処理液が、第4族元素を有する化合物を含む。
 本発明の硬化物の製造方法によれば、耐薬品性に優れた硬化物が得られる。
 上記効果が得られるメカニズムは不明であるが、下記のように推測される。
 従来から、環化樹脂又はその前駆体、及び、第4族元素を有する化合物(以下、「第4族元素含有化合物」とも記載する)を含む樹脂組成物を用いて硬化物を得ることが行われている。
 樹脂組成物が第4族元素含有化合物を含むことにより、得られる硬化膜のガラス転移温度が増大し、耐薬品性に優れた硬化物が得られる。これは、硬化膜中で環化樹脂の配向性が向上するためであると考えられる。
 しかし、第4族元素含有化合物は、例えば黄色灯下でも感光してしまうため、樹脂組成物に第4族元素含有化合物を含有させた場合、樹脂組成物を遮光条件下で保管する、赤色灯下で使用するなど、保管条件、使用条件に制限が有った。
 本発明の硬化物の製造方法は、第4族元素含有化合物を含む処理液と、樹脂組成物からなる膜とを接触させる工程を含む。
 上記工程において、処理液から、第4族元素含有化合物又はこれに由来する第4族元素を含む化合物若しくはイオン等が膜中に浸透するため、続く加熱工程においては環化樹脂の配向性が向上し、ガラス転移温度が上昇して、耐薬品性に優れた硬化物が得られると考えられる。
 また、本発明の硬化物の製造方法によれば、樹脂組成物中に第4族元素を有する化合物を含有しなくとも耐薬品性に優れた硬化物が得られる。そのため、樹脂組成物における許容される保管条件、使用条件が広くなる。また、樹脂組成物の保存安定性も向上させやすい。
 また、近年、基板(基材)は、8インチのウエハサイズから、12インチ、また、パネルレベルのサイズと大面積化が進んでいる。また、銅配線等の配線を設置するために、積層される層数も1層から2層、3層、4層、5層と徐々に増加している。
 このような製造時の基板(基材)の大面積化、ポリイミドの層数の増加に伴い、ウエハやパネルの反りが顕著化してきている等の理由により、上述の加熱工程における加熱を低温で行うことが望まれている。
 また、デバイスにおける他の材料の熱的な損傷を抑制する、製造プロセスを高速化する、省エネルギー化を実現する等の目的で、上記加熱における加熱温度を低い温度とすることが望まれている。
 本発明の硬化物の製造方法によれば、加熱工程において低温での加熱(例えば、230℃以下、更には200℃以下、180℃以下など)を行う場合においても、上述の環化樹脂の配向性の向上により耐薬品性に優れた硬化物が得られると考えられる。そのため、本発明の硬化物の製造方法は、このような低温での加熱が求められる場合においても有用であると考えられる。
 更に、デバイスの長寿命化、様々な動作環境下での動作の信頼性の観点から、硬化物の長期間における絶縁性の維持、過酷環境下(例えば、高温条件下、高湿度条件下など)における絶縁性の維持が求められている。
 本発明の硬化物の製造方法によれば、上述の通りガラス転移温度の高い硬化物が得られる。そのため、硬化物中で環化樹脂自体の分解、変性なども起こりにくく、また積層体における剥離なども起こりにくいと考えられる。これにより、本発明の硬化物の製造方法により得られる硬化物は上述のような絶縁性の維持がされやすいと考えられる。したがって本発明の硬化物の製造方法は、上述のような長期間の使用、過酷環境下の使用が求められる場合においても有用であると考えられる。
 ここで、特許文献1及び2には、第4族元素含有化合物を含む処理液については記載されていない。
 以下、本発明の硬化物の製造方法について詳細に説明する。
<膜形成工程>
 本発明の硬化物の製造方法は、樹脂組成物を基材上に適用して膜を形成する膜形成工程を含む。
 本発明において用いられる樹脂組成物の詳細については後述する。
〔基材〕
 基材の種類は、用途に応じて適宜定めることができるが、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製用基材、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基材(例えば、金属から形成された基材、及び、金属層が例えばめっきや蒸着等により形成された基材のいずれであってもよい)、紙、SOG(Spin On Glass)、TFT(薄膜トランジスタ)アレイ基材、モールド基材、プラズマディスプレイパネル(PDP)の電極板などが挙げられ、特に制約されない。本発明では、特に、半導体作製基材が好ましく、シリコン基材、Cu基材およびモールド基材がより好ましい。
 また、これらの基材にはヘキサメチルジシラザン(HMDS)等による密着層や酸化層などの層が表面に設けられていてもよい。
 また、基材の形状は特に限定されず、円形状であってもよく、矩形状であってもよい。
 基材のサイズとしては、円形状であれば、例えば直径が100~450mmであり、好ましくは200~450mmである。矩形状であれば、例えば短辺の長さが100~1000mmであり、好ましくは200~700mmである。
 また、基材としては、例えば板状、好ましくはパネル状の基材(基板)が用いられる。
 また、樹脂層(例えば、硬化物からなる層)の表面や金属層の表面に樹脂組成物を適用して膜を形成する場合は、樹脂層や金属層が基材となる。
 樹脂組成物を基材上に適用する手段としては、塗布が好ましい。
 適用する手段としては、具体的には、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スプレーコート法、スピンコート法、スリットコート法、インクジェット法などの塗布方法が例示される。膜の厚さの均一性の観点から、スピンコート法、スリットコート法、スプレーコート法、又は、インクジェット法が好ましく、膜の厚さの均一性の観点および生産性の観点からスピンコート法およびスリットコート法が好ましい。方法に応じて樹脂組成物の固形分濃度や塗布条件を調整することで、所望の厚さの膜を得ることができる。また、基材の形状によっても塗布方法を適宜選択でき、ウエハ等の円形基材であればスピンコート法、スプレーコート法、インクジェット法等が好ましく、矩形基材であればスリットコート法やスプレーコート法、インクジェット法等が好ましい。スピンコート法の場合は、例えば、500~3,500rpmの回転数で、10秒~3分程度適用することができる。
 また、あらかじめ仮支持体上に上記適用方法によって形成した膜を、基材上に転写する方法を用いることもできる。
 転写方法に関しては特開2006-023696号公報の段落0023、0036~0051や、特開2006-047592号公報の段落0096~0108に記載の作製方法を本発明においても好適に用いることができる。
 また、基材の端部において余分な膜の除去を行なう工程を行なってもよい。このような工程の例には、エッジビードリンス(EBR)、バックリンスなどが挙げられる。
 また樹脂組成物を基材に塗布する前に基材に種々の溶剤を塗布し、基材の濡れ性を向上させた後に樹脂組成物を塗布するプリウェット工程を採用しても良い。
<乾燥工程>
 上記膜は、膜形成工程(層形成工程)の後に、溶剤を除去するために、形成された膜(層)を乾燥する工程(乾燥工程)に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、膜形成工程により形成された膜を乾燥する乾燥工程を含んでもよい。
 また、上記乾燥工程は膜形成工程の後、処理工程の前(硬化物の製造方法が後述する露光工程を含む場合、露光工程の前)に行われることが好ましい。
 乾燥工程における膜の乾燥温度は50~150℃が好ましく、70℃~130℃がより好ましく、90℃~110℃が更に好ましい。また、減圧により乾燥を行っても良い。乾燥時間としては、30秒~20分が例示され、1分~10分が好ましく、2分~7分がより好ましい。
<処理工程>
 本発明の硬化物の製造方法は、処理液と上記膜とを接触させる処理工程を含む。
〔処理液〕
 処理工程において用いられる処理液は、第4族元素含有化合物を含む。
-第4族元素含有化合物-
 第4族元素含有化合物における第4族元素としては、特に限定されないが、チタン、ジルコニウム又はハフニウムが好ましく、チタン又はジルコニウムがより好ましく、チタンが更に好ましい。
 第4族元素含有化合物の構造中に含まれる第4族元素の数は、特に限定されないが、1~4個であることが好ましく、1~2個であることがより好ましい。また、第4族元素を1つのみ有する態様も、本発明の好ましい態様の1つである。
 第4族元素含有化合物は、第4族元素を1種のみ有してもよいし、2種以上有してもよいが、1種のみ有する態様も本発明の好ましい態様の1つである。
 処理液は、第4族元素含有化合物として、チタン原子を有する化合物、ジルコニウムを有する化合物及びハフニウムを有する化合物よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、チタン原子を有する化合物及びジルコニウムを有する化合物よりなる群から選ばれた少なくとも1種の化合物を含むことがより好ましく、チタン原子を有する化合物を含むことが更に好ましい。
 第4族元素含有化合物としては、硬化後の膜に残存した場合の信頼性の観点からは、有機配位子を有する化合物が好ましい。
 有機配位子として、具体的には、炭素数5~20のシクロペンタジエニルアニオンおよびその誘導体、アセチルアセトン及びその誘導体、アルコキシアニオン及びその誘導体、カルボキシアニオン及びその誘導体などが挙げられる。
 有機配位子としては、特に定めるものではないが、ハロゲン原子により置換されていてもよい炭化水素基、又は、炭化水素基とヘテロ原子との組み合わせからなる基が好ましい。ヘテロ原子としては、酸素原子、硫黄原子、窒素原子が好ましい。
 有機配位子としては、ハロゲン原子により置換されていてもよい炭化水素基と、-O-、-C(=O)-、-S-、及び、-S(=O)-よりなる群から選ばれた少なくとも1つの基との組み合わせにより表される基が好ましい。
 これらの中でも、ハロゲン原子により置換されていてもよい炭化水素基と、-O-、-C(=O)、及び、-OS(=O)-との組み合わせにより表される基(アニオン)が好ましい。
 上記ハロゲン原子により置換されていてもよい炭化水素基としては、ハロゲン原子により置換されていてもよい飽和脂肪族炭化水素基、ハロゲン原子により置換されていてもよい不飽和脂肪族炭化水素基、ハロゲン原子により置換されていてもよい芳香族炭化水素基が挙げられ、ハロゲン原子により置換されていてもよい飽和脂肪族炭化水素基又はハロゲン原子により置換されていてもよい不飽和脂肪族炭化水素基が好ましい。
 上記炭化水素基の炭素数は、1~20が好ましく、1~10がより好ましく、1~4が更に好ましい。また、上記炭化水素基を置換してもよいハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 より具体的には、有機配位子としては、-O-R、-OS(=O)-R、-OC(=O)R又は、-ORC(=O)Rが好ましく挙げられる。Rは上述のハロゲン原子により置換されていてもよい炭化水素基を表し、Rが1つの有機配位子中に複数ある場合のR、及び、有機配位子を複数有する場合の各有機配位子におけるRはそれぞれ同一であっても異なっていてもよい。
 このような有機配位子として、好ましくはエトキシ基、プロポキシ基、イソプロポキシ基、トリフルオロメチルスルホニルオキシ基、アセチルアセトナート基などが挙げられる。
 本発明では、有機配位子の少なくとも1つは環状基であることも好ましい。上記態様において、少なくとも2つが環状基であることもより好ましい態様である。上記環状基は、炭化水素環基であることが好ましい。上記環状基は、5員環の環状基及び6員環の環状基から選択されることが好ましい。5員環の環状基から選択されることがより好ましい。5員環の環状基としては、シクロペンタジエニル基が好ましい。6員環の環状基としてはハロゲン原子により置換されていてもよいフェニル基が挙げられ、上記フェニル基はピロール基等のヘテロ原子を有する基により更に置換されていてもよい。6員環の環状基としては、2,6-ジフルオロ-3-(ピロール-1-イル)フェニル基が好ましい。
 また、本発明で用いる第4族元素含有化合物は、1分子中に2~4個の環状基を含むことが好ましい。
 硬化膜形成後の耐薬品性の観点から、膜中に残存有機配位子が少ない方が好ましい。処理液に溶解する第4族金属元素を有する化合物であれば、使用することができるが、好ましい有機配位子の沸点は、常圧(1気圧)で30℃~350℃であることが好ましく、より好ましくは、80℃~270℃、更に好ましくは100℃~230℃である。
 また、第4族元素含有化合物としては、チタノセン化合物、テトラアルコキシチタン化合物、チタンアシレート化合物、チタンキレート化合物およびジルコノセン化合物が好ましく挙げられる。
 これらの中でも、硬化物のガラス転移温度の増大の観点からは、チタノセン化合物、テトラアルコキシチタン化合物、チタンアシレート化合物、又は、チタンキレート化合物が好ましく、チタノセン化合物、又は、チタンキレート化合物がより好ましく、チタンキレート化合物が更に好ましい。
 チタンキレート化合物における配位子の詳細は上述の通りである。
 その他、ジルコノセン化合物、ジルコニウムキレート化合物、ジルコニウムアシレート化合物、ハフノセン化合物なども使用可能である。
 第4族元素含有化合物の分子量は、50~2,000が好ましく、100~1,000がより好ましい。
 また、第4族元素含有化合物は、感光性又は耐熱性を有する化合物であってもよい。例えば、第4族元素含有化合物は、光ラジカル重合開始能を有する化合物であることも好ましい。このような態様によれば、例えば処理工程後において行われる加熱工程、現像後露光工程等において膜中の未反応のラジカル重合性基の重合が進行する。その結果、例えば耐薬品性に優れた硬化物が得られると考えられる。
 本発明において、光ラジカル重合開始能を有するとは、光の照射によりラジカル重合を開始させることのできるフリーラジカルを発生させることができることを意味する。例えば、ラジカル架橋剤と有機金属錯体とを含む組成物に対して、有機金属錯体が光を吸収する波長域であって、ラジカル架橋剤が光を吸収しない波長域の光を照射した時に、ラジカル架橋剤の消失の有無を確認することにより光ラジカル重合開始能の有無を確認することができる。消失の有無を確認するには、ラジカル架橋剤の種類に応じて適宜の方法を選択できるが、例えばHPLC測定(高速液体クロマトグラフィ)により確認すればよい。
 このような化合物としては、第4族元素を含むメタロセン化合物が挙げられ、チタノセン化合物がより好ましい。
 ラジカル重合開始能を有する化合物である第4族元素含有化合物としては、ビス(η5-シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等が挙げられる。このような化合物としては市販品を使用してもよく、市販品としてはIrgacure 784(BASF社製)、Omnirad 784(IGM Resins社製)などが挙げられる。
<<具体例>>
 第4族元素含有化合物としては、例えば、後述する実施例で使用したK-1~K-7、ビス(2,4-ペンタンジオナト)ビス(2-プロパノラト)チタニウム(IV)等が挙げられるが、本発明はこれに限定されるものではない。
 また、第4族元素含有化合物としては、チタン含有化合物として、テトラ-n-プロポキシチタン、テトラ-i-プロポキシチタン、テトラ-n-ブトキシチタン、テトラ-i-ブトキシチタン、テトラ-sec-ブトキシチタン、テトラ-t-ブトキシチタン、トリエトキシ・モノ(アセチルアセトナート)チタン、トリ-n-プロポキシ・モノ(アセチルアセトナート)チタン、トリ-i-プロポキシ・モノ(アセチルアセトナート)チタン、トリ-n-ブトキシ・モノ(アセチルアセトナート)チタン、トリ-sec-ブトキシ・モノ(アセチルアセトナート)チタン、トリ-t-ブトキシ・モノ(アセチルアセトナート)チタン、ジエトキシ・ビス(アセチルアセトナート)チタン、ジ-n-プロポキシ・ビス(アセチルアセトナート)チタン、ジ-i-プロポキシ・ビス(アセチルアセトナート)チタン、ジ-n-ブトキシ・ビス(アセチルアセトナート)チタン、ジ-sec-ブトキシ・ビス(アセチルアセトナート)チタン、ジ-t-ブトキシ・ビス(アセチルアセトナート)チタン、モノエトキシ・トリス(アセチルアセトナート)チタン、モノ-n-プロポキシ・トリス(アセチルアセトナート)チタン、モノ-i-プロポキシ・トリス(アセチルアセトナート)チタン、モノ-n-ブトキシ・トリス(アセチルアセトナート)チタン、モノ-sec-ブトキシ・トリス(アセチルアセトナート)チタン、モノ-t-ブトキシ・トリス(アセチルアセトナート)チタン、トリエトキシ・モノ(エチルアセトアセテート)チタン、トリ-n-プロポキシ・モノ(エチルアセトアセテート)チタン、トリ-i-プロポキシ・モノ(エチルアセトアセテート)チタン、トリ-n-ブトキシ・モノ(エチルアセトアセテート)チタン、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)チタン、トリ-t-ブトキシ・モノ(エチルアセトアセテート)チタン、ジエトキシ・ビス(エチルアセトアセテート)チタン、ジ-n-プロポキシ・ビス(エチルアセトアセテート)チタン、ジ-i-プロポキシ・ビス(エチルアセトアセテート)チタン、ジ-n-ブトキシ・ビス(エチルアセトアセテート)チタン、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)チタン、ジ-t-ブトキシ・ビス(エチルアセトアセテート)チタン、モノエトキシ・トリス(エチルアセトアセテート)チタン、モノ-n-プロポキシ・トリス(エチルアセトアセテート)チタン、モノ-i-プロポキシ・トリス(エチルアセトアセテート)チタン、モノ-n-ブトキシ・トリス(エチルアセトアセテート)チタン、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)チタン、モノ-t-ブトキシ・トリス(エチルアセトアセテート)チタン、テトラキス(エチルアセトアセテート)チタン、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)チタン、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)チタン、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)等も挙げられる。
 また、第4族元素含有化合物としては、ジルコニウム含有化合物として、テトラエトキシジルコニウム、テトラ-i-プロポキシジルコニウム、テトラ-n-ブトキシジルコニウム、テトラ-i-ブトキシジルコニウム、テトラ-sec-ブトキシジルコニウム、テトラ-t-ブトキシジルコニウムトリエトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-i-プロポキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-n-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-sec-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、トリ-t-ブトキシ・モノ(アセチルアセトナート)ジルコニウム、ジエトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-i-プロポキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-n-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-sec-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、ジ-t-ブトキシ・ビス(アセチルアセトナート)ジルコニウム、モノエトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-i-プロポキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-n-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-sec-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、モノ-t-ブトキシ・トリス(アセチルアセトナート)ジルコニウム、トリエトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-i-プロポキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-n-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-sec-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、トリ-t-ブトキシ・モノ(エチルアセトアセテート)ジルコニウム、ジエトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-i-プロポキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-n-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-sec-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、ジ-t-ブトキシ・ビス(エチルアセトアセテート)ジルコニウム、モノエトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-i-プロポキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-n-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-sec-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、モノ-t-ブトキシ・トリス(エチルアセトアセテート)ジルコニウム、テトラキス(エチルアセトアセテート)ジルコニウム、モノ(アセチルアセトナート)トリス(エチルアセトアセテート)ジルコニウム、ビス(アセチルアセトナート)ビス(エチルアセトアセテート)ジルコニウム、トリス(アセチルアセトナート)モノ(エチルアセトアセテート)ジルコニウム等も挙げられる。
 その他、第4族元素含有化合物としては、国際公開第2020/116238号の段落0146~0157に記載の化合物も挙げられるが、本発明はこれに限定されるものではない。
<<含有量>>
 第4族元素含有化合物の含有量は、処理液の全質量に対して、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが更に好ましい。上記含有量の下限は特に限定されないが、例えば0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。
 また、第4族元素含有化合物の含有量は、処理液の全固形分に対して、30~100質量%であることが好ましく、50~100質量%であることがより好ましく、70~100質量%であることが更に好ましい。
 処理液は第4族元素含有化合物を1種のみ含有してもよいし、2種以上を含有してもよい。第4族元素含有化合物が2種以上である場合は、その合計が上記範囲であることが好ましい。
-塩基性化合物-
 処理液は、塩基性化合物を更に含んでもよい。塩基性化合物としては、硬化後の膜に残存した場合の信頼性(硬化物を更に加熱した場合の基材との密着性)の観点からは、有機塩基が好ましい。
 また、塩基性化合物としては、アミノ基を有する塩基性化合物が好ましく、1級アミン、2級アミン、3級アミン、アンモニウム塩、3級アミドなどが好ましいが、イミド化反応を促進する為には、1級アミン、2級アミン、3級アミン又はアンモニウム塩が好ましく、2級アミン、3級アミン又はアンモニウム塩がより好ましく、2級アミン又は3級アミンが更に好ましく、3級アミンが特に好ましい。
 塩基性化合物としては、硬化物の機械特性(破断伸び)の観点からは、硬化膜(得られる硬化物)中に残存しにくいものが好ましく、イミド化促進の観点からは、気化等により、加熱前に残存量が減少しにくいものであることが好ましい。
 したがって、塩基性化合物の沸点は、常圧(101,325Pa)で30℃から350℃であることが好ましく、80℃~270℃であることがより好ましく、100℃~230℃であることが更に好ましい。
 また、塩基性化合物の沸点は、処理液に含まれる有機溶剤の沸点から20℃を減算した温度よりも高いことが好ましく、処理液に含まれる有機溶剤の沸点よりも高いことがより好ましい。
 例えば、有機溶剤の沸点が100℃である場合、使用される塩基性化合物は、沸点が80℃以上であることが好ましく、沸点が100℃以上であることがより好ましい。
 処理液は塩基性化合物を1種のみ含有してもよいし、2種以上を含有してもよい。
 塩基性化合物の具体例としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、ドデシルアミン、シクロヘキシルアミン、シクロヘキシルメチルアミン、シクロヘキシルジメチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ジフェニルアミン、ピリジン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ジシクロヘキシルアミン、DBU(ジアザビシクロウンデセン)、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、N,N-ジイソプロピルエチルアミン、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、エチレンジアミン、ブタンジアミン、1,5-ジアミノペンタン、N-メチルヘキシルアミン、N-メチルジシクロヘキシルアミン、トリオクチルアミン、N-エチルエチレンジアミン、N,N―ジエチルエチレンジアミン、N,N,N’,N’-テトラブチルー1,6-ヘキサンジアミン、スペルミジン、ジアミノシクロヘキサン、ビス(2-メトキシエチル)アミン、ピペリジン、メチルピペリジン、ジメチルピペリジン、ピペラジン、トロパン、N-フェニルベンジルアミン、1,2-ジアニリノエタン、2-アミノエタノール、トルイジン、アミノフェノール、ヘキシルアニリン、フェニレンジアミン、フェニルエチルアミン、ジベンジルアミン、ピロール、N-メチルピロール、N,N,N,Nテトラメチルエチレンジアミン、N,N,N,N-テトラメチルー1,3-プロパンジアミン等が挙げられる。
<<含有量>>
 処理液が塩基性化合物を含む場合、塩基性化合物の含有量は、処理液の全質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上であることが好ましい。
 また、塩基性化合物が処理液が用いられる環境で固体である場合、塩基性化合物の含有量は、処理液の全固形分に対して、70~100質量%であることも好ましい。
 処理液が塩基性化合物を含む場合、処理液は塩基性化合物を1種のみ含有してもよいし、2種以上を含有してもよい。塩基性化合物が2種以上である場合は、その合計が上記範囲であることが好ましい。
-塩基発生剤-
 処理液は、塩基発生剤を含んでもよい。塩基発生剤としては後述の本発明に係る樹脂組成物において用いられる塩基発生剤を特に制限なく使用することができる。
 また、塩基発生剤は、光塩基発生剤であっても熱塩基発生剤であってもよいが、熱塩基発生剤であることが好ましい。
 処理液が塩基発生剤を含有する場合、塩基発生剤の含有量は、処理液の全固形分に対して、0.01~20質量%であることが好ましく、0.02~15質量%であることがより好ましく、0.05~10質量%であることが更に好ましい。
 塩基発生剤は1種のみでもよいし、2種以上であってもよい。塩基発生剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<<含有量>>
 処理液が塩基発生剤を含む場合、塩基発生剤の含有量は、処理液の全質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。上記含有量の下限は特に限定されないが、例えば0.1質量%以上であることが好ましい。
 また、塩基発生剤の含有量は、処理液の全固形分に対して、70~100質量%であることが好ましい。
 処理液が塩基発生剤を含む場合、処理液は塩基発生剤を1種のみ含有してもよいし、2種以上を含有してもよい。塩基発生剤が2種以上である場合は、その合計が上記範囲であることが好ましい。
-溶剤-
 処理液は、溶剤を含んでもよい。溶剤としては、水又は有機溶剤が挙げられ、有機溶剤が好ましい。
 有機溶剤としては、エステル類、エーテル類、ケトン類、環状炭化水素類、アルコール類、及びアミド類が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例:アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例:3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例:2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が好適に挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適に挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン等が好適に挙げられる。
 環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素類、リモネン等の環式テルペン類、スルホキシド類としてジメチルスルホキシド等が好適に挙げられる。
 アルコール類として、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、オクタノール、ジエチレングリコール、プロピレングリコール、メチルイソブチルカルビノール、トリエチレングリコール等が好適に挙げられる。
 アミド類として、N-メチルピロリドン、N-エチルピロリドン、ジメチルホルムアミド等が好適に挙げられる。
 また、処理液が使用される環境において、上述の塩基性化合物が液体である場合、これらの塩基性化合物を溶剤及び塩基性化合物として使用することができる。
 これらの中でも、処理液が現像液として用いられる場合、溶剤としてはケトン類又はスルホキシド類が好ましく、処理液がリンス液又は単に膜と接触するための液である場合には、エーテル類又はケトン類が好ましい。
 処理液が溶剤を含む場合、処理液の全質量に対する溶剤の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 また、処理液が有機溶剤を含む場合、処理液の全質量に対する有機溶剤の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。
 溶剤は1種のみでもよいし、2種以上であってもよい。溶剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
-その他の成分-
 処理液は、その他の成分を更に含んでもよい。
 その他の成分としては、例えば、公知の界面活性剤や公知の消泡剤等が挙げられる。
 上記膜形成工程と、上記処理工程との間に、上記膜を選択的に露光する露光工程、及び、現像液により上記露光後の膜を現像してパターン状の膜を形成する現像工程を含むことが好ましい。以下、この膜形成工程、露光工程、現像工程及び処理工程を行う態様を態様Aとも記載する。
 態様Aにおいて、上記処理工程は、現像工程により得られたパターン状の膜と処理液とを接触させる工程となる。
 また、樹脂組成物が環化樹脂の前駆体を含み、かつ、上記処理工程時の膜中の環化樹脂の前駆体の環化率が70%以下であることも好ましい。このような態様によれば、例えば第4族元素含有化合物を含む架橋などが起こりやすく、耐薬品性を更に向上させやすいと考えられる。
 具体的には、処理工程開始時の膜中の環化樹脂の前駆体の環化率が上記範囲内であることが好ましく、処理工程の全てにおいて上記環化率が上記範囲内でなくともよい。
 上記環化率は、50%以下であることがより好ましく、40%以下であることが更に好ましく、30%以下であることが特に好ましい。また上記環化率の下限は特に限定されないが、0%以上であればよい。
 上記環化率(ポリイミド前駆体の場合、イミド化率)は、例えばポリイミド前駆体の場合、下記方法により算出可能である。
 ポリイミド前駆体の赤外吸収スペクトルを測定し、イミド構造由来の吸収ピークである1377cm-1付近のピーク強度P1を求める。次に、そのポリイミド前駆体を350℃で1時間熱処理した後、再度、赤外吸収スペクトルを測定し、1377cm-1付近のピーク強度P2を求める。得られたピーク強度P1、P2を用い、下記式に基づいて、ポリイミド前駆体のイミド化率を求めることができる。
 イミド化率(%)=(ピーク強度P1/ピーク強度P2)×100
〔処理液の供給方法〕
 処理液の供給方法は、処理液と上記膜とを接触させることができれば特に限定されないが、例えば、膜形成工程で得られた膜上に処理液を供給する方法、後述の露光工程後に露光された膜上に処理液を供給する方法、パターン状の膜上に処理液を供給する態様が挙げられる。
 上記供給方法としては、特に制限は無く、基材を処理液に浸漬する方法、基材上でのパドル(液盛り)による供給、基材に処理液をシャワーで供給する方法、基材上にストレートノズル等の手段により処理液を連続供給する方法が挙げられる。
 処理液の画像部への浸透性、非画像部の除去性、製造上の効率の観点から、処理液をシャワーノズル、ストレートノズル、スプレーノズルなどで供給する方法があり、ノズルにて連続供給する方法が好ましく、画像部への処理液の浸透性の観点からは、ノズルで供給された処理液が基材上に保たれる方法がより好ましい。
 上記処理液の供給方法(例えば、パドルによる供給とシャワーによる供給、パドルによる供給とストレートノズルによる供給の組み合わせ)は併用して行っても良い。例えば、パドル供給には、膜が膨潤して後の処理液が浸透しやすくなる効果があり、シャワー供給やスプレー供給には非画像部の除去性が上がる効果が得られる。また、処理液は少なくとも併用する方法の1つに使用していればよい。
 ここで、本発明において、第4族元素含有化合物を含まない液をパターン上に供給した後(例えば、第4族元素含有化合物を含まないリンス液をパターン状の膜上に供給してパターンを洗浄した後)に、処理液による処理工程を行う態様としてもよい。
 上記態様における第4族元素含有化合物を含まない処理液をパターン上に供給する方法としては、特に限定されないが、パドルによる供給が挙げられる。
 上記態様における処理液をパターン上に供給する方法としては、特に限定されないが、シャワーによる供給、ストレートノズルによる供給等が好ましく挙げられる。
 第4族元素含有化合物を含まない処理液をパドルにより供給することにより、パターンが膨潤して後に供給される処理液中の第4族元素含有化合物がパターンに浸透しやすくなり、耐薬品性の向上等の効果がより得られやすくなると考えられる。また、処理液をシャワー、ストレートノズル等により供給することにより、現像カスなどの除去性(リンス性)にも優れる場合がある。
 また処理工程における処理液の供給方法としては、処理液が連続的に基材に供給され続ける工程、基材上で処理液が略静止状態で保たれる工程、基材上で処理液を超音波等で振動させる工程及びそれらを組み合わせた工程などが採用可能である。
 これらの中でも、処理工程は、処理液を現像後のパターンに対してスプレー、シャワー等の幅広く放射する方法により供給、又は、連続供給する工程であることが好ましい。
 また、現像工程における現像をパドル現像により行い、かつ、処理工程における処理液の供給のうち、少なくとも1回をシャワーによる供給、又は、ストレートノズル等による連続供給により行うことも好ましい。上記態様によれば、パドル現像によりパターンが膨潤することにより、処理液中の第4族元素含有化合物がパターンに浸透しやすくなり、破断伸びの向上等の効果がより得られやすくなると考えられる。
 処理工程における処理時間(すなわち、処理液と上記パターンとが接触している時間)としては、10秒~10分間が好ましく、20秒~5分間がより好ましい。処理工程時の処理液の温度は、特に定めるものではないが、好ましくは、10~45℃、より好ましくは、18℃~30℃で行うことができる。
<<露光工程>>
 本発明の硬化物の製造方法は、膜形成工程により形成された膜を選択的に露光する露光工程を含んでもよい。
 選択的に露光するとは、膜の一部を露光することを意味している。また、選択的に露光することにより、膜には露光された領域(露光部)と露光されていない領域(非露光部)が形成される。
 露光量は、樹脂組成物を硬化できる限り特に定めるものではないが、例えば、波長365nmでの露光エネルギー換算で50~10,000mJ/cmが好ましく、200~8,000mJ/cmがより好ましい。
 露光波長は、190~1,000nmの範囲で適宜定めることができ、240~550nmが好ましい。
 露光の光源としては以下が挙げられる。括弧内は露光波長を表す。(1)半導体レーザー(波長 830nm、532nm、488nm、405nm、375nm、355nm etc.)、(2)メタルハライドランプ、(3)高圧水銀灯、g線(波長 436nm)、h線(波長 405nm)、i線(波長 365nm)、ブロード(g,h,i線の3波長)、(4)エキシマレーザー、KrFエキシマレーザー(波長 248nm)、ArFエキシマレーザー(波長 193nm)、Fエキシマレーザー(波長 157nm)、(5)極端紫外線(EUV)(波長 13.6nm)、(6)電子線、(7)YAGレーザーの第二高調波532nm、第三高調波355nm等が挙げられる。樹脂組成物については、特に高圧水銀灯による露光が好ましく、中でも、i線による露光が好ましい。これにより、特に高い露光感度が得られうる。
 また、露光の方式は特に限定されず、樹脂組成物からなる膜の少なくとも一部が露光される方式であればよいが、フォトマスクを使用した露光、レーザーダイレクトイメージング法による露光等が挙げられる。
<<露光後加熱工程>>
 上記膜は、露光後に加熱する工程(露光後加熱工程)に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、露光工程により露光された膜を加熱する露光後加熱工程を含んでもよい。
 露光後加熱工程は、露光工程後、現像工程前に行うことができる。
 露光後加熱工程における加熱温度は、50℃~140℃であることが好ましく、60℃~120℃であることがより好ましい。
 露光後加熱工程における加熱時間は、30秒間~300分間が好ましく、1分間~10分間がより好ましい。
 露光後加熱工程における昇温速度は、加熱開始時の温度から最高加熱温度まで1~12℃/分が好ましく、2~10℃/分がより好ましく、3~10℃/分が更に好ましい。
 また、昇温速度は加熱途中で適宜変更してもよい。
 露光後加熱工程における加熱手段としては、特に限定されず、公知のホットプレート、オーブン、赤外線ヒーター等を用いることができる。
 また、加熱に際し、窒素、ヘリウム、アルゴンなどの不活性ガスを流す等により、低酸素濃度の雰囲気で行うことも好ましい。
<<現像工程>>
 本発明の硬化物の製造方法は、露光工程により露光された膜を現像液を用いて現像してパターン状の膜を形成する現像工程を含んでもよい。
 現像を行うことにより、膜の露光部及び非露光部のうち一方が除去され、パターン状の膜が形成される。
 ここで、膜の非露光部が現像工程により除去される現像をネガ型現像といい、膜の露光部が現像工程により除去される現像をポジ型現像という。
 本発明において、現像工程における現像はネガ型現像であることが好ましい。
〔現像液〕
 本発明において、現像液は未露光部または露光部を除去することによる画像の形成に使用される液体である。
 現像工程において用いられる現像液としては、有機溶剤を含む現像液が挙げられる。
 現像液に用いられる有機溶剤としては、エステル類、エーテル類、ケトン類、環状炭化水素類、アルコール類、及びアミド類が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、ギ酸アミル、酢酸イソアミル、酢酸イソブチル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例:アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例:3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例:2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル等が好適に挙げられる。
 エーテル類として、例えば、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート等が好適に挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、N-メチル-2-ピロリドン等が好適に挙げられる。
 環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素類、リモネン等の環式テルペン類、スルホキシド類としてジメチルスルホキシドが好適に挙げられる。
 アルコール類として、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ペンタノール、オクタノール、ジエチレングリコール、プロピレングリコール、メチルイソブチルカルビノール、トリエチレングリコール等が好適に挙げられる。
 アミド類として、N-メチルピロリドン、N-エチルピロリドン、ジメチルホルムアミド等が好適に挙げられる。
 また、現像液が後述の通り塩基性化合物を含み、塩基性化合物(例えば、有機塩基)が現像液が使用される環境において液体の場合、後述の塩基性化合物を溶剤兼塩基性化合物として使用することができる。
 現像液の溶剤は、1種又は、2種以上を混合して使用することができる。本発明では特にシクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、N-メチル-2-ピロリドン、及び、シクロヘキサノンよりなる群から選ばれた少なくとも1種を含む現像液が好ましく、シクロペンタノン、γ-ブチロラクトン及びジメチルスルホキシドよりなる群から選ばれた少なくとも1種を含む現像液がより好ましく、シクロペンタノンを含む現像液が最も好ましい。
 現像液の全質量に対する溶剤の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることが更に好ましく、90質量%以上であることが特に好ましい。また、上記含有量は、100質量%であってもよい。
-第4族元素含有化合物、塩基性化合物、塩基発生剤-
 態様Aにおいて、現像液は、第4族元素含有化合物、塩基性化合物、及び、塩基発生剤よりなる群から選ばれた少なくとも1種の化合物を含んでもよい。
 第4族元素含有化合物、塩基性化合物、及び、塩基発生剤の好ましい態様は、上述の処理液に含まれるこれらの成分の好ましい態様と同様である。
 現像液として、上述の処理工程における処理液を用いてもよい。
 また、現像時の塩基性化合物によるパターンの膨潤を抑制するため、現像液は第4族元素含有化合物を含まない態様も、本発明の好ましい態様の1つである。上記態様によれば、パターン形状のばらつきが抑制される場合がある。
 現像液は、他の成分を更に含んでもよい。
 他の成分としては、例えば、公知の界面活性剤や公知の消泡剤等が挙げられる。
〔現像液の供給方法〕
 現像液の供給方法は、所望のパターンを形成できれば特に制限は無く、膜が形成された基材を現像液に浸漬する方法、基材上に形成された膜にノズルを用いて現像液を供給するパドル現像、または、現像液を連続供給する方法がある。ノズルの種類は特に制限は無く、ストレートノズル、シャワーノズル、スプレーノズル等が挙げられる。
 薄膜に対しては、現像液の浸透性、非画像部の除去性、製造上の効率の観点から、現像液をストレートノズルで供給する方法、又はスプレーノズルにて連続供給する方法が好ましく、画像部への現像液の浸透性の観点からは、スプレーノズルで供給する方法がより好ましい。
 また、現像液をストレートノズルにて連続供給後、基材をスピンし現像液を基材上から除去し、スピン乾燥後に再度ストレートノズルにて連続供給後、基材をスピンし現像液を基材上から除去する工程を採用してもよく、この工程を複数回繰り返しても良い。
 また現像工程における現像液の供給方法としては、現像液が連続的に基材に供給され続ける工程、基材上で現像液が略静止状態で保たれる工程、基材上で現像液を超音波等で振動させる工程及びそれらを組み合わせた工程などが採用可能である。
 これらの中でも、現像において、上記現像液が上記露光後の膜に対してシャワーにより供給、又は、連続供給される態様も、本発明の好ましい態様の一つである。
 現像時間としては、10秒~10分間が好ましく、20秒~5分間がより好ましい。現像時の現像液の温度は、特に定めるものではないが、好ましくは、10~45℃、より好ましくは、18℃~30℃で行うことができる。
 処理工程において、上記処理液はリンス液であることも好ましい。
 リンス液とは、膜の洗浄に用いられる液体であり、例えば、露光、現像後のパターン状の膜の洗浄に用いられる液体である。
 また、上記処理工程は、上記膜を上記処理液により洗浄するリンス工程であることが好ましい。
 上記リンス工程は、露光工程、及び、現像工程後の上記パターン状の膜を上記処理液により洗浄するリンス工程であることが好ましい。
 具体的には、上述の処理液の供給方法により、現像工程後の上記パターン状の膜上に処理液を供給することにより、上記パターン状の膜を上記処理液により洗浄することができる。
 また、本発明の硬化物の製造方法は、上記膜形成工程と、上記処理工程との間に、上記膜を選択的に露光する露光工程を有し、上記処理工程が、上記処理液を現像液として上記膜を現像してパターン状の膜を形成する工程であることも好ましい。以下、この膜形成工程、露光工程、及び、処理液を現像液として膜を現像してパターン状の膜を形成する現像工程を行う態様を態様Bとも記載する。
 上記態様Bにおける露光工程は、上記態様Aにおける露光工程と同様であり、好ましい態様も同様である。
 上記態様Bにおける現像工程は、現像液として処理液を用いる以外は、上記態様Aにおける現像工程と同様であり、好ましい態様も同様である。
 上記態様Bにおいて、上記処理工程(現像工程)後に、第2の処理液と上記パターン状の膜とを接触させる第2の処理工程を更に含み、上記第2の処理液が、第4族元素を有する化合物を含むことも好ましい。
 上記第2の処理液の好ましい態様は、上述の処理液の好ましい態様と同様である。
 また、上記第2の処理液は、リンス液であることも好ましい。
 また、上記第2の処理工程は、上記パターン状の膜を上記処理液により洗浄するリンス工程であることが好ましい。
<加熱工程>
 本発明の硬化物の製造方法は、上記膜を加熱する加熱工程を含むことが好ましい。
 また、本発明の硬化物の製造方法は、現像工程を行わずに他の方法で得られたパターン、又は、膜形成工程により得られた膜を加熱する加熱工程を含んでもよい。
 加熱工程において、ポリイミド前駆体等の樹脂は環化してポリイミド等の樹脂となる。
 また、特定樹脂、又は特定樹脂以外の重合性化合物における未反応の架橋性基の架橋なども進行する。
 加熱工程における加熱温度(最高加熱温度)としては、50~450℃が好ましく、120~230℃がより好ましく、150~230℃が更に好ましい。ウエハやパネルの反りを抑えるためには低温で加熱することが好ましく、この場合の加熱温度(最高加熱温度)は150~200℃が好ましく、150~190℃がより好ましく、150~180℃が更に好ましい。
 加熱工程は、加熱により、上記第4族元素を有する化合物(すなわち、現像液及び処理液の少なくとも一方に含まれる、第4族元素を有する化合物)の作用により、上記膜の硬化を促進する工程であることが好ましく、上記膜内で環化樹脂の前駆体の環化を促進する工程であることがより好ましく、上記膜内でポリイミド前駆体のイミド化を促進する工程であることが更に好ましい。
 加熱工程における加熱は、加熱開始時の温度から最高加熱温度まで1~12℃/分の昇温速度で行うことが好ましい。上記昇温速度は2~10℃/分がより好ましく、3~10℃/分が更に好ましい。昇温速度を1℃/分以上とすることにより、生産性を確保しつつ、酸又は溶剤の過剰な揮発を防止することができ、昇温速度を12℃/分以下とすることにより、硬化物の残存応力を緩和することができる。
 加えて、急速加熱可能なオーブンの場合、加熱開始時の温度から最高加熱温度まで1~8℃/秒の昇温速度で行うことが好ましく、2~7℃/秒がより好ましく、3~6℃/秒が更に好ましい。
 加熱開始時の温度は、20℃~150℃が好ましく、20℃~130℃がより好ましく、25℃~120℃が更に好ましい。加熱開始時の温度は、最高加熱温度まで加熱する工程を開始する際の温度のことをいう。例えば、樹脂組成物を基材の上に適用した後、乾燥させる場合、この乾燥後の膜(層)の温度であり、例えば、樹脂組成物に含まれる溶剤の沸点よりも、30~200℃低い温度から昇温させることが好ましい。
 加熱時間(最高加熱温度での加熱時間)は、5分~360分であることが好ましく、10分~300分であることがより好ましく、15分~240分であることが更に好ましい。
 特に多層の積層体を形成する場合、層間の密着性の観点から、加熱温度は30℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることが更に好ましく、120℃以上であることが特に好ましい。
 上記加熱温度の上限は、350℃以下であることが好ましく、250℃以下であることがより好ましく、240℃以下であることが更に好ましく、230℃以下であることが特に好ましく、200℃以下とすることもでき、180℃以下とすることもできる。
 加熱は段階的に行ってもよい。例として、25℃から120℃まで3℃/分で昇温し、120℃にて60分保持し、120℃から180℃まで2℃/分で昇温し、180℃にて120分保持する、といった工程を行ってもよい。また、米国特許第9159547号明細書に記載のように紫外線を照射しながら処理することも好ましい。このような前処理工程により膜の特性を向上させることが可能である。前処理工程は10秒間~2時間程度の短い時間で行うとよく、15秒~30分間がより好ましい。前処理は2段階以上のステップとしてもよく、例えば100~150℃の範囲で1段階目の前処理工程を行い、その後に150~200℃の範囲で2段階目の前処理工程を行ってもよい。
 更に、加熱後冷却してもよく、この場合の冷却速度としては、1~5℃/分であることが好ましい。
 加熱工程は、窒素、ヘリウム、アルゴンなどの不活性ガスを流す、減圧下で行う等により、低酸素濃度の雰囲気で行うことが特定樹脂の分解を防ぐ点で好ましい。酸素濃度は、50ppm(体積比)以下が好ましく、20ppm(体積比)以下がより好ましい。
 加熱工程における加熱手段としては、特に限定されないが、例えばホットプレート、赤外炉、電熱式オーブン、熱風式オーブン、赤外線オーブンなどが挙げられる。
<現像後露光工程>
 処理工程後の膜は、上記加熱工程に加えて、現像工程後のパターンを露光する現像後露光工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、処理工程後の膜を露光する現像後露光工程を含んでもよい。
 現像後露光工程においては、例えば、光塩基発生剤の感光によってポリイミド前駆体等の環化が進行する反応や、光酸発生剤の感光によって酸分解性基の脱離が進行する反応などを促進することができる。
 現像後露光工程においては、処理工程後の膜の少なくとも一部が露光されればよいが、処理工程後の膜の全部が露光されることが好ましい。
 現像後露光工程における露光量は、感光性化合物が感度を有する波長における露光エネルギー換算で、50~20,000mJ/cmであることが好ましく、100~15,000mJ/cmであることがより好ましい。
 現像後露光工程は、例えば、上述の露光工程における光源を用いて行うことができ、ブロードバンド光を用いることが好ましい。
<金属層形成工程>
 処理工程後の膜(加熱工程後の膜であることが好ましい)は、パターン上に金属層を形成する金属層形成工程に供されてもよい。
 すなわち、本発明の硬化物の製造方法は、処理工程後の膜(加熱工程後の膜であることが好ましい)上に金属層を形成する金属層形成工程を含むことが好ましい。
 金属層としては、特に限定なく、既存の金属種を使用することができ、銅、アルミニウム、ニッケル、バナジウム、チタン、クロム、コバルト、金、タングステン、錫、銀及びこれらの金属を含む合金が例示され、銅及びアルミニウムがより好ましく、銅が更に好ましい。
 金属層の形成方法は、特に限定なく、既存の方法を適用することができる。例えば、特開2007-157879号公報、特表2001-521288号公報、特開2004-214501号公報、特開2004-101850号公報、米国特許第7888181B2、米国特許第9177926B2に記載された方法を使用することができる。例えば、フォトリソグラフィ、PVD(物理蒸着法)、CVD(化学気相成長法)、リフトオフ、電解めっき、無電解めっき、エッチング、印刷、及びこれらを組み合わせた方法などが考えられる。より具体的には、スパッタリング、フォトリソグラフィ及びエッチングを組み合わせたパターニング方法、フォトリソグラフィと電解めっきを組み合わせたパターニング方法が挙げられる。めっきの好ましい態様としては、硫酸銅やシアン化銅めっき液を用いた電解めっきが挙げられる。
 金属層の厚さとしては、最も厚肉の部分で、0.01~50μmが好ましく、1~10μmがより好ましい。
<用途>
 本発明の硬化物の製造方法、又は、本発明の硬化物の適用可能な分野としては、電子デバイスの絶縁膜、再配線層用層間絶縁膜、ストレスバッファ膜などが挙げられる。そのほか、封止フィルム、基板材料(フレキシブルプリント基板のベースフィルムやカバーレイ、層間絶縁膜)、又は上記のような実装用途の絶縁膜をエッチングでパターン形成することなどが挙げられる。これらの用途については、例えば、サイエンス&テクノロジー(株)「ポリイミドの高機能化と応用技術」2008年4月、柿本雅明/監修、CMCテクニカルライブラリー「ポリイミド材料の基礎と開発」2011年11月発行、日本ポリイミド・芳香族系高分子研究会/編「最新ポリイミド 基礎と応用」エヌ・ティー・エス,2010年8月等を参照することができる。
 また、本発明の硬化物の製造方法、又は、本発明の硬化物は、オフセット版面又はスクリーン版面などの版面の製造、成形部品のエッチングへの使用、エレクトロニクス、特に、マイクロエレクトロニクスにおける保護ラッカー及び誘電層の製造などにも用いることもできる。
(積層体、及び、積層体の製造方法)
 本発明の積層体は、本発明の硬化物からなる層を複数有する構造体であることが好ましい。
 積層体は、硬化物からなる層を2層以上含む積層体であってもよく、3層以上積層した積層体であってもよい。
 上記積層体に含まれる2層以上の上記硬化物からなる層のうち、少なくとも1つが本発明の硬化物からなる層であり、硬化物の収縮、又は、上記収縮に伴う硬化物の変形等を抑制する観点からは、上記積層体に含まれる全ての層が本発明の硬化物からなる層であることも好ましい。
 すなわち、本発明の積層体の製造方法は、本発明の硬化物の製造方法を含むことが好ましく、本発明の硬化物の製造方法を複数回繰り返すことを含むことがより好ましい。
 本発明の積層体は、硬化物からなる層を2層以上含み、上記硬化物からなる層同士のいずれかの間に金属層を含む態様が好ましい。上記金属層は、上記金属層形成工程により形成されることが好ましい。
 すなわち、本発明の積層体の製造方法は、複数回行われる硬化物の製造方法の間に、硬化物からなる層上に金属層を形成する金属層形成工程を更に含むことが好ましい。金属層形成工程の好ましい態様は上述の通りである。
 上記積層体としては、例えば、第一の硬化物からなる層、金属層、第二の硬化物からなる層の3つの層がこの順に積層された層構造を少なくとも含む積層体が好ましいものとして挙げられる。
 上記第一の硬化物からなる層及び上記第二の硬化物からなる層は、いずれも本発明の硬化物からなる層であることが好ましい。上記第一の硬化物からなる層の形成に用いられる樹脂組成物と、上記第二の硬化物からなる層の形成に用いられる樹脂組成物とは、組成が同一の組成物であってもよいし、組成が異なる組成物であってもよい。本発明の積層体における金属層は、再配線層などの金属配線として好ましく用いられる。
<積層工程>
 本発明の積層体の製造方法は、積層工程を含むことが好ましい。
 積層工程とは、パターン(樹脂層)又は金属層の表面に、再度、(a)膜形成工程(層形成工程)、(b)露光工程、(c)現像工程、(d)処理工程、(e)加熱工程を、この順に行うことを含む一連の工程である。ただし、(a)の膜形成工程、(d)処理工程および(e)加熱工程を繰り返す態様であってもよい。また、(e)加熱工程の後には(f)金属層形成工程を含んでもよい。積層工程には、更に、上記乾燥工程等を適宜含んでいてもよいことは言うまでもない。
 積層工程後、更に積層工程を行う場合には、上記露光工程後、上記加熱工程の後、又は、上記金属層形成工程後に、更に、表面活性化処理工程を行ってもよい。表面活性化処理としては、プラズマ処理が例示される。表面活性化処理の詳細については後述する。
 上記積層工程は、2~20回行うことが好ましく、2~9回行うことがより好ましい。
 例えば、樹脂層/金属層/樹脂層/金属層/樹脂層/金属層のように、樹脂層を2層以上20層以下とする構成が好ましく、2層以上9層以下とする構成が更に好ましい。
 上記各層はそれぞれ、組成、形状、膜厚等が同一であってもよいし、異なっていてもよい。
 本発明では特に、金属層を設けた後、更に、上記金属層を覆うように、上記樹脂組成物の硬化物(樹脂層)を形成する態様が好ましい。具体的には、(a)膜形成工程、(b)露光工程、(c)現像工程、(d)処理工程、(e)加熱工程、(f)金属層形成工程、の順序で繰り返す態様、又は、(a)膜形成工程、(d)処理工程、(e)加熱工程、(f)金属層形成工程の順序で繰り返す態様、(a)膜形成工程、(b)露光工程、(d)処理工程、(e)加熱工程、(f)金属層形成工程の順序で繰り返す態様が挙げられる。樹脂組成物層(樹脂層)を積層する積層工程と、金属層形成工程を交互に行うことにより、樹脂組成物層(樹脂層)と金属層を交互に積層することができる。
(表面活性化処理工程)
 本発明の積層体の製造方法は、上記金属層および樹脂組成物層の少なくとも一部を表面活性化処理する、表面活性化処理工程を含むことが好ましい。
 表面活性化処理工程は、通常、金属層形成工程の後に行うが、上記現像工程の後、樹脂組成物層に表面活性化処理工程を行ってから、金属層形成工程を行ってもよい。
 表面活性化処理は、金属層の少なくとも一部のみに行ってもよいし、露光後の樹脂組成物層の少なくとも一部のみに行ってもよいし、金属層および露光後の樹脂組成物層の両方について、それぞれ、少なくとも一部に行ってもよい。表面活性化処理は、金属層の少なくとも一部について行うことが好ましく、金属層のうち、表面に樹脂組成物層を形成する領域の一部または全部に表面活性化処理を行うことが好ましい。このように、金属層の表面に表面活性化処理を行うことにより、その表面に設けられる樹脂組成物層(膜)との密着性を向上させることができる。
 また、表面活性化処理は、露光後の樹脂組成物層(樹脂層)の一部または全部についても行うことが好ましい。このように、樹脂組成物層の表面に表面活性化処理を行うことにより、表面活性化処理した表面に設けられる金属層や樹脂層との密着性を向上させることができる。特にネガ型現像を行う場合など、樹脂組成物層が硬化されている場合には、表面処理によるダメージを受けにくく、密着性が向上しやすい。
 表面活性化処理としては、具体的には、各種原料ガス(酸素、水素、アルゴン、窒素、窒素/水素混合ガス、アルゴン/酸素混合ガスなど)のプラズマ処理、コロナ放電処理、CF/O、NF/O、SF、NF、NF/Oによるエッチング処理、紫外線(UV)オゾン法による表面処理、塩酸水溶液に浸漬して酸化皮膜を除去した後にアミノ基とチオール基を少なくとも1種有する化合物を含む有機表面処理剤への浸漬処理、ブラシを用いた機械的な粗面化処理から選択され、プラズマ処理が好ましく、特に原料ガスに酸素を用いた酸素プラズマ処理が好ましい。コロナ放電処理の場合、エネルギーは、500~200,000J/mが好ましく、1,000~100,000J/mがより好ましく、10,000~50,000J/mが最も好ましい。
(半導体デバイスの製造方法)
 本発明は、本発明の硬化物の製造方法、又は、本発明の積層体の製造方法を含む半導体デバイスの製造方法も開示する。樹脂組成物を再配線層用層間絶縁膜の形成に用いた半導体デバイスの具体例としては、特開2016-027357号公報の段落0213~0218の記載及び図1の記載を参酌でき、これらの内容は本明細書に組み込まれる。
(樹脂組成物)
 樹脂組成物は、本発明の硬化物の製造方法、本発明の積層体の製造方法、又は、本発明の半導体デバイスの製造方法において用いられる樹脂組成物である。
 樹脂組成物は、環化樹脂又はその前駆体を含む。
 以下、樹脂組成物に含まれる、各成分の詳細について説明する。
<特定樹脂>
 本発明の樹脂組成物は、環化樹脂及びその前駆体よりなる群から選ばれた少なくとも1種の樹脂(特定樹脂)を含み、環化樹脂の前駆体を含むことが好ましい。
 環化樹脂は、主鎖構造中にイミド環構造又はオキサゾール環構造を含む樹脂であることが好ましい。
 本発明において、主鎖とは、樹脂分子中で相対的に最も長い結合鎖を表す。
 環化樹脂の前駆体とは、外部刺激により化学構造の変化を生じて環化樹脂となる樹脂をいい、熱により化学構造の変化を生じて環化樹脂となる樹脂が好ましく、熱により閉環反応を生じて環構造が形成されることにより環化樹脂となる樹脂がより好ましい。
 環化樹脂の前駆体としては、ポリイミド前駆体等が挙げられる。
 すなわち、本発明の樹脂組成物は、特定樹脂として、ポリイミド前駆体よりなる群から選ばれた少なくとも1種の樹脂(特定樹脂)を含むことが好ましい。
 また、特定樹脂は重合性基を有することが好ましく、ラジカル重合性基を含むことがより好ましい。
 特定樹脂がラジカル重合性基を有する場合、本発明の樹脂組成物は、後述のラジカル重合開始剤を含むことが好ましく、後述のラジカル重合開始剤を含み、かつ、後述のラジカル架橋剤を含むことがより好ましい。さらに必要に応じて、後述の増感剤を含むことができる。このような本発明の樹脂組成物からは、例えば、ネガ型感光膜が形成される。
 また、特定樹脂は、酸分解性基等の極性変換基を有していてもよい。
 特定樹脂が酸分解性基を有する場合、本発明の樹脂組成物は、後述の光酸発生剤を含むことが好ましい。このような本発明の樹脂組成物からは、例えば、化学増幅型であるポジ型感光膜又はネガ型感光膜が形成される。
〔ポリイミド前駆体〕
 本発明で用いるポリイミド前駆体は、その種類等特に定めるものではないが、下記式(2)で表される繰返し単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(2)中、A及びAは、それぞれ独立に、酸素原子又は-NH-を表し、R111は、2価の有機基を表し、R115は、4価の有機基を表し、R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表す。
 式(2)におけるA及びAは、それぞれ独立に、酸素原子又は-NH-を表し、酸素原子が好ましい。
 式(2)におけるR111は、2価の有機基を表す。2価の有機基としては、直鎖又は分岐の脂肪族基、環状の脂肪族基及び芳香族基を含む基が例示され、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数3~20の芳香族基、又は、これらの組み合わせからなる基が好ましく、炭素数6~20の芳香族基を含む基がより好ましい。上記直鎖又は分岐の脂肪族基は鎖中の炭化水素基がヘテロ原子を含む基で置換されていてもよく、上記環状の脂肪族基および芳香族基は環員の炭化水素基がヘテロ原子を含む基で置換されていてもよい。本発明の好ましい実施形態として、-Ar-および-Ar-L-Ar-で表される基であることが例示され、特に好ましくは-Ar-L-Ar-で表される基である。但し、Arは、それぞれ独立に、芳香族基であり、Lは、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-若しくは-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。これらの好ましい範囲は、上述のとおりである。
 R111は、ジアミンから誘導されることが好ましい。ポリイミド前駆体の製造に用いられるジアミンとしては、直鎖又は分岐の脂肪族、環状の脂肪族又は芳香族ジアミンなどが挙げられる。ジアミンは、1種のみ用いてもよいし、2種以上用いてもよい。
 具体的には、炭素数2~20の直鎖又は分岐の脂肪族基、炭素数3~20の環状の脂肪族基、炭素数3~20の芳香族基、又は、これらの組み合わせからなる基を含むジアミンであることが好ましく、炭素数6~20の芳香族基を含むジアミンであることがより好ましい。上記直鎖又は分岐の脂肪族基は鎖中の炭化水素基がヘテロ原子を含む基で置換されていてもよく上記環状の脂肪族基および芳香族基は環員の炭化水素基がヘテロ原子を含む基で置換されていてもよい。芳香族基を含む基の例としては、下記が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式中、Aは、単結合又は2価の連結基を表し、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-C(=O)-、-S-、-SO-、-NHCO-、又は、これらの組み合わせから選択される基であることが好ましく、単結合、又は、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-C(=O)-、-S-、又は、-SO-から選択される基であることがより好ましく、-CH-、-O-、-S-、-SO-、-C(CF-、若しくは、-C(CH-であることが更に好ましい。
 式中、*は他の構造との結合部位を表す。
 ジアミンとしては、具体的には、1,2-ジアミノエタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン又は1,6-ジアミノヘキサン;1,2-又は1,3-ジアミノシクロペンタン、1,2-、1,3-又は1,4-ジアミノシクロヘキサン、1,2-、1,3-又は1,4-ビス(アミノメチル)シクロヘキサン、ビス-(4-アミノシクロヘキシル)メタン、ビス-(3-アミノシクロヘキシル)メタン、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタン及びイソホロンジアミン;m-又はp-フェニレンジアミン、ジアミノトルエン、4,4’-又は3,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルエーテル、3,3-ジアミノジフェニルエーテル、4,4’-又は3,3’-ジアミノジフェニルメタン、4,4’-又は3,3’-ジアミノジフェニルスルホン、4,4’-又は3,3’-ジアミノジフェニルスルフィド、4,4’-又は3,3’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)プロパン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、4,4’-ジアミノパラテルフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(2-アミノフェノキシ)フェニル]スルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、3,3’-ジメチル-4,4’-ジアミノジフェニルスルホン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノオクタフルオロビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、9,9-ビス(4-アミノフェニル)-10-ヒドロアントラセン、3,3’,4,4’-テトラアミノビフェニル、3,3’,4,4’-テトラアミノジフェニルエーテル、1,4-ジアミノアントラキノン、1,5-ジアミノアントラキノン、3,3-ジヒドロキシ-4,4’-ジアミノビフェニル、9,9’-ビス(4-アミノフェニル)フルオレン、4,4’-ジメチル-3,3’-ジアミノジフェニルスルホン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、2,4-及び2,5-ジアミノクメン、2,5-ジメチル-p-フェニレンジアミン、アセトグアナミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,4,6-トリメチル-m-フェニレンジアミン、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサン、2,7-ジアミノフルオレン、2,5-ジアミノピリジン、1,2-ビス(4-アミノフェニル)エタン、ジアミノベンズアニリド、ジアミノ安息香酸のエステル、1,5-ジアミノナフタレン、ジアミノベンゾトリフルオライド、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ビス(トリフルオロメチル)フェニル]ヘキサフルオロプロパン、p-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’,5,5’-テトラメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、2,2’,5,5’,6,6’-ヘキサフルオロトリジン及び4,4’-ジアミノクアテルフェニルから選ばれる少なくとも1種のジアミンが挙げられる。
 また、国際公開第2017/038598号の段落0030~0031に記載のジアミン(DA-1)~(DA-18)も好ましい。
 また、国際公開第2017/038598号の段落0032~0034に記載の2つ以上のアルキレングリコール単位を主鎖にもつジアミンも好ましく用いられる。
 R111は、得られる有機膜の柔軟性の観点から、-Ar-L-Ar-で表されることが好ましい。但し、Arは、それぞれ独立に、芳香族基であり、Lは、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-又は-NHCO-、あるいは、上記の2つ以上の組み合わせからなる基である。Arは、フェニレン基が好ましく、Lは、フッ素原子で置換されていてもよい炭素数1又は2の脂肪族炭化水素基、-O-、-CO-、-S-又は-SO-が好ましい。ここでの脂肪族炭化水素基は、アルキレン基が好ましい。
 また、R111は、i線透過率の観点から、下記式(51)又は式(61)で表される2価の有機基であることが好ましい。特に、i線透過率、入手のし易さの観点から、式(61)で表される2価の有機基であることがより好ましい。
 式(51)
Figure JPOXMLDOC01-appb-C000003
 式(51)中、R50~R57は、それぞれ独立に、水素原子、フッ素原子又は1価の有機基であり、R50~R57の少なくとも1つは、フッ素原子、メチル基又はトリフルオロメチル基であり、*はそれぞれ独立に、式(2)中の窒素原子との結合部位を表す。
 R50~R57の1価の有機基としては、炭素数1~10(好ましくは炭素数1~6)の無置換のアルキル基、炭素数1~10(好ましくは炭素数1~6)のフッ化アルキル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(61)中、R58及びR59は、それぞれ独立に、フッ素原子、メチル基、又はトリフルオロメチル基であり、*はそれぞれ独立に、式(2)中の窒素原子との結合部位を表す。
 式(51)又は式(61)の構造を与えるジアミンとしては、2,2’-ジメチルベンジジン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ビス(フルオロ)-4,4’-ジアミノビフェニル、4,4’-ジアミノオクタフルオロビフェニル等が挙げられる。これらは1種で又は2種以上を組み合わせて用いてもよい。
 式(2)におけるR115は、4価の有機基を表す。4価の有機基としては、芳香環を含む4価の有機基が好ましく、下記式(5)又は式(6)で表される基がより好ましい。式(5)又は式(6)中、*はそれぞれ独立に、他の構造との結合部位を表す。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、R112は単結合又は2価の連結基であり、単結合、又は、フッ素原子で置換されていてもよい炭素数1~10の脂肪族炭化水素基、-O-、-CO-、-S-、-SO-、及び-NHCO-、ならびに、これらの組み合わせから選択される基であることが好ましく、単結合、フッ素原子で置換されていてもよい炭素数1~3のアルキレン基、-O-、-CO-、-S-及び-SO-から選択される基であることがより好ましく、-CH-、-C(CF-、-C(CH-、-O-、-CO-、-S-及び-SO-からなる群から選択される2価の基であることが更に好ましい。
 R115は、具体的には、テトラカルボン酸二無水物から無水物基の除去後に残存するテトラカルボン酸残基などが挙げられる。ポリイミド前駆体は、R115に該当する構造として、テトラカルボン酸二無水物残基を、1種のみ含んでもよいし、2種以上含んでもよい。
 テトラカルボン酸二無水物は、下記式(O)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(O)中、R115は、4価の有機基を表す。R115の好ましい範囲は式(2)におけるR115と同義であり、好ましい範囲も同様である。
 テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルメタンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,7-ナフタレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、1,3-ジフェニルヘキサフルオロプロパン-3,3,4,4-テトラカルボン酸二無水物、1,4,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,8,9,10-フェナントレンテトラカルボン酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、ならびに、これらの炭素数1~6のアルキル及び炭素数1~6のアルコキシ誘導体が挙げられる。
 また、国際公開第2017/038598号の段落0038に記載のテトラカルボン酸二無水物(DAA-1)~(DAA-5)も好ましい例として挙げられる。
 式(2)において、R111とR115の少なくとも一方がOH基を有することも可能である。より具体的には、R111として、ビスアミノフェノール誘導体の残基が挙げられる。
 式(2)におけるR113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表す。1価の有機基としては、直鎖又は分岐のアルキル基、環状アルキル基、芳香族基、又はポリアルキレンオキシ基を含むことが好ましい。また、R113及びR114の少なくとも一方が重合性基を含むことが好ましく、両方が重合性基を含むことがより好ましい。R113及びR114の少なくとも一方が2以上の重合性基を含むことも好ましい。重合性基としては、熱、ラジカル等の作用により、架橋反応することが可能な基であって、ラジカル重合性基が好ましい。重合性基の具体例としては、エチレン性不飽和結合を有する基、アルコキシメチル基、ヒドロキシメチル基、アシルオキシメチル基、エポキシ基、オキセタニル基、ベンゾオキサゾリル基、ブロックイソシアネート基、アミノ基が挙げられる。ポリイミド前駆体が有するラジカル重合性基としては、エチレン性不飽和結合を有する基が好ましい。
 エチレン性不飽和結合を有する基としては、ビニル基、アリル基、イソアリル基、2-メチルアリル基、ビニル基と直接結合した芳香環を有する基(例えば、ビニルフェニル基など)、(メタ)アクリルアミド基、(メタ)アクリロイルオキシ基、下記式(III)で表される基などが挙げられ、下記式(III)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(III)において、R200は、水素原子、メチル基、エチル基又はメチロール基を表し、水素原子又はメチル基が好ましい。
 式(III)において、*は他の構造との結合部位を表す。
 式(III)において、R201は、炭素数2~12のアルキレン基、-CHCH(OH)CH-、シクロアルキレン基又はポリアルキレンオキシ基を表す。
 好適なR201の例は、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、ドデカメチレン基等のアルキレン基、1,2-ブタンジイル基、1,3-ブタンジイル基、-CHCH(OH)CH-、ポリアルキレンオキシ基が挙げられ、エチレン基、プロピレン基等のアルキレン基、-CHCH(OH)CH-、シクロヘキシル基、ポリアルキレンオキシ基がより好ましく、エチレン基、プロピレン基等のアルキレン基、又はポリアルキレンオキシ基が更に好ましい。
 本発明において、ポリアルキレンオキシ基とは、アルキレンオキシ基が2以上直接結合した基をいう。ポリアルキレンオキシ基に含まれる複数のアルキレンオキシ基におけるアルキレン基は、それぞれ同一であっても異なっていてもよい。
 ポリアルキレンオキシ基が、アルキレン基が異なる複数種のアルキレンオキシ基を含む場合、ポリアルキレンオキシ基におけるアルキレンオキシ基の配列は、ランダムな配列であってもよいし、ブロックを有する配列であってもよいし、交互等のパターンを有する配列であってもよい。
 上記アルキレン基の炭素数(アルキレン基が置換基を有する場合、置換基の炭素数を含む)は、2以上であることが好ましく、2~10であることがより好ましく、2~6であることがより好ましく、2~5であることが更に好ましく、2~4であることが一層好ましく、2又は3であることが特に好ましく、2であることが最も好ましい。
 また、上記アルキレン基は、置換基を有していてもよい。好ましい置換基としては、アルキル基、アリール基、ハロゲン原子等が挙げられる。
 また、ポリアルキレンオキシ基に含まれるアルキレンオキシ基の数(ポリアルキレンオキシ基の繰返し数)は、2~20が好ましく、2~10がより好ましく、2~6が更に好ましい。
 ポリアルキレンオキシ基としては、溶剤溶解性及び耐溶剤性の観点からは、ポリエチレンオキシ基、ポリプロピレンオキシ基、ポリトリメチレンオキシ基、ポリテトラメチレンオキシ基、又は、複数のエチレンオキシ基と複数のプロピレンオキシ基とが結合した基が好ましく、ポリエチレンオキシ基又はポリプロピレンオキシ基がより好ましく、ポリエチレンオキシ基が更に好ましい。上記複数のエチレンオキシ基と複数のプロピレンオキシ基とが結合した基において、エチレンオキシ基とプロピレンオキシ基とはランダムに配列していてもよいし、ブロックを形成して配列していてもよいし、交互等のパターン状に配列していてもよい。これらの基におけるエチレンオキシ基等の繰返し数の好ましい態様は上述の通りである。
 式(2)において、R113が水素原子である場合、又は、R114が水素原子である場合、ポリイミド前駆体はエチレン性不飽和結合を有する3級アミン化合物と対塩を形成していてもよい。このようなエチレン性不飽和結合を有する3級アミン化合物の例としては、N,N-ジメチルアミノプロピルメタクリレートが挙げられる。
 式(2)において、R113及びR114の少なくとも一方が、酸分解性基等の極性変換基であってもよい。酸分解性基としては、酸の作用で分解して、フェノール性ヒドロキシ基、カルボキシ基等のアルカリ可溶性基を生じるものであれば特に限定されないが、アセタール基、ケタール基、シリル基、シリルエーテル基、第三級アルキルエステル基等が好ましく、露光感度の観点からは、アセタール基又はケタール基がより好ましい。
 酸分解性基の具体例としては、tert-ブトキシカルボニル基、イソプロポキシカルボニル基、テトラヒドロピラニル基、テトラヒドロフラニル基、エトキシエチル基、メトキシエチル基、エトキシメチル基、トリメチルシリル基、tert-ブトキシカルボニルメチル基、トリメチルシリルエーテル基などが挙げられる。露光感度の観点からは、エトキシエチル基、又は、テトラヒドロフラニル基が好ましい。
 また、ポリイミド前駆体は、構造中にフッ素原子を有することも好ましい。ポリイミド前駆体中のフッ素原子含有量は、10質量%以上が好ましく、また、20質量%以下が好ましい。
 また、基板との密着性を向上させる目的で、ポリイミド前駆体は、シロキサン構造を有する脂肪族基と共重合していてもよい。具体的には、ジアミンとして、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどを用いる態様が挙げられる。
 式(2)で表される繰返し単位は、式(2-A)で表される繰返し単位であることが好ましい。すなわち、本発明で用いるポリイミド前駆体の少なくとも1種が、式(2-A)で表される繰返し単位を有する前駆体であることが好ましい。ポリイミド前駆体が式(2-A)で表される繰返し単位を含むことにより、露光ラチチュードの幅をより広げることが可能になる。
式(2-A)
Figure JPOXMLDOC01-appb-C000008
 式(2-A)中、A及びAは、酸素原子を表し、R111及びR112は、それぞれ独立に、2価の有機基を表し、R113及びR114は、それぞれ独立に、水素原子又は1価の有機基を表し、R113及びR114の少なくとも一方は、重合性基を含む基であり、両方が重合性基を含む基であることが好ましい。
 A、A、R111、R113及びR114は、それぞれ独立に、式(2)におけるA、A、R111、R113及びR114と同義であり、好ましい範囲も同様である。
 R112は、式(5)におけるR112と同義であり、好ましい範囲も同様である。
 ポリイミド前駆体は、式(2)で表される繰返し単位を1種含んでいてもよいが、2種以上で含んでいてもよい。また、式(2)で表される繰返し単位の構造異性体を含んでいてもよい。また、ポリイミド前駆体は、上記式(2)の繰返し単位のほかに、他の種類の繰返し単位をも含んでよいことはいうまでもない。
 本発明におけるポリイミド前駆体の一実施形態として、式(2)で表される繰返し単位の合計含有量が、全繰返し単位の50モル%以上である態様が挙げられる。上記合計含有量は、70モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、90モル%超であることが特に好ましい。上記合計含有量の上限は、特に限定されず、末端を除くポリイミド前駆体における全ての繰返し単位が、式(2)で表される繰返し単位であってもよい。
 ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは5,000~100,000であり、より好ましくは10,000~50,000であり、更に好ましくは15,000~40,000である。また、数平均分子量(Mn)は、好ましくは2,000~40,000であり、より好ましくは3,000~30,000であり、更に好ましくは4,000~20,000である。
 上記ポリイミド前駆体の分子量の分散度は、1.5以上が好ましく、1.8以上がより好ましく、2.0以上であることが更に好ましい。ポリイミド前駆体の分子量の分散度の上限値は特に定めるものではないが、例えば、7.0以下が好ましく、6.5以下がより好ましく、6.0以下が更に好ましい。
 本明細書において、分子量の分散度とは、重量平均分子量/数平均分子量により算出される値である。
 また、樹脂組成物が特定樹脂として複数種のポリイミド前駆体を含む場合、少なくとも1種のポリイミド前駆体の重量平均分子量、数平均分子量、及び、分散度が上記範囲であることが好ましい。また、上記複数種のポリイミド前駆体を1つの樹脂として算出した重量平均分子量、数平均分子量、及び、分散度が、それぞれ、上記範囲内であることも好ましい。
〔ポリイミド前駆体の製造方法〕
 ポリイミド前駆体は、例えば、低温中でテトラカルボン酸二無水物とジアミンを反応させる方法、低温中でテトラカルボン酸二無水物とジアミンを反応させてポリアミック酸を得、縮合剤又はアルキル化剤を用いてエステル化する方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後ジアミンと縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸をハロゲン化剤を用いて酸ハロゲン化し、ジアミンと反応させる方法、などの方法を利用して得ることができる。上記製造方法のうち、テトラカルボン酸二無水物とアルコールとによりジエステルを得、その後残りのジカルボン酸をハロゲン化剤を用いて酸ハロゲン化し、ジアミンと反応させる方法がより好ましい。
 上記縮合剤としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン、1,1-カルボニルジオキシ-ジ-1,2,3-ベンゾトリアゾール、N,N’-ジスクシンイミジルカーボネート、無水トリフルオロ酢酸等が挙げられる。
 上記アルキル化剤としては、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジアルキルホルムアミドジアルキルアセタール、オルトギ酸トリメチル、オルトギ酸トリエチル等が挙げられる。
 上記ハロゲン化剤としては、塩化チオニル、塩化オキサリル、オキシ塩化リン等が挙げられる。
 ポリイミド前駆体の製造方法では、反応に際し、有機溶剤を用いることが好ましい。有機溶剤は1種でもよいし、2種以上でもよい。
 有機溶剤としては、原料に応じて適宜定めることができるが、ピリジン、ジエチレングリコールジメチルエーテル(ジグリム)、N-メチルピロリドン、N-エチルピロリドン、プロピオン酸エチル、ジメチルアセトアミド、ジメチルホルムアミド、テトラヒドロフラン、γ-ブチロラクトン等が例示される。
 ポリイミド前駆体の製造方法では、反応に際し、塩基性化合物を添加することが好ましい。塩基性化合物は1種でもよいし、2種以上でもよい。
 塩基性化合物は、原料に応じて適宜定めることができるが、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、N,N-ジメチル-4-アミノピリジン等が例示される。
-末端封止剤-
 ポリイミド前駆体の製造方法に際し、保存安定性をより向上させるため、ポリイミド前駆体の樹脂末端に残存するカルボン酸無水物、酸無水物誘導体、或いは、アミノ基を封止することが好ましい。樹脂末端に残存するカルボン酸無水物、及び酸無水物誘導体を封止する際、末端封止剤としては、モノアルコール、フェノール、チオール、チオフェノール、モノアミン等が挙げられ、反応性、膜の安定性から、モノアルコール、フェノール類やモノアミンを用いることがより好ましい。モノアルコールの好ましい化合物としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ドデシノール、ベンジルアルコール、2-フェニルエタノール、2-メトキシエタノール、2-クロロメタノール、フルフリルアルコール等の1級アルコール、イソプロパノール、2-ブタノール、シクロヘキシルアルコール、シクロペンタノール、1-メトキシ-2-プロパノール等の2級アルコール、t-ブチルアルコール、アダマンタンアルコール等の3級アルコールが挙げられる。フェノール類の好ましい化合物としては、フェノール、メトキシフェノール、メチルフェノール、ナフタレン-1-オール、ナフタレン-2-オール、ヒドロキシスチレン等のフェノール類などが挙げられる。また、モノアミンの好ましい化合物としては、アニリン、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノールなどが挙げられる。これらを2種以上用いてもよく、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。
 また、樹脂末端のアミノ基を封止する際、アミノ基と反応可能な官能基を有する化合物で封止することが可能である。アミノ基に対する好ましい封止剤は、カルボン酸無水物、カルボン酸クロリド、カルボン酸ブロミド、スルホン酸クロリド、無水スルホン酸、スルホン酸カルボン酸無水物などが好ましく、カルボン酸無水物、カルボン酸クロリドがより好ましい。カルボン酸無水物の好ましい化合物としては、無水酢酸、無水プロピオン酸、無水シュウ酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水安息香酸、5-ノルボルネン-2,3-ジカルボン酸無水物などが挙げられる。また、カルボン酸クロリドの好ましい化合物としては、塩化アセチル、アクリル酸クロリド、プロピオニルクロリド、メタクリル酸クロリド、ピバロイルクロリド、シクロヘキサンカルボニルクロリド、2-エチルヘキサノイルクロリド、シンナモイルクロリド、1-アダマンタンカルボニルクロリド、ヘプタフルオロブチリルクロリド、ステアリン酸クロリド、ベンゾイルクロリド、などが挙げられる。
-固体析出-
 ポリイミド前駆体の製造方法に際し、固体を析出する工程を含んでいてもよい。具体的には、反応液中に共存している脱水縮合剤の吸水副生物を必要に応じて濾別した後、水、脂肪族低級アルコール、又はその混合液等の貧溶媒に、得られた重合体成分を投入し、重合体成分を析出させることで、固体として析出させ、乾燥させることでポリイミド前駆体等を得ることができる。精製度を向上させるために、ポリイミド前駆体等を再溶解、再沈析出、乾燥等の操作を繰返してもよい。さらに、イオン交換樹脂を用いてイオン性不純物を除去する工程を含んでいてもよい。
〔含有量〕
 本発明の樹脂組成物における特定樹脂の含有量は、樹脂組成物の全固形分に対し20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることが一層好ましい。また、本発明の樹脂組成物における樹脂の含有量は、樹脂組成物の全固形分に対し、99.5質量%以下であることが好ましく、99質量%以下であることがより好ましく、98質量%以下であることが更に好ましく、97質量%以下であることが一層好ましく、95質量%以下であることがより一層好ましい。
 本発明の樹脂組成物は、特定樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本発明の樹脂組成物は、少なくとも2種の樹脂を含むことも好ましい。
 具体的には、本発明の樹脂組成物は、特定樹脂と、後述する他の樹脂とを合計で2種以上含んでもよいし、特定樹脂を2種以上含んでいてもよいが、特定樹脂を2種以上含むことが好ましい。
 本発明の樹脂組成物が特定樹脂を2種以上含む場合、例えば、ポリイミド前駆体であって、二無水物由来の構造(上述の式(2)でいうR115)が異なる2種以上のポリイミド前駆体を含むことが好ましい。
<他の樹脂>
 本発明の樹脂組成物は、上述した特定樹脂と、特定樹脂とは異なる他の樹脂(以下、単に「他の樹脂」ともいう)とを含んでもよい。
 他の樹脂としては、フェノール樹脂、ポリアミド、エポキシ樹脂、ポリシロキサン、シロキサン構造を含む樹脂、(メタ)アクリル樹脂、(メタ)アクリルアミド樹脂、ウレタン樹脂、ブチラール樹脂、スチリル樹脂、ポリエーテル樹脂、ポリエステル樹脂等が挙げられる。
 例えば、(メタ)アクリル樹脂を更に加えることにより、塗布性に優れた樹脂組成物が得られ、また、耐溶剤性に優れたパターン(硬化物)が得られる。
 例えば、後述する重合性化合物に代えて、又は、後述する重合性化合物に加えて、重量平均分子量が20,000以下の重合性基価の高い(例えば、樹脂1gにおける重合性基の含有モル量が1×10-3モル/g以上である)(メタ)アクリル樹脂を樹脂組成物に添加することにより、樹脂組成物の塗布性、パターン(硬化物)の耐溶剤性等を向上させることができる。
 本発明の樹脂組成物が他の樹脂を含む場合、他の樹脂の含有量は、樹脂組成物の全固形分に対し、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、2質量%以上であることが一層好ましく、5質量%以上であることがより一層好ましく、10質量%以上であることが更に一層好ましい。
 また、本発明の樹脂組成物における、他の樹脂の含有量は、樹脂組成物の全固形分に対し、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、60質量%以下であることが一層好ましく、50質量%以下であることがより一層好ましい。
 また、本発明の樹脂組成物の好ましい一態様として、他の樹脂の含有量が低含有量である態様とすることもできる。上記態様において、他の樹脂の含有量は、樹脂組成物の全固形分に対し、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることが更に好ましく、5質量%以下であることが一層好ましく、1質量%以下であることがより一層好ましい。上記含有量の下限は特に限定されず、0質量%以上であればよい。
 本発明の樹脂組成物は、他の樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<重合性化合物>
 樹脂組成物は、重合性化合物を含むことが好ましい。
 重合性化合物としては、ラジカル架橋剤、又は、他の架橋剤が挙げられる。
〔ラジカル架橋剤〕
 樹脂組成物は、ラジカル架橋剤を含むことが好ましい。
 ラジカル架橋剤は、ラジカル重合性基を有する化合物である。ラジカル重合性基としては、エチレン性不飽和結合を含む基が好ましい。上記エチレン性不飽和結合を含む基としては、ビニル基、アリル基、ビニルフェニル基、(メタ)アクリロイル基、マレイミド基、(メタ)アクリルアミド基などのエチレン性不飽和結合を有する基が挙げられる。
 これらの中でも、上記エチレン性不飽和結合を含む基としては、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニルフェニル基が好ましく、反応性の観点からは、(メタ)アクリロイル基がより好ましい。
 ラジカル架橋剤は、エチレン性不飽和結合を1個以上有する化合物であることが好ましいが、2個以上有する化合物であることがより好ましい。ラジカル架橋剤は、エチレン性不飽和結合を3個以上有していてもよい。
 上記エチレン性不飽和結合を2個以上有する化合物としては、エチレン性不飽和結合を2~15個有する化合物が好ましく、エチレン性不飽和結合を2~10個有する化合物がより好ましく、2~6個有する化合物が更に好ましい。
 また、得られるパターン(硬化物)の膜強度の観点からは、本発明の樹脂組成物は、エチレン性不飽和結合を2個有する化合物と、上記エチレン性不飽和結合を3個以上有する化合物とを含むことも好ましい。
 ラジカル架橋剤の分子量は、2,000以下が好ましく、1,500以下がより好ましく、900以下が更に好ましい。ラジカル架橋剤の分子量の下限は、100以上が好ましい。
 ラジカル架橋剤の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類が挙げられ、好ましくは、不飽和カルボン酸と多価アルコール化合物とのエステル、及び不飽和カルボン酸と多価アミン化合物とのアミド類である。また、ヒドロキシ基やアミノ基、スルファニル基等の求核性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能イソシアネート類又はエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更に、ハロゲノ基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル又はアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。具体例としては、特開2016-027357号公報の段落0113~0122の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 また、ラジカル架橋剤は、常圧下で100℃以上の沸点を持つ化合物も好ましい。常圧下で100℃以上の沸点を持つ化合物としては、国際公開第2021/112189号公報の段落0203に記載の化合物等が挙げられる。この内容は本明細書に組み込まれる。
 上述以外の好ましいラジカル架橋剤としては、国際公開第2021/112189号公報の段落0204~0208に記載のラジカル重合性化合物等が挙げられる。この内容は本明細書に組み込まれる。
 ラジカル架橋剤としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330(日本化薬(株)製))、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320(日本化薬(株)製)、A-TMMT(新中村化学工業(株)製))、ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310(日本化薬(株)製))、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA(日本化薬(株)製)、A-DPH(新中村化学工業社製))、及びこれらの(メタ)アクリロイル基がエチレングリコール残基又はプロピレングリコール残基を介して結合している構造が好ましい。これらのオリゴマータイプも使用できる。
 ラジカル架橋剤の市販品としては、例えばサートマー社製のエチレンオキシ鎖を4個有する4官能アクリレートであるSR-494、エチレンオキシ鎖を4個有する2官能メタクリレートであるサートマー社製のSR-209、231、239、日本化薬(株)製のペンチレンオキシ鎖を6個有する6官能アクリレートであるDPCA-60、イソブチレンオキシ鎖を3個有する3官能アクリレートであるTPA-330、ウレタンオリゴマーUAS-10、UAB-140(日本製紙社製)、NKエステルM-40G、NKエステル4G、NKエステルM-9300、NKエステルA-9300、UA-7200(新中村化学工業社製)、DPHA-40H(日本化薬(株)製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学社製)、ブレンマーPME400(日油(株)製)などが挙げられる。
 ラジカル架橋剤としては、特公昭48-041708号公報、特開昭51-037193号公報、特公平02-032293号公報、特公平02-016765号公報に記載されているようなウレタンアクリレート類や、特公昭58-049860号公報、特公昭56-017654号公報、特公昭62-039417号公報、特公昭62-039418号公報に記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。更に、ラジカル架橋剤として、特開昭63-277653号公報、特開昭63-260909号公報、特開平01-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する化合物を用いることもできる。
 ラジカル架橋剤は、カルボキシ基、リン酸基等の酸基を有するラジカル架橋剤であってもよい。酸基を有するラジカル架橋剤は、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルが好ましく、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤がより好ましい。特に好ましくは、脂肪族ポリヒドロキシ化合物の未反応のヒドロキシ基に非芳香族カルボン酸無水物を反応させて酸基を持たせたラジカル架橋剤において、脂肪族ポリヒドロキシ化合物がペンタエリスリトール又はジペンタエリスリトールである化合物である。市販品としては、例えば、東亞合成(株)製の多塩基酸変性アクリルオリゴマーとして、M-510、M-520などが挙げられる。
 酸基を有するラジカル架橋剤の好ましい酸価は、0.1~300mgKOH/gであり、特に好ましくは1~100mgKOH/gである。ラジカル架橋剤の酸価が上記範囲であれば、製造上の取扱性に優れ、更には、現像性に優れる。また、重合性が良好である。上記酸価は、JIS K 0070:1992の記載に準拠して測定される。
 樹脂組成物は、パターンの解像性と膜の伸縮性の観点から、2官能のメタアクリレート又はアクリレートを用いることが好ましい。
 具体的な化合物としては、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、PEG(ポリエチレングリコール)200ジアクリレート、PEG200ジメタクリレート、PEG600ジアクリレート、PEG600ジメタクリレート、ポリテトラエチレングリコールジアクリレート、ポリテトラエチレングリコールジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,6ヘキサンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ジメチロール-トリシクロデカンジメタクリレート、ビスフェノールAのEO(エチレンオキシド)付加物ジアクリレート、ビスフェノールAのEO付加物ジメタクリレート、ビスフェノールAのPO(プロピレンオキシド)付加物ジアクリレート、ビスフェノールAのPO付加物ジメタクリレート、2-ヒドロキシー3-アクリロイロキシプロピルメタクリレート、イソシアヌル酸EO変性ジアクリレート、イソシアヌル酸変性ジメタクリレート、その他ウレタン結合を有する2官能アクリレート、ウレタン結合を有する2官能メタクリレートを使用することができる。これらは必要に応じ、2種以上を混合し使用することができる。
 なお、例えばPEG200ジアクリレートとは、ポリエチレングリコールジアクリレートであって、ポリエチレングリコール鎖の式量が200程度のものをいう。
 本発明の樹脂組成物は、パターン(硬化物)の弾性率制御に伴う反り抑制の観点から、ラジカル架橋剤として、単官能ラジカル架橋剤を好ましく用いることができる。単官能ラジカル架橋剤としては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、カルビトール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸誘導体、N-ビニルピロリドン、N-ビニルカプロラクタム等のN-ビニル化合物類、アリルグリシジルエーテル等が好ましく用いられる。単官能ラジカル架橋剤としては、露光前の揮発を抑制するため、常圧下で100℃以上の沸点を持つ化合物も好ましい。
 その他、2官能以上のラジカル架橋剤としては、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物類が挙げられる。
 ラジカル架橋剤を含有する場合、その含有量は、本発明の樹脂組成物の全固形分に対して、0質量%超60質量%以下であることが好ましい。下限は5質量%以上がより好ましい。上限は、50質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
 ラジカル架橋剤は1種を単独で用いてもよいが、2種以上を混合して用いてもよい。2種以上を併用する場合にはその合計量が上記の範囲となることが好ましい。
〔他の架橋剤〕
 樹脂組成物は、上述したラジカル架橋剤とは異なる、他の架橋剤を含むことも好ましい。
 本発明において、他の架橋剤とは、上述したラジカル架橋剤以外の架橋剤をいい、上述の光酸発生剤、又は、光塩基発生剤の感光により、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が促進される基を分子内に複数個有する化合物であることが好ましく、組成物中の他の化合物又はその反応生成物との間で共有結合を形成する反応が酸又は塩基の作用によって促進される基を分子内に複数個有する化合物が好ましい。
 上記酸又は塩基は、露光工程において、光酸発生剤又は光塩基発生剤から発生する酸又は塩基であることが好ましい。
 他の架橋剤としては、アシルオキシメチル基、メチロール基、エチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも1種の基を有する化合物が好ましく、アシルオキシメチル基、メチロール基、エチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも1種の基が窒素原子に直接結合した構造を有する化合物がより好ましい。
 他の架橋剤としては、例えば、メラミン、グリコールウリル、尿素、アルキレン尿素、ベンゾグアナミンなどのアミノ基含有化合物にホルムアルデヒド又はホルムアルデヒドとアルコールを反応させ、上記アミノ基の水素原子をアシルオキシメチル基、メチロール基、エチロール基又はアルコキシメチル基で置換した構造を有する化合物が挙げられる。これらの化合物の製造方法は特に限定されず、上記方法により製造された化合物と同様の構造を有する化合物であればよい。また、これらの化合物のメチロール基同士が自己縮合してなるオリゴマーであってもよい。
 上記のアミノ基含有化合物として、メラミンを用いた架橋剤をメラミン系架橋剤、グリコールウリル、尿素又はアルキレン尿素を用いた架橋剤を尿素系架橋剤、アルキレン尿素を用いた架橋剤をアルキレン尿素系架橋剤、ベンゾグアナミンを用いた架橋剤をベンゾグアナミン系架橋剤という。
 これらの中でも、本発明の樹脂組成物は、尿素系架橋剤及びメラミン系架橋剤よりなる群から選ばれた少なくとも1種の化合物を含むことが好ましく、後述するグリコールウリル系架橋剤及びメラミン系架橋剤よりなる群から選ばれた少なくとも1種の化合物を含むことがより好ましい。
 アルコキシメチル基及びアシルオキシメチル基の少なくとも1つを含有する化合物としては、アルコキシメチル基又はアシルオキシメチル基が、直接芳香族基や下記ウレア構造の窒素原子上に、又は、トリアジン上に置換した化合物を構造例として挙げることができる。
 上記化合物が有するアルコキシメチル基又はアシルオキシメチル基は、炭素数2~5が好ましく、炭素数2又は3が好ましく、炭素数2がより好ましい。
 上記化合物が有するアルコキシメチル基及びアシルオキシメチル基の総数は1~10が好ましく、より好ましくは2~8、特に好ましくは3~6である。
 上記化合物の分子量は好ましくは1500以下であり、180~1200が好ましい。
Figure JPOXMLDOC01-appb-C000009
 R100は、アルキル基又はアシル基を表す。
 R101及びR102は、それぞれ独立に、一価の有機基を表し、互いに結合して環を形成してもよい。
 アルコキシメチル基又はアシルオキシメチル基が直接芳香族基に置換した化合物としては、例えば下記一般式の様な化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
 式中、Xは単結合又は2価の有機基を示し、個々のR104はそれぞれ独立にアルキル基又はアシル基を示し、R103は、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基、又は、酸の作用により分解し、アルカリ可溶性基を生じる基(例えば、酸の作用により脱離する基、-C(RCOORで表される基(Rはそれぞれ独立に、水素原子又は炭素数1~4のアルキル基を表し、Rは酸の作用により脱離する基を表す。))を示す。
 R105は各々独立にアルキル基又はアルケニル基を示し、a、b及びcは各々独立に1~3であり、dは0~4であり、eは0~3であり、fは0~3であり、a+dは5以下であり、b+eは4以下であり、c+fは4以下である。
 酸の作用により分解し、アルカリ可溶性基を生じる基、酸の作用により脱離する基、-C(RCOORで表される基におけるRについては、例えば、-C(R36)(R37)(R38)、-C(R36)(R37)(OR39)、-C(R01)(R02)(OR39)等を挙げることができる。
 式中、R36~R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
 上記アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましい。
 上記アルキル基は、直鎖状、分岐鎖状のいずれであってもよい。
 上記シクロアルキル基としては、炭素数3~12のシクロアルキル基が好ましく、炭素数3~8のシクロアルキル基がより好ましい。
 上記シクロアルキル基は単環構造であってもよいし、縮合環等の多環構造であってもよい。
 上記アリール基は炭素数6~30の芳香族炭化水素基であることが好ましく、フェニル基であることがより好ましい。
 上記アラルキル基としては、炭素数7~20のアラルキル基が好ましく、炭素数7~16のアラルキル基がより好ましい。
 上記アラルキル基はアルキル基により置換されたアリール基を意図しており、これらのアルキル基及びアリール基の好ましい態様は、上述のアルキル基及びアリール基の好ましい態様と同様である。
 上記アルケニル基は炭素数3~20のアルケニル基が好ましく、炭素数3~16のアルケニル基がより好ましい。
 また、これらの基は本発明の効果が得られる範囲内で、公知の置換基を更に有していてもよい。
 R01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
 酸の作用により分解し、アルカリ可溶性基を生じる基、または酸の作用により脱離する基としては好ましくは、第3級アルキルエステル基、アセタール基、クミルエステル基、エノールエステル基等である。更に好ましくは、第3級アルキルエステル基、アセタール基である。
 また、アシルオキシメチル基、メチロール基、エチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも1種の基を有する化合物としては、ウレア結合及びウレタン結合よりなる群から選ばれた少なくとも一方の基を有する化合物も好ましい。上記化合物の好ましい態様は、重合性基がラジカル重合性基ではなくアシルオキシメチル基、メチロール基、エチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも1種の基である以外は、上述の架橋剤Uの好ましい態様と同様である。
 アシルオキシメチル基、メチロール基及びエチロール基よりなる群から選ばれた少なくとも1種の基を有する化合物としては具体的に以下の構造を挙げることができる。アシルオキシメチル基を有する化合物は下記化合物のアルコキシメチル基をアシルオキシメチル基に変更した化合物を挙げることができる。アルコキシメチル基又はアシルオキシメチルを分子内に有する化合物としては以下の様な化合物を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 アルコキシメチル基及びアシルオキシメチル基の少なくとも1つを含有する化合物は、市販のものを用いても、公知の方法により合成したものを用いてもよい。
 耐熱性の観点で、アルコキシメチル基又はアシルオキシメチル基が、直接芳香環やトリアジン環上に置換した化合物が好ましい。
 メラミン系架橋剤の具体例としては、ヘキサメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサプロポキシメチルメラミン、ヘキサブトキシブチルメラミンなどが挙げられる。
 尿素系架橋剤の具体例としては、例えば、モノヒドロキシメチル化グリコールウリル、ジヒドロキシメチル化グリコールウリル、トリヒドロキシメチル化グリコールウリル、テトラヒドロキシメチル化グリコールウリル、モノメトキシメチル化グリコールウリル、ジメトキシメチル化グリコールウリル、トリメトキシメチル化グリコールウリル、テトラメトキシメチル化グリコールウリル、モノエトキシメチル化グリコールウリル、ジエトキシメチル化グリコールウリル、トリエトキシメチル化グリコールウリル、テトラエトキシメチル化グリコールウリル、モノプロポキシメチル化グリコールウリル、ジプロポキシメチル化グリコールウリル、トリプロポキシメチル化グリコールウリル、テトラプロポキシメチル化グリコールウリル、モノブトキシメチル化グリコールウリル、ジブトキシメチル化グリコールウリル、トリブトキシメチル化グリコールウリル、又は、テトラブトキシメチル化グリコールウリルなどのグリコールウリル系架橋剤;
 ビスメトキシメチル尿素、ビスエトキシメチル尿素、ビスプロポキシメチル尿素、ビスブトキシメチル尿素等の尿素系架橋剤;
 モノヒドロキシメチル化エチレン尿素又はジヒドロキシメチル化エチレン尿素、モノメトキシメチル化エチレン尿素、ジメトキシメチル化エチレン尿素、モノエトキシメチル化エチレン尿素、ジエトキシメチル化エチレン尿素、モノプロポキシメチル化エチレン尿素、ジプロポキシメチル化エチレン尿素、モノブトキシメチル化エチレン尿素、又は、ジブトキシメチル化エチレン尿素などのエチレン尿素系架橋剤;
 モノヒドロキシメチル化プロピレン尿素、ジヒドロキシメチル化プロピレン尿素、モノメトキシメチル化プロピレン尿素、ジメトキシメチル化プロピレン尿素、モノエトキシメチル化プロピレン尿素、ジエトキシメチル化プロピレン尿素、モノプロポキシメチル化プロピレン尿素、ジプロポキシメチル化プロピレン尿素、モノブトキシメチル化プロピレン尿素、又は、ジブトキシメチル化プロピレン尿素などのプロピレン尿素系架橋剤;
 1,3-ジ(メトキシメチル)4,5-ジヒドロキシ-2-イミダゾリジノン、1,3-ジ(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリジノンなどが挙げられる。
 ベンゾグアナミン系架橋剤の具体例としては、例えばモノヒドロキシメチル化ベンゾグアナミン、ジヒドロキシメチル化ベンゾグアナミン、トリヒドロキシメチル化ベンゾグアナミン、テトラヒドロキシメチル化ベンゾグアナミン、モノメトキシメチル化ベンゾグアナミン、ジメトキシメチル化ベンゾグアナミン、トリメトキシメチル化ベンゾグアナミン、テトラメトキシメチル化ベンゾグアナミン、モノエトキシメチル化ベンゾグアナミン、
ジエトキシメチル化ベンゾグアナミン、トリエトキシメチル化ベンゾグアナミン、テトラエトキシメチル化ベンゾグアナミン、モノプロポキシメチル化ベンゾグアナミン、ジプロポキシメチル化ベンゾグアナミン、トリプロポキシメチル化ベンゾグアナミン、テトラプロポキシメチル化ベンゾグアナミン、モノブトキシメチル化ベンゾグアナミン、ジブトキシメチル化ベンゾグアナミン、トリブトキシメチル化ベンゾグアナミン、テトラブトキシメチル化ベンゾグアナミンなどが挙げられる。
 その他、メチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも1種の基を有する化合物としては、芳香環(好ましくはベンゼン環)にメチロール基及びアルコキシメチル基よりなる群から選ばれた少なくとも1種の基が直接結合した化合物も好適に用いられる。
 このような化合物の具体例としては、ベンゼンジメタノール、ビス(ヒドロキシメチル)クレゾール、ビス(ヒドロキシメチル)ジメトキシベンゼン、ビス(ヒドロキシメチル)ジフェニルエーテル、ビス(ヒドロキシメチル)ベンゾフェノン、ヒドロキシメチル安息香酸ヒドロキシメチルフェニル、ビス(ヒドロキシメチル)ビフェニル、ジメチルビス(ヒドロキシメチル)ビフェニル、ビス(メトキシメチル)ベンゼン、ビス(メトキシメチル)クレゾール、ビス(メトキシメチル)ジメトキシベンゼン、ビス(メトキシメチル)ジフェニルエーテル、ビス(メトキシメチル)ベンゾフェノン、メトキシメチル安息香酸メトキシメチルフェニル、ビス(メトキシメチル)ビフェニル、ジメチルビス(メトキシメチル)ビフェニル、4,4’,4’’-エチリデントリス[2,6-ビス(メトキシメチル)フェノール]、5,5’-[2,2,2‐トリフルオロ‐1‐(トリフルオロメチル)エチリデン]ビス[2‐ヒドロキシ‐1,3‐ベンゼンジメタノール]、3,3’,5,5’-テトラキス(メトキシメチル)-1,1’-ビフェニル-4,4’-ジオール等が挙げられる。
 他の架橋剤としては市販品を用いてもよく、好適な市販品としては、46DMOC、46DMOEP(以上、旭有機材工業社製)、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DMLBisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、本州化学工業社製)、ニカラック(登録商標、以下同様)MX-290、ニカラックMX-280、ニカラックMX-270、ニカラックMX-279、ニカラックMW-100LM、ニカラックMX-750LM(以上、三和ケミカル社製)などが挙げられる。
 また、本発明の樹脂組成物は、他の架橋剤として、エポキシ化合物、オキセタン化合物、及び、ベンゾオキサジン化合物よりなる群から選ばれた少なくとも1種の化合物を含むことも好ましい。
-エポキシ化合物(エポキシ基を有する化合物)-
 エポキシ化合物としては、一分子中にエポキシ基を2以上有する化合物であることが好ましい。エポキシ基は、200℃以下で架橋反応し、かつ、架橋に由来する脱水反応が起こらないため膜収縮が起きにくい。このため、エポキシ化合物を含有することは、本発明の樹脂組成物の低温硬化及び反りの抑制に効果的である。
 エポキシ化合物は、ポリエチレンオキサイド基を含有することが好ましい。これにより、より弾性率が低下し、また反りを抑制することができる。ポリエチレンオキサイド基は、エチレンオキサイドの繰返し単位数が2以上のものを意味し、繰返し単位数が2~15であることが好ましい。
 エポキシ化合物の例としては、ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ブチレングリコールジグリシジルエーテル、ヘキサメチレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等のアルキレングリコール型エポキシ樹脂又は多価アルコール炭化水素型エポキシ樹脂;ポリプロピレングリコールジグリシジルエーテル等のポリアルキレングリコール型エポキシ樹脂;ポリメチル(グリシジロキシプロピル)シロキサン等のエポキシ基含有シリコーンなどを挙げることができるが、これらに限定されない。具体的には、エピクロン(登録商標)850-S、エピクロン(登録商標)HP-4032、エピクロン(登録商標)HP-7200、エピクロン(登録商標)HP-820、エピクロン(登録商標)HP-4700、エピクロン(登録商標)HP-4770、エピクロン(登録商標)EXA-830LVP、エピクロン(登録商標)EXA-8183、エピクロン(登録商標)EXA-8169、エピクロン(登録商標)N-660、エピクロン(登録商標)N-665-EXP-S、エピクロン(登録商標)N-740(以上商品名、DIC(株)製)、リカレジン(登録商標)BEO-20E、リカレジン(登録商標)BEO-60E、リカレジン(登録商標)HBE-100、リカレジン(登録商標)DME-100、リカレジン(登録商標)L-200(商品名、新日本理化(株)製)、EP-4003S、EP-4000S、EP-4088S、EP-3950S(以上商品名、(株)ADEKA製)、セロキサイド(登録商標)2021P、セロキサイド(登録商標)2081、セロキサイド(登録商標)2000、EHPE3150、エポリード(登録商標)GT401、エポリード(登録商標)PB4700、エポリード(登録商標)PB3600(以上商品名、(株)ダイセル製)、NC-3000、NC-3000-L、NC-3000-H、NC-3000-FH-75M、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000L、NC-7300L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、BREN-10S(以上商品名、日本化薬(株)製)などが挙げられる。また以下の化合物も好適に用いられる。 
Figure JPOXMLDOC01-appb-C000014
 式中nは1~5の整数、mは1~20の整数である。 
 上記構造の中でも、耐熱性と伸度向上を両立する点から、nは1~2、mは3~7であることが好ましい。
-オキセタン化合物(オキセタニル基を有する化合物)-
 オキセタン化合物としては、一分子中にオキセタン環を2つ以上有する化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル-3-(2-エチルヘキシルメチル)オキセタン、1,4-ベンゼンジカルボン酸-ビス[(3-エチル-3-オキセタニル)メチル]エステル等を挙げることができる。具体的な例としては、東亞合成(株)製のアロンオキセタンシリーズ(例えば、OXT-121、OXT-221)が好適に使用することができ、これらは単独で、又は2種以上混合してもよい。
-ベンゾオキサジン化合物(ベンゾオキサゾリル基を有する化合物)-
 ベンゾオキサジン化合物は、開環付加反応に由来する架橋反応のため、硬化時に脱ガスが発生せず、更に熱収縮を小さくして反りの発生が抑えられることから好ましい。
 ベンゾオキサジン化合物の好ましい例としては、P-d型ベンゾオキサジン、F-a型ベンゾオキサジン(以上、商品名、四国化成工業社製)、ポリヒドロキシスチレン樹脂のベンゾオキサジン付加物、フェノールノボラック型ジヒドロベンゾオキサジン化合物が挙げられる。これらは単独で用いるか、又は2種以上混合してもよい。
 他の架橋剤の含有量は、本発明の樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、0.1~20質量%であることがより好ましく、0.5~15質量%であることが更に好ましく、1.0~10質量%であることが特に好ましい。他の架橋剤は1種のみ含有していてもよいし、2種以上含有していてもよい。他の架橋剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<重合開始剤>
 樹脂組成物は、光及び/又は熱により重合を開始させることができる重合開始剤を含むことが好ましい。特に光重合開始剤を含むことが好ましい。
 光重合開始剤は、光ラジカル重合開始剤であることが好ましい。光ラジカル重合開始剤としては、特に制限はなく、公知の光ラジカル重合開始剤の中から適宜選択することができる。例えば、紫外線領域から可視領域の光線に対して感光性を有する光ラジカル重合開始剤が好ましい。また、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよい。
 光ラジカル重合開始剤は、波長約240~800nm(好ましくは330~500nm)の範囲内で少なくとも約50L・mol-1・cm-1のモル吸光係数を有する化合物を、少なくとも1種含有していることが好ましい。化合物のモル吸光係数は、公知の方法を用いて測定することができる。例えば、紫外可視分光光度計(Varian社製Cary-5 spectrophotometer)にて、酢酸エチル溶剤を用い、0.01g/Lの濃度で測定することが好ましい。
 光ラジカル重合開始剤としては、公知の化合物を任意に使用できる。例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有する化合物、オキサジアゾール骨格を有する化合物、トリハロメチル基を有する化合物など)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノンなどのα-アミノケトン化合物、ヒドロキシアセトフェノンなどのα-ヒドロキシケトン化合物、アゾ系化合物、アジド化合物、メタロセン化合物、有機ホウ素化合物、鉄アレーン錯体などが挙げられる。これらの詳細については、特開2016-027357号公報の段落0165~0182、国際公開第2015/199219号の段落0138~0151の記載を参酌でき、この内容は本明細書に組み込まれる。また、特開2014-130173号公報の段落0065~0111、特許第6301489号公報に記載された化合物、MATERIAL STAGE 37~60p,vol.19,No.3,2019に記載されたパーオキサイド系光重合開始剤、国際公開第2018/221177号に記載の光重合開始剤、国際公開第2018/110179号に記載の光重合開始剤、特開2019-043864号公報に記載の光重合開始剤、特開2019-044030号公報に記載の光重合開始剤、特開2019-167313号公報に記載の過酸化物系開始剤が挙げられ、これらの内容も本明細書に組み込まれる。
 ケトン化合物としては、例えば、特開2015-087611号公報の段落0087に記載の化合物が例示され、この内容は本明細書に組み込まれる。市販品では、カヤキュア-DETX-S(日本化薬(株)製)も好適に用いられる。
 本発明の一実施態様において、光ラジカル重合開始剤としては、ヒドロキシアセトフェノン化合物、アミノアセトフェノン化合物、及び、アシルホスフィン化合物を好適に用いることができる。より具体的には、例えば、特開平10-291969号公報に記載のアミノアセトフェノン系開始剤、特許第4225898号に記載のアシルホスフィンオキシド系開始剤を用いることができ、この内容は本明細書に組み込まれる。
 α-ヒドロキシケトン系開始剤としては、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127(以上、IGM Resins B.V.社製)、IRGACURE 184(IRGACUREは登録商標)、DAROCUR 1173、IRGACURE 500、IRGACURE-2959、IRGACURE 127(商品名、いずれもBASF社製)を用いることができる。
 α-アミノケトン系開始剤としては、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(以上、IGM Resins B.V.社製)、IRGACURE 907、IRGACURE 369、及び、IRGACURE 379(商品名、いずれもBASF社製)を用いることができる。
 アミノアセトフェノン系開始剤、アシルホスフィンオキシド系開始剤、メタロセン化合物としては、例えば、国際公開第2021/112189号の段落0161~0163に記載の化合物も好適に使用することができる。この内容は本明細書に組み込まれる。
 光ラジカル重合開始剤として、より好ましくはオキシム化合物が挙げられる。オキシム化合物を用いることにより、露光ラチチュードをより効果的に向上させることが可能になる。オキシム化合物は、露光ラチチュード(露光マージン)が広く、かつ、光硬化促進剤としても働くため、特に好ましい。
 オキシム化合物の具体例としては、特開2001-233842号公報に記載の化合物、特開2000-080068号公報に記載の化合物、特開2006-342166号公報に記載の化合物、J.C.S.Perkin II(1979年、pp.1653-1660)に記載の化合物、J.C.S.Perkin II(1979年、pp.156-162)に記載の化合物、Journal of Photopolymer Science and Technology(1995年、pp.202-232)に記載の化合物、特開2000-066385号公報に記載の化合物、特表2004-534797号公報に記載の化合物、特開2017-019766号公報に記載の化合物、特許第6065596号公報に記載の化合物、国際公開第2015/152153号に記載の化合物、国際公開第2017/051680号に記載の化合物、特開2017-198865号公報に記載の化合物、国際公開第2017/164127号の段落番号0025~0038に記載の化合物、国際公開第2013/167515号に記載の化合物などが挙げられ、この内容は本明細書に組み込まれる。
 好ましいオキシム化合物としては、例えば、下記の構造の化合物や、3-(ベンゾイルオキシ(イミノ))ブタン-2-オン、3-(アセトキシ(イミノ))ブタン-2-オン、3-(プロピオニルオキシ(イミノ))ブタン-2-オン、2-(アセトキシ(イミノ))ペンタン-3-オン、2-(アセトキシ(イミノ))-1-フェニルプロパン-1-オン、2-(ベンゾイルオキシ(イミノ))-1-フェニルプロパン-1-オン、3-((4-トルエンスルホニルオキシ)イミノ)ブタン-2-オン、及び2-(エトキシカルボニルオキシ(イミノ))-1-フェニルプロパン-1-オンなどが挙げられる。樹脂組成物においては、特に光ラジカル重合開始剤としてオキシム化合物(オキシム系の光ラジカル重合開始剤)を用いることが好ましい。オキシム系の光ラジカル重合開始剤は、分子内に >C=N-O-C(=O)- の連結基を有する。
Figure JPOXMLDOC01-appb-C000015
 市販品ではIRGACURE OXE 01、IRGACURE OXE 02、IRGACURE OXE 03、IRGACURE OXE 04(以上、BASF社製)、アデカオプトマーN-1919((株)ADEKA製、特開2012-014052号公報に記載の光ラジカル重合開始剤2)も好適に用いられる。また、TR-PBG-304、TR-PBG-305(常州強力電子新材料有限公司製)、アデカアークルズNCI-730、NCI-831及びアデカアークルズNCI-930((株)ADEKA製)も用いることができる。また、DFI-091(ダイトーケミックス(株)製)、SpeedCure PDO(SARTOMER ARKEMA製)を用いることができる。また、下記の構造のオキシム化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000016
 光ラジカル重合開始剤としては、例えば、国際公開第2021/112189号の段落0169~0171に記載のフルオレン環を有するオキシム化合物、カルバゾール環の少なくとも1つのベンゼン環がナフタレン環となった骨格を有するオキシム化合物、フッ素原子を有するオキシム化合物を用いることもできる。これらの内容は本明細書に組み込まれる。
 また、光重合開始剤としては、国際公開第2021/020359号に記載の段落0208~0210に記載のニトロ基を有するオキシム化合物、ベンゾフラン骨格を有するオキシム化合物、カルバゾール骨格にヒドロキシ基を有する置換基が結合したオキシム化合物を用いることもできる。これらの内容は本明細書に組み込まれる。
 光重合開始剤としては、芳香族環に電子求引性基が導入された芳香族環基ArOX1を有するオキシム化合物(以下、オキシム化合物OXともいう)を用いることもできる。上記芳香族環基ArOX1が有する電子求引性基としては、アシル基、ニトロ基、トリフルオロメチル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、シアノ基が挙げられ、アシル基およびニトロ基が好ましく、耐光性に優れた膜を形成しやすいという理由からアシル基であることがより好ましく、ベンゾイル基であることが更に好ましい。ベンゾイル基は、置換基を有していてもよい。置換基としては、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルケニル基、アルキルスルファニル基、アリールスルファニル基、アシル基またはアミノ基であることが好ましく、アルキル基、アルコキシ基、アリール基、アリールオキシ基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基またはアミノ基であることがより好ましく、アルコキシ基、アルキルスルファニル基またはアミノ基であることが更に好ましい。
 オキシム化合物OXは、式(OX1)で表される化合物および式(OX2)で表される化合物から選ばれる少なくとも1種であることが好ましく、式(OX2)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000017
 式中、RX1は、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシル基、アシルオキシ基、アミノ基、ホスフィノイル基、カルバモイル基またはスルファモイル基を表し、
 RX2は、アルキル基、アルケニル基、アルコキシ基、アリール基、アリールオキシ基、複素環基、複素環オキシ基、アルキルスルファニル基、アリールスルファニル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、アシルオキシ基またはアミノ基を表し、
 RX3~RX14は、それぞれ独立して水素原子または置換基を表す。
 ただし、RX10~RX14のうち少なくとも一つは、電子求引性基である。
 上記式において、RX12が電子求引性基であり、RX10、RX11、RX13、RX14は水素原子であることが好ましい。
 オキシム化合物OXの具体例としては、特許第4600600号公報の段落番号0083~0105に記載の化合物が挙げられ、この内容は本明細書に組み込まれる。
 最も好ましいオキシム化合物としては、特開2007-269779号公報に示される特定置換基を有するオキシム化合物や、特開2009-191061号公報に示されるチオアリール基を有するオキシム化合物などが挙げられ、この内容は本明細書に組み込まれる。
 光ラジカル重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α-ヒドロキシケトン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物及びその誘導体、シクロペンタジエン-ベンゼン-鉄錯体及びその塩、ハロメチルオキサジアゾール化合物、3-アリール置換クマリン化合物よりなる群から選択される化合物が好ましい。
 更に好ましい光ラジカル重合開始剤は、トリハロメチルトリアジン化合物、α-アミノケトン化合物、アシルホスフィン化合物、ホスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、オニウム塩化合物、ベンゾフェノン化合物、アセトフェノン化合物であり、トリハロメチルトリアジン化合物、α-アミノケトン化合物、メタロセン化合物、オキシム化合物、トリアリールイミダゾールダイマー、ベンゾフェノン化合物よりなる群から選ばれる少なくとも1種の化合物が一層好ましく、メタロセン化合物又はオキシム化合物を用いるのがより一層好ましい。
 また、光ラジカル重合開始剤としては、、国際公開第2021/020359号に記載の段落0175~0179に記載の化合物を用いることもできる。この内容は本明細書に組み込まれる。
 また、光ラジカル重合開始剤は、国際公開第2015/125469号の段落0048~0055に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。
 光ラジカル重合開始剤としては、2官能あるいは3官能以上の光ラジカル重合開始剤を用いてもよい。そのような光ラジカル重合開始剤を用いることにより、光ラジカル重合開始剤の1分子から2つ以上のラジカルが発生するため、良好な感度が得られる。また、非対称構造の化合物を用いた場合においては、結晶性が低下して溶剤などへの溶解性が向上して、経時で析出しにくくなり、樹脂組成物の経時安定性を向上させることができる。2官能あるいは3官能以上の光ラジカル重合開始剤の具体例としては、特表2010-527339号公報、特表2011-524436号公報、国際公開第2015/004565号、特表2016-532675号公報の段落番号0407~0412、国際公開第2017/033680号の段落番号0039~0055に記載されているオキシム化合物の2量体、特表2013-522445号公報に記載されている化合物(E)および化合物(G)、国際公開第2016/034963号に記載されているCmpd1~7、特表2017-523465号公報の段落番号0007に記載されているオキシムエステル類光開始剤、特開2017-167399号公報の段落番号0020~0033に記載されている光開始剤、特開2017-151342号公報の段落番号0017~0026に記載されている光重合開始剤(A)、特許第6469669号公報に記載されているオキシムエステル光開始剤などが挙げられ、この内容は本明細書に組み込まれる。
 光重合開始剤を含む場合、その含有量は、本発明の樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、更に好ましくは0.5~15質量%であり、一層好ましくは1.0~10質量%である。光重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。光重合開始剤を2種以上含有する場合は、合計量が上記範囲であることが好ましい。
 なお、光重合開始剤は熱重合開始剤としても機能する場合があるため、オーブンやホットプレート等の加熱によって光重合開始剤による架橋を更に進行させられる場合がある。
<増感剤>
 樹脂組成物は、増感剤を含んでいてもよい。増感剤は、特定の活性放射線を吸収して電子励起状態となる。電子励起状態となった増感剤は、熱ラジカル重合開始剤、光ラジカル重合開始剤などと接触して、電子移動、エネルギー移動、発熱などの作用が生じる。これにより、熱ラジカル重合開始剤、光ラジカル重合開始剤は化学変化を起こして分解し、ラジカル、酸又は塩基を生成する。
 使用可能な増感剤として、ベンゾフェノン系、ミヒラーズケトン系、クマリン系、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アントラセン系、アントラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、ピロロピラゾールアゾメチン系、キサンテン系、フタロシアニン系、ペンゾピラン系、インジゴ系等の化合物を使用することができる。
 増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンザル)シクロペンタン、2,6-ビス(4’-ジエチルアミノベンザル)シクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンザル)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビフェニレン)-ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)ベンゾチアゾール、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4’-ジメチルアミノベンザル)アセトン、1,3-ビス(4’-ジエチルアミノベンザル)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン(7-(ジエチルアミノ)クマリン-3-カルボン酸エチル)、N-フェニル-N’-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、4-モルホリノベンゾフェノン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプトテトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンゾチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-d)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレン、ジフェニルアセトアミド、ベンズアニリド、N-メチルアセトアニリド、3‘,4’-ジメチルアセトアニリド等が挙げられる。
 また、他の増感色素を用いてもよい。
 増感色素の詳細については、特開2016-027357号公報の段落0161~0163の記載を参酌でき、この内容は本明細書に組み込まれる。
 樹脂組成物が増感剤を含む場合、増感剤の含有量は、樹脂組成物の全固形分に対し、0.01~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.5~10質量%であることが更に好ましい。増感剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
<連鎖移動剤>
 樹脂組成物は、連鎖移動剤を含有してもよい。連鎖移動剤は、例えば高分子辞典第三版(高分子学会編、2005年)683-684頁に定義されている。連鎖移動剤としては、例えば、分子内に-S-S-、-SO-S-、-N-O-、SH、PH、SiH、及びGeHを有する化合物群、RAFT(Reversible Addition Fragmentation chain Transfer)重合に用いられるチオカルボニルチオ基を有するジチオベンゾアート、トリチオカルボナート、ジチオカルバマート、キサンタート化合物等が用いられる。これらは、低活性のラジカルに水素を供与して、ラジカルを生成するか、若しくは、酸化された後、脱プロトンすることによりラジカルを生成しうる。特に、チオール化合物を好ましく用いることができる。
 また、連鎖移動剤は、国際公開第2015/199219号の段落0152~0153に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。
 樹脂組成物が連鎖移動剤を有する場合、連鎖移動剤の含有量は、樹脂組成物の全固形分100質量部に対し、0.01~20質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が更に好ましい。連鎖移動剤は1種のみでもよいし、2種以上であってもよい。連鎖移動剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<光酸発生剤>
 樹脂組成物は、光酸発生剤を含むことが好ましい。
 光酸発生剤とは、200nm~900nmの光照射により、ブレンステッド酸、及び、ルイス酸の少なくとも一方を発生させる化合物を表す。照射される光は、好ましくは波長300nm~450nmの光であり、より好ましくは330nm~420nmの光である。光酸発生剤単独または増感剤との併用において、感光して酸を発生させることが可能な光酸発生剤であることが好ましい。
 発生する酸の例としては、ハロゲン化水素、カルボン酸、スルホン酸、スルフィン酸、チオスルフィン酸、リン酸、リン酸モノエステル、リン酸ジエステル、ホウ素誘導体、リン誘導体、アンチモン誘導体、過酸化ハロゲン、スルホンアミド等が好ましく挙げられる。 
 本発明の樹脂組成物に用いられる光酸発生剤としては、例えば、キノンジアジド化合物、オキシムスルホネート化合物、有機ハロゲン化化合物、有機ホウ酸塩化合物、ジスルホン化合物、オニウム塩化合物等が挙げられる。
 感度、保存安定性の観点から、有機ハロゲン化合物、オキシムスルホネート化合物、オニウム塩化合物が好ましく、形成する膜の機械特性等から、オキシムエステルが好ましい。
 キノンジアジド化合物としては、1価または多価のヒドロキシ化合物にキノンジアジドのスルホン酸がエステル結合したもの、1価または多価のアミノ化合物にキノンジアジドのスルホン酸がスルホンアミドで結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミドで結合したものなどが挙げられる。これらポリヒドロキシ化合物、ポリアミノ化合物、ポリヒドロキシポリアミノ化合物の全ての官能基がキノンジアジドで置換されていなくてもよいが、平均して官能基全体の40モル%以上がキノンジアジドで置換されていることが好ましい。このようなキノンジアジド化合物を含有させることで、一般的な紫外線である水銀灯のi線(波長365nm)、h線(波長405nm)、g線(波長436nm)に感光する樹脂組成物を得ることができる。
 ヒドロキシ化合物として具体的には、フェノール、トリヒドロキシベンゾフェノン、4メトキシフェノール、イソプロパノール、オクタノール、t-Buアルコール、シクロヘキサノール、ナフトール、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、TrisP-SA、TrisOCR-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X、DML-MBPC、DML-MBOC、DML-OCHP、DML-PCHP、DML-PC、DML-PTBP、DML-34X、DML-EP、DML-POP、ジメチロール-BisOC-P、DML-PFP、DML-PSBP、DML-MTrisPC、TriML-P、TriML-35XL、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP、HML-TPPHBA、HML-TPHAP(以上、商品名、本州化学工業製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOC-F、4PC、BIR-BIPC-F、TEP-BIP-A、46DMOC、46DMOEP、TM-BIP-A(以上、商品名、旭有機材工業製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール、ナフトール、テトラヒドロキシベンゾフェノン、没食子酸メチルエステル、ビスフェノールA、ビスフェノールE、メチレンビスフェノール、BisP-AP(商品名、本州化学工業製)、ノボラック樹脂などを挙げることができるが、これらに限定されない。
 アミノ化合物として具体的には、アニリン、メチルアニリン、ジエチルアミン、ブチルアミン、1,4-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィドなどを挙げることができるが、これらに限定されない。
 また、ポリヒドロキシポリアミノ化合物として具体的には、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジヒドロキシベンジジンなどを挙げることができるが、これらに限定されない。
 これらの中でも、キノンジアジド化合物として、フェノール化合物および4-ナフトキノンジアジドスルホニル基とのエステルを含むことが好ましい。これによりi線露光に対するより高い感度と、より高い解像度を得ることができる。
 樹脂組成物に用いるキノンジアジド化合物の含有量は、樹脂100質量部に対して、1~50質量部が好ましく、10~40質量部がより好ましい。キノンジアジド化合物の含有量をこの範囲とすることにより、露光部と未露光部のコントラストが得られることでより高感度化を図ることができるため好ましい。さらに増感剤などを必要に応じて添加してもよい。
 光酸発生剤は、オキシムスルホネート基を含む化合物(以下、単に「オキシムスルホネート化合物」ともいう)であることが好ましい。
 オキシムスルホネート化合物は、オキシムスルホネート基を有していれば特に制限はないが、例えば、国際公開第2020/195995公報の段落0118~0124に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 また、下記構造式で表される化合物も好ましい例として挙げられる。
Figure JPOXMLDOC01-appb-C000018
 有機ハロゲン化化合物としては、例えば、特開2015-087409号公報の段落0042~0043に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 光酸発生剤は、樹脂組成物の全固形分に対し、0.1~20質量%使用することが好ましく、0.5~18質量%使用することがより好ましく、0.5~10質量%使用することが更に好ましく、0.5~3質量%使用することが一層好ましく、0.5~1.2質量%使用することがより一層好ましい。
 光酸発生剤は、1種単独で使用されても、複数種の組み合わせで使用されてもよい。複数種の組み合わせの場合には、それらの合計量が上記範囲にあることが好ましい。
 また、所望の光源に対して、感光性を付与する為、増感剤と併用することも好ましい。
<塩基発生剤>
 樹脂組成物は、塩基発生剤を含んでもよい。ここで、塩基発生剤とは、物理的または化学的な作用によって塩基を発生することができる化合物である。本発明の樹脂組成物にとって好ましい塩基発生剤としては、熱塩基発生剤および光塩基発生剤が挙げられる。
 特に、樹脂組成物が環化樹脂の前駆体を含む場合、樹脂組成物は塩基発生剤を含むことが好ましい。樹脂組成物が熱塩基発生剤を含有することによって、例えば加熱により前駆体の環化反応を促進でき、硬化物の機械特性や耐薬品性が良好なものとなり、例えば半導体パッケージ中に含まれる再配線層用層間絶縁膜としての性能が良好となる。
 塩基発生剤としては、イオン型塩基発生剤でもよく、非イオン型塩基発生剤でもよい。塩基発生剤から発生する塩基としては、例えば、2級アミン、3級アミンが挙げられる。
 本発明に係る塩基発生剤について特に制限はなく、公知の塩基発生剤を用いることができる。公知の塩基発生剤としては、例えば、カルバモイルオキシム化合物、カルバモイルヒドロキシルアミン化合物、カルバミン酸化合物、ホルムアミド化合物、アセトアミド化合物、カルバメート化合物、ベンジルカルバメート化合物、ニトロベンジルカルバメート化合物、スルホンアミド化合物、イミダゾール誘導体化合物、アミンイミド化合物、ピリジン誘導体化合物、α-アミノアセトフェノン誘導体化合物、4級アンモニウム塩誘導体化合物、ピリジニウム塩、α-ラクトン環誘導体化合物、アミンイミド化合物、フタルイミド誘導体化合物、アシルオキシイミノ化合物、などを用いることができる。
 非イオン型塩基発生剤の具体的な化合物としては、式(B1)、式(B2)、又は式(B3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(B1)及び式(B2)中、Rb、Rb及びRbはそれぞれ独立に、第三級アミン構造を有しない有機基、ハロゲン原子又は水素原子である。ただし、Rb及びRbが同時に水素原子となることはない。また、Rb、Rb及びRbはいずれもカルボキシ基を有することはない。なお、本明細書で第三級アミン構造とは、3価の窒素原子の3つの結合手がいずれも炭化水素系の炭素原子と共有結合している構造を指す。したがって、結合した炭素原子がカルボニル基をなす炭素原子の場合、つまり窒素原子とともにアミド基を形成する場合はこの限りではない。
 式(B1)及び式(B2)中、Rb、Rb及びRbは、これらのうち少なくとも1つが環状構造を含むことが好ましく、少なくとも2つが環状構造を含むことがより好ましい。環状構造としては、単環及び縮合環のいずれであってもよく、単環又は単環が2つ縮合した縮合環が好ましい。単環は、5員環又は6員環が好ましく、6員環がより好ましい。単環は、シクロヘキサン環及びベンゼン環が好ましく、シクロヘキサン環がより好ましい。
 より具体的に、Rb及びRbは、水素原子、アルキル基(炭素数1~24が好ましく、2~18がより好ましく、3~12が更に好ましい)、アルケニル基(炭素数2~24が好ましく、2~18がより好ましく、3~12が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、又はアリールアルキル基(炭素数7~25が好ましく、7~19がより好ましく、7~12が更に好ましい)であることが好ましい。これらの基は、本発明の効果を奏する範囲で置換基を有していてもよい。RbとRbとは互いに結合して環を形成していてもよい。形成される環としては、4~7員の含窒素複素環が好ましい。Rb及びRbは特に、置換基を有してもよい直鎖、分岐、又は環状のアルキル基(炭素数1~24が好ましく、2~18がより好ましく、3~12が更に好ましい)であることが好ましく、置換基を有してもよいシクロアルキル基(炭素数3~24が好ましく、3~18がより好ましく、3~12が更に好ましい)であることがより好ましく、置換基を有してもよいシクロヘキシル基が更に好ましい。
 Rbとしては、アルキル基(炭素数1~24が好ましく、2~18がより好ましく、3~12が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アルケニル基(炭素数2~24が好ましく、2~12がより好ましく、2~6が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~12が更に好ましい)、アリールアルケニル基(炭素数8~24が好ましく、8~20がより好ましく、8~16が更に好ましい)、アルコキシル基(炭素数1~24が好ましく、2~18がより好ましく、3~12が更に好ましい)、アリールオキシ基(炭素数6~22が好ましく、6~18がより好ましく、6~12が更に好ましい)、又はアリールアルキルオキシ基(炭素数7~23が好ましく、7~19がより好ましく、7~12が更に好ましい)が挙げられる。中でも、シクロアルキル基(炭素数3~24が好ましく、3~18がより好ましく、3~12が更に好ましい)、アリールアルケニル基、アリールアルキルオキシ基が好ましい。Rbは更に本発明の効果を奏する範囲で置換基を有していてもよい。
 式(B1)で表される化合物は、下記式(B1-1)又は下記式(B1-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000020
 式中、Rb11及びRb12、並びに、Rb31及びRb32は、それぞれ、式(B1)におけるRb及びRbと同じである。
 Rb13はアルキル基(炭素数1~24が好ましく、2~18がより好ましく、3~12が更に好ましい)、アルケニル基(炭素数2~24が好ましく、2~18がより好ましく、3~12が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~12が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~12が更に好ましい)であり、本発明の効果を奏する範囲で置換基を有していてもよい。中でも、Rb13はアリールアルキル基が好ましい。
 Rb33及びRb34は、それぞれ独立に、水素原子、アルキル基(炭素数1~12が好ましく、1~8がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~8がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)であり、水素原子が好ましい。
 Rb35は、アルキル基(炭素数1~24が好ましく、1~12がより好ましく、3~8が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~10がより好ましく、3~8が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~12が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~12が更に好ましい)であり、アリール基が好ましい。
 式(B1-1)で表される化合物は、式(B1-1a)で表される化合物もまた好ましい。
Figure JPOXMLDOC01-appb-C000021
 Rb11及びRb12は式(B1-1)におけるRb11及びRb12と同義である。
 Rb15及びRb16は水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~11が更に好ましい)であり、水素原子又はメチル基が好ましい。
 Rb17はアルキル基(炭素数1~24が好ましく、1~12がより好ましく、3~8が更に好ましい)、アルケニル基(炭素数2~12が好ましく、2~10がより好ましく、3~8が更に好ましい)、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~12が更に好ましい)、アリールアルキル基(炭素数7~23が好ましく、7~19がより好ましく、7~12が更に好ましい)であり、中でもアリール基が好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(B3)において、Lは、隣接する酸素原子と炭素原子を連結する連結鎖の経路上に飽和炭化水素基を有する2価の炭化水素基であって、連結鎖の経路上の原子数が3以上である炭化水素基を表す。また、RN1およびRN2は、それぞれ独立に1価の有機基を表す。  
 本明細書において、「連結鎖」とは、連結対象の2つの原子または原子群の間を結ぶ経路上の原子鎖のうち、これらの連結対象を最短(最小原子数)で結ぶものをいう。例えば、下記式で表される化合物において、Lは、フェニレンエチレン基から構成され、飽和炭化水素基としてエチレン基を有し、連結鎖は4つの炭素原子から構成されており、連結鎖の経路上の原子数(つまり、連結鎖を構成する原子の数であり、以下、「連結鎖長」あるいは「連結鎖の長さ」ともいう。)は4である。
Figure JPOXMLDOC01-appb-C000023
 式(B3)におけるL中の炭素数(連結鎖中の炭素原子以外の炭素原子も含む)は、3~24であることが好ましい。上限は、12以下であることがより好ましく、10以下であることがさらに好ましく、8以下であることが特に好ましい。下限は、4以上であることがより好ましい。上記分子内環化反応を速やかに進行させる観点から、Lの連結鎖長の上限は、12以下であることが好ましく、8以下であることがより好ましく、6以下であることがさらに好ましく、5以下であることが特に好ましい。特に、Lの連結鎖長は、4または5であることが好ましく、4であることが最も好ましい。塩基発生剤の具体的な好ましい化合物としては、例えば、国際公開第2020/066416号の段落番号0102~0168に記載の化合物、国際公開第2018/038002号の段落番号0143~0177に記載の化合物も挙げられる。
 また、塩基発生剤は、下記式(N1)で表される化合物を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(N1)中、RN1およびRN2はそれぞれ独立に1価の有機基を表し、RC1は水素原子または保護基を表し、Lは2価の連結基を表す。
 Lは2価の連結基であり、2価の有機基であることが好ましい。連結基の連結鎖長は1以上であることが好ましく、2以上であることがより好ましい。上限としては、12以下であることが好ましく、8以下であることがより好ましく、5以下であることがさらに好ましい。連結鎖長とは、式中の2つのカルボニル基の間において最短の道程となる原子配列に存在する原子の数である。
 式(N1)中、RN1およびRN2はそれぞれ独立に1価の有機基(炭素数1~24が好ましく、2~18がより好ましく、3~12がさらに好ましい)を表し、炭化水素基(炭素数1~24が好ましく、1~12がより好ましく、1~10がさらに好ましい)であることが好ましく、具体的には、脂肪族炭化水素基(炭素数1~24が好ましく、1~12がより好ましく、1~10がさらに好ましい)または芳香族炭化水素基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)を挙げることができ、脂肪族炭化水素基が好ましい。RN1およびRN2として、脂肪族炭化水素基を用いると、発生する塩基の塩基性が高く好ましい。なお、脂肪族炭化水素基および芳香族炭化水素基は、置換基を有していてもよく、また、脂肪族炭化水素基および芳香族炭化水素基が脂肪族炭化水素鎖中や芳香環中、置換基中に酸素原子を有していてもよい。特に、脂肪族炭化水素基が炭化水素鎖中に酸素原子を有している態様が例示される。
 RN1およびRN2を構成する脂肪族炭化水素基としては、直鎖または分岐の鎖状アルキル基、環状アルキル基、鎖状アルキル基と環状アルキル基の組合せに係る基、酸素原子を鎖中に有するアルキル基が挙げられる。直鎖または分岐の鎖状アルキル基は、炭素数1~24のものが好ましく、2~18がより好ましく、3~12がさらに好ましい。直鎖または分岐の鎖状アルキル基は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、イソブチル基、セカンダリーブチル基、ターシャリーブチル基、イソペンチル基、ネオペンチル基、ターシャリーペンチル基、イソヘキシル基等が挙げられる。
 環状アルキル基は、炭素数3~12のものが好ましく、3~6がより好ましい。環状アルキル基は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
 鎖状アルキル基と環状アルキル基の組合せに係る基は、炭素数4~24のものが好ましく、4~18がより好ましく、4~12がさらに好ましい。鎖状アルキル基と環状アルキル基の組合せに係る基は、例えば、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルプロピル基、メチルシクロヘキシルメチル基、エチルシクロヘキシルエチル基等が挙げられる。
 酸素原子を鎖中に有するアルキル基は、炭素数2~12のものが好ましく、2~6がより好ましく、2~4がさらに好ましい。酸素原子を鎖中に有するアルキル基は、鎖状でも環状でもよく、直鎖でも分岐でもよい。
 なかでも、後述する分解生成塩基の沸点を高める観点で、RN1およびRN2は炭素数5~12のアルキル基が好ましい。ただし、金属(例えば銅)の層と積層する際の密着性を重視する処方においては、環状のアルキル基を有する基や炭素数1~8のアルキル基であることが好ましい。
 RN1およびRN2は互いに連結して環状構造を形成していてもよい。環状構造を形成するにあたっては、酸素原子等を鎖中に有していてもよい。また、RN1およびRN2が形成する環状構造は、単環であっても、縮合環であってもよいが、単環が好ましい。形成される環状構造としては、式(N1)中の窒素原子を含有する5員環または6員環が好ましく、例えば、ピロール環、イミダゾール環、ピラゾール環、ピロリン環、ピロリジン環、イミダゾリジン環、ピラゾリジン環、ピぺリジン環、ピペラジン環、モルホリン環などが挙げられ、ピロリン環、ピロリジン環、ピペリジン環、ピペラジン環、モルホリン環が好ましく挙げられる。
 RC1は水素原子または保護基を表し、水素原子が好ましい。
 保護基としては、酸または塩基の作用により分解する保護基が好ましく、酸で分解する保護基が好ましく挙げられる。
 保護基の具体例としては、鎖状もしくは環状のアルキル基または鎖中に酸素原子を有する鎖状もしくは環状のアルキル基が挙げられる。鎖状もしくは環状のアルキル基としては、メチル基、エチル基、イソプロピル基、tert-ブチル基、シクロヘキシル基等が挙げられる。鎖中に酸素原子を有する鎖状のアルキル基としては、具体的にはアルキルオキシアルキル基が挙げられ、さらに具体的には、メチルオキシメチル(MOM)基、エチルオキシエチル(EE)基等が挙げられる。鎖中に酸素原子を有する環状のアルキル基としては、エポキシ基、グリシジル基、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル(THP)基等が挙げられる
 Lを構成する2価の連結基としては、特に定めるものではないが、炭化水素基が好ましく、脂肪族炭化水素基がより好ましい。炭化水素基は、置換基を有していてもよく、また、炭化水素鎖の中に炭素原子以外の種類の原子を有していてもよい。より具体的には、鎖中に酸素原子を有していてもよい2価の炭化水素連結基であることが好ましく、鎖中に酸素原子を有していてもよい2価の脂肪族炭化水素基、2価の芳香族炭化水素基、または鎖中に酸素原子を有していてもよい2価の脂肪族炭化水素基と2価の芳香族炭化水素基の組み合わせに係る基がより好ましく、鎖中に酸素原子を有していてもよい2価の脂肪族炭化水素基がさらに好ましい。これらの基は、酸素原子を有していないほうが好ましい。
 2価の炭化水素連結基は、炭素数1~24のものが好ましく、2~12がより好ましく、2~6がさらに好ましい。2価の脂肪族炭化水素基は、炭素数1~12のものが好ましく、2~6がより好ましく、2~4がさらに好ましい。2価の芳香族炭化水素基は、炭素数6~22のものが好ましく、6~18がより好ましく、6~10がさらに好ましい。2価の脂肪族炭化水素基と2価の芳香族炭化水素基の組み合わせに係る基(例えば、アリーレンアルキル基)は、炭素数7~22のものが好ましく、7~18がより好ましく、7~10がさらに好ましい。
 連結基Lとしては、具体的に、直鎖または分岐の鎖状アルキレン基、環状アルキレン基、鎖状アルキレン基と環状アルキレン基の組み合わせに係る基、酸素原子を鎖中に有しているアルキレン基、直鎖または分岐の鎖状のアルケニレン基、環状のアルケニレン基、アリーレン基、アリーレンアルキレン基が好ましい。
 直鎖または分岐の鎖状アルキレン基は、炭素数1~12のものが好ましく、2~6がより好ましく、2~4がさらに好ましい。
 環状アルキレン基は、炭素数3~12のものが好ましく、3~6がより好ましい。
 鎖状アルキレン基と環状アルキレン基の組み合わせに係る基は、炭素数4~24のものが好ましく、4~12がより好ましく、4~6がさらに好ましい。
 酸素原子を鎖中に有するアルキレン基は、鎖状でも環状でもよく、直鎖でも分岐でもよい。酸素原子を鎖中に有するアルキレン基は、炭素数1~12のものが好ましく、1~6がより好ましく、1~3がさらに好ましい。
 直鎖または分岐の鎖状のアルケニレン基は、炭素数2~12のものが好ましく、2~6がより好ましく、2~3がさらに好ましい。直鎖または分岐の鎖状のアルケニレン基は、C=C結合の数は1~10のものが好ましく、1~6がより好ましく、1~3がさらに好ましい。
 環状のアルケニレン基は、炭素数3~12のものが好ましく、3~6がより好ましい。環状のアルケニレン基は、C=C結合の数は1~6が好ましく、1~4がより好ましく、1~2がさらに好ましい。
 アリーレン基は、炭素数6~22のものが好ましく、6~18がより好ましく、6~10がさらに好ましい。
 アリーレンアルキレン基は、炭素数7~23のものが好ましく、7~19がより好ましく、7~11がさらに好ましい。
 中でも、鎖状アルキレン基、環状アルキレン基、酸素原子を鎖中に有するアルキレン基、鎖状のアルケニレン基、アリーレン基、アリーレンアルキレン基が好ましく、1,2-エチレン基、プロパンジイル基(特に1,3-プロパンジイル基)、シクロヘキサンジイル基(特に1,2-シクロヘキサンジイル基)、ビニレン基(特にシスビニレン基)、フェニレン基(1,2-フェニレン基)、フェニレンメチレン基(特に1,2-フェニレンメチレン基)、エチレンオキシエチレン基(特に1,2-エチレンオキシ-1,2-エチレン基)がより好ましい。
 塩基発生剤としては、下記の例が挙げられるが、本発明がこれにより限定して解釈されるものではない。
Figure JPOXMLDOC01-appb-C000025
 非イオン型塩基発生剤の分子量は、800以下であることが好ましく、600以下であることがより好ましく、500以下であることが更に好ましい。下限としては、100以上であることが好ましく、200以上であることがより好ましく、300以上であることが更に好ましい。
 イオン型塩基発生剤の具体的な好ましい化合物としては、例えば、国際公開第2018/038002号の段落番号0148~0163に記載の化合物も挙げられる。
 アンモニウム塩の具体例としては、以下の化合物を挙げることができるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026
 イミニウム塩の具体例としては、以下の化合物を挙げることができるが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027
 樹脂組成物が塩基発生剤を含む場合、塩基発生剤の含有量は、樹脂組成物中の樹脂100質量部に対し、0.1~50質量部が好ましい。下限は、0.3質量部以上がより好ましく、0.5質量部以上が更に好ましい。上限は、30質量部以下がより好ましく、20質量部以下が更に好ましく、10質量部以下が一層好ましく、5質量部以下であってもよく、4質量部以下であってもよい。
 塩基発生剤は、1種又は2種以上を用いることができる。2種以上を用いる場合は、合計量が上記範囲であることが好ましい。
<溶剤>
 樹脂組成物は、溶剤を含むことが好ましい。
 溶剤は、公知の溶剤を任意に使用できる。溶剤は有機溶剤が好ましい。有機溶剤としては、エステル類、エーテル類、ケトン類、環状炭化水素類、スルホキシド類、アミド類、ウレア類、アルコール類などの化合物が挙げられる。
 エステル類として、例えば、酢酸エチル、酢酸-n-ブチル、酢酸イソブチル、酢酸へキシル、ギ酸アミル、酢酸イソアミル、プロピオン酸ブチル、酪酸イソプロピル、酪酸エチル、酪酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン、ε-カプロラクトン、δ-バレロラクトン、アルキルオキシ酢酸アルキル(例えば、アルキルオキシ酢酸メチル、アルキルオキシ酢酸エチル、アルキルオキシ酢酸ブチル(例えば、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル等))、3-アルキルオキシプロピオン酸アルキルエステル類(例えば、3-アルキルオキシプロピオン酸メチル、3-アルキルオキシプロピオン酸エチル等(例えば、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等))、2-アルキルオキシプロピオン酸アルキルエステル類(例えば、2-アルキルオキシプロピオン酸メチル、2-アルキルオキシプロピオン酸エチル、2-アルキルオキシプロピオン酸プロピル等(例えば、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル))、2-アルキルオキシ-2-メチルプロピオン酸メチル及び2-アルキルオキシ-2-メチルプロピオン酸エチル(例えば、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル等)、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸メチル、2-オキソブタン酸エチル、ヘキサン酸エチル、ヘプタン酸エチル、マロン酸ジメチル、マロン酸ジエチル等が好適なものとして挙げられる。
 エーテル類として、例えば、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、プロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールジメチルエーテル等が好適なものとして挙げられる。
 ケトン類として、例えば、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、3-メチルシクロヘキサノン、レボグルコセノン、ジヒドロレボグルコセノン等が好適なものとして挙げられる。
 環状炭化水素類として、例えば、トルエン、キシレン、アニソール等の芳香族炭化水素類、リモネン等の環式テルペン類が好適なものとして挙げられる。
 スルホキシド類として、例えば、ジメチルスルホキシドが好適なものとして挙げられる。
 アミド類として、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジメチルイソブチルアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、N-ホルミルモルホリン、N-アセチルモルホリン等が好適なものとして挙げられる。
 ウレア類として、N,N,N’,N’-テトラメチルウレア、1,3-ジメチル-2-イミダゾリジノン等が好適なものとして挙げられる。
アルコール類として、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、ベンジルアルコール、エチレングリコールモノメチルエーテル、1-メトキシ-2-プロパノール、2-エトキシエタノール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコール、テトラエチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノベンジルエーテル、エチレングリコールモノフェニルエーテル、メチルフェニルカルビノール、n-アミルアルコール、メチルアミルアルコール、および、ダイアセトンアルコール等が挙げられる。
 溶剤は、塗布面性状の改良などの観点から、2種以上を混合する形態も好ましい。
 本発明では、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エチルセロソルブアセテート、乳酸エチル、ジエチレングリコールジメチルエーテル、酢酸ブチル、3-メトキシプロピオン酸メチル、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、γ-ブチロラクトン、ジメチルスルホキシド、エチルカルビトールアセテート、ブチルカルビトールアセテート、N-メチル-2-ピロリドン、プロピレングリコールメチルエーテル、及びプロピレングリコールメチルエーテルアセテート、レボグルコセノン、ジヒドロレボグルコセノンから選択される1種の溶剤、又は、2種以上で構成される混合溶剤が好ましい。ジメチルスルホキシドとγ-ブチロラクトンとの併用、又は、N-メチル-2-ピロリドンと乳酸エチルとの併用が特に好ましい。
 溶剤の含有量は、塗布性の観点から、樹脂組成物の全固形分濃度が5~80質量%になる量とすることが好ましく、5~75質量%となる量にすることがより好ましく、10~70質量%となる量にすることが更に好ましく、20~70質量%となるようにすることが一層好ましい。溶剤含有量は、塗膜の所望の厚さと塗布方法に応じて調節すればよい。
 樹脂組成物は、溶剤を1種のみ含有していてもよいし、2種以上含有していてもよい。溶剤を2種以上含有する場合は、その合計が上記範囲であることが好ましい。
<金属接着性改良剤>
 樹脂組成物は、電極や配線などに用いられる金属材料との接着性を向上させるための金属接着性改良剤を含んでいることが好ましい。金属接着性改良剤としては、アルコキシシリル基を有するシランカップリング剤、アルミニウム系接着助剤、チタン系接着助剤、スルホンアミド構造を有する化合物及びチオウレア構造を有する化合物、リン酸誘導体化合物、βケトエステル化合物、アミノ化合物等が挙げられる。
〔シランカップリング剤〕
 シランカップリング剤としては、例えば、国際公開第2021/112189号の段落0316に記載の化合物、特開2018-173573の段落0067~0078に記載の化合物が挙げられ、これらの内容は本明細書に組み込まれる。また、特開2011-128358号公報の段落0050~0058に記載のように異なる2種以上のシランカップリング剤を用いることも好ましい。また、シランカップリング剤は、下記化合物を用いることも好ましい。以下の式中、Meはメチル基を、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000028
 他のシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物が挙げられる。これらは1種単独または2種以上を組み合わせて使用することができる。
〔アルミニウム系接着助剤〕
 アルミニウム系接着助剤としては、例えば、アルミニウムトリス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)、エチルアセトアセテートアルミニウムジイソプロピレート等を挙げることができる。
 また、その他の金属接着性改良剤としては、特開2014-186186号公報の段落0046~0049に記載の化合物、特開2013-072935号公報の段落0032~0043に記載のスルフィド系化合物を用いることもでき、これらの内容は本明細書に組み込まれる。
 金属接着性改良剤の含有量は特定樹脂100質量部に対して、好ましくは0.01~30質量部であり、より好ましくは0.1~10質量部の範囲であり、更に好ましくは0.5~5質量部の範囲である。上記下限値以上とすることでパターンと金属層との接着性が良好となり、上記上限値以下とすることでパターンの耐熱性、機械特性が良好となる。金属接着性改良剤は1種のみでもよいし、2種以上であってもよい。2種以上用いる場合は、その合計が上記範囲であることが好ましい。
<マイグレーション抑制剤>
 樹脂組成物は、マイグレーション抑制剤を更に含むことが好ましい。マイグレーション抑制剤を含むことにより、金属層(金属配線)由来の金属イオンが膜内へ移動することを効果的に抑制可能となる。
 マイグレーション抑制剤としては、特に制限はないが、複素環(ピロール環、フラン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペリジン環、ピペラジン環、モルホリン環、2H-ピラン環及び6H-ピラン環、トリアジン環)を有する化合物、チオ尿素類及びスルファニル基を有する化合物、ヒンダードフェノール系化合物、サリチル酸誘導体系化合物、ヒドラジド誘導体系化合物が挙げられる。特に、1,2,4-トリアゾール、ベンゾトリアゾール、3-アミノ-1,2,4-トリアゾール、3,5-ジアミノ-1,2,4-トリアゾール等のトリアゾール系化合物、1H-テトラゾール、5-フェニルテトラゾール、5-アミノ―1H-テトラゾール等のテトラゾール系化合物が好ましく使用できる。
 ハロゲンイオンなどの陰イオンを捕捉するイオントラップ剤を使用することもできる。
 その他のマイグレーション抑制剤としては、例えば、国際公開第2021/112189号の段落0304に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 マイグレーション抑制剤の具体例としては、下記化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000029
 樹脂組成物がマイグレーション抑制剤を有する場合、マイグレーション抑制剤の含有量は、樹脂組成物の全固形分に対して、0.01~5.0質量%であることが好ましく、0.05~2.0質量%であることがより好ましく、0.1~1.0質量%であることが更に好ましい。
 マイグレーション抑制剤は1種のみでもよいし、2種以上であってもよい。マイグレーション抑制剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<重合禁止剤>
 樹脂組成物は、重合禁止剤を含むことが好ましい。重合禁止剤としてはフェノール系化合物、キノン系化合物、アミノ系化合物、N-オキシルフリーラジカル化合物系化合物、ニトロ系化合物、ニトロソ系化合物、ヘテロ芳香環系化合物、金属化合物などが挙げられる。
 重合禁止剤の具体的な化合物としては、国際公開第2021/112189の段落0310に記載の化合物、p-ヒドロキノン、o-ヒドロキノン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、フェノキサジン等が挙げられる。この内容は本明細書に組み込まれる。
 樹脂組成物が重合禁止剤を有する場合、重合禁止剤の含有量は、本発明の樹脂組成物の全固形分に対して、0.01~20質量%であることが好ましく、0.02~15質量%であることがより好ましく、0.05~10質量%であることが更に好ましい。
 重合禁止剤は1種のみでもよいし、2種以上であってもよい。重合禁止剤が2種以上の場合は、その合計が上記範囲であることが好ましい。
<酸捕捉剤>
 樹脂組成物は、露光から加熱までの経時による性能変化を低減するために、酸捕捉剤を含有することが好ましい。ここで酸捕捉剤とは、系中に存在することで発生酸を捕捉することができる化合物を指し、酸性度が低くpKaの高い化合物であることが好ましい。酸捕捉剤としては、アミノ基を有する化合物が好ましく、1級アミン、2級アミン、3級アミン、アンモニウム塩、3級アミドなどが好ましく、1級アミン、2級アミン、3級アミン、アンモニウム塩が好ましく、2級アミン、3級アミン、アンモニウム塩がより好ましい。
 酸捕捉剤としては、イミダゾール構造、ジアザビシクロ構造、オニウム構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物、水酸基及び/又はエーテル結合を有するアルキルアミン誘導体、水酸基及び/又はエーテル結合を有するアニリン誘導体等を好ましく挙げることができる。オニウム構造を有する場合、酸捕捉剤はアンモニウム、ジアゾニウム、ヨードニウム、スルホニウム、ホスホニウム、ピリジニウムなどから選択されるカチオンと、酸発生剤が発生する酸より酸性度の低い酸のアニオンとを有する塩であることが好ましい。
 イミダゾール構造を有する酸捕捉剤としてはイミダゾール、2、4、5-トリフェニルイミダゾール、ベンズイミダゾール、2-フェニルベンゾイミダゾール等が挙げられる。ジアザビシクロ構造を有する酸捕捉剤としては1、4-ジアザビシクロ[2,2,2]オクタン、1、5-ジアザビシクロ[4,3,0]ノナ-5-エン、1、8-ジアザビシクロ[5,4,0]ウンデカー7-エン等が挙げられる。オニウム構造を有する酸捕捉剤としてはテトラブチルアンモニウムヒドロキシド、トリアリールスルホニウムヒドロキシド、フェナシルスルホニウムヒドロキシド、2-オキソアルキル基を有するスルホニウムヒドロキシド、具体的にはトリフェニルスルホニウムヒドロキシド、トリス(t-ブチルフェニル)スルホニウムヒドロキシド、ビス(t-ブチルフェニル)ヨードニウムヒドロキシド、フェナシルチオフェニウムヒドロキシド、2-オキソプロピルチオフェニウムヒドロキシド等が挙げられる。トリアルキルアミン構造を有する酸捕捉剤としては、トリ(n-ブチル)アミン、トリ(n-オクチル)アミン等を挙げることができる。アニリン構造を有する酸捕捉剤としては、2,6-ジイソプロピルアニリン、N,N-ジメチルアニリン、N,N-ジブチルアニリン、N,N-ジヘキシルアニリン等を挙げることができる。ピリジン構造を有する酸捕捉剤としては、ピリジン、4-メチルピリジン等を挙げることができる。水酸基及び/又はエーテル結合を有するアルキルアミン誘導体としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-フェニルジエタノールアミン、トリス(メトキシエトキシエチル)アミン等を挙げることができる。水酸基及び/又はエーテル結合を有するアニリン誘導体としては、N,N-ビス(ヒドロキシエチル)アニリン等を挙げることができる。
 好ましい酸捕捉剤の具体例としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、ドデシルアミン、シクロヘキシルアミン、シクロヘキシルメチルアミン、シクロヘキシルジメチルアミン、アニリン、N-メチルアニリン、N,N-ジメチルアニリン、ジフェニルアミン、ピリジン、ブチルアミン、イソブチルアミン、ジブチルアミン、トリブチルアミン、ジシクロヘキシルアミン、DBU(ジアザビシクロウンデセン)、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)、N,N-ジイソプロピルエチルアミン、テトラメチルアンモニウムヒドロキシド、エチレンジアミン、1,5-ジアミノペンタン、N-メチルヘキシルアミン、N-メチルジシクロヘキシルアミン、トリオクチルアミン、N-エチルエチレンジアミン、N,N―ジエチルエチレンジアミン、N,N,N’,N’-テトラブチルー1,6-ヘキサンジアミン、スペルミジン、ジアミノシクロヘキサン、ビス(2-メトキシエチル)アミン、ピペリジン、メチルピペリジン、ピペラジン、トロパン、N-フェニルベンジルアミン、1,2-ジアニリノエタン、2-アミノエタノール、トルイジン、アミノフェノール、ヘキシルアニリン、フェニレンジアミン、フェニルエチルアミン、ジベンジルアミン、ピロール、N-メチルピロール、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、アミノモルホリン、アミノアルキルモルフォリン等があげられる。
 これらの酸捕捉剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 樹脂組成物が酸捕捉剤を含有する場合、酸捕捉剤の含有量は、樹脂組成物の全固形分を基準として、通常は0.001~10質量%であり、好ましくは0.01~5質量%である。
 酸発生剤と酸捕捉剤との使用割合は、酸発生剤/酸捕捉剤(モル比)=2.5~300であることが好ましい。即ち、感度、解像度の点からモル比が2.5以上であることが好ましく、露光後加熱処理までの経時でのレリーフパターンの太りによる解像度の低下抑制の点から300以下が好ましい。酸発生剤/酸捕捉剤(モル比)は、より好ましくは5.0~200、更に好ましくは7.0~150である。
<その他の添加剤>
 樹脂組成物は、本発明の効果が得られる範囲で、必要に応じて、各種の添加物、例えば、界面活性剤、高級脂肪酸誘導体、熱重合開始剤、無機粒子、紫外線吸収剤、有機チタン化合物、酸化防止剤、凝集防止剤、フェノール系化合物、他の高分子化合物、可塑剤及びその他の助剤類(例えば、消泡剤、難燃剤など)等を配合することができる。これらの成分を適宜含有させることにより、膜物性などの性質を調整することができる。これらの成分は、例えば、特開2012-003225号公報の段落番号0183以降(対応する米国特許出願公開第2013/0034812号明細書の段落番号0237)の記載、特開2008-250074号公報の段落番号0101~0104、0107~0109等の記載を参酌でき、これらの内容は本明細書に組み込まれる。これらの添加剤を配合する場合、その合計配合量は樹脂組成物の固形分の3質量%以下とすることが好ましい。
〔界面活性剤〕
 界面活性剤としては、フッ素系界面活性剤、シリコーン系界面活性剤、炭化水素系界面活性剤などの各種界面活性剤を使用できる。界面活性剤はノニオン型界面活性剤であってもよく、カチオン型界面活性剤であってもよく、アニオン型界面活性剤であってもよい。
 樹脂組成物に界面活性剤を含有させることで、塗布液として調製したときの液特性(特に、流動性)がより向上し、塗布厚の均一性や省液性をより改善することができる。即ち、界面活性剤を含有する組成物を適用した塗布液を用いて膜形成する場合においては、被塗布面と塗布液との界面張力が低下して、被塗布面への濡れ性が改善され、被塗布面への塗布性が向上する。このため、厚みムラの小さい均一厚の膜形成をより好適に行うことができる。
 フッ素系界面活性剤としては、国際公開第2021/112189号の段落0328に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
フッ素系界面活性剤は、フッ素原子を有する(メタ)アクリレート化合物に由来する繰り返し単位と、アルキレンオキシ基(好ましくはエチレンオキシ基、プロピレンオキシ基)を2以上(好ましくは5以上)有する(メタ)アクリレート化合物に由来する繰り返し単位と、を含む含フッ素高分子化合物も好ましく用いることができ、下記化合物も本発明で用いられるフッ素系界面活性剤として例示される。
Figure JPOXMLDOC01-appb-C000030
 上記の化合物の重量平均分子量は、好ましくは3,000~50,000であり、5,000~30,000であることがより好ましい。
 フッ素系界面活性剤は、エチレン性不飽和基を側鎖に有する含フッ素重合体をフッ素系界面活性剤として用いることもできる。具体例としては、特開2010-164965号公報の段落0050~0090および段落0289~0295に記載された化合物が挙げられ、この内容は本明細書に組み込まれる。また、市販品としては、例えばDIC(株)製のメガファックRS-101、RS-102、RS-718K等が挙げられる。
 フッ素系界面活性剤中のフッ素含有率は、3~40質量%が好適であり、より好ましくは5~30質量%であり、特に好ましくは7~25質量%である。フッ素含有率がこの範囲内であるフッ素系界面活性剤は、塗布膜の厚さの均一性や省液性の点で効果的であり、組成物中における溶解性も良好である。
 シリコーン系界面活性剤、炭化水素系界面活性剤、ノニオン型界面活性剤、カチオン型界面活性剤、アニオン型界面活性剤としては、それぞれ、国際公開第2021/112189号の段落0329~0334に記載の化合物が挙げられる。これらの内容は本明細書に組み込まれる。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
界面活性剤の含有量は、樹脂組成物の全固形分に対して、0.001~2.0質量%が好ましく、0.005~1.0質量%がより好ましい。
〔高級脂肪酸誘導体〕
 樹脂組成物は、酸素に起因する重合阻害を防止するために、ベヘン酸やベヘン酸アミドのような高級脂肪酸誘導体を添加し、塗布後の乾燥の過程で樹脂組成物の表面に偏在させてもよい。
 また、高級脂肪酸誘導体は、国際公開第2015/199219号の段落0155に記載の化合物を用いることもでき、この内容は本明細書に組み込まれる。
 樹脂組成物が高級脂肪酸誘導体を有する場合、高級脂肪酸誘導体の含有量は、樹脂組成物の全固形分に対して、0.1~10質量%であることが好ましい。高級脂肪酸誘導体は1種のみでもよいし、2種以上であってもよい。高級脂肪酸誘導体が2種以上の場合は、その合計が上記範囲であることが好ましい。
〔熱重合開始剤〕
 樹脂組成物は、熱重合開始剤を含んでもよく、特に熱ラジカル重合開始剤を含んでもよい。熱ラジカル重合開始剤は、熱のエネルギーによってラジカルを発生し、重合性を有する化合物の重合反応を開始又は促進させる化合物である。熱ラジカル重合開始剤を添加することによって樹脂及び重合性化合物の重合反応を進行させることもできるので、より耐溶剤性を向上できる。また、上述した光重合開始剤も熱により重合を開始する機能を有する場合があり、熱重合開始剤として添加することができる場合がある。
 熱ラジカル重合開始剤として、具体的には、特開2008-063554号公報の段落0074~0118に記載されている化合物が挙げられ、この内容は本明細書に組み込まれる。
 熱重合開始剤を含む場合、その含有量は、樹脂組成物の全固形分に対し0.1~30質量%であることが好ましく、より好ましくは0.1~20質量%であり、更に好ましくは0.5~15質量%である。熱重合開始剤は1種のみ含有していてもよいし、2種以上含有していてもよい。熱重合開始剤を2種以上含有する場合は、合計量が上記範囲であることが好ましい。
〔無機粒子〕
 樹脂組成物は、無機粒子を含んでもよい。無機粒子として、具体的には、炭酸カルシウム、リン酸カルシウム、シリカ、カオリン、タルク、二酸化チタン、アルミナ、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、ガラス等を含むことができる。
 上記無機粒子の平均粒子径としては、0.01~2.0μmが好ましく、0.02~1.5μmがより好ましく、0.03~1.0μmがさらに好ましく、0.04~0.5μmが特に好ましい。
 無機粒子の上記平均粒子径は、一次粒子径であり、また体積平均粒子径である。体積平均粒子径は、Nanotrac WAVE II EX-150(日機装社製)による動的光散乱法で測定できる。
 上記測定が困難である場合は、遠心沈降光透過法、X線透過法、レーザー回折・散乱法で測定することもできる。
〔紫外線吸収剤〕
 樹脂組成物は、紫外線吸収剤を含んでいてもよい。紫外線吸収剤としては、サリシレート系、ベンゾフェノン系、ベンゾトリアゾール系、置換アクリロニトリル系、トリアジン系などの紫外線吸収剤を使用することができる。
 紫外線吸収剤の具体例としては、国際公開第2021/112189号の段落0341~0342に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 紫外線吸収剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂組成物が紫外線吸収剤を含む場合、紫外線吸収剤の含有量は、樹脂組成物の全固形分質量に対して、0.001質量%以上1質量%以下であることが好ましく、0.01質量%以上0.1質量%以下であることがより好ましい。
〔有機チタン化合物〕 
 樹脂組成物は、有機チタン化合物を含有してもよい。樹脂組成物が有機チタン化合物を含有することにより、低温で硬化した場合であっても耐薬品性に優れる樹脂層を形成できる。
 使用可能な有機チタン化合物としては、チタン原子に有機基が共有結合又はイオン結合を介して結合しているものが挙げられる。
 有機チタン化合物の具体例を、以下のI)~VII)に示す。
I)チタンキレート化合物:中でも、樹脂組成物の保存安定性がよく、良好な硬化パターンが得られることから、アルコキシ基を2個以上有するチタンキレート化合物がより好ましい。具体的な例は、チタニウムビス(トリエタノールアミン)ジイソプロポキサイド、チタニウムジ(n-ブトキサイド)ビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(2,4-ペンタンジオネート)、チタニウムジイソプロポキサイドビス(テトラメチルヘプタンジオネート)、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)等である。
II)テトラアルコキシチタン化合物:例えば、チタニウムテトラ(n-ブトキサイド)、チタニウムテトラエトキサイド、チタニウムテトラ(2-エチルヘキソキサイド)、チタニウムテトライソブトキサイド、チタニウムテトライソプロポキサイド、チタニウムテトラメトキサイド、チタニウムテトラメトキシプロポキサイド、チタニウムテトラメチルフェノキサイド、チタニウムテトラ(n-ノニロキサイド)、チタニウムテトラ(n-プロポキサイド)、チタニウムテトラステアリロキサイド、チタニウムテトラキス[ビス{2,2-(アリロキシメチル)ブトキサイド}]等である。
III)チタノセン化合物:例えば、ペンタメチルシクロペンタジエニルチタニウムトリメトキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロフェニル)チタニウム、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム等である。
IV)モノアルコキシチタン化合物:例えば、チタニウムトリス(ジオクチルホスフェート)イソプロポキサイド、チタニウムトリス(ドデシルベンゼンスルホネート)イソプロポキサイド等である。
V)チタニウムオキサイド化合物:例えば、チタニウムオキサイドビス(ペンタンジオネート)、チタニウムオキサイドビス(テトラメチルヘプタンジオネート)、フタロシアニンチタニウムオキサイド等である。
VI)チタニウムテトラアセチルアセトネート化合物:例えば、チタニウムテトラアセチルアセトネート等である。
VII)チタネートカップリング剤:例えば、イソプロピルトリドデシルベンゼンスルホニルチタネート等である。
 中でも、有機チタン化合物としては、上記I)チタンキレート化合物、II)テトラアルコキシチタン化合物、及びIII)チタノセン化合物から成る群から選ばれる少なくとも1種の化合物であることが、より良好な耐薬品性を奏するという観点から好ましい。特に、チタニウムジイソプロポキサイドビス(エチルアセトアセテート)、チタニウムテトラ(n-ブトキサイド)、及びビス(η5-2,4-シクロペンタジエン-1-イル)ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウムが好ましい。
 有機チタン化合物を配合する場合、その配合量は、特定樹脂100質量部に対し、0.05~10質量部であることが好ましく、より好ましくは0.1~2質量部である。配合量が0.05質量部以上である場合、得られる硬化パターンに良好な耐熱性及び耐薬品性がより効果的に発現し、一方10質量部以下である場合、組成物の保存安定性により優れる。
〔酸化防止剤〕
 樹脂組成物は、酸化防止剤を含んでいてもよい。添加剤として酸化防止剤を含有することで、硬化後の膜の伸度特性や、金属材料との密着性を向上させることができる。酸化防止剤としては、フェノール化合物、亜リン酸エステル化合物、チオエーテル化合物などが挙げられる。酸化防止剤の具体例としては、国際公開第2021/112189号の段落0348~0357に記載の化合物が挙げられる。この内容は本明細書に組み込まれる。
 酸化防止剤の含有量は、樹脂に対し、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。含有量を0.1質量部以上とすることにより、高温高湿環境下においても伸度特性や金属材料に対する密着性向上の効果が得られやすく、また10質量部以下とすることにより、例えば感光剤又は増感剤との相互作用により、樹脂組成物の感度が向上する。酸化防止剤は1種のみを用いてもよく、2種以上を用いてもよい。2種以上を用いる場合は、それらの合計量が上記範囲となることが好ましい。
〔凝集防止剤〕
 樹脂組成物は、必要に応じて凝集防止剤を含有してもよい。凝集防止剤としては、ポリアクリル酸ナトリウム等が挙げられる。
 凝集防止剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂組成物が凝集防止剤を含む場合、凝集防止剤の含有量は、樹脂組成物の全固形分質量に対して、0.01質量%以上10質量%以下であることが好ましく、0.02質量%以上5質量%以下であることがより好ましい。
〔フェノール系化合物〕
 樹脂組成物は、必要に応じてフェノール系化合物を含有してもよい。フェノール系化合物としては、Bis-Z、BisP-EZ、TekP-4HBPA、TrisP-HAP、TrisP-PA、BisOCHP-Z、BisP-MZ、BisP-PZ、BisP-IPZ、BisOCP-IPZ、BisP-CP、BisRS-2P、BisRS-3P、BisP-OCHP、メチレントリス-FR-CR、BisRS-26X(以上、商品名、本州化学工業(株)製)、BIP-PC、BIR-PC、BIR-PTBP、BIR-BIPC-F(以上、商品名、旭有機材工業(株)製)等が挙げられる。
 フェノール系化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂組成物がフェノール系化合物を含む場合、フェノール系化合物の含有量は、樹脂組成物の全固形分質量に対して、0.01質量%以上30質量%以下であることが好ましく、0.02質量%以上20質量%以下であることがより好ましい。
〔他の高分子化合物〕
 他の高分子化合物としては、シロキサン樹脂、(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ノボラック樹脂、レゾール樹脂、ポリヒドロキシスチレン樹脂およびそれらの共重合体などが挙げられる。他の高分子化合物はメチロール基、アルコキシメチル基、エポキシ基などの架橋基が導入された変性体であってもよい。
 他の高分子化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 樹脂組成物が他の高分子化合物を含む場合、他の高分子化合物の含有量は、樹脂組成物の全固形分質量に対して、0.01質量%以上30質量%以下であることが好ましく、0.02質量%以上20質量%以下であることがより好ましい。
<樹脂組成物の特性>
 本発明の樹脂組成物の粘度は、樹脂組成物の固形分濃度により調整できる。塗布膜厚の観点から、1,000mm/s~12,000mm/sが好ましく、2,000mm/s~10,000mm/sがより好ましく、3,000mm/s~8,000mm/sが更に好ましい。上記範囲であれば、均一性の高い塗布膜を得ることが容易になる。1,000mm/s以下では、例えば再配線用絶縁膜として必要とされる膜厚で塗布することが困難であり、12,000mm/s以上では、塗布面状が悪化する可能性がある。
<樹脂組成物の含有物質について>
 本発明の樹脂組成物の含水率は、2.0質量%未満であることが好ましく、1.5質量%未満であることがより好ましく、1.0質量%未満であることが更に好ましい。2.0%以上では、樹脂組成物の保存安定性が低くなる可能性がある。
 水分の含有量を維持する方法としては、保管条件における湿度の調整、保管時の収容容器の空隙率低減などが挙げられる。 
 本発明の樹脂組成物の金属含有量は、絶縁性の観点から、5質量ppm(parts per million)未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。金属としては、ナトリウム、カリウム、マグネシウム、カルシウム、鉄、銅、クロム、ニッケルなどが挙げられるが、有機化合物と金属との錯体として含まれる金属は除く。金属を複数含む場合は、これらの金属の合計が上記範囲であることが好ましい。
 また、本発明の樹脂組成物に意図せずに含まれる金属不純物を低減する方法としては、本発明の樹脂組成物を構成する原料として金属含有量が少ない原料を選択する、本発明の樹脂組成物を構成する原料に対してフィルターろ過を行う、装置内をポリテトラフルオロエチレン等でライニングしてコンタミネーションを可能な限り抑制した条件下で蒸留を行う等の方法を挙げることができる。
 本発明の樹脂組成物は、半導体材料としての用途を考慮すると、ハロゲン原子の含有量が、配線腐食性の観点から、500質量ppm未満が好ましく、300質量ppm未満がより好ましく、200質量ppm未満が更に好ましい。中でも、ハロゲンイオンの状態で存在するものは、5質量ppm未満が好ましく、1質量ppm未満がより好ましく、0.5質量ppm未満が更に好ましい。ハロゲン原子としては、塩素原子及び臭素原子が挙げられる。塩素原子及び臭素原子、又は塩素イオン及び臭素イオンの合計がそれぞれ上記範囲であることが好ましい。
 ハロゲン原子の含有量を調節する方法としては、イオン交換処理などが好ましく挙げられる。
 本発明の樹脂組成物の収容容器としては従来公知の収容容器を用いることができる。また、収容容器としては、原材料や本発明の樹脂組成物中への不純物混入を抑制することを目的に、容器内壁を6種6層の樹脂で構成された多層ボトルや、6種の樹脂を7層構造にしたボトルを使用することも好ましい。このような容器としては例えば特開2015-123351号公報に記載の容器が挙げられる。
<樹脂組成物の硬化物>
 本発明の樹脂組成物を硬化することにより、この樹脂組成物の硬化物を得ることができる。
 本発明の硬化物は、本発明の樹脂組成物を硬化してなる硬化物である。
 樹脂組成物の硬化は加熱によるものであることが好ましく、加熱温度が120℃~400℃の範囲内であることがより好ましく、140℃~380℃の範囲内にあることが更に好ましく、170℃~350℃の範囲内にあることが特に好ましい。樹脂組成物の硬化物の形態は、特に限定されず、フィルム(膜)状、棒状、球状、ペレット状など、用途に合わせて選択することができる。本発明において、この硬化物は、フィルム(膜)状であることが好ましい。また、樹脂組成物のパターン加工によって、壁面への保護膜の形成、導通のためのビアホール形成、インピーダンスや静電容量あるいは内部応力の調整、放熱機能付与など、用途にあわせて、この硬化物の形状を選択することもできる。この硬化物(硬化物からなる膜)の膜厚は、0.5μm以上150μm以下であることが好ましい。
 本発明の樹脂組成物を硬化した際の収縮率は、50%以下が好ましく、45%以下がより好ましく、40%以下が更に好ましい。ここで、収縮率は、樹脂組成物の硬化前後の体積変化の百分率を指し、下記の式より算出することができる。
 収縮率[%]=100-(硬化後の体積÷硬化前の体積)×100
<樹脂組成物の硬化物の特性> 
 樹脂組成物の硬化物のイミド化反応率は、70%以上が好ましく、80%以上がより好ましく、90%以上が更に好ましい。70%未満では硬化物の機械特性が劣る可能性がある。
 樹脂組成物の硬化物の破断伸びは、30%以上が好ましく、40%以上がより好ましく、50%以上が更に好ましい。
 樹脂組成物の硬化物のガラス転移温度(Tg)は、180℃以上であることが好ましく、210℃以上であることがより好ましく、230℃以上であることがさらに好ましい。
<樹脂組成物の調製>
 樹脂組成物は、上記各成分を混合して調製することができる。混合方法は特に限定はなく、従来公知の方法で行うことができる。
 混合は撹拌羽による混合、ボールミルによる混合、タンク自身を回転させる混合などを採用することができる。
 混合中の温度は10~30℃が好ましく、15~25℃がより好ましい。
 また、樹脂組成物中のゴミや微粒子等の異物を除去する目的で、フィルターを用いたろ過を行うことが好ましい。フィルター孔径は、例えば5μm以下である態様が挙げられ、1μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下が更に好ましい。フィルターの材質は、ポリテトラフルオロエチレン、ポリエチレン又はナイロンが好ましい。フィルターの材質がポリエチレンである場合はHDPE(高密度ポリエチレン)であることがより好ましい。フィルターは、有機溶剤であらかじめ洗浄したものを用いてもよい。フィルターろ過工程では、複数種のフィルターを直列又は並列に接続して用いてもよい。複数種のフィルターを使用する場合は、孔径又は材質が異なるフィルターを組み合わせて使用してもよい。接続態様としては、例えば、1段目として孔径1μmのHDPEフィルターを、2段目として孔径0.2μmのHDPEフィルターを、直列に接続した態様が挙げられる。また、各種材料を複数回ろ過してもよい。複数回ろ過する場合は、循環ろ過であってもよい。また、加圧してろ過を行ってもよい。加圧してろ過を行う場合、加圧する圧力は例えば0.01MPa以上1.0MPa以下である態様が挙げられ、0.03MPa以上0.9MPa以下が好ましく、0.05MPa以上0.7MPa以下がより好ましく、0.05MPa以上0.5MPa以下が更に好ましい。
 フィルターを用いたろ過の他、吸着材を用いた不純物の除去処理を行ってもよい。フィルターろ過と吸着材を用いた不純物除去処理とを組み合わせてもよい。吸着材としては、公知の吸着材を用いることができる。例えば、シリカゲル、ゼオライトなどの無機系吸着材、活性炭などの有機系吸着材が挙げられる。
 更にフィルターを用いたろ過後、ボトルに充填した樹脂組成物を減圧下に置き、脱気する工程を施しても良い。
(処理液)
 本発明の処理液は、環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、処理液と、上記膜とを接触させる処理工程を含む硬化物の製造方法において用いられる処理液であって、第4族元素を有する化合物を含む。
 処理液に含まれる成分の詳細は、上述の本発明の硬化物の製造方法における処理工程において用いられる処理液に含まれる成分の詳細と同様であり、好ましい態様も同様である。
 上記硬化物の製造方法の詳細、及び、これに含まれる各工程の詳細は、上述の本発明の硬化物の製造方法の詳細、及び、これに含まれる各工程の詳細と同様であり、好ましい態様も同様である。
 本発明の処理液における上記硬化物の製造方法は、上記処理工程後に、上記膜を加熱する加熱工程を更に含む、ことが好ましい。
 また、本発明の処理液における上記硬化物の製造方法は、上記膜形成工程、上記膜形成工程により形成された膜を選択的に露光する露光工程、現像液により上記露光後の膜を現像してパターン状の膜を形成する現像工程を含み、上記処理工程が、上記パターン状の膜を上記処理液により洗浄するリンス工程であることが好ましい。
 上記膜形成工程、露光工程、現像工程、処理工程、及び、加熱工程の詳細は、上述の本発明の硬化物の製造方法における膜形成工程、露光工程、現像工程、処理工程、及び加熱工程の詳細と同様であり、好ましい態様も同様である。
 上記リンス工程の詳細は、上述の、本発明の硬化物の製造方法において処理工程がリンス工程である場合の詳細と同様であり、好ましい態様も同様である。
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。「部」、「%」は特に述べない限り、質量基準である。
<合成例1:ポリマーP-1の合成>
 4,4’-オキシジフタル酸二無水物(ODPA)155.1gをセパラブルフラスコに入れ、2-ヒドロキシエチルメタクリレート(HEMA)134.0g及びγ-ブチロラクトン400mlを加えた。室温下で撹拌しながら、ピリジン79.1gを加えることにより、反応混合物を得た。反応による発熱の終了後、室温まで放冷し、更に16時間静置した。
 次に、氷冷下において、反応混合物に、ジシクロヘキシルカルボジイミド(DCC)2 06.3gをγ-ブチロラクトン180mlに溶解した溶液を、撹拌しながら40分かけて加えた。続いて、4,4’-ジアミノジフェニルエーテル(DADPE)93.0gをγ-ブチロラクトン350mlに懸濁した懸濁液を、撹拌しながら60分かけて加えた。更に室温で2時間撹拌した後、エチルアルコール30mlを加えて1時間撹拌した。その後、γ-ブチロラクトン400mlを加えた。反応混合物に生じた沈殿物を、ろ過により取り除き、反応液を得た。
 得られた反応液を3リットルのエチルアルコールに加えて、粗ポリマーからなる沈殿物を生成した。生成した粗ポリマーを濾取し、テトラヒドロフラン1.5リットルに溶解して粗ポリマー溶液を得た。得られた粗ポリマー溶液を28リットルの水に滴下してポリマーを沈殿させ、得られた沈殿物を濾取した後に真空乾燥することにより、粉末状のポリマーP-1を得た。
 このポリマーP-1の重量平均分子量(Mw)を測定したところ、20,000であっ た。
<合成例2:ポリマーP-2の合成>
 合成例1において、4,4’-オキシジフタル酸二無水物155.1gに代えて、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物147.1gを用いた以外は、合成例1に記載の方法と同様にして反応を行うことにより、ポリマーP-2を得た。
 このポリマーP-2の重量平均分子量(Mw)を測定したところ、22,000であった。
<合成例3:ポリマーP-3の合成>
 20.0g(64.5ミリモル)の4,4’-オキシジフタル酸二無水物(4,4’-オキシジフタル酸を140℃で12時間乾燥したもの)と、18.6g(129ミリモル)の2-ヒドロキシエチルメタクリレートと、0.05gのハイドロキノンと、10.7gのピリジンと、140gのダイグライム(ジエチレングリコールジメチルエーテル)とを混合し、60℃の温度で18時間撹拌して、4,4’-オキシジフタル酸と2-ヒドロキシエチルメタクリレートとのジエステルを製造した。次いで、反応混合物を-10℃に冷却し、温度を-10±4℃に保ちながら、16.12g(135.5ミリモル)のSOClを10分かけて加えた。50mLのN-メチルピロリドンで希釈した後、反応混合物を室温で2時間撹拌した。次いで、100mLのN-メチルピロリドンに11.08g(58.7ミリモル)の4,4’-オキシジアニリンを溶解させた溶液を、20~23℃で20分かけて反応混合物に滴下した。次いで、反応混合物を室温で1晩撹拌した。次いで、5リットルの水に加えてポリイミド前駆体を沈殿させ、水-ポリイミド前駆体混合物を5,000rpmの速度で15分間撹拌した。ポリイミド前駆体を濾取し、4リットルの水に加えて再度30分間撹拌し、再び濾取した。次いで、得られたポリイミド前駆体を減圧下、45℃で3日間乾燥し、ポリマーP-3を得た。
 このポリマーP-3の重量平均分子量(Mw)を測定したところ、18,000であった。
<合成例4:ポリマーP-4の合成>
 合成例1において、2-ヒドロキシエチルメタクリレート(HEMA)134.0gを使用しなかった以外は、合成例1と同様の合成方法によりポリマーP-4を得た。
 ポリマーP-4の重量平均分子量(Mw)を測定したところ、16,000であった。
<合成例5:ポリマーP-5の合成>
 合成例1において、4,4’-オキシジフタル酸二無水物155.1gに代えて、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物73.5gと4,4’-オキシジフタル酸二無水物77.5gの混合物を用いた以外は、合成例1に記載の方法と同様にして反応を行うことにより、ポリマーP-5を得た。
 このポリマーP-5の重量平均分子量(Mw)を測定したところ、22,000であった。
<合成例6:ポリマーP-6の合成>
 合成例1において、4,4’-オキシジフタル酸二無水物155.1gに代えて、ピロメリット酸二無水物54.5gと4,4’-オキシジフタル酸二無水物77.5gの混合物を用いた以外は、合成例1に記載の方法と同様にして反応を行うことにより、ポリマーP-6を得た。
 このポリマーP-6の重量平均分子量(Mw)を測定したところ、22,000であった。
<合成例7:ポリマーP-7の合成>
 合成例1において、4,4’-ジアミノジフェニルエーテル(DADPE)93.0gに代えて、2,2’-ビス(トリフルオロメチル)ベンジジン148.8gを用いた以外は、合成例1に記載の方法と同様にして反応を行うことにより、ポリマーP-7を得た。
 このポリマーP-7の重量平均分子量(Mw)を測定したところ、20,000であった。
<実施例及び比較例>
 各実施例において、それぞれ、下記表に記載の成分を混合し、各樹脂組成物を得た。また、比較例において、下記表に記載の成分を混合し、比較用組成物を得た。
 具体的には、表に記載の成分の含有量は、表の「質量部」に記載の量とした。また、各組成物において、溶剤の含有量は、組成物の固形分濃度が表に記載の値(質量%)となるようにした。
 得られた樹脂組成物及び比較用組成物を、フィルタ孔径が0.45μmのポリテトラフルオロエチレン製フィルターを通して加圧ろ過した。
 また、表中、「-」の記載は該当する成分を組成物が含有していないことを示している。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
(樹脂組成物)
〔樹脂〕
・P-1~P-7:上記で合成したP-1~P-7
〔ラジカル架橋剤〕
・M-1:テトラエチレングリコールジメタクリレート
・M-2:テトラエチレングリコールジアクリレート
・M-3:KAYARAD DPHA(日本化薬(株)製)
〔光重合開始剤〕
・I-1:Irgacure OXE-01(BASF社製)
・I-2:3,5-ビス(4-ジエチルアミノベンジリデン)-1-メチル-4-アザシクロヘキサノン
・I-3:Irgacure784(BASF社製)
・I-4:下記化合物
Figure JPOXMLDOC01-appb-C000038
・I-5:2-((ベンゾイルオキシ)イミノ)-1-フェニルプロパン-1-オン
〔熱塩基発生剤〕
・A-1:WPBG-140(富士フイルム和光純薬株式会社製)
・A-2:N-cyclohexyl-N,N-dimethyl-N-phenacylammonium Maleate
Figure JPOXMLDOC01-appb-C000039
・A-3:下記化合物
Figure JPOXMLDOC01-appb-C000040
・A-4:下記化合物
Figure JPOXMLDOC01-appb-C000041
・A-5:下記化合物
Figure JPOXMLDOC01-appb-C000042
〔重合禁止剤〕
・B-1:4-メトキシフェノール
・B-2:2-ニトロソ-1-ナフト-ル
・B-3:p-ベンゾキノン
〔シランカップリング剤〕
・C-1:KBM-503(信越シリコーン社製)
・C-2:N-(3-(トリエトキシシリル)プロピル)フタルアミド酸
・C-3:ベンゾフェノン-3,3’-ビス(N-(3-トリエトキシシリル)プロピルアミド)-4,4’-ジカルボン酸
・C-4:N-(3-(トリエトキシシリル)プロピル)マレインアミド酸
〔マイグレーション抑制剤〕
・D-1:テトラゾール
・D-2:5-アミノテトラゾール
・D-3:3-アミノトリアゾール
・D-4:ベンゾトリアゾール
・D-5:下記化合物
Figure JPOXMLDOC01-appb-C000043
〔添加剤〕
・J-1:N-フェニルジエタノールアミン
・J-2:N-(4-クロロフェニル)グリシン
・J-3:7-(ジエチルアミノ)クマリン-3-カルボン酸エチル
・J-4:ジシクロヘキシルウレア
〔溶剤〕
・NMP:N-メチル-2-ピロリドン
・EL:乳酸エチル
・GBL:γ-ブチロラクトン
・DMSO:ジメチルスルホキシド
 表中、「比率」の欄の記載は、溶剤の全質量に対する各溶剤の含有量(質量%)を示している。
<処理液の調製>
 表の「現像液」又は「リンス液」の欄に記載の各成分を混合して、現像液又はリンス液を調製した。表の「現像液」又は「リンス液」の欄に1つの成分のみが記載されている例については、その成分を単独で現像液又はリンス液とした。
 また、下記表に記載の成分を混合して処理液PL-1を調製した。
Figure JPOXMLDOC01-appb-T000044
 表中の略語の詳細は以下の通りである。
〔溶剤〕
・PGMEA:プロピレングリコールモノメチルエーテルアセテート
・NMP:N-メチル-2-ピロリドン
・PGME:プロピレングリコールモノメチルエーテル
〔第4族元素含有化合物〕
・K-1:テトラキス(2,4-ペンタンジオナト)チタニウム(IV)
・K-2:テトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)
・K-3:ジ-Η5-シクロペンタジエニルビス[2,6-ジフルオロ-3-(ピロール-1-イル)フェニル]チタン(IV)
・K-4:チタノセンビス(トリフルオロメタンスルホナート)
・K-5:ジルコノセンビス(トリフルオロメタンスルホナート)テトラヒドロフラン付加物
・K-6:オルトチタン酸テトラエチル
・K-7:ジルコニウム(IV)プロポキシド
<耐薬品性の評価>
 各実施例又は比較例において、調製した樹脂組成物又は比較用組成物を、シリコンウエハ上にスピンコート法により塗布した。上記シリコンウエハをホットプレート上で、表の「PB温度(℃)」に記載の温度で5分間乾燥し、シリコンウエハ上に表の「膜厚(μm)」の欄に記載の厚さであって、均一な厚さの樹脂組成物層を形成した。
 シリコンウエハ上の樹脂組成物層を、ステッパーを用いてi線で全面露光した。露光量は500mJ/cmとした。
 上記露光後、表の「現像液」の欄に記載の現像液で60秒間現像し、表の「リンス液」の欄に記載のリンス液で60秒間リンスした。現像液及びリンス液の供給方法は、それぞれ表の「供給方法」の欄に記載の方法とした。ただし、表の「現像液」の「溶剤」及び「第4族元素含有化合物」の欄に「-」と記載された例においては、現像液による現像は行わなかった。
 その後、「リンス後の処理」の欄に「PL-1」等と処理液の記載が有る例については、表に記載された処理液を樹脂組成物層と60秒間接触させた。
 次いで、樹脂組成物層を、ホットプレートを使用して窒素雰囲気下で10℃/分の昇温速度で昇温し、表の「キュア温度(℃)」に記載の温度に達した後「キュア時間(min)」に記載の時間においてその温度を維持し、硬化膜を形成した。
 得られた硬化膜を下記の薬品に下記の条件で浸漬し、溶解速度を算定した。
 薬品:ジメチルスルホキシド(DMSO)と25質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液の90:10(質量比)の混合物
 評価条件:上記硬化膜を上記薬品に75℃で15分間浸漬して浸漬前後の硬化膜の膜厚を比較し、溶解速度(nm/分)を算出した。
 得られた溶解速度の値について、下記評価基準に従って評価し、「耐薬品性」の欄に記載した。溶解速度が小さいほど、耐薬品性に優れるといえる。
-評価基準-
A:溶解速度が250nm/分未満であった。
B:溶解速度が250nm/分以上500nm/分未満であった。
C:溶解速度が500nm/分以上であった。
<積層信頼性の評価>
〔積層体(1)の製造〕
 各実施例及び比較例において、それぞれ、各樹脂組成物又は比較用組成物を、シリコンウエハ上にスピンコート法により塗布した。樹脂組成物層が塗布されたシリコンウエハをホットプレート上で、表の「PB温度(℃)」に記載の温度で5分間乾燥し、シリコンウエハ上に表の「膜厚(μm)」の欄に記載の厚さの均一な樹脂組成物層を形成した。次いで、シリコンウエハ上の樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、露光波長365nmで、500mJ/cmの露光エネルギーで露光し、露光した感光性樹脂組成物層(樹脂層)を、表に記載の現像液で60秒間現像し、表に記載のリンス液でリンスを実施して、直径10μmのホールを形成した。現像液及びリンス液の供給方法は、それぞれ表の「供給方法」の欄に記載の方法とした。ただし、表の「現像液」の「溶剤」及び「第4族元素含有化合物」の欄に「-」と記載された例においては、現像液による現像は行わなかった。
 その後、「リンス後の処理」の欄に「PL-1」等と処理液の記載が有る例については、表に記載された処理液を樹脂組成物層と60秒間接触させた。
 次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表の「キュア温度(℃)」の欄に記載の加熱温度に達した後、表の「キュア時間(min)」の欄に記載の加熱時間において加熱した。室温まで冷却後、樹脂層の表面に、再度、上記樹脂組成物又は上記比較用組成物と同じ組成物を用いて、上記と同様に樹脂組成物の塗布から、パターン化した膜の3時間加熱までの手順を再度実施して、樹脂層を2層有する積層体(1)を形成した。
〔積層体(2)の製造〕
上記で得られた積層体(1)の表面に、積層体(1)の製造に用いた樹脂組成物又は比較用組成物と同じ組成物を用いて、積層体(1)の製造と同様の手順を再度実施することで、樹脂層を4層有する積層体(2)を作製した。
〔積層体(3)の製造〕
 各実施例及び比較例において、それぞれ、各樹脂組成物又は比較用組成物を、シリコンウエハ上にスピンコート法により塗布した。樹脂組成物層が塗布されたシリコンウエハをホットプレート上で、表の「PB温度(℃)」に記載の温度で5分間乾燥し、シリコンウエハ上に表の「膜厚(μm)」の欄に記載の厚さの均一な樹脂組成物層を形成した。シリコンウエハ上の樹脂組成物層を、ステッパー(Nikon NSR 2005 i9C)を用いて、露光波長365nmで、500mJ/cmの露光エネルギーで露光し、露光した樹脂組成物層(樹脂層)を、表に記載の現像液で60秒間現像し、表に記載のリンス液でリンスを実施して、直径10μmのホールを形成した。現像液及びリンス液の供給方法は、それぞれ表の「供給方法」の欄に記載の方法とした。ただし、表の「現像液」の「溶剤」及び「第4族元素含有化合物」の欄に「-」と記載された例においては、現像液による現像は行わなかった。
 その後、「リンス後の処理」の欄に「PL-1」等と処理液の記載が有る例については、表に記載された処理液を樹脂組成物層と60秒間接触させた。
 次いで、窒素雰囲気下で、10℃/分の昇温速度で昇温し、表の「キュア温度(℃)」の欄に記載の加熱温度℃に達した後、表の「キュア時間(min)」の欄に記載の加熱時間において加熱した。室温まで冷却後、上記ホール部分を覆うように、樹脂組成物層の表面の一部に、蒸着法により厚さ2μmの銅薄層(金属層)を形成した。さらに、金属層及び樹脂組成物層の表面に、再度、同じ樹脂組成物又は比較用組成物を用いて、上記と同様に樹脂組成物の塗布から、パターン化した膜の加熱までの手順を再度実施して、樹脂層/金属層/樹脂層からなる積層体(3)を作製した。
〔積層体(4)の製造〕
 上記積層体(3)の表面に、さらに、積層体(3)と同様の方法により、銅薄層(金属層)と樹脂層を交互に作製し、樹脂層/金属層/樹脂層/金属層/樹脂層/金属層/樹脂層からなる積層体(4)を作製した。
〔剥離欠陥評価(加熱処理後)〕
 上記で得られた各積層体を、空気中180℃で500時間加熱した。その後、各積層体の樹脂層面に対し、垂直方向に幅5mmとなるように、かつ、樹脂層と樹脂層が接している部分と、金属層と樹脂層が接している部分を、それぞれ切り出し、その断面を観察して、1つの切り出し片における、樹脂層/樹脂層間、及び金属層/樹脂層間での剥がれの有無を光学顕微鏡で確認した。剥がれの発生は、樹脂層/樹脂層間、金属層/樹脂層間の剥がれのいずれであるかに関わらず全体での個数を確認した。評価は下記評価基準に従って行い、評価結果は表の「積層信頼性」の欄に記載した。剥がれの発生が少ないほど、優れた密着性を有していることを表し、好ましい結果となる。
-評価結果-
A:剥がれの発生なし
B:剥がれの発生が1~2個
C:剥がれの発生が3個以上
 以上の結果から、本発明に係る硬化物の製造方法によれば、耐薬品性に優れた硬化物が得られることがわかる。
 比較例1に係る硬化物の製造方法は、第4族元素含有化合物を含む処理液と、組成物から形成された膜とを接触させる工程を有しない。このような例においては、得られる硬化物の耐薬品性に劣ることがわかる。

Claims (17)

  1.  環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、
     処理液と、前記膜とを接触させる処理工程、を含み、
     前記処理液が、第4族元素を有する化合物を含む
     硬化物の製造方法。
  2.  前記処理工程後に、前記膜を加熱する加熱工程を更に含む、請求項1に記載の硬化物の製造方法。
  3.  前記加熱工程における加熱の温度が、120~230℃である、請求項2に記載の硬化物の製造方法。
  4.  前記加熱工程が、加熱により、前記第4族元素を有する化合物の作用により、上記膜の硬化を促進する工程である、請求項2又は3に記載の硬化物の製造方法。
  5.  前記処理液がリンス液であり、かつ、前記処理工程が、前記膜を前記処理液により洗浄するリンス工程である、請求項1~4のいずれか1項に記載の硬化物の製造方法。
  6.  前記膜形成工程と、前記処理工程との間に、前記膜を選択的に露光する露光工程、及び、現像液により前記露光後の膜を現像してパターン状の膜を形成する現像工程を含む、請求項1~5のいずれか1項に記載の硬化物の製造方法。
  7.  前記膜形成工程と、前記処理工程との間に、前記膜を選択的に露光する露光工程を有し、前記処理工程が、前記処理液を現像液として前記膜を現像してパターン状の膜を形成する工程である、請求項1~5のいずれか1項に記載の硬化物の製造方法。
  8.  前記現像において、前記現像液が前記露光後の膜に対してシャワーにより供給、又は、連続供給される、請求項6又は7に記載の硬化物の製造方法。
  9.  前記現像がネガ型現像である、請求項6~8のいずれか1項に記載の硬化物の製造方法。
  10.  前記処理液が、前記第4族元素を有する化合物として、チタン原子を有する化合物及びジルコニウムを有する化合物よりなる群から選ばれた少なくとも1種の化合物を含む、請求項1~9のいずれか1項に記載の硬化物の製造方法。
  11.  前記処理液が、前記第4族元素を有する化合物として、チタノセン化合物、テトラアルコキシチタン化合物、チタンアシレート化合物、チタンキレート化合物及びジルコノセン化合物よりなる群から選ばれた少なくとも1種の化合物を含む、請求項1~10のいずれか1項に記載の硬化物の製造方法。
  12.  請求項1~11のいずれか1項に記載の硬化物の製造方法を複数回繰り返す、積層体の製造方法。
  13.  前記複数回の硬化物の製造方法の間に、前記硬化物上に金属層を形成する金属層形成工程を更に含む、請求項12に記載の積層体の製造方法。
  14.  請求項1~11のいずれか1項に記載の硬化物の製造方法、又は、請求項12若しくは13に記載の積層体の製造方法を含む、半導体デバイスの製造方法。
  15.  環化樹脂又はその前駆体を含む樹脂組成物を基材上に適用して膜を形成する膜形成工程、及び、処理液と、前記膜とを接触させる処理工程を含む硬化物の製造方法において用いられる処理液であって、
     第4族元素を有する化合物を含む
     処理液。
  16.  前記硬化物の製造方法が、前記処理工程後に、前記膜を加熱する加熱工程を更に含む、請求項15に記載の処理液。
  17.  前記硬化物の製造方法が、前記膜形成工程、前記膜形成工程により形成された膜を選択的に露光する露光工程、現像液により前記露光後の膜を現像してパターン状の膜を形成する現像工程を含み、前記処理工程が、前記パターン状の膜を前記処理液により洗浄するリンス工程である、請求項15又は16に記載の処理液。
PCT/JP2022/042180 2021-12-14 2022-11-14 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液 WO2023112573A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021202173 2021-12-14
JP2021-202173 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023112573A1 true WO2023112573A1 (ja) 2023-06-22

Family

ID=86774090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042180 WO2023112573A1 (ja) 2021-12-14 2022-11-14 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液

Country Status (2)

Country Link
TW (1) TW202323511A (ja)
WO (1) WO2023112573A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157299A (ja) * 2013-02-18 2014-08-28 Shin Etsu Chem Co Ltd パターン形成方法及びパターン反転膜材料
WO2021157643A1 (ja) * 2020-02-04 2021-08-12 富士フイルム株式会社 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157299A (ja) * 2013-02-18 2014-08-28 Shin Etsu Chem Co Ltd パターン形成方法及びパターン反転膜材料
WO2021157643A1 (ja) * 2020-02-04 2021-08-12 富士フイルム株式会社 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス

Also Published As

Publication number Publication date
TW202323511A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7259141B1 (ja) 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液
KR20230110590A (ko) 수지 조성물, 경화물, 적층체, 경화물의 제조 방법, 및, 반도체 디바이스
WO2023190064A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023157911A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023162687A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023032820A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス、並びに、化合物
WO2022210532A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス、並びに、ポリイミド前駆体及びその製造方法
WO2022172996A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、及び、半導体デバイス、並びに、塩基発生剤
WO2022050041A1 (ja) 硬化物の製造方法、積層体の製造方法、及び、電子デバイスの製造方法
WO2023112573A1 (ja) 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液
WO2023032475A1 (ja) 硬化物の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法、並びに、処理液、及び、樹脂組成物
WO2024071237A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2024101295A1 (ja) 硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2022176869A1 (ja) 永久膜の製造方法、積層体の製造方法、及び、半導体デバイスの製造方法
WO2023190061A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023190060A1 (ja) 感光性樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023189126A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023190062A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2024070963A1 (ja) 膜の製造方法、感光性樹脂組成物、硬化物の製造方法、硬化物、及び積層体
WO2023120314A1 (ja) 積層体、デバイス、樹脂組成物、硬化物の製造方法、積層体の製造方法、及び、デバイスの製造方法
WO2024010026A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2023190063A1 (ja) 硬化物の製造方法、半導体デバイスの製造方法、処理液、及び、樹脂組成物
WO2024048435A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2024048436A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス
WO2024063025A1 (ja) 樹脂組成物、硬化物、積層体、硬化物の製造方法、積層体の製造方法、半導体デバイスの製造方法、及び、半導体デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907104

Country of ref document: EP

Kind code of ref document: A1