WO2023112533A1 - Polarizing sheet - Google Patents

Polarizing sheet Download PDF

Info

Publication number
WO2023112533A1
WO2023112533A1 PCT/JP2022/040832 JP2022040832W WO2023112533A1 WO 2023112533 A1 WO2023112533 A1 WO 2023112533A1 JP 2022040832 W JP2022040832 W JP 2022040832W WO 2023112533 A1 WO2023112533 A1 WO 2023112533A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing
polarizing film
acid
film
yellow
Prior art date
Application number
PCT/JP2022/040832
Other languages
French (fr)
Japanese (ja)
Inventor
佑哉 松野
雅幸 赤木
祐香 柿沼
英明 木村
Original Assignee
三菱瓦斯化学株式会社
Мgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Мgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023112533A1 publication Critical patent/WO2023112533A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present invention relates to a polarizing film and a polarizing sheet constituting a polarizing lens used for sunglasses, goggles, etc., and a method for producing these.
  • the present invention relates to a polarizing film excellent in resistance to moist heat and heat, a polarizing sheet using the film, and methods for producing these.
  • a high dichroic ratio is achieved depending on the transmittance and the degree of polarization.
  • a combination of dyes and very low dichroic ratio dyes, or intermediate dichroic ratio dyes, are used to produce polarizing sheets.
  • the problem of color tone and transmittance change during bending and injection molding is solved by using a coloring composition with a low dichroic ratio.
  • deterioration of optical performance, peeling, generation of air bubbles, etc. occur, and defects such as easy warping are still present. There is room for improvement.
  • the polarizing property of the polarizing film is realized by a polarizer (a dichroic dye) oriented in the resin film that is the base material by means of stretching or the like during the production of the film.
  • a resin film such as polyvinyl alcohol as a base material is swollen with water, then immersed in a water tank containing a dye composition, and then stretched at the same time or later.
  • the polarizing film is subjected to further processes after production, or dried for the purpose of obtaining storage stability to adjust its moisture content.
  • a polarizing film using a polyvinyl alcohol resin as a base material has a problem that heat-resistant color change increases, although it is possible to suppress heat-and-moisture color change by adjusting the moisture content at the time of film formation.
  • the moisture content is lowered in order to suppress heat-resistant color change, the color change increases in a high-humidity and heat environment, making it difficult to achieve both of these two types of thermal stability.
  • the present invention uses a high dichroic ratio dye and an extremely low dichroic ratio dye, and controls the moisture content and nickel adsorption amount of the polarizing film. The inventors have found that both the heat-resistant color change can be suppressed at the same time, leading to the present invention.
  • the present invention provides a polarizing laminate in which transparent plastic sheets are arranged on both sides of a polarizing film made of a uniaxially stretched polyvinyl alcohol resin film via an adhesive layer, wherein the polarizing film contains an organic dye and a metal compound. and boric acid, wherein the metal compound is a metal such as acetate, nitrate, sulfate of a fourth transition metal such as chromium, manganese, cobalt, nickel, copper, zinc, etc. salt, and ⁇ Ecmc calculated by the CIEDE 2000 color difference formula of ISO/CIE 11664-6:2014 at 55 ° C., 90%, 24 h and 120 ° C., 24 h is both 3.0 or less. It is a laminate.
  • Another embodiment of the present invention is the polarizing laminate in the above embodiment, wherein the metal compound is contained in an amount of 200 ppm to 2500 ppm per 1 g of the polarizing film.
  • Another embodiment of the present invention is the polarizing laminate according to any one of the above embodiments, wherein the water content of the polarizing film is less than 5% by weight of the polarizing film.
  • the organic dye comprises one or more high dichroic organic dyes having a dichroic ratio of 13 or more and very low dichroic organic dyes having a dichroic ratio of 4 or less.
  • a polarizing laminate composed of a combination with one or more low dichroic organic dyes having a dichroic ratio or substantially no dichroic ratio.
  • Another embodiment of the present invention is a polarizing lens for sunglasses manufactured from the polarizing laminate according to any one of the above embodiments.
  • Another embodiment of the present invention is a polarizing film obtained by dyeing a polyvinyl alcohol resin with an organic dye while swelling with water and uniaxially stretching, immersing it in a treatment solution containing a metal compound and boric acid, and drying it.
  • the polarizing film is dried so that the moisture content of the polarizing film is less than 5% by weight.
  • the treatment solution contains the metal compound at a concentration of 1.0 to 0.3 g/L, and the boric acid is contained at a concentration of 5.0 to 3.0 g/L. It is a method that is included in the concentration of L.
  • Another embodiment of the present invention is a method for producing a polarizing sheet according to any of the above embodiments, comprising bonding a transparent plastic sheet to at least one side of the produced polarizing film via an adhesive layer.
  • the configuration of the present invention will be described below.
  • the polarizing film is obtained by swelling a resin film as a base material in water, and then impregnating it with a dyeing solution containing the dichroic organic dye of the present invention while stretching in one direction. By dispersing it in an oriented state in a material resin to obtain a film imparted with polarizing properties and a desired color tone.
  • Polyvinyl alcohols are used as the base resin for the polarizing film used at this time, and the polyvinyl alcohols include polyvinyl alcohol (hereinafter referred to as PVA), PVA with a trace of the acetate structure, and PVA derivatives or Analogues such as polyvinyl formal, polyvinyl acetal, and saponified ethylene-vinyl acetate copolymer are preferred, and PVA is particularly preferred.
  • PVA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • PVA polyvinyl alcohol with a trace of the acetate structure
  • PVA derivatives or Analogues such as polyvinyl formal, polyvinyl acetal, and saponified ethylene-vinyl acetate copolymer are preferred, and PVA is particularly preferred.
  • the molecular weight of the PVA film is preferably a weight average molecular weight of 50,000 to 350,000, more preferably a molecular weight of 100,000 to 300,000, particularly a molecular weight of 150,000, from the viewpoint of stretchability and film strength.
  • the above is preferable.
  • the stretching ratio for stretching the PVA film is preferably 2 to 8 times, more preferably 3 to 6.5 times, particularly preferably 3.5 to 4.5 times, from the viewpoint of the dichroic ratio and film strength after stretching.
  • the thickness of the stretched PVA film is not particularly limited, it is preferably about 20 ⁇ m or more and about 50 ⁇ m or less because it can be handled without being integrated with a protective film or the like.
  • a typical manufacturing process when using PVA as a base film is (1) PVA is swollen in water and washed with water to remove impurities, (2) while stretching as appropriate, (3) Dyeing in a dyeing tank, (4) cross-linking or chelating treatment in a treatment tank with boric acid or a metal compound; (5) dry; Manufactured in the process of The steps (2), (3) (and (4) in some cases) may be changed in order, or may be carried out at the same time.
  • the PVA film which is easily broken in a dry state at room temperature, is uniformly softened and made stretchable by absorbing water. It is also a step of removing water-soluble plasticizers and the like used in the PVA film manufacturing process, or preliminarily adsorbing additives as appropriate. At this time, the PVA film does not gradually and uniformly swell, and variations always occur. Even in this state, it is important to apply a uniform force that is as small as possible so as to prevent local stretching or insufficient stretching and to suppress the occurrence of wrinkles. Moreover, in this step, it is most desirable to simply swell uniformly, and excessive stretching, etc., causes unevenness and should be avoided as much as possible.
  • the stretching process is usually carried out so as to be 2 to 8 times. It is also important that the polarizing film in the present invention has good subsequent workability, so the draw ratio is selected from 3 to 6.5 times, particularly 3.5 to 4.5 times, and the orientation is maintained even in this state. is preferred. In the stretched and oriented state, if the time in water and the time until drying are long, the relaxation of the orientation will progress, so from the viewpoint of maintaining higher performance, the stretching process is set to be shorter. However, after stretching, it is preferable to remove moisture as soon as possible, that is, immediately lead to a drying step and dry while avoiding an excessive heat load. In addition, the draw ratio in this application is a draw ratio based on the original fabric of the polyvinyl alcohol resin film.
  • Dyeing in step (3) is by adsorption or deposition of a dye onto the polymer chains of the oriented polyvinyl alcohol resin film. This step can be performed before, during, or after uniaxial stretching, and there is no significant difference.
  • the interface which is the highly regulated surface, is the easiest to orient, and it is preferable to select conditions that take advantage of this.
  • the temperature is usually selected from a high temperature range of 40 to 80.degree. C. from the demand for high productivity.
  • Step (4) is performed to improve heat resistance, water resistance, and organic solvent resistance.
  • the treatment with boric acid improves the heat resistance by cross-linking between PVA chains, but it can be performed before, during or after the uniaxial stretching of the polyvinyl alcohol resin film, and there is no significant change.
  • the metal compound mainly forms a chelate compound with the dye molecule to stabilize it, which is usually performed after dyeing or at the same time as dyeing.
  • metal compound there are transition metals belonging to any of the 4th, 5th, and 6th periods that are confirmed to have the heat resistance and solvent resistance effects described above.
  • Metal salts such as acetates, nitrates and sulfates of 4th period transition metals such as chromium, manganese, cobalt, nickel, copper and zinc are preferred from the viewpoint of cost.
  • compounds of nickel, manganese, cobalt, zinc and copper are more preferable because they are inexpensive and excellent in the above effects, and nickel is particularly preferable.
  • More specific examples include manganese (II) acetate tetrahydrate, manganese (III) acetate dihydrate, manganese (II) nitrate hexahydrate, manganese (II) sulfate pentahydrate, cobalt (II) acetate tetrahydrate, cobalt (II) nitrate hexahydrate, cobalt (II) sulfate heptahydrate, nickel (II) acetate tetrahydrate, nickel (II) nitrate hexahydrate, Nickel (II) Sulfate Hexahydrate, Zinc (II) Acetate, Zinc (II) Sulfate, Chromium (III) Nitrate Nonahydrate, Copper (II) Acetate Monohydrate, Copper (II) Nitrate Trihydrate and copper (II) sulfate pentahydrate. Any one of these metal compounds may be used alone, or two or more of them may be used in combination.
  • the content of the metal compound and boric acid in the polarizing film is 0.2 to 20 mg of the metal compound per 1 g of the polarizing film. Preferably, 0.2 to 2 mg is more preferable. More specifically, the concentration of the metal compound impregnated in the polarizing film is 200 ppm to 2500 ppm, more preferably 200 ppm to 2000 ppm, and still more preferably 400 ppm when measured by the method described in detail in Examples. ⁇ 1800 ppm, more preferably 800 ppm to 2300 ppm, more preferably 600 ppm to 1600 ppm. When the concentration of the metal compound is less than 200 ppm, color unevenness tends to occur, and when it exceeds 2500 ppm, a problem arises in moist heat resistance.
  • the boric acid content is preferably 0.3 to 30 mg, more preferably 0.5 to 10 mg as boron.
  • the composition of the treatment liquid used for the treatment is set so as to satisfy the above contents, and generally the concentration of the metal compound is 0.5 to 30 g/L and the concentration of boric acid is 2 to 20 g/L. preferable.
  • the content of metal and boron contained in the polarizing film can be analyzed by atomic absorption spectrometry.
  • the same conditions as those for dyeing are usually employed, but it is usually selected from 20 to 70°C, preferably 25 to 45°C, more preferably 30 to 40°C, especially 30 to 35°C.
  • the time is usually selected from 0.5 to 15 minutes.
  • step (5) the stretched, dyed and optionally dyed uniaxially stretched PVA film treated with boric acid or metal compound is dried.
  • a PVA film exhibits heat resistance corresponding to the amount of water it contains. A decrease in the dichroic ratio occurs.
  • Drying of the film progresses from the surface, and it is preferable to dry from both surfaces, preferably while removing water vapor by blowing dry air.
  • the method of immediately removing the evaporated moisture to promote evaporation is preferable from the point that drying can be performed while suppressing the temperature rise.
  • Air drying is carried out at a temperature of 70° C. or higher, preferably 90° C. to 120° C., for 1 to 120 minutes, preferably 3 to 40 minutes, from the temperature range below which the film does not substantially discolor.
  • the moisture content of the polarizing film at this stage is preferably 5% or less. In the drying process, it is difficult to make the water content less than 2%, and it is not preferable from the viewpoint of the strength of the polarizing film.
  • a suitable moisture content is 2.5% to 5.0%.
  • a PVA polarizing film for sunglasses is usually manufactured by the above process.
  • the present invention dyes using a dichroic organic dye composition and a coloring organic dye composition
  • the upper limit is the transmittance of the PVA polarizing film dyed with the dichroic organic dye composition
  • the coloring It is possible to select a wide range of transmittance, with the transmittance of a PVA polarizing film dyed with an organic dye composition being the lower limit.
  • the color tone is adjusted mainly by the organic dye composition for coloring, and a wide range of color tone can be obtained corresponding to the change of the usage ratio without substantially considering the change of the degree of polarization.
  • the dichroic organic dyes having a dichroic ratio of 13 or more are specifically exemplified by the following azo dyes, but are particularly limited to these. not a thing Azo dyes are exemplified by trade names, and Color Index Generic Names are given in parentheses.
  • Summit Supra Yellow BC conc (C.I. Direct Yellow28) Kayarus Light Yellow F8G (CI Direct Yellow87) Kayacelon Yellow C-2RL (CI Direct Yellow 164)
  • Direct Fast Orange S C.I. Direct Orange 26
  • Summit Supra Orange 2GL 125% CI Direct Orange 39
  • Nippon Fast Scarlet GSX C.I.
  • Direct Red4 Fast Scarlet 4BS (CI Direct Red23) Summit Red 4B (C.I. Direct Red81) Kayarus Supra Blue BWL 143 (C.I. Direct Blue 237) Kayarus Supra Brown GL 125 (C.I. Direct Brown 195) Kayarus Supra Brown B2R (CI Direct Brown 209) Kayarus Supra Brown GTL (C.I. Direct Brown 210)
  • a direct dye consisting of an azo dye having a sulfonic acid group is preferred from the viewpoint of dyeability to PVA film and heat resistance.
  • a direct dye consisting of an azo dye having a sulfonic acid group is preferred from the viewpoint of dyeability to PVA film and heat resistance.
  • three or more kinds of dichroic organic dyes are combined, and each color is directly added to the dyeing solution at a concentration such that a predetermined transmittance is obtained.
  • Dissolve or disperse dyes In addition to the direct dye, an inorganic salt such as sodium sulfate is appropriately added to the dyeing solution as a dyeing aid.
  • Mordant Blue29 Mordant Green L (CI Mordant Green 17) Chrome Green 3B-N (CI Mordant Green28) Mordant Brown KS (C.I. Mordant Brown 15) Chrome Brown LE (CI Mordant Brown 19) Chrome Brown RH (CI Mordant Brown 33) Chrome Black P2B (C.I. Mordant Black7) Chrome Black PLW (CI Mordant Black 9) Chrome Black ET-1 (C.I. Mordant Black 11) Chrome Navy CR 158% (CI Mordant Black 17) Chrome Light Gray G (C.I.
  • Reactive Red55 Brilliant Red G SPL (C.I. Reactive Red 112) Brilliant Red 7BF Liq 25% (C.I. Reactive Red 114) Lanasol Red 2G (CI Reactive Red 116) Levafix Scarlet E-2GA gran (C.I. Reactive Red124) Levafix Brilliant Red E-4BA gran (CI Reactive Red158) Levafix Brilliant Red E-6BA gran (CI Reactive Red159) Remazol Brilliant Red F3B gran (C.I. Reactive Red180) Supra Brilliant Red 3BF 150% gran (C.I. Reactive Red195) Remazol Red RB 133% (CI Reactive Red 198) Supra Scarlet 2GF 150G (C.I. Reactive Red222) Novacron Red P-6B Gran.
  • Reactive Blue52 Lanasol Blue 3G (CI Reactive Blue 69) Novacron Turquoise P-GR 150% (CI Reactive Blue72) Dimarene Navy X-RBL CDG (C.I. Reactive Blue79) Lanasol Blue 8G-01 150% (CI Reactive Blue 185) Drimarene Blue K-2RL CDG (C.I. Reactive Blue 209) Sumifix Supra Blue BRF 150% gran. (C.I. Reactive Blue221) Sumifix Supra Navy Blue BF gran. (C.I. Reactive Blue222) Sumifix Supra Turquoise Blue BGF(N) (C.I. Reactive Blue231) Novacron Blue CR (C.I.
  • Acid Yellow 25 Kayanol Milling Yellow O (C.I. Acid Yellow 38) Suminol Milling Yellow MR (C.I. Acid Yellow 42) Aminyl Yellow E-3GL (C.I. Acid Yellow 49) Suminol Fast Yellow G (B) (C.I. Acid Yellow 61) Erionyl Yellow B-4G (C.I. Acid Yellow79) Kayanol Yellow N5G (C.I. Acid Yellow 110) Lanyl Yellow G ex cc (C.I. Acid Yellow 116) Kayakalan Yellow GL 143 (C.I. Acid Yellow 121) Kayanol Milling Yellow 5GW (CI Acid Yellow 127) Lanacron Yellow N-2GL KWL (C.I.
  • Acid Yellow 129) Erionyl Golden Yellow MR-02 (C.I. Acid Yellow 151) Tectilon Yellow 2G 200% (CI Acid Yellow 169) Lanacron Yellow S-2G-01 KWL (C.I. Acid Yellow 220) Telon Yellow RLN micro (C.I. Acid Yellow 230) Tectilon Yellow 3R 200% (CI Acid Yellow 246) Chuganol Fast Yellow 5GL (CI Acid Yellow 40:1) Solar Orange (CI Acid Orange 7) Solar Light Orange GX (C.I. Acid Orange 10) Chuganol Milling Brown 5R (C.I. Acid Orange 51) Chuganol Milling Orange SG (CI Acid Orange 56) Kayanol Yellow N3R (C.I.
  • Acid Orange 67 Aminyl Yellow E-3RL (C.I. Acid Orange 67) Lanyl Orange R 200% (CI Acid Orange 88) Chuganol Milling Orange GSN 150% (CI Acid Orange 95) Suminol Milling Orange GN (N) (C.I. Acid Orange 95) Isolan Orange K-RLS (C.I. Acid Orange 107) Telon Orange AGT 01 (C.I. Acid Orange 116) Lanyl Orange 2R e/c (C.I. Acid Orange 120) Supralan Orange S-RL (C.I. Acid Orange 166) Lanasyn Yellow M-2RL 180 (C.I. Acid Orange 180) Nylosan Orange NRL 250 (C.I.
  • Acid Orange 250 Lanasyn Orange M-RL p Silk Scarlet (CI Acid Red9) Brilliant Scarlet 3R conc.
  • Acid Red 18 Acid Rhodamine G Conc (C.I. Acid Red50) Acid Rhodamine B Conc (C.I. Acid Red52) Chugacid Red FCH (C.I. Acid Red73) Chugacid Rubinol 3B 200% (C.I. Acid Red80) Rocceline NS conc. 120% (CI Acid Red88) Chuganol Anthracene Red G (CI Acid Red97) Suminol Fast Red G (B) (C.I. Acid Red 118) Suminol Milling Brilliant Red 3BN (N) conc. (C.I.
  • Acid Red 131) Lanyl Red GG (CI Acid Red 211) Lanyl Red B (CI Acid Red 215) Lanasyn Bordeaux M-RLA200 (C.I. Acid Red217) Suminol Milling Brilliant Red B conc. N (CI Acid Red 249) Aminyl Red E-3BL (CI Acid Red257) Telon Red M-BL (CI Acid Red260) Chugai Aminol Fast Pink R (C.I. Acid Red289) Nylosan Red N-2RBL SGR (C.I. Acid Red336) Telon Red FRL micro (C.I. Acid Red337) Lanasyn Red MG (C.I.
  • Acid Blue 83 Chuganol Blue G 333% (C.I. Acid Blue90) Kayanol Navy Blue R (C.I. Acid Blue 92) Suminol Milling Brilliant Sky Blue SE (N) (C.I. Acid Blue 112) Suminol Milling Cyanine 5R (N) (C.I. Acid Blue 113) Kayanol Milling Blue GW (C.I. Acid Blue 127) Lanyl Brilliant Blue G ex cc (C.I. Acid Blue 127:1) Kayanol Blue NR (C.I. Acid Blue 129) Kayanol Milling Blue BW (C.I. Acid Blue 138) Kayanol Milling Blue 2RW (C.I. Acid Blue 140) Lanyl Blue 3G ex conc (C.I.
  • the above dyes are not commonly referred to as dichroic dyes.
  • the pigments (dyes) exhibiting a high dichroic ratio are described in patent documents, etc., and the dichroic ratio can be known.
  • the present inventors have not found a patent document or the like describing the dichroic ratio of the organic dye for coloring of the present application, probably because the dichroic ratio was never used, or because there was no meaning to use it. . Therefore, the coloring organic dyes of the present application described above are examples of those readily identified in the following method of dyeing PVA films using known dyes (not known to have high dichroic ratios).
  • the dichroic ratio is determined by the following method of dyeing a PVA film using these dyes.
  • the degree of polarization is targeted to be 99% or more
  • the dichroic ratio of the coloring organic dye contributes to the direction of increasing the degree of polarization, but changes within the above range are problematic. not.
  • the degree of polarization of the obtained polarizing film becomes higher than the desired value.
  • those that show a smaller dichroic ratio when dyed are preferable because the change in the degree of polarization due to coloring is smaller and the change in color tone during thermoforming is also smaller.
  • the dichroic ratio of the dichroic organic dye or the organic coloring dye in the present invention means that the dichroic ratio value measured at 600 nm in the polarizing film manufactured by dyeing with iodine is 60 or more. It refers to the value measured at the maximum absorption wavelength in a polarizing film manufactured using a dichroic organic dye instead of iodine.
  • a protective layer made of a transparent plastic sheet is usually attached via an adhesive layer to obtain the polarizing sheet of the present invention.
  • the transparent plastic sheet usually has a thickness of 0.1 to 1 mm, and may be a single-layered sheet or a multi-layered sheet formed by co-extrusion, such as a co-extruded sheet of aromatic polycarbonate/polyacrylate. Further, in the present invention, it is preferable that the surface which is the concave side in the bending process and the injection molding resin side is made of aromatic polycarbonate.
  • the polarizing sheet of the present invention (hereinafter referred to as the present polarizing sheet) is usually punched into individual lens shapes with protective films attached to both surfaces, and then subjected to heat bending to protect the surface.
  • the film is peeled off and mounted in an injection mold to form an injection molded polarizing lens integrated with the injection molded aromatic polycarbonate.
  • the resin for the transparent plastic sheet examples include transparent resins composed of aromatic polycarbonates, amorphous polyolefins, polyacrylates, polysulfones, acetylcellulose, polystyrene, polyesters, polyamides, and mixtures thereof. Among these, there is acetyl cellulose, which is essential in the production of the most versatile polarizing film.
  • Aromatic polycarbonate resins are preferable for their properties such as mechanical strength and impact resistance. Examples thereof include acrylate and polyamide, and polyacrylate and polyamide are exemplified in terms of dyeability after lens molding.
  • Aromatic polycarbonate sheets are made of 2,2-bis(4-hydroxyphenyl)alkane and 2,2-(4-hydroxy-3,5-dihalogenophenyl) from the viewpoint of film strength, heat resistance, durability and bending workability.
  • a polymer produced by a known method from a bisphenol compound represented by alkane is preferable, and the polymer skeleton may contain a structural unit derived from a fatty acid diol or a structural unit having an ester bond.
  • Aromatic polycarbonates derived from ,2-bis(4-hydroxyphenyl)propane are preferred.
  • the aromatic polycarbonate preferably has a viscosity average molecular weight of 12,000 to 40,000, more preferably 20,000 to 35,000.
  • aromatic polycarbonates have a large photoelastic constant and tend to generate colored interference fringes due to birefringence due to stress and orientation. Therefore, it is preferable to make the colored interference fringes invisible by providing a large retardation value in advance. It is preferable to The higher the retardation value, the less colored interference fringes can be seen. However, the value of the retardation value represents the degree of orientation and the magnitude of the residual stress, and the higher the retardation value, the lower the accuracy of the surface shape. These colored interference fringes can be seen with the human eye only after they pass through the polarizing film. Therefore, the effect of the high retardation sheet is due to its use on the light incident side of the polarizing film, that is, on the side opposite to human eyes.
  • Polyamide resins include those known as transparent polyamide resins for lenses, and have a heat distortion temperature in the range of 100 to 170 ° C., which is an index of heat resistance, aromatic polyamide resins, alicyclic polyamide resins, aliphatic polyamides. Resins, and copolymers thereof, and alicyclic polyamide resins are preferable from the balance of mechanical strength, chemical resistance, transparency, etc., but two or more polyamide resins may be combined. .
  • polyamide resins examples include GLILAMID TR FE5577, XE 3805 (manufactured by EMS), NOVAMID X21 (manufactured by Mitsubishi Engineering-Plastics), and Toyobo Nylon T-714E (manufactured by Toyobo).
  • the (meth)acrylic resin is a homopolymer of various (meth)acrylic acid esters represented by polymethyl methacrylate (PMMA) and methyl methacrylate (MMA), or PMMA or MMA and one or more other monomers. and may be a mixture of a plurality of these resins.
  • PMMA polymethyl methacrylate
  • MMA methyl methacrylate
  • MMA methyl methacrylate
  • one or more other monomers PMMA
  • MMA methyl methacrylate
  • MMA methyl methacrylate
  • MMA methyl methacrylate
  • MMA methyl methacrylate
  • Adhesives used to attach the transparent plastic sheets to both sides of the colored polarizing film include polyvinyl alcohol resin materials, acrylic resin materials, urethane resin materials, polyester resin materials, melamine resin materials, and epoxy resin materials. materials such as silicone-based materials can be used.
  • an aromatic polycarbonate sheet When an aromatic polycarbonate sheet is used, a two-liquid type consisting of a polyurethane prepolymer, which is a urethane resin-based material, and a curing agent is used, particularly in terms of the transparency of the adhesive layer itself or when it is adhered, and the adhesiveness to the aromatic polycarbonate sheet. thermosetting urethane resin is preferred.
  • the aromatic polycarbonate polarizing sheet used in the colored polarizing lens suitable for sunglasses of the present invention is not limited to the layer structure described above, and the adhesive for bonding the polarizing film and the transparent protective layer contains a photochromic dye.
  • a polarizing sheet having a dimming function, which is produced using a dissolved adhesive, may also be used.
  • the protective layer of the present invention is selected from suitable processing conditions that allow selection of processing conditions that do not substantially impair the function of the functional layer.
  • suitable processing conditions that allow selection of processing conditions that do not substantially impair the function of the functional layer.
  • a polyester-based super-multilayer selective reflection film is used in combination as a functional layer
  • a multi-layer sheet is produced in order to make the thickness of one layer of this super-multilayer selective reflection film 1/4 ⁇ .
  • Kintaro-ame manufacturing method is used in which the film is stretched repeatedly as appropriate to obtain a predetermined optical thickness.
  • the polarizing sheet is punched into individual lens shapes, and then subjected to bending.
  • Processing into individual lens-shaped products is usually performed by punching a plurality of lens-shaped products using a punching blade composed of a Thomson blade for reasons of productivity.
  • the shape of the individual lens-shaped product is appropriately selected according to the shape of the final product (sunglasses, goggles, etc.).
  • a standard lens-shaped product for binocular use is a disk with a diameter of 80 mm or a slit shape obtained by cutting both ends of the disk with the same width in the direction perpendicular to the polarization axis.
  • the bending process causes deterioration of the layer that exhibits the functionality of the present polarizing sheet including the colored polarizing film of the present invention. It is determined by the condition that it does not substantially occur.
  • the aromatic polycarbonate polarizing sheet When used as an injection polarizing lens, the aromatic polycarbonate polarizing sheet is bent along the mold surface used for injection molding. When using this polarizing sheet with a protective layer made of aromatic polycarbonate with a high retardation sheet, the polarizing film tends to crack along the stretching direction during bending, so-called film breakage, so it is necessary to select conditions that suppress the occurrence of these.
  • the mold temperature in bending the aromatic polycarbonate polarizing sheet is preferably a temperature below the glass transition temperature of the aromatic polycarbonate used. It is preferably at least 50° C. lower than the glass transition point, and more preferably at least 40° C. lower than the glass transition point and less than 5° C. lower than the glass transition point.
  • an aromatic polycarbonate resin is injected to form an injection polarizing lens.
  • Processing conditions for injection molding must be such that lenses with excellent appearance can be produced. From this point of view, injection conditions such as injection pressure, holding pressure, metering, molding cycle, etc. are selected so that a lens molded product with a high filling rate can be obtained within a range that does not produce burrs.
  • the mold temperature is selected from a temperature not less than 100°C lower than the glass transition temperature of the aromatic polycarbonate resin and less than the glass transition point, preferably not less than 80°C lower than the glass transition temperature and less than 15°C lower than the glass transition point. In particular, it is preferably at least 70° C. lower than the glass transition temperature and less than 25° C. lower than the glass transition temperature.
  • the firing temperature is preferably 50°C lower than the glass transition temperature of the aromatic polycarbonate used in the aromatic polycarbonate polarizing sheet and lower than the glass transition point, particularly 40°C lower than the glass transition point or higher than the glass transition point.
  • the temperature is around 120° C., which is less than 15° C. lower, and the time required for firing the hard coat is generally between 30 minutes and 2 hours.
  • Example 1 a) Preparation of polarizing film Polyvinyl alcohol (trade name: VF-PS#7500, manufactured by Kuraray Co., Ltd.) was swelled in water at 35°C for 270 seconds and stretched twice. In this embodiment, the swelling treatment step was performed in two water tanks, but one water tank or three or more water tanks may be used depending on the manufacturing environment.
  • VF-PS#7500 trade name: VF-PS#7500, manufactured by Kuraray Co., Ltd.
  • dyeing was carried out in an aqueous solution at 35° C. containing a dyeing composition having the following composition and 10 g/L of anhydrous sodium sulfate.
  • a dyeing composition having the following composition and 10 g/L of anhydrous sodium sulfate.
  • C.I. I. Direct. Orange 39 and C.I. I. Direct. Red 81 is a high dichroic dye
  • C.I. I. Mordant Yellow 8 and C.I. I. Acid Red 57 is what is called a low dichroic ratio dye.
  • the dyeing treatment step was performed in two water tanks, but one water tank or three or more water tanks may be used depending on the manufacturing environment. ⁇ C. I. Direct.
  • the film exiting the bath of the dyeing composition first enters the treatment bath 1 of the treatment process. After that, it goes out into the air once and then passes through the processing tank 2 .
  • Treatment tanks 1 and 2 are filled with an aqueous solution maintained at 40-45° C. containing 0.5 g/L nickel acetate (Ni) and 4.4 g/L boric acid.
  • Ni nickel acetate
  • boric acid 0.5 g/L
  • the dyed film was immersed in this aqueous solution and stretched to a final magnification of 4.0-4.5 times.
  • the polarizing film pulled up from the treatment tank 2 was then heat-treated at 80 to 89° C. for 3 minutes under tension.
  • the dried polarizing film was stored in a low humidity storage kept at 25° C. and about 10% until the next step.
  • thermosetting polyurethane adhesive was applied to the polarizing film obtained above, and a protective layer was laminated thereon.
  • a protective layer was similarly laminated on the other side of the polarizing film to prepare a polarizing sheet.
  • Bisphenol A type polycarbonate Mitsubishi Engineering-Plastics Iupilon E-2000 was used for the protective layer.
  • the conditions for the heat and humidity resistance test in this example are intended to imitate the high heat conditions in which the product is actually manufactured for the convenience of conducting the test, but the test conditions were optimized for repetition.
  • ⁇ Ecmc measurement method The color tone of the samples subjected to the above moisture and heat resistance test and heat resistance test was measured using a spectrophotometer (UV-3600) manufactured by Shimadzu Corporation, and calculated using the CIEDE2000 color difference formula of ISO/CIE 11664-6:2014. The color difference was calculated.
  • UV-3600 spectrophotometer manufactured by Shimadzu Corporation
  • CIEDE2000 color difference formula of ISO/CIE 11664-6:2014 The color difference was calculated.
  • products with a ⁇ Ecmc of 3 or less were defined as acceptable products in consideration of actual products.
  • ⁇ Ecmc [( ⁇ L * /LS L ) 2 +( ⁇ C * ab/cS c ) 2 +( ⁇ H * ab/S H ) 2 ] 1/2
  • the lightness L * value is the lightness of the L * a * b * color system.
  • Example 2 A polarizing film was prepared and tested in the same manner as in Example 1, except that the nickel acetate concentration in the treatment tanks 1 and 2 was 0.3 g/L.
  • Example 3 A polarizing film was prepared and tested in the same manner as in Example 1, except that the nickel acetate concentration in the treatment tanks 1 and 2 was 0.7 g/L.
  • Example 4 A polarizing film was produced in the same manner as in Example 3, except that the heat treatment temperature was 80 to 95°C.
  • Example 5 A polarizing film was produced in the same manner as in Example 4, except that 0.5 g/L of nickel acetate was added only to treatment tank 1, and only boric acid was added to treatment tank 2 without nickel acetate.
  • Example 6 A polarizing film was produced in the same manner as in Example 5, except that the heat treatment temperature was 80 to 100°C.
  • Example 7 A polarizing film was produced in the same manner as in Example 6, except that the heat treatment temperature was set to 80 to 95° C., and after passing through treatment tanks 1 and 2, a washing step with pure water at 40° C. was added.
  • Example 8 A polarizing film was produced in the same manner as in Example 7, except that the boric acid concentration was 6.6 g/L.
  • Example 1 A polarizing film was produced in the same manner as in Example 1, except that the temperatures of the treatment tanks 1 and 2 were 35° C. and nickel acetate was 2.3 g/L.
  • Comparative example 2 A polarizing film was produced in the same manner as in Comparative Example 1, except that the temperatures of the treatment tanks 1 and 2 were set to 40° C., nickel acetate was not added, and only 4.4 g/L of boric acid was used.
  • Comparative Example 4 A polarizing film was produced in the same manner as in Comparative Example 3 except that the temperatures of the treatment tanks 1 and 2 were set to 55°C and the heat treatment temperature was set to 70 to 80°C.
  • Comparative Example 5 A polarizing film was produced in the same manner as in Comparative Example 3, except that the heat treatment temperature was changed from 60 to 70°C.
  • Table 1 below shows the evaluation results of the examples and comparative examples prepared as described above.
  • the polarizing sheet of each example satisfies the condition that both the wet heat color change and the heat color change ⁇ Ecmc are 3.0 or less, and it is possible to produce a polarizing sheet having a good appearance. did it.
  • ⁇ Ecmc of either one of the heat and humidity color change and the heat color change may be 3.0 or less, but both cannot be satisfied at the same time. Also, defects occurred in the appearance, and a polarizing sheet with a good appearance could not be produced.
  • a polarizing film dyed with a dyeing composition containing a high dichroic dye and a low dichroic dye it has become possible to produce a polarizing film having good wet heat resistance and good heat resistance.
  • the polarizing film according to the present invention is more resistant to discoloration than conventional polarizing films, both under environmental influences during storage and in an environment where the film is exposed to high heat for a short period of time during processing.

Abstract

[Problem] To provide a polarizing film obtained by swelling a poly(vinyl alcohol) resin film and uniaxially stretching the swollen film, the polarizing film combining wet heat resistance with heat resistance. [Solution] A polarizing laminate comprising a polarizing film, which is a uniaxially stretched poly(vinyl alcohol) resin film, and transparent plastic sheets disposed on both surfaces of the polarizing film with an adhesive layer interposed therebetween. In the polarizing laminate, ΔEcmc values under the conditions of 55°C, 90%, and 24h and under the conditions of 120°C and 24h are 3.0 or less each, the values being calculated with CIEDE2000 color-difference formula according to ISO/CIE 11664-6:2014.

Description

偏光シートpolarizing sheet
本発明はサングラスやゴーグル等に用いられる偏光レンズを構成する偏光フィルム、偏光シート、およびこれらの製造方法に関する。特に、耐湿熱性および耐熱性に優れた偏光フィルム、当該フィルムを用いた偏光シートおよびこれらの製造方法に関する。 TECHNICAL FIELD The present invention relates to a polarizing film and a polarizing sheet constituting a polarizing lens used for sunglasses, goggles, etc., and a method for producing these. In particular, the present invention relates to a polarizing film excellent in resistance to moist heat and heat, a polarizing sheet using the film, and methods for producing these.
ポリビニルアルコール等の樹脂基材に二色性色素を吸着させて実質的に一方向に配向させてなる偏光フィルムにおいて、下記特許文献に記載されているように、透過率および偏光度によって高二色比染料および極低二色比染料を組み合わせて使用、あるいはその中間の二色比染料を使用して偏光シートを生産している。これらの文献では、曲げ加工および射出成形時に色調や透過率が変化する問題に対して、低二色比の着色用組成物を用いることで、この問題を解決している。ところが、このような偏光フィルムを用いた光学製品においても、高温高湿下に長時間曝されると光学性能の低下、剥離、気泡の発生等が起こり、そりが生じ易い等の欠点については未だ改善の余地がある。 In a polarizing film obtained by adsorbing a dichroic dye to a resin substrate such as polyvinyl alcohol and substantially unidirectionally oriented, as described in the following patent document, a high dichroic ratio is achieved depending on the transmittance and the degree of polarization. A combination of dyes and very low dichroic ratio dyes, or intermediate dichroic ratio dyes, are used to produce polarizing sheets. In these documents, the problem of color tone and transmittance change during bending and injection molding is solved by using a coloring composition with a low dichroic ratio. However, even in optical products using such polarizing films, when exposed to high temperature and high humidity for a long time, deterioration of optical performance, peeling, generation of air bubbles, etc. occur, and defects such as easy warping are still present. There is room for improvement.
WO2014/030611WO2014/030611 WO2014/115705WO2014/115705
偏光フィルムにおける偏光性はフィルム製造時に基材である樹脂フィルム中に延伸などの手段により配向された偏光子(二色性色素)により実現される。具体的には、基材となるポリビニルアルコールなどの樹脂フィルムを水にて膨潤させた後、染料組成物を含む水槽に浸漬させ、これを同時にあるいは後に延伸することにより行われている。上記のような湿式製造においては、製造後さらなる工程に偏光フィルムを供するため、または保存安定性を得る目的で乾燥を行い、その水分含量を調整している。ところが、ポリビニルアルコール樹脂を基材とする偏光フィルムは、製膜時の含水率調整等により、耐湿熱色変化を抑制することは可能だが、耐熱色変化が大きくなるという問題があった。また、耐熱色変化の抑止を優先し含水率を下げると、高湿熱環境下における色変化が大きくなり、この2つの熱安定性を両立することが困難であった。 The polarizing property of the polarizing film is realized by a polarizer (a dichroic dye) oriented in the resin film that is the base material by means of stretching or the like during the production of the film. Specifically, a resin film such as polyvinyl alcohol as a base material is swollen with water, then immersed in a water tank containing a dye composition, and then stretched at the same time or later. In the wet production as described above, the polarizing film is subjected to further processes after production, or dried for the purpose of obtaining storage stability to adjust its moisture content. However, a polarizing film using a polyvinyl alcohol resin as a base material has a problem that heat-resistant color change increases, although it is possible to suppress heat-and-moisture color change by adjusting the moisture content at the time of film formation. In addition, when the moisture content is lowered in order to suppress heat-resistant color change, the color change increases in a high-humidity and heat environment, making it difficult to achieve both of these two types of thermal stability.
前述の通り、偏光シートの耐湿熱色変化および耐熱色変化において、いずれか一方の色変化を抑制することは可能であったが、双方の色変化を同時に抑制することは従来技術では不可であった。しかし、上記課題の解決に向けて鋭意検討した結果、本発明は高二色比染料および極低二色比染料を使用し、偏光フィルム含水率およびニッケル吸着量をコントロールすることで耐湿熱色変化および耐熱色変化の両方を同時に抑制することができることを発見したため、本願発明に至った。 As described above, it was possible to suppress either one of the color changes of the polarizing sheet due to heat and humidity and the color change due to heat, but it was impossible to suppress both color changes at the same time. rice field. However, as a result of intensive studies aimed at solving the above problems, the present invention uses a high dichroic ratio dye and an extremely low dichroic ratio dye, and controls the moisture content and nickel adsorption amount of the polarizing film. The inventors have found that both the heat-resistant color change can be suppressed at the same time, leading to the present invention.
 すなわち、本発明は、一軸延伸されたポリビニルアルコール系樹脂フィルムからなる偏光フィルムの両面に接着層を介して透明プラスチックシートを配置してなる偏光積層体において、前記偏光フィルムが、有機染料、金属化合物およびホウ酸を含有してなるポリビニルアルコール樹脂フィルムであって、前記金属化合物が、クロム、マンガン、コバルト、ニッケル、銅、亜鉛などの第4周期遷移金属の酢酸塩、硝酸塩、硫酸塩などの金属塩のいずれか1種以上であり、55℃、90%、24hおよび120℃、24hにおけるISO/CIE 11664-6:2014のCIEDE2000色差式で算出されるΔEcmcが共に3.0以下である、偏光積層体である。 That is, the present invention provides a polarizing laminate in which transparent plastic sheets are arranged on both sides of a polarizing film made of a uniaxially stretched polyvinyl alcohol resin film via an adhesive layer, wherein the polarizing film contains an organic dye and a metal compound. and boric acid, wherein the metal compound is a metal such as acetate, nitrate, sulfate of a fourth transition metal such as chromium, manganese, cobalt, nickel, copper, zinc, etc. salt, and ΔEcmc calculated by the CIEDE 2000 color difference formula of ISO/CIE 11664-6:2014 at 55 ° C., 90%, 24 h and 120 ° C., 24 h is both 3.0 or less. It is a laminate.
 本発明の他の実施態様は、上記実施態様において、前記金属化合物が偏光フィルム1gあたり、200ppm~2500ppm含まれる、偏光積層体である。 Another embodiment of the present invention is the polarizing laminate in the above embodiment, wherein the metal compound is contained in an amount of 200 ppm to 2500 ppm per 1 g of the polarizing film.
 本発明の他の実施態様は、上記いずれかの実施態様において、前記偏光フィルムの含水率が偏光フィルムの重量により5%未満の偏光積層体である。 Another embodiment of the present invention is the polarizing laminate according to any one of the above embodiments, wherein the water content of the polarizing film is less than 5% by weight of the polarizing film.
 本発明の他の実施態様は、上記いずれかの実施態様において、前記有機染料が、二色比が13以上である1つ以上の高二色性有機染料と二色比が4以下である極低二色比あるいは実質的に二色比を持たない1つ以上の低二色性有機染料との組み合わせからなる偏光積層体である。 In another embodiment of the present invention, according to any of the above embodiments, the organic dye comprises one or more high dichroic organic dyes having a dichroic ratio of 13 or more and very low dichroic organic dyes having a dichroic ratio of 4 or less. A polarizing laminate composed of a combination with one or more low dichroic organic dyes having a dichroic ratio or substantially no dichroic ratio.
 本発明の他の実施態様は、上記いずれかの実施態様における偏光積層体から製造されるサングラス用偏光レンズである。 Another embodiment of the present invention is a polarizing lens for sunglasses manufactured from the polarizing laminate according to any one of the above embodiments.
 本発明の他の実施態様は、ポリビニルアルコール樹脂を、水膨潤、一軸延伸しつつ、有機染料にて染色し、金属化合物およびホウ酸を含む処理溶液に浸漬させ、これを乾燥してなる偏光フィルムの製造方法において、偏光フィルムの乾燥において、偏光フィルムを含水率が重量により5%未満となるように乾燥させる、偏光フィルムの製造方法である。 Another embodiment of the present invention is a polarizing film obtained by dyeing a polyvinyl alcohol resin with an organic dye while swelling with water and uniaxially stretching, immersing it in a treatment solution containing a metal compound and boric acid, and drying it. In the manufacturing method of 1, the polarizing film is dried so that the moisture content of the polarizing film is less than 5% by weight.
 本発明の他の実施態様は、上記実施態様において、前記処理溶液において、前記金属化合物が1.0~0.3g/Lの濃度で含まれ、前記ホウ酸が5.0~3.0g/Lの濃度で含まれる方法である。 In another embodiment of the present invention, in the above embodiment, the treatment solution contains the metal compound at a concentration of 1.0 to 0.3 g/L, and the boric acid is contained at a concentration of 5.0 to 3.0 g/L. It is a method that is included in the concentration of L.
 本発明の他の実施態様は、上記いずれかの実施態様において、製造された偏光フィルムの少なくとも片面に接着層を介して透明プラスチックシートを貼り合わせることを含む、偏光シートの製造方法である。 Another embodiment of the present invention is a method for producing a polarizing sheet according to any of the above embodiments, comprising bonding a transparent plastic sheet to at least one side of the produced polarizing film via an adhesive layer.
 本発明により、耐湿熱および耐熱色変化の抑制を両立することが可能になり、温度、湿度共に過酷な環境下でも色変化の少ない偏光シートを製造することが可能となった。 With the present invention, it has become possible to achieve both resistance to moisture and heat and suppression of heat-resistant color change, and it has become possible to manufacture polarizing sheets with little color change even in harsh environments in terms of both temperature and humidity.
以下本発明の構成について説明する。
偏光フィルムは、基材となる樹脂フィルムを水中で膨潤させた後に、本願発明の二色性有機染料を含有する染色液に、一方向に延伸させつつ含浸することにより、二色性色素を基材樹脂中に配向した状態で分散させて、偏光性および所望の色調を付与したフィルムを得ることによる。
The configuration of the present invention will be described below.
The polarizing film is obtained by swelling a resin film as a base material in water, and then impregnating it with a dyeing solution containing the dichroic organic dye of the present invention while stretching in one direction. By dispersing it in an oriented state in a material resin to obtain a film imparted with polarizing properties and a desired color tone.
このときに用いる偏光フィルムの基材となる樹脂としては、ポリビニルアルコール類が用いられ、このポリビニルアルコール類としては、ポリビニルアルコール(以下PVA)、PVAの酢酸エステル構造を微量残したものおよびPVA誘導体または類縁体であるポリビニルホルマール、ポリビニルアセタール、エチレン-酢酸ビニル共重合体ケン化物等が好ましく、特にPVAが好ましい。 Polyvinyl alcohols are used as the base resin for the polarizing film used at this time, and the polyvinyl alcohols include polyvinyl alcohol (hereinafter referred to as PVA), PVA with a trace of the acetate structure, and PVA derivatives or Analogues such as polyvinyl formal, polyvinyl acetal, and saponified ethylene-vinyl acetate copolymer are preferred, and PVA is particularly preferred.
また、PVAフィルムの分子量は、延伸性とフィルム強度の点から重量平均分子量が50,000から350,000のものが好ましく、より好ましくは分子量100,000から300,000、特に、分子量150,000以上が好ましい。PVAフィルムを延伸する際の倍率は、延伸後の二色比とフィルム強度の点から2~8倍が好ましく、特に3~6.5倍、特に3.5~4.5倍が好ましい。延伸後のPVAフィルムの厚みは特に制限はないが、保護フィルムなどと一体化せずに取り扱いできるとの点から厚み20μm以上で、50μm以下程度が好ましい。 The molecular weight of the PVA film is preferably a weight average molecular weight of 50,000 to 350,000, more preferably a molecular weight of 100,000 to 300,000, particularly a molecular weight of 150,000, from the viewpoint of stretchability and film strength. The above is preferable. The stretching ratio for stretching the PVA film is preferably 2 to 8 times, more preferably 3 to 6.5 times, particularly preferably 3.5 to 4.5 times, from the viewpoint of the dichroic ratio and film strength after stretching. Although the thickness of the stretched PVA film is not particularly limited, it is preferably about 20 μm or more and about 50 μm or less because it can be handled without being integrated with a protective film or the like.
基材フィルムとしてPVAを用いる場合の典型的な製造工程は、
(1)PVAを水中にて膨潤させつつ水洗し、不純物を取り除き、
(2)適宜、延伸しつつ、
(3)染色槽にて染色し、
(4)ホウ酸または金属化合物による処理槽にて架橋ないしキレート化処理し、
(5)乾燥する、
との工程にて製造される。尚、工程(2)、(3)(場合により(4))は、適宜、その順序をかえても、また、同時に行っても良いものである。
A typical manufacturing process when using PVA as a base film is
(1) PVA is swollen in water and washed with water to remove impurities,
(2) while stretching as appropriate,
(3) Dyeing in a dyeing tank,
(4) cross-linking or chelating treatment in a treatment tank with boric acid or a metal compound;
(5) dry;
Manufactured in the process of The steps (2), (3) (and (4) in some cases) may be changed in order, or may be carried out at the same time.
まず、工程(1)の膨潤・水洗の工程は、水を吸収させることにより、常温の乾燥状態では容易に破断するPVAフィルムを均一に軟化させて延伸可能とする。また、PVAフィルムの製造工程に使用される水溶性の可塑剤などを除くこと、あるいは、適宜、添加剤を予備的に吸着させる工程である。このときに、PVAフィルムは順次均一に膨潤するものではなく、必ずバラツキが生じる。この状態でも、局所的に伸ばされあるいは伸び不足のないように、また、皺などの発生を抑えるように可能なかぎり小さい力を均一に負荷するような工夫を行うことが肝要である。また、この工程では、単に均一に膨潤させることが最も望ましいものであり、過剰な延伸などはムラの原因となるので極力しない。 First, in the step (1) of swelling and washing with water, the PVA film, which is easily broken in a dry state at room temperature, is uniformly softened and made stretchable by absorbing water. It is also a step of removing water-soluble plasticizers and the like used in the PVA film manufacturing process, or preliminarily adsorbing additives as appropriate. At this time, the PVA film does not gradually and uniformly swell, and variations always occur. Even in this state, it is important to apply a uniform force that is as small as possible so as to prevent local stretching or insufficient stretching and to suppress the occurrence of wrinkles. Moreover, in this step, it is most desirable to simply swell uniformly, and excessive stretching, etc., causes unevenness and should be avoided as much as possible.
工程(2)は、通常2~8倍となるように延伸を行うものである。本発明における偏光フィルムはその後の加工性が良いことも重要であるので、延伸倍率を3~6.5倍、特に3.5~4.5倍から選択し、この状態でも配向性を維持するのが好ましい。延伸配向された状態で、水中に存在する時間、さらに乾燥までの時間が長いと配向緩和が進むものであることから、より高い性能を維持するとの観点からは延伸処理はより短時間となるように設定し、延伸後は、出来るだけ早く水分を除く、すなわち、直ちに乾燥工程に導き過剰な熱負荷を避けつつ乾燥させることが好ましい。なお、本願での延伸倍率はポリビニルアルコール樹脂フィルムの原反を基準とした延伸倍率である。 In the step (2), stretching is usually carried out so as to be 2 to 8 times. It is also important that the polarizing film in the present invention has good subsequent workability, so the draw ratio is selected from 3 to 6.5 times, particularly 3.5 to 4.5 times, and the orientation is maintained even in this state. is preferred. In the stretched and oriented state, if the time in water and the time until drying are long, the relaxation of the orientation will progress, so from the viewpoint of maintaining higher performance, the stretching process is set to be shorter. However, after stretching, it is preferable to remove moisture as soon as possible, that is, immediately lead to a drying step and dry while avoiding an excessive heat load. In addition, the draw ratio in this application is a draw ratio based on the original fabric of the polyvinyl alcohol resin film.
工程(3)の染色は、配向したポリビニルアルコール樹脂フィルムのポリマー鎖への染料を吸着あるいは沈着させることによる。この工程は、一軸延伸の前中後のいずれでも可能であり大きな変化はないが、界面という規制の高い表面が最も配向しやすいものであり、これを生かすような条件を選択するのが好ましい。温度は、高い生産性との要求から通常は40~80℃の高温から選択されるが、本発明では通常25~45℃、好ましく30~40℃、特に30~35℃から選択する。 Dyeing in step (3) is by adsorption or deposition of a dye onto the polymer chains of the oriented polyvinyl alcohol resin film. This step can be performed before, during, or after uniaxial stretching, and there is no significant difference. However, the interface, which is the highly regulated surface, is the easiest to orient, and it is preferable to select conditions that take advantage of this. The temperature is usually selected from a high temperature range of 40 to 80.degree. C. from the demand for high productivity.
工程(4)は、耐熱性の向上や耐水性や耐有機溶剤性を向上させるために行う。ホウ酸による処理はPVA鎖間の架橋にて耐熱性を向上させるものであるが、ポリビニルアルコール樹脂フィルムの一軸延伸の前中後のいずれでも可能であり大きな変化はない。また、金属化合物は主に、染料分子とキレート化合物を形成して安定化させるものであり、通常、染色後あるいは染色と同時に行う。 Step (4) is performed to improve heat resistance, water resistance, and organic solvent resistance. The treatment with boric acid improves the heat resistance by cross-linking between PVA chains, but it can be performed before, during or after the uniaxial stretching of the polyvinyl alcohol resin film, and there is no significant change. In addition, the metal compound mainly forms a chelate compound with the dye molecule to stabilize it, which is usually performed after dyeing or at the same time as dyeing.
金属化合物としては、第4周期、第5周期、第6周期のいずれの周期に属する遷移金属であっても、その金属化合物に前記耐熱性および耐溶剤性効果の確認されるものが存在するが、価格面からクロム、マンガン、コバルト、ニッケル、銅、亜鉛などの第4周期遷移金属の酢酸塩、硝酸塩、硫酸塩などの金属塩が好ましい。これらの中でも、ニッケル、マンガン、コバルト、亜鉛および銅の化合物が、安価で前記効果に優れるため、さらに好ましく、ニッケルが特に好適である。 As the metal compound, there are transition metals belonging to any of the 4th, 5th, and 6th periods that are confirmed to have the heat resistance and solvent resistance effects described above. Metal salts such as acetates, nitrates and sulfates of 4th period transition metals such as chromium, manganese, cobalt, nickel, copper and zinc are preferred from the viewpoint of cost. Among these, compounds of nickel, manganese, cobalt, zinc and copper are more preferable because they are inexpensive and excellent in the above effects, and nickel is particularly preferable.
より具体的な例としては、例えば、酢酸マンガン(II)四水和物、酢酸マンガン(III)二水和物、硝酸マンガン(II)六水和物、硫酸マンガン(II)五水和物、酢酸コバルト(II)四水和物、硝酸コバルト(II)六水和物、硫酸コバルト(II)七水和物、酢酸ニッケル(II)四水和物、硝酸ニッケル(II)六水和物、硫酸ニッケル(II)六水和物、酢酸亜鉛(II)、硫酸亜鉛(II)、硝酸クロム(III)九水和物、酢酸銅(II)一水和物、硝酸銅(II)三水和物、硫酸銅(II)五水和物などが挙げられる。これらの金属化合物のうち、いずれか1種を単独で用いてもよく、複数種を組み合わせて用いることもできる。 More specific examples include manganese (II) acetate tetrahydrate, manganese (III) acetate dihydrate, manganese (II) nitrate hexahydrate, manganese (II) sulfate pentahydrate, cobalt (II) acetate tetrahydrate, cobalt (II) nitrate hexahydrate, cobalt (II) sulfate heptahydrate, nickel (II) acetate tetrahydrate, nickel (II) nitrate hexahydrate, Nickel (II) Sulfate Hexahydrate, Zinc (II) Acetate, Zinc (II) Sulfate, Chromium (III) Nitrate Nonahydrate, Copper (II) Acetate Monohydrate, Copper (II) Nitrate Trihydrate and copper (II) sulfate pentahydrate. Any one of these metal compounds may be used alone, or two or more of them may be used in combination.
金属化合物およびホウ酸の前記偏光フィルム中の含有率は、前記偏光フィルムに耐熱性および耐溶剤性を与える点から、偏光フィルム1g当たり、金属化合物では金属として0.2~20mg含有されることが好ましく、0.2~2mgがさらに好ましい。より具体的には、実施例にて詳述する方法にて測定したときに、偏光フィルム中に含侵される金属化合物の濃度としては、200ppm~2500ppm、より好ましくは200ppm~2000ppm、更に好ましくは400ppm~1800ppm、更に好ましくは800ppm~2300ppm更に好ましくは600ppm~1600ppmである。金属化合物の濃度が200ppm未満の場合には、色ムラが発生する傾向にあり、2500ppmを超える場合には、耐湿熱性に問題が生じる。 From the viewpoint of imparting heat resistance and solvent resistance to the polarizing film, the content of the metal compound and boric acid in the polarizing film is 0.2 to 20 mg of the metal compound per 1 g of the polarizing film. Preferably, 0.2 to 2 mg is more preferable. More specifically, the concentration of the metal compound impregnated in the polarizing film is 200 ppm to 2500 ppm, more preferably 200 ppm to 2000 ppm, and still more preferably 400 ppm when measured by the method described in detail in Examples. ~1800 ppm, more preferably 800 ppm to 2300 ppm, more preferably 600 ppm to 1600 ppm. When the concentration of the metal compound is less than 200 ppm, color unevenness tends to occur, and when it exceeds 2500 ppm, a problem arises in moist heat resistance.
前述の通り、金属化合物を処理槽にて偏光フィルムに含侵させると、染料分子と偏光フィルム間でキレートを形成し、染料の配向変化を抑制できると考えられる。金属化合物を多く入れるとキレートに使われない過剰分の金属化合物が染料分子と反応し、色調の調整が困難になるが、金属化合物を全く加えないと二色比が低下し、二色比を補うために高二色比染料を入れる必要が出るため湿熱環境下では偏光フィルムが高配向化し、湿熱色変化が大きくなる。従って、キレート形成に必要な適量の金属化合物を加えることで、熱安定性以外に湿熱安定性も兼ね備えた偏光フィルムを製造することが可能となった。 As described above, when the polarizing film is impregnated with a metal compound in the treatment tank, a chelate is formed between the dye molecules and the polarizing film, and it is thought that the orientation change of the dye can be suppressed. If a large amount of metal compound is added, the excess metal compound that is not used for chelation reacts with the dye molecules, making it difficult to adjust the color tone. In order to compensate, it is necessary to add a high dichroic dye, so the polarizing film becomes highly oriented in a moist and hot environment, and the color change becomes large. Therefore, by adding an appropriate amount of metal compound necessary for chelate formation, it has become possible to produce a polarizing film that has not only heat stability but also wet heat stability.
本発明において、ホウ酸の含有率は、ホウ素として0.3~30mgが好ましく、0.5~10mgがさらに好ましい。処理に用いる処理液の組成は以上の含有率を満たすように設定され、一般的には、金属化合物の濃度は0.5~30g/L、ホウ酸濃度は2~20g/Lであることが好ましい。 In the present invention, the boric acid content is preferably 0.3 to 30 mg, more preferably 0.5 to 10 mg as boron. The composition of the treatment liquid used for the treatment is set so as to satisfy the above contents, and generally the concentration of the metal compound is 0.5 to 30 g/L and the concentration of boric acid is 2 to 20 g/L. preferable.
偏光フィルムに含有される金属およびホウ素の含有率の分析は、原子吸光分析法により行うことができる。 The content of metal and boron contained in the polarizing film can be analyzed by atomic absorption spectrometry.
温度は、通常、染色と同じ条件を採用するが、通常、20~70℃、好ましくは25~45℃、より好ましく30~40℃、特に30~35℃から選択する。また、時間は、通常、0.5~15分から選択する。 As for the temperature, the same conditions as those for dyeing are usually employed, but it is usually selected from 20 to 70°C, preferably 25 to 45°C, more preferably 30 to 40°C, especially 30 to 35°C. Also, the time is usually selected from 0.5 to 15 minutes.
工程(5)にて、延伸、染色および適宜、ホウ酸または金属化合物にて処理された染色1軸延伸PVAフィルムを乾燥する。PVAフィルムは、含有する水分量に相当する耐熱性を示すものであり、水を多量に含む状態で温度が高くなってくると、より短時間で、1軸延伸状態からの乱れなどが生じ、二色比の低下が起こる。 In step (5), the stretched, dyed and optionally dyed uniaxially stretched PVA film treated with boric acid or metal compound is dried. A PVA film exhibits heat resistance corresponding to the amount of water it contains. A decrease in the dichroic ratio occurs.
フィルムの乾燥は表面から進むものであり、両表面から乾燥させることが好ましく、乾燥空気送風にて水蒸気を除きつつ行うことが好ましい。また、周知のように、過剰な加熱を避ける点から、蒸発した水分を直ちに除去して蒸発を促進させる方法が温度上昇を抑えた乾燥ができる点から好ましく、乾燥空気の温度を乾燥状態の偏光フィルムが実質的に変色しない温度以下の範囲から、通常、70℃以上、好ましくは90~120℃の温度で、1~120分間、好ましくは3~40分間にて送風乾燥する。 Drying of the film progresses from the surface, and it is preferable to dry from both surfaces, preferably while removing water vapor by blowing dry air. In addition, as is well known, from the point of avoiding excessive heating, the method of immediately removing the evaporated moisture to promote evaporation is preferable from the point that drying can be performed while suppressing the temperature rise. Air drying is carried out at a temperature of 70° C. or higher, preferably 90° C. to 120° C., for 1 to 120 minutes, preferably 3 to 40 minutes, from the temperature range below which the film does not substantially discolor.
この段階における偏光フィルムの含水率は、5%以下とすることが好ましい。乾燥工程においては、2%を下回る含水率とすることは困難であり、また偏光フィルムの強度の観点からも好ましくない。好適な含水率としては2.5%から5.0%である。 The moisture content of the polarizing film at this stage is preferably 5% or less. In the drying process, it is difficult to make the water content less than 2%, and it is not preferable from the viewpoint of the strength of the polarizing film. A suitable moisture content is 2.5% to 5.0%.
サングラス用のPVA偏光フィルムは通常、上記の工程で製造される。 A PVA polarizing film for sunglasses is usually manufactured by the above process.
本発明は二色性有機染料組成物と着色用有機染料組成物とを用いて染色することから、二色性有機染料組成物にて染色されたPVA偏光フィルムの透過率を上限とし、着色用有機染料組成物にて染色されたPVA偏光フィルムの透過率を下限とする広い範囲の透過率の選択が可能となる。
また、色調は、主に着色用有機染料組成物にて調整され、偏光度の変化を実質的に考慮することなく使用量比の変更に対応した広い範囲の色調が得られる。
Since the present invention dyes using a dichroic organic dye composition and a coloring organic dye composition, the upper limit is the transmittance of the PVA polarizing film dyed with the dichroic organic dye composition, and the coloring It is possible to select a wide range of transmittance, with the transmittance of a PVA polarizing film dyed with an organic dye composition being the lower limit.
Further, the color tone is adjusted mainly by the organic dye composition for coloring, and a wide range of color tone can be obtained corresponding to the change of the usage ratio without substantially considering the change of the degree of polarization.
後述する方法で二色比を調べた染料のうち、二色比が13以上である二色性有機染料として、具体的には、以下のアゾ色素が例示されるが、特にこれらに限定されるものではない。アゾ色素は商品名で例示し、括弧内にはカラー・インデックス・ジェネリック・ネーム(Color Index Generic Name)を記載した。
Sumilight Supra Yellow BC conc(C.I.Direct Yellow28)
Kayarus Light Yellow F8G(C.I.Direct Yellow87)
Kayacelon Yellow C-2RL(C.I.Direct Yellow164)
Direct Fast Orange S (C.I.Direct Orange26)
Sumilight Supra Orange 2GL 125%(C.I.Direct Orange39)
Nippon Fast Scarlet GSX(C.I.Direct Red4)
Fast Scarlet 4BS(C.I.Direct Red23)
Sumilight Red 4B(C.I.Direct Red81)
Kayarus Supra Blue BWL 143(C.I.Direct Blue237)
Kayarus Supra Brown GL 125(C.I.Direct Brown195)
Kayarus Supra Brown B2R(C.I.Direct Brown209)
Kayarus Supra Brown GTL(C.I.Direct Brown210)
Among the dyes whose dichroic ratio was examined by the method described later, the dichroic organic dyes having a dichroic ratio of 13 or more are specifically exemplified by the following azo dyes, but are particularly limited to these. not a thing Azo dyes are exemplified by trade names, and Color Index Generic Names are given in parentheses.
Summit Supra Yellow BC conc (C.I. Direct Yellow28)
Kayarus Light Yellow F8G (CI Direct Yellow87)
Kayacelon Yellow C-2RL (CI Direct Yellow 164)
Direct Fast Orange S (C.I. Direct Orange 26)
Summit Supra Orange 2GL 125% (CI Direct Orange 39)
Nippon Fast Scarlet GSX (C.I. Direct Red4)
Fast Scarlet 4BS (CI Direct Red23)
Summit Red 4B (C.I. Direct Red81)
Kayarus Supra Blue BWL 143 (C.I. Direct Blue 237)
Kayarus Supra Brown GL 125 (C.I. Direct Brown 195)
Kayarus Supra Brown B2R (CI Direct Brown 209)
Kayarus Supra Brown GTL (C.I. Direct Brown 210)
PVAフィルムへの染色性と耐熱性の点からスルホン酸基を持つアゾ色素からなる直接染料が好ましい。偏光フィルムが所望の色調、本発明では実質的に無色となるように、二色性有機染料を通常3種以上組み合わせて、所定の透過率が得られるような濃度で染色液中に各色の直接染料を溶解あるいは分散させる。染色液には直接染料の他に、染色助剤として硫酸ナトリウム等の無機塩を適宜添加する。 A direct dye consisting of an azo dye having a sulfonic acid group is preferred from the viewpoint of dyeability to PVA film and heat resistance. In order to obtain the desired color tone of the polarizing film, which is substantially colorless in the present invention, usually three or more kinds of dichroic organic dyes are combined, and each color is directly added to the dyeing solution at a concentration such that a predetermined transmittance is obtained. Dissolve or disperse dyes. In addition to the direct dye, an inorganic salt such as sodium sulfate is appropriately added to the dyeing solution as a dyeing aid.
後述する方法で二色比を調べた染料のうち、二色比が4以下である極低二色比あるいは実質的に二色比を持たない着色用有機染料の一例として、具体的には、以下のアゾ色素や媒染染料、反応染料、酸性染料が例示されるが、特にこれらに限定されるものではない。Direct Brilliant Pink B(C.I.Direct Red9)
Kayarus Light Red F5G(C.I.Direct Red225)
Direct Light Rose FR(C.I.Direct Red227)
Sumilight Supra Turquoise Blue G(C.I.Direct Blue86)
Direct Supra Blue FFRL(C.I.Direct Blue108)
Kayarus Cupro Green G(C.I.Direct Green59)
Direct Fast Black B(C.I.Direct Black22)
Sunchromine Yellow MR(C.I.Mordant Yellow3)
Chrome Yellow AS(C.I.Mordant Yellow5)
Chrome Yellow 3R(C.I.Mordant Yellow8)
Chrome Yellow PG(C.I.Mordant Yellow23)
Chrome Orange FL(C.I.Mordant Orange29)
Chrome Red B conc.(C.I.Mordant Red7)
Chrome Red 5G(C.I.Mordant Red19)
Sunchromine Brilliant Violet R conc.(C.I.Mordant Violet1:1)
Chrome Fine Violet R(C.I.Mordant Violet1)
Chrome Cyanine BXS(C.I.Mordant Blue1)
Mordant Blue B 120%(C.I.Mordant Blue13)
Chrome Cyanine BLA(C.I.Mordant Blue29)
Mordant Green L(C.I.Mordant Green17)
Chrome Green 3B-N(C.I.Mordant Green28)
Mordant Brown KS(C.I.Mordant Brown15)
Chrome Brown LE(C.I.Mordant Brown19)
Chrome Brown RH(C.I.Mordant Brown33)
Chrome Black P2B(C.I.Mordant Black7)
Chrome Black PLW(C.I.Mordant Black9)
Chrome Black ET-1(C.I.Mordant Black11)
Chrome Navy CR 158%(C.I.Mordant Black17)
Chrome Light Grey G(C.I.Mordant Black38)
Chrome Bordeaux FB
Alizarine Chrome Brilliant Blue BL
Chrome Blue 2G
Sumifix Yellow GR 150%(C.I Reactive Yellow15)
Lanasol Yellow 4G(C.I Reactive Yellow39)
Sumifix Golden Yellow GG(A) 150%(C.I Reactive Yellow76)
Kayacion Yellow E-S4R(C.I Reactive Yellow84)
Novacron Yellow P-6GS gran(C.I Reactive Yellow95)
Kayacion Yellow E-SNA(C.I Reactive Yellow102)
Kayacion Yellow E-SN4G(C.I Reactive Yellow105)
Drimarene Yellow K-2R CDG(C.I Reactive Yellow125)
Sumifix Supra Yellow 3RF 150% gran(C.I Reactive Yellow145)
Sumifix Supra Brilliant Yellow 3GF 150% gr(C.I Reactive Yellow167)
Novacron Yellow C-R(C.I Reactive Yellow168)
Novcron Yellow C-5G(C.I Reactive Yellow175)
Kayacion Yellow CF-3RJ 150
Kayacion Yellow E-CM
Procion Orange PX-RN(C.I.Reactive Orange5)
Remazol Brilliant Orange 3R Special(C.I.Reactive Orange16)
Levafix Yellow E-3RL gran(C.I.Reactive Orange30)
Levafix Orange E-3GA gran(C.I.Reactive Orange64)
Remazol Golden Yellow RNL gran 150%(C.I.Reactive Orange107)
Drimaren Rubinol X3LR CDG(C.I.Reactive Red55)
Brilliant Red G SPL(C.I.Reactive Red112)
Brilliant Red 7BF Liq 25%(C.I.Reactive Red114)
Lanasol Red 2G(C.I.Reactive Red116)
Levafix Scarlet E-2GA gran(C.I.Reactive Red124)
Levafix Brilliant Red E-4BA gran(C.I.Reactive Red158)
Levafix Brilliant Red E-6BA gran(C.I.Reactive Red159)
Remazol Brilliant Red F3B gran(C.I.Reactive Red180)
Supra Brilliant Red 3BF 150% gran(C.I.Reactive Red195)
Remazol Red RB 133%(C.I.Reactive Red198)
Supra Scarlet 2GF 150G(C.I.Reactive Red222)
Novacron Red P-6B Gran. 150%
Novacron Red C-2G
Kayacion Violet A-3R(C.I.Reactive Violet1)
Remazol Brill. Violet 5R(C.I.Reactive Violet5)
Drimaren Violet K-2RL CDG(C.I.Reactive Violet33)
Remazol Brill. Blue RN(C.I.Reactive Blue19)
Sumifix Turquoise Blue G(N) conc.(C.I.Reactive Blue21)
Novacron Blue P-3R IN(C.I.Reactive Blue49)
Lanasol Blue 3R(C.I.Reactive Blue50)
Drimarene Blue X-3LR CDG(C.I.Reactive Blue52)
Lanasol Blue 3G(C.I.Reactive Blue69)
Novacron Turquoise P-GR 150%(C.I.Reactive Blue72)
Drimarene Navy X-RBL CDG(C.I.Reactive Blue79)
Lanasol Blue 8G-01  150%(C.I.Reactive Blue185)
Drimarene Blue K-2RL CDG(C.I.Reactive Blue209)
Sumifix Supra Blue BRF 150% gran.(C.I.Reactive Blue221)
Sumifix Supra Navy Blue BF gran.(C.I.Reactive Blue222)
Sumifix Supra Turquoise Blue BGF(N)(C.I.Reactive Blue231)
Novacron Blue C-R(C.I.Reactive Blue235)
Kayacion Blue CF-GJ 150
Kayacion Blue CF-BL
Kayacin Marine E-CM
Kayacion Navy E-CM
Sumifix Supra Navy Blue 3GF 150% gran
Levafix Brown E-2R gran(C.I.Reactive Brown19)
Novacron Brown P-6R Gran. 150
Remazol Black B-N 150%(C.I.Reactive Black5)
Remazol Black RL 133%(C.I.Reactive Black31)
Remazol Deep Black N 150%(C.I.Reactive Black31)
Acid Quinoline Yellow WS H/C(C.I.Acid Yellow3)
Kayacyl Yellow GG 80(C.I.Acid Yellow17)
Tartrazine NS conc(C.I.Acid Yellow23)
Suminol Fast Yellow R conc.(C.I.Acid Yellow25)
Kayanol Milling Yellow O(C.I.Acid Yellow38)
Suminol Milling Yellow MR(C.I.Acid Yellow42)
Aminyl Yellow E-3GL(C.I.Acid Yellow49)
Suminol Fast Yellow G (B)(C.I.Acid Yellow61)
Erionyl Yellow B-4G(C.I.Acid Yellow79)
Kayanol Yellow N5G(C.I.Acid Yellow110)
Lanyl Yellow G ex cc(C.I.Acid Yellow116)
Kayakalan Yellow GL 143(C.I.Acid Yellow121)
Kayanol Milling Yellow 5GW(C.I.Acid Yellow127)
Lanacron Yellow N-2GL KWL(C.I.Acid Yellow129)
Erionyl Golden Yellow M-R-02(C.I.Acid Yellow151)
Tectilon Yellow 2G  200%(C.I.Acid Yellow169)
Lanacron Yellow S-2G-01 KWL(C.I.Acid Yellow220)
Telon Yellow RLN micro(C.I.Acid Yellow230)
Tectilon Yellow 3R 200%(C.I.Acid Yellow246)
Chuganol Fast Yellow 5GL(C.I.Acid Yellow40:1)
Solar Orange(C.I.Acid Orange7)
Solar Light Orange GX(C.I.Acid Orange10)
Chuganol Milling Brown 5R(C.I.Acid Orange51)
Chuganol Milling OrangeSG(C.I.Acid Orange56)
Kayanol Yellow N3R(C.I.Acid Orange67)
Aminyl Yellow E-3RL(C.I.Acid Orange67)
Lanyl Orange R 200%(C.I.Acid Orange88)
Chuganol Milling Orange GSN 150%(C.I.Acid Orange95)
Suminol Milling Orange GN(N)(C.I.Acid Orange95)
Isolan Orange K-RLS(C.I.Acid Orange107)
Telon Orange AGT 01(C.I.Acid Orange116)
Lanyl Orange 2R e/c(C.I.Acid Orange120)
Supralan Orange S-RL(C.I.Acid Orange166)
Lanasyn Yellow M-2RL 180(C.I.Acid Orange180)
Nylosan Orange NRL 250(C.I.Acid Orange250)
Lanasyn Orange M-RL p
Silk Scarlet(C.I.Acid Red9)
Brilliant Scarlet 3R conc.(C.I.Acid Red18)
Acid Rhodamine G Conc(C.I.Acid Red50)
Acid Rhodamine B Conc(C.I.Acid Red52)
Chugacid Red FCH(C.I.Acid Red73)
Chugacid Rubinol 3B 200%(C.I.Acid Red80)
Rocceline NS conc. 120%(C.I.Acid Red88)
Chuganol Anthracene Red G(C.I.Acid Red97)
Suminol Fast Red G (B)(C.I.Acid Red118)
Suminol Milling Brilliant Red 3BN (N) conc.(C.I.Acid Red131)
Lanyl Red GG(C.I.Acid Red211)
Lanyl Red B(C.I.Acid Red215)
Lanasyn Bordeaux M-RLA200(C.I.Acid Red217)
Suminol Milling Brilliant Red B conc. N(C.I.Acid Red249)
Aminyl Red E-3BL(C.I.Acid Red257)
Telon Red M-BL(C.I.Acid Red260)
Chugai Aminol Fast Pink R(C.I.Acid Red289)
Nylosan Red N-2RBL SGR(C.I.Acid Red336)
Telon Red FRL micro(C.I.Acid Red337)
Lanasyn Red M-G(C.I.Acid Red399)
Kayakalan Red BL
Nylosan Red EBL SGR 180
Kayanol Milling Red BW
Kayanol Milling Violet FBW(C.I.Acid Violet48)
Erionyl Red B-10B-01(C.I.Acid Violet54)
Chugai Aminol Fast Violet F6R(C.I.Acid Violet102)
Acid Pure Blue VX(C.I.Acid Blue1)
Acid Brilliant Blue AF-N(C.I.Acid Blue7)
Chugacid Light Blue A(C.I.Acid Blue25)
Kayanol Blue N2G(C.I.Acid Blue40)
Nylosan Blue E-GL p 250(C.I.Acid Blue72)
Chuganol Blue 6B 333%(C.I.Acid Blue83)
Chuganol Blue G 333%(C.I.Acid Blue90)
Kayanol Navy Blue R(C.I.Acid Blue92)
Suminol Milling Brilliant Sky Blue SE (N)(C.I.Acid Blue112)
Suminol Milling Cyanine 5R (N)(C.I.Acid Blue113)
Kayanol Milling Blue GW(C.I.Acid Blue127)
Lanyl Brilliant Blue G ex cc(C.I.Acid Blue127:1)
Kayanol Blue NR(C.I.Acid Blue129)
Kayanol Milling Blue BW(C.I.Acid Blue138)
Kayanol Milling Blue 2RW(C.I.Acid Blue140)
Lanyl Blue 3G ex conc(C.I.Acid Blue171)
Nylosan Blue N-GL 150(C.I.Acid Blue230)
Tectilon Blue 6G 200%(C.I.Acid Blue258)
Telon Blue AFN(C.I.Acid Blue264)
Tectilon Blue 4R-01 200%(C.I.Acid Blue277:1)
Nylosan B Blue N-FL SGR180(C.I.Acid Blue278)
Nylosan Blue N-5GL SGR 200(C.I.Acid Blue280)
Kayalax  Navy R(C.I.Acid Blue300)
Nylosan Blue N-BLN(C.I.Acid Blue350)
Lanacron Blue N-3GL
Acid Green V(C.I.Acid Green16)
Chuganol Cyanine Green G(C.I.Acid Green25)
Suminol Milling Brown 5R(C.I.Acid Brown51)
Among the dyes whose dichroic ratio was examined by the method described later, as an example of an organic dye for coloring that has a dichroic ratio of 4 or less or has substantially no dichroic ratio, specifically, The following azo dyes, mordant dyes, reactive dyes, and acid dyes are exemplified, but are not particularly limited to these. Direct Brilliant Pink B (CI Direct Red9)
Kayarus Light Red F5G (CI Direct Red225)
Direct Light Rose FR (CI Direct Red227)
Summit Supra Turquoise Blue G (C.I. Direct Blue86)
Direct Supra Blue FFRL (C.I. Direct Blue 108)
Kayarus Cupro Green G (CI Direct Green 59)
Direct Fast Black B (C.I. Direct Black 22)
Sunchromine Yellow MR (CI Mordant Yellow 3)
Chrome Yellow AS (CI Mordant Yellow 5)
Chrome Yellow 3R (CI Mordant Yellow 8)
Chrome Yellow PG (CI Mordant Yellow 23)
Chrome Orange FL (CI Mordant Orange29)
Chrome Red B conc. (C.I. Mordant Red7)
Chrome Red 5G (CI Mordant Red19)
Sunchromine Brilliant Violet R conc. (C.I. Mordant Violet 1:1)
Chrome Fine Violet R (C.I. Mordant Violet 1)
Chrome Cyanine BXS (C.I. Mordant Blue 1)
Mordant Blue B 120% (CI Mordant Blue 13)
Chrome Cyanine BLA (C.I. Mordant Blue29)
Mordant Green L (CI Mordant Green 17)
Chrome Green 3B-N (CI Mordant Green28)
Mordant Brown KS (C.I. Mordant Brown 15)
Chrome Brown LE (CI Mordant Brown 19)
Chrome Brown RH (CI Mordant Brown 33)
Chrome Black P2B (C.I. Mordant Black7)
Chrome Black PLW (CI Mordant Black 9)
Chrome Black ET-1 (C.I. Mordant Black 11)
Chrome Navy CR 158% (CI Mordant Black 17)
Chrome Light Gray G (C.I. Mordant Black38)
Chrome Bordeaux FB
Alizarine Chrome Brilliant Blue BL
Chrome Blue 2G
Sumifix Yellow GR 150% (CI Reactive Yellow 15)
Lanasol Yellow 4G (CI Reactive Yellow 39)
Sumifix Golden Yellow GG (A) 150% (CI Reactive Yellow76)
Kayacion Yellow E-S4R (C.I Reactive Yellow84)
Novacron Yellow P-6GS gran (CI Reactive Yellow 95)
Kayacion Yellow E-SNA (CI Reactive Yellow 102)
Kayacion Yellow E-SN4G (CI Reactive Yellow 105)
Drimarene Yellow K-2R CDG (CI Reactive Yellow 125)
Sumifix Supra Yellow 3RF 150% gran (C.I Reactive Yellow 145)
Sumifix Supra Brilliant Yellow 3GF 150% gr (C.I Reactive Yellow 167)
Novacron Yellow CR (C.I Reactive Yellow 168)
Novcron Yellow C-5G (C.I Reactive Yellow 175)
Kayacion Yellow CF-3RJ 150
Kayacion Yellow E-CM
Procion Orange PX-RN (CI Reactive Orange 5)
Remazol Brilliant Orange 3R Special (CI Reactive Orange 16)
Levafix Yellow E-3RL gran (CI Reactive Orange 30)
Levafix Orange E-3GA gran (CI Reactive Orange 64)
Remazol Golden Yellow RNL gran 150% (CI Reactive Orange 107)
Drimaren Rubinol X3LR CDG (C.I. Reactive Red55)
Brilliant Red G SPL (C.I. Reactive Red 112)
Brilliant Red 7BF Liq 25% (C.I. Reactive Red 114)
Lanasol Red 2G (CI Reactive Red 116)
Levafix Scarlet E-2GA gran (C.I. Reactive Red124)
Levafix Brilliant Red E-4BA gran (CI Reactive Red158)
Levafix Brilliant Red E-6BA gran (CI Reactive Red159)
Remazol Brilliant Red F3B gran (C.I. Reactive Red180)
Supra Brilliant Red 3BF 150% gran (C.I. Reactive Red195)
Remazol Red RB 133% (CI Reactive Red 198)
Supra Scarlet 2GF 150G (C.I. Reactive Red222)
Novacron Red P-6B Gran. 150%
Novacron Red C-2G
Kayacion Violet A-3R (C.I. Reactive Violet 1)
Remazol Brill. Violet 5R (C.I. Reactive Violet 5)
Drimaren Violet K-2RL CDG (CI Reactive Violet 33)
Remazol Brill. Blue RN (CI Reactive Blue 19)
Sumifix Turquoise Blue G(N) conc. (C.I. Reactive Blue21)
Novacron Blue P-3R IN (C.I. Reactive Blue49)
Lanasol Blue 3R (CI Reactive Blue 50)
Drimarene Blue X-3LR CDG (C.I. Reactive Blue52)
Lanasol Blue 3G (CI Reactive Blue 69)
Novacron Turquoise P-GR 150% (CI Reactive Blue72)
Dimarene Navy X-RBL CDG (C.I. Reactive Blue79)
Lanasol Blue 8G-01 150% (CI Reactive Blue 185)
Drimarene Blue K-2RL CDG (C.I. Reactive Blue 209)
Sumifix Supra Blue BRF 150% gran. (C.I. Reactive Blue221)
Sumifix Supra Navy Blue BF gran. (C.I. Reactive Blue222)
Sumifix Supra Turquoise Blue BGF(N) (C.I. Reactive Blue231)
Novacron Blue CR (C.I. Reactive Blue235)
Kayacion Blue CF-GJ150
Kayacion Blue CF-BL
Kayacin Marine E-CM
Kayacion Navy E-CM
Sumifix Supra Navy Blue 3GF 150% gran
Levafix Brown E-2R gran (CI Reactive Brown 19)
Novacron Brown P-6R Gran. 150
Remazol Black BN 150% (C.I. Reactive Black5)
Remazol Black RL 133% (CI Reactive Black 31)
Remazol Deep Black N 150% (CI Reactive Black 31)
Acid Quinoline Yellow WS H/C (C.I. Acid Yellow 3)
Kayacyl Yellow GG 80 (C.I. Acid Yellow 17)
Tartrazine NS conc (CI Acid Yellow 23)
Suminol Fast Yellow R conc. (C.I. Acid Yellow 25)
Kayanol Milling Yellow O (C.I. Acid Yellow 38)
Suminol Milling Yellow MR (C.I. Acid Yellow 42)
Aminyl Yellow E-3GL (C.I. Acid Yellow 49)
Suminol Fast Yellow G (B) (C.I. Acid Yellow 61)
Erionyl Yellow B-4G (C.I. Acid Yellow79)
Kayanol Yellow N5G (C.I. Acid Yellow 110)
Lanyl Yellow G ex cc (C.I. Acid Yellow 116)
Kayakalan Yellow GL 143 (C.I. Acid Yellow 121)
Kayanol Milling Yellow 5GW (CI Acid Yellow 127)
Lanacron Yellow N-2GL KWL (C.I. Acid Yellow 129)
Erionyl Golden Yellow MR-02 (C.I. Acid Yellow 151)
Tectilon Yellow 2G 200% (CI Acid Yellow 169)
Lanacron Yellow S-2G-01 KWL (C.I. Acid Yellow 220)
Telon Yellow RLN micro (C.I. Acid Yellow 230)
Tectilon Yellow 3R 200% (CI Acid Yellow 246)
Chuganol Fast Yellow 5GL (CI Acid Yellow 40:1)
Solar Orange (CI Acid Orange 7)
Solar Light Orange GX (C.I. Acid Orange 10)
Chuganol Milling Brown 5R (C.I. Acid Orange 51)
Chuganol Milling Orange SG (CI Acid Orange 56)
Kayanol Yellow N3R (C.I. Acid Orange 67)
Aminyl Yellow E-3RL (C.I. Acid Orange 67)
Lanyl Orange R 200% (CI Acid Orange 88)
Chuganol Milling Orange GSN 150% (CI Acid Orange 95)
Suminol Milling Orange GN (N) (C.I. Acid Orange 95)
Isolan Orange K-RLS (C.I. Acid Orange 107)
Telon Orange AGT 01 (C.I. Acid Orange 116)
Lanyl Orange 2R e/c (C.I. Acid Orange 120)
Supralan Orange S-RL (C.I. Acid Orange 166)
Lanasyn Yellow M-2RL 180 (C.I. Acid Orange 180)
Nylosan Orange NRL 250 (C.I. Acid Orange 250)
Lanasyn Orange M-RL p
Silk Scarlet (CI Acid Red9)
Brilliant Scarlet 3R conc. (C.I. Acid Red 18)
Acid Rhodamine G Conc (C.I. Acid Red50)
Acid Rhodamine B Conc (C.I. Acid Red52)
Chugacid Red FCH (C.I. Acid Red73)
Chugacid Rubinol 3B 200% (C.I. Acid Red80)
Rocceline NS conc. 120% (CI Acid Red88)
Chuganol Anthracene Red G (CI Acid Red97)
Suminol Fast Red G (B) (C.I. Acid Red 118)
Suminol Milling Brilliant Red 3BN (N) conc. (C.I. Acid Red 131)
Lanyl Red GG (CI Acid Red 211)
Lanyl Red B (CI Acid Red 215)
Lanasyn Bordeaux M-RLA200 (C.I. Acid Red217)
Suminol Milling Brilliant Red B conc. N (CI Acid Red 249)
Aminyl Red E-3BL (CI Acid Red257)
Telon Red M-BL (CI Acid Red260)
Chugai Aminol Fast Pink R (C.I. Acid Red289)
Nylosan Red N-2RBL SGR (C.I. Acid Red336)
Telon Red FRL micro (C.I. Acid Red337)
Lanasyn Red MG (C.I. Acid Red399)
Kayakalan Red BL
Nylosan Red EBL SGR 180
Kayanol Milling Red BW
Kayanol Milling Violet FBW (C.I. Acid Violet48)
Erionyl Red B-10B-01 (C.I. Acid Violet54)
Chugai Aminol Fast Violet F6R (CI Acid Violet 102)
Acid Pure Blue VX (C.I. Acid Blue 1)
Acid Brilliant Blue AF-N (C.I. Acid Blue7)
Chugacid Light Blue A (C.I. Acid Blue 25)
Kayanol Blue N2G (C.I. Acid Blue 40)
Nylosan Blue E-GL p 250 (C.I. Acid Blue 72)
Chuganol Blue 6B 333% (C.I. Acid Blue 83)
Chuganol Blue G 333% (C.I. Acid Blue90)
Kayanol Navy Blue R (C.I. Acid Blue 92)
Suminol Milling Brilliant Sky Blue SE (N) (C.I. Acid Blue 112)
Suminol Milling Cyanine 5R (N) (C.I. Acid Blue 113)
Kayanol Milling Blue GW (C.I. Acid Blue 127)
Lanyl Brilliant Blue G ex cc (C.I. Acid Blue 127:1)
Kayanol Blue NR (C.I. Acid Blue 129)
Kayanol Milling Blue BW (C.I. Acid Blue 138)
Kayanol Milling Blue 2RW (C.I. Acid Blue 140)
Lanyl Blue 3G ex conc (C.I. Acid Blue 171)
Nylosan Blue N-GL 150 (C.I. Acid Blue 230)
Tectilon Blue 6G 200% (C.I. Acid Blue 258)
Telon Blue AFN (CI Acid Blue 264)
Tectilon Blue 4R-01 200% (C.I. Acid Blue 277:1)
Nylosan B Blue N-FL SGR180 (C.I. Acid Blue278)
Nylosan Blue N-5GL SGR 200 (C.I. Acid Blue 280)
Kayalax Navy R (C.I. Acid Blue 300)
Nylosan Blue N-BLN (C.I. Acid Blue 350)
Lanacron Blue N-3GL
Acid Green V (CI Acid Green 16)
Chuganol Cyanine Green G (CI Acid Green 25)
Suminol Milling Brown 5R (C.I. Acid Brown 51)
上記の染料は、通常、二色性染料と言われていないものである。前記した高い二色比を示す色素(染料)については特許文献などに記載があり、二色比など知ることが出来る。しかし、本願の着色用有機染料については、その二色比を利用されたことがなかったため、または、利用する意味もなかったためか、その記載のある特許文献などを本発明者らは見出していない。従って、前記した本願の着色用有機染料は、公知染料(高い二色比としては知られていない)を用いて、PVAフィルムを染色する下記の方法にて容易に確認されたものの一例である。 The above dyes are not commonly referred to as dichroic dyes. The pigments (dyes) exhibiting a high dichroic ratio are described in patent documents, etc., and the dichroic ratio can be known. However, the present inventors have not found a patent document or the like describing the dichroic ratio of the organic dye for coloring of the present application, probably because the dichroic ratio was never used, or because there was no meaning to use it. . Therefore, the coloring organic dyes of the present application described above are examples of those readily identified in the following method of dyeing PVA films using known dyes (not known to have high dichroic ratios).
二色比は、これらの染料を用いてPVAフィルムを染色する下記の方法にて求められる値による。ここで、例えば、偏光度が99%以上を目標とする場合には、着色用有機染料の二色比は、偏光度を高める方向に寄与するが、以上との範囲での変化であり問題とされない。これに対して、例えば、偏光度が90%程度の偏光レンズでは、着色用有機染料の二色比が高くなると、すなわち、本願では二色比が4に近づくと得られた偏光フィルムの偏光度が所望値に比べて高くなることが問題とされる場合がある。いずれの場合も、染色したときに、より小さい二色比を示すものが、着色に伴う偏光度の変化がより小さく、また、熱成形時の色調変化も小さいことから好ましい。 The dichroic ratio is determined by the following method of dyeing a PVA film using these dyes. Here, for example, when the degree of polarization is targeted to be 99% or more, the dichroic ratio of the coloring organic dye contributes to the direction of increasing the degree of polarization, but changes within the above range are problematic. not. On the other hand, for example, in a polarizing lens having a degree of polarization of about 90%, when the dichroic ratio of the coloring organic dye increases, that is, when the dichroic ratio approaches 4 in the present application, the degree of polarization of the obtained polarizing film becomes higher than the desired value. In any case, those that show a smaller dichroic ratio when dyed are preferable because the change in the degree of polarization due to coloring is smaller and the change in color tone during thermoforming is also smaller.
なお、本発明における二色性有機染料あるいは着色用有機染料の二色比とは、ヨウ素による染色にて製造された偏光フィルムにて600nmで測定される二色比の値が60以上を示す製造条件にて、ヨウ素に変えて二色性有機染料を用いて製造した偏光フィルムにおいて最大吸収波長で測定される値をいう。 In addition, the dichroic ratio of the dichroic organic dye or the organic coloring dye in the present invention means that the dichroic ratio value measured at 600 nm in the polarizing film manufactured by dyeing with iodine is 60 or more. It refers to the value measured at the maximum absorption wavelength in a polarizing film manufactured using a dichroic organic dye instead of iodine.
次に、本着色偏光フィルムの両面に、通常、接着層を介して透明プラスチックシートからなる保護層を貼付して本発明の偏光シートとする。前記透明プラスチックシートは、通常、厚み0.1~1mmであり、単層あるいは共押し出し法による多層のシート、例えば、芳香族ポリカーボネート/ポリアクリレートの共押し出しシートなど、が挙げられる。また、本発明では、曲げ加工にて凹面側で、射出成形樹脂側とする表面は、芳香族ポリカーボネートであるものが好ましい。また、本発明の偏光シート(以下、本偏光シートと記す。)は、通常、両表面に保護フィルムを付した状態で、個別のレンズ形状に打ち抜きされ、次に、熱曲げ加工され、表面保護フィルムを剥離して、射出成形金型に装着されて、射出成形された芳香族ポリカーボネートと一体化した射出成形偏光レンズとされる。 Next, on both sides of the present colored polarizing film, a protective layer made of a transparent plastic sheet is usually attached via an adhesive layer to obtain the polarizing sheet of the present invention. The transparent plastic sheet usually has a thickness of 0.1 to 1 mm, and may be a single-layered sheet or a multi-layered sheet formed by co-extrusion, such as a co-extruded sheet of aromatic polycarbonate/polyacrylate. Further, in the present invention, it is preferable that the surface which is the concave side in the bending process and the injection molding resin side is made of aromatic polycarbonate. In addition, the polarizing sheet of the present invention (hereinafter referred to as the present polarizing sheet) is usually punched into individual lens shapes with protective films attached to both surfaces, and then subjected to heat bending to protect the surface. The film is peeled off and mounted in an injection mold to form an injection molded polarizing lens integrated with the injection molded aromatic polycarbonate.
上記の透明プラスチックシートの樹脂としては、芳香族ポリカーボネート、非晶性ポリオレフィン、ポリアクリレート、ポリスルフォン、アセチルセルロース、ポリスチレン、ポリエステル、ポリアミド、およびこれらの混合物からなる透明樹脂が挙げられる。これらの中で、最も汎用的な偏光フィルムの製造において必須であるアセチルセルロースがあり、機械的強度や耐衝撃性などの特性から芳香族ポリカーボネート系樹脂が好ましく、耐薬品性などからはポリオレフィン、ポリアクリレートやポリアミドが挙げられ、レンズ成形後の染色性からはポリアクリレートやポリアミドが挙げられる。 Examples of the resin for the transparent plastic sheet include transparent resins composed of aromatic polycarbonates, amorphous polyolefins, polyacrylates, polysulfones, acetylcellulose, polystyrene, polyesters, polyamides, and mixtures thereof. Among these, there is acetyl cellulose, which is essential in the production of the most versatile polarizing film. Aromatic polycarbonate resins are preferable for their properties such as mechanical strength and impact resistance. Examples thereof include acrylate and polyamide, and polyacrylate and polyamide are exemplified in terms of dyeability after lens molding.
芳香族ポリカーボネートシートは、フィルム強度、耐熱性、耐久性あるいは曲げ加工性の点から2,2-ビス(4-ヒドロキシフェニル)アルカンや2,2-(4-ヒドロキシ-3,5-ジハロゲノフェニル)アルカンで代表されるビスフェノール化合物から周知の方法で製造された重合体が好ましく、その重合体骨格に脂肪酸ジオールに由来する構造単位やエステル結合を持つ構造単位が含まれても良く、特に、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネートが好ましい。 Aromatic polycarbonate sheets are made of 2,2-bis(4-hydroxyphenyl)alkane and 2,2-(4-hydroxy-3,5-dihalogenophenyl) from the viewpoint of film strength, heat resistance, durability and bending workability. ) A polymer produced by a known method from a bisphenol compound represented by alkane is preferable, and the polymer skeleton may contain a structural unit derived from a fatty acid diol or a structural unit having an ester bond. Aromatic polycarbonates derived from ,2-bis(4-hydroxyphenyl)propane are preferred.
芳香族ポリカーボネートの分子量は、粘度平均分子量で12,000~40,000のものが好ましく、20,000~35,000のものがより好ましい。また、芳香族ポリカーボネートは、光弾性定数が大きく、応力や配向による複屈折に基づいて着色干渉縞が発生しやすい。そこで、予め大きなリタデーション値を持たせることにより、着色干渉縞を見えなくすることが好ましく、少なくともリタデーション値2000nm以上で、20000nm以下、好ましくは3000nm以上、特に加工工程での低下を考慮した場合4000nm以上とすることが好ましい。リタデーション値は、高いほど着色干渉縞が見えなくなるが、リタデーション値の値は配向度や残留応力の大きさを表すものであり、高い方が表面形状の精度が低いというデメリットがある。この着色干渉縞は、偏光フィルムを透過して、初めて人の目で見ることができる。ゆえに、高リタデーションとしたシートの効果は偏光フィルムの光入射側、すなわち、人の目の反対側に用いることによる。 The aromatic polycarbonate preferably has a viscosity average molecular weight of 12,000 to 40,000, more preferably 20,000 to 35,000. In addition, aromatic polycarbonates have a large photoelastic constant and tend to generate colored interference fringes due to birefringence due to stress and orientation. Therefore, it is preferable to make the colored interference fringes invisible by providing a large retardation value in advance. It is preferable to The higher the retardation value, the less colored interference fringes can be seen. However, the value of the retardation value represents the degree of orientation and the magnitude of the residual stress, and the higher the retardation value, the lower the accuracy of the surface shape. These colored interference fringes can be seen with the human eye only after they pass through the polarizing film. Therefore, the effect of the high retardation sheet is due to its use on the light incident side of the polarizing film, that is, on the side opposite to human eyes.
ポリアミド樹脂は、レンズ用透明ポリアミド樹脂として公知のものが挙げられ、耐熱性の一指標である熱変形温度100~170℃の範囲であり、芳香族ポリアミド樹脂、脂環族ポリアミド樹脂、脂肪族ポリアミド樹脂、ならびに、これらの共重合体が挙げられ、機械的強度、耐薬品性、透明性等のバランスから脂環式ポリアミド樹脂は好ましいものであるが、2種以上のポリアミド樹脂を組み合わせてもよい。このようなポリアミド樹脂の例として、GLILAMID TR FE5577、XE 3805(EMS製)、NOVAMID X21(三菱エンジニアリングプラスチックス製)、東洋紡ナイロン T-714E(東洋紡製)などが例示される。 Polyamide resins include those known as transparent polyamide resins for lenses, and have a heat distortion temperature in the range of 100 to 170 ° C., which is an index of heat resistance, aromatic polyamide resins, alicyclic polyamide resins, aliphatic polyamides. Resins, and copolymers thereof, and alicyclic polyamide resins are preferable from the balance of mechanical strength, chemical resistance, transparency, etc., but two or more polyamide resins may be combined. . Examples of such polyamide resins include GLILAMID TR FE5577, XE 3805 (manufactured by EMS), NOVAMID X21 (manufactured by Mitsubishi Engineering-Plastics), and Toyobo Nylon T-714E (manufactured by Toyobo).
(メタ)アクリル樹脂は、ポリメチルメタクリレート(PMMA)、メチルメタクリレート(MMA)に代表される各種(メタ)アクリル酸エステルの単独重合体、またはPMMAやMMAと他の1種以上の単量体との共重合体であり、さらにそれらの樹脂の複数種が混合されたものでもよい。これらのなかでも、低複屈折性、低吸湿性、耐熱性に優れた環状アルキル構造を含む(メタ)アクリレートが好ましい。以上のような(メタ)アクリル樹脂の例として、アクリペット(三菱レイヨン製)、デルペット(旭化成ケミカルズ製)、パラペット(クラレ製)などが例示される。 The (meth)acrylic resin is a homopolymer of various (meth)acrylic acid esters represented by polymethyl methacrylate (PMMA) and methyl methacrylate (MMA), or PMMA or MMA and one or more other monomers. and may be a mixture of a plurality of these resins. Among these, a (meth)acrylate containing a cyclic alkyl structure, which is excellent in low birefringence, low hygroscopicity and heat resistance, is preferable. Examples of such (meth)acrylic resins include Acrypet (manufactured by Mitsubishi Rayon), Delpet (manufactured by Asahi Kasei Chemicals), and Parapet (manufactured by Kuraray).
本着色偏光フィルムの両面に透明プラスチックシートを貼り合わせるために用いる接着剤としては、ポリビニルアルコール樹脂系材料、アクリル樹脂系材料、ウレタン樹脂系材料、ポリエステル樹脂系材料、メラミン樹脂系材料、エポキシ樹脂系材料、シリコーン系材料等が使用できる。 Adhesives used to attach the transparent plastic sheets to both sides of the colored polarizing film include polyvinyl alcohol resin materials, acrylic resin materials, urethane resin materials, polyester resin materials, melamine resin materials, and epoxy resin materials. materials such as silicone-based materials can be used.
芳香族ポリカーボネートシートを用いる場合、特に、接着層自体あるいは接着した際の透明性と芳香族ポリカーボネートシートとの接着性の点から、ウレタン樹脂系材料であるポリウレタンプレポリマーと硬化剤からなる2液型の熱硬化性ウレタン樹脂が好ましい。本発明のサングラス用に適した着色偏光レンズに用いられる芳香族ポリカーボネート偏光シートは、前述の層構成に限られるものではなく、偏光フィルムと透明な保護層を接着する接着剤において、調光染料を溶解させた接着剤を用いて作製された調光機能も併せ持つ偏光シートを用いても良い。 When an aromatic polycarbonate sheet is used, a two-liquid type consisting of a polyurethane prepolymer, which is a urethane resin-based material, and a curing agent is used, particularly in terms of the transparency of the adhesive layer itself or when it is adhered, and the adhesiveness to the aromatic polycarbonate sheet. thermosetting urethane resin is preferred. The aromatic polycarbonate polarizing sheet used in the colored polarizing lens suitable for sunglasses of the present invention is not limited to the layer structure described above, and the adhesive for bonding the polarizing film and the transparent protective layer contains a photochromic dye. A polarizing sheet having a dimming function, which is produced using a dissolved adhesive, may also be used.
本発明の保護層は、その好適な加工条件において、機能層の機能を実質的に損なわない加工条件が選択できるものを選択する。例えば、機能層としてポリエステル系の超多層の選択反射膜が併用されている場合、この超多層の選択反射膜は1層の厚みを1/4λとするために、多層シートを製造し、これを適宜繰り返し延伸して所定の光学厚みとする、所謂、金太郎飴の製法が用いられる。この結果、機能性を保持した状態における加工条件は、加工時間において、延伸状態からの緩和が実質的に起きない温度と時間とが条件を選択することが必須となる。 The protective layer of the present invention is selected from suitable processing conditions that allow selection of processing conditions that do not substantially impair the function of the functional layer. For example, when a polyester-based super-multilayer selective reflection film is used in combination as a functional layer, a multi-layer sheet is produced in order to make the thickness of one layer of this super-multilayer selective reflection film 1/4λ. A so-called Kintaro-ame manufacturing method is used in which the film is stretched repeatedly as appropriate to obtain a predetermined optical thickness. As a result, it is essential to select processing conditions such as temperature and time that substantially do not cause relaxation from the stretched state during the processing time while maintaining the functionality.
次いで、本偏光シートを個々のレンズ用の形状に打ち抜きなどにて加工した後、曲げ加工を施す。個々のレンズ形状品への加工は、生産性などから、通常、トムソン刃からなる打ち抜き刃を用いた、複数のレンズ形状品の打ち抜き加工による。個別レンズ形状品の形状は、最終製品の形状(サングラス、ゴーグルなど)により適宜、選択される。二眼用の場合の標準的なレンズ形状品は、直径80mmの円盤あるいはその両端を偏光軸に垂直な方向に同幅切り取ったスリット形状である。また、曲げ加工は、上記の本偏光シートに用いる保護層用の透明プラスチックシートの種類の選択でも触れたが、本発明の着色偏光フィルムを含む本偏光シートの機能性を発揮する層の劣化が実質的に発生しないとの条件により決定される。 Next, the polarizing sheet is punched into individual lens shapes, and then subjected to bending. Processing into individual lens-shaped products is usually performed by punching a plurality of lens-shaped products using a punching blade composed of a Thomson blade for reasons of productivity. The shape of the individual lens-shaped product is appropriately selected according to the shape of the final product (sunglasses, goggles, etc.). A standard lens-shaped product for binocular use is a disk with a diameter of 80 mm or a slit shape obtained by cutting both ends of the disk with the same width in the direction perpendicular to the polarization axis. In addition, as mentioned above in the selection of the type of transparent plastic sheet for the protective layer used in the present polarizing sheet, the bending process causes deterioration of the layer that exhibits the functionality of the present polarizing sheet including the colored polarizing film of the present invention. It is determined by the condition that it does not substantially occur.
射出偏光レンズとして用いる場合、芳香族ポリカーボネート偏光シートの曲げ加工は、射出成形に用いる金型表面に沿うように曲げられる。高リタデーションシートの芳香族ポリカーボネートを保護層とする本偏光シートを用いるとき、偏光フィルムは曲げ加工において延伸方向に沿った亀裂、いわゆる膜切れが生じやすいのでこれらの発生を抑えた条件を選択する必要がある。芳香族ポリカーボネート偏光シートの曲げ加工における金型温度は使用した芳香族ポリカーボネートのガラス転移温度以下の温度が好ましく、加えて、予熱処理により曲げ加工直前の延伸ポリカーボネート偏光シート温度が芳香族ポリカーボネートのガラス転移点より50℃低い温度以上ガラス転移点未満の温度であることが好ましく、特に、ガラス転移点より40℃低い温度以上ガラス転移点より5℃低い温度未満であることが好ましい。 When used as an injection polarizing lens, the aromatic polycarbonate polarizing sheet is bent along the mold surface used for injection molding. When using this polarizing sheet with a protective layer made of aromatic polycarbonate with a high retardation sheet, the polarizing film tends to crack along the stretching direction during bending, so-called film breakage, so it is necessary to select conditions that suppress the occurrence of these. There is The mold temperature in bending the aromatic polycarbonate polarizing sheet is preferably a temperature below the glass transition temperature of the aromatic polycarbonate used. It is preferably at least 50° C. lower than the glass transition point, and more preferably at least 40° C. lower than the glass transition point and less than 5° C. lower than the glass transition point.
次いで、芳香族ポリカーボネート樹脂を射出して射出偏光レンズとする。射出成形の加工条件は、外観に優れたレンズが製造できることが必須である。この点から、バリの出ない範囲で充填率の高いレンズ成形品の得られる射出条件、例えば、射出圧、保持圧、計量、成形サイクルなどを選択され、また、樹脂温度は、芳香族ポリカーボネート樹脂の温度であり、特に260~320℃から適宜選択される。また、金型温度は芳香族ポリカーボネート樹脂のガラス転移温度より100℃低い温度以上ガラス転移点未満の温度から選択され、好ましくはガラス転移温度より80℃低い温度以上ガラス転移点より15℃低い温度未満、特に、ガラス転移温度より70℃低い温度以上ガラス転移点より25℃低い温度未満が好ましい。 Then, an aromatic polycarbonate resin is injected to form an injection polarizing lens. Processing conditions for injection molding must be such that lenses with excellent appearance can be produced. From this point of view, injection conditions such as injection pressure, holding pressure, metering, molding cycle, etc. are selected so that a lens molded product with a high filling rate can be obtained within a range that does not produce burrs. is the temperature of 260 to 320° C., which is selected as appropriate. In addition, the mold temperature is selected from a temperature not less than 100°C lower than the glass transition temperature of the aromatic polycarbonate resin and less than the glass transition point, preferably not less than 80°C lower than the glass transition temperature and less than 15°C lower than the glass transition point. In particular, it is preferably at least 70° C. lower than the glass transition temperature and less than 25° C. lower than the glass transition temperature.
次いで、ハードコート処理が施される。ハードコートの材質あるいは加工条件については、特に制限はないが、外観や下地の芳香族ポリカーボネートに対して、あるいは続いてコートされるミラーコートや反射防止コート等の無機層に対する密着性に優れている必要がある。また、焼成温度は芳香族ポリカーボネート偏光シートに使用した芳香族ポリカーボネートのガラス転移温度より50℃低い温度以上ガラス転移点未満の温度が好ましく、特に、ガラス転移点より40℃低い温度以上ガラス転移点より15℃低い温度未満である120℃前後の温度であり、ハードコートの焼成に要する時間は概ね30分から2時間の間である。 Then, a hard coat treatment is applied. There are no particular restrictions on the material or processing conditions of the hard coat, but it has excellent appearance and adhesion to the underlying aromatic polycarbonate, or to the subsequently coated inorganic layers such as the mirror coat and antireflection coat. There is a need. Further, the firing temperature is preferably 50°C lower than the glass transition temperature of the aromatic polycarbonate used in the aromatic polycarbonate polarizing sheet and lower than the glass transition point, particularly 40°C lower than the glass transition point or higher than the glass transition point. The temperature is around 120° C., which is less than 15° C. lower, and the time required for firing the hard coat is generally between 30 minutes and 2 hours.
以下、実施例に基づき本発明の詳細を説明する。 Hereinafter, the details of the present invention will be described based on examples.
(実施例1)
a)偏光フィルムの作製
ポリビニルアルコール(クラレ株式会社、商品名VF-PS#7500)を35℃の水中で270秒間膨潤しつつ、2倍に延伸した。
本態様において膨潤処理工程は2つの水槽で行ったが、製造環境により1つの水槽または、3以上の水槽を用いてもよい。
(Example 1)
a) Preparation of polarizing film Polyvinyl alcohol (trade name: VF-PS#7500, manufactured by Kuraray Co., Ltd.) was swelled in water at 35°C for 270 seconds and stretched twice.
In this embodiment, the swelling treatment step was performed in two water tanks, but one water tank or three or more water tanks may be used depending on the manufacturing environment.
続いて、以下の組成の染色組成物および10g/Lの無水硫酸ナトリウムを含む35℃の水溶液中で染色を行った。以下の染料のうち、C.I.Direct.Orange 39およびC.I.Direct.Red 81は高二色比染料であり、C.I.Direct.Blue 78、Kayacion Blue CF-GJ 150、C.I.Mordant Yellow 8およびC.I.Acid Red 57は低二色比染料と呼ばれるものである。本態様において染色処理工程は2つの水槽で行ったが、製造環境により1つの水槽または、3以上の水槽を用いてもよい。
・C.I.Direct.Orange 39      0.3g/L
・C.I.Direct.Red 81         0.1g/L
・C.I.Direct.Blue 78        0.3g/L
・Kayacion Blue CF-GJ 150   0.2g/L
・C.I.Mordant Yellow 8      0.2g/L
・C.I.Acid Red 57           0.1g/L
Subsequently, dyeing was carried out in an aqueous solution at 35° C. containing a dyeing composition having the following composition and 10 g/L of anhydrous sodium sulfate. Among the following dyes, C.I. I. Direct. Orange 39 and C.I. I. Direct. Red 81 is a high dichroic dye and C.I. I. Direct. Blue 78, Kayacion Blue CF-GJ 150, C.I. I. Mordant Yellow 8 and C.I. I. Acid Red 57 is what is called a low dichroic ratio dye. In this embodiment, the dyeing treatment step was performed in two water tanks, but one water tank or three or more water tanks may be used depending on the manufacturing environment.
・C. I. Direct. Orange 39 0.3g/L
・C. I. Direct. Red 81 0.1g/L
・C. I. Direct. Blue 78 0.3g/L
・Kayacion Blue CF-GJ 150 0.2g/L
・C. I. Mordant Yellow 8 0.2g/L
・C. I. Acid Red 57 0.1g/L
続いて、この染色フィルムの処理工程において、染色組成物の水槽を出たフィルムはまず処理工程の処理槽1に入る。その後一度、空気中に出てから処理槽2を通過する。処理槽1および2は、40~45℃に維持された、酢酸ニッケル(Ni)0.5g/Lおよびホウ酸4.4g/Lを含む水溶液で満たされている。染色フィルムはこの水溶液中に浸漬され、最終的に4.0~4.5倍の倍率になるように延伸された。 Subsequently, in this process of treating the dyed film, the film exiting the bath of the dyeing composition first enters the treatment bath 1 of the treatment process. After that, it goes out into the air once and then passes through the processing tank 2 . Treatment tanks 1 and 2 are filled with an aqueous solution maintained at 40-45° C. containing 0.5 g/L nickel acetate (Ni) and 4.4 g/L boric acid. The dyed film was immersed in this aqueous solution and stretched to a final magnification of 4.0-4.5 times.
処理槽2から引き揚げられた偏光フィルムは、その後、張力がかかった状態で80~89℃にて3分間加熱処理された。乾燥された偏光フィルムは、25℃、10%程度に維持された低湿度保管庫に次工程まで保管した。 The polarizing film pulled up from the treatment tank 2 was then heat-treated at 80 to 89° C. for 3 minutes under tension. The dried polarizing film was stored in a low humidity storage kept at 25° C. and about 10% until the next step.
b)偏光フィルム中のNiの測定
Niの定量においては、島津製作所製の原子吸光分光光度計(AA-6300)を使用して定量分析を行った。上記で作製した偏光フィルムを10~15mg採取し、120℃の60%硝酸水溶液で溶解させ、1000ppmニッケル標準液(富士フィルム和光純薬社製)を60%硝酸水溶液で希釈することで検量線を作成し、偏光フィルムへのNi吸着量を測定した。
b) Measurement of Ni in polarizing film Quantitative analysis of Ni was carried out using an atomic absorption spectrophotometer (AA-6300) manufactured by Shimadzu Corporation. 10 to 15 mg of the polarizing film prepared above was collected, dissolved in a 60% nitric acid aqueous solution at 120 ° C., and a calibration curve was obtained by diluting a 1000 ppm nickel standard solution (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with a 60% nitric acid aqueous solution. was prepared, and the amount of Ni adsorbed to the polarizing film was measured.
c)偏光フィルム中の含水率の測定
偏光フィルムの含水率測定は、島津製作所製のハロゲン水分計(MОC63u)を使用した。実施例および比較例の記載に従い製造した偏光フィルムを0.6g採取し、前述のハロゲン水分計にて150℃、10分後の乾燥重量と測定前重量とから含水率を算出した。
c) Measurement of water content in polarizing film A halogen moisture meter (MOC63u) manufactured by Shimadzu Corporation was used to measure the water content in the polarizing film. 0.6 g of the polarizing film produced according to the description of Examples and Comparative Examples was sampled, and the moisture content was calculated from the dry weight after 10 minutes at 150° C. and the weight before measurement using the halogen moisture meter described above.
d)偏光シートの作製
上記で取得した偏光フィルムに、熱硬化性ポリウレタン系接着剤を塗布し、保護層を積層した。偏光フィルムのもう片方の面にも同様に保護層を積層し、偏光シートを作製した。保護層にはビスフェノールA型ポリカーボネート(三菱エンジニアリングプラスチクス製 ユーピロン E-2000)を使用した。
d) Preparation of polarizing sheet A thermosetting polyurethane adhesive was applied to the polarizing film obtained above, and a protective layer was laminated thereon. A protective layer was similarly laminated on the other side of the polarizing film to prepare a polarizing sheet. Bisphenol A type polycarbonate (Mitsubishi Engineering-Plastics Iupilon E-2000) was used for the protective layer.
e)環境試験
耐湿熱試験
前述の手順で作製した偏光シートにおいて、55℃、90%の恒温恒湿槽に24時間入れ、試験前後における色調を分光光度計で測定し、ΔEcmcを算出した。本実施例における耐湿熱性試験の条件は、試験実施の都合上、実際の保存条件よりも過酷かつ短期間となる条件を設定して行っているものである。
耐熱試験
前述の手順で作製した偏光シートにおいて、120℃の恒温恒湿槽に24時間入れ、試験前後における色調を分光光度計で測定し、ΔEcmcを算出した。本実施例における耐湿熱性試験の条件は、試験実施の都合上、製品を実際に製造する高熱条件下を模していることを意図しているが、繰り返しのため試験条件を最適化したものである。
ΔEcmc測定方法
上記耐湿熱試験および耐熱試験のサンプルを、共に島津製作所製の分光光度計(UV-3600)を使用し色調を測定し、ISO/CIE 11664-6:2014のCIEDE2000色差式で算出される色差を算出した。本発明において、実際の製品との兼ね合いからΔEcmcが3以下のものを合格品とした。
ΔEcmc=[(ΔL*/LS+(ΔC*ab/cS+(ΔH*ab/S]1/2
なお、明度L*値はL***表色系の明度である。彩度C*値は、C*=[(a*2+(b*]1/2、色相角度H*値は、H*=tan-1[(a*)/(b*)]の式から求められる。
e) Environmental Test Humidity and Heat Resistance Test The polarizing sheet prepared by the above procedure was placed in a constant temperature and humidity chamber at 55° C. and 90% for 24 hours, and the color tone before and after the test was measured with a spectrophotometer to calculate ΔEcmc. For the convenience of carrying out the test, the conditions for the heat and humidity resistance test in this example are set to be harsher and shorter than the actual storage conditions.
Heat resistance test The polarizing sheet prepared by the above procedure was placed in a constant temperature and humidity chamber at 120°C for 24 hours, and the color tone before and after the test was measured with a spectrophotometer to calculate ΔEcmc. The conditions for the heat and humidity resistance test in this example are intended to imitate the high heat conditions in which the product is actually manufactured for the convenience of conducting the test, but the test conditions were optimized for repetition. be.
ΔEcmc measurement method The color tone of the samples subjected to the above moisture and heat resistance test and heat resistance test was measured using a spectrophotometer (UV-3600) manufactured by Shimadzu Corporation, and calculated using the CIEDE2000 color difference formula of ISO/CIE 11664-6:2014. The color difference was calculated. In the present invention, products with a ΔEcmc of 3 or less were defined as acceptable products in consideration of actual products.
ΔEcmc=[(ΔL * /LS L ) 2 +(ΔC * ab/cS c ) 2 +(ΔH * ab/S H ) 2 ] 1/2
The lightness L * value is the lightness of the L * a * b * color system. Chroma C * value is C * =[(a * ) 2 +(b * ) 2 ] 1/2 Hue angle H * value is H * =tan −1 [(a * )/(b * ) ]
(実施例2)
処理槽1および2の酢酸ニッケル濃度を0.3g/Lにした以外は実施例1と同様に偏光フィルムを作製し、試験を行った。
(Example 2)
A polarizing film was prepared and tested in the same manner as in Example 1, except that the nickel acetate concentration in the treatment tanks 1 and 2 was 0.3 g/L.
(実施例3)
処理槽1および2の酢酸ニッケル濃度を0.7g/Lにした以外は実施例1と同様に偏光フィルムを作製し、試験を行った。
(Example 3)
A polarizing film was prepared and tested in the same manner as in Example 1, except that the nickel acetate concentration in the treatment tanks 1 and 2 was 0.7 g/L.
(実施例4)
加熱処理温度を80~95℃にした以外は実施例3と同様に偏光フィルムを作製した。
(Example 4)
A polarizing film was produced in the same manner as in Example 3, except that the heat treatment temperature was 80 to 95°C.
(実施例5)
酢酸ニッケル0.5g/Lを処理槽1にのみ入れ、処理槽2は酢酸ニッケルを入れずにホウ酸のみの添加とした以外は、実施例4と同様に偏光フィルムを作製した。
(Example 5)
A polarizing film was produced in the same manner as in Example 4, except that 0.5 g/L of nickel acetate was added only to treatment tank 1, and only boric acid was added to treatment tank 2 without nickel acetate.
(実施例6)
加熱処理温度を80~100℃にした以外は実施例5と同様に偏光フィルムを作製した。
(Example 6)
A polarizing film was produced in the same manner as in Example 5, except that the heat treatment temperature was 80 to 100°C.
(実施例7)
加熱処理温度を80~95℃にし、処理槽1および2を通過後、40℃の純水の洗浄工程を加えた以外は実施例6と同様に偏光フィルムを作製した。
(Example 7)
A polarizing film was produced in the same manner as in Example 6, except that the heat treatment temperature was set to 80 to 95° C., and after passing through treatment tanks 1 and 2, a washing step with pure water at 40° C. was added.
(実施例8)
ホウ酸濃度を6.6g/Lにした以外は実施例7と同様に偏光フィルムを作製した。
(Example 8)
A polarizing film was produced in the same manner as in Example 7, except that the boric acid concentration was 6.6 g/L.
(比較例1)
処理槽1および2の温度を35℃、酢酸ニッケル2.3g/Lにした以外は実施例1と同様に偏光フィルムを作製した。
(Comparative example 1)
A polarizing film was produced in the same manner as in Example 1, except that the temperatures of the treatment tanks 1 and 2 were 35° C. and nickel acetate was 2.3 g/L.
(比較例2)
処理槽1および2の温度を40℃、酢酸ニッケルを入れず、ホウ酸4.4g/Lのみにした以外は比較例1と同様に偏光フィルムを作製した。
(Comparative example 2)
A polarizing film was produced in the same manner as in Comparative Example 1, except that the temperatures of the treatment tanks 1 and 2 were set to 40° C., nickel acetate was not added, and only 4.4 g/L of boric acid was used.
(比較例3)
・C.I.Direct.Orange 39       1.1g/L
・C.I.Direct.Red 81          0.8g/L
・C.I.Direct.Blue 78         1.0g/L
染色工程の染料は上記の3種を使用した。また、処理槽1および2の温度を35℃、酢酸ニッケル2.3g/L、ホウ酸4.4g/Lにし、加熱処理温度を90~110℃にした以外は比較例1と同様に偏光フィルムを作製した。
(Comparative Example 3)
・C. I. Direct. Orange 39 1.1g/L
・C. I. Direct. Red 81 0.8g/L
・C. I. Direct. Blue 78 1.0 g/L
The above three types of dyes were used in the dyeing process. In addition, the temperature of the treatment tanks 1 and 2 was 35 ° C., nickel acetate was 2.3 g / L, boric acid was 4.4 g / L, and the heat treatment temperature was 90 to 110 ° C. The same polarizing film as in Comparative Example 1 was used. was made.
(比較例4)
処理槽1および2の温度を55℃にし、加熱処理温度を70~80℃にした以外は比較例3と同様に偏光フィルムを作製した。
(Comparative Example 4)
A polarizing film was produced in the same manner as in Comparative Example 3 except that the temperatures of the treatment tanks 1 and 2 were set to 55°C and the heat treatment temperature was set to 70 to 80°C.
(比較例5)
加熱処理温度を60~70℃にした以外は比較例3と同様に偏光フィルムを作製した。
(Comparative Example 5)
A polarizing film was produced in the same manner as in Comparative Example 3, except that the heat treatment temperature was changed from 60 to 70°C.
上記のように作製した各実施例および比較例の評価結果を下記表1に示す。 Table 1 below shows the evaluation results of the examples and comparative examples prepared as described above.
Figure JPOXMLDOC01-appb-T000001
 
-はデータなしを示す。
Figure JPOXMLDOC01-appb-T000001

- indicates no data.
表1に示したように、各実施例における偏光シートでは、耐湿熱色変化および耐熱色変化ΔEcmcが共に3.0以下になることを満たしており、外観も良好な偏光シートを作製することができた。これに対し、各比較例における偏光シートでは、耐湿熱色変化または耐熱色変化のいずれか一方のΔEcmcが3.0以下になることはあるが、両方を同時に満たすことが出来ず、満たしたとしても外観に不具合が発生し、外観良好な偏光シートを作製できなかった。 As shown in Table 1, the polarizing sheet of each example satisfies the condition that both the wet heat color change and the heat color change ΔEcmc are 3.0 or less, and it is possible to produce a polarizing sheet having a good appearance. did it. On the other hand, in the polarizing sheets of the respective comparative examples, ΔEcmc of either one of the heat and humidity color change and the heat color change may be 3.0 or less, but both cannot be satisfied at the same time. Also, defects occurred in the appearance, and a polarizing sheet with a good appearance could not be produced.
高二色性色素と低二色性色素を含んでなる染色組成物で染色した偏光フィルムにおいて、良好な耐湿熱性と良好な耐熱性とを備えた偏光フィルムを製造することが可能となった。本発明に係る偏光フィルムは従来の偏光フィルムよりも、貯蔵の間の環境からの影響および加工工程における短期間に高熱にさらされる環境のいずれにおいても変色しにくいものとなった。また、偏光フィルムの製造工程において、金属化合物とくにニッケルの使用量を大幅に削減することができる偏光フィルムの製造方法を提供することが可能となった。 In a polarizing film dyed with a dyeing composition containing a high dichroic dye and a low dichroic dye, it has become possible to produce a polarizing film having good wet heat resistance and good heat resistance. The polarizing film according to the present invention is more resistant to discoloration than conventional polarizing films, both under environmental influences during storage and in an environment where the film is exposed to high heat for a short period of time during processing. In addition, it has become possible to provide a method for manufacturing a polarizing film that can significantly reduce the amount of metal compounds, particularly nickel, used in the manufacturing process of the polarizing film.

Claims (8)

  1.  一軸延伸されたポリビニルアルコール系樹脂フィルムからなる偏光フィルムの両面に接着層を介して透明プラスチックシートを配置してなる偏光積層体において、
    前記偏光フィルムが、有機染料、金属化合物およびホウ酸を含有してなるポリビニルアルコール樹脂フィルムであって、
    前記金属化合物が、クロム、マンガン、コバルト、ニッケル、銅、亜鉛などの第4周期遷移金属の酢酸塩、硝酸塩、硫酸塩などの金属塩のいずれか1種以上であり、55℃、90%、24hおよび120℃、24hにおけるISO/CIE 11664-6:2014のCIEDE2000色差式で算出されるΔEcmcが共に3.0以下である、偏光積層体。
    A polarizing laminate in which a transparent plastic sheet is arranged on both sides of a polarizing film made of a uniaxially stretched polyvinyl alcohol resin film via an adhesive layer,
    The polarizing film is a polyvinyl alcohol resin film containing an organic dye, a metal compound and boric acid,
    The metal compound is any one or more of metal salts such as acetates, nitrates and sulfates of fourth period transition metals such as chromium, manganese, cobalt, nickel, copper and zinc, A polarizing laminate whose ΔEcmc calculated by the CIEDE2000 color difference formula of ISO/CIE 11664-6:2014 at 24 hours and at 120° C. for 24 hours is both 3.0 or less.
  2.  前記金属化合物が偏光フィルム1gあたり、200ppm~2500ppm含まれる、請求項1に記載の偏光積層体。 The polarizing laminate according to claim 1, wherein the metal compound is contained at 200 ppm to 2500 ppm per 1 g of the polarizing film.
  3.  前記偏光フィルムの含水率が偏光フィルムの重量により5%未満である、請求項1または2に記載の偏光積層体。 The polarizing laminate according to claim 1 or 2, wherein the water content of the polarizing film is less than 5% by weight of the polarizing film.
  4.  前記有機染料が、二色比が13以上である1つ以上の高二色性有機染料と二色比が4以下である極低二色比あるいは実質的に二色比を持たない1つ以上の低二色性有機染料との組み合わせからなる請求項1~3のいずれか1項に記載の偏光積層体。 The organic dye comprises one or more highly dichroic organic dyes having a dichroic ratio of 13 or more and one or more very low dichroic organic dyes having a dichroic ratio of 4 or less or substantially no dichroic ratio. 4. The polarizing laminate according to any one of claims 1 to 3, which is combined with a low dichroic organic dye.
  5.  請求項1~4のいずれか1項に記載の偏光積層体から製造されるサングラス用偏光レンズ。 A polarized lens for sunglasses manufactured from the polarized laminate according to any one of claims 1 to 4.
  6.  ポリビニルアルコール樹脂を、水膨潤、一軸延伸しつつ、有機染料にて染色し、金属化合物およびホウ酸を含む処理溶液に浸漬させ、これを乾燥してなる偏光フィルムの製造方法において、偏光フィルムの乾燥において、偏光フィルムを含水率が重量により5%未満となるように乾燥させる、偏光フィルムの製造方法。 A polyvinyl alcohol resin is dyed with an organic dye while being swollen with water and uniaxially stretched, immersed in a treatment solution containing a metal compound and boric acid, and dried in a method for producing a polarizing film, wherein the drying of the polarizing film. In the above, the method for producing a polarizing film, wherein the polarizing film is dried so that the moisture content is less than 5% by weight.
  7.  前記処理溶液において、前記金属化合物が1.0~0.3g/Lの濃度で含まれ、前記ホウ酸が5.0~3.0g/Lの濃度で含まれる、請求項6に記載の方法。 7. The method of claim 6, wherein the treatment solution contains the metal compound at a concentration of 1.0 to 0.3 g/L and the boric acid at a concentration of 5.0 to 3.0 g/L. .
  8.  請求項6または7のいずれか1項に記載の方法により製造された偏光フィルムの少なくとも片面に接着層を介して透明プラスチックシートを貼り合わせることを含む、偏光シートの製造方法。 A method for producing a polarizing sheet, comprising laminating a transparent plastic sheet via an adhesive layer on at least one side of the polarizing film produced by the method according to any one of claims 6 and 7.
PCT/JP2022/040832 2021-12-17 2022-10-31 Polarizing sheet WO2023112533A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021205569 2021-12-17
JP2021-205569 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112533A1 true WO2023112533A1 (en) 2023-06-22

Family

ID=86773994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040832 WO2023112533A1 (en) 2021-12-17 2022-10-31 Polarizing sheet

Country Status (2)

Country Link
TW (1) TW202400407A (en)
WO (1) WO2023112533A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115705A1 (en) * 2013-01-25 2014-07-31 三菱瓦斯化学株式会社 Colored low-polarization film, colored low-polarization sheet, lens and method for manufacturing same
WO2016117659A1 (en) * 2015-01-23 2016-07-28 住友化学株式会社 Polarizer and production method therefor
WO2016171127A1 (en) * 2015-04-20 2016-10-27 日本化薬株式会社 Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same
WO2019116760A1 (en) * 2017-12-13 2019-06-20 株式会社ポラテクノ Optical laminate, and polarizing lens and eye wear each equipped with same
WO2020070962A1 (en) * 2018-10-02 2020-04-09 日東電工株式会社 Polarizing plate
WO2020100889A1 (en) * 2018-11-12 2020-05-22 日東電工株式会社 Polarization membrane, polarization film, layered polarization film, image display panel, and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115705A1 (en) * 2013-01-25 2014-07-31 三菱瓦斯化学株式会社 Colored low-polarization film, colored low-polarization sheet, lens and method for manufacturing same
WO2016117659A1 (en) * 2015-01-23 2016-07-28 住友化学株式会社 Polarizer and production method therefor
WO2016171127A1 (en) * 2015-04-20 2016-10-27 日本化薬株式会社 Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same
WO2019116760A1 (en) * 2017-12-13 2019-06-20 株式会社ポラテクノ Optical laminate, and polarizing lens and eye wear each equipped with same
WO2020070962A1 (en) * 2018-10-02 2020-04-09 日東電工株式会社 Polarizing plate
WO2020100889A1 (en) * 2018-11-12 2020-05-22 日東電工株式会社 Polarization membrane, polarization film, layered polarization film, image display panel, and image display device

Also Published As

Publication number Publication date
TW202400407A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP6362269B2 (en) Colored low-polarizing film, colored low-polarizing sheet, lens, and production method thereof
JP6290083B2 (en) Colored polarizing film, colored polarizing sheet, colored polarizing lens and method for producing the same
JP2018163372A (en) Polarizing lens for sunglasses
JP2011100161A (en) Polarizing plate, optical film, and image display device
WO2018079651A1 (en) Polarizing element, polarizing plate using same and liquid crystal display device
JP2017072823A (en) Achromatic polarization element, and achromatic polarizing plate and liquid crystal display using the same
KR20170013889A (en) Achromatic polarizing plate with high-transmissivity and high-degree of polarization
JP2017090903A (en) Achromatic polarizing element, and achromatic polarizing plate and liquid crystal display using the same
WO2023112533A1 (en) Polarizing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907066

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567602

Country of ref document: JP