WO2019116760A1 - Optical laminate, and polarizing lens and eye wear each equipped with same - Google Patents

Optical laminate, and polarizing lens and eye wear each equipped with same Download PDF

Info

Publication number
WO2019116760A1
WO2019116760A1 PCT/JP2018/040369 JP2018040369W WO2019116760A1 WO 2019116760 A1 WO2019116760 A1 WO 2019116760A1 JP 2018040369 W JP2018040369 W JP 2018040369W WO 2019116760 A1 WO2019116760 A1 WO 2019116760A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
liquid crystal
optical laminate
cholesteric liquid
crystal layer
Prior art date
Application number
PCT/JP2018/040369
Other languages
French (fr)
Japanese (ja)
Inventor
薫 植村
陽介 沼
淳一 瀬川
Original Assignee
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ポラテクノ filed Critical 株式会社ポラテクノ
Priority to JP2019558958A priority Critical patent/JPWO2019116760A1/en
Priority to CN201880072890.3A priority patent/CN111344612A/en
Publication of WO2019116760A1 publication Critical patent/WO2019116760A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present invention relates to an optical laminate having a cholesteric liquid crystal layer and a polarizing element, and an eyewear (sunglass, goggles, visor for helmet, etc.) using the same.
  • Eyewear (sunglasses, goggles, visors for helmets, etc.) is used to reduce glare caused by light reflected from the water surface, road surface, snow surface, etc.
  • the lens portion is colored with a pigment or the like to reduce the amount of light incident on the eye by absorption of the pigment, thereby reducing glare, but against reflected light from the water surface or snow surface.
  • Polarized sunglasses are particularly effective. Polarized sunglasses are designed to absorb light in the polarization direction effectively because the reflected light is polarized, thereby reducing glare and visualizing without significantly reducing the amount of light incident on the eyes. It is possible to improve the quality.
  • Polarized sunglasses are usually installed in a mold with an optical laminate in which a polarizing element is held by a support such as polycarbonate in a mold, and a polarizing lens fabricated by injection molding of a lens base layer is incorporated into a frame.
  • the polarizing element is a film in which a so-called dichroic dye such as a dichroic dye or a polyiodine-polyvinyl alcohol (PVA) complex is uniaxially oriented with a polymer such as PVA, and the polarization of various colors depending on the color of the dye used.
  • a so-called dichroic dye such as a dichroic dye or a polyiodine-polyvinyl alcohol (PVA) complex
  • PVA polyiodine-polyvinyl alcohol
  • a multilayer film may be deposited on the surface for the purpose of imparting design in polarized sunglasses or further improving the visibility.
  • the reflected light of the surface of the sunglasses can be seen from others as metallic colors such as blue, green and red, and from the wearer, glare can be caused by reflecting specific light.
  • the visibility of the landscape is further improved with the reduction of While it is useful for the wearer to apply the multilayer film in this way, it is difficult to remove sebum when it adheres to the multilayer film, and it is a multilayer where it is exposed to moisture or sea breeze such as the sea. There is a problem that the film peels off.
  • a method is conceivable in which a multilayer film is provided inside the support, that is, between the polarizing element and the support, but the multilayer film exhibits reflection performance due to the difference in refractive index between layers. Because of this, it is difficult to obtain the same reflection performance as the outer air interface.
  • the multilayer film is made of an inorganic substance, there is a problem in adhesion to the polarizing element which is an organic substance.
  • a cholesteric liquid crystal layer as a method of providing a metallic color tone with an organic substance without using a multilayer film
  • Patent Document 2 Cholesteric liquid crystal is in a state in which liquid crystal molecules are in a helical orientation, and has a function of selectively reflecting a circularly polarized light component having the same direction as that of a helix in a specific wavelength range depending on the length of the helical pitch.
  • An optical laminate using a cholesteric liquid crystal layer in which the helical alignment is fixed in a desired reflection wavelength range has a bright color tone and can be imparted with decorativeness.
  • polycarbonate is generally used in view of high transparency, achromaticity, high impact resistance, high heat resistance and the like (Patent Document 3).
  • polycarbonate has a high heat distortion temperature of 130 to 140 ° C. and has a problem in processability at the time of molding.
  • a polarizing lens using polycarbonate there is a problem that the frame portion in contact is whitened under the influence of outgassing generated by heating, and the material of the frame is limited.
  • a thermosetting adhesive is used to bond the cholesteric liquid crystal layer to the polycarbonate resin, sufficient adhesive strength may not be obtained.
  • the present invention relates to an optical laminate having good processability at molding, light weight, high productivity, and suppressed whitening of a frame in eyewear such as polarized sunglasses having a cholesteric liquid crystal layer, and eyewear using the same. Intended to provide.
  • the inventors of the present invention are an optical laminate comprising a cholesteric liquid crystal layer and a polarizing element between a first support and a second support, which is a first support and / or a support.
  • the second support contains a polyamide resin, and 1) a first or second support and a polarizing element, 2) a first or second support and a cholesteric liquid crystal layer, and 3) a cholesteric liquid crystal layer It has been found that an optical laminate, in which at least one selected from the group consisting of a polarizing element is bonded with a solvent-free ultraviolet curable adhesive, solves the above-mentioned problems, and completes the present invention .
  • the present invention is (1) an optical laminate comprising a cholesteric liquid crystal layer and a polarizing element between a first support and a second support, the first support and / or the second support
  • the support contains a polyamide resin, and 1) a first or second support and a polarizing element, 2) a first or second support and a cholesteric liquid crystal layer, and 3) a cholesteric liquid crystal layer and a polarizing element,
  • An optical laminate wherein at least one selected from the group consisting of (2)
  • the optical laminate according to the above (1) or (2), wherein the solventless ultraviolet curing adhesive contains a urethane (meth) acrylate, (4)
  • the optical laminate of the present invention when used in eyewear such as polarized sunglasses, has good processability at the time of molding, is lightweight, has high productivity, and can suppress whitening of the frame.
  • FIG. 1 is an explanatory view showing an optical laminate of the present invention.
  • FIG. 2 is an explanatory view showing an optical laminate according to another embodiment of the present invention.
  • the optical laminate of the present invention comprises a cholesteric liquid crystal layer that functions as a light reflecting layer.
  • the cholesteric liquid crystal layer contains a nematic liquid crystal having chirality or a mixture obtained by adding a chiral agent to the nematic liquid crystal. Since the helical direction and the reflection wavelength can be arbitrarily designed depending on the type and amount of the chiral agent, it is preferable to add a chiral agent to the nematic liquid crystal to obtain a cholesteric liquid crystal layer.
  • nematic liquid crystal monomer having a polymerizable group it is preferable to use a nematic liquid crystal monomer having a polymerizable group, since the nematic liquid crystal layer used in the present invention is used with the helical alignment state fixed, unlike the liquid crystal layer operated by a so-called electric field.
  • a necessary amount of a right-handed or left-handed chiral agent is added to a nematic liquid crystal monomer having a polymerizable group so as to reflect a desired wavelength.
  • these are dissolved in a solvent, and a photopolymerization initiator is added.
  • this solution is applied on a plastic substrate such as PET film so that the thickness is as uniform as possible, and while removing the solvent by heating, it becomes cholesteric liquid crystal on the substrate and is oriented at a desired helical pitch. Let stand for a fixed time under temperature conditions.
  • the alignment of the cholesteric liquid crystal can be made more uniform and the haze value of the film can be reduced by subjecting the plastic film surface to an alignment treatment such as rubbing or stretching before coating. .
  • an alignment treatment such as rubbing or stretching before coating.
  • ultraviolet light is irradiated by a high pressure mercury lamp or the like to fix the alignment, whereby the cholesteric liquid crystal layer used in the present invention can be obtained.
  • the cholesteric liquid crystal layer used in the present invention can be used by laminating two or three or more layers, and can also be used as a single layer. For example, when two layers are laminated and used, it is preferable to use right-handed and left-handed layers in order to maintain a high degree of polarization.
  • the pressure-sensitive adhesive include acrylic and rubber-based pressure-sensitive adhesives, and acrylic pressure-sensitive adhesives which are easy to adjust adhesiveness, holding power and the like are preferable.
  • an adhesive agent an ultraviolet curing adhesive and a thermosetting adhesive are mentioned.
  • a UV-curable adhesive a composition in which a plurality of monomers having an acryloyl group or an epoxy group is mixed can be cured and adhered by irradiation with UV light in the presence of a photopolymerization initiator.
  • a PVA polarizing film is mentioned typically.
  • the production method is not particularly limited, but a polymer film containing polyvinyl alcohol or a derivative thereof is adsorbed with a dye such as iodine or a dichroic dye, and the film is uniaxially stretched and manufactured.
  • the dye is preferably a dichroic dye from the viewpoint of heat resistance, and particularly preferably a direct dye containing an azo dye having a sulfonic acid group.
  • the optical laminate of the present invention has a first support and a second support.
  • the first support and / or the second support contains a polyamide resin.
  • a polyamide resin has less optical anisotropy, suppresses birefringence and is excellent in solvent resistance as compared with a polycarbonate resin.
  • the specific gravity is low and the weight is low and the heat distortion temperature is low, the processability at the time of molding is good.
  • the injection molding resin of the lens base layer and the support of the optical laminate should be the same material in order to prevent the deterioration of the appearance due to the difference in refractive index and to ensure the adhesion. It is also preferred to use a polyamide resin from the viewpoint that is desirable.
  • the non-solvent type ultraviolet curing adhesive is used when the support and the polarizing element, and / or the support and the cholesteric liquid crystal layer, and / or the cholesteric liquid crystal layer and the polarizing element are bonded.
  • Use the agent In the case of the solvent type, there is a problem that the substrate surface is corroded and the adhesive strength is lowered, but by using the non-solvent type adhesive, damage to the base film can be suppressed.
  • a UV-curable adhesive a composition in which a plurality of monomers having an acryloyl group or an epoxy group is mixed can be cured and adhered by irradiation with UV light in the presence of a photopolymerization initiator.
  • a UV curable adhesive is preferred in that it cures in a short time and has high productivity. It is preferable to use a non-solvent type UV curable adhesive in all adhesive layers.
  • an adhesive utilizing photo radical polymerization reaction such as (meth) acrylate adhesive, ene / thiol adhesive, unsaturated polyester adhesive, Adhesives utilizing photo cationic polymerization such as epoxy adhesive, oxetane adhesive, epoxy / oxetane adhesive, vinyl ether adhesive, etc. may be mentioned, and these may be used alone or mixed. You may use it.
  • (meth) acrylate adhesives are preferable in terms of good transparency and weather resistance.
  • the (meth) acrylate adhesive comprises, as essential components, a monomer or oligomer having one or more (meth) acryloyl groups in the molecule, and a photopolymerization initiator.
  • the (meth) acrylate adhesive may further contain additives and the like as required.
  • oligomers having one or more (meth) acryloyl groups in the molecule include epoxy (meth) acrylates, polyester (meth) acrylates, and urethane (meth) acrylates, with urethane (meth) acrylates being particularly preferable.
  • monofunctional acrylic monomers include isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate (Meth) acrylate of alkylene oxide modified product of phenol derivative, 2-ethylhexyl carbitol (meth) acrylate, ethoxyethoxyethyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl (meth) acrylate, isobornyl ( Meta) acrylate, adamantyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (Meth) acrylate, 3-hydroxypropyl (me
  • the optical laminate of the present invention can be obtained by sandwiching the cholesteric liquid crystal layer and the polarizing element with a support via an adhesive layer or the like.
  • FIG. 2 shows an example of a configuration diagram of the present invention.
  • the cholesteric liquid crystal layers 3 and 5 and the polarizing element 7 laminated via the adhesive layer are held between the supports 1 and 9 via the adhesive layers 2 and 6 to obtain the optical laminate 10 of the present invention.
  • the polarization lens 11 is obtained by injection molding the lens base layer 12 to the optical laminate 10 of the present invention.
  • the lens substrate is not particularly limited, and for example, a thermoplastic resin that can be molded by injection molding, or a thermosetting resin that is generally used for eyewear lenses that can be molded by wedge polymerization or the like may be used.
  • (meth) acrylic resins such as methyl methacrylate homopolymer, copolymer of methyl methacrylate and one or more other monomers; diethylene glycol bis allyl carbonate homopolymer, diethylene glycol bis allyl carbonate and one or more other Diethylene glycol bisallyl carbonate resins such as copolymers with the following monomers; acrylonitrile-styrene copolymers; halogen-containing copolymers; homopolymers of monomers having a sulfide bond; monomers having a sulfide bond; Polyurea resins; polyamide resins; polycarbonate resins; polystyrene resins; polyolefin resins; polyvinyl chloride resins; polyester resins
  • Eyewear using the optical laminate of the present invention by molding the optical laminate of the present invention into a desired shape so that the cholesteric liquid crystal layer is on the outside and fixing to a frame. Visor etc) can be obtained.
  • the optical laminate is stamped into a desired shape and then subjected to bending.
  • the method of bending There is no particular limitation on the method of bending, and it may be processed through a process capable of giving a spherical or aspherical shape according to the purpose. Resin may be further injected into the bent product.
  • Example 1 Preparation of cholesteric liquid crystal layer> Coating liquid prepared 40 g of polymerizable liquid crystal monomer (BASF, trade name: LC242), 3 g of chiral agent (BASF, trade name: LC756), and 2 g of a photopolymerization initiator (BASF, trade name: IRGACURETPO) A right-handed cholesteric liquid crystal layer was produced according to the following procedure using Further, 40 g of a polymerizable liquid crystal monomer (manufactured by BASF, trade name: LC 242), 9 g of a chiral agent (manufactured by Merck, trade name: S1080), and 2 g of a photopolymerization initiator (manufactured by BASF, trade name: IRGACURETPO) were prepared.
  • BASF polymerizable liquid crystal monomer
  • 3 g of chiral agent BASF, trade name: LC756
  • a photopolymerization initiator BASF, trade
  • a left-handed cholesteric liquid crystal layer was produced by the same procedure using a coating solution.
  • a PET film manufactured by Toyobo Co., Ltd., with no easy adhesion layer
  • the coating solution was applied at room temperature on a PET film using a wire bar so that the thickness of the dried film was 4 ⁇ m.
  • the solvent was removed by heating at 150 ° C. for 5 minutes.
  • a high pressure mercury lamp manufactured by Hanson Toshiba Lighting Co., Ltd.
  • the PET film was peeled off.
  • a cholesteric liquid crystal layer used in the present invention was obtained.
  • the dyed sheet was then immersed in an aqueous solution containing 2.5 g / L of nickel acetate and 6.6 g / L of boric acid at 35 ° C. for 3 minutes. Then, the sheet was dried at room temperature for 3 minutes in a tension-maintained state, and then heat-treated at 70 ° C. for 3 minutes to obtain a polarizing element.
  • the degree of polarization of the polarizing element was measured by an absolute polarization method using a spectrophotometer, and as a result, the degree of polarization was 99.5%.
  • the optical laminate of the present invention is obtained by sandwiching the support of a polyamide resin having a thickness of about 0.2 mm (manufactured by EMS, trade name: Grylamide TR-90) through the adhesive, and similarly irradiating ultraviolet rays. Obtained.
  • the resulting optical laminate is punched as a strip shape with a basic shape having a diameter of 79.5 mm and a width of 55 mm in the vertical direction, and a base curve of 7.95 (curvature radius of 66.67 mm)
  • the bending process was performed at a low temperature of 110 ° C. using a mold of the above to make the cholesteric liquid crystal layer side convex.
  • the optical laminate had good processability, good adhesion, and no peeling even when immersed in water at 80 ° C. for 1 day.
  • Example 2 ⁇ Production of polarized sunglasses>
  • the optical laminate bent in Example 1 was inserted into a mold for injection molding, and transparent nylon melted on the concave side was injection molded to obtain a polarized lens. Subsequently, balling was performed according to the frame, and the polarized lens was fitted to a cellulose-based frame to produce polarized sunglasses.
  • the produced polarized sunglasses had excellent adhesion between a polyamide support and transparent nylon, and were not peeled off even if immersed in water at 80 ° C. for 1 day. Also, no whitening of the frame was confirmed.
  • Comparative Example 1 A comparative procedure is carried out in the same manner as in Example 1 and Example 2 except that a 0.3 mm thick polycarbonate support (Mitsubishi Gas Chemical Co., Ltd., bisphenol A aromatic polycarbonate) is used as the support. Polarized sunglasses were made.
  • a 0.3 mm thick polycarbonate support Mitsubishi Gas Chemical Co., Ltd., bisphenol A aromatic polycarbonate
  • the produced optical laminate was inferior in processability at a low temperature of 110 ° C., and sufficient bending could not be performed, and a crack occurred.
  • the produced polarized sunglasses had poor adhesion between the polycarbonate support and the transparent nylon, and peeling in the end was observed when immersed in water at 80 ° C. for 1 day. In addition, when combined with a cellulose-based frame, whitening was confirmed in the contact portion.
  • Comparative Example 2 As an adhesive, 6 g of polyvinyl alcohol (Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gousenex Z 200), 1.5 g of a curing agent (Nippon Synthetic Chemical Industry Co., Ltd., trade name: SPM-01), 100 g of pure water An optical laminate for comparison was produced in the same manner as in Example 1, except that a mixed thermosetting adhesive was produced and cured by heating at 80 ° C. for 10 minutes.
  • polyvinyl alcohol Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gousenex Z 200
  • a curing agent Nippon Synthetic Chemical Industry Co., Ltd., trade name: SPM-01
  • the produced optical laminate had poor adhesion, and when immersed in water at 80 ° C. for 1 day, peeling between layers was confirmed.
  • Comparative Example 3 An optical laminate for comparison was prepared in the same manner as Comparative Example 2 except that a 0.3 mm thick polycarbonate support (Mitsubishi Gas Chemical Co., Ltd., bisphenol A aromatic polycarbonate) was used as the support. Made.
  • a 0.3 mm thick polycarbonate support Mitsubishi Gas Chemical Co., Ltd., bisphenol A aromatic polycarbonate
  • the produced optical laminate was inferior in processability at a low temperature of 110 ° C., and sufficient bending could not be performed, and a crack occurred. Moreover, adhesiveness was inferior and peeling of the layer could be confirmed when it was immersed in 80 degreeC water for 1 day.
  • the produced optical laminate had poor adhesion, and when immersed in water at 80 ° C. for 1 day, peeling between layers was confirmed. Moreover, whitening could be confirmed due to the substrate erosion by the solvent.

Abstract

An optical laminate in which a cholesteric liquid crystal layer and a polarizing element are provided between a first support and a second support, wherein the first support and/or the second support contains a polyamide resin, components in at least one combination selected from the group consisting of (1) the first or second support and the polarizing element, (2) the first or second support and the cholesteric liquid crystal layer and (3) the cholesteric liquid crystal layer and the polarizing element are bonded to each other with a solvent-free ultraviolet-ray-curable adhesive agent.

Description

光学積層体、これを備えた偏光レンズ及びアイウェアOptical laminate, polarized lens and eyewear comprising the same
 本発明は、コレステリック液晶層と偏光素子を備えた光学積層体及びそれを用いたアイウェア(サングラスやゴーグル、ヘルメット用バイザーなど)に関する。 The present invention relates to an optical laminate having a cholesteric liquid crystal layer and a polarizing element, and an eyewear (sunglass, goggles, visor for helmet, etc.) using the same.
 水面や路面、雪面等からの反射光による眩しさの低減のために、アイウェア(サングラスやゴーグル、ヘルメット用バイザー等)が用いられている。例えばサングラスは、レンズ部に色素等で着色することにより、該色素の吸収により目に入射する光量を低減させることで、眩しさを低減しているが、水面や雪面の反射光に対しては偏光サングラスが特に有効である。
 偏光サングラスは、反射光が偏光になることから、その偏光方向の光を効果的に吸収させるように設計することにより、目への入射光量を大きく低減することなく、眩しさを低減し、視認性を向上させることができる。
Eyewear (sunglasses, goggles, visors for helmets, etc.) is used to reduce glare caused by light reflected from the water surface, road surface, snow surface, etc. For example, in the case of sunglasses, the lens portion is colored with a pigment or the like to reduce the amount of light incident on the eye by absorption of the pigment, thereby reducing glare, but against reflected light from the water surface or snow surface. Polarized sunglasses are particularly effective.
Polarized sunglasses are designed to absorb light in the polarization direction effectively because the reflected light is polarized, thereby reducing glare and visualizing without significantly reducing the amount of light incident on the eyes. It is possible to improve the quality.
 偏光サングラスは、通常、ポリカーボネート等の支持体で偏光素子を挟持した光学積層体を金型内に装着し、レンズ基材層を射出成形して所望の形状に加工した偏光レンズをフレームに組み込むことで得ることができる(特許文献1)。偏光素子は、二色性染料や多ヨウ素‐ポリビニルアルコール(PVA)錯体といったいわゆる二色性色素がPVA等の高分子と共に一軸配向されたフィルムであり、用いる色素の色によって、様々な色の偏光素子を得ることができるが、通常のサングラスの場合は、可視光域全体に偏光性を付与するために、グレー系の色にすることが多い。 Polarized sunglasses are usually installed in a mold with an optical laminate in which a polarizing element is held by a support such as polycarbonate in a mold, and a polarizing lens fabricated by injection molding of a lens base layer is incorporated into a frame. (Patent Document 1). The polarizing element is a film in which a so-called dichroic dye such as a dichroic dye or a polyiodine-polyvinyl alcohol (PVA) complex is uniaxially oriented with a polymer such as PVA, and the polarization of various colors depending on the color of the dye used. Although elements can be obtained, in the case of ordinary sunglasses, in order to impart polarization to the entire visible light range, the color is often grayish.
 偏光サングラスにおけるデザイン性の付与、あるいは視認性の更なる向上のために、表面に多層膜を蒸着させる場合がある。多層膜を付与することにより、他者からはサングラス表面の反射光が青や緑、赤といったメタリック調の色彩を見ることができ、装着者からは、特定の光を反射することで、眩しさの低減と共に景色の視認性がさらに向上する。このように多層膜を付与することは、装着者にとって有益である一方、皮脂などが多層膜に付着すると取れにくいといった取り扱い上の問題点や、海など水分や潮風に曝される所では、多層膜が剥がれたりしてしまうという課題がある。 A multilayer film may be deposited on the surface for the purpose of imparting design in polarized sunglasses or further improving the visibility. By applying a multilayer film, the reflected light of the surface of the sunglasses can be seen from others as metallic colors such as blue, green and red, and from the wearer, glare can be caused by reflecting specific light. The visibility of the landscape is further improved with the reduction of While it is useful for the wearer to apply the multilayer film in this way, it is difficult to remove sebum when it adheres to the multilayer film, and it is a multilayer where it is exposed to moisture or sea breeze such as the sea. There is a problem that the film peels off.
 このような課題に対し、多層膜を支持体の内側、すなわち偏光素子と支持体との間に設ける方法が考えられるが、多層膜は、各層間での屈折率差により反射性能を発現しているために、外側の空気界面と同等の反射性能を得ることは困難である。また、多層膜は無機物質からなるために、有機物である偏光素子との接着に問題がある。 In order to solve such problems, a method is conceivable in which a multilayer film is provided inside the support, that is, between the polarizing element and the support, but the multilayer film exhibits reflection performance due to the difference in refractive index between layers. Because of this, it is difficult to obtain the same reflection performance as the outer air interface. In addition, since the multilayer film is made of an inorganic substance, there is a problem in adhesion to the polarizing element which is an organic substance.
 一方、多層膜を用いることなく、有機物でメタリックな色調を付与する方法として、コレステリック液晶層を用いる方法がある(特許文献2)。コレステリック液晶は、液晶分子が螺旋配向をした状態であり、螺旋ピッチの長さによって、特定の波長域の螺旋の向きと同じ向きの円偏光成分を選択的に反射する機能を有する。この螺旋配向を所望の反射波長域となる状態で固定化したコレステリック液晶層を用いた光学積層体は、鮮やかな色調を有し、装飾性を付与することができる。 On the other hand, there is a method of using a cholesteric liquid crystal layer as a method of providing a metallic color tone with an organic substance without using a multilayer film (Patent Document 2). Cholesteric liquid crystal is in a state in which liquid crystal molecules are in a helical orientation, and has a function of selectively reflecting a circularly polarized light component having the same direction as that of a helix in a specific wavelength range depending on the length of the helical pitch. An optical laminate using a cholesteric liquid crystal layer in which the helical alignment is fixed in a desired reflection wavelength range has a bright color tone and can be imparted with decorativeness.
 偏光レンズのレンズ基材層には、通常、高透明性、無色性、高耐衝撃性、高耐熱性などからポリカーボネートが用いられている(特許文献3)。 For the lens substrate layer of the polarized lens, polycarbonate is generally used in view of high transparency, achromaticity, high impact resistance, high heat resistance and the like (Patent Document 3).
特開2010-39220号公報Unexamined-Japanese-Patent No. 2010-39220 特開2001-180200号公報JP 2001-180200 A 国際公開第2016/002582号公報International Publication No. 2016/002582
 しかしながら、特許文献3では、ポリカーボネートは熱変形温度が130~140℃と高く成型時の加工性に問題がある。また、ポリカーボネートを使用した偏光レンズでは、加熱により生じるアウトガスの影響により、接触したフレーム部分が白化するという問題があり、フレームの材質に制限がある。さらに、コレステリック液晶層とポリカーボネート樹脂の接着に熱硬化性接着剤を用いた場合、十分な接着強度が得られないことがある。
 本発明は、コレステリック液晶層を備えた偏光サングラス等のアイウェアにおいて、成型時の加工性が良く、軽量で生産性が高く、かつフレームの白化を抑えた光学積層体及びそれを用いたアイウェアを提供することを目的とする。
However, in Patent Document 3, polycarbonate has a high heat distortion temperature of 130 to 140 ° C. and has a problem in processability at the time of molding. In addition, in the case of a polarizing lens using polycarbonate, there is a problem that the frame portion in contact is whitened under the influence of outgassing generated by heating, and the material of the frame is limited. Furthermore, when a thermosetting adhesive is used to bond the cholesteric liquid crystal layer to the polycarbonate resin, sufficient adhesive strength may not be obtained.
The present invention relates to an optical laminate having good processability at molding, light weight, high productivity, and suppressed whitening of a frame in eyewear such as polarized sunglasses having a cholesteric liquid crystal layer, and eyewear using the same. Intended to provide.
 本発明者らは、鋭意検討の結果、第一の支持体と第二の支持体の間に、コレステリック液晶層及び偏光素子を備えた光学積層体であって、第一の支持体及び/又は第二の支持体がポリアミド樹脂を含有し、1)第一の又は第二の支持体と偏光素子、2)第一の又は第二の支持体とコレステリック液晶層、及び3)コレステリック液晶層と偏光素子、からなる群から選択される少なくとも一が無溶剤系紫外線硬化型接着剤で貼り合わされている、光学積層体が、上記課題を解決するものであることを見出し、本発明を完成させた。 The inventors of the present invention, as a result of intensive studies, are an optical laminate comprising a cholesteric liquid crystal layer and a polarizing element between a first support and a second support, which is a first support and / or a support. The second support contains a polyamide resin, and 1) a first or second support and a polarizing element, 2) a first or second support and a cholesteric liquid crystal layer, and 3) a cholesteric liquid crystal layer It has been found that an optical laminate, in which at least one selected from the group consisting of a polarizing element is bonded with a solvent-free ultraviolet curable adhesive, solves the above-mentioned problems, and completes the present invention .
 すなわち、本発明は
(1)第一の支持体と第二の支持体の間に、コレステリック液晶層及び偏光素子を備えた光学積層体であって、第一の支持体及び/又は第二の支持体がポリアミド樹脂を含有し、1)第一の又は第二の支持体と偏光素子、2)第一の又は第二の支持体とコレステリック液晶層、及び3)コレステリック液晶層と偏光素子、からなる群から選択される少なくとも一が無溶剤系紫外線硬化型接着剤で貼り合わされている、光学積層体、
(2)前記ポリアミド樹脂が脂肪族骨格を含むナイロンである前項(1)に記載の光学積層体、
(3)前記無溶剤系紫外線硬化型接着剤がウレタン(メタ)アクリレートを含有する前項(1)又は前項(2)に記載の光学積層体、
(4)前項(1)~前項(3)のいずれか一項に記載の光学積層体にレンズ基材が射出成型されている偏光レンズ、
(5)前記レンズ基材がポリアミド樹脂を含有する前項(4)に記載の偏光レンズ、
(6)前記レンズ基材に含有されるポリアミド樹脂が脂肪族骨格を含むナイロンである前項(5)に記載の偏光レンズ、
(7)前項(4)~前項(6)のいずれか一項に記載の偏光レンズがフレームに組み込まれているアイウェア、
に関する。
That is, the present invention is (1) an optical laminate comprising a cholesteric liquid crystal layer and a polarizing element between a first support and a second support, the first support and / or the second support The support contains a polyamide resin, and 1) a first or second support and a polarizing element, 2) a first or second support and a cholesteric liquid crystal layer, and 3) a cholesteric liquid crystal layer and a polarizing element, An optical laminate, wherein at least one selected from the group consisting of
(2) The optical laminate according to the above (1), wherein the polyamide resin is nylon containing an aliphatic skeleton,
(3) The optical laminate according to the above (1) or (2), wherein the solventless ultraviolet curing adhesive contains a urethane (meth) acrylate,
(4) A polarized lens in which a lens substrate is injection-molded to the optical laminate according to any one of (1) to (3).
(5) The polarized lens as described in (4) above, wherein the lens substrate contains a polyamide resin.
(6) The polarized lens as described in (5) above, wherein the polyamide resin contained in the lens substrate is nylon containing an aliphatic skeleton,
(7) Eyewear wherein the polarizing lens according to any one of (4) to (6) is incorporated in a frame,
About.
 本発明の光学積層体は、偏光サングラス等のアイウェアに用いた場合、成型時の加工性がよく、軽量で生産性が高く、かつフレームの白化を抑えることができる。 The optical laminate of the present invention, when used in eyewear such as polarized sunglasses, has good processability at the time of molding, is lightweight, has high productivity, and can suppress whitening of the frame.
図1は本発明の光学積層体を示した説明図である。FIG. 1 is an explanatory view showing an optical laminate of the present invention. 図2は本発明の他の実施形態の光学積層体を示した説明図である。FIG. 2 is an explanatory view showing an optical laminate according to another embodiment of the present invention.
 本発明の光学積層体は、光反射層として機能するコレステリック液晶層を備える。コレステリック液晶層とは、キラリティを持つネマチック液晶やネマチック液晶にカイラル剤を添加した配合物を含有する。カイラル剤の種類や量により、螺旋の向きや反射波長を任意に設計できることから、ネマチック液晶にカイラル剤を添加してコレステリック液晶層を得る方法が好ましい。本発明で使用されるネマチック液晶層は、いわゆる電界で操作する液晶層とは異なり、螺旋配向状態を固定化して使用されるため、重合性基を有するネマチック液晶モノマーを用いることが好ましい。 The optical laminate of the present invention comprises a cholesteric liquid crystal layer that functions as a light reflecting layer. The cholesteric liquid crystal layer contains a nematic liquid crystal having chirality or a mixture obtained by adding a chiral agent to the nematic liquid crystal. Since the helical direction and the reflection wavelength can be arbitrarily designed depending on the type and amount of the chiral agent, it is preferable to add a chiral agent to the nematic liquid crystal to obtain a cholesteric liquid crystal layer. It is preferable to use a nematic liquid crystal monomer having a polymerizable group, since the nematic liquid crystal layer used in the present invention is used with the helical alignment state fixed, unlike the liquid crystal layer operated by a so-called electric field.
 本発明で用いられるコレステリック液晶層を作製する方法としては、例えば、重合性基を有するネマチック液晶モノマーに、所望とする波長を反射するように右巻き又は左巻きとなるカイラル剤を必要量添加する。次にこれらを溶剤に溶解し、光重合開始剤を添加する。次にこの溶液をPETフィルム等のプラスチック基板上に厚みができるだけ均一になるように塗布し、加熱にて溶剤を除去させながら、基板上でコレステリック液晶となって所望の螺旋ピッチで配向するような温度条件で一定時間放置させる。このとき、プラスチックフィルム表面を塗布前にラビングあるいは延伸等の配向処理をしておくことで、コレステリック液晶の配向をより均一にすることができ、フィルムとしてのヘーズ値を低減することが可能となる。次いでこの配向状態を保持したまま、高圧水銀灯等で紫外線を照射し、配向を固定化させることにより、本発明で用いられるコレステリック液晶層が得られる。 As a method of producing a cholesteric liquid crystal layer used in the present invention, for example, a necessary amount of a right-handed or left-handed chiral agent is added to a nematic liquid crystal monomer having a polymerizable group so as to reflect a desired wavelength. Next, these are dissolved in a solvent, and a photopolymerization initiator is added. Next, this solution is applied on a plastic substrate such as PET film so that the thickness is as uniform as possible, and while removing the solvent by heating, it becomes cholesteric liquid crystal on the substrate and is oriented at a desired helical pitch. Let stand for a fixed time under temperature conditions. At this time, the alignment of the cholesteric liquid crystal can be made more uniform and the haze value of the film can be reduced by subjecting the plastic film surface to an alignment treatment such as rubbing or stretching before coating. . Next, while maintaining this alignment state, ultraviolet light is irradiated by a high pressure mercury lamp or the like to fix the alignment, whereby the cholesteric liquid crystal layer used in the present invention can be obtained.
 本発明で用いられるコレステリック液晶層は2層又は3層以上を積層して用いることができるし、単層で用いることもできる。例えば2層を積層して用いる場合、高い偏光度を維持するためには右巻きと左巻きを積層して用いることが好ましい。 The cholesteric liquid crystal layer used in the present invention can be used by laminating two or three or more layers, and can also be used as a single layer. For example, when two layers are laminated and used, it is preferable to use right-handed and left-handed layers in order to maintain a high degree of polarization.
 積層する手段としては、特に制限はないが、粘着剤や接着剤を用いて積層することが好ましい。粘着剤としては、アクリル系やゴム系の粘着剤が挙げられるが、接着性や保持力等を調整しやすいアクリル系粘着剤が好ましい。また、接着剤としては、紫外線硬化型接着剤や熱硬化型接着剤が挙げられる。紫外線硬化型接着剤の場合は、アクリロイル基、あるいはエポキシ基を有するモノマーを複数混合した組成物を光重合開始剤の存在下で、紫外線を照射することにより硬化させて接着させることができる。熱硬化型接着剤の場合は、エポキシ基を有するモノマーを複数混合した組成物を酸触媒の存在下で加熱することにより硬化させて接着することができる。短時間で硬化し生産性が高いという点において紫外線硬化型接着剤が好ましい。 Although there is no restriction | limiting in particular as a means to laminate | stack, It is preferable to laminate using an adhesive and an adhesive. Examples of the pressure-sensitive adhesive include acrylic and rubber-based pressure-sensitive adhesives, and acrylic pressure-sensitive adhesives which are easy to adjust adhesiveness, holding power and the like are preferable. Moreover, as an adhesive agent, an ultraviolet curing adhesive and a thermosetting adhesive are mentioned. In the case of a UV-curable adhesive, a composition in which a plurality of monomers having an acryloyl group or an epoxy group is mixed can be cured and adhered by irradiation with UV light in the presence of a photopolymerization initiator. In the case of a thermosetting adhesive, a composition obtained by mixing a plurality of monomers having an epoxy group can be cured and bonded by heating in the presence of an acid catalyst. A UV curable adhesive is preferred in that it cures in a short time and has high productivity.
 本発明で用いられる偏光素子としては、典型的にはPVA偏光フィルムが挙げられる。作製方法は特に限定されないが、ポリビニルアルコールあるいはその誘導体を含有する高分子フィルムにヨウ素や二色性染料などの色素を吸着し、該フィルムを一軸に延伸配向させて製造される。色素としては、耐熱性の点から、二色性染料が好ましく、特にスルホン酸基をもつアゾ色素を含有する直接染料が好ましい。 As a polarizing element used by this invention, a PVA polarizing film is mentioned typically. The production method is not particularly limited, but a polymer film containing polyvinyl alcohol or a derivative thereof is adsorbed with a dye such as iodine or a dichroic dye, and the film is uniaxially stretched and manufactured. The dye is preferably a dichroic dye from the viewpoint of heat resistance, and particularly preferably a direct dye containing an azo dye having a sulfonic acid group.
 本発明の光学積層体は、第一の支持体及び第二の支持体を有する。第一の支持体及び/又は第二の支持体はポリアミド樹脂を含有する。ポリアミド樹脂はポリカーボネート樹脂と比較して、光学的異方性が少なく複屈折が抑えられ、耐溶剤性にも優れる。また、比重が低く軽量で、熱変形温度が低いため成型時の加工性が良い。射出成型樹脂としてナイロンを使用する場合、屈折率差による外観悪化を防止するため、また密着性を確保するためレンズ基材層の射出成型樹脂と光学積層体の支持体は同一の材料にすることが望ましい点でもポリアミド樹脂を使用することが好ましい。また、ポリアミド樹脂を用いる場合、加熱によるアウトガスの影響によるフレームの白化現象を抑制することができるため、後述するように、フレームの材質の制限がない点からも好ましい。
 ポリアミド樹脂としては脂肪族骨格を含むナイロン、芳香族骨格のみで構成されるアラミドが挙げられる。ナイロンとしてはナイロン6、ナイロン11、ナイロン12、ナイロン66が挙げられる。アラミドとしてはパラ系アラミド、メタ系アラミドが挙げられる。
 第一の支持体又は第二の支持体のみポリアミド樹脂を含有する場合、他方の支持体はポリカーボネート樹脂又はトリアセチルセルロース樹脂であることが好ましい。
The optical laminate of the present invention has a first support and a second support. The first support and / or the second support contains a polyamide resin. A polyamide resin has less optical anisotropy, suppresses birefringence and is excellent in solvent resistance as compared with a polycarbonate resin. In addition, since the specific gravity is low and the weight is low and the heat distortion temperature is low, the processability at the time of molding is good. When using nylon as the injection molding resin, the injection molding resin of the lens base layer and the support of the optical laminate should be the same material in order to prevent the deterioration of the appearance due to the difference in refractive index and to ensure the adhesion. It is also preferred to use a polyamide resin from the viewpoint that is desirable. Moreover, when using a polyamide resin, since the whitening phenomenon of the flame | frame by the influence of the outgas by heating can be suppressed, as mentioned later, it is preferable also from the point which does not have a restriction | limiting of the material of a flame | frame.
Examples of the polyamide resin include nylon having an aliphatic skeleton, and aramid composed of only an aromatic skeleton. Examples of nylon include nylon 6, nylon 11, nylon 12 and nylon 66. Examples of aramids include para-aramids and meta-aramids.
When only the first support or the second support contains a polyamide resin, the other support is preferably a polycarbonate resin or a triacetyl cellulose resin.
 本発明においては、支持体と偏光素子の間、及び/又は支持体とコレステリック液晶層との間、及び/又はコレステリック液晶層と偏光素子との間を張り合わせる際、無溶剤系紫外線硬化型接着剤を用いる。溶剤系の場合、基材表面を浸食し接着力が低下するといった課題があるのに対し、無溶剤系の接着剤を用いることにより、素膜へのダメージを抑えることができる。紫外線硬化型接着剤の場合は、アクリロイル基、あるいはエポキシ基を有するモノマーを複数混合した組成物を光重合開始剤の存在下で、紫外線を照射することにより硬化させて接着させることができる。短時間で硬化し生産性が高いという点において紫外線硬化型接着剤が好ましい。
 全ての接着層で無溶剤系紫外線硬化型接着剤を用いることが好ましい。
In the present invention, the non-solvent type ultraviolet curing adhesive is used when the support and the polarizing element, and / or the support and the cholesteric liquid crystal layer, and / or the cholesteric liquid crystal layer and the polarizing element are bonded. Use the agent. In the case of the solvent type, there is a problem that the substrate surface is corroded and the adhesive strength is lowered, but by using the non-solvent type adhesive, damage to the base film can be suppressed. In the case of a UV-curable adhesive, a composition in which a plurality of monomers having an acryloyl group or an epoxy group is mixed can be cured and adhered by irradiation with UV light in the presence of a photopolymerization initiator. A UV curable adhesive is preferred in that it cures in a short time and has high productivity.
It is preferable to use a non-solvent type UV curable adhesive in all adhesive layers.
 本発明で用いられる無溶剤系紫外線硬化型接着剤としては、(メタ)アクリレート系接着剤、エン/チオール系接着剤、不飽和ポリエステル系接着剤などの光ラジカル重合反応を利用する接着剤や、エポキシ系接着剤、オキセタン系接着剤、エポキシ/オキセタン系接着剤、ビニルエーテル系接着剤などの光カチオン重合反応を利用する接着剤などが挙げられ、これらは単独で使用してもよいし、混合して使用してもよい。とりわけ、透明性・耐候性も良好という点から(メタ)アクリレート系接着剤が好ましい。(メタ)アクリレート系接着剤は、分子中に1個以上の(メタ)アクリロイル基を有するモノマー又はオリゴマーと、光重合開始剤を必須成分として含む。該(メタ)アクリレート系接着剤は、さらに必要に応じて、適宜、添加剤等を含有することもできる。分子中に1個以上の(メタ)アクリロイル基を有するオリゴマーとしては、例えばエポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、及びウレタン(メタ)アクリレートが挙げられ、ウレタン(メタ)アクリレートが特に好ましい。 As the non-solvent UV curable adhesive used in the present invention, an adhesive utilizing photo radical polymerization reaction such as (meth) acrylate adhesive, ene / thiol adhesive, unsaturated polyester adhesive, Adhesives utilizing photo cationic polymerization such as epoxy adhesive, oxetane adhesive, epoxy / oxetane adhesive, vinyl ether adhesive, etc. may be mentioned, and these may be used alone or mixed. You may use it. In particular, (meth) acrylate adhesives are preferable in terms of good transparency and weather resistance. The (meth) acrylate adhesive comprises, as essential components, a monomer or oligomer having one or more (meth) acryloyl groups in the molecule, and a photopolymerization initiator. The (meth) acrylate adhesive may further contain additives and the like as required. Examples of oligomers having one or more (meth) acryloyl groups in the molecule include epoxy (meth) acrylates, polyester (meth) acrylates, and urethane (meth) acrylates, with urethane (meth) acrylates being particularly preferable.
 紫外線硬化型接着剤の粘度を調整する場合は、接着剤が十分に溶解する各種溶剤を用いれば良いが、基材表面を浸食し接着力が低下するといった問題があるため、反応性希釈剤、例えば単官能アクリル系モノマーを使用することが好ましい。単官能アクリル系モノマーとしては、例えばイソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、フェノール誘導体のアルキレンオキサイド変性物の(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、トリシクロデカン(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、ω-カルボキシポリカプロラクトン(メタ)アクリレート、フタル酸モノヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸ダイマー等が挙げられる。 When adjusting the viscosity of the UV curable adhesive, various solvents in which the adhesive is sufficiently dissolved may be used, but there is a problem that the substrate surface is eroded and the adhesive strength is lowered, so a reactive diluent, For example, it is preferable to use a monofunctional acrylic monomer. Examples of monofunctional acrylic monomers include isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate (Meth) acrylate of alkylene oxide modified product of phenol derivative, 2-ethylhexyl carbitol (meth) acrylate, ethoxyethoxyethyl (meth) acrylate, tricyclodecane (meth) acrylate, dicyclopentenyl (meth) acrylate, isobornyl ( Meta) acrylate, adamantyl (meth) acrylate, benzyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (Meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, N- (meth) acryloyloxyethyl hexahydrophthalimide, ω- Examples thereof include carboxypolycaprolactone (meth) acrylate, monohydroxyethyl (meth) acrylate phthalate, and (meth) acrylic acid dimer.
 紫外線硬化型接着剤は、紫外線の照射によって硬化される。使用する紫外線としては、種々のものが使用可能である。紫外線の光源は特に限定されないが、例えば、太陽光、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプなどを用いることができ、これらの中でも安価で汎用性に優れる点で、高圧水銀ランプ及びメタルハライドランプが好ましい。 The ultraviolet curing adhesive is cured by the irradiation of ultraviolet light. As ultraviolet rays to be used, various ones can be used. The light source of the ultraviolet light is not particularly limited, but for example, sunlight, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, metal halide lamp etc. can be used. Mercury lamps and metal halide lamps are preferred.
 コレステリック液晶層及び偏光素子を、接着剤層等を介して支持体で挟持することによって、本発明の光学積層体を得ることができる。 The optical laminate of the present invention can be obtained by sandwiching the cholesteric liquid crystal layer and the polarizing element with a support via an adhesive layer or the like.
 図2には本発明の構成図の一例を図示している。接着剤層を介して積層されたコレステリック液晶層3,5及び偏光素子7を、接着剤層2,6を介して支持体1、9で挟持することによって本発明の光学積層体10を得る。本発明の光学積層体10にレンズ基材層12を射出成型することにより、偏光レンズ11を得る。 FIG. 2 shows an example of a configuration diagram of the present invention. The cholesteric liquid crystal layers 3 and 5 and the polarizing element 7 laminated via the adhesive layer are held between the supports 1 and 9 via the adhesive layers 2 and 6 to obtain the optical laminate 10 of the present invention. The polarization lens 11 is obtained by injection molding the lens base layer 12 to the optical laminate 10 of the present invention.
 レンズ基材としては、特に制限はなく、例えば、射出成形法により成形可能な熱可塑性樹脂や、酎型重合等により成形可能な、アイウェアレンズ等に一般に用いられる熱硬化性樹脂等を用いることができる。例えば、メチルメタクリレート単独重合体、メチルメタクリレートと1種以上の他のモノマーとの共重合体等の(メタ)アクリル系樹脂;ジエチレングリコールビスアリルカーボネート単独重合体、ジエチレングリコールビスアリルカーボネートと1種類以上の他のモノマーとの共重合体等のジエチレングリコールビスアリルカーボネート系樹脂;アクリロニトリル-スチレン共重合体;ハロゲン含有共重合体;スルフィド結合を有するモノマーの単独重合体、スルフィド結合を有するモノマーと1種以上の他のモノマーとの共重合体等のポリスルフィド系樹脂;ポリウレア樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリオレフィン樹脂;ポリ塩化ビニル樹脂;ポリエステル樹脂;ポリエチレンテレフタレート;ポリウレタン樹脂;ポリチオウレタン樹脂等の含硫ウレタン系樹脂;エポキシ樹脂等が挙げられる。光学積層体との密着性の観点から、接する層と同一の材料が好ましい。 The lens substrate is not particularly limited, and for example, a thermoplastic resin that can be molded by injection molding, or a thermosetting resin that is generally used for eyewear lenses that can be molded by wedge polymerization or the like may be used. Can. For example, (meth) acrylic resins such as methyl methacrylate homopolymer, copolymer of methyl methacrylate and one or more other monomers; diethylene glycol bis allyl carbonate homopolymer, diethylene glycol bis allyl carbonate and one or more other Diethylene glycol bisallyl carbonate resins such as copolymers with the following monomers; acrylonitrile-styrene copolymers; halogen-containing copolymers; homopolymers of monomers having a sulfide bond; monomers having a sulfide bond; Polyurea resins; polyamide resins; polycarbonate resins; polystyrene resins; polyolefin resins; polyvinyl chloride resins; polyester resins; Urethane resins; sulfur-containing urethane-based, such as polythiourethane resins resins; epoxy resins. From the viewpoint of adhesion to the optical laminate, the same material as the layer in contact is preferable.
 本発明の光学積層体を用い、コレステリック液晶層が外側になるように、所望の形状に成形し、フレームに固定することで、本発明の光学積層体を使用したアイウェア(サングラスやゴーグル、ヘルメット用バイザーなど)を得ることができる。
 例えばサングラスの場合は、光学積層体を所望の形状に打ち抜き、次いで、曲げ加工を施す。曲げ加工の方法に関して特に制限はなく、目的に応じて球面あるいは非球面に形状を付与できるような工程を経て加工すればよい。曲げ加工品には、さらに樹脂を射出してもよい。この場合、光学積層体の厚みムラが見えなくなるという利点もあり、焦点屈折力を持たないレンズにおいても耐衝撃性、外観や眼精疲労に対して特に優れた製品に使用されている。
 表面には、適宜、ハードコート、反射防止膜などが形成され、次いで玉摺り、穴あけ、ネジ締め等によりフレームに固定することでサングラスになる。
 フレームの材質としては、例えば、セルロイド、アセテート、ポリアミドなどの合成樹脂材料、さらには、鼈甲などの天然材料などが挙げられる。射出成型に脂肪族骨格を含むナイロン樹脂を使用した偏光レンズは、セルロース系フレームと組み合わせても白化等の問題がなく好適に使用できる。
Eyewear using the optical laminate of the present invention (sunglass, goggles, helmet, etc.) by molding the optical laminate of the present invention into a desired shape so that the cholesteric liquid crystal layer is on the outside and fixing to a frame. Visor etc) can be obtained.
For example, in the case of sunglasses, the optical laminate is stamped into a desired shape and then subjected to bending. There is no particular limitation on the method of bending, and it may be processed through a process capable of giving a spherical or aspherical shape according to the purpose. Resin may be further injected into the bent product. In this case, there is also an advantage that the thickness unevenness of the optical laminated body can not be seen, and even in a lens having no focal refractive power, it is used for a product particularly excellent in impact resistance, appearance and eyestrain.
A hard coat, an antireflective film, etc. are suitably formed on the surface, and then it is fixed to a frame by balling, drilling, screwing or the like to become sunglasses.
Examples of the material of the frame include synthetic resin materials such as celluloid, acetate, and polyamide, and further, natural materials such as chaff. A polarized lens using a nylon resin containing an aliphatic skeleton for injection molding can be suitably used without any problem such as whitening even when combined with a cellulose-based frame.
 以下実施例により本発明を更に具体的に説明するが、本発明はかかる実施例に限定されるものではない。 The present invention will be more specifically described by way of the following examples, but the present invention is not limited to these examples.
 [実施例1]
<コレステリック液晶層の作製>
  重合性液晶モノマー(BASF社製、商品名:LC242)40g、カイラル剤(BASF社製、商品名:LC756)3g、光重合開始剤(BASF社製、商品名:IRGACURETPO)2gを調製した塗布液を用い、下記の手順にて右巻きのコレステリック液晶層を作製した。また、重合性液晶モノマー(BASF社製、商品名:LC242)40g、カイラル剤(メルク社製、商品名:S1080)9g、光重合開始剤(BASF社製、商品名:IRGACURETPO)2gを調製した塗布液を用い、同様の手順にて左巻きのコレステリック液晶層を作製した。プラスチック基板としては、PETフィルム(東洋紡(株)製、易接着層無し)を使用した。
(1)塗布液を、ワイヤーバーを用いて、乾燥後の膜の厚みが4μmになるように、PETフィルム上に室温にて塗布した。
(2)150℃にて5分間加熱して溶剤の除去した。次いで、高圧水銀ランプ(ハンソン東芝ライティング(株)製)を120W出力、5~10秒間UV照射し、コレステリック液晶層を得た。
(3)PETフィルムを剥離した。
こうして、本発明で用いるコレステリック液晶層を得た。
Example 1
<Preparation of cholesteric liquid crystal layer>
Coating liquid prepared 40 g of polymerizable liquid crystal monomer (BASF, trade name: LC242), 3 g of chiral agent (BASF, trade name: LC756), and 2 g of a photopolymerization initiator (BASF, trade name: IRGACURETPO) A right-handed cholesteric liquid crystal layer was produced according to the following procedure using Further, 40 g of a polymerizable liquid crystal monomer (manufactured by BASF, trade name: LC 242), 9 g of a chiral agent (manufactured by Merck, trade name: S1080), and 2 g of a photopolymerization initiator (manufactured by BASF, trade name: IRGACURETPO) were prepared. A left-handed cholesteric liquid crystal layer was produced by the same procedure using a coating solution. As a plastic substrate, a PET film (manufactured by Toyobo Co., Ltd., with no easy adhesion layer) was used.
(1) The coating solution was applied at room temperature on a PET film using a wire bar so that the thickness of the dried film was 4 μm.
(2) The solvent was removed by heating at 150 ° C. for 5 minutes. Then, a high pressure mercury lamp (manufactured by Hanson Toshiba Lighting Co., Ltd.) was irradiated with UV at 120 W for 5 to 10 seconds to obtain a cholesteric liquid crystal layer.
(3) The PET film was peeled off.
Thus, a cholesteric liquid crystal layer used in the present invention was obtained.
<偏光素子の作製>
 ポリビニルアルコール((株)クラレ製、商品名:クラレビニロン#750)をクロランチンファストレッド(C.I.28160)0.25g/L、クリソフェニン(C.I.24895)0.18g/L、ソロフェニルブルー4GL(C.I.34200)1.0g/L及び硫酸ナトリウム10g/Lを含む水溶液中で、35℃3分間染色した後、溶液中で4倍に延伸した。ついでこの染色シートを酢酸ニッケル2.5g/L及びほう酸6.6g/Lを含む水溶液中35℃で3分浸漬した。ついでそのシートを緊張状態が保持された状態で、室温で3分間乾燥を行った後、70℃で3分間加熱処理し、偏光素子を得た。偏光素子を、分光光度計を用い、絶対偏光法により偏光度を測定した結果、偏光度は99.5%であった。
<Fabrication of Polarizing Element>
Polyvinyl alcohol (manufactured by Kuraray Co., Ltd., trade name: Kurare vinylon # 750), chlorantin fast red (C.I. 28160) 0.25 g / L, chrysophenin (C. I. 24895) 0.18 g / L, After staining at 35 ° C. for 3 minutes in an aqueous solution containing 1.0 g / L of Solophenyl Blue 4GL (C.I. 34200) and 10 g / L of sodium sulfate, the film was stretched by 4 times in the solution. The dyed sheet was then immersed in an aqueous solution containing 2.5 g / L of nickel acetate and 6.6 g / L of boric acid at 35 ° C. for 3 minutes. Then, the sheet was dried at room temperature for 3 minutes in a tension-maintained state, and then heat-treated at 70 ° C. for 3 minutes to obtain a polarizing element. The degree of polarization of the polarizing element was measured by an absolute polarization method using a spectrophotometer, and as a result, the degree of polarization was 99.5%.
<光学積層体の作製>
 ウレタンアクリレート(日本化薬(株)製、商品名:UX-4101)6g、4-ヒドロキシブチルアクリレート(大阪有機化学工業(株)製、商品名:4-HBA)25g、テトラヒドロフルフリルアクリレート(大阪有機化学工業(株)製、商品名:ビスコート#150)20g、イソボルニルアクリレート(大阪有機化学工業(株)製、商品名:IBXA)10g、ビスフェノールA型エポキシ樹脂(日本化薬(株)製、商品名:RE-310S)30g、光重合開始剤(日本化薬(株)製、商品名:DETX-S)3g、光重合開始剤(川崎化成工業(株)製、商品名:UVS-1331)0.1g、光重合開始剤(BASF社製、商品名:IRGACURE270)5gを混合して無溶剤系紫外線硬化型接着剤を作製した。前記コレステリック液晶層と偏光素子を該接着剤で貼りあわせたのち、高圧水銀ランプを用いて照度146mW/cm、積算光量866mJ/cmの条件で紫外線を照射して硬化物を得た。更に該接着剤を介して厚さ約0.2mmのポリアミド樹脂の支持体(EMS社製、商品名:グリルアミドTR-90)で挟持し、同様に紫外線を照射して本発明の光学積層体を得た。
<Preparation of Optical Laminate>
Urethane acrylate (manufactured by Nippon Kayaku Co., Ltd., trade name: UX-4101) 6 g, 4-hydroxybutyl acrylate (Osaka Organic Chemical Industry Co., Ltd., trade name: 4-HBA) 25 g, tetrahydrofurfuryl acrylate (Osaka Organic Chemical Industry Co., Ltd. product name: Biscoat # 150 20 g, Isobornyl acrylate (Osaka Organic Chemical Industry Co., Ltd. product name: IBXA) 10 g, Bisphenol A type epoxy resin (Nippon Kayaku Co., Ltd.) Product name: RE-310S 30 g, Photopolymerization initiator (Nippon Kayaku Co., Ltd. product name: DETX-S) 3 g, Photopolymerization initiator (Kawasaki Kasei Kogyo Co., Ltd. product name: UVS 0.133 g of a photopolymerization initiator (manufactured by BASF AG, trade name: IRGACURE 270) was mixed to prepare a solventless ultraviolet curable adhesive. After said bonding of the cholesteric liquid crystal layer and the polarizing element in the adhesive, illuminance 146mW / cm 2 using a high-pressure mercury lamp to obtain a cured product by irradiating ultraviolet rays under conditions of integrated quantity of light 866mJ / cm 2. Further, the optical laminate of the present invention is obtained by sandwiching the support of a polyamide resin having a thickness of about 0.2 mm (manufactured by EMS, trade name: Grylamide TR-90) through the adhesive, and similarly irradiating ultraviolet rays. Obtained.
得られた光学積層体を、基本形状としては直径79.5mmの真円であり垂直方向の幅が55mmにカットされる型でストリップ形状として打ち抜き、ベースカーブ7.95(曲率半径66.67mm)の金型を用いて110℃の低温で曲げ加工を行い、コレステリック液晶層側を凸面にした。該光学積層体は良好な加工性を有し、また接着性も良好で80℃の水に1日間浸漬しても剥がれがなかった。 The resulting optical laminate is punched as a strip shape with a basic shape having a diameter of 79.5 mm and a width of 55 mm in the vertical direction, and a base curve of 7.95 (curvature radius of 66.67 mm) The bending process was performed at a low temperature of 110 ° C. using a mold of the above to make the cholesteric liquid crystal layer side convex. The optical laminate had good processability, good adhesion, and no peeling even when immersed in water at 80 ° C. for 1 day.
[実施例2]
<偏光サングラスの作製>
 実施例1で曲げ加工された光学積層体を射出成形用の金型内にインサートし、凹面側に溶融した透明ナイロンを射出成形して偏光レンズを得た。続いて、フレームに合わせて玉摺りを行い、該偏光レンズをセルロース系のフレームにはめることで偏光サングラスを作製した。
Example 2
<Production of polarized sunglasses>
The optical laminate bent in Example 1 was inserted into a mold for injection molding, and transparent nylon melted on the concave side was injection molded to obtain a polarized lens. Subsequently, balling was performed according to the frame, and the polarized lens was fitted to a cellulose-based frame to produce polarized sunglasses.
 作製した偏光サングラスはポリアミドの支持体と透明ナイロンの接着性が良好で、80℃の水に1日間浸漬しても剥がれがなかった。またフレームの白化も確認されなかった。 The produced polarized sunglasses had excellent adhesion between a polyamide support and transparent nylon, and were not peeled off even if immersed in water at 80 ° C. for 1 day. Also, no whitening of the frame was confirmed.
 [比較例1]
 支持体として厚さ0.3mmのポリカーボネートの支持体(三菱瓦斯化学(株)製、ビスフェノールA型芳香族ポリカーボネート)を使用する以外は、実施例1及び実施例2と同様の手順で比較用の偏光サングラスを作製した。
Comparative Example 1
A comparative procedure is carried out in the same manner as in Example 1 and Example 2 except that a 0.3 mm thick polycarbonate support (Mitsubishi Gas Chemical Co., Ltd., bisphenol A aromatic polycarbonate) is used as the support. Polarized sunglasses were made.
 作製した光学積層体は110℃の低温では加工性が劣り、十分な曲げ加工ができずクラックが発生した。 The produced optical laminate was inferior in processability at a low temperature of 110 ° C., and sufficient bending could not be performed, and a crack occurred.
 作製した偏光サングラスはポリカーボネートの支持体と透明ナイロンの接着性が劣り、80℃の水に1日間浸漬すると端部に剥がれが確認できた。またセルロース系のフレームと組み合わせると接触部に白化が確認できた。 The produced polarized sunglasses had poor adhesion between the polycarbonate support and the transparent nylon, and peeling in the end was observed when immersed in water at 80 ° C. for 1 day. In addition, when combined with a cellulose-based frame, whitening was confirmed in the contact portion.
[比較例2]
 接着剤としてポリビニルアルコール(日本合成化学工業(株)製、商品名:ゴーセネックスZ200)6g、硬化剤(日本合成化学工業(株)製、商品名:SPM-01)1.5g、純水100gを混合した熱硬化型接着剤を作製し、これを80℃で10分間加熱処理して硬化させる以外は、実施例1と同様の手順で比較用の光学積層体を作製した。
Comparative Example 2
As an adhesive, 6 g of polyvinyl alcohol (Nippon Synthetic Chemical Industry Co., Ltd., trade name: Gousenex Z 200), 1.5 g of a curing agent (Nippon Synthetic Chemical Industry Co., Ltd., trade name: SPM-01), 100 g of pure water An optical laminate for comparison was produced in the same manner as in Example 1, except that a mixed thermosetting adhesive was produced and cured by heating at 80 ° C. for 10 minutes.
 作製した光学積層体は接着性が劣り、80℃の水に1日間浸漬すると層間の剥がれが確認できた。 The produced optical laminate had poor adhesion, and when immersed in water at 80 ° C. for 1 day, peeling between layers was confirmed.
 [比較例3]
 支持体として厚さ0.3mmのポリカーボネートの支持体(三菱瓦斯化学(株)製、ビスフェノールA型芳香族ポリカーボネート)を使用する以外は、比較例2と同様の手順で比較用の光学積層体を作製した。
Comparative Example 3
An optical laminate for comparison was prepared in the same manner as Comparative Example 2 except that a 0.3 mm thick polycarbonate support (Mitsubishi Gas Chemical Co., Ltd., bisphenol A aromatic polycarbonate) was used as the support. Made.
 作製した光学積層体は110℃の低温では加工性が劣り、十分な曲げ加工ができずクラックが発生した。また、接着性が劣り、80℃の水に1日間浸漬すると層間の剥がれが確認できた。 The produced optical laminate was inferior in processability at a low temperature of 110 ° C., and sufficient bending could not be performed, and a crack occurred. Moreover, adhesiveness was inferior and peeling of the layer could be confirmed when it was immersed in 80 degreeC water for 1 day.
 [比較例4]
 接着剤としてウレタンアクリレート(日本化薬(株)製、商品名:UX-4101)6g、単官能アクリレート(大阪有機化学工業(株)製、商品名:4-HBA)25g、エポキシ樹脂(日本化薬(株)製、商品名:RE-310S)30g、光重合開始剤(日本化薬(株)製、商品名:DETX-S)3g、光重合開始剤(川崎化成工業(株)製、商品名:UVS-1331)0.1g、光重合開始剤(BASF社製、商品名:IRGACURE270)5g、溶剤(純正化学(株)製、商品名:メチルエチルケトン)40gを混合して溶剤系紫外線硬化型接着剤を作製し、これを80℃で3分間加熱処理をした後、高圧水銀ランプを用いて照度146mW/cm、積算光量866mJ/cmの条件で紫外線を照射して硬化させる以外は、実施例1と同様の手順で比較用の光学積層体を作製した。
Comparative Example 4
Adhesive: Urethane acrylate (made by Nippon Kayaku Co., Ltd., trade name: UX-4101) 6 g, Monofunctional acrylate (Osaka Organic Chemical Industry Co., Ltd., trade name: 4-HBA) 25 g, epoxy resin (Nipponization) 30 g of an agent (trade name: RE-310S), 3 g of a photo polymerization initiator (Nippon Kayaku Co., Ltd., trade name: DETX-S), a photo polymerization initiator (Kawasaki Kasei Kogyo Co., Ltd.) Brand name: UVS-1331) 0.1 g, photopolymerization initiator (manufactured by BASF, trade name: IRGACURE 270) 5 g, solvent (manufactured by Junsei Chemical Co., Ltd., trade name: methyl ethyl ketone) 40 g are mixed and solvent-based ultraviolet curing to prepare a mold glue, after a 3 minute heat treatment at this 80 ° C., illuminance 146mW / cm 2 using a high-pressure mercury lamp, and cured by irradiation with ultraviolet rays under conditions of integrated quantity of light 866mJ / cm 2 Outside, to produce an optical laminate for comparison in the same manner as in Example 1.
 作製した光学積層体は接着性が劣り、80℃の水に1日間浸漬すると層間の剥がれが確認できた。また溶剤による基材浸食のため白化が確認できた。 The produced optical laminate had poor adhesion, and when immersed in water at 80 ° C. for 1 day, peeling between layers was confirmed. Moreover, whitening could be confirmed due to the substrate erosion by the solvent.
1  第一の支持体
2  接着剤層
3  コレステリック液晶層
4  接着剤層
5  コレステリック液晶層
6  接着剤層
7  偏光素子
8  接着剤層
9  第二の支持体
10 光学積層体
11 偏光レンズ
12 レンズ基材
 
DESCRIPTION OF SYMBOLS 1 first support 2 adhesive layer 3 cholesteric liquid crystal layer 4 adhesive layer 5 cholesteric liquid crystal layer 6 adhesive layer 7 polarizing element 8 adhesive layer 9 second support 10 optical laminated body 11 polarizing lens 12 lens base

Claims (7)

  1.  第一の支持体と第二の支持体の間に、コレステリック液晶層及び偏光素子を備えた光学積層体であって、
     第一の支持体及び/又は第二の支持体がポリアミド樹脂を含有し、
     1)第一の又は第二の支持体と偏光素子、2)第一の又は第二の支持体とコレステリック液晶層、及び3)コレステリック液晶層と偏光素子、からなる群から選択される少なくとも一が無溶剤系紫外線硬化型接着剤で貼り合わされている、
     光学積層体。
    An optical laminate comprising a cholesteric liquid crystal layer and a polarizing element between a first support and a second support,
    The first support and / or the second support contains a polyamide resin,
    1) at least one selected from the group consisting of a first or second support and a polarizing element, 2) a first or second support and a cholesteric liquid crystal layer, and 3) a cholesteric liquid crystal layer and a polarizing element Is bonded with a non-solvent UV curable adhesive,
    Optical laminate.
  2.  前記ポリアミド樹脂が脂肪族骨格を含むナイロンである請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the polyamide resin is nylon having an aliphatic skeleton.
  3.  前記無溶剤系紫外線硬化型接着剤がウレタン(メタ)アクリレートを含有する請求項1又は請求項2に記載の光学積層体。 The optical laminate according to claim 1, wherein the solventless ultraviolet curing adhesive contains a urethane (meth) acrylate.
  4.  請求項1~請求項3のいずれか一項に記載の光学積層体にレンズ基材が射出成型されている偏光レンズ。 A polarized lens in which a lens substrate is injection-molded to the optical layered body according to any one of claims 1 to 3.
  5.  前記レンズ基材がポリアミド樹脂を含有する請求項4に記載の偏光レンズ。 The polarized lens according to claim 4, wherein the lens substrate contains a polyamide resin.
  6.  前記レンズ基材に含有されるポリアミド樹脂が脂肪族骨格を含むナイロンである請求項5に記載の偏光レンズ。 The polarized lens according to claim 5, wherein the polyamide resin contained in the lens substrate is nylon having an aliphatic skeleton.
  7.  請求項4~請求項6のいずれか一項に記載の偏光レンズがフレームに組み込まれているアイウェア。
     
    An eyewear in which the polarizing lens according to any one of claims 4 to 6 is incorporated in a frame.
PCT/JP2018/040369 2017-12-13 2018-10-30 Optical laminate, and polarizing lens and eye wear each equipped with same WO2019116760A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019558958A JPWO2019116760A1 (en) 2017-12-13 2018-10-30 Optical laminate, polarized lenses and eyewear equipped with it
CN201880072890.3A CN111344612A (en) 2017-12-13 2018-10-30 Optical laminate, and polarizing lens and ophthalmic wearing article provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017238311 2017-12-13
JP2017-238311 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019116760A1 true WO2019116760A1 (en) 2019-06-20

Family

ID=66819079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040369 WO2019116760A1 (en) 2017-12-13 2018-10-30 Optical laminate, and polarizing lens and eye wear each equipped with same

Country Status (4)

Country Link
JP (1) JPWO2019116760A1 (en)
CN (1) CN111344612A (en)
TW (1) TW201927572A (en)
WO (1) WO2019116760A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196784A1 (en) 2021-03-18 2022-09-22 日本化薬株式会社 Optcal laminate and eyewear using same
WO2023112533A1 (en) * 2021-12-17 2023-06-22 三菱瓦斯化学株式会社 Polarizing sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119167A (en) * 1997-10-15 1999-04-30 Nikon Corp Combination of plural spectacle lenses varying in dioptry
JP2005309401A (en) * 2004-03-23 2005-11-04 Nitto Denko Corp Polarizing plate, optical film and image display
JP2013109116A (en) * 2011-11-21 2013-06-06 Konica Minolta Advanced Layers Inc Method for manufacturing polarizing film protection film, polarizing film protection film, polarizing plate and liquid crystal display device using the same
US20140016064A1 (en) * 2012-07-11 2014-01-16 Alphamicron Incorporated Continuous wave directional emission liquid crystal structures and devices
JP2014228594A (en) * 2013-05-20 2014-12-08 大日本印刷株式会社 Polarizing plate used for image display device, image display device, and method for improving contrast in bright place in image display device
WO2016002582A1 (en) * 2014-07-01 2016-01-07 日本化薬株式会社 Optical film and optical laminate using same
JP2016048361A (en) * 2014-04-03 2016-04-07 住友化学株式会社 Polarizing plate and liquid crystal panel
JP2017126057A (en) * 2015-08-18 2017-07-20 住友化学株式会社 Polarizing plate for curved surface image display panel
WO2017175829A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304928A (en) * 1999-04-21 2000-11-02 Nippon Mitsubishi Oil Corp Optical laminate
JP6408046B2 (en) * 2016-02-17 2018-10-17 住友化学株式会社 Photocurable adhesive, polarizing plate and laminated optical member using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11119167A (en) * 1997-10-15 1999-04-30 Nikon Corp Combination of plural spectacle lenses varying in dioptry
JP2005309401A (en) * 2004-03-23 2005-11-04 Nitto Denko Corp Polarizing plate, optical film and image display
JP2013109116A (en) * 2011-11-21 2013-06-06 Konica Minolta Advanced Layers Inc Method for manufacturing polarizing film protection film, polarizing film protection film, polarizing plate and liquid crystal display device using the same
US20140016064A1 (en) * 2012-07-11 2014-01-16 Alphamicron Incorporated Continuous wave directional emission liquid crystal structures and devices
JP2014228594A (en) * 2013-05-20 2014-12-08 大日本印刷株式会社 Polarizing plate used for image display device, image display device, and method for improving contrast in bright place in image display device
JP2016048361A (en) * 2014-04-03 2016-04-07 住友化学株式会社 Polarizing plate and liquid crystal panel
WO2016002582A1 (en) * 2014-07-01 2016-01-07 日本化薬株式会社 Optical film and optical laminate using same
JP2017126057A (en) * 2015-08-18 2017-07-20 住友化学株式会社 Polarizing plate for curved surface image display panel
WO2017175829A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196784A1 (en) 2021-03-18 2022-09-22 日本化薬株式会社 Optcal laminate and eyewear using same
WO2023112533A1 (en) * 2021-12-17 2023-06-22 三菱瓦斯化学株式会社 Polarizing sheet

Also Published As

Publication number Publication date
CN111344612A (en) 2020-06-26
TW201927572A (en) 2019-07-16
JPWO2019116760A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
TWI664476B (en) Optical film and optical laminate using the same
JP6840733B2 (en) Optical film for eyewear, and optical laminates and eyewear using this
WO2011049108A1 (en) Functional sheet and lens using same
JP6840734B2 (en) Optical film for eyewear, and optical laminates and eyewear using this
US20220004028A1 (en) Optical film and eyewear
JP6394011B2 (en) Manufacturing method of polarizing plate
TW201902705A (en) Optical film for ophthalmic device with light-shielding function, optical laminate using the optical film, and ophthalmic device with light-shielding function
WO2019116760A1 (en) Optical laminate, and polarizing lens and eye wear each equipped with same
JP2001350122A (en) Polarizing lens for spectacles
WO2022025052A1 (en) Multilayer light-reflective film and eyewear provided with same
US20230161090A1 (en) Optical film, and optical laminate and eyewear having the same
WO2023145683A1 (en) Optical film and eyeware

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888327

Country of ref document: EP

Kind code of ref document: A1