WO2022025052A1 - Multilayer light-reflective film and eyewear provided with same - Google Patents

Multilayer light-reflective film and eyewear provided with same Download PDF

Info

Publication number
WO2022025052A1
WO2022025052A1 PCT/JP2021/027730 JP2021027730W WO2022025052A1 WO 2022025052 A1 WO2022025052 A1 WO 2022025052A1 JP 2021027730 W JP2021027730 W JP 2021027730W WO 2022025052 A1 WO2022025052 A1 WO 2022025052A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting layer
layer
film
eyewear
Prior art date
Application number
PCT/JP2021/027730
Other languages
French (fr)
Japanese (ja)
Inventor
興一 田中
淳一 瀬川
陽介 沼
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2022025052A1 publication Critical patent/WO2022025052A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/12Polarisers

Definitions

  • the present invention relates to a light reflecting film suitable for eyewear and the like.
  • mirrored lenses are used to give fashionability and anti-glare properties.
  • a polarized lens having a polarizing function is also used in order to impart a higher antiglare property.
  • the polarizing element used for the polarizing lens is generally one in which iodine and / or a dichroic dye, which are dichroic dyes, are adsorbed and oriented on a polyvinyl alcohol film.
  • a transparent protective base material is attached to both sides of the polarizing element to form a polarizing plate, and bending is performed to form a polarizing lens.
  • an injection polarized lens which is backed with a polycarbonate resin or a polyamide resin by injection molding after being bent is also widely used. .. Further, a mirror function can be imparted to the lens surface thus obtained by performing a vapor deposition process.
  • a multilayer film is vapor-deposited on the surface in order to impart designability to sunglasses or to further improve visibility.
  • the reflected light on the surface of the sunglasses can be seen by others as colors such as blue, green, and red, and the wearer reflects specific light to reduce glare. The visibility of the scenery is further improved. While it is beneficial for the wearer to apply the multilayer film in this way, it is difficult to remove when sebum or the like adheres to the multilayer film, or in places exposed to moisture or sea breeze such as the sea, the multilayer film is applied. There was a problem that the film was peeled off.
  • Patent Document 1 discloses a technique of providing a mirror layer made of a cholesteric liquid crystal film.
  • the reflection performance is designed based on the difference in refractive index between the air interface and the vapor deposition layer, so if a protective base material is provided on the surface, the mirror feeling will be greatly reduced, but in the case of cholesteric liquid crystal, protection is achieved. Even if a layer is provided, the mirror feeling is not impaired. Therefore, it is possible to eliminate peeling and scratches due to moisture and the like.
  • Patent Document 1 describes a color tone such as blue, green, and red in a mirror layer manufactured by using a cholesteric liquid crystal, but specifically exhibits a color tone that gives a metallic luster such as gold, silver, and copper. No aspect was shown.
  • An object of the present application is to provide a light-reflecting film or the like for imparting a design property of metallic luster to eyewear.
  • the present invention relates to, but is not limited to: [Invention 1] A multilayer light-reflecting film for eyewear in which a light-reflecting layer 1 and at least one kind of light-reflecting layer 2 are laminated.
  • the light reflecting layer 2 is selected from the group consisting of the light reflecting layer 2a, the light reflecting layer 2b, and the light reflecting layer 2c.
  • the light reflecting layer 1 is a cholesteric liquid crystal layer having a reflection wavelength in the range of 610 to 630 nm
  • the light reflecting layer 2a is a cholesteric liquid crystal layer having a reflection wavelength in the range of 440 to 460 nm
  • the light reflecting layer 2b is 540 to 560 nm.
  • the light reflection layer 2c is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm.
  • Multi-layer light reflective film [Invention 2] The multilayer light-reflecting film for eyewear according to the invention 1 in which the light-reflecting layer 2b and the light-reflecting layer 2c are laminated as the light-reflecting layer 2, wherein the reflecting color is gold.
  • [Invention 3] The multilayer light-reflecting film for eyewear according to the invention 1 in which the light-reflecting layer 2a and the light-reflecting layer 2b are laminated as the light-reflecting layer 2, wherein the reflecting color is silver.
  • [Invention 4] The multilayer light-reflecting film for eyewear according to the invention 1 in which the light-reflecting layer 2c is laminated as the light-reflecting layer 2, wherein the reflecting color is copper.
  • [Invention 5] A composite polarizing film for eyewear including the multilayer light-reflecting film according to any one of the inventions 1 to 4 and a polarizing element.
  • [Invention 6] The composite polarizing film according to invention 5, which has a degree of polarization of 70% or more.
  • the light-reflecting layer 1 and at least one kind of light-reflecting layer 2 are laminated.
  • the light reflecting layer 2 is selected from the group consisting of the light reflecting layer 2a, the light reflecting layer 2b, and the light reflecting layer 2c.
  • the light reflection layer 1 is a cholesteric liquid crystal layer having a reflection wavelength in the range of 610 to 630 nm
  • the light reflection layer 2a is a cholesteric liquid crystal layer having a reflection wavelength in the range of 440 to 460 nm, and the reflection wavelength is in the range of 540 to 560 nm.
  • the light reflecting layer 2c is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm.
  • the "reflection wavelength” means a wavelength having the maximum reflectance.
  • the metallic luster shown in the present invention means that it exhibits a golden color, a silver color, or a copper color.
  • gold is a color obtained by laminating a light reflection layer having a plurality of reflection wavelengths separated by at least 50 nm in a visible wavelength region of 550 to 750 nm.
  • the silver color referred to here is a color obtained by laminating a light reflection layer having a plurality of reflection wavelengths separated by at least 50 nm in a visible wavelength range of 400 to 750 nm.
  • the copper color referred to here is a color obtained by laminating a light reflection layer having a plurality of reflection wavelengths separated by at least 50 nm in a visible wavelength range of 600 to 750 nm.
  • the cholesteric liquid crystal (layer) used for producing the light-reflecting layer included in the multilayer light-reflecting film of the present invention includes a nematic liquid crystal having chirality and a compound obtained by adding a chiral agent to the nematic liquid crystal. Since the direction of the spiral and the reflection wavelength can be arbitrarily designed depending on the type and amount of the chiral agent, a method of adding the chiral agent to the nematic liquid crystal to obtain a cholesteric liquid crystal is preferable. Since the nematic liquid crystal used in the present invention is used with the spiral orientation state fixed, unlike the liquid crystal operated by a so-called electric field, it is preferable to use a nematic liquid crystal monomer having a polymerizable group.
  • the nematic liquid crystal monomer having a polymerizable group is a compound having a polymerizable group in the molecule and exhibiting liquid crystallinity in a certain temperature range or concentration range.
  • the polymerizable group include a (meth) acryloyl group, a vinyl group, a carbonyl group, a cinnamoyl group, an epoxy group and the like.
  • the mesogen group means a group having an ability to induce liquid crystal phase behavior, for example, a biphenyl group, a terphenyl group, or a (poly) benzo.
  • a rod-shaped or plate-shaped substituent such as an acid phenyl ester group, a (poly) ether group, a benzylideneaniline group, or an acenaftinoxalin group, or a disc-shaped substituent such as a triphenylene group, a phthalocyanine group, or an azacrown group.
  • Liquid crystal compounds having rod-like or plate-like groups are known in the art as calamic liquid crystals.
  • Specific examples of the nematic liquid crystal monomer having such a polymerizable group include PALIOCOLOR series (manufactured by BASF) and RMM series (manufactured by Merck). These nematic liquid crystal monomers having a polymerizable group can be used alone or in combination of two or more.
  • a compound having a polymerizable group is preferable because the nematic liquid crystal monomer having a polymerizable group can be spirally oriented right-handed or left-handed, and like the nematic liquid crystal monomer having a polymerizable group.
  • a chiral agent for example, Palocolor LC756 (manufactured by BASF), compounds having an optically active binaphthyl structure described in JP-A-2002-179668 and JP-A-2007-271808, and JP-A-2003-306491 and JP-A-2003-. Examples thereof include compounds having an optically active isosorbide structure described in Japanese Patent Application Laid-Open No. 31392.
  • the amount of the chiral agent added varies depending on the type of the chiral agent and the wavelength to be reflected, but is preferably about 0.5 to 30 wt%, more preferably about 1 to 20 wt% with respect to the nematic liquid crystal monomer having a polymerizable group. good.
  • a polymerizable compound having no liquid crystal property that can react with the nematic liquid crystal monomer having a polymerizable group.
  • a compound having such a compound include an ultraviolet curable resin and the like.
  • the ultraviolet curable resin include dipentaerythritol hexa (meth) acrylate, a reaction product of dipentaerythritol penta (meth) acrylate and 1,6-hexamethylene-di-isocyanate, and triisocyanate and penta having an isocyanul ring.
  • Reaction product with erythritol tri (meth) acrylate reaction product with pentaerythritol tri (meth) acrylate and isophorone-di-isocyanate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, penta Elythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropanetri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, tris (acryloxyethyl) isocyanurate, tris (methacryloxyethyl) isocia.
  • Reaction product reaction product of diethylene glycol-di-glycidyl ether and (meth) acrylic acid, bis (acryloxyethyl) hydroxyethyl isocyanurate, bis (methacryloxyethyl) hydroxyethyl isocyanurate, bisphenol A-di- Reaction product of glycidyl ether and (meth) acrylic acid, tetrahydrofurfuryl (meth) acrylate, capro Lactone-modified tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, phenoxyhydroxypropyl (meth) acrylate, Acryloylmorpholine, methoxypolyethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) acrylate, me
  • these ultraviolet curable resins having no liquid crystal property When added, they must be added to such an extent that the liquid crystal property is not lost, and preferably 0.1 to 20 weight by weight with respect to the nematic liquid crystal monomer having a polymerizable group. %, More preferably about 1.0 to 10% by weight.
  • a photopolymerization initiator is used to cure the composition containing the nematic liquid crystal monomer by ultraviolet rays. It may be added.
  • the photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (Omnilad TPO H manufactured by IGM resin), 1-hydroxycyclohexylphenyl ketone (Omnilad 184 manufactured by IGM resin) or Irgacure 184 manufactured by BASF.
  • Il-phenyl) -butane-1-one (IGM resin's Omnirad 379), bis (2,4,6-trimethylbenzoyl) phenylphosphinoxide (IGM resin's Omnirad 819), 2-methyl-1- [4 -(Methylthio) Phenyl] -2-morpholinopropane-1-one (Omnilad 907 manufactured by IGM resin), hydroxybenzophenone, 4-benzoyl-4'-methyldiphenylsulfide, 3,3'-dimethyl-4-methoxybenzophenone (3,3'-dimethyl-4-methoxybenzophenone) Benzophenone compounds such as KayaCure MBP manufactured by Nippon Kayaku Co., Ltd .; thioxanthone, 2-chlorthioxanthone (Kayacure CTX manufactured by Nippon Kayaku Co., Ltd.), 2-methylthioxanthone, 2,4-dimethylthioxanthone (
  • Omnirad TPO H Omnirad 184, Omnirad 369, Omnirad 379, Omnirad 819, Omnirad 907 (all manufactured by IGM resin) can be mentioned.
  • These photopolymerization initiators can be used alone or in a plurality of mixture at any ratio.
  • auxiliaries include, for example, triethanolamine, methyldiethanolamine, triisopropanolamine, n-butylamine, N-methyldiethanolamine, diethylaminoethyl methacrylate, Michler ketone, 4,4'-diethylaminophenone, 4-dimethylaminobenzoic acid.
  • auxiliaries include amine compounds such as ethyl, 4-dimethylaminobenzoic acid (n-butoxy) ethyl, and 4-dimethylaminobenzoate isoamyl.
  • the amount of the photopolymerization initiator and auxiliary agent added is preferably used within a range that does not affect the liquid crystal property of the composition used for producing the cholesteric liquid crystal layer. Specifically, it is preferably 0.5 parts by weight or more and 10 parts by weight or less, and more preferably 2 parts by weight or more and 8 parts by weight or less with respect to 100 parts by weight of the compound that is cured by ultraviolet rays in the composition used. .. Further, it is preferable to use the auxiliary agent in an amount of about 0.5 to 2 times the amount of the photopolymerization initiator.
  • Examples of the method for producing the light reflecting layer using the cholesteric liquid crystal include the following methods. A required amount of a right-handed or left-handed chiral agent is added to the nematic liquid crystal monomer having a polymerizable group so as to reflect a desired wavelength. Next, these are dissolved in a solvent, and a photopolymerization initiator is added. Next, this solution is applied onto a plastic substrate such as a PET film so that the thickness is as uniform as possible, and while the solvent is removed by heating, a cholesteric liquid crystal is formed on the substrate and oriented at a desired spiral pitch. Leave it for a certain period of time under temperature conditions.
  • a film having a light reflecting layer can be obtained by irradiating ultraviolet rays with a high-pressure mercury lamp or the like to fix the orientation while maintaining this orientation state.
  • the obtained light-reflecting layer is referred to as an R body
  • the chiral agent for left-handed spiral orientation is selected, the obtained light-reflecting layer is referred to as an L-body.
  • either R-form, L-form, or both may be used, but it is preferable to use both.
  • a light-reflecting layer 1 (reflection wavelength is 610 to 630 nm) and a light-reflection layer 2b (reflection wavelength is 720 to 720 to). It is preferable to stack (740 nm), and more preferably, the L-shaped light reflecting layer 1 (reflection wavelength is 610 to 630 nm) and the R-shaped light reflecting layer 2b (reflection wavelength 720 to 740 nm) are laminated.
  • a light-reflecting layer 1 (reflection wavelength of 610 to 630 nm), a light-reflecting layer 2a (reflection wavelength of 440 to 460 nm), and a light-reflecting layer 2b (reflection wavelength of 540 nm) are obtained. It is preferable to stack (up to 560 nm), and more preferably, the L-body light reflection layer 1 (reflection wavelength is 610 to 630 nm), the R-body light reflection layer 2a (reflection wavelength is 440 to 460 nm), and the R-body light reflection.
  • Layers 2b (reflection wavelength of 540 to 560 nm) are laminated.
  • a light-reflecting layer 1 (reflection wavelength of 610 to 630 nm)
  • a light-reflecting layer 2b (reflection wavelength of 540 to 560 nm)
  • a light-reflecting layer 2c (reflection wavelength of 720 nm) are obtained.
  • the L-body light reflection layer 1 (reflection wavelength is 610 to 630 nm)
  • the R-body light reflection layer 2b (reflection wavelength is 540 to 560 nm)
  • Layers 2c (reflection wavelength of 720 to 740 nm) are laminated. As described above, if the light reflecting layer 2 is an R body, the reflectance in the overlapping region of the reflection band can be improved by setting the light reflecting layer 1 (reflection wavelength is 610 to 630 nm) to the L body.
  • the light reflecting layer 2 is an L body
  • the light reflecting layer 1 (reflection wavelength of 610 to 630 nm) may be an R body.
  • the multilayer light-reflecting film for eyewear of the present invention can be obtained by laminating a plurality of light-reflecting layers.
  • the reflectance of the light reflecting layer used in the present invention can be appropriately adjusted according to a desired metallic luster, but a higher reflectance is preferable because a more metallic luster can be obtained.
  • the specific maximum reflectance is preferably about 10 to 50%, more preferably about 15 to 45%.
  • the maximum reflectance of each light-reflecting layer in each wavelength region is about the same, and the difference in the reflection wavelength of each light-reflecting layer is within 0 to 20%, more preferably within 0 to 15%, and further preferably within 0 to 0. It is better to keep it within 10%.
  • the means for producing the multilayer light-reflecting film for eyewear of the present invention is not particularly limited, but it is preferable to laminate the light-reflecting layer using an adhesive or an adhesive. Further, it may be laminated via a support described later if necessary for processability and molding stability.
  • the pressure-sensitive adhesive include acrylic-based and rubber-based pressure-sensitive adhesives, but acrylic-based pressure-sensitive adhesives whose adhesiveness, holding power, and the like can be easily adjusted are preferable.
  • the adhesive is not particularly limited, and either a hot melt type adhesive or a curable type adhesive can be used.
  • examples of the curable adhesive include an ultraviolet curable resin composition and a thermosetting resin composition
  • an ultraviolet curable resin a composition in which a plurality of monomers having an acryloyl group or an epoxy group are mixed is used.
  • a photopolymerization initiator it can be cured and adhered by irradiating it with ultraviolet rays.
  • a thermosetting resin composition a composition in which a plurality of monomers having an epoxy group are mixed, an acrylic resin-based material, a urethane resin-based material, a polyester resin-based material, a melamine resin-based material, an epoxy resin-based material, and a silicone-based material.
  • a composition containing a curing agent can be used.
  • an adhesive in which a photochromic dye is dissolved may be used.
  • the photochromic dye for example, a dye that absorbs light in the wavelength range of blue and green (480 to 520 nm), green and red (580 to 600 nm), or both is used for visual recognition. It is preferable because it has a role of improving sex.
  • the composite polarizing film for eyewear of the present invention can be obtained.
  • the polarizing element include a PVA polarizing element in which a dichroic dye is adsorbed on PVA, and a coating type polarizing element obtained by applying a dichroic dye exhibiting a lyotropic liquid crystal property to an oriented substrate.
  • a PVA polarizing element is typically mentioned.
  • the manufacturing method is not particularly limited, but for example, a PVA polarizing element is manufactured by adsorbing a dye such as iodine or a dichroic dye on a polymer film made from polyvinyl alcohol or a derivative thereof and stretching and orienting the film in one axis. Will be done.
  • a dichroic dye is preferable from the viewpoint of heat resistance, and a direct dye which is an azo dye having a sulfonic acid group is particularly preferable.
  • the hue of the polarizing element may be appropriately adjusted for the type of dichroic dye to be used so as to have a desired hue, and when a plurality of dichroic dyes are used, the blending ratio thereof may be appropriately adjusted.
  • the hue of transmission when worn as sunglasses is within the standard, for example, the relative luminosity factor attenuation rate Q value defined in JIS T7333 regarding the visibility of a signal.
  • the types of dyes used for the polarizing element and the blending ratio thereof when a plurality of dyes are used are used. Specifically, adjust so that the Q value is equal to or greater than the value shown below.
  • the composite polarizing film or the optical laminate of the present invention conforming to the standard of signal visibility as eyewear used when driving an automobile.
  • the degree of polarization may be sufficient as long as it has sufficient polarization performance as sunglasses, and the degree of polarization may be preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
  • FIG. 1 shows an example of a configuration diagram of the optical laminate for eyewear of the present invention.
  • the eyewear of the present invention is formed by laminating a multilayer light-reflecting film 4 for eyewear in which three types of light-reflecting layers are laminated with an adhesive or an adhesive 3 and a polarizing element 5 with an adhesive or an adhesive 3.
  • Composite polarizing film 6 for use can be obtained.
  • the optical laminate 8 for eyewear of the present invention can be obtained by sandwiching the composite polarizing film 6 for eyewear between the supports 7.
  • an L-body light reflection layer 1 having a reflection wavelength of 620 nm, an R-body light reflection layer 2b having a reflection wavelength of 550 nm, and an R-body light reflection layer 2c having a reflection wavelength of 730 nm are UV-curable.
  • the multi-layer light-reflecting film 4 for golden eyewear of the present invention can be obtained by laminating with a pressure-sensitive adhesive or an adhesive 3 containing a resin.
  • the composite polarizing film 6 for eyewear of the present invention can be obtained by laminating a so-called dye-based polarizing element 5 obtained by adsorbing and stretching a dichroic dye on polyvinyl alcohol using an adhesive or an adhesive 3. .
  • the support 7 a triacetyl cellulose film is used on the light reflecting layer side, polycarbonate is used on the polarizing element side, and a composite polarizing film 6 for eyewear is sandwiched by using an adhesive or an adhesive 4.
  • the optical laminate 8 for eyewear of the present invention can be obtained.
  • the optical laminate for eyewear of the present invention is not limited to the above, and the type and number of light reflecting layers can be changed, for example.
  • the method of laminating the optical laminate for eyewear of the present invention is not limited to the above, and for example, after laminating a certain light reflecting layer and the support 8, another light reflecting layer 1 or 2 is placed on the light reflecting layer side.
  • a method of sequentially laminating the seed, the polarizing element, and the other support 8 may be used, or two or three types of light reflecting layers are sequentially laminated on the support 8, and the polarizing element is laminated on the other support 8. , You may also use a method such as pasting both together.
  • a resin such as polycarbonate, polyamide, or triacetyl cellulose (TAC) can be used.
  • polycarbonate As the support, for example, a resin such as polycarbonate, polyamide, or triacetyl cellulose (TAC) can be used.
  • TAC triacetyl cellulose
  • polycarbonate As the support, for example, polycarbonate, polyamide, or triacetyl cellulose (TAC) can be used.
  • polycarbonate polycarbonate
  • aromatic polycarbonate having a structural unit derived from bisphenol A The total light transmittance of the support is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more in order to facilitate visibility.
  • an aromatic polycarbonate / PCC composition total alicyclic polyester composition
  • a polyamide having a glass transition temperature of 130 ° C. or less is selected. Is preferable.
  • the present invention is formed into a desired shape so that the light reflecting layer is on the outside, and fixed to a frame, such as sunglasses, goggles, and a visor for a helmet.
  • sunglasses can be manufactured by punching the optical laminate for eyewear of the present invention into a desired shape and then bending it.
  • the processing may be performed through a process that can give a shape to a spherical surface or an aspherical surface depending on the purpose. Further resin may be injected into the bent product.
  • the thickness unevenness of the optical laminate for eyewear of the present invention cannot be seen, and the resin is particularly excellent in impact resistance, appearance and eye strain even in a lens having no focal refractive power.
  • Injection is used.
  • the resin to be injected is preferably made of the same material as the layer in contact with the injection resin in order to prevent deterioration of the appearance due to the difference in refractive index.
  • a hard coat, antireflection film, etc. are appropriately formed on the surface, and then sunglasses are made by fixing to the frame by shaving, drilling, screw tightening, or the like.
  • the unit of prescription amount is parts by weight.
  • the coating liquids A R1 and A L1 having the compositions shown in the table below were prepared, respectively.
  • LC756 is a chiral agent for right-handed spiral orientation
  • compound 1 is a chiral agent for left-handed spiral orientation.
  • Chiral agent Compound 1 (Compound described in JP-A-2002-179668)
  • the coating liquids AR2 and AR3 were prepared with the same formulation except that the prescribed amount of the chiral agent of the coating liquid AR1 was changed to the amount shown in the table below.
  • each light-reflecting layer is prepared by the following procedure, and then they are laminated to prepare a laminated body (film) of the light-reflecting layer used in the present invention, and then a film. The reflected color of was evaluated.
  • a PET film manufactured by Toyobo (without an undercoat layer) was used as the plastic substrate.
  • Each coating liquid was coated on a PET film at room temperature using a wire bar so that the thickness of the film after drying was 4 ⁇ m.
  • the film coated in (1) was heated at 150 ° C. for 5 minutes to remove the solvent and obtain a cholesteric liquid crystal phase.
  • a high-pressure mercury lamp (UV conveyor device manufactured by Eye Graphic Co., Ltd.) was irradiated with UV at 120 W output for 5 to 10 seconds to fix the cholesteric liquid crystal phase to obtain a light reflecting layer with a base material.
  • the reflected wavelength of the obtained light reflecting layer RL1 with a substrate was 730 nm and the maximum reflectance was 40%, and the reflected wavelength of the light reflecting layer RL1 with a substrate was 620 nm and the maximum reflectance was 43%.
  • UV curable resin adhesive (DHR-014: Nippon Kayakusha ) between the light reflecting layer sides of the light reflecting layer RR1 with a base material and the light reflecting layer RL1 with a base material produced in (2).
  • a high-pressure mercury lamp (UV conveyor device manufactured by Eye Graphic Co., Ltd.) is irradiated with UV for 5 to 10 seconds to cure it, and has PET films on both sides. Obtained a reflective film. The PET film could be peeled off. (4) When the reflected color of the film produced in (3) was observed on a black mount, it exhibited a copper color with a metallic luster.
  • Example 2 A light reflecting layer was obtained by the same operation as in Example 1 except that the prepared coating liquids AL1 , AR2 , and AR3 were used.
  • the reflected wavelength of the obtained light reflecting layer RL1 with a base material is 620 nm, the maximum reflectance is 43%, the reflection wavelength of the light reflecting layer RR2 with a base material is 550 nm, the maximum reflectance is 40%, and the light reflection with a base material.
  • the reflection wavelength of the layer RR3 was 450 nm, and the maximum reflectance was 37%.
  • these light-reflecting layers with a base material were laminated in the same manner as in Example 1.
  • the light-reflecting layer sides of the light-reflecting layer RL1 with a base material and the light-reflecting layer RR2 with a base material are bonded to each other using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.).
  • the layers were laminated by the same operation as in Example 1.
  • the PET film on the light-reflecting layer R R2 side is peeled off, and the light-reflecting layer R R2 and the light-reflecting layer R R3 with a base material are bonded to each other with an ultraviolet curable resin adhesive (so that the light-reflecting layers are bonded to each other).
  • Example 2 DHR-014: manufactured by Nippon Kayaku Co., Ltd. was used for laminating by the same operation as in Example 1. In this way, the multilayer light-reflecting film for eyewear of the present invention was obtained. When the reflected color of this film was observed on a black mount, it exhibited a silver color with a metallic luster.
  • Example 3 A light-reflecting layer with a base material was obtained by the same operation as in Example 1 except that the prepared coating liquids AL1 , AR1 , and AR2 were used.
  • the reflected light reflecting layer RL1 with a base material has a reflection wavelength of 620 nm and a maximum reflectance of 40%
  • the light reflection layer RL1 with a base material has a reflection wavelength of 730 nm and a maximum reflectance of 40%.
  • the reflection wavelength of the layer RR2 was 550 nm, and the maximum reflectance was 35%.
  • these light reflecting layers with a base material were laminated in the same manner as in Examples 1 and 2.
  • the light reflecting layer RL1 with a base material and the light reflecting layer side of the light reflecting layer RR1 with a base material were laminated by the same operation as in Example 2.
  • the PET film on the light reflecting layer R R1 side is peeled off, and the light reflecting layer R R1 and the light reflecting layer RR 2 with a base material are attached to each other in the same operation as in the second embodiment so that the light reflecting layers are bonded to each other. Laminated by.
  • the multilayer light-reflecting film for eyewear of the present invention was obtained.
  • the reflected color of this film was observed on a black mount, it exhibited a golden color with a metallic luster.
  • Example 4 A polarizing element having a light-reflecting layer RL1 and a protective film ( NSA33T : manufactured by Sanei Kaken Co., Ltd.) that can be peeled off on one side by peeling off the PET film on the light-reflecting layer RL1 side of the multilayer light-reflecting film of Example 3.
  • NSA33T manufactured by Sanei Kaken Co., Ltd.
  • NSA33T manufactured by Sanei Kaken Co., Ltd.
  • NSA33T manufactured by Sanei Kaken Co., Ltd.
  • DHR-014 ultraviolet curable resin adhesive
  • Example 5 The protective film on the polarizing element side and the PET film on the light reflecting layer RR2 side of the composite polarizing film for eyewear obtained in Example 4 were peeled off, and the polarizing element side and the support (120 ⁇ m thick PC film, Teijin Co., Ltd.) were peeled off. Is laminated by the same operation as in Example 1 using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.), and then the light reflecting layer RR2 side and the support (80 ⁇ m thickness) are laminated. TAC film (manufactured by IPI) was laminated by the same operation as in Example 1 using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.). In this way, the optical laminate for eyewear of the present invention in which the composite polarizing film for eyewear was sandwiched between the supports was obtained.
  • DHR-014 ultraviolet curable resin adhesive
  • the multilayer reflective film for eyewear, the composite polarizing film for eyewear, and the optical laminate for eyewear obtained by the present invention are films and laminates having a metallic luster such as gold, silver, and copper, they are lenses for eyewear. Designability can be added to the part.
  • Light reflecting layer 2b Light reflecting layer 2c: Light reflecting layer 3: Adhesive or adhesive layer 4: Multilayer light reflecting film 5: Polarizing element 6: Composite polarizing film 7: Support 8: Optical laminate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Eyeglasses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

This multilayer light-reflective film for eyewear has a light-reflective layer 1 and at least one type of light-reflective layer 2 that are stacked, wherein: the light-reflective layer 2 is selected from a group consisting of a light-reflective layer 2a, a light-reflective layer 2b, and a light-reflective layer 2c; the light-reflective layer 1 is a cholesteric liquid crystal layer having a reflective wavelength in the range of 610-630 nm; the light-reflective layer 2a is a cholesteric liquid crystal layer having a reflective wavelength in the range of 440-460 nm; the light-reflective layer 2b is a cholesteric liquid crystal layer having a reflective wavelength in the range of 540-560 nm; and the light-reflective layer 2c is a cholesteric liquid crystal layer having a reflective wavelength in the range of 720-740 nm.

Description

多層光反射フィルム及びこれを備えたアイウェアMultilayer light-reflecting film and eyewear equipped with it
 本発明はアイウェア等に好適な光反射フィルムに関する。 The present invention relates to a light reflecting film suitable for eyewear and the like.
 サングラスやゴーグルといったいわゆるアイウェアには、ファッション性や防眩性を付与するためにミラー加工されたレンズが使用されている。また、さらに高い防眩性を付与するために偏光機能を付与した偏光レンズも使用されている。偏光レンズに使用する偏光素子は、一般に二色性色素であるヨウ素及び/又は二色性染料をポリビニルアルコールフィルムに吸着・配向させたものを使用している。この偏光素子の両面に、透明な保護基材を貼り合わせて偏光板とし、曲げ加工を施して偏光レンズとしている。さらに、耐衝撃性を向上させる、或いは視力矯正用レンズとする目的で、曲げ加工を施した後に、射出成型にてポリカーボネート系樹脂やポリアミド系樹脂で裏打ちされた射出偏光レンズも広く用いられている。また、こうして得られたレンズ表面に、蒸着加工を行うことによりミラー機能を付与できる。 For so-called eyewear such as sunglasses and goggles, mirrored lenses are used to give fashionability and anti-glare properties. Further, a polarized lens having a polarizing function is also used in order to impart a higher antiglare property. The polarizing element used for the polarizing lens is generally one in which iodine and / or a dichroic dye, which are dichroic dyes, are adsorbed and oriented on a polyvinyl alcohol film. A transparent protective base material is attached to both sides of the polarizing element to form a polarizing plate, and bending is performed to form a polarizing lens. Further, for the purpose of improving impact resistance or making a lens for visual acuity correction, an injection polarized lens which is backed with a polycarbonate resin or a polyamide resin by injection molding after being bent is also widely used. .. Further, a mirror function can be imparted to the lens surface thus obtained by performing a vapor deposition process.
 サングラスにおけるデザイン性の付与、或いは視認性の更なる向上のために、表面に多層膜を蒸着させる場合がある。多層膜を付与することにより、他者からはサングラス表面の反射光が青や緑、赤といった色彩を見ることができ、装着者からは、特定の光を反射することで、眩しさの低減と共に景色の視認性がさらに向上する。このように多層膜を付与することは、装着者にとって有益である一方、皮脂などが多層膜に付着すると取れにくいといった取り扱い上の問題点や、海など水分や潮風に曝される所では、多層膜が剥がれたりしてしまうという課題があった。
 このような課題に対し、特許文献1においては、コレステリック液晶フィルムからなるミラー層を付与した技術が開示されている。蒸着の場合は、反射性能が空気界面と蒸着層の屈折率差に基づいて設計されているため、表面に保護基材を設けるとミラー感が大きく低下してしまうが、コレステリック液晶の場合は保護層を設けてもミラー感を損ねることがない。そのため水分等による剥がれや傷の発生を無くすことが可能である。
In some cases, a multilayer film is vapor-deposited on the surface in order to impart designability to sunglasses or to further improve visibility. By applying a multilayer film, the reflected light on the surface of the sunglasses can be seen by others as colors such as blue, green, and red, and the wearer reflects specific light to reduce glare. The visibility of the scenery is further improved. While it is beneficial for the wearer to apply the multilayer film in this way, it is difficult to remove when sebum or the like adheres to the multilayer film, or in places exposed to moisture or sea breeze such as the sea, the multilayer film is applied. There was a problem that the film was peeled off.
To solve such a problem, Patent Document 1 discloses a technique of providing a mirror layer made of a cholesteric liquid crystal film. In the case of vapor deposition, the reflection performance is designed based on the difference in refractive index between the air interface and the vapor deposition layer, so if a protective base material is provided on the surface, the mirror feeling will be greatly reduced, but in the case of cholesteric liquid crystal, protection is achieved. Even if a layer is provided, the mirror feeling is not impaired. Therefore, it is possible to eliminate peeling and scratches due to moisture and the like.
国際公開第2016/002582号International Publication No. 2016/002582
 特許文献1にはコレステリック液晶を用いて作製されたミラー層において、青、緑、赤色等の色調についての記載はあるが、金、銀、銅色のような金属光沢感を与える色調を呈する具体的態様は示されていなかった。
 本願は、アイウェアに金属光沢感という意匠性を付与するための光反射フィルムなどを提供することを目的とする。
Patent Document 1 describes a color tone such as blue, green, and red in a mirror layer manufactured by using a cholesteric liquid crystal, but specifically exhibits a color tone that gives a metallic luster such as gold, silver, and copper. No aspect was shown.
An object of the present application is to provide a light-reflecting film or the like for imparting a design property of metallic luster to eyewear.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、以下の構成を有する多層光反射フィルムを見出し、本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors have found a multilayer light-reflecting film having the following configuration, and completed the present invention.
 本発明は以下に関するが、それに限定されない。
[発明1]
 光反射層1及び少なくとも1種の光反射層2が積層されたアイウェア用多層光反射フィルムであって、
 光反射層2が光反射層2a、光反射層2b、及び光反射層2cからなる群から選択され、
 光反射層1が610~630nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2aが440~460nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2bが540~560nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2cが720~740nmの範囲に反射波長を有するコレステリック液晶層である、
 多層光反射フィルム。
[発明2]
 光反射層2として光反射層2b及び光反射層2cが積層された発明1に記載のアイウェア用多層光反射フィルムであって、その反射色が金色である、多層光反射フィルム。
[発明3]
 光反射層2として光反射層2a及び光反射層2bが積層された発明1に記載のアイウェア用多層光反射フィルムであって、その反射色が銀色である、多層光反射フィルム。
[発明4]
 光反射層2として光反射層2cが積層された発明1に記載のアイウェア用多層光反射フィルムであって、その反射色が銅色である、多層光反射フィルム。
[発明5]
 発明1~4のいずれかに記載の多層光反射フィルムと偏光素子を備えたアイウェア用複合偏光フィルム。
[発明6]
 偏光度が70%以上である、発明5に記載の複合偏光フィルム。
[発明7]
 発明1~5のいずれかに記載の多層光反射フィルム或いは発明5に記載の複合偏光フィルムが支持体で挟持された、アイウェア用光学積層体。
[発明8]
 発明1~4のいずれかに記載の多層光反射フィルム或いは、発明5に記載の複合偏光フィルム、或いは発明6に記載の光学積層体を備えたアイウェア用レンズ。
[発明9]
 発明8に記載のレンズを備えたアイウェア。
The present invention relates to, but is not limited to:
[Invention 1]
A multilayer light-reflecting film for eyewear in which a light-reflecting layer 1 and at least one kind of light-reflecting layer 2 are laminated.
The light reflecting layer 2 is selected from the group consisting of the light reflecting layer 2a, the light reflecting layer 2b, and the light reflecting layer 2c.
The light reflecting layer 1 is a cholesteric liquid crystal layer having a reflection wavelength in the range of 610 to 630 nm, the light reflecting layer 2a is a cholesteric liquid crystal layer having a reflection wavelength in the range of 440 to 460 nm, and the light reflecting layer 2b is 540 to 560 nm. It is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm, and the light reflection layer 2c is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm.
Multi-layer light reflective film.
[Invention 2]
The multilayer light-reflecting film for eyewear according to the invention 1 in which the light-reflecting layer 2b and the light-reflecting layer 2c are laminated as the light-reflecting layer 2, wherein the reflecting color is gold.
[Invention 3]
The multilayer light-reflecting film for eyewear according to the invention 1 in which the light-reflecting layer 2a and the light-reflecting layer 2b are laminated as the light-reflecting layer 2, wherein the reflecting color is silver.
[Invention 4]
The multilayer light-reflecting film for eyewear according to the invention 1 in which the light-reflecting layer 2c is laminated as the light-reflecting layer 2, wherein the reflecting color is copper.
[Invention 5]
A composite polarizing film for eyewear including the multilayer light-reflecting film according to any one of the inventions 1 to 4 and a polarizing element.
[Invention 6]
The composite polarizing film according to invention 5, which has a degree of polarization of 70% or more.
[Invention 7]
An optical laminate for eyewear in which the multilayer light-reflecting film according to any one of the inventions 1 to 5 or the composite polarizing film according to the invention 5 is sandwiched between supports.
[Invention 8]
An eyewear lens provided with the multilayer light-reflecting film according to any one of Inventions 1 to 4, the composite polarizing film according to Invention 5, or the optical laminate according to Invention 6.
[Invention 9]
Eyewear provided with the lens according to the invention 8.
 本発明により、例えば偏光サングラスのようなアイウェアに金属光沢感のある意匠性を付与することができる。 According to the present invention, it is possible to impart a metallic luster design to eyewear such as polarized sunglasses.
本発明の光学積層体の構成図である。It is a block diagram of the optical laminated body of this invention.
 本発明のアイウェア用多層光反射フィルムにおいて金属光沢感を与えるために、光反射層1及び少なくとも1種の光反射層2が積層される。光反射層2は光反射層2a、光反射層2b、及び光反射層2cからなる群から選択される。光反射層1は610~630nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2aは440~460nmの範囲に反射波長を有するコレステリック液晶層であり、540~560nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2cは720~740nmの範囲に反射波長を有するコレステリック液晶層である。 In order to give a metallic luster to the multilayer light-reflecting film for eyewear of the present invention, the light-reflecting layer 1 and at least one kind of light-reflecting layer 2 are laminated. The light reflecting layer 2 is selected from the group consisting of the light reflecting layer 2a, the light reflecting layer 2b, and the light reflecting layer 2c. The light reflection layer 1 is a cholesteric liquid crystal layer having a reflection wavelength in the range of 610 to 630 nm, and the light reflection layer 2a is a cholesteric liquid crystal layer having a reflection wavelength in the range of 440 to 460 nm, and the reflection wavelength is in the range of 540 to 560 nm. The light reflecting layer 2c is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm.
本願において、「反射波長」とは、最大反射率となる波長を意味する。本発明で示される金属光沢感とは、金色、銀色、又は銅色を呈することを意味する。ここで金色とは550~750nmの可視波長域に少なくとも50nm以上離れた複数の反射波長を有する光反射層を積層して得られる色である。また、ここでいう銀色とは400~750nmの可視波長域に少なくとも50nm以上離れた複数の反射波長を有する光反射層を積層して得られる色である。さらに、ここでいう銅色とは600~750nmの可視波長域に少なくとも50nm以上離れた複数の反射波長を有する光反射層を積層して得られる色である。 In the present application, the "reflection wavelength" means a wavelength having the maximum reflectance. The metallic luster shown in the present invention means that it exhibits a golden color, a silver color, or a copper color. Here, gold is a color obtained by laminating a light reflection layer having a plurality of reflection wavelengths separated by at least 50 nm in a visible wavelength region of 550 to 750 nm. Further, the silver color referred to here is a color obtained by laminating a light reflection layer having a plurality of reflection wavelengths separated by at least 50 nm in a visible wavelength range of 400 to 750 nm. Further, the copper color referred to here is a color obtained by laminating a light reflection layer having a plurality of reflection wavelengths separated by at least 50 nm in a visible wavelength range of 600 to 750 nm.
 本発明の多層光反射フィルムが備える光反射層を製造するために用いられるコレステリック液晶(層)は、キラリティを持つネマチック液晶やネマチック液晶にカイラル剤を添加した配合物を含む。カイラル剤の種類や量により、螺旋の向きや反射波長を任意に設計できることから、ネマチック液晶にカイラル剤を添加してコレステリック液晶を得る方法が好ましい。本発明で使用されるネマチック液晶は、いわゆる電界で操作する液晶とは異なり、螺旋配向状態を固定化して使用されるため、重合性基を有するネマチック液晶モノマーを用いることが好ましい。
 重合性基を有するネマチック液晶モノマーとは、分子内に重合性基を有し、ある温度範囲或いは濃度範囲で液晶性を示す化合物である。重合性基としては、例えば(メタ)アクリロイル基、ビニル基、カルボニル基、シンナモイル基、又はエポキシ基などが挙げられる。また、液晶性を示すためには分子内にメソゲン基があることが好ましく、メソゲン基とは液晶相挙動を誘導する能力を有する基を意味し、例えばビフェニル基、ターフェニル基、(ポリ)安息香酸フェニルエステル基、(ポリ)エーテル基、ベンジリデンアニリン基、又はアセナフトキノキサリン基等のロッド状又は板状の置換基、或いは、トリフェニレン基、フタロシアニン基、又はアザクラウン基等の円盤状の置換基が挙げられる。ロッド状又は板状基を有する液晶化合物はカラミティック液晶として当該技術分野で既知である。
 このような重合性基を有するネマチック液晶モノマーは具体的にはPALIOCOLORシリーズ(BASF社製)、RMMシリーズ(Merck社製)等が挙げられる。これら重合性基を有するネマチック液晶モノマーは単独でも、或いは複数混合して用いることができる。
The cholesteric liquid crystal (layer) used for producing the light-reflecting layer included in the multilayer light-reflecting film of the present invention includes a nematic liquid crystal having chirality and a compound obtained by adding a chiral agent to the nematic liquid crystal. Since the direction of the spiral and the reflection wavelength can be arbitrarily designed depending on the type and amount of the chiral agent, a method of adding the chiral agent to the nematic liquid crystal to obtain a cholesteric liquid crystal is preferable. Since the nematic liquid crystal used in the present invention is used with the spiral orientation state fixed, unlike the liquid crystal operated by a so-called electric field, it is preferable to use a nematic liquid crystal monomer having a polymerizable group.
The nematic liquid crystal monomer having a polymerizable group is a compound having a polymerizable group in the molecule and exhibiting liquid crystallinity in a certain temperature range or concentration range. Examples of the polymerizable group include a (meth) acryloyl group, a vinyl group, a carbonyl group, a cinnamoyl group, an epoxy group and the like. Further, in order to exhibit liquidity, it is preferable that there is a mesogen group in the molecule, and the mesogen group means a group having an ability to induce liquid crystal phase behavior, for example, a biphenyl group, a terphenyl group, or a (poly) benzo. A rod-shaped or plate-shaped substituent such as an acid phenyl ester group, a (poly) ether group, a benzylideneaniline group, or an acenaftinoxalin group, or a disc-shaped substituent such as a triphenylene group, a phthalocyanine group, or an azacrown group. Can be mentioned. Liquid crystal compounds having rod-like or plate-like groups are known in the art as calamic liquid crystals.
Specific examples of the nematic liquid crystal monomer having such a polymerizable group include PALIOCOLOR series (manufactured by BASF) and RMM series (manufactured by Merck). These nematic liquid crystal monomers having a polymerizable group can be used alone or in combination of two or more.
 カイラル剤としては、上記重合性基を有するネマチック液晶モノマーを右巻き或いは左巻き螺旋配向させることができ、重合性基を有するネマチック液晶モノマーと同様に重合性基を有する化合物が好ましい。そのようなカイラル剤としては。例えば、Paliocolor LC756(BASF社製)、特開2002-179668号公報や特開2007-271808号公報に記載の光学活性なビナフチル構造を有する化合物や、特開2003-306491号公報や特開2003-313292号公報に記載の光学活性なイソソルビド構造を有する化合物などが挙げられる。カイラル剤の添加量は、カイラル剤の種類と反射させる波長によっても異なるが、重合性基を有するネマチック液晶モノマーに対し、0.5~30wt%程度が好ましく、より好ましくは1~20wt%程度が良い。 As the chiral agent, a compound having a polymerizable group is preferable because the nematic liquid crystal monomer having a polymerizable group can be spirally oriented right-handed or left-handed, and like the nematic liquid crystal monomer having a polymerizable group. As such a chiral agent. For example, Palocolor LC756 (manufactured by BASF), compounds having an optically active binaphthyl structure described in JP-A-2002-179668 and JP-A-2007-271808, and JP-A-2003-306491 and JP-A-2003-. Examples thereof include compounds having an optically active isosorbide structure described in Japanese Patent Application Laid-Open No. 31392. The amount of the chiral agent added varies depending on the type of the chiral agent and the wavelength to be reflected, but is preferably about 0.5 to 30 wt%, more preferably about 1 to 20 wt% with respect to the nematic liquid crystal monomer having a polymerizable group. good.
 さらに、重合性基を有するネマチック液晶モノマーと反応可能な液晶性を有しない重合性化合物を添加することも可能である。そのような化合物としては例えば紫外線硬化型樹脂等が挙げられる。紫外線硬化型樹脂としては、例えばジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートと1,6-ヘキサメチレン-ジ-イソシアネートとの反応生成物、イソシアヌル環を有するトリイソシアネートとペンタエリスリトールトリ(メタ)アクリレートとの反応生成物、ペンタエリスリトールトリ(メタ)アクリレートとイソホロン-ジ-イソシアネートとの反応生成物、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、トリス(メタアクリロキシエチル)イソシアヌレート、グリセロールトリグリシジルエーテルと(メタ)アクリル酸との反応生成物、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、トリメチロールプロパントリグリシジルエーテルと(メタ)アクリル酸との反応生成物、トリグリセロール-ジ-(メタ)アクリレート、プロピレングリコール-ジ-グリシジルエーテルと(メタ)アクリル酸との反応生成物、ポリプロピレングリコール-ジ-(メタ)アクリレート、トリプロピレングリコール-ジ-(メタ)アクリレート、ポリエチレングリコール-ジ-(メタ)アクリレート、テトラエチレングリコール-ジ-(メタ)アクリレート、トリエチレングリコール-ジ-(メタ)アクリレート、ペンタエリスリトール-ジ-(メタ)アクリレート、1,6-ヘキサンジオール-ジ-グリシジルエーテルと(メタ)アクリル酸との反応生成物、1,6-ヘキサンジオール-ジ-(メタ)アクリレート、グリセロール-ジ-(メタ)アクリレート、エチレングリコール-ジ-グリシジルエーテルと(メタ)アクリル酸との反応生成物、ジエチレングリコール-ジ-グリシジルエーテルと(メタ)アクリル酸との反応生成物、ビス(アクリロキシエチル)ヒドロキシエチルイソシアヌレート、ビス(メタアクリロキシエチル)ヒドロキシエチルイソシアヌレート、ビスフェノールA-ジ-グリシジルエーテルと(メタ)アクリル酸との反応生成物、テトラヒドロフルフリル(メタ)アクリレート、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、フェノキシヒドロキシプロピル(メタ)アクリレート、アクリロイルモルホリン、メトキシポリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリセロール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、2-シアノエチル(メタ)アクリレート、ブチルグリシジルエーテルと(メタ)アクリル酸との反応生成物、ブトキシトリエチレングリコール(メタ)アクリレート、又はブタンジオールモノ(メタ)アクリレート等が挙げられ、これらは単独でも或いは複数混合しても用いることができる。これら液晶性を持たない紫外線硬化型樹脂を添加する場合は、液晶性を失わない程度に添加しなければならず、好ましくは、重合性基を有するネマチック液晶モノマーに対して0.1~20重量%、より好ましくは1.0~10重量%程度添加される。 Further, it is also possible to add a polymerizable compound having no liquid crystal property that can react with the nematic liquid crystal monomer having a polymerizable group. Examples of such a compound include an ultraviolet curable resin and the like. Examples of the ultraviolet curable resin include dipentaerythritol hexa (meth) acrylate, a reaction product of dipentaerythritol penta (meth) acrylate and 1,6-hexamethylene-di-isocyanate, and triisocyanate and penta having an isocyanul ring. Reaction product with erythritol tri (meth) acrylate, reaction product with pentaerythritol tri (meth) acrylate and isophorone-di-isocyanate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, penta Elythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropanetri (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, tris (acryloxyethyl) isocyanurate, tris (methacryloxyethyl) isocia. Nurate, reaction product of glycerol triglycidyl ether with (meth) acrylic acid, caprolactone-modified tris (acryloxyethyl) isocyanurate, reaction product of trimethylolpropane triglycidyl ether with (meth) acrylic acid, triglycerol- Di- (meth) acrylate, reaction product of propylene glycol-di-glycidyl ether and (meth) acrylic acid, polypropylene glycol-di- (meth) acrylate, tripropylene glycol-di- (meth) acrylate, polyethylene glycol- Di- (meth) acrylate, tetraethylene glycol-di- (meth) acrylate, triethylene glycol-di- (meth) acrylate, pentaerythritol-di- (meth) acrylate, 1,6-hexanediol-di-glycidyl ether And (meth) acrylic acid reaction products, 1,6-hexanediol-di- (meth) acrylate, glycerol-di- (meth) acrylate, ethylene glycol-di-glycidyl ether and (meth) acrylic acid. Reaction product, reaction product of diethylene glycol-di-glycidyl ether and (meth) acrylic acid, bis (acryloxyethyl) hydroxyethyl isocyanurate, bis (methacryloxyethyl) hydroxyethyl isocyanurate, bisphenol A-di- Reaction product of glycidyl ether and (meth) acrylic acid, tetrahydrofurfuryl (meth) acrylate, capro Lactone-modified tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, phenoxyhydroxypropyl (meth) acrylate, Acryloylmorpholine, methoxypolyethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxyethylene glycol (meth) acrylate, methoxyethyl (meth) acrylate, glycidyl (meth) acrylate, Gglycerol (meth) acrylate, ethylcarbitol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, butyl glycidyl ether and (meth) Examples thereof include reaction products with acrylic acid, butoxytriethylene glycol (meth) acrylate, butanediol mono (meth) acrylate, and the like, which can be used alone or in admixture. When these ultraviolet curable resins having no liquid crystal property are added, they must be added to such an extent that the liquid crystal property is not lost, and preferably 0.1 to 20 weight by weight with respect to the nematic liquid crystal monomer having a polymerizable group. %, More preferably about 1.0 to 10% by weight.
 コレステリック液晶層を製造するために用いられる重合性基を有するネマチック液晶モノマーや他の重合性化合物が紫外線硬化型である場合、それを含む組成物を紫外線により硬化させるために、光重合開始剤が添加されてもよい。光重合開始剤としては例えば、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド(IGM resins社製Omnirad TPO H)、1-ヒドロキシシクロヘキシルフェニルケトン(IGM resins社製Omnirad 184又はBASF社製イルガキュアー184)、2-ベンジル-2-(ジメチルアミノ)-4′-モルホリノブチロフェノン(IGM resins社製Omnirad 369)、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリン-4-イル-フェニル)-ブタン-1-オン(IGM resins社製Omnirad 379)、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(IGM resins社製Omnirad 819)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(IGM resins社製Omnirad 907)、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン(日本化薬社製カヤキュアーMBP)等のベンゾフェノン系化合物;チオキサントン、2-クロルチオキサントン(日本化薬社製カヤキュアーCTX)、2-メチルチオキサントン、2,4-ジメチルチオキサントン(カヤキュアーRTX)、イソプロピルチオキサントン、2,4-ジクロオチオキサントン(日本化薬社製カヤキュアーCTX)、2,4-ジエチルチオキサントン(日本化薬社製カヤキュアーDETX)、又は2,4-ジイソプロピルチオキサントン(日本化薬社製カヤキュアーDITX)等のチオキサントン系化合物等が挙げられる。好ましくは、例えば、Omnirad TPO H、Omnirad 184、Omnirad 369、Omnirad 379、Omnirad 819、Omnirad 907(いずれもIGM resins社製)が挙げられる。これらの光重合開始剤は1種類でも任意の割合で混合した複数でも使用することができる。 When the nematic liquid crystal monomer having a polymerizable group and other polymerizable compounds used for producing the cholesteric liquid crystal layer are ultraviolet curable types, a photopolymerization initiator is used to cure the composition containing the nematic liquid crystal monomer by ultraviolet rays. It may be added. Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (Omnilad TPO H manufactured by IGM resin), 1-hydroxycyclohexylphenyl ketone (Omnilad 184 manufactured by IGM resin) or Irgacure 184 manufactured by BASF. ), 2-benzyl-2- (dimethylamino) -4'-morpholinoethanolphenone (Omnirad 369 manufactured by IGM resin), 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-). Il-phenyl) -butane-1-one (IGM resin's Omnirad 379), bis (2,4,6-trimethylbenzoyl) phenylphosphinoxide (IGM resin's Omnirad 819), 2-methyl-1- [4 -(Methylthio) Phenyl] -2-morpholinopropane-1-one (Omnilad 907 manufactured by IGM resin), hydroxybenzophenone, 4-benzoyl-4'-methyldiphenylsulfide, 3,3'-dimethyl-4-methoxybenzophenone (3,3'-dimethyl-4-methoxybenzophenone) Benzophenone compounds such as KayaCure MBP manufactured by Nippon Kayaku Co., Ltd .; thioxanthone, 2-chlorthioxanthone (Kayacure CTX manufactured by Nippon Kayaku Co., Ltd.), 2-methylthioxanthone, 2,4-dimethylthioxanthone (Kayacure RTX), isopropylthioxanthone, 2 , 4-dichlorothioxanthone (Kayacure CTX manufactured by Nippon Kayaku Co., Ltd.), 2,4-diethylthioxanthone (Kayacure DETX manufactured by Nippon Kayaku Co., Ltd.), or 2,4-diisopropylthioxanthone (Kayacure DITX manufactured by Nippon Kayaku Co., Ltd.), etc. Examples thereof include thioxanthone-based compounds. Preferably, for example, Omnirad TPO H, Omnirad 184, Omnirad 369, Omnirad 379, Omnirad 819, Omnirad 907 (all manufactured by IGM resin) can be mentioned. These photopolymerization initiators can be used alone or in a plurality of mixture at any ratio.
 光重合反応を促進させるために、助剤を併用することも可能であり、好ましくはベンゾフェノン系化合物やチオキサントン系化合物を用いる場合にそれを併用する。そのような助剤としては例えば、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、n-ブチルアミン、N-メチルジエタノールアミン、ジエチルアミノエチルメタアクリレート、ミヒラーケトン、4,4’―ジエチルアミノフェノン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(n-ブトキシ)エチル、又は4-ジメチルアミノ安息香酸イソアミル等のアミン系化合物が挙げられる。 It is also possible to use an auxiliary agent in combination to promote the photopolymerization reaction, and preferably, when a benzophenone-based compound or a thioxanthone-based compound is used, it is used in combination. Such auxiliaries include, for example, triethanolamine, methyldiethanolamine, triisopropanolamine, n-butylamine, N-methyldiethanolamine, diethylaminoethyl methacrylate, Michler ketone, 4,4'-diethylaminophenone, 4-dimethylaminobenzoic acid. Examples thereof include amine compounds such as ethyl, 4-dimethylaminobenzoic acid (n-butoxy) ethyl, and 4-dimethylaminobenzoate isoamyl.
 前記光重合開始剤及び助剤の添加量は、コレステリック液晶層を製造するために用いられる組成物の液晶性に影響を与えない範囲で使用することが好ましい。具体的には、用いられる組成物中の紫外線で硬化する化合物100重量部に対して、好ましくは0.5重量部以上10重量部以下、より好ましくは2重量部以上8重量部以下程度である。また、助剤は光重合開始剤に対して、0.5倍から2倍量程度用いるのが好ましい。 The amount of the photopolymerization initiator and auxiliary agent added is preferably used within a range that does not affect the liquid crystal property of the composition used for producing the cholesteric liquid crystal layer. Specifically, it is preferably 0.5 parts by weight or more and 10 parts by weight or less, and more preferably 2 parts by weight or more and 8 parts by weight or less with respect to 100 parts by weight of the compound that is cured by ultraviolet rays in the composition used. .. Further, it is preferable to use the auxiliary agent in an amount of about 0.5 to 2 times the amount of the photopolymerization initiator.
 上記コレステリック液晶を用いて光反射層を作製する方法としては、例えば、以下の方法が挙げられる。
 重合性基を有するネマチック液晶モノマーに、所望とする波長を反射するように右巻き若しくは左巻きとなるカイラル剤を必要量添加する。次にこれらを溶剤に溶解し、光重合開始剤を添加する。次にこの溶液をPETフィルム等のプラスチック基板上に厚みができるだけ均一になるように塗布し、加熱にて溶剤を除去しながら、基板上でコレステリック液晶となって所望の螺旋ピッチで配向するような温度条件で一定時間放置する。このとき、プラスチックフィルム表面を塗布前にラビング或いは延伸等の配向処理をしておくことで、コレステリック液晶の配向をより均一にすることができ、フィルムとしてのヘーズ値を低減することが可能となる。次いでこの配向状態を保持したまま、高圧水銀灯等で紫外線を照射し、配向を固定化することにより、光反射層を有するフィルムが得られる。ここで、右巻き螺旋配向用のカイラル剤を選択した場合、得られる光反射層をR体、左巻き螺旋配向用のカイラル剤を選択した場合、得られる光反射層をL体と呼ぶ。本発明においてはR体、L体のいずれか、或いは両方用いても良いが、両方用いる方が好ましい。
Examples of the method for producing the light reflecting layer using the cholesteric liquid crystal include the following methods.
A required amount of a right-handed or left-handed chiral agent is added to the nematic liquid crystal monomer having a polymerizable group so as to reflect a desired wavelength. Next, these are dissolved in a solvent, and a photopolymerization initiator is added. Next, this solution is applied onto a plastic substrate such as a PET film so that the thickness is as uniform as possible, and while the solvent is removed by heating, a cholesteric liquid crystal is formed on the substrate and oriented at a desired spiral pitch. Leave it for a certain period of time under temperature conditions. At this time, by subjecting the surface of the plastic film to an orientation treatment such as rubbing or stretching before coating, the orientation of the cholesteric liquid crystal can be made more uniform, and the haze value of the film can be reduced. .. Next, a film having a light reflecting layer can be obtained by irradiating ultraviolet rays with a high-pressure mercury lamp or the like to fix the orientation while maintaining this orientation state. Here, when the chiral agent for right-handed spiral orientation is selected, the obtained light-reflecting layer is referred to as an R body, and when the chiral agent for left-handed spiral orientation is selected, the obtained light-reflecting layer is referred to as an L-body. In the present invention, either R-form, L-form, or both may be used, but it is preferable to use both.
 本発明本発明の好ましい構成としては例えば、銅色を呈色する多層光反射フィルムを得るためには、光反射層1(反射波長が610~630nm)と光反射層2b(反射波長が720~740nm)を積層することが好ましく、より好ましくはL体の光反射層1(反射波長が610~630nm)とR体の光反射層2b(反射波長が720~740nm)を積層する。銀色を呈色する多層光反射フィルムを得るためには、光反射層1(反射波長が610~630nm)と光反射層2a(反射波長が440~460nm)と光反射層2b(反射波長が540~560nm)を積層することが好ましく、より好ましくはL体の光反射層1(反射波長が610~630nm)とR体の光反射層2a(反射波長が440~460nm)とR体の光反射層2b(反射波長が540~560nm)を積層する。金色を呈色する多層光反射フィルムを得るためには、光反射層1(反射波長が610~630nm)と光反射層2b(反射波長が540~560nm)と光反射層2c(反射波長が720~740nm)を積層することが好ましく、より好ましくはL体の光反射層1(反射波長が610~630nm)とR体の光反射層2b(反射波長が540~560nm)とR体の光反射層2c(反射波長が720~740nm)を積層する。上述したように、光反射層2がR体であれば、光反射層1(反射波長が610~630nm)をL体とすることにより、反射帯域の重なる領域の反射率を向上させることができるため、最大反射率を示す波長とそれ以外での波長域での反射率の差が軽減され、結果としてより本物の金属らしい色合いを呈することができるため、特に好ましい。なお、光反射層2がL体であれば、光反射層1(反射波長が610~630nm)をR体とすればよい。以上のように、複数の光反射層の積層により本発明のアイウェア用多層光反射フィルムを得ることができる。 INDUSTRIAL APPLICABILITY As a preferable configuration of the present invention, for example, in order to obtain a multilayer light-reflecting film having a copper color, a light-reflecting layer 1 (reflection wavelength is 610 to 630 nm) and a light-reflection layer 2b (reflection wavelength is 720 to 720 to). It is preferable to stack (740 nm), and more preferably, the L-shaped light reflecting layer 1 (reflection wavelength is 610 to 630 nm) and the R-shaped light reflecting layer 2b (reflection wavelength 720 to 740 nm) are laminated. In order to obtain a multi-layer light-reflecting film that develops a silver color, a light-reflecting layer 1 (reflection wavelength of 610 to 630 nm), a light-reflecting layer 2a (reflection wavelength of 440 to 460 nm), and a light-reflecting layer 2b (reflection wavelength of 540 nm) are obtained. It is preferable to stack (up to 560 nm), and more preferably, the L-body light reflection layer 1 (reflection wavelength is 610 to 630 nm), the R-body light reflection layer 2a (reflection wavelength is 440 to 460 nm), and the R-body light reflection. Layers 2b (reflection wavelength of 540 to 560 nm) are laminated. In order to obtain a multilayer light-reflecting film that develops a golden color, a light-reflecting layer 1 (reflection wavelength of 610 to 630 nm), a light-reflecting layer 2b (reflection wavelength of 540 to 560 nm), and a light-reflecting layer 2c (reflection wavelength of 720 nm) are obtained. It is preferable to stack (~ 740 nm), and more preferably, the L-body light reflection layer 1 (reflection wavelength is 610 to 630 nm), the R-body light reflection layer 2b (reflection wavelength is 540 to 560 nm), and the R-body light reflection. Layers 2c (reflection wavelength of 720 to 740 nm) are laminated. As described above, if the light reflecting layer 2 is an R body, the reflectance in the overlapping region of the reflection band can be improved by setting the light reflecting layer 1 (reflection wavelength is 610 to 630 nm) to the L body. Therefore, the difference between the reflectance at the wavelength showing the maximum reflectance and the reflectance in the other wavelength range is reduced, and as a result, a more realistic metallic hue can be obtained, which is particularly preferable. If the light reflecting layer 2 is an L body, the light reflecting layer 1 (reflection wavelength of 610 to 630 nm) may be an R body. As described above, the multilayer light-reflecting film for eyewear of the present invention can be obtained by laminating a plurality of light-reflecting layers.
 また、本発明で用いる光反射層の反射率は所望とする金属光沢感に応じて適宜調整されうるが、反射率が高い方がより金属光沢感が得られるため好ましい。具体的な最大反射率としては好ましくは10~50%、より好ましくは15~45%程度である。各波長領域でのそれぞれの光反射層の最大反射率は同程度が良く、各光反射層の反射波長の差は0~20%以内、より好ましくは0~15%以内、さらに好ましくは0~10%以内程度にするのが良い。 Further, the reflectance of the light reflecting layer used in the present invention can be appropriately adjusted according to a desired metallic luster, but a higher reflectance is preferable because a more metallic luster can be obtained. The specific maximum reflectance is preferably about 10 to 50%, more preferably about 15 to 45%. The maximum reflectance of each light-reflecting layer in each wavelength region is about the same, and the difference in the reflection wavelength of each light-reflecting layer is within 0 to 20%, more preferably within 0 to 15%, and further preferably within 0 to 0. It is better to keep it within 10%.
 本発明のアイウェア用多層光反射フィルムを作製する手段は特に制限はないが、粘着剤や接着剤を用いて前記光反射層を積層することが好ましい。また、加工性や成型安定性のために必要に応じて後述する支持体を介して積層してもよい。粘着剤としては、アクリル系やゴム系の粘着剤が挙げられるが、接着性や保持力等を調整しやすいアクリル系粘着剤が好ましい。また、接着剤としては、特に限定されないが、ホットメルト型接着剤と硬化型接着剤のいずれも使用可能である。通常、硬化型接着剤としては、紫外線硬化型樹脂組成物や熱硬化型樹脂組成物が挙げられ、紫外線硬化型樹脂の場合は、アクリロイル基或いはエポキシ基を有するモノマーを複数混合した組成物に、光重合開始剤の存在下で、紫外線を照射することにより硬化させて接着させることができる。熱硬化型樹脂組成物の場合は、エポキシ基を有するモノマーを複数混合した組成物やアクリル樹脂系材料、ウレタン樹脂系材料、ポリエステル樹脂系材料、メラミン樹脂系材料、エポキシ樹脂系材料、シリコーン系材料等に硬化剤を配合した組成物が使用できる。さらに、上記粘着剤や接着剤には、調光染料を溶解させた接着剤を用いてもよい。調光染料として、例えば、青色と緑色の境付近(480~520nm)或いは緑色と赤色領域の境付近(580~600nm)、或いはその両方の波長域の光を吸収させるものを用いることにより、視認性を向上させる役割があるため好ましい。 The means for producing the multilayer light-reflecting film for eyewear of the present invention is not particularly limited, but it is preferable to laminate the light-reflecting layer using an adhesive or an adhesive. Further, it may be laminated via a support described later if necessary for processability and molding stability. Examples of the pressure-sensitive adhesive include acrylic-based and rubber-based pressure-sensitive adhesives, but acrylic-based pressure-sensitive adhesives whose adhesiveness, holding power, and the like can be easily adjusted are preferable. Further, the adhesive is not particularly limited, and either a hot melt type adhesive or a curable type adhesive can be used. Usually, examples of the curable adhesive include an ultraviolet curable resin composition and a thermosetting resin composition, and in the case of an ultraviolet curable resin, a composition in which a plurality of monomers having an acryloyl group or an epoxy group are mixed is used. In the presence of a photopolymerization initiator, it can be cured and adhered by irradiating it with ultraviolet rays. In the case of a thermosetting resin composition, a composition in which a plurality of monomers having an epoxy group are mixed, an acrylic resin-based material, a urethane resin-based material, a polyester resin-based material, a melamine resin-based material, an epoxy resin-based material, and a silicone-based material. A composition containing a curing agent can be used. Further, as the pressure-sensitive adhesive or the adhesive, an adhesive in which a photochromic dye is dissolved may be used. As the photochromic dye, for example, a dye that absorbs light in the wavelength range of blue and green (480 to 520 nm), green and red (580 to 600 nm), or both is used for visual recognition. It is preferable because it has a role of improving sex.
 本発明のアイウェア用多層光反射フィルムにさらに偏光素子を積層することにより、本発明のアイウェア用複合偏光フィルムを得ることができる。偏光素子としては、PVAに二色性染料を吸着させたPVA偏光素子や、配向処理された基材にリオトロピック液晶性を示すような二色性染料を塗布して得られる塗布型偏光素子等が挙げられるが、典型的にはPVA偏光素子が挙げられる。作製方法は特に限定されないが、例えば、ポリビニルアルコール或いはその誘導体から作製される高分子フィルムにヨウ素や二色性染料などの色素を吸着し、該フィルムを一軸に延伸配向させてPVA偏光素子が製造される。色素としては、耐熱性の点から、二色性染料が好ましく、特にスルホン酸基をもつアゾ色素である直接染料が好ましい。偏光素子の色相は所望の色相となるよう使用する二色性染料の種類や複数使用する場合はそれらの配合比を適宜調整すればよい。特に、本発明のアイウェア用多層光反射フィルムと偏光素子の組み合わせにより、サングラスとして着用した際の透過の色相が例えば信号機の視認性に関するJIS T7333に定める相対視感度減衰率Q値が規格に収まるように偏光素子に使用する色素の種類や複数使用する場合はそれらの配合比を適宜調整することが特に好ましい。具体的にはQ値が以下に示す値以上になるように調整する。
  Qred(赤):0.8
  Qyellow(黄):0.6
  Qgreen(緑):0.6
  Qblue(青):0.4
 そのような信号視認性の規格に適合させた本発明の複合偏光フィルム或いは光学積層体とすることは自動車を運転する際に使用するアイウェアとして特に好ましい。また、偏光度はサングラスとして十分な偏光性能を有していればよく、好ましくは偏光度が70%以上、より好ましくは80%以上、さらに好ましくは90%以上であれば良い。
By further laminating a polarizing element on the multilayer light-reflecting film for eyewear of the present invention, the composite polarizing film for eyewear of the present invention can be obtained. Examples of the polarizing element include a PVA polarizing element in which a dichroic dye is adsorbed on PVA, and a coating type polarizing element obtained by applying a dichroic dye exhibiting a lyotropic liquid crystal property to an oriented substrate. Although mentioned, a PVA polarizing element is typically mentioned. The manufacturing method is not particularly limited, but for example, a PVA polarizing element is manufactured by adsorbing a dye such as iodine or a dichroic dye on a polymer film made from polyvinyl alcohol or a derivative thereof and stretching and orienting the film in one axis. Will be done. As the dye, a dichroic dye is preferable from the viewpoint of heat resistance, and a direct dye which is an azo dye having a sulfonic acid group is particularly preferable. The hue of the polarizing element may be appropriately adjusted for the type of dichroic dye to be used so as to have a desired hue, and when a plurality of dichroic dyes are used, the blending ratio thereof may be appropriately adjusted. In particular, due to the combination of the multilayer light-reflecting film for eyewear and the polarizing element of the present invention, the hue of transmission when worn as sunglasses is within the standard, for example, the relative luminosity factor attenuation rate Q value defined in JIS T7333 regarding the visibility of a signal. As described above, it is particularly preferable to appropriately adjust the types of dyes used for the polarizing element and the blending ratio thereof when a plurality of dyes are used. Specifically, adjust so that the Q value is equal to or greater than the value shown below.
Qred (red): 0.8
Qyellow (yellow): 0.6
Qgreen (green): 0.6
Qblue (blue): 0.4
It is particularly preferable to use the composite polarizing film or the optical laminate of the present invention conforming to the standard of signal visibility as eyewear used when driving an automobile. Further, the degree of polarization may be sufficient as long as it has sufficient polarization performance as sunglasses, and the degree of polarization may be preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
 こうして得られた本発明のアイウェア用複合偏光フィルムを支持体で挟持することによって、本発明のアイウェア用光学積層体を得ることができる。図1には本発明のアイウェア用光学積層体の構成図の一例が図示してある。3種の光反射層が粘着剤又は接着剤3により積層されたアイウェア用多層光反射フィルム4と、偏光素子5とを、粘着剤又は接着剤3により積層することにより、本発明のアイウェア用複合偏光フィルム6を得ることができる。さらに、支持体7によってアイウェア用複合偏光フィルム6を挟持することによって本発明のアイウェア用光学積層体8を得ることができる。具体的には、例えば、反射波長620nmのL体の光反射層1、反射波長が550nmのR体の光反射層2b、及び反射波長が730nmのR体の光反射層2cを、紫外線硬化型樹脂を含有する粘着剤又は接着剤3を用いて積層することで本発明の金色のアイウェア用多層光反射フィルム4を得ることができる。さらに二色性染料をポリビニルアルコールに吸着、延伸して得られるいわゆる染料系偏光素子5を粘着剤又は接着剤3を用いて積層することにより、本発明のアイウェア用複合偏光フィルム6が得られる。さらに、支持体7として、光反射層側にはトリアセチルセルロースフィルムを、偏光素子側にはポリカーボネートを用いて、並びに、粘着剤又は接着剤4を用いて、アイウェア用複合偏光フィルム6を挟持することで、本発明のアイウェア用光学積層体8を得ることができる。
 なお、本発明のアイウェア用光学積層体は上記に限定されず、例えば、光反射層の種類及び枚数は変更可能である。また、本発明のアイウェア用光学積層体の積層方法は上記に限定されず、例えば、ある光反射層と支持体8を積層後、光反射層側に、別の光反射層1種又は2種、偏光素子、もう一方の支持体8と順次積層する方法でもよいし、支持体8に2種又は3種の光反射層を順次積層し、もう一方では支持体8に偏光素子を積層し、両者を貼り合わせるといった方法でもよい。
By sandwiching the composite polarizing film for eyewear of the present invention thus obtained between supports, the optical laminate for eyewear of the present invention can be obtained. FIG. 1 shows an example of a configuration diagram of the optical laminate for eyewear of the present invention. The eyewear of the present invention is formed by laminating a multilayer light-reflecting film 4 for eyewear in which three types of light-reflecting layers are laminated with an adhesive or an adhesive 3 and a polarizing element 5 with an adhesive or an adhesive 3. Composite polarizing film 6 for use can be obtained. Further, the optical laminate 8 for eyewear of the present invention can be obtained by sandwiching the composite polarizing film 6 for eyewear between the supports 7. Specifically, for example, an L-body light reflection layer 1 having a reflection wavelength of 620 nm, an R-body light reflection layer 2b having a reflection wavelength of 550 nm, and an R-body light reflection layer 2c having a reflection wavelength of 730 nm are UV-curable. The multi-layer light-reflecting film 4 for golden eyewear of the present invention can be obtained by laminating with a pressure-sensitive adhesive or an adhesive 3 containing a resin. Further, the composite polarizing film 6 for eyewear of the present invention can be obtained by laminating a so-called dye-based polarizing element 5 obtained by adsorbing and stretching a dichroic dye on polyvinyl alcohol using an adhesive or an adhesive 3. .. Further, as the support 7, a triacetyl cellulose film is used on the light reflecting layer side, polycarbonate is used on the polarizing element side, and a composite polarizing film 6 for eyewear is sandwiched by using an adhesive or an adhesive 4. By doing so, the optical laminate 8 for eyewear of the present invention can be obtained.
The optical laminate for eyewear of the present invention is not limited to the above, and the type and number of light reflecting layers can be changed, for example. Further, the method of laminating the optical laminate for eyewear of the present invention is not limited to the above, and for example, after laminating a certain light reflecting layer and the support 8, another light reflecting layer 1 or 2 is placed on the light reflecting layer side. A method of sequentially laminating the seed, the polarizing element, and the other support 8 may be used, or two or three types of light reflecting layers are sequentially laminated on the support 8, and the polarizing element is laminated on the other support 8. , You may also use a method such as pasting both together.
 支持体としては、例えば、ポリカーボネート、ポリアミド、トリアセチルセルロース(TAC)などの樹脂が使用できる。耐衝撃性、耐熱性が要求されるサングラス或いはゴーグルにおいては、支持体には、ポリカーボネートを使用することが好ましく、中でもビスフェノールAに由来する構成単位を有する芳香族ポリカーボネートを使用することがより好ましい。支持体の全光線透過率は、視認性を確保しやすくするためには70%以上が好ましく、より好ましくは80%以上、さらに好ましくは85%以上である。また、前記の各偏光性フィルム層の最適加工温度が低い場合には、例えば、芳香族ポリカーボネート/PCC組成物(全脂環式ポリエステル組成物)、ガラス転移温度130℃以下のポリアミドなどを選択することが好ましい。 As the support, for example, a resin such as polycarbonate, polyamide, or triacetyl cellulose (TAC) can be used. In sunglasses or goggles that require impact resistance and heat resistance, it is preferable to use polycarbonate as the support, and it is more preferable to use aromatic polycarbonate having a structural unit derived from bisphenol A. The total light transmittance of the support is preferably 70% or more, more preferably 80% or more, still more preferably 85% or more in order to facilitate visibility. When the optimum processing temperature of each of the above-mentioned polarizing film layers is low, for example, an aromatic polycarbonate / PCC composition (total alicyclic polyester composition), a polyamide having a glass transition temperature of 130 ° C. or less is selected. Is preferable.
 こうして得られた本発明のアイウェア用光学積層体を用い、光反射層が外側になるように、所望の形状に成形し、フレームに固定することで、サングラスやゴーグル、ヘルメット用バイザーといった本発明のアイウェアを得ることができる。例えば、本発明のアイウェア用光学積層体を所望の形状に打ち抜き、次いで、曲げ加工を施すことにより、サングラスを製造することができる。曲げ加工の方法に関して特に制限はなく、目的に応じて球面或いは非球面に形状を付与できるような工程を経て加工すればよい。曲げ加工品には、さらに樹脂を射出してもよい。この場合、本発明のアイウェア用光学積層体の厚みムラが見えなくなるという利点もあり、焦点屈折力を持たないレンズにおいても耐衝撃性、外観や眼精疲労に対して特に優れた製品に樹脂の射出が使用されている。射出する樹脂としては、屈折率差による外観悪化を防止するため、射出樹脂が接する層と同一の材料にすることが好ましい。表面には、適宜、ハードコート、反射防止膜などが形成され、次いで玉摺り、穴あけ、ネジ締め等によりフレームに固定することでサングラスになる。 Using the optical laminate for eyewear of the present invention thus obtained, the present invention is formed into a desired shape so that the light reflecting layer is on the outside, and fixed to a frame, such as sunglasses, goggles, and a visor for a helmet. You can get eyewear. For example, sunglasses can be manufactured by punching the optical laminate for eyewear of the present invention into a desired shape and then bending it. There is no particular limitation on the bending method, and the processing may be performed through a process that can give a shape to a spherical surface or an aspherical surface depending on the purpose. Further resin may be injected into the bent product. In this case, there is an advantage that the thickness unevenness of the optical laminate for eyewear of the present invention cannot be seen, and the resin is particularly excellent in impact resistance, appearance and eye strain even in a lens having no focal refractive power. Injection is used. The resin to be injected is preferably made of the same material as the layer in contact with the injection resin in order to prevent deterioration of the appearance due to the difference in refractive index. A hard coat, antireflection film, etc. are appropriately formed on the surface, and then sunglasses are made by fixing to the frame by shaving, drilling, screw tightening, or the like.
 以下、実施例により本発明を更に具体的に説明するが、本発明はかかる実施例に限定されない。本実施例において、処方量の単位は重量部である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to such Examples. In this embodiment, the unit of prescription amount is parts by weight.
 下記表に示す組成の塗布液AR1とAL1をそれぞれ調製した。LC756は右巻き螺旋配向用のカイラル剤であり、化合物1は左巻き螺旋配向用のカイラル剤である。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
The coating liquids A R1 and A L1 having the compositions shown in the table below were prepared, respectively. LC756 is a chiral agent for right-handed spiral orientation, and compound 1 is a chiral agent for left-handed spiral orientation.
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
カイラル剤:化合物1(特開2002-179668号公報に記載の化合物)
Figure JPOXMLDOC01-appb-C000003
Chiral agent: Compound 1 (Compound described in JP-A-2002-179668)
Figure JPOXMLDOC01-appb-C000003
 次に、塗布液AR1のカイラル剤の処方量を下表に示す量に変更する以外は同様の処方にて塗布液AR2、AR3を調製した。 Next, the coating liquids AR2 and AR3 were prepared with the same formulation except that the prescribed amount of the chiral agent of the coating liquid AR1 was changed to the amount shown in the table below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例1
 調製した塗布液AR1又はAL1を用い、下記の手順にて各光反射層を作製し、次いでそれらを積層して本発明に用いる光反射層の積層体(フィルム)を作製し、次いでフィルムの反射色を評価した。プラスチック基板としては、東洋紡績製PETフィルム(下塗り層無し)を使用した。
(1)各塗布液を、ワイヤーバーを用いて、乾燥後の膜の厚みが4μmになるように、PETフィルム上に室温にて塗布した。
(2)(1)にて塗布後のフィルムを、150℃にて5分間加熱して溶剤の除去とともにコレステリック液晶相とした。次いで、高圧水銀ランプ(アイグラフィック社製UVコンベア装置)を120W出力、5~10秒間UV照射し、コレステリック液晶相を固定して、基材付き光反射層を得た。得られた基材付き光反射層RR1の反射波長は730nm、最大反射率は40%、基材付き光反射層RL1の反射波長は620nm、最大反射率は43%であった。
(3)(2)にて作製した、基材付き光反射層RR1と基材付き光反射層RL1の光反射層側同士を紫外線硬化型樹脂接着剤(DHR-014:日本化薬社製)を用いて積層して、高圧水銀ランプ(アイグラフィック社製UVコンベア装置)を120W出力、5~10秒間UV照射して硬化させ、両側にPETフィルムを有する本発明のアイウェア用多層光反射フィルムを得た。なお、このPETフィルムは剥離が可能であった。
(4)(3)にて作製したフィルムを黒色の台紙において反射色を観察したところ、金属光沢のある銅色を呈した。
Example 1
Using the prepared coating liquid AR1 or AL1 , each light-reflecting layer is prepared by the following procedure, and then they are laminated to prepare a laminated body (film) of the light-reflecting layer used in the present invention, and then a film. The reflected color of was evaluated. As the plastic substrate, a PET film manufactured by Toyobo (without an undercoat layer) was used.
(1) Each coating liquid was coated on a PET film at room temperature using a wire bar so that the thickness of the film after drying was 4 μm.
(2) The film coated in (1) was heated at 150 ° C. for 5 minutes to remove the solvent and obtain a cholesteric liquid crystal phase. Next, a high-pressure mercury lamp (UV conveyor device manufactured by Eye Graphic Co., Ltd.) was irradiated with UV at 120 W output for 5 to 10 seconds to fix the cholesteric liquid crystal phase to obtain a light reflecting layer with a base material. The reflected wavelength of the obtained light reflecting layer RL1 with a substrate was 730 nm and the maximum reflectance was 40%, and the reflected wavelength of the light reflecting layer RL1 with a substrate was 620 nm and the maximum reflectance was 43%.
(3) UV curable resin adhesive (DHR-014: Nippon Kayakusha ) between the light reflecting layer sides of the light reflecting layer RR1 with a base material and the light reflecting layer RL1 with a base material produced in (2). A high-pressure mercury lamp (UV conveyor device manufactured by Eye Graphic Co., Ltd.) is irradiated with UV for 5 to 10 seconds to cure it, and has PET films on both sides. Obtained a reflective film. The PET film could be peeled off.
(4) When the reflected color of the film produced in (3) was observed on a black mount, it exhibited a copper color with a metallic luster.
実施例2
 調製した塗布液AL1、AR2、AR3を用いること以外は実施例1と同様の操作により、光反射層を得た。得られた基材付き光反射層RL1の反射波長は620nm、最大反射率は43%、基材付き光反射層RR2の反射波長は550nm、最大反射率は40%、基材付き光反射層RR3の反射波長は450nm、最大反射率は37%であった。次にこれら基材付き光反射層を実施例1と同様に積層した。具体的には、基材付き光反射層RL1と基材付き光反射層RR2の光反射層側同士を紫外線硬化型樹脂接着剤(DHR-014:日本化薬社製)を用いて実施例1と同様の操作により積層した。次に光反射層RR2側のPETフィルムを剥離し、光反射層RR2と、基材付き光反射層RR3とを、光反射層同士が貼り合わされるように紫外線硬化型樹脂接着剤(DHR-014:日本化薬社製)を用いて実施例1と同様の操作により積層した。こうして本発明のアイウェア用多層光反射フィルムを得た。このフィルムを黒色の台紙において反射色を観察したところ、金属光沢のある銀色を呈した。
Example 2
A light reflecting layer was obtained by the same operation as in Example 1 except that the prepared coating liquids AL1 , AR2 , and AR3 were used. The reflected wavelength of the obtained light reflecting layer RL1 with a base material is 620 nm, the maximum reflectance is 43%, the reflection wavelength of the light reflecting layer RR2 with a base material is 550 nm, the maximum reflectance is 40%, and the light reflection with a base material. The reflection wavelength of the layer RR3 was 450 nm, and the maximum reflectance was 37%. Next, these light-reflecting layers with a base material were laminated in the same manner as in Example 1. Specifically, the light-reflecting layer sides of the light-reflecting layer RL1 with a base material and the light-reflecting layer RR2 with a base material are bonded to each other using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.). The layers were laminated by the same operation as in Example 1. Next, the PET film on the light-reflecting layer R R2 side is peeled off, and the light-reflecting layer R R2 and the light-reflecting layer R R3 with a base material are bonded to each other with an ultraviolet curable resin adhesive (so that the light-reflecting layers are bonded to each other). DHR-014: manufactured by Nippon Kayaku Co., Ltd.) was used for laminating by the same operation as in Example 1. In this way, the multilayer light-reflecting film for eyewear of the present invention was obtained. When the reflected color of this film was observed on a black mount, it exhibited a silver color with a metallic luster.
実施例3
 調製した塗布液AL1、AR1、AR2とすること以外は実施例1と同様の操作により、基材付き光反射層を得た。得られた基材付き光反射層RL1の反射波長は620nm、最大反射率は40%、基材付き光反射層RR1の反射波長は730nm、最大反射率は40%、基材付き光反射層RR2の反射波長は550nm、最大反射率は35%であった。次にこれら基材付き光反射層を実施例1及び2と同様に積層した。具体的には、基材付き光反射層RL1と基材付き光反射層RR1の光反射層側同士を実施例2と同様の操作により積層した。次に光反射層RR1側のPETフィルムを剥離し、光反射層RR1と、基材付き光反射層RR2とを、光反射層同士が貼り合わされるように実施例2と同様の操作により積層した。こうして本発明のアイウェア用多層光反射フィルムを得た。このフィルムを黒色の台紙において反射色を観察したところ、金属光沢のある金色を呈した。
Example 3
A light-reflecting layer with a base material was obtained by the same operation as in Example 1 except that the prepared coating liquids AL1 , AR1 , and AR2 were used. The reflected light reflecting layer RL1 with a base material has a reflection wavelength of 620 nm and a maximum reflectance of 40%, and the light reflection layer RL1 with a base material has a reflection wavelength of 730 nm and a maximum reflectance of 40%. The reflection wavelength of the layer RR2 was 550 nm, and the maximum reflectance was 35%. Next, these light reflecting layers with a base material were laminated in the same manner as in Examples 1 and 2. Specifically, the light reflecting layer RL1 with a base material and the light reflecting layer side of the light reflecting layer RR1 with a base material were laminated by the same operation as in Example 2. Next, the PET film on the light reflecting layer R R1 side is peeled off, and the light reflecting layer R R1 and the light reflecting layer RR 2 with a base material are attached to each other in the same operation as in the second embodiment so that the light reflecting layers are bonded to each other. Laminated by. In this way, the multilayer light-reflecting film for eyewear of the present invention was obtained. When the reflected color of this film was observed on a black mount, it exhibited a golden color with a metallic luster.
実施例4
 実施例3の多層光反射フィルムの光反射層RL1側のPETフィルムを剥離して、光反射層RL1と、片側に剥離可能な保護フィルム(NSA33T:サンエー化研社製)を有する偏光素子(染料系偏光素子NYSH-30:ポラテクノ社製)とを、紫外線硬化型樹脂接着剤(DHR-014:日本化薬社製)を用いて、実施例1と同様の操作にて積層し、本発明のアイウェア用複合偏光フィルムを得た。
Example 4
A polarizing element having a light-reflecting layer RL1 and a protective film ( NSA33T : manufactured by Sanei Kaken Co., Ltd.) that can be peeled off on one side by peeling off the PET film on the light-reflecting layer RL1 side of the multilayer light-reflecting film of Example 3. (Dye-based polarizing element NYSH-30: manufactured by Polar Techno Co., Ltd.) was laminated by the same operation as in Example 1 using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.). The composite polarizing film for eyewear of the present invention was obtained.
実施例5
 実施例4で得られたアイウェア用複合偏光フィルムの偏光素子側の保護フィルム及び、光反射層RR2側のPETフィルムを剥離し、偏光素子側と支持体(120μm厚のPCフィルム、帝人社製)を、紫外線硬化型樹脂接着剤(DHR-014:日本化薬社製)を用いて、実施例1と同様の操作にて積層し、次いで光反射層RR2側と支持体(80μm厚のTACフィルム、IPI社製)を、紫外線硬化型樹脂接着剤(DHR-014:日本化薬社製)を用いて実施例1と同様の操作にて積層した。こうしてアイウェア用複合偏光フィルムが支持体に挟持された本発明のアイウェア用光学積層体を得た。
Example 5
The protective film on the polarizing element side and the PET film on the light reflecting layer RR2 side of the composite polarizing film for eyewear obtained in Example 4 were peeled off, and the polarizing element side and the support (120 μm thick PC film, Teijin Co., Ltd.) were peeled off. Is laminated by the same operation as in Example 1 using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.), and then the light reflecting layer RR2 side and the support (80 μm thickness) are laminated. TAC film (manufactured by IPI) was laminated by the same operation as in Example 1 using an ultraviolet curable resin adhesive (DHR-014: manufactured by Nippon Kayaku Co., Ltd.). In this way, the optical laminate for eyewear of the present invention in which the composite polarizing film for eyewear was sandwiched between the supports was obtained.
比較例
 光反射層RR3のみを用いて実施例1と同様に反射色を観察したところ、青色となり、金属光沢感は得られなかった。
Comparative Example When the reflected color was observed in the same manner as in Example 1 using only the light reflecting layer RR3 , the color was blue and no metallic luster was obtained.
 本発明で得られるアイウェア用多層反射フィルム、アイウェア用複合偏光フィルム、アイウェア用光学積層体は、金、銀、銅といった金属光沢感のあるフィルム及び積層体であるため、アイウェアのレンズ部分に意匠性を付与することができる。 Since the multilayer reflective film for eyewear, the composite polarizing film for eyewear, and the optical laminate for eyewear obtained by the present invention are films and laminates having a metallic luster such as gold, silver, and copper, they are lenses for eyewear. Designability can be added to the part.
1:光反射層
2b:光反射層
2c:光反射層
3:粘着剤又は接着剤層
4:多層光反射フィルム
5:偏光素子
6:複合偏光フィルム
7:支持体
8:光学積層体
 
1: Light reflecting layer 2b: Light reflecting layer 2c: Light reflecting layer 3: Adhesive or adhesive layer 4: Multilayer light reflecting film 5: Polarizing element 6: Composite polarizing film 7: Support 8: Optical laminate

Claims (9)

  1.  光反射層1及び少なくとも1種の光反射層2が積層されたアイウェア用多層光反射フィルムであって、
     光反射層2が光反射層2a、光反射層2b、及び光反射層2cからなる群から選択され、
     光反射層1が610~630nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2aが440~460nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2bが540~560nmの範囲に反射波長を有するコレステリック液晶層であり、光反射層2cが720~740nmの範囲に反射波長を有するコレステリック液晶層である、
     多層光反射フィルム。
    A multilayer light-reflecting film for eyewear in which a light-reflecting layer 1 and at least one kind of light-reflecting layer 2 are laminated.
    The light reflecting layer 2 is selected from the group consisting of the light reflecting layer 2a, the light reflecting layer 2b, and the light reflecting layer 2c.
    The light reflecting layer 1 is a cholesteric liquid crystal layer having a reflection wavelength in the range of 610 to 630 nm, the light reflecting layer 2a is a cholesteric liquid crystal layer having a reflection wavelength in the range of 440 to 460 nm, and the light reflecting layer 2b is 540 to 560 nm. It is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm, and the light reflection layer 2c is a cholesteric liquid crystal layer having a reflection wavelength in the range of 720 to 740 nm.
    Multi-layer light reflective film.
  2.  光反射層2として光反射層2b及び光反射層2cが積層された請求項1に記載のアイウェア用多層光反射フィルムであって、その反射色が金色である、多層光反射フィルム。 The multilayer light reflecting film for eyewear according to claim 1, wherein the light reflecting layer 2b and the light reflecting layer 2c are laminated as the light reflecting layer 2, and the reflecting color thereof is gold.
  3.  光反射層2として光反射層2a及び光反射層2bが積層された請求項1に記載のアイウェア用多層光反射フィルムであって、その反射色が銀色である、多層光反射フィルム。 The multilayer light reflecting film for eyewear according to claim 1, wherein the light reflecting layer 2a and the light reflecting layer 2b are laminated as the light reflecting layer 2, and the reflecting color thereof is silver.
  4.  光反射層2として光反射層2cが積層された請求項1に記載のアイウェア用多層光反射フィルムであって、その反射色が銅色である、多層光反射フィルム。 The multilayer light reflecting film for eyewear according to claim 1, wherein the light reflecting layer 2c is laminated as the light reflecting layer 2, and the reflecting color thereof is copper.
  5.  請求項1~4のいずれかに記載の多層光反射フィルムと偏光素子を備えたアイウェア用複合偏光フィルム。 A composite polarizing film for eyewear provided with the multilayer light-reflecting film according to any one of claims 1 to 4 and a polarizing element.
  6.  偏光度が70%以上である、請求項5に記載の複合偏光フィルム。 The composite polarizing film according to claim 5, wherein the degree of polarization is 70% or more.
  7.  請求項1~5のいずれかに記載の多層光反射フィルム或いは請求項5に記載の複合偏光フィルムが支持体で挟持された、アイウェア用光学積層体。 An optical laminate for eyewear in which the multilayer light-reflecting film according to any one of claims 1 to 5 or the composite polarizing film according to claim 5 is sandwiched between supports.
  8.  請求項1~4のいずれかに記載の多層光反射フィルム或いは、請求項5に記載の複合偏光フィルム、或いは請求項6に記載の光学積層体を備えたアイウェア用レンズ。 An eyewear lens provided with the multilayer light-reflecting film according to any one of claims 1 to 4, the composite polarizing film according to claim 5, or the optical laminate according to claim 6.
  9.  請求項8に記載のレンズを備えたアイウェア。
     
    Eyewear provided with the lens according to claim 8.
PCT/JP2021/027730 2020-07-30 2021-07-27 Multilayer light-reflective film and eyewear provided with same WO2022025052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-128915 2020-07-30
JP2020128915A JP2023122649A (en) 2020-07-30 2020-07-30 Multilayer light reflection film and eyewear equipped therewith

Publications (1)

Publication Number Publication Date
WO2022025052A1 true WO2022025052A1 (en) 2022-02-03

Family

ID=80036603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027730 WO2022025052A1 (en) 2020-07-30 2021-07-27 Multilayer light-reflective film and eyewear provided with same

Country Status (3)

Country Link
JP (1) JP2023122649A (en)
TW (1) TW202208159A (en)
WO (1) WO2022025052A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004830A (en) * 1999-06-22 2001-01-12 Nippon Mitsubishi Oil Corp Cholesteric liquid crystal film
JP2004021073A (en) * 2002-06-19 2004-01-22 Dainippon Printing Co Ltd Method for patterning liquid crystal layer and original plate for patterning used for the same
JP2015114503A (en) * 2013-12-12 2015-06-22 国立大学法人東京工業大学 Two-band cholesteric liquid crystal film and method of manufacturing the same
WO2016002582A1 (en) * 2014-07-01 2016-01-07 日本化薬株式会社 Optical film and optical laminate using same
WO2017018468A1 (en) * 2015-07-28 2017-02-02 日本ゼオン株式会社 Cholesteric resin laminate, production method, and use
WO2017175829A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same
WO2017175830A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same
WO2017175581A1 (en) * 2016-04-07 2017-10-12 日本化薬株式会社 Light reflecting film, and light control film and mirror display using same
JP2018124431A (en) * 2017-02-01 2018-08-09 富士フイルム株式会社 Decorative film
WO2019188846A1 (en) * 2018-03-29 2019-10-03 富士フイルム株式会社 Image-forming method
WO2020196449A1 (en) * 2019-03-28 2020-10-01 日本化薬株式会社 Optical film and eyewear

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004830A (en) * 1999-06-22 2001-01-12 Nippon Mitsubishi Oil Corp Cholesteric liquid crystal film
JP2004021073A (en) * 2002-06-19 2004-01-22 Dainippon Printing Co Ltd Method for patterning liquid crystal layer and original plate for patterning used for the same
JP2015114503A (en) * 2013-12-12 2015-06-22 国立大学法人東京工業大学 Two-band cholesteric liquid crystal film and method of manufacturing the same
WO2016002582A1 (en) * 2014-07-01 2016-01-07 日本化薬株式会社 Optical film and optical laminate using same
WO2017018468A1 (en) * 2015-07-28 2017-02-02 日本ゼオン株式会社 Cholesteric resin laminate, production method, and use
WO2017175581A1 (en) * 2016-04-07 2017-10-12 日本化薬株式会社 Light reflecting film, and light control film and mirror display using same
WO2017175829A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same
WO2017175830A1 (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Optical film for eyewear, and optical laminate and eyewear which use same
JP2018124431A (en) * 2017-02-01 2018-08-09 富士フイルム株式会社 Decorative film
WO2019188846A1 (en) * 2018-03-29 2019-10-03 富士フイルム株式会社 Image-forming method
WO2020196449A1 (en) * 2019-03-28 2020-10-01 日本化薬株式会社 Optical film and eyewear

Also Published As

Publication number Publication date
TW202208159A (en) 2022-03-01
JP2023122649A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
JP6840733B2 (en) Optical film for eyewear, and optical laminates and eyewear using this
JP6739337B2 (en) Optical film and optical laminate using the same
JP6840734B2 (en) Optical film for eyewear, and optical laminates and eyewear using this
US20200033638A1 (en) Light-shielding function equipped optical film for eyewear, and optical laminate and light-shielding function equipped eyewear including the light-shielding function equipped optical film for eyewear
US20220004028A1 (en) Optical film and eyewear
WO2022025052A1 (en) Multilayer light-reflective film and eyewear provided with same
WO2021206024A1 (en) Optical film, and optical laminate and eyewear having this
WO2023145683A1 (en) Optical film and eyeware
TWI844652B (en) Optical film and eyewear
WO2022196784A1 (en) Optcal laminate and eyewear using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP