WO2016171127A1 - Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same - Google Patents

Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same Download PDF

Info

Publication number
WO2016171127A1
WO2016171127A1 PCT/JP2016/062361 JP2016062361W WO2016171127A1 WO 2016171127 A1 WO2016171127 A1 WO 2016171127A1 JP 2016062361 W JP2016062361 W JP 2016062361W WO 2016171127 A1 WO2016171127 A1 WO 2016171127A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polarizing element
film
dichroic dye
stretched film
Prior art date
Application number
PCT/JP2016/062361
Other languages
French (fr)
Japanese (ja)
Inventor
典明 望月
吉田 昇平
Original Assignee
日本化薬株式会社
株式会社ポラテクノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社, 株式会社ポラテクノ filed Critical 日本化薬株式会社
Priority to KR1020177033189A priority Critical patent/KR20170138497A/en
Priority to JP2017514131A priority patent/JP6505833B2/en
Priority to CN201680022895.6A priority patent/CN107533178B/en
Publication of WO2016171127A1 publication Critical patent/WO2016171127A1/en
Priority to HK18102816.8A priority patent/HK1243495A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B35/00Disazo and polyazo dyes of the type A<-D->B prepared by diazotising and coupling
    • C09B35/02Disazo dyes
    • C09B35/037Disazo dyes characterised by two coupling components of different types
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to a polarizing element in which a film having high retardation and a layer containing a dichroic dye are laminated.
  • the present invention also relates to a display device provided with the polarizing element.
  • polarizing elements used in liquid crystal display devices, sunglasses, goggles, etc. adsorb dichroic dyes such as iodine or dichroic dyes on a film made of a polymer material such as polyvinyl alcohol. Subsequently, the obtained film is uniaxially stretched, and the dichroic dye molecules are oriented in a certain direction, or the polymer film is uniaxially stretched and then the dichroic dye is adsorbed.
  • the shape of the polarizing element is usually limited to a flat plate shape.
  • the polyvinyl alcohol film is swelled and dyed, and subsequently subjected to a stretching treatment in an aqueous boric acid solution, followed by a washing treatment and a drying treatment, and then the obtained film.
  • the complicated process of bonding a protective film to an adhesive was required. Further, it has been required to provide a polarizing element at a desired portion more simply.
  • Non-Patent Document 1 discloses a method for producing a polarizer by orienting dichroic dye molecules in a certain direction by rubbing treatment.
  • the coating property of the dye solution on the substrate is lowered due to scratches and dust on the substrate caused by the rubbing process in the rubbing process, and electrical scratches caused by static electricity. For this reason, there is a portion (coating failure) that is not coated on the obtained dye film, and as a result, the polarization performance quality of the polarizing element having the dye film is not satisfactory.
  • Patent Document 1 discloses a technique for obtaining a polarizer having high polarization performance by orienting dichroic dye molecules in contact with the photo-alignment film in an arbitrary direction using the photo-alignment film.
  • AFM atomic force microscope
  • the polarizing performance of the obtained polarizing element has not been able to meet sufficient requirements as a practical level in the polarizing element for display elements.
  • Patent Document 2 in order to further improve the uniformity of the orientation of the dichroic dye molecules and the polarization performance of the obtained polarizing element, the generation of craters is reduced as much as possible, and the orientation of the dichroic dye compound is increased overall.
  • a method of manufacturing a polarizing element at a practical level for a display element is disclosed.
  • the polarizing element uses a liquid crystalline polymer thin film having a photoactive group as an alignment film, irradiates the thin film with linearly polarized light, aligns the molecular axes of the photoactive groups of the polarized light irradiation portion in a certain direction, and then another micropattern.
  • a dichroic dye solution is applied onto the thin film with a roll coater so that a specific range of pressure is applied in a direction perpendicular to the substrate.
  • JP-A-7-261024 Japanese Patent No. 4175455
  • a polarizing element having a dye film obtained by applying a composition containing a conventional dichroic dye does not have a sufficiently satisfactory polarizing performance due to the influence of rubbing treatment or the like. Therefore, it is necessary to further improve the polarization performance. It is also desired to manufacture a polarizing element having excellent polarization performance more easily.
  • an object of the present invention is to provide a polarizing element excellent in polarization performance that can be easily manufactured, and a display device provided with the polarizing element.
  • the present inventor laminated a stretched film having a retardation of 3000 to 50000 nm and a layer containing a dichroic dye, and the thickness of the stretched film was 20 to 500 ⁇ m. It was newly found that a polarizing element excellent in polarization performance that can be easily produced can be obtained by using the polarizing element.
  • the gist configuration of the present invention is as follows.
  • a polarizing element comprising a stretched film having a retardation of 3000 to 50000 nm and a layer containing one or more dichroic dyes, wherein the stretched film has a thickness of 20 to 500 ⁇ m. .
  • the molecular anisotropy larger than the molecular anisotropy imparted to the surface of the stretched film is further imparted in the same direction as the stretch axis of the stretched film.
  • the polarizing element as described in any one of (3).
  • the film further comprises a retardation film having a slow axis or a fast axis of retardation at an angle of 10 ° to 100 ° with respect to the major axis direction of the film on the stretched film ( 1)
  • the polarizing element as described in any one of (4).
  • (6) The polarizing element according to any one of (1) to (5), wherein at least one of the dichroic dyes is a compound represented by the following formula (1) or a salt thereof: .
  • X 1 represents a phenyl group or a naphthyl group having one or two sulfonic acid groups and a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms
  • X 2 and X 3 each independently represent a phenylene group or a naphthylene group
  • the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents of one or two types selected from the group consisting of a hydroxyl group and a sulfonic acid group
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • X 1 is a compound represented by the following formula (3) or a salt thereof as a substituent.
  • j is 1 or 2
  • the layer containing the dichroic dye further contains a polyoxyethylene polyoxypropylene alkyl ether or a polyoxyethylene polyoxypropylene block polymer, any one of (1) to (7)
  • the polarizing element as described in one.
  • a display device provided with the polarizing element according to any one of (1) to (8).
  • the polarizing element of the present invention wherein a film having a retardation of 3000 to 50000 nm and a layer containing a dichroic dye are laminated, has a high retardation of 20 to 500 ⁇ m as a substrate.
  • a stretched film is used.
  • the polarizing element of the present invention using such a specific stretched film exhibits a high degree of polarization, particularly a degree of polarization of 85% or more, and a high dichroism, particularly 5 or more. Therefore, a polarizing element excellent in polarizing performance can be obtained by using the specific stretched film in the present invention as the substrate.
  • the polarizing element of the present invention is obtained by laminating a specific base material and a layer containing a dichroic dye. Therefore, according to the configuration of the present invention, it is possible to obtain a high-performance polarizing element excellent in polarization performance and easily manufactured.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the compounds (substituents) represented by the formulas (1) to (3) are represented in the form of a free acid, and the free acid salt is, for example, a sulfonic acid group or a hydroxy group. Means salt.
  • the polarizing element of the present invention is a polarizing element in which a stretched film having a retardation of 3000 to 50000 nm and a layer containing a dichroic dye are laminated, and the thickness of the stretched film is 20 to 500 ⁇ m.
  • the polarizing element of the present invention uses a stretched film having a retardation of 3000 to 50000 nm as a substrate.
  • the material of the stretched film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate and polyethylene naphthalate, resins such as polycarbonate, polystyrene, polyetheretherketone, polyphenylene sulfide, and cycloolefin polymer.
  • polycarbonate or polyester is particularly preferable. These resins have excellent transparency, thermal and mechanical properties, can easily control the retardation of the film by stretching, and have a high degree of crystallinity after stretching.
  • the stretched film used in the present invention has such a high retardation as described above even if it has a relatively thin thickness of 20 to 500 ⁇ m.
  • polyester represented by polyethylene terephthalate has a large intrinsic birefringence, and even if the thickness of the stretched film is relatively thin, it is most suitable because a high retardation can be obtained relatively easily. Material.
  • the retardation range of the stretched film used in the polarizing element of the present invention is 3000 to 50000 nm.
  • a polymer film having a retardation exceeding 50000 nm is not preferable because it easily stiffens and the thickness of the film is correspondingly increased. As a result, the handleability as an industrial material is lowered.
  • a stretched film having a retardation range of 3000 to 30000 nm it is known that when a display screen is observed through a polarizing plate such as polarized sunglasses, it has a particularly good performance that exhibits a strong interference color.
  • the retardation when the retardation is in the range of 3000 to 30000 nm, such interference does not appear and good visibility can be secured.
  • the retardation is less than 3000 nm, when the display screen is observed through a polarizing plate such as polarized sunglasses, a strong interference color is exhibited. Therefore, the envelope shape is different from the emission spectrum of the light source, and as a result, good visibility is ensured.
  • the retardation range of the stretched film used in the polarizing element of the present invention is 3000 to 50000 nm
  • the preferred lower limit of retardation is 4500 nm
  • the more preferred lower limit is 6000 nm
  • the still more preferred lower limit is 8000 nm
  • the still more preferred lower limit is 10,000 nm
  • the preferable upper limit of retardation is 30000 nm.
  • the method for producing a stretched film used in the polarizing element of the present invention is not particularly limited as long as the stretched film characteristics defined in the present invention are satisfied.
  • the stretched film used include films described in JP 2012-230390 A and JP 2012-256014 A, and Cosmo Shine (super-birefringence) which is a polyethylene terephthalate film manufactured by Toyobo. Type film (SRF film)).
  • anisotropy can be measured by diffraction measurement by X-ray measurement, phase difference measurement, anisotropic IR absorption analysis, or the like.
  • fc should be 0.3 or more, preferably 0.5 or more, more preferably 0.7 or more, and 0.9 or more.
  • the method of stretching the film is not particularly limited as long as anisotropy develops.
  • dichroism is subsequently applied in the application of a solution containing a dichroic dye.
  • the dye molecules exhibit high orientation in the stretching direction, and as a result, a polarizing element having a high degree of polarization can be obtained.
  • the retardation is a parameter defined by the product of the biaxial refractive index anisotropy on the film and the thickness of the film. It is a scale to show. Therefore, this retardation can be obtained by measuring the refractive index and thickness in the biaxial direction, and for example, using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (manufactured by Oji Scientific Instruments). Can be sought.
  • the corona discharge treatment can be applied by using various commercially available corona discharge treatment machines as an apparatus for performing the corona discharge treatment, and the use of a corona treatment machine having an aluminum head is particularly preferable.
  • the condition of the corona discharge treatment is 20 to 400 W ⁇ min / m 2 , preferably about 50 to 300 W ⁇ min / m 2 as the energy density in one corona discharge treatment.
  • the corona discharge treatment may be performed twice or more.
  • ultraviolet irradiation can be applied by using various commercially available ultraviolet irradiation apparatuses.
  • the wavelength of the ultraviolet rays used is not particularly limited, but for example, far ultraviolet rays of 300 nm or less are preferable.
  • the ultraviolet irradiation is preferably performed under an oxygen stream, and the irradiation time of ultraviolet rays is sufficient if it is several minutes at the longest.
  • the polarizing element of the present invention has a layer containing a dichroic dye in order to form a dye film as an element exhibiting a polarizing function.
  • a dichroic dye is used as a material for forming a layer containing a dichroic dye, and the dichroic dye is a compound that exhibits polarization by being arranged in a certain direction by itself or in an aggregate.
  • Examples of such dichroic dyes include dye compounds such as azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes, and anthraquinone dyes. Etc.
  • the dichroic dye used in the present invention is a compound that exhibits lyotropic liquid crystal properties under a certain solvent composition, dye concentration, and temperature conditions. For example, supervised by Masahiro Irie, “Application of Functional Dyes”, First Printing Plate, CMC Co., Ltd., June 2002, p. 102-104.
  • the dichroic dye is preferably a water-soluble azo dye, and among them, a compound having an aromatic ring structure is more preferable.
  • aromatic ring structure for example, in addition to benzene, naphthalene, anthracene, phenanthrene, a heterocyclic ring such as thiazole, pyridine, pyrimidine, pyridazine, pyrazine, quinoline, or a quaternary salt thereof, further, benzene, naphthalene, etc.
  • a hydrophilic substituent such as a sulfonic acid group, a carboxylic acid group, an amino group, or a hydroxyl group, or a salt of a sulfonic acid group or a carboxylic acid group is introduced into these aromatic rings. Preferably it is.
  • dichroic dyes include C.I. I. Direct Orange 39, C.I. I. Direct Orange 41, C.I. I. Direct Orange 49, C.I. I. Direct Orange 72, C.I. I. Direct Red 2, C.I. I. Direct Red 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Direct Violet 9, C.I. I. Direct Violet 35, C.I. I. Direct Violet 48, C.I. I. Direct Violet 57, C.I. I. Direct Blue1, C.I. I. Direct Blue 15, C.I. I.
  • dichroic dyes shown in the above specific examples compounds represented by the following formula (1) or (2) are particularly preferable, and compounds represented by the formula (1) are particularly preferable.
  • the compound represented by Formula (1) and Formula (2) exists as a free acid or its salt.
  • the salt of the free acid is not particularly limited, and may be any salt such as an alkali metal salt such as Li, Na, or K, or a quaternary ammonium salt.
  • X 1 represents a phenyl group or a naphthyl group having one or two sulfonic acid groups and a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms
  • X 2 and X 3 each independently represent a phenylene group or a naphthylene group, and the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents of one or two types selected from the group consisting of a hydroxyl group and a sulfonic acid group
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 represents a naphthyl group having one or two sulfonic acid groups, and further having a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms
  • Y 2 and Y 3 each independently represent a phenylene group or a naphthylene group, and the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents of one or two types selected from the group consisting of a hydroxyl group and a sulfonic acid group
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 each independently represent a hydrogen atom, a hydroxyl group, a sulfonic acid group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, q is 0 or 1; p is 1 or 2.
  • X 1 in formula (1) or Y 1 in formula (2) is a compound represented by the following formula (3) as a substituent.
  • the polarizing performance can be further improved.
  • it is represented by the formula (1) having a compound represented by the following formula (3) as a substituent in that it has a high dichroic ratio alone.
  • the use of compounds is preferred.
  • the said substituent exists also as a free acid or its salt similarly to the compound represented by Formula (1) and Formula (2).
  • the salt of the free acid is not particularly limited, and may be any salt such as an alkali metal salt such as Li, Na, or K, or a quaternary ammonium salt.
  • the dichroic dyes used in the present invention may be used alone or in combination of two or more.
  • the combined use of such two or more dichroic dyes is not particularly limited, but by using an additional dichroic dye, the dichroic ratio of the dichroic dye can be further improved. it can.
  • a method for producing the polarizing element of the present invention will be described.
  • a solution containing the dichroic dye described above is applied to the stretched film as the base material described above, and then dried to form a layer containing the dichroic dye on the stretched film. It is produced by. Since the layer containing the formed dichroic dye exhibits a polarizing function, a laminate composed of a base material and a layer containing the dichroic dye may be used as a polarizing element. A laminated body in which a protective layer or the like is further laminated on the surface of the contained layer may be used as the polarizing element.
  • a solution (coating solution) containing the dichroic dye is prepared.
  • the solvent as the coating solution is not particularly limited as long as the dichroic dye to be used can be dissolved.
  • the solvent as the coating solution is not particularly limited as long as the dichroic dye to be used can be dissolved.
  • DMF dimethylformamide
  • NMP N-methylpyrrolidinone
  • DMAC dimethylacetamide
  • DI dimethylimidazoline
  • only one kind of solvent may be included, or a plurality of solvents may be included. It may be.
  • water or a mixed solvent with the above organic solvent mainly containing water is preferable as the solvent.
  • the amount of the organic solvent mixed with water is arbitrary, but is preferably 0 to 50% by mass, particularly preferably 0 to 20% by mass with respect to water.
  • the concentration of the dichroic dye in the coating solution is preferably 0.1 to 25% by mass, more preferably 0.3 to 10% by mass, and further preferably 0.5 to 5% by mass.
  • the polarizing element of the present invention has a layer containing a dichroic dye formed using a coating solution further containing a compound of polyoxyethylene polyoxypropylene alkyl ether or polyoxyethylene polyoxypropylene block polymer.
  • a coating solution further containing a compound of polyoxyethylene polyoxypropylene alkyl ether or polyoxyethylene polyoxypropylene block polymer.
  • the layer containing the dichroic dye further contains such a compound, it is possible to improve a coating defect that has occurred at the time of application in the production of a dye film on a substrate.
  • These compounds may be used alone or in combination of two or more.
  • the concentration of these compounds in the coating solution is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 2% by mass, and still more preferably 0.05% by mass to 1.0% by mass. % By mass.
  • the solution containing this dichroic dye is dropped on the surface of the stretched film of the present invention as a base material, and contains a dichroic dye having a uniform thickness on the stretched film by a coater or spin coating method.
  • a layer to be applied, ie, a coating film is provided.
  • the method of providing the coating film is not particularly limited as long as the solution containing the dichroic dye can be applied.
  • the stretched film of the present invention is applied to the solution containing the dichroic dye.
  • a method of applying the solution with a bar coder, etc. a method of applying with an inkjet printer application device such as a piezo method, thermal method, bubble jet (registered trademark) method used for home use or commercial use, spin coater Rotating coating method, roll coater coating, flexographic printing, screen printing, gravure printing, curtain coater coating, spray coater coating, etc., especially roll coater coating, curtain coater coating, spray coating with spray coater The method is preferred.
  • the substrate containing the dichroic dye solution is dried to form a solid dichroic dye layer to obtain a layer containing the dichroic dye of the present invention.
  • the drying conditions vary depending on the type of solvent, the type of dichroic dye, the amount of the solution containing the applied dichroic dye, the concentration of the dichroic dye, etc.
  • the drying temperature is preferably 5 to 100 ° C. Is 10 to 50 ° C.
  • the humidity is 20 to 95% RH, preferably about 30 to 90% RH.
  • the thickness of the layer containing the dichroic dye of the present invention is preferably thinner from the viewpoint of improving polarization characteristics, for example, 0.001 to 10 ⁇ m, particularly 0.05 to 2 ⁇ m.
  • the thickness of the coating film coated with a solution containing the dichroic dye is 2 to 10 ⁇ m.
  • the thickness is preferably 3 to 5 ⁇ m.
  • the stretched film of the present invention to which a solution containing a dichroic dye is applied may be further subjected to heat treatment and / or humidification treatment.
  • heat treatment and / or the humidification treatment By performing the heat treatment and / or the humidification treatment, the adhesion of the layer containing the dichroic dye to the stretched film of the present invention, the polarization performance of the resulting polarizing element, the dichroic ratio and the durability can be improved. it can.
  • the temperature of the heat treatment is room temperature to 110 ° C., preferably 60 to 90 ° C.
  • the humidity of the humidification treatment is about 40 to 95% RH, preferably about 50 to 90% RH.
  • the polarizing element of the present invention thus obtained has a dichroic ratio (Rd).
  • the dichroic ratio is generally defined as the ratio of absorbance along the absorption axis to absorbance along the transmission axis.
  • the dichroic ratio of the polarizing element of the present invention is calculated by the following formula (4). If the dichroic ratio is 5 or more, it means that the polarizing function is exhibited.
  • the dichroic ratio of the polarizing element of the present invention is 5 or more, preferably 10 or more, more preferably 15 or more, and still more preferably 20 or more. When the dichroic ratio is less than 5, the degree of polarization is less than 65%, and the function as a polarizing element is not sufficient.
  • the polarization degree of the polarizing element usually needs to be 65% or more, preferably 70% or more, more preferably 80% or more.
  • the degree of polarization is the ratio of the light intensity of the polarized component to the total light intensity, and the higher the degree of polarization, the higher the polarization performance.
  • Ky is the transmittance of the axis that transmits the most light when the polarized light is incident
  • Kz is the transmission of the axis that absorbs the most light when the polarized light is incident. Rate.
  • molecular anisotropy imparted to the surface of the stretched film in the same direction as the stretch axis of the stretched film with respect to the surface of the stretched film in the present invention can be further improved by further imparting molecular anisotropy larger than the property.
  • Examples of a method of developing a larger molecular anisotropy than the stretched film include a method of rubbing a stretched film. Such rubbing is exemplified in, for example, Japanese Patent Application Laid-Open Nos. 06-110059 and 2002-90743.
  • the measurement of the molecular anisotropy of the surface of a stretched film is not specifically limited, For example, it measures by the measuring method used for the anchoring measurement of the alignment film for liquid crystals. Also, an apparatus for measuring such molecular anisotropy is not particularly limited, and for example, MARITEX SCOTT's Ray Scan can be used.
  • a further retardation film having a slow axis or a fast axis of retardation at an angle different from the angle and showing molecular anisotropy on the surface in the major axis direction,
  • a polarizing element having a slow axis or a fast axis as a retardation axis and an absorption axis or a polarization axis at an angle different from the retardation axis.
  • the angle formed by the retardation axis of the retardation film and the absorption axis or polarization axis of the polarizing element is most preferably 15 °, 45 °, 75 °, or 90 °.
  • the reason why such an angle is preferable is that, in general, when linearly polarized light is to be controlled to circularly polarized light, a film having a phase difference of 1/4 with respect to the length of the wavelength to be controlled is used as the absorption axis of the polarizing element. It is known that it is installed at 45 ° to the angle.
  • the layer containing the dichroic dye of the present invention prepared as described above is in a solid state such as amorphous or crystalline, the layer containing the dichroic dye is usually inferior in mechanical strength.
  • the surface of the layer is provided with a rake treatment, a crosslinking treatment with a silane coupling agent, or a protective layer.
  • Rake is to electrically bond metal ions or the like to a dichroic dye exhibiting water solubility.
  • Making a dichroic dye into a rake is sometimes called rake or insolubilization.
  • Suitable compounds for rake include aluminum chloride, iron chloride, calcium chloride, barium chloride, nickel chloride, magnesium chloride, copper chloride, barium acetate, nickel acetate, etc.
  • the dichroic dye is not particularly limited as long as it can be bonded to each other and the dichroic dye can be insolubilized in water.
  • the crosslinking treatment with a silane coupling agent is not particularly limited.
  • a silane coupling agent as described in JP 2011-53234 A is subjected to a crosslinking treatment by heating, and the two A layer containing a chromatic dye can be immobilized.
  • the protective layer is usually a coating containing a dichroic dye with a transparent polymer film that is UV curable or thermosetting, or a laminate with a transparent polymer film such as a polyester film or cellulose acetate film. It is provided by the coating method.
  • the protective layer can be provided as a polymer coating layer or as a laminate layer of a film.
  • the transparent polymer or film forming the transparent protective layer is preferably a transparent polymer or film having high mechanical strength and good thermal stability.
  • a substance used as a transparent protective layer for example, cellulose acetate resin such as triacetyl cellulose or diacetyl cellulose or film thereof, acrylic resin or film thereof, polyvinyl chloride resin or film thereof, nylon resin or film thereof, polyester resin or film thereof A film, a polyarylate resin or a film thereof, a cyclic polyolefin resin having a cyclic olefin such as norbornene or a film thereof, polyethylene, polypropylene, a polyolefin having a cyclo or norbornene skeleton or a copolymer thereof, a main chain or a side chain Examples include imide and / or amide resins or polymers or films thereof.
  • a resin having liquid crystallinity or a film thereof can be provided as the transparent protective layer.
  • the thickness of the protective layer is, for example, about 0.5 to 200 ⁇ m.
  • One or more resins or films serving as protective layers can be provided on one or both sides of the polarizing element. When a plurality of protective layers are used, these protective layers may be the same or different. Good.
  • the polarizing element of the present invention can be used for polarized sunglasses, goggles and the like. Furthermore, in the polarizing element of the present invention, when a stretched film prepared from the above material is used as the base material, it is required when a normal polyvinyl alcohol film base material is used in the manufacture of the polarizing element of the present invention. No dichroic dye adsorption or stretching treatment in a boric acid solution is required. Therefore, it is possible to obtain a polarizing element in which there is no dimensional change of the substrate and no shrinkage.
  • the ability to manufacture a polarizing element without dimensional change is particularly effective for displays that require a polarizing element to be provided on one side of a display device such as a flexible display or an organic electroluminescence display (commonly referred to as OLED). Therefore, the polarizing element of the present invention can be provided in a display device such as a flexible display or an organic electroluminescence display. Further, unlike conventional methods for producing polarizing elements, the dichroic dye is applied to the stretched film of the present invention as a substrate without imposing strict conditions required for coating the dichroic dye.
  • the polarizing element of the present invention is very easy to produce because a polarizing element can be easily obtained by simply applying a solution containing dichroic acid, then drying and providing a layer containing a dichroic dye on the substrate. It is.
  • the transmittance and dichroic ratio (Rd) of each wavelength were measured using a spectrophotometer (manufactured by JASCO Corporation: V-7100).
  • the transmittance of each wavelength when the layer containing the dichroic dye is measured in one layer is the transmittance Ts, and the layers containing the two dichroic dyes have the same absorption axis direction.
  • the transmittance in the case of superimposition was defined as parallel transmittance Tp
  • the transmittance in the case where the layers containing two dichroic dyes were superposed so that their absorption axes were orthogonal to each other was defined as orthogonal transmittance Tc.
  • the degree of polarization ⁇ was determined from the parallel transmittance Tp and the orthogonal transmittance Tc according to the equation (5).
  • Example 1 C. as a dichroic dye is applied to the non-adhesion treated surface of a stretched film (Cosmo Shine SRF film manufactured by Toyobo Co., Ltd.) having a retardation of 10500 nm and a thickness of 100 ⁇ m.
  • a solution containing 4 parts by weight of Direct Blue 67, 0.15 parts by weight of polyoxyethylene polyoxypropylene alkyl ether (Emalgen MS-110 manufactured by Kao Corporation), and 100 parts by weight of water is spaced 3 ⁇ m from the stretched film. It apply
  • the dried coating film was heat-treated and humidified for 5 minutes in an environment of 60 ° C. and 90% humidity to obtain a layer containing a dichroic dye having a thickness of 0.15 ⁇ m.
  • An acrylic resin-based ultraviolet curable resin composition (SPC-920C manufactured by Nippon Kayaku Co., Ltd.) is applied on the obtained layer containing the dichroic dye so that the thickness of the protective layer after curing is 3 ⁇ m.
  • the resin composition was cured by applying with a spin coater and then irradiating with ultraviolet rays, and a protective layer was provided on the layer containing the dichroic dye.
  • the polarizing element thus obtained was used as a measurement sample.
  • Example 2 A rubbing cloth (MK0012 manufactured by Myonaka Pile Textile Co., Ltd.) is applied to the non-adhesive treated surface of the stretched film having a retardation of 10500 nm used in Example 1 along the direction of 0 ° with respect to the slow axis of the stretched film.
  • a measurement sample was prepared in the same manner as in Example 1 except that the rubbing treatment was further performed with a wound roll under the condition of a speed of 100 rpm and a load of 5 kgf. At this time, the angle of the stretched film with respect to the slow axis was measured by KOBRA-21ADH (manufactured by Oji Scientific Instruments).
  • Example 3 The rubbing treatment was performed with a roll in which a rubbing cloth was wound along the direction of 45 ° with respect to the slow axis of the stretched film on the non-easy-adhesion treated surface of the stretched film having a retardation of 10500 nm used in Example 1.
  • a measurement sample was prepared in the same manner as in Example 2 except that.
  • Example 4 The rubbing treatment was performed on the non-adhesive treated surface of the stretched film having a retardation of 10500 nm used in Example 1 with a roll in which a rubbing cloth was wound along the direction of 90 ° with respect to the slow axis of the stretched film.
  • a measurement sample was prepared in the same manner as in Example 2 except for the above.
  • Example 5 Instead of the stretched film having a retardation of 10500 nm used in Example 1 as a substrate, a stretched film of polyethylene terephthalate having a retardation of 35000 nm (SKYGREEN PETG K2012 (manufactured by Mitsubishi Corporation Plastics) was melted at 230 ° C. A measurement sample was prepared in the same manner as in Example 1 except that an unstretched PET film molded to a film thickness of 100 ⁇ m was uniaxially stretched about 4 times.
  • SKYGREEN PETG K2012 manufactured by Mitsubishi Corporation Plastics
  • Example 6 As a base material, instead of the film having a retardation of 10500 nm used in Example 1, a stretched film of polyethylene terephthalate having a retardation of 3500 nm (SKYGREEN PETG K2012 (manufactured by Mitsubishi Corporation Plastics) was melted at 230 ° C. to 100 ⁇ m. A measurement sample was prepared in the same manner as in Example 1 except that an unstretched PET film molded to have a film thickness of about 2.1 times was uniaxially stretched about 2.1 times.
  • SKYGREEN PETG K2012 manufactured by Mitsubishi Corporation Plastics
  • Comparative Example 1 Instead of the stretched PET film of Example 1, as a base material, unstretched PET film formed by melting SKYGREEN PETG K2012 (manufactured by Mitsubishi Corporation Plastics) at 230 ° C. to a film thickness of 100 ⁇ m. A measurement sample was prepared in the same manner as in Example 1 except that was used.
  • Comparative Example 2 A measurement sample was prepared in the same manner as in Example 1 except that the unstretched PET film of Comparative Example 1 was uniaxially stretched 1.5 times to obtain a film having a retardation of 1000 nm.
  • Table 1 shows Ts, Tp, Tc, ⁇ , and Rd at the wavelength with the highest degree of polarization obtained by measuring the samples obtained in Examples 1 to 6 and Comparative Examples 1 and 2.
  • the polarizing elements of the present invention using stretched films having retardation values in Examples 1 to 6 exhibit a high degree of polarization ( ⁇ ) and a high dichroic ratio (Rd). I understand that.
  • the polarizing element of the present invention exhibits a high degree of polarization of 85% or more and a high dichroism of 5 or more. Furthermore, in the production of the polarizing element of the present invention, it is not necessary to adsorb a dichroic dye or to be stretched in a boric acid solution, which is necessary when a normal polyvinyl alcohol film base material is used.
  • the polarizing element can be produced without any dimensional change or shrinkage of the substrate. That is, the polarizing element of the present invention is merely a laminate of a specific base material and a layer containing a dichroic dye. From this, it can be seen that the polarizing element of the present invention is a polarizing element that has excellent polarization performance and can be easily produced.
  • the polarizing element of the present invention is not a polarizing element using a polyvinyl alcohol resin film like a conventional polarizing element, but by applying a solution containing a dichroic dye to a stretched substrate having a specific retardation. Since a polarizing element can be produced, processes such as swelling, dyeing and stretching required in conventional processes are unnecessary, and the polarizing element can be produced easily. In addition, since a polarizing element film can be formed using only a dichroic dye as a component exhibiting a polarizing function, an ultrathin polarizing element can be formed.
  • a polarizing element can be produced by applying a solution containing a dichroic dye, it is not limited to the shape of a flat polarizing element such as a conventional polarizing plate, It is also possible to form a spherical polarizing element.
  • the conventional stretched film can only form a polarizing plate that allows polarized light perpendicular to the stretching direction to pass, but the polarizing element of the present invention arbitrarily sets the orientation direction with respect to the rubbed substrate. Therefore, it is possible to form a polarizing element provided with a fine pattern and a polarization property in an arbitrary direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a polarizing element that can be easily manufactured and has excellent polarization performance, and a display device that is provided with the polarizing element. A polarizing element of the present invention is characterized in that a stretched film having a retardation of 3000-50000 nm and a layer containing at least one type of dichroic dye are stacked therein and in that the thickness of the stretched film is 20-500 μm. This polarizing element employing this specific stretched film exhibits a high degree of polarization, specifically, a degree of polarization of 85% or higher, and exhibits high dichroism, specifically, dichroism of five or higher.

Description

高いリタデーションを有するフィルムと、二色性色素を含有する層とが積層されてなる偏光素子、並びにこれを設けた表示装置A polarizing element in which a film having high retardation and a layer containing a dichroic dye are laminated, and a display device provided with the polarizing element
 本発明は、高いリタデーションを有するフィルムと、二色性色素を含有する層とが積層された偏光素子に関する。また、本発明は、当該偏光素子を設けた表示装置に関する。 The present invention relates to a polarizing element in which a film having high retardation and a layer containing a dichroic dye are laminated. The present invention also relates to a display device provided with the polarizing element.
 液晶表示装置、サングラス、ゴーグルなどに使用されている偏光素子は、一般的には、ポリビニルアルコールのような高分子物質から作製した膜にヨウ素又は二色性染料などの二色性色素を吸着させ、次いで得られた膜を一軸延伸し、二色性色素分子を一定方向に配向させるか、又は、高分子膜を一軸延伸した後に二色性色素を吸着させる方法によって製造される。しかしながら、これらの方法によって得られる偏光素子の偏光軸と吸収軸は、互いに垂直であるため、偏光素子の形状は、通常、平板状に限定される。さらに、このような偏光素子の製造には、ポリビニルアルコールフィルムの膨潤、染色し、引き続き、これをホウ酸水溶液中での延伸処理し、さらに、水洗処理及び乾燥処理をした後、得られたフィルムに接着剤を用いて保護フィルムを貼合せるといった煩雑な工程が必要であった。また、より簡易的に所望とする部分に偏光素子を設けることが求められていた。 In general, polarizing elements used in liquid crystal display devices, sunglasses, goggles, etc., adsorb dichroic dyes such as iodine or dichroic dyes on a film made of a polymer material such as polyvinyl alcohol. Subsequently, the obtained film is uniaxially stretched, and the dichroic dye molecules are oriented in a certain direction, or the polymer film is uniaxially stretched and then the dichroic dye is adsorbed. However, since the polarization axis and the absorption axis of the polarizing element obtained by these methods are perpendicular to each other, the shape of the polarizing element is usually limited to a flat plate shape. Further, for the production of such a polarizing element, the polyvinyl alcohol film is swelled and dyed, and subsequently subjected to a stretching treatment in an aqueous boric acid solution, followed by a washing treatment and a drying treatment, and then the obtained film. The complicated process of bonding a protective film to an adhesive was required. Further, it has been required to provide a polarizing element at a desired portion more simply.
 このような従来の偏光素子の問題点に鑑み、非特許文献1は、ラビング処理により二色性色素分子を一定方向に配向させて偏光子を作製する方法を開示している。しかしながら、ラビング処理における擦り工程により生じる基板上の傷及び塵、さらには静電気が原因で発生する電気的な傷等により、基板上への色素溶液の塗工性が低下してしまう。そのため、得られた色素膜上に塗工されていない箇所(塗工不良)が存在し、その結果、当該色素膜を有する偏光素子において偏光性能の品質は満足がいくものではなかった。 In view of the problems of such a conventional polarizing element, Non-Patent Document 1 discloses a method for producing a polarizer by orienting dichroic dye molecules in a certain direction by rubbing treatment. However, the coating property of the dye solution on the substrate is lowered due to scratches and dust on the substrate caused by the rubbing process in the rubbing process, and electrical scratches caused by static electricity. For this reason, there is a portion (coating failure) that is not coated on the obtained dye film, and as a result, the polarization performance quality of the polarizing element having the dye film is not satisfactory.
 特許文献1では、光配向膜を用いて当該光配向膜に接する二色性色素分子を任意の方向に配向させることにより偏光性能が高い偏光子を得る技術を開示している。しかしながら、偏光素子の色素膜の表面を原子間力顕微鏡(AFM)で観察すると、二色性色素が均一に配向している部分と、二色性色素が殆ど存在せず、配向していない部分(クレーター)が存在する。そのため、得られた偏光素子の偏光性能は、表示素子用の偏光素子における実用水準としては、十分な要求に応えられていなかった。 Patent Document 1 discloses a technique for obtaining a polarizer having high polarization performance by orienting dichroic dye molecules in contact with the photo-alignment film in an arbitrary direction using the photo-alignment film. However, when the surface of the dye film of the polarizing element is observed with an atomic force microscope (AFM), a portion where the dichroic dye is uniformly oriented and a portion where the dichroic dye is hardly present and are not oriented. (Crater) exists. For this reason, the polarizing performance of the obtained polarizing element has not been able to meet sufficient requirements as a practical level in the polarizing element for display elements.
 特許文献2には、二色性色素分子の配向の均一性及び得られる偏光素子の偏光性能のさらなる改善のため、クレーターの発生を極力減らし、二色性色素化合物の配向を全体的に高めて表示素子用として実用水準にある偏光素子を製造する方法が開示されている。偏光素子は、光活性基を有する液晶性高分子薄膜を配向膜とし、該薄膜に直線偏光を照射し、偏光照射部分の光活性基の分子軸を一定方向に配列させ、次いで別のマイクロパターン状のマスクを介して異なる偏光軸を有する直線偏光を照射した後、該薄膜上に基板に対して垂直方向に特定の範囲の圧力が懸かるように二色性色素溶液をロールコーターで塗布することにより製造方法される。しかしながら、偏光素子の作製において、ロールと基板間に特定の圧力が懸かるようにする必要があり、押し圧を厳密に制御しなければならない。そのため、このような厳密な圧力制御を要さずとも、より簡便に製造可能な偏光性能に優れた偏光素子の開発が望まれている。 In Patent Document 2, in order to further improve the uniformity of the orientation of the dichroic dye molecules and the polarization performance of the obtained polarizing element, the generation of craters is reduced as much as possible, and the orientation of the dichroic dye compound is increased overall. A method of manufacturing a polarizing element at a practical level for a display element is disclosed. The polarizing element uses a liquid crystalline polymer thin film having a photoactive group as an alignment film, irradiates the thin film with linearly polarized light, aligns the molecular axes of the photoactive groups of the polarized light irradiation portion in a certain direction, and then another micropattern. After irradiating linearly polarized light having different polarization axes through a mask, a dichroic dye solution is applied onto the thin film with a roll coater so that a specific range of pressure is applied in a direction perpendicular to the substrate. By the manufacturing method. However, in the production of the polarizing element, it is necessary to apply a specific pressure between the roll and the substrate, and the pressing pressure must be strictly controlled. Therefore, it is desired to develop a polarizing element having excellent polarization performance that can be manufactured more easily without requiring such strict pressure control.
特開平7-261024号公報JP-A-7-261024 特許第4175455号公報Japanese Patent No. 4175455
 従来の二色性色素を含有する組成物を塗布して得られた色素膜を有する偏光素子は、ラビング処理等による影響により、十分に満足できる偏光性能が得られていなかった。そのため、さらに偏光性能を向上させる必要がある。また、このような偏光性能に優れた偏光素子を、より簡便に製造することも望まれている。 A polarizing element having a dye film obtained by applying a composition containing a conventional dichroic dye does not have a sufficiently satisfactory polarizing performance due to the influence of rubbing treatment or the like. Therefore, it is necessary to further improve the polarization performance. It is also desired to manufacture a polarizing element having excellent polarization performance more easily.
 したがって、本発明の目的は、簡便に製造可能な偏光性能に優れた偏光素子、及びこれを設けた表示装置を提供することにある。 Therefore, an object of the present invention is to provide a polarizing element excellent in polarization performance that can be easily manufactured, and a display device provided with the polarizing element.
 本発明者は、前記課題を解決すべく鋭意検討の結果、3000~50000nmのリタデーションを有する延伸フィルムと、二色性色素を含有する層とが積層され、前記延伸フィルムの厚さが20~500μmである偏光素子を用いることにより、簡便に製造可能な偏光性能に優れた偏光素子が得られることを新規に見出した。 As a result of intensive studies to solve the above problems, the present inventor laminated a stretched film having a retardation of 3000 to 50000 nm and a layer containing a dichroic dye, and the thickness of the stretched film was 20 to 500 μm. It was newly found that a polarizing element excellent in polarization performance that can be easily produced can be obtained by using the polarizing element.
 すなわち、本発明の要旨構成は、以下の通りである。
(1)3000~50000nmのリタデーションを有する延伸フィルムと、1種以上の二色性色素を含有する層とを積層し、前記延伸フィルムの厚さが20~500μmであることを特徴とする偏光素子。
(2)前記延伸フィルムが、ポリエチレンテレフタレートからなることを特徴とする(1)に記載の偏光素子。
(3)二色比が、5以上であることを特徴とする(1)又は(2)に記載の偏光素子。
(4)前記延伸フィルムの延伸軸と同一方向に、該延伸フィルムの表面に付与されている分子異方性よりも大きい分子異方性がさらに付与されていることを特徴とする(1)乃至(3)のいずれか1つに記載の偏光素子。
(5)前記延伸フィルム上に、フィルムの長軸方向に対して、10°~100°の角度に位相差の遅相軸又は進相軸を有する位相差フィルムをさらに備えることを特徴とする(1)乃至(4)のいずれか1つに記載の偏光素子。
(6)前記二色性色素の少なくとも一つが、下記式(1)で表される化合物又はその塩であることを特徴とする(1)乃至(5)のいずれか1つに記載の偏光素子。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
は、1つ若しくは2つのスルホン酸基と、水酸基若しくは1乃至3の炭素数を有するアルコキシ基とを有するフェニル基又はナフチル基を表し、
及びXは、それぞれ独立して、フェニレン基又はナフチレン基を表し、該フェニレン基又はナフチレン基は、1乃至3の炭素数を有するアルキル基、1乃至3の炭素数を有するアルコキシ基、水酸基及びスルホン酸基からなる群から選択される1種又は2種の置換基を1つ又は2つ有しており、
は、水素原子、1乃至3の炭素数を有するアルキル基、アセチル基、ベンゾイル基、或いは、非置換のフェニル基又は1乃至4の炭素数を有するアルキル基、1乃至4の炭素数を有するアルコキシル基、アミノ基若しくはスルホ基で置換されたフェニル基を表し、
mは、0又は1であり、かつ
nは、1又は2である)
(7)Xが、置換基として下記式(3)で表される化合物又はその塩であることを特徴とする(6)に記載の偏光素子。
Figure JPOXMLDOC01-appb-C000004
(式(3)中、jは1又は2である)
(8)前記二色性色素を含有する層は、ポリオキシエチレンポリオキシプロピレンアルキルエーテル又はポリオキシエチレンポリオキシプロピレンブロックポリマーをさらに含有することを特徴とする(1)乃至(7)のいずれか1つに記載の偏光素子。
(9)(1)乃至(8)のいずれか1つに記載の偏光素子を設けた表示装置。
That is, the gist configuration of the present invention is as follows.
(1) A polarizing element comprising a stretched film having a retardation of 3000 to 50000 nm and a layer containing one or more dichroic dyes, wherein the stretched film has a thickness of 20 to 500 μm. .
(2) The polarizing element according to (1), wherein the stretched film is made of polyethylene terephthalate.
(3) The polarizing element according to (1) or (2), wherein the dichroic ratio is 5 or more.
(4) The molecular anisotropy larger than the molecular anisotropy imparted to the surface of the stretched film is further imparted in the same direction as the stretch axis of the stretched film. The polarizing element as described in any one of (3).
(5) The film further comprises a retardation film having a slow axis or a fast axis of retardation at an angle of 10 ° to 100 ° with respect to the major axis direction of the film on the stretched film ( 1) The polarizing element as described in any one of (4).
(6) The polarizing element according to any one of (1) to (5), wherein at least one of the dichroic dyes is a compound represented by the following formula (1) or a salt thereof: .
Figure JPOXMLDOC01-appb-C000003
(In the formula (1),
X 1 represents a phenyl group or a naphthyl group having one or two sulfonic acid groups and a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms,
X 2 and X 3 each independently represent a phenylene group or a naphthylene group, and the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents of one or two types selected from the group consisting of a hydroxyl group and a sulfonic acid group;
R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Represents a phenyl group substituted with an alkoxyl group, an amino group or a sulfo group,
m is 0 or 1 and n is 1 or 2)
(7) The polarizing element according to (6), wherein X 1 is a compound represented by the following formula (3) or a salt thereof as a substituent.
Figure JPOXMLDOC01-appb-C000004
(In formula (3), j is 1 or 2)
(8) The layer containing the dichroic dye further contains a polyoxyethylene polyoxypropylene alkyl ether or a polyoxyethylene polyoxypropylene block polymer, any one of (1) to (7) The polarizing element as described in one.
(9) A display device provided with the polarizing element according to any one of (1) to (8).
 3000~50000nmのリタデーションを有するフィルムと、二色性色素を含有する層とが積層されていることを特徴とする本発明の偏光素子は、基材として、20~500μmの厚さの高いリタデーションを有する延伸フィルムを使用している。このような特定の延伸フィルムを用いた本発明の偏光素子は、高い偏光度、特に85%以上の偏光度と、高い二色性、特に5以上の二色性を示す。したがって、基材として、本発明における特定の延伸フィルムを用いることにより、偏光性能に優れた偏光素子を得ることができる。また、本発明の偏光素子は、特定の基材と、二色性色素を含有する層とを積層したものある。したがって、本発明の構成により、偏光性能に優れた簡便に製造可能な高性能な偏光素子を得ることができる。 The polarizing element of the present invention, wherein a film having a retardation of 3000 to 50000 nm and a layer containing a dichroic dye are laminated, has a high retardation of 20 to 500 μm as a substrate. A stretched film is used. The polarizing element of the present invention using such a specific stretched film exhibits a high degree of polarization, particularly a degree of polarization of 85% or more, and a high dichroism, particularly 5 or more. Therefore, a polarizing element excellent in polarizing performance can be obtained by using the specific stretched film in the present invention as the substrate. Moreover, the polarizing element of the present invention is obtained by laminating a specific base material and a layer containing a dichroic dye. Therefore, according to the configuration of the present invention, it is possible to obtain a high-performance polarizing element excellent in polarization performance and easily manufactured.
 以下に、本発明を詳細に説明する。以下において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、特に言及されない限り、式(1)~式(3)で表される化合物(置換基)は、遊離酸の形で表し、遊離酸の塩とは、例えば、スルホン酸基やヒロドキシ基の塩を意味する。また、以下の説明において、特に言及されない限り、煩雑さを避けるため、「式(1)で表される化合物又はその塩」、「式(2)で表される化合物又はその塩」、「置換基として式(3)で表される化合物又はその塩」は、それぞれ、「式(1)で表される化合物」、「式(2)で表される化合物」、「置換基として式(3)で表される化合物」と便宜上記載する。 Hereinafter, the present invention will be described in detail. In the following, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value. Unless otherwise specified, the compounds (substituents) represented by the formulas (1) to (3) are represented in the form of a free acid, and the free acid salt is, for example, a sulfonic acid group or a hydroxy group. Means salt. Further, in the following description, unless otherwise specified, in order to avoid complication, “a compound represented by formula (1) or a salt thereof”, “a compound represented by formula (2) or a salt thereof”, “substitution” The compound represented by the formula (3) or a salt thereof as a group is respectively “the compound represented by the formula (1)”, “the compound represented by the formula (2)”, “the compound represented by the formula (3) For the sake of convenience.
 まず、本発明を構成する偏光素子について説明する。本発明の偏光素子は、3000~50000nmのリタデーションを有する延伸フィルムと、二色性色素を含有する層とが積層され、前記延伸フィルムの厚さが20~500μmである偏光素子である。 First, the polarizing element constituting the present invention will be described. The polarizing element of the present invention is a polarizing element in which a stretched film having a retardation of 3000 to 50000 nm and a layer containing a dichroic dye are laminated, and the thickness of the stretched film is 20 to 500 μm.
(延伸フィルム)
 本発明の偏光素子は、基材として、3000~50000nmのリタデーションを有する延伸フィルムを使用する。この延伸フィルムの素材は、特に制限されるものではないが、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリスチレン、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、シクロオレフィンポリマー等の樹脂が挙げられる。その中でも、ポリカーボネート又はポリエステルが特に好ましい。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れており、延伸加工によって容易にフィルムのリタデーションを制御することができ、また、延伸後の結晶化度が高いため、従来の偏光素子で用いられているポリビニルアルコール系フィルムよりも、延伸後の熱収縮等の寸法変化が少なく、それ故、従来のポリビニルアルコール系フィルムを用いた偏光素子よりも寸法変化を極端に少なくすることができる。また、本発明で用いる延伸フィルムは、20~500μmの比較的薄い厚さであっても、上記のような高いリタデーションを有する。このような延伸フィルムの素材として、特に、ポリエチレンテレフタレートに代表されるポリエステルは固有複屈折が大きく、延伸フィルムの厚さが比較的薄くても、比較的容易に高いリタデーションが得られるため、最も好適な素材である。
(Stretched film)
The polarizing element of the present invention uses a stretched film having a retardation of 3000 to 50000 nm as a substrate. The material of the stretched film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate and polyethylene naphthalate, resins such as polycarbonate, polystyrene, polyetheretherketone, polyphenylene sulfide, and cycloolefin polymer. Among these, polycarbonate or polyester is particularly preferable. These resins have excellent transparency, thermal and mechanical properties, can easily control the retardation of the film by stretching, and have a high degree of crystallinity after stretching. There is less dimensional change such as heat shrinkage after stretching than the polyvinyl alcohol film used in the polarizing element, and therefore, the dimensional change is extremely less than that of the polarizing element using the conventional polyvinyl alcohol film. be able to. In addition, the stretched film used in the present invention has such a high retardation as described above even if it has a relatively thin thickness of 20 to 500 μm. As a material for such a stretched film, in particular polyester represented by polyethylene terephthalate has a large intrinsic birefringence, and even if the thickness of the stretched film is relatively thin, it is most suitable because a high retardation can be obtained relatively easily. Material.
 延伸フィルム中の分子配向が高い程、つまりはリタデーションが高いほど、当該延伸フィルム上に塗布された二色性色素分子の配向が向上する。そのため、高い偏光度を有する偏光素子を得るには、高いリタデーションを有する延伸フィルムの使用が好ましい。上記の通り、本発明の偏光素子で用いられる延伸フィルムが有するリタデーションの範囲は、3000~50000nmである。50000nmを超えるリタデーションを有する高分子フィルムは、硬直しやすく、フィルムの厚さも相応して厚くなり、その結果、工業材料としての取り扱い性が低下するため好ましくない。一方で、視認性の観点から、3000~30000nmのリタデーションの範囲を有する延伸フィルムを用いることが好ましい。偏光サングラスなどの偏光板を通して表示画面を観察すると、強い干渉色を呈する特異的に良好な性能を有することが知られている。一方、3000~30000nmのリタデーションの範囲であれば、このような干渉が現れず、良好な視認性を確保できる。しかしながら、リタデーションが3000nm未満では、偏光サングラスなどの偏光板を通して表示画面を観察すると、強い干渉色を呈するため、包絡線形状が光源の発光スペクトルと相違し、その結果、良好な視認性を確保することができず、偏光素子の性能は低下してしまう。したがって、本発明の偏光素子で用いられる延伸フィルムのリタデーションの範囲は、3000~50000nmであり、好ましいリタデーションの下限値は4500nm、より好ましい下限値は6000nm、更に好ましい下限値は8000nm、より更に好ましい下限値は10000nmであり、好ましいリタデーションの上限値は30000nmである。 The higher the molecular orientation in the stretched film, that is, the higher the retardation, the better the orientation of the dichroic dye molecules applied on the stretched film. Therefore, in order to obtain a polarizing element having a high degree of polarization, it is preferable to use a stretched film having a high retardation. As described above, the retardation range of the stretched film used in the polarizing element of the present invention is 3000 to 50000 nm. A polymer film having a retardation exceeding 50000 nm is not preferable because it easily stiffens and the thickness of the film is correspondingly increased. As a result, the handleability as an industrial material is lowered. On the other hand, from the viewpoint of visibility, it is preferable to use a stretched film having a retardation range of 3000 to 30000 nm. It is known that when a display screen is observed through a polarizing plate such as polarized sunglasses, it has a particularly good performance that exhibits a strong interference color. On the other hand, when the retardation is in the range of 3000 to 30000 nm, such interference does not appear and good visibility can be secured. However, when the retardation is less than 3000 nm, when the display screen is observed through a polarizing plate such as polarized sunglasses, a strong interference color is exhibited. Therefore, the envelope shape is different from the emission spectrum of the light source, and as a result, good visibility is ensured. This is not possible, and the performance of the polarizing element is degraded. Therefore, the retardation range of the stretched film used in the polarizing element of the present invention is 3000 to 50000 nm, the preferred lower limit of retardation is 4500 nm, the more preferred lower limit is 6000 nm, the still more preferred lower limit is 8000 nm, and the still more preferred lower limit. The value is 10,000 nm, and the preferable upper limit of retardation is 30000 nm.
 本発明の偏光素子に用いられる延伸フィルムの製造方法は、本発明で規定した延伸フィルム特性を満足する限り、特に限定されるものではない。また、使用される延伸フィルムとしては、例えば、特開2012-230390号公報、特開2012-256014号公報に記載されているフィルムや、東洋紡社製のポリエチレンテレフタレートフィルムであるコスモシャイン(超複屈折タイプフィルム(SRFフィルム))が挙げられ、このような延伸フィルムの使用により、フィルム表面に分子異方性が発現し、二色性色素分子を配向させることができる。フィルムが延伸された状態とは、フィルム表面における二色性色素分子の配向に関して異方性が発現し、リタデーションが発現した状態になっていることを指す。この異方性の発現は、X線測定による回折測定、位相差測定、異方性IR吸光分析などにより測定することができる。特に、「Alexxander,L.E.Diffraction Methods in polymer Science New York」1969年,Chapter 4, p.241-252に記載のfcの算出方法によって得られる配向係数において、fcが0.3以上であればよく、0.5以上であれば好ましく、0.7以上がより好ましく、0.9以上が特に好ましい。フィルムの延伸方法は、異方性が発現すれば特に限定されるものではないが、特に、一軸延伸されたフィルムを用いることにより、引き続き二色性色素を含有する溶液の塗布において、二色性色素分子はその延伸方向に高い配向を示し、その結果、高い偏光度を示す偏光素子を得ることができる。 The method for producing a stretched film used in the polarizing element of the present invention is not particularly limited as long as the stretched film characteristics defined in the present invention are satisfied. Examples of the stretched film used include films described in JP 2012-230390 A and JP 2012-256014 A, and Cosmo Shine (super-birefringence) which is a polyethylene terephthalate film manufactured by Toyobo. Type film (SRF film)). By using such a stretched film, molecular anisotropy is expressed on the film surface, and the dichroic dye molecules can be oriented. The state in which the film is stretched means that anisotropy is expressed with respect to the orientation of the dichroic dye molecules on the film surface, and retardation is expressed. The manifestation of this anisotropy can be measured by diffraction measurement by X-ray measurement, phase difference measurement, anisotropic IR absorption analysis, or the like. In particular, “Alexander, LE Diffraction Methods in polymer Science New York” 1969, Chapter 4, p. In the orientation coefficient obtained by the fc calculation method described in 241-252, fc should be 0.3 or more, preferably 0.5 or more, more preferably 0.7 or more, and 0.9 or more. Particularly preferred. The method of stretching the film is not particularly limited as long as anisotropy develops. In particular, by using a uniaxially stretched film, dichroism is subsequently applied in the application of a solution containing a dichroic dye. The dye molecules exhibit high orientation in the stretching direction, and as a result, a polarizing element having a high degree of polarization can be obtained.
 本発明において、リタデーション(位相差値)とは、フィルム上の二軸の屈折率の異方性とフィルムの厚みとの積で定義されるパラメーターであり、光学的等方性、異方性を示す尺度である。そのため、このリタデーションは、二軸方向の屈折率と厚みを測定することにより求めることが可能であり、例えば、KOBRA-21ADH(王子計測機器社製)等の市販の自動複屈折測定装置を用いて求めることができる。 In the present invention, the retardation (retardation value) is a parameter defined by the product of the biaxial refractive index anisotropy on the film and the thickness of the film. It is a scale to show. Therefore, this retardation can be obtained by measuring the refractive index and thickness in the biaxial direction, and for example, using a commercially available automatic birefringence measuring device such as KOBRA-21ADH (manufactured by Oji Scientific Instruments). Can be sought.
 基材としての上記延伸フィルムに、コロナ放電処理や紫外線照射を行うことによって、後述する偏光素子の二色性が向上し、得られる偏光素子の偏光特性を高めることが可能である。コロナ放電処理は、コロナ放電処理を行う装置として、市販の各種コロナ放電処理機を用いることにより適用可能であり、特に、アルミヘッドを有するコロナ処理機の使用が好ましい。コロナ放電処理の条件は、1回当たりのコロナ放電処理に際しては、エネルギー密度として、20~400W・min/m、好ましくは50~300W・min/m程度である。また、1回のコロナ放電処理で不十分な場合には、2回以上コロナ放電処理を行ってもよい。紫外線照射も同様に、市販の各種紫外線照射装置を用いることにより適用可能である。使用する紫外線の波長は、特に制限はないが、例えば300nm以下の遠紫外線が好ましい。また、紫外線照射は、酸素気流下で行なうことが好ましく、紫外線の照射時間は、長くても数分程度で十分である。 By performing corona discharge treatment or ultraviolet irradiation on the stretched film as the substrate, the dichroism of the polarizing element described later can be improved, and the polarization characteristics of the resulting polarizing element can be enhanced. The corona discharge treatment can be applied by using various commercially available corona discharge treatment machines as an apparatus for performing the corona discharge treatment, and the use of a corona treatment machine having an aluminum head is particularly preferable. The condition of the corona discharge treatment is 20 to 400 W · min / m 2 , preferably about 50 to 300 W · min / m 2 as the energy density in one corona discharge treatment. In addition, when one corona discharge treatment is insufficient, the corona discharge treatment may be performed twice or more. Similarly, ultraviolet irradiation can be applied by using various commercially available ultraviolet irradiation apparatuses. The wavelength of the ultraviolet rays used is not particularly limited, but for example, far ultraviolet rays of 300 nm or less are preferable. Further, the ultraviolet irradiation is preferably performed under an oxygen stream, and the irradiation time of ultraviolet rays is sufficient if it is several minutes at the longest.
(二色性色素)
 本発明の偏光素子は、偏光機能を示す素子としての色素膜を形成するため、二色性色素を含有する層を有する。二色性色素を含有する層を形成するための材料として二色性色素を使用し、当該二色性色素は、それ自身又は集合体で一定方向に配列することにより偏光性を示す化合物である。このような二色性色素としては、例えば、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素、アントラキノン系色素等の色素系化合物等が挙げられる。本発明で用いられる二色性色素は、一定の溶媒組成、色素濃度、温度条件下でリオトロピック液晶性を示す化合物であり、例えば、入江正浩監修,「機能性色素の応用」,第1刷発行版,株式会社CMC,2002年6月,p.102-104に記載の二色性色素が挙げられる。また、二色性色素は、水溶性アゾ色素を用いることが好ましく、その中でも、芳香族系環構造を有する化合物がより好ましい。芳香族系環構造としては、例えば、ベンゼン、ナフタリン、アントラセン、フェナントレンの他にチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、キノリン等の複素環或いはこれらの4級塩、更にはこれらとベンゼンやナフタリン等との縮合環が挙げられ、特に、これらの芳香族系環にスルホン酸基、カルボン酸基、アミノ基、水酸基等の親水性置換基、又はスルホン酸基若しくはカルボン酸基の塩が導入されていることが好ましい。
(Dichroic dye)
The polarizing element of the present invention has a layer containing a dichroic dye in order to form a dye film as an element exhibiting a polarizing function. A dichroic dye is used as a material for forming a layer containing a dichroic dye, and the dichroic dye is a compound that exhibits polarization by being arranged in a certain direction by itself or in an aggregate. . Examples of such dichroic dyes include dye compounds such as azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes, and anthraquinone dyes. Etc. The dichroic dye used in the present invention is a compound that exhibits lyotropic liquid crystal properties under a certain solvent composition, dye concentration, and temperature conditions. For example, supervised by Masahiro Irie, “Application of Functional Dyes”, First Printing Plate, CMC Co., Ltd., June 2002, p. 102-104. The dichroic dye is preferably a water-soluble azo dye, and among them, a compound having an aromatic ring structure is more preferable. As the aromatic ring structure, for example, in addition to benzene, naphthalene, anthracene, phenanthrene, a heterocyclic ring such as thiazole, pyridine, pyrimidine, pyridazine, pyrazine, quinoline, or a quaternary salt thereof, further, benzene, naphthalene, etc. In particular, a hydrophilic substituent such as a sulfonic acid group, a carboxylic acid group, an amino group, or a hydroxyl group, or a salt of a sulfonic acid group or a carboxylic acid group is introduced into these aromatic rings. Preferably it is.
 このような二色性色素の具体例として、例えば、C.I.Direct Orange 39、C.I.Direct Orange 41、C.I.Direct Orange 49、C.I.Direct Orange 72、C.I.Direct Red 2、C.I.Direct Red 28、C.I.Direct Red 39、C.I.Direct Red 79、C.I.Direct Red 81、C.I.Direct Red 83、C.I.Direct Red 89、C.I.Direct Violet 9、C.I.Direct Violet 35、C.I.Direct Violet 48、C.I.Direct Violet 57、C.I.Direct Blue1、C.I.Direct Blue 15、C.I.Direct Blue 67、C.I.Direct Blue 78、C.I.Direct Blue 83、C.I.Direct Blue 90、C.I.Direct Blue 98、C.I.Direct Blue 151、C.I.Direct Blue 168、C.I.Direct Blue 202、C.I.Direct Green 42、C.I.Direct Green 51、C.I.Direct Green 59、C.I.Direct Green 85、C.I.Direct Yellow 4、C.I.Direct Yellow 12、C.I.Direct Yellow 26、C.I.Direct Yellow 44、C.I.Direct Yellow 50、モルダントイエロー 26、C.I.No.27865、C.I.No.27915、C.I.No.27920、C.I.No.29058、C.I.No.29060等が挙げられ、さらに特開平1-161202号公報、特開平1-172906号公報、特開平1-172907号公報、特開平1-183602号公報、特開平1-248105号公報、特開平1-265205号公報、特開平9-230142号公報の各公報記載の二色性色素が挙げられる。 Specific examples of such dichroic dyes include C.I. I. Direct Orange 39, C.I. I. Direct Orange 41, C.I. I. Direct Orange 49, C.I. I. Direct Orange 72, C.I. I. Direct Red 2, C.I. I. Direct Red 28, C.I. I. Direct Red 39, C.I. I. Direct Red 79, C.I. I. Direct Red 81, C.I. I. Direct Red 83, C.I. I. Direct Red 89, C.I. I. Direct Violet 9, C.I. I. Direct Violet 35, C.I. I. Direct Violet 48, C.I. I. Direct Violet 57, C.I. I. Direct Blue1, C.I. I. Direct Blue 15, C.I. I. Direct Blue 67, C.I. I. Direct Blue 78, C.I. I. Direct Blue 83, C.I. I. Direct Blue 90, C.I. I. Direct Blue 98, C.I. I. Direct Blue 151, C.I. I. Direct Blue 168, C.I. I. Direct Blue 202, C.I. I. Direct Green 42, C.I. I. Direct Green 51, C.I. I. Direct Green 59, C.I. I. Direct Green 85, C.I. I. Direct Yellow 4, C.I. I. Direct Yellow 12, C.I. I. Direct Yellow 26, C.I. I. Direct Yellow 44, C.I. I. Direct Yellow 50, Moldant Yellow 26, C.I. I. No. 27865, C.I. I. No. 27915, C.I. I. No. 27920, C.I. I. No. 29058, C.I. I. No. In addition, JP-A-1-161202, JP-A-1-172906, JP-A-1-172907, JP-A-1-183602, JP-A-1-248105, JP-A-1 And dichroic dyes described in JP-A-9-230142 and JP-A-9-230142.
 上記の具体例に示した二色性色素の中でも、特に、以下の式(1)又は式(2)表される化合物が好ましく、特に、式(1)で表される化合物が好ましい。式(1)及び式(2)で表される化合物は、遊離酸又はその塩として存在する。当該遊離酸の塩は、特に限定されるものではなく、例えば、Li、Na、K等のアルカリ金属塩や、4級アンモニウム塩などの任意の塩であってよい。このような二色性色素を使用することにより、得られる偏光素子の偏光性能を向上させることができる。 Among the dichroic dyes shown in the above specific examples, compounds represented by the following formula (1) or (2) are particularly preferable, and compounds represented by the formula (1) are particularly preferable. The compound represented by Formula (1) and Formula (2) exists as a free acid or its salt. The salt of the free acid is not particularly limited, and may be any salt such as an alkali metal salt such as Li, Na, or K, or a quaternary ammonium salt. By using such a dichroic dye, the polarization performance of the obtained polarizing element can be improved.
Figure JPOXMLDOC01-appb-C000005
(式(1)中、
は、1つ若しくは2つのスルホン酸基と、水酸基若しくは1乃至3の炭素数を有するアルコキシ基を有するフェニル基またはナフチル基を表し、
及びXは、それぞれ独立して、フェニレン基又はナフチレン基を表し、当該フェニレン基又はナフチレン基は、1乃至3の炭素数を有するアルキル基、1乃至3の炭素数を有するアルコキシ基、水酸基及びスルホン酸基からなる群から選択される1種又は2種の置換基を1つ又は2つ有しており、
は、水素原子、1乃至3の炭素数を有するアルキル基、アセチル基、ベンゾイル基、或いは、非置換のフェニル基又は1乃至4の炭素数を有するアルキル基、1乃至4の炭素数を有するアルコキシル基、アミノ基若しくはスルホ基で置換されたフェニル基を表し、
mは、0又は1であり、
nは、1又は2である。)
Figure JPOXMLDOC01-appb-C000005
(In the formula (1),
X 1 represents a phenyl group or a naphthyl group having one or two sulfonic acid groups and a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms,
X 2 and X 3 each independently represent a phenylene group or a naphthylene group, and the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents of one or two types selected from the group consisting of a hydroxyl group and a sulfonic acid group;
R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Represents a phenyl group substituted with an alkoxyl group, an amino group or a sulfo group,
m is 0 or 1,
n is 1 or 2. )
Figure JPOXMLDOC01-appb-C000006
(式(2)中、
は、スルホン酸基を1つ又は2つ有し、さらに水酸基又は1乃至3の炭素数を有するアルコキシ基を有していてもよいナフチル基を表し、
及びYは、それぞれ独立して、フェニレン基又はナフチレン基を表し、当該フェニレン基又はナフチレン基は、1乃至3の炭素数を有するアルキル基、1乃至3の炭素数を有するアルコキシ基、水酸基及びスルホン酸基からなる群から選択される1種又は2種の置換基を1つ又は2つ有しており、
は、水素原子、1乃至3の炭素数を有するアルキル基、アセチル基、ベンゾイル基、或いは、非置換のフェニル基又は1乃至4の炭素数を有するアルキル基、1乃至4の炭素数を有するアルコキシル基、アミノ基若しくはスルホ基で置換されたフェニル基を表し、
フェニルアゾ基としての
Figure JPOXMLDOC01-appb-I000007
は、末端ナフチル基の5位、6位、7位又は8位のいずれかに置換されており、
及びRは、それぞれ独立して、水素原子、水酸基、スルホン酸基、1乃至3の炭素数を有するアルキル基又は1乃至3の炭素数を有するアルコキシ基を表し、
qは、0又は1であり、
pは、1又は2である。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (2),
Y 1 represents a naphthyl group having one or two sulfonic acid groups, and further having a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms,
Y 2 and Y 3 each independently represent a phenylene group or a naphthylene group, and the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents of one or two types selected from the group consisting of a hydroxyl group and a sulfonic acid group;
R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. Represents a phenyl group substituted with an alkoxyl group, an amino group or a sulfo group,
As phenylazo group
Figure JPOXMLDOC01-appb-I000007
Is substituted at any of the 5-position, 6-position, 7-position or 8-position of the terminal naphthyl group,
R 3 and R 4 each independently represent a hydrogen atom, a hydroxyl group, a sulfonic acid group, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms,
q is 0 or 1;
p is 1 or 2. )
 上記式(1)で表される化合物の具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000008
等が挙げられる。
Specific examples of the compound represented by the above formula (1) include, for example,
Figure JPOXMLDOC01-appb-C000008
Etc.
 また、式(2)で表される化合物の具体例としては、例えば、
Figure JPOXMLDOC01-appb-C000009
等が挙げられる。
Moreover, as a specific example of the compound represented by Formula (2), for example,
Figure JPOXMLDOC01-appb-C000009
Etc.
 式(1)又は式(2)で表される化合物の中でも、式(1)中のX又は式(2)中のYが、置換基として下記式(3)で表される化合物を有することによって、更に偏光性能を向上させることができ、特に、単独で高い二色比を有する点で、置換基として下記式(3)で表される化合物を有する式(1)で表される化合物の使用が好ましい。当該置換基も、式(1)及び式(2)で表される化合物と同様、遊離酸又はその塩として存在する。当該遊離酸の塩は、特に限定されるものではなく、例えば、Li、Na、K等のアルカリ金属塩や、4級アンモニウム塩などの任意の塩であってよい。 Among compounds represented by formula (1) or formula (2), X 1 in formula (1) or Y 1 in formula (2) is a compound represented by the following formula (3) as a substituent. By having it, the polarizing performance can be further improved. In particular, it is represented by the formula (1) having a compound represented by the following formula (3) as a substituent in that it has a high dichroic ratio alone. The use of compounds is preferred. The said substituent exists also as a free acid or its salt similarly to the compound represented by Formula (1) and Formula (2). The salt of the free acid is not particularly limited, and may be any salt such as an alkali metal salt such as Li, Na, or K, or a quaternary ammonium salt.
Figure JPOXMLDOC01-appb-C000010
(式(3)中、jは1又は2である。)
Figure JPOXMLDOC01-appb-C000010
(In formula (3), j is 1 or 2.)
 本発明において用いられる上記の二色性色素は、1種単独で使用してもよく、2種以上を併用してもよい。このような2種以上の二色性色素の併用は、特に限定されるものではないが、追加の二色性色素を使用することにより、二色性色素の二色比をさらに向上させることができる。 The dichroic dyes used in the present invention may be used alone or in combination of two or more. The combined use of such two or more dichroic dyes is not particularly limited, but by using an additional dichroic dye, the dichroic ratio of the dichroic dye can be further improved. it can.
 次に、本発明の偏光素子の作製方法について説明する。本発明の偏光素子は、上述した基材としての延伸フィルムに上記の二色性色素を含有する溶液を塗布し、次いで乾燥させ、延伸フィルム上に二色性色素を含有する層を形成することにより作製される。形成された二色性色素を含有する層は、偏光機能を示すため、基材と二色性色素を含有する層からなる積層体を偏光素子として使用してもよく、当該二色性色素を含有する層の表面にさらに保護層等が積層された積層体を偏光素子として使用してもよい。 Next, a method for producing the polarizing element of the present invention will be described. In the polarizing element of the present invention, a solution containing the dichroic dye described above is applied to the stretched film as the base material described above, and then dried to form a layer containing the dichroic dye on the stretched film. It is produced by. Since the layer containing the formed dichroic dye exhibits a polarizing function, a laminate composed of a base material and a layer containing the dichroic dye may be used as a polarizing element. A laminated body in which a protective layer or the like is further laminated on the surface of the contained layer may be used as the polarizing element.
 基材としての延伸フィルムに二色性色素分子を配向させるため、二色性色素を含有する溶液(塗布液)を作製する。塗布液としての溶媒は、使用される二色性色素を溶解できれば、特に限定されるものではなく、例えば、水、アルコール類、エーテル類、ピリジン、ジメチルホルムアミド(DMF)、ジメチルスルフォキシド(DMSO)、N-メチルピロリジノン(NMP)、ジメチルアセトアミド(DMAC)、ジメチルイミダゾリン(DMI)等が挙げられ、これらのうち、1種のみの溶媒が含まれていてもよく、或いは複数の溶媒が含まれていてもよい。特に、水溶性の二色性色素を使用する場合には、溶媒として、水又は水を主に含む上記有機溶剤との混合溶媒が好ましい。水に対する有機溶媒の水への混合量は任意であるが、水に対して0~50質量%、特に0~20質量%が好ましい。また、塗布液中の二色性色素の濃度は、好ましくは0.1~25質量%、より好ましくは0.3~10質量%、さらに好ましくは0.5~5質量%である。 In order to orient the dichroic dye molecules on the stretched film as the substrate, a solution (coating solution) containing the dichroic dye is prepared. The solvent as the coating solution is not particularly limited as long as the dichroic dye to be used can be dissolved. For example, water, alcohols, ethers, pyridine, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) ), N-methylpyrrolidinone (NMP), dimethylacetamide (DMAC), dimethylimidazoline (DMI), etc. Among these, only one kind of solvent may be included, or a plurality of solvents may be included. It may be. In particular, when a water-soluble dichroic dye is used, water or a mixed solvent with the above organic solvent mainly containing water is preferable as the solvent. The amount of the organic solvent mixed with water is arbitrary, but is preferably 0 to 50% by mass, particularly preferably 0 to 20% by mass with respect to water. The concentration of the dichroic dye in the coating solution is preferably 0.1 to 25% by mass, more preferably 0.3 to 10% by mass, and further preferably 0.5 to 5% by mass.
 また、本発明の偏光素子は、ポリオキシエチレンポリオキシプロピレンアルキルエーテル又はポリオキシエチレンポリオキシプロピレンブロックポリマーなる化合物をさらに含む塗布液を用いて形成された二色性色素を含有する層を有することにより、偏光性能をさらに向上させることができる。二色性色素を含有する層がこのような化合物をさらに含むことにより、従来、基材上への色素膜の作製において、塗布時に生じていた塗工不良を改善することができる。これらの化合物は、1種単独で使用してもよく、2種以上を併用してもよい。また、塗布液中のこれらの化合物の濃度は、0.001質量%~5質量%が好ましく、より好ましくは0.01質量%~2質量%、さらに好ましくは0.05質量%~1.0質量%である。 Moreover, the polarizing element of the present invention has a layer containing a dichroic dye formed using a coating solution further containing a compound of polyoxyethylene polyoxypropylene alkyl ether or polyoxyethylene polyoxypropylene block polymer. Thus, the polarization performance can be further improved. When the layer containing the dichroic dye further contains such a compound, it is possible to improve a coating defect that has occurred at the time of application in the production of a dye film on a substrate. These compounds may be used alone or in combination of two or more. The concentration of these compounds in the coating solution is preferably 0.001% by mass to 5% by mass, more preferably 0.01% by mass to 2% by mass, and still more preferably 0.05% by mass to 1.0% by mass. % By mass.
 次に、この二色性色素を含有した溶液を、基材としての本発明の延伸フィルム表面に滴下し、コーターや回転塗布法により、延伸フィルム上に均一の厚みを持つ二色性色素を含有する層、すなわち塗布膜を設ける。当該塗布膜を設ける方法は、当該二色性色素を含有する溶液を塗布することができれば、特に限定されるものではないが、例えば、二色性色素を含有する溶液に、本発明の延伸フィルムを浸漬させる方法、当該溶液をバーコーダー等で塗布する方法、家庭用途または商業用途で用いられるピエゾ方式、サーマル方式、バブルジェット(登録商標)方式などのインクジェットプリンタの塗布装置で塗布する方法、スピンコータにて回転塗布させる方法、ロールコーター塗布、フレキソ印刷、スクリーン印刷、グラビア印刷、カーテンコーター塗布、スプレイコーター塗布等が挙げられるが、特に、ロールコーター塗布、カーテンコーター塗布、スプレイコーターにて噴霧塗布する方法が好ましい。 Next, the solution containing this dichroic dye is dropped on the surface of the stretched film of the present invention as a base material, and contains a dichroic dye having a uniform thickness on the stretched film by a coater or spin coating method. A layer to be applied, ie, a coating film is provided. The method of providing the coating film is not particularly limited as long as the solution containing the dichroic dye can be applied. For example, the stretched film of the present invention is applied to the solution containing the dichroic dye. , A method of applying the solution with a bar coder, etc., a method of applying with an inkjet printer application device such as a piezo method, thermal method, bubble jet (registered trademark) method used for home use or commercial use, spin coater Rotating coating method, roll coater coating, flexographic printing, screen printing, gravure printing, curtain coater coating, spray coater coating, etc., especially roll coater coating, curtain coater coating, spray coating with spray coater The method is preferred.
 さらに、二色性色素の溶液を塗布した基材を乾燥し、固体状態の二色性色素の層を形成することにより、本発明の二色性色素を含む層が得られる。溶媒の種類、二色性色素の種類、塗布した二色性色素を含有する溶液の量、二色性色素の濃度などに応じて乾燥条件は異なるものの、乾燥温度は、5~100℃、好ましくは10~50℃であり、湿度は、20~95%RH、好ましくは30~90%RH程度がよい。 Further, the substrate containing the dichroic dye solution is dried to form a solid dichroic dye layer to obtain a layer containing the dichroic dye of the present invention. Although the drying conditions vary depending on the type of solvent, the type of dichroic dye, the amount of the solution containing the applied dichroic dye, the concentration of the dichroic dye, etc., the drying temperature is preferably 5 to 100 ° C. Is 10 to 50 ° C., and the humidity is 20 to 95% RH, preferably about 30 to 90% RH.
 本発明の二色性色素を含む層の厚さは、偏光特性の向上という観点から、薄い方が好ましく、例えば、0.001~10μm、特に、0.05~2μmであることが好ましい。また、このような厚さの範囲内にある本発明の二色性色素を含む層を形成するため、二色性色素を含有する溶液を塗布した塗布膜の厚さは、2~10μmであることが好ましく、3~5μmであることがより好ましい。 The thickness of the layer containing the dichroic dye of the present invention is preferably thinner from the viewpoint of improving polarization characteristics, for example, 0.001 to 10 μm, particularly 0.05 to 2 μm. In addition, in order to form a layer containing the dichroic dye of the present invention within such a thickness range, the thickness of the coating film coated with a solution containing the dichroic dye is 2 to 10 μm. The thickness is preferably 3 to 5 μm.
 また、二色性色素を含有する溶液を塗布した本発明の延伸フィルムは、さらに加熱処理及び/又は加湿処理を施してもよい。加熱処理及び/又は加湿処理を施すことによって、本発明の延伸フィルムへの二色性色素を含有する層の密着性、得られる偏光素子の偏光性能、二色比や耐久性を向上させることができる。加熱処理の温度は、室温~110℃、好ましくは60~90℃であり、加湿処理の湿度は、40~95%RH、好ましくは50~90%RH程度がよい。 Further, the stretched film of the present invention to which a solution containing a dichroic dye is applied may be further subjected to heat treatment and / or humidification treatment. By performing the heat treatment and / or the humidification treatment, the adhesion of the layer containing the dichroic dye to the stretched film of the present invention, the polarization performance of the resulting polarizing element, the dichroic ratio and the durability can be improved. it can. The temperature of the heat treatment is room temperature to 110 ° C., preferably 60 to 90 ° C., and the humidity of the humidification treatment is about 40 to 95% RH, preferably about 50 to 90% RH.
 このようにして得られた本発明の偏光素子は、二色比(Rd)を有している。当該二色比は、一般的に、透過軸に沿った吸光度に対する吸収軸に沿った吸光度の比として定義される。本発明の偏光素子の二色比は、下記式(4)にて算出され、二色比が5以上あれば、偏光機能を発揮することを意味する。本発明の偏光素子の二色比は、5以上であり、好ましくは10以上、より好ましくは15以上、さらに好ましくは20以上ある。二色比が5未満になると、偏光度は65%未満となり、偏光素子としての機能が十分ではない。偏光素子の偏光度としては、通常、65%以上必要であり、好ましくは70%以上、より好ましくは80%以上がよい。偏光度とは、全光強度に対する偏光した成分の光強度の割合であり、偏光度が高いほど、偏光性能が高いことを意味する。下記式(4)において、Kyとは偏光光を入射したした際に、最も光を透過する軸の透過率であり、Kzとは偏光光を入射した際に、最も光を吸収する軸の透過率である。 The polarizing element of the present invention thus obtained has a dichroic ratio (Rd). The dichroic ratio is generally defined as the ratio of absorbance along the absorption axis to absorbance along the transmission axis. The dichroic ratio of the polarizing element of the present invention is calculated by the following formula (4). If the dichroic ratio is 5 or more, it means that the polarizing function is exhibited. The dichroic ratio of the polarizing element of the present invention is 5 or more, preferably 10 or more, more preferably 15 or more, and still more preferably 20 or more. When the dichroic ratio is less than 5, the degree of polarization is less than 65%, and the function as a polarizing element is not sufficient. The polarization degree of the polarizing element usually needs to be 65% or more, preferably 70% or more, more preferably 80% or more. The degree of polarization is the ratio of the light intensity of the polarized component to the total light intensity, and the higher the degree of polarization, the higher the polarization performance. In the following formula (4), Ky is the transmittance of the axis that transmits the most light when the polarized light is incident, and Kz is the transmission of the axis that absorbs the most light when the polarized light is incident. Rate.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 本発明の偏光素子の二色比をより向上させる方法としては、本発明における延伸フィルムの表面に対して、当該延伸フィルムの延伸軸と同一方向に、延伸フィルムの表面に付与された分子異方性よりも大きい分子異方性をさらに付与させることにより、二色比をさらに向上させることができる。延伸されたフィルムよりも大きい分子異方性を発現させる方法としては、例えば、延伸フィルムをラビングする方法が挙げられる。このようなラビングは、例えば、特開平06-110059号公報、特開2002-90743号公報に例示されている。延伸フィルムの表面の分子異方性の測定は、特に限定されるものではないが、例えば、液晶用配向膜のアンカリング測定に用いられる測定方法によって計測される。また、このような分子異方性を測定する装置も、特に限定されるものではないが、例えば、MARITEX SCOTT社製 Lay Scan等を用いることができる。 As a method for further improving the dichroic ratio of the polarizing element of the present invention, molecular anisotropy imparted to the surface of the stretched film in the same direction as the stretch axis of the stretched film with respect to the surface of the stretched film in the present invention. The dichroic ratio can be further improved by further imparting molecular anisotropy larger than the property. Examples of a method of developing a larger molecular anisotropy than the stretched film include a method of rubbing a stretched film. Such rubbing is exemplified in, for example, Japanese Patent Application Laid-Open Nos. 06-110059 and 2002-90743. Although the measurement of the molecular anisotropy of the surface of a stretched film is not specifically limited, For example, it measures by the measuring method used for the anchoring measurement of the alignment film for liquid crystals. Also, an apparatus for measuring such molecular anisotropy is not particularly limited, and for example, MARITEX SCOTT's Ray Scan can be used.
 本発明の延伸フィルム上に、フィルムの長軸方向とは異なる角度、好ましくは10°~100°に位相差の遅相軸又は進相軸を有するフィルムの表面に、長軸方向に分子異方性を示す位相差フィルムをさらに積層した偏光素子を作製することも可能である。このような位相差フィルムは、任意の角度に位相差の遅相軸又は進相軸を有する位相差フィルムの表面に、ラビング等により長軸方向に分子異方性を付与させることによって得られ、これにより偏光素子の偏光軸又は吸収軸を任意に制御することができる。つまり、フィルムの長軸方向に対して、その角度とは異なる角度に位相差の遅相軸又は進相軸を有し、長軸方向の表面に分子異方性を示すさらなる位相差フィルムを、本発明の延伸フィルム上に用いることによって、位相差軸としての遅相軸又は進相軸と、当該位相差軸とは異なる角度に吸収軸又は偏光軸を有する偏光素子を作製することが可能となる。当該位相差フィルムの当該位相差軸と、偏光素子の吸収軸又は偏光軸とのなす角度は、15°、45°、75°、90°のいずれかであることが最も好ましい。そのような角度が好ましい理由としては、一般的に、直線偏光を円偏光に制御したい場合、制御したい波長の長さに対して、1/4の位相差をもつフィルムを、偏光素子の吸収軸に対して45°に設置することが知られている。また、直線偏光の偏光軸を逆にする方法として、制御したい波長の長さに対して、1/2の位相差をもつフィルムを90°に設置することが知られている。当該フィルムを、偏光素子の吸収軸又若しくは偏光軸に対して15°又は75°に設置する理由としては、このような角度は、広範囲の波長に対して1/4の位相差を示す処方(一般的には広帯域アクロマティック位相差板とも呼ばれる)で用いられる軸角度であるからである。これにより、偏光素子の偏光軸又は吸収軸を任意に制御することが可能となる。 On the stretched film of the present invention, on the surface of the film having a slow axis or a fast axis having a phase difference of 10 ° to 100 ° at an angle different from the major axis direction of the film, molecular anisotropy in the major axis direction It is also possible to produce a polarizing element in which a retardation film exhibiting properties is further laminated. Such a retardation film is obtained by imparting molecular anisotropy in the major axis direction by rubbing or the like on the surface of a retardation film having a slow axis or a fast axis of retardation at an arbitrary angle, Thereby, the polarization axis or absorption axis of the polarizing element can be arbitrarily controlled. That is, with respect to the major axis direction of the film, a further retardation film having a slow axis or a fast axis of retardation at an angle different from the angle and showing molecular anisotropy on the surface in the major axis direction, By using the stretched film of the present invention, it is possible to produce a polarizing element having a slow axis or a fast axis as a retardation axis and an absorption axis or a polarization axis at an angle different from the retardation axis. Become. The angle formed by the retardation axis of the retardation film and the absorption axis or polarization axis of the polarizing element is most preferably 15 °, 45 °, 75 °, or 90 °. The reason why such an angle is preferable is that, in general, when linearly polarized light is to be controlled to circularly polarized light, a film having a phase difference of 1/4 with respect to the length of the wavelength to be controlled is used as the absorption axis of the polarizing element. It is known that it is installed at 45 ° to the angle. Further, as a method for reversing the polarization axis of linearly polarized light, it is known to install a film having a phase difference of 1/2 with respect to the length of the wavelength to be controlled at 90 °. The reason why the film is placed at 15 ° or 75 ° with respect to the absorption axis or the polarization axis of the polarizing element is that such an angle has a prescription (1/4) for a wide range of wavelengths. This is because the axis angle is generally used in a broadband achromatic phase difference plate). Thereby, it becomes possible to arbitrarily control the polarization axis or the absorption axis of the polarizing element.
 上記のように作製された本発明の二色性色素を含有する層は、アモルファスや結晶等の固体状態にあるものの、当該二色性色素を含有する層は、通常、機械的強度に劣るため、層の表面にレーキ処理、シランカップリング剤による架橋処理、又は保護層が設けられる。レーキとは、水溶性を示す二色性色素に金属イオンなどを電気的に結合させることである。二色性色素をレーキにすることをレーキ化若しくは不溶化などと呼ぶこともある。レーキに適した化合物としては、塩化アルミニウム、塩化鉄、塩化カルシウム、塩化バリウム、塩化ニッケル、塩化マグネシウム、塩化銅、酢酸バリウム、酢酸ニッケルなどが挙げられるが、二色性色素に金属イオンなどを電気的に結合させることができ、二色性色素が水に不溶化できるものであれば特に限定されるものではない。また、シランカップリング剤による架橋処理も特に限定されるものではなく、例えば、特開2011-53234号公報に記載されているようなシランカップリング剤を用いて、加熱により架橋処理をし、二色性色素を含有する層を固定化することができる。また、保護層は、通常、二色性色素を含有する層を紫外線硬化性や熱硬化性の透明な高分子膜によるコーティング、あるいはポリエステルフィルムや酢酸セルロースフィルム等の透明な高分子膜によるラミネート等の被覆法により設けられる。保護層は、ポリマーによる塗布層として、又は、フィルムのラミネート層として設けることができる。透明保護層を形成する透明ポリマー又はフィルムとしては、機械的強度が高く、熱安定性が良好な透明ポリマー又はフィルムが好ましい。透明保護層として用いる物質として、例えば、トリアセチルセルロースやジアセチルセルロースのようなセルロースアセテート樹脂又はそのフィルム、アクリル樹脂又はそのフィルム、ポリ塩化ビニル樹脂又はそのフィルム、ナイロン樹脂またはそのフィルム、ポリエステル樹脂又はそのフィルム、ポリアリレート樹脂又はそのフィルム、ノルボルネンのような環状オレフィンをモノマーとする環状ポリオレフィン樹脂又はそのフィルム、ポリエチレン、ポリプロピレン、シクロ系若しくはノルボルネン骨格を有するポリオレフィン又はその共重合体、主鎖若しくは側鎖がイミド及び/又はアミドの樹脂又はポリマー又はそのフィルムなどが挙げられる。また、透明保護層として、液晶性を有する樹脂又はそのフィルムを設けることもできる。保護層の厚さは、例えば、0.5~200μm程度である。保護層となる樹脂又はフィルムを、偏光素子の片面又は両面に1層以上設けることができ、また、複数の保護層を使用する場合、これらの保護層は、同じであっても異なっていてもよい。 Although the layer containing the dichroic dye of the present invention prepared as described above is in a solid state such as amorphous or crystalline, the layer containing the dichroic dye is usually inferior in mechanical strength. The surface of the layer is provided with a rake treatment, a crosslinking treatment with a silane coupling agent, or a protective layer. Rake is to electrically bond metal ions or the like to a dichroic dye exhibiting water solubility. Making a dichroic dye into a rake is sometimes called rake or insolubilization. Suitable compounds for rake include aluminum chloride, iron chloride, calcium chloride, barium chloride, nickel chloride, magnesium chloride, copper chloride, barium acetate, nickel acetate, etc. The dichroic dye is not particularly limited as long as it can be bonded to each other and the dichroic dye can be insolubilized in water. Further, the crosslinking treatment with a silane coupling agent is not particularly limited. For example, a silane coupling agent as described in JP 2011-53234 A is subjected to a crosslinking treatment by heating, and the two A layer containing a chromatic dye can be immobilized. The protective layer is usually a coating containing a dichroic dye with a transparent polymer film that is UV curable or thermosetting, or a laminate with a transparent polymer film such as a polyester film or cellulose acetate film. It is provided by the coating method. The protective layer can be provided as a polymer coating layer or as a laminate layer of a film. The transparent polymer or film forming the transparent protective layer is preferably a transparent polymer or film having high mechanical strength and good thermal stability. As a substance used as a transparent protective layer, for example, cellulose acetate resin such as triacetyl cellulose or diacetyl cellulose or film thereof, acrylic resin or film thereof, polyvinyl chloride resin or film thereof, nylon resin or film thereof, polyester resin or film thereof A film, a polyarylate resin or a film thereof, a cyclic polyolefin resin having a cyclic olefin such as norbornene or a film thereof, polyethylene, polypropylene, a polyolefin having a cyclo or norbornene skeleton or a copolymer thereof, a main chain or a side chain Examples include imide and / or amide resins or polymers or films thereof. In addition, a resin having liquid crystallinity or a film thereof can be provided as the transparent protective layer. The thickness of the protective layer is, for example, about 0.5 to 200 μm. One or more resins or films serving as protective layers can be provided on one or both sides of the polarizing element. When a plurality of protective layers are used, these protective layers may be the same or different. Good.
 本発明の偏光素子は、偏光サングラスやゴーグル等に用いることができる。さらに、本発明の偏光素子において、基材として上記の素材から作製した延伸フィルムを用いた場合、本発明の偏光素子の製造において、通常のポリビニルアルコール系フィルム基材を用いた場合に必要とされる二色性色素の吸着や、ホウ酸溶液中での延伸処理等を必要としない。そのため、基材の寸法変化がなく、収縮がない偏光素子を得ることができる。寸法変化がなく偏光素子を製造できることは、特に、フレキシブルディスプレイや有機エレクトロルミネッセンスディスプレイ(通称、OLED)などの表示装置の片面に偏光素子を設けることが必要なディスプレイには有効である。したがって、本発明の偏光素子をフレキシブルディスプレイや有機エレクトロルミネッセンスディスプレイ等の表示装置に設けることができる。また、これまでの偏光素子の製造方法とは異なり、二色性色素の塗工に必要とされていた厳密な条件を課すこともなく、基材として、本発明の延伸フィルムに二色性色素を含有する溶液を塗布し、次いで乾燥し、基材上に二色性色素を含有する層を設けるだけで、容易に偏光素子を得られることから、本発明の偏光素子の製造は非常に簡易である。 The polarizing element of the present invention can be used for polarized sunglasses, goggles and the like. Furthermore, in the polarizing element of the present invention, when a stretched film prepared from the above material is used as the base material, it is required when a normal polyvinyl alcohol film base material is used in the manufacture of the polarizing element of the present invention. No dichroic dye adsorption or stretching treatment in a boric acid solution is required. Therefore, it is possible to obtain a polarizing element in which there is no dimensional change of the substrate and no shrinkage. The ability to manufacture a polarizing element without dimensional change is particularly effective for displays that require a polarizing element to be provided on one side of a display device such as a flexible display or an organic electroluminescence display (commonly referred to as OLED). Therefore, the polarizing element of the present invention can be provided in a display device such as a flexible display or an organic electroluminescence display. Further, unlike conventional methods for producing polarizing elements, the dichroic dye is applied to the stretched film of the present invention as a substrate without imposing strict conditions required for coating the dichroic dye. The polarizing element of the present invention is very easy to produce because a polarizing element can be easily obtained by simply applying a solution containing dichroic acid, then drying and providing a layer containing a dichroic dye on the substrate. It is.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。なお、実施例に示す透過率の評価は以下のようにして行った。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the transmittance | permeability shown in an Example was performed as follows.
 各波長の透過率及び二色比(Rd)は、分光光度計(日本分光社製:V-7100)を用いて測定した。このとき、二色性色素を含む層を1層で測定した際の各波長の透過率を透過率Tsとし、2つの二色性色素を含む層を、その吸収軸方向が同一となるように重ねた場合の透過率を平行位透過率Tpとし、2つの二色性色素を含む層をその吸収軸が直交するように重ねた場合の透過率を直交位透過率Tcとした。 The transmittance and dichroic ratio (Rd) of each wavelength were measured using a spectrophotometer (manufactured by JASCO Corporation: V-7100). At this time, the transmittance of each wavelength when the layer containing the dichroic dye is measured in one layer is the transmittance Ts, and the layers containing the two dichroic dyes have the same absorption axis direction. The transmittance in the case of superimposition was defined as parallel transmittance Tp, and the transmittance in the case where the layers containing two dichroic dyes were superposed so that their absorption axes were orthogonal to each other was defined as orthogonal transmittance Tc.
 偏光度ρは、平行位透過率Tp及び直交位透過率Tcから、式(5)により求めた。 The degree of polarization ρ was determined from the parallel transmittance Tp and the orthogonal transmittance Tc according to the equation (5).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 実施例1
 10500nmのリタデーションを有し、厚さが100μmである延伸フィルム(東洋紡社製 コスモシャイン SRFフィルム)の非易接着処理面に、二色性色素としてC.I.Direct Blue 67を4質量部、ポリオキシエチレンポリオキシプロピレンアルキルエーテル(花王社製 エマルゲンMS-110)を0.15質量部、水を100質量部含んだ溶液を、当該延伸フィルムとの間隔が3μmになるようにセットされたガラス棒を設けた塗工機を用いて塗布した。得られた塗布膜を25℃、湿度70%の環境で1分間放置し、溶媒を乾燥させた。さらに、乾燥させた塗布膜を60℃、湿度90%の環境で5分間加熱処理及び加湿処理し、厚さが0.15μmである二色性色素を含有する層を得た。得られた二色性色素を含有する層上に、アクリル樹脂系の紫外線硬化性の樹脂組成物(日本化薬社製 SPC-920C)を、硬化後の保護層の厚さ3μmになるようにスピンコータにて塗布し、次いで紫外線を照射することによって該樹脂組成物を硬化させ、二色性色素を含有する層上に保護層を設けた。このようにして得られた偏光素子を測定試料とした。
Example 1
C. as a dichroic dye is applied to the non-adhesion treated surface of a stretched film (Cosmo Shine SRF film manufactured by Toyobo Co., Ltd.) having a retardation of 10500 nm and a thickness of 100 μm. I. A solution containing 4 parts by weight of Direct Blue 67, 0.15 parts by weight of polyoxyethylene polyoxypropylene alkyl ether (Emalgen MS-110 manufactured by Kao Corporation), and 100 parts by weight of water is spaced 3 μm from the stretched film. It apply | coated using the coating machine provided with the glass rod set so that it might become. The obtained coating film was left in an environment of 25 ° C. and 70% humidity for 1 minute to dry the solvent. Furthermore, the dried coating film was heat-treated and humidified for 5 minutes in an environment of 60 ° C. and 90% humidity to obtain a layer containing a dichroic dye having a thickness of 0.15 μm. An acrylic resin-based ultraviolet curable resin composition (SPC-920C manufactured by Nippon Kayaku Co., Ltd.) is applied on the obtained layer containing the dichroic dye so that the thickness of the protective layer after curing is 3 μm. The resin composition was cured by applying with a spin coater and then irradiating with ultraviolet rays, and a protective layer was provided on the layer containing the dichroic dye. The polarizing element thus obtained was used as a measurement sample.
 実施例2
 実施例1で用いた10500nmのリタデーションを有する延伸フィルムの非易接着処理面に、当該延伸フィルムの遅相軸に対して0°の方向に沿ってラビング布(妙中パイル織物社製 MK0012)を巻いたロールにより、100rpmの速度及び荷重5kgfの条件下で、さらにラビング処理を行った以外は、実施例1と同様にして、測定試料を作製した。このとき、延伸フィルムの遅相軸に対する角度は、KOBRA-21ADH(王子計測機器社製)によって測定した。
Example 2
A rubbing cloth (MK0012 manufactured by Myonaka Pile Textile Co., Ltd.) is applied to the non-adhesive treated surface of the stretched film having a retardation of 10500 nm used in Example 1 along the direction of 0 ° with respect to the slow axis of the stretched film. A measurement sample was prepared in the same manner as in Example 1 except that the rubbing treatment was further performed with a wound roll under the condition of a speed of 100 rpm and a load of 5 kgf. At this time, the angle of the stretched film with respect to the slow axis was measured by KOBRA-21ADH (manufactured by Oji Scientific Instruments).
 実施例3
 実施例1で用いた10500nmのリタデーションを有する延伸フィルムの非易接着処理面に、当該延伸フィルムの遅相軸に対して45°の方向に沿ってラビング布を巻いたロールによりでラビング処理を行った以外は、実施例2と同様にして、測定試料を作製した。
Example 3
The rubbing treatment was performed with a roll in which a rubbing cloth was wound along the direction of 45 ° with respect to the slow axis of the stretched film on the non-easy-adhesion treated surface of the stretched film having a retardation of 10500 nm used in Example 1. A measurement sample was prepared in the same manner as in Example 2 except that.
 実施例4
 実施例1で用いた10500nmのリタデーションを有する延伸フィルムの非易接着処理面に、当該延伸フィルムの遅相軸に対して90°の方向に沿ってラビング布を巻いたロールによりラビング処理を行った以外は、実施例2と同様にして、測定試料を作製した。
Example 4
The rubbing treatment was performed on the non-adhesive treated surface of the stretched film having a retardation of 10500 nm used in Example 1 with a roll in which a rubbing cloth was wound along the direction of 90 ° with respect to the slow axis of the stretched film. A measurement sample was prepared in the same manner as in Example 2 except for the above.
 実施例5
 基材として、実施例1で用いた10500nmのリタデーションを有する延伸フィルムに代えて、35000nmのリタデーションを有するポリエチレンテレフタレートの延伸フィルム(SKYGREEN PETG K2012(三菱商事プラスチック社製)を230℃にて溶融して100μmの膜厚になるように成型した未延伸のPETフィルムを、約4倍一軸延伸したフィルム)を用いた以外は、実施例1と同様にして、測定試料を作製した。
Example 5
Instead of the stretched film having a retardation of 10500 nm used in Example 1 as a substrate, a stretched film of polyethylene terephthalate having a retardation of 35000 nm (SKYGREEN PETG K2012 (manufactured by Mitsubishi Corporation Plastics) was melted at 230 ° C. A measurement sample was prepared in the same manner as in Example 1 except that an unstretched PET film molded to a film thickness of 100 μm was uniaxially stretched about 4 times.
 実施例6
 基材として、実施例1で用いた10500nmのリタデーションを有するフィルムに代えて、3500nmのリタデーションを有するポリエチレンテレフタレートの延伸フィルム(SKYGREEN PETG K2012(三菱商事プラスチック社製)を230℃にて溶融して100μmの膜厚になるように成型した未延伸のPETフィルムを、約2.1倍一軸延伸したフィルム)を用いた以外は、実施例1と同様にして、測定試料を作製した。
Example 6
As a base material, instead of the film having a retardation of 10500 nm used in Example 1, a stretched film of polyethylene terephthalate having a retardation of 3500 nm (SKYGREEN PETG K2012 (manufactured by Mitsubishi Corporation Plastics) was melted at 230 ° C. to 100 μm. A measurement sample was prepared in the same manner as in Example 1 except that an unstretched PET film molded to have a film thickness of about 2.1 times was uniaxially stretched about 2.1 times.
 比較例1
 基材として、実施例1の延伸されたPETフィルムに代えて、SKYGREEN PETG K2012(三菱商事プラスチック社製)を230℃にて溶融して100μmの膜厚になるように成型した未延伸のPETフィルムを用いた以外は、実施例1と同様にして、測定試料を作製した。
Comparative Example 1
Instead of the stretched PET film of Example 1, as a base material, unstretched PET film formed by melting SKYGREEN PETG K2012 (manufactured by Mitsubishi Corporation Plastics) at 230 ° C. to a film thickness of 100 μm. A measurement sample was prepared in the same manner as in Example 1 except that was used.
 比較例2
 比較例1の未延伸のPETフィルムを、1.5倍に一軸延伸し、1000nmのリタデーションを有するフィルムとした以外は、実施例1と同様にして、測定試料を作製した。
Comparative Example 2
A measurement sample was prepared in the same manner as in Example 1 except that the unstretched PET film of Comparative Example 1 was uniaxially stretched 1.5 times to obtain a film having a retardation of 1000 nm.
 表1には、実施例1~6、比較例1及び2で得られた試料を測定して得られた偏光度が最も高い波長でのTs、Tp、Tc、ρ、Rdを示す。 Table 1 shows Ts, Tp, Tc, ρ, and Rd at the wavelength with the highest degree of polarization obtained by measuring the samples obtained in Examples 1 to 6 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1の結果から明らかなように、実施例1~6におけるリタデーション値を有する延伸フィルムを用いた本発明の偏光素子は、高い偏光度(ρ)及び高い二色比(Rd)を示していることが分かる。 As is clear from the results in Table 1, the polarizing elements of the present invention using stretched films having retardation values in Examples 1 to 6 exhibit a high degree of polarization (ρ) and a high dichroic ratio (Rd). I understand that.
 一方、リタデーションを有さない未延伸フィルムを用いた比較例1、及びリタデーション値が本発明の規定外である比較例2では、いずれも偏光度(ρ)が65%未満であり、かつ二色比(Rd)も5未満であることから、偏光素子としての機能が十分でないことがわかる。 On the other hand, in Comparative Example 1 using an unstretched film having no retardation and in Comparative Example 2 in which the retardation value is outside the definition of the present invention, the degree of polarization (ρ) is less than 65%, and two colors Since the ratio (Rd) is also less than 5, it can be seen that the function as a polarizing element is not sufficient.
 以上の結果から、本発明の偏光素子は、85%以上の高い偏光度と、5以上の高い二色性を示している。さらに、本発明の偏光素子の製造において、通常のポリビニルアルコール系フィルム基材を用いた場合に必要とされる二色性色素の吸着や、ホウ酸溶液中での延伸処理等を必要としていないため、基材の寸法変化や収縮もなく偏光素子の製造が可能である。すなわち、本発明の偏光素子は、特定の基材と、二色性色素を含有する層とを積層しただけである。このことから、本発明の偏光素子は、偏光性能に優れ、簡便に製造可能な偏光素子であることがわかる。 From the above results, the polarizing element of the present invention exhibits a high degree of polarization of 85% or more and a high dichroism of 5 or more. Furthermore, in the production of the polarizing element of the present invention, it is not necessary to adsorb a dichroic dye or to be stretched in a boric acid solution, which is necessary when a normal polyvinyl alcohol film base material is used. The polarizing element can be produced without any dimensional change or shrinkage of the substrate. That is, the polarizing element of the present invention is merely a laminate of a specific base material and a layer containing a dichroic dye. From this, it can be seen that the polarizing element of the present invention is a polarizing element that has excellent polarization performance and can be easily produced.
 本発明の偏光素子は、従来の偏光素子のようなポリビニルアルコール樹脂フィルムを用いた偏光素子ではなく、特定のリタデーションを有する延伸された基材に二色性色素を含有する溶液を塗布することで偏光素子を作製できるため、従来の工程で必要であった膨潤、染色、延伸等のプロセスが不要であり、簡易に偏光素子を作製することができる。また、偏光機能を示す成分としては二色性色素のみで偏光素子の膜を作製することができるため、超薄膜な偏光素子を形成することが可能である。さらに、二色性色素を含有する溶液の塗布によって偏光素子を作製することができるため、従来の偏光板のような平板状の偏光素子の形状に限定されず、フィルム成形に合わせた曲面形状や球面形状の偏光素子を形成することも可能である。特に、従来の延伸フィルムは、延伸方向に対して垂直な偏光を通過させる偏光板しか形成できなかったものの、本発明の偏光素子は、ラビングされてなる基材に対して配向方向を任意に設定できるため、微細なパターン状や任意の方向の偏光性を設けた偏光素子を形成することが可能である。 The polarizing element of the present invention is not a polarizing element using a polyvinyl alcohol resin film like a conventional polarizing element, but by applying a solution containing a dichroic dye to a stretched substrate having a specific retardation. Since a polarizing element can be produced, processes such as swelling, dyeing and stretching required in conventional processes are unnecessary, and the polarizing element can be produced easily. In addition, since a polarizing element film can be formed using only a dichroic dye as a component exhibiting a polarizing function, an ultrathin polarizing element can be formed. Furthermore, since a polarizing element can be produced by applying a solution containing a dichroic dye, it is not limited to the shape of a flat polarizing element such as a conventional polarizing plate, It is also possible to form a spherical polarizing element. In particular, the conventional stretched film can only form a polarizing plate that allows polarized light perpendicular to the stretching direction to pass, but the polarizing element of the present invention arbitrarily sets the orientation direction with respect to the rubbed substrate. Therefore, it is possible to form a polarizing element provided with a fine pattern and a polarization property in an arbitrary direction.

Claims (9)

  1.  3000~50000nmのリタデーションを有する延伸フィルムと、1種以上の二色性色素を含有する層とを積層し、前記延伸フィルムの厚さが20~500μmであることを特徴とする偏光素子。 A polarizing element comprising a stretched film having a retardation of 3000 to 50000 nm and a layer containing one or more dichroic dyes, wherein the stretched film has a thickness of 20 to 500 μm.
  2.  前記延伸フィルムが、ポリエチレンテレフタレートからなることを特徴とする請求項1に記載の偏光素子。 The polarizing element according to claim 1, wherein the stretched film is made of polyethylene terephthalate.
  3.  二色比が、5以上であることを特徴とする請求項1又は2に記載の偏光素子。 The polarizing element according to claim 1 or 2, wherein the dichroic ratio is 5 or more.
  4.  前記延伸フィルムの延伸軸と同一方向に、該延伸フィルムの表面に付与されている分子異方性よりも大きい分子異方性がさらに付与されていることを特徴とする請求項1乃至3のいずれか1項に記載の偏光素子。 The molecular anisotropy larger than the molecular anisotropy provided to the surface of the stretched film is further imparted in the same direction as the stretching axis of the stretched film. The polarizing element according to claim 1.
  5.  フィルムの長軸方向に対して、10°~100°の角度に位相差の遅相軸または進相軸を有する位相差フィルムをさらに備えることを特徴とする請求項1乃至4のいずれか1項に記載の偏光素子。 5. The retardation film according to claim 1, further comprising a retardation film having a slow axis or a fast axis of retardation at an angle of 10 ° to 100 ° with respect to a major axis direction of the film. A polarizing element according to 1.
  6.  前記二色性色素の少なくとも一つが、下記式(1)で表される化合物又はその塩であることを特徴とする請求項1乃至5のいずれか1項に記載の偏光素子。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
    は、1つ若しくは2つのスルホン酸基と、水酸基若しくは1乃至3の炭素数を有するアルコキシ基を有するフェニル基又はナフチル基を表し、
    及びXは、それぞれ独立して、フェニレン基又はナフチレン基を表し、当該フェニレン基又はナフチレン基は、1乃至3の炭素数を有するアルキル基、1乃至3の炭素数を有するアルコキシ基、水酸基及びスルホン酸基からなる群から選択された1種又は2種の置換基を1つ又は2つ有しており、
    は、水素原子、1乃至3の炭素数を有するアルキル基、アセチル基、ベンゾイル基、或いは、非置換のフェニル基又は1乃至4の炭素数を有するアルキル基、1乃至4の炭素数を有するアルコキシル基、アミノ基若しくはスルホ基で置換されたフェニル基を表し、mは、0又は1であり、かつ
    nは、1又は2である)
    The polarizing element according to any one of claims 1 to 5, wherein at least one of the dichroic dyes is a compound represented by the following formula (1) or a salt thereof.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1),
    X 1 represents a phenyl group or a naphthyl group having one or two sulfonic acid groups and a hydroxyl group or an alkoxy group having 1 to 3 carbon atoms,
    X 2 and X 3 each independently represent a phenylene group or a naphthylene group, and the phenylene group or naphthylene group is an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, Having one or two substituents selected from the group consisting of a hydroxyl group and a sulfonic acid group,
    R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an acetyl group, a benzoyl group, an unsubstituted phenyl group, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. And a phenyl group substituted with an alkoxyl group, an amino group or a sulfo group, m is 0 or 1, and n is 1 or 2.
  7.  Xが、置換基として下記式(3)で表される化合物又はその塩であることを特徴とする請求項6に記載の偏光素子。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、jは1または2である)
    The polarizing element according to claim 6, wherein X 1 is a compound represented by the following formula (3) or a salt thereof as a substituent.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (3), j is 1 or 2)
  8.  前記二色性色素を含有する層は、ポリオキシエチレンポリオキシプロピレンアルキルエーテル又はポリオキシエチレンポリオキシプロピレンブロックポリマーをさらに含有することを特徴とする請求項1乃至7のいずれか1項に記載の偏光素子。 8. The layer according to claim 1, wherein the layer containing the dichroic dye further contains a polyoxyethylene polyoxypropylene alkyl ether or a polyoxyethylene polyoxypropylene block polymer. 9. Polarizing element.
  9.  請求項1乃至8のいずれか1項に記載の偏光素子を設けた表示装置。 A display device provided with the polarizing element according to any one of claims 1 to 8.
PCT/JP2016/062361 2015-04-20 2016-04-19 Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same WO2016171127A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177033189A KR20170138497A (en) 2015-04-20 2016-04-19 A polarizing element in which a film having a high retardation and a layer containing a dichroic dye are laminated, and a display device
JP2017514131A JP6505833B2 (en) 2015-04-20 2016-04-19 Polarizing element in which a film having high retardation and a layer containing a dichroic dye are laminated, and a display device provided with the same
CN201680022895.6A CN107533178B (en) 2015-04-20 2016-04-19 Polarizing element comprising a highly retardation film and a layer containing a dichroic dye laminated thereon, and display device provided with the polarizing element
HK18102816.8A HK1243495A1 (en) 2015-04-20 2018-02-27 Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-085514 2015-04-20
JP2015085514 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016171127A1 true WO2016171127A1 (en) 2016-10-27

Family

ID=57144595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062361 WO2016171127A1 (en) 2015-04-20 2016-04-19 Polarizing element formed by stacking film having high retardation and layer containing dichroic dye, and display device provided with same

Country Status (6)

Country Link
JP (1) JP6505833B2 (en)
KR (1) KR20170138497A (en)
CN (1) CN107533178B (en)
HK (1) HK1243495A1 (en)
TW (1) TWI708965B (en)
WO (1) WO2016171127A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112533A1 (en) * 2021-12-17 2023-06-22 三菱瓦斯化学株式会社 Polarizing sheet
WO2023182118A1 (en) * 2022-03-23 2023-09-28 東洋紡株式会社 Image display device having camera under image display panel

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885405A (en) * 1981-11-17 1983-05-21 Nitto Electric Ind Co Ltd Manufacture of polarizing film
JPH01161202A (en) * 1987-12-18 1989-06-23 Nippon Kayaku Co Ltd Polarizing plate
JPH07134210A (en) * 1993-11-12 1995-05-23 Kurabo Ind Ltd Production of polarizing film
JPH07261024A (en) * 1993-09-10 1995-10-13 Nippon Kayaku Co Ltd Polarizing element, polarizing plate and production of these
JPH09230142A (en) * 1995-05-17 1997-09-05 Nippon Kayaku Co Ltd Polarizing element or polarizing plate
JP2002090743A (en) * 2000-07-13 2002-03-27 Nippon Kayaku Co Ltd Method for rubbing
JP2005017697A (en) * 2003-06-26 2005-01-20 Konica Minolta Medical & Graphic Inc Photosensitive lithographic printing plate and its processing method
JP2012206472A (en) * 2011-03-30 2012-10-25 Oji Paper Co Ltd Gas barrier laminate, and method for manufacturing the same
JP2012230390A (en) * 2012-06-11 2012-11-22 Keio Gijuku Visibility improving method of liquid crystal display device, and liquid crystal display device using the same
JP2012256014A (en) * 2010-06-22 2012-12-27 Toyobo Co Ltd Liquid crystal display device, polarizing plate, and polarizer protective film
WO2014061389A1 (en) * 2012-10-17 2014-04-24 日東電工株式会社 Optical laminated film manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100442090C (en) * 2003-01-24 2008-12-10 日东电工株式会社 Color correcting polarizer
WO2006132351A1 (en) * 2005-06-09 2006-12-14 Hitachi Chemical Company, Ltd. Method for forming antireflection film
JP4870236B1 (en) * 2010-07-02 2012-02-08 日本合成化学工業株式会社 Polyvinyl alcohol film, method for producing polyvinyl alcohol film, polarizing film and polarizing plate
KR101576324B1 (en) * 2011-04-13 2015-12-14 주식회사 엘지화학 Optical film
JP5504232B2 (en) * 2011-09-22 2014-05-28 住友化学株式会社 Manufacturing method of polarizing plate
CN106918860B (en) * 2011-12-19 2019-05-28 Lg化学株式会社 Polarizer
JP6001874B2 (en) * 2012-02-17 2016-10-05 日東電工株式会社 OPTICAL LAMINATE AND METHOD FOR PRODUCING OPTICAL LAMINATE
JP5978529B2 (en) * 2012-04-18 2016-08-24 日東電工株式会社 Polarizing film, image display device, and manufacturing method of polarizing film
US10539717B2 (en) * 2012-12-20 2020-01-21 Samsung Sdi Co., Ltd. Polarizing plates and optical display apparatuses including the polarizing plates
KR20140080421A (en) * 2012-12-20 2014-06-30 제일모직주식회사 Polarizing plate and liquid crystal display apparatus comprising the same
WO2014163068A1 (en) * 2013-04-04 2014-10-09 日東電工株式会社 Conductive film and image display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885405A (en) * 1981-11-17 1983-05-21 Nitto Electric Ind Co Ltd Manufacture of polarizing film
JPH01161202A (en) * 1987-12-18 1989-06-23 Nippon Kayaku Co Ltd Polarizing plate
JPH07261024A (en) * 1993-09-10 1995-10-13 Nippon Kayaku Co Ltd Polarizing element, polarizing plate and production of these
JPH07134210A (en) * 1993-11-12 1995-05-23 Kurabo Ind Ltd Production of polarizing film
JPH09230142A (en) * 1995-05-17 1997-09-05 Nippon Kayaku Co Ltd Polarizing element or polarizing plate
JP2002090743A (en) * 2000-07-13 2002-03-27 Nippon Kayaku Co Ltd Method for rubbing
JP2005017697A (en) * 2003-06-26 2005-01-20 Konica Minolta Medical & Graphic Inc Photosensitive lithographic printing plate and its processing method
JP2012256014A (en) * 2010-06-22 2012-12-27 Toyobo Co Ltd Liquid crystal display device, polarizing plate, and polarizer protective film
JP2012206472A (en) * 2011-03-30 2012-10-25 Oji Paper Co Ltd Gas barrier laminate, and method for manufacturing the same
JP2012230390A (en) * 2012-06-11 2012-11-22 Keio Gijuku Visibility improving method of liquid crystal display device, and liquid crystal display device using the same
WO2014061389A1 (en) * 2012-10-17 2014-04-24 日東電工株式会社 Optical laminated film manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112533A1 (en) * 2021-12-17 2023-06-22 三菱瓦斯化学株式会社 Polarizing sheet
WO2023182118A1 (en) * 2022-03-23 2023-09-28 東洋紡株式会社 Image display device having camera under image display panel

Also Published As

Publication number Publication date
JPWO2016171127A1 (en) 2018-02-08
HK1243495A1 (en) 2018-07-13
KR20170138497A (en) 2017-12-15
CN107533178A (en) 2018-01-02
JP6505833B2 (en) 2019-04-24
CN107533178B (en) 2020-10-16
TW201702646A (en) 2017-01-16
TWI708965B (en) 2020-11-01

Similar Documents

Publication Publication Date Title
TWI274918B (en) Optical film and method for producing same, and image display employing such optical film
KR102601009B1 (en) A composition containing a dichroic dye, a dye film manufactured using the same, and a polarizing element having the dye film
KR100955762B1 (en) Method for manufacturing coating type polarizing plate and Coating type polarizing plate manufactured by thereof
JP6366277B2 (en) Light control device, light control window, and optical laminate for light control device
WO2006100830A1 (en) Process for producing optical film, and image display apparatus making use of the optical film produced by the process
CN107850721A (en) Layered product and window
TWI345644B (en)
JP4794012B2 (en) Method for manufacturing superimposed film for VA type liquid crystal display device, superimposed film for VA type liquid crystal display device, and VA type liquid crystal display device
WO2006091393A1 (en) Polarizing layer with adherent protective layer
CN107850722A (en) Layered product and window
WO2019058758A1 (en) Optical system and display device
TW201923417A (en) Head-up display apparatus
CN115943331A (en) Optical film, optical laminate, and image display device
JP4888931B2 (en) Method for manufacturing superimposed film for liquid crystal display device, superimposed film for liquid crystal display device, and liquid crystal display device
JP6505833B2 (en) Polarizing element in which a film having high retardation and a layer containing a dichroic dye are laminated, and a display device provided with the same
JP4017656B1 (en) Manufacturing method of polarizing film and liquid crystal display device
KR101665162B1 (en) Optical film, method for preparing the same and optical display apparatus comprising the same
JP6385050B2 (en) Optical laminate manufacturing method and optical laminate
JP2012203002A (en) Polarizer and manufacturing method thereof
CN115933037A (en) Optical film, circularly polarizing plate, and display device
JP5978529B2 (en) Polarizing film, image display device, and manufacturing method of polarizing film
JP6493972B2 (en) Method of manufacturing a polarizing element with a very small amount of droplet
JP2007241267A (en) Method of manufacturing anisotropic optical film, anisotropic optical film, and optical element
JP2008009417A (en) Dye for anisotropic dye film
KR20230124716A (en) Liquid crystal composition, cured film, polarizing plate, image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033189

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16783148

Country of ref document: EP

Kind code of ref document: A1