WO2023112514A1 - Resin composition and molded article - Google Patents

Resin composition and molded article Download PDF

Info

Publication number
WO2023112514A1
WO2023112514A1 PCT/JP2022/040376 JP2022040376W WO2023112514A1 WO 2023112514 A1 WO2023112514 A1 WO 2023112514A1 JP 2022040376 W JP2022040376 W JP 2022040376W WO 2023112514 A1 WO2023112514 A1 WO 2023112514A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
resin
calcium carbonate
biodegradable
Prior art date
Application number
PCT/JP2022/040376
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 服部
Original Assignee
株式会社Tbm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbm filed Critical 株式会社Tbm
Publication of WO2023112514A1 publication Critical patent/WO2023112514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/08Polyesters modified with higher fatty oils or their acids, or with resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the present invention relates to resin compositions and molded articles.
  • Biodegradable resins are attracting attention as environmentally friendly resins because they decompose into substances that originally exist in nature through the action of microorganisms and hydrolysis. It has been proposed to add various components to biodegradable resins in order to impart favorable properties without impairing the low environmental load (for example, Patent Documents 1 and 2). Calcium carbonate etc. are mentioned as such a component.
  • a biodegradable resin composition containing a high content of calcium carbonate there is a possibility that the mechanical properties of the molded product obtained by molding the composition, especially the elongation at break, will decrease.
  • a resin composition in which a large amount of calcium carbonate, for example, about 30% by mass or more, is added to a biodegradable resin such as polybutylene adipate terephthalate is difficult to mold, and hydrolysis proceeds during molding, resulting in deterioration of mechanical properties and molded products.
  • the surface appearance of the surface is deteriorated, and there are even cases where a molded article that can withstand practical use cannot be obtained.
  • Patent Documents 3 and 4 disclose a resin composition in which polybutylene adipate terephthalate or polybutylene succinate adipate and heavy calcium carbonate are combined.
  • JP 2017-119850 A Japanese Patent Publication No. 2018-527416 Japanese Patent Publication No. 2020-531678 JP 2020-183496 A Japanese Patent No. 6916571
  • the plasticizer may bleed and deteriorate the surface appearance of the molded product. If the amount of the plasticizer is suppressed to prevent bleeding, the mechanical properties are not significantly improved, and the moldability is also difficult to improve.
  • the content of calcium carbonate is limited to 20% by mass or less, and further to about 10% by mass or less.
  • the resin composition described in Patent Document 5 contains about 30 to 90% by mass of heavy calcium carbonate, which suppresses bleeding, but further improvement in elongation at break is required depending on the application.
  • the present invention has been made in view of the above circumstances, and it is possible to obtain a molded product that has good moldability, excellent mechanical properties, especially excellent elongation at cutting, and is unlikely to cause deterioration in appearance due to bleeding.
  • An object of the present invention is to provide a resin composition containing a flexible resin.
  • the present inventors solved the above problems by using a biodegradable resin containing at least polybutylene adipate terephthalate or polybutylene succinate adipate, combining it with ground calcium carbonate, and adding a predetermined amount of a specific epoxy compound.
  • the inventors have found the points that can be achieved, and have completed the present invention. More specifically, the present invention provides:
  • a resin composition containing a biodegradable resin, ground calcium carbonate, and an epoxy compound The biodegradable resin and the heavy calcium carbonate have a mass ratio of 10:90 to 70:30,
  • the biodegradable resin contains at least polybutylene adipate terephthalate or polybutylene succinate adipate
  • the epoxy compound is one or more compounds selected from the group consisting of epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin. can be,
  • the content of the epoxy compound is 2.0% by mass or more and 8.0% by mass or less with respect to 100% by mass of the resin composition. Resin composition.
  • the biodegradable resin comprises polybutylene adipate terephthalate and polylactic acid;
  • the mass ratio of the polybutylene adipate terephthalate and the polylactic acid is 50:50 to 90:10, (1)
  • the biodegradable resin comprises polybutylene succinate adipate and polylactic acid;
  • the mass ratio of the polybutylene succinate adipate and the polylactic acid is 50:50 to 90:10, (1)
  • the resin composition further comprising 5% by mass or more and 30% by mass or less of a natural organic substance with respect to 100% by mass of the resin composition;
  • the natural organic matter is one or more selected from the group consisting of cellulose powder, wood flour, starch, rice husk, bean curd refuse, and wheat bran.
  • the average particle size of the heavy calcium carbonate measured by an air permeation method according to JIS M-8511 is 0.7 ⁇ m or more and 6.0 ⁇ m or less. Resin composition.
  • a biodegradable resin-containing composition that is excellent in moldability, excellent in mechanical properties, especially elongation at break, and capable of producing a molded article that is less likely to deteriorate in appearance due to bleeding. be.
  • the resin composition of the present invention is a resin composition containing a biodegradable resin, ground calcium carbonate, and an epoxy compound,
  • the biodegradable resin and the heavy calcium carbonate have a mass ratio of 10:90 to 70:30
  • the biodegradable resin contains at least polybutylene adipate terephthalate or polybutylene succinate adipate
  • the epoxy compound is one or more compounds selected from the group consisting of epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin. can be,
  • the content of the epoxy compound is 2.0% by mass or more and 8.0% by mass or less with respect to 100% by mass of the resin composition.
  • PBAT Polybutylene adipate terephthalate
  • PBSA polybutylene succinate adipate
  • the present inventors have previously found that when the biodegradable resin composition contains a large amount of calcium carbonate, the tensile strength and elongation at break of the molded article obtained from the composition are likely to be impaired, and that calcium carbonate It was found that by selecting heavy calcium carbonate, it is possible to suppress a decrease in tensile strength and elongation at break.
  • the present inventors conducted further studies and found that by blending a specific epoxy compound in a relatively small amount, the moldability was improved and the deterioration of the mechanical properties of the molded product was suppressed, and in particular, the elongation at break was greatly improved. Furthermore, it was found that deterioration of the appearance due to bleeding hardly occurs.
  • epoxy compound may be blended as a plasticizer in a resin composition in an amount of about 10 to 30% by mass, as will be described later.
  • an unexpected finding was obtained that the elongation at break was significantly improved.
  • the present invention is not limited by any particular theory, but it is possible that the epoxy compound blended in the present invention reacts with the decomposition product of the biodegradable resin as described later. gender can be considered.
  • biodegradability means the property of being decomposed by the action of microorganisms or hydrolysis, and can be evaluated by the method shown in the Examples.
  • tensile strength means the value obtained by dividing the maximum load reached before breaking by the cross-sectional area before applying the tensile load, when the target is broken by applying a tensile load. It can be evaluated by the method shown in Examples.
  • elongation at break means the elongation at break when a tensile load is applied to an object to break it, and can be evaluated by the method shown in the Examples.
  • phrases such as "improved mechanical properties” and “suppressed reduction in tensile strength and elongation at break” refer to molded articles obtained from resin compositions that satisfy the requirements of the present invention. At least one of mechanical properties such as tensile strength and elongation at break is a characteristic value of a molded article obtained from a resin composition that does not satisfy the requirements of the present invention except that the type and amount of biodegradable resin are common. means equal to or greater than
  • the biodegradable resin in the present invention includes at least polybutylene adipate terephthalate (hereinafter also referred to as "PBAT”) or polybutylene succinate adipate (hereinafter also referred to as "PBSA”). That is, the biodegradable resin in the invention may contain either PBAT or PBSA, or both.
  • PBAT polybutylene adipate terephthalate
  • PBSA polybutylene succinate adipate
  • the biodegradable resin in the present invention may or may not contain biodegradable resins other than PBAT and PBSA.
  • the content of polybutylene adipate terephthalate or polybutylene succinate adipate is preferably 50% by mass or more, particularly 70% by mass or more, relative to the biodegradable resin.
  • biodegradable resins other than PBAT and PBSA that can be contained in the resin composition of the present invention include polylactic acid, polyhydroxybutyrate, and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • polylactic acid is preferable from the viewpoint that the effects of the present invention are likely to be exhibited.
  • polylactic acid refers to a polylactic acid homopolymer obtained by condensation polymerization of only a lactic acid component as a raw material monomer, a lactic acid component as a raw material monomer, and other monomer components copolymerizable with the lactic acid component. It includes a polylactic acid copolymer obtained by condensation polymerization of and. Any polymer known as polylactic acid can be used in the present invention.
  • oxyacids include oxyacids such as glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxybenzoic acid, and hydroxyheptanoic acid.
  • dihydric alcohols examples include ethylene glycol, propylene glycol, propanediol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, diethylene glycol, Examples include triethylene glycol, polyethylene glycol, polytetramethylene glycol and the like.
  • trihydric or higher polyhydric alcohols examples include glycerin, trimethylolpropane, and pentaerythritol.
  • aromatic hydroxy compounds examples include hydroquinone, resorcin, bisphenol A, and the like.
  • divalent carboxylic acids examples include oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, and naphthalene dicarboxylic acid. acid, bis(4-carboxyphenyl)methane, anthracenedicarboxylic acid, bis(4-carboxyphenyl)ether, sodium 5-sulfoisophthalate and the like.
  • trivalent or higher polyvalent carboxylic acids examples include trimellitic acid and pyromellitic acid.
  • lactones examples include caprolactone, valerolactone, propiolactone, undecalactone, 1,5-oxepan-2-one and the like.
  • composition of biodegradable resin is not particularly limited as long as it contains at least PBAT and PBSA, but any one of the following aspects is particularly preferable.
  • the biodegradable resin consists of PBAT.
  • the biodegradable resin is PBSA.
  • the biodegradable resin consists of PBAT and PBSA.
  • the biodegradable resin consists of PBAT and/or PBSA and polylactic acid.
  • the biodegradable resin consists of resin X
  • resin X is included as the biodegradable resin in the resin composition.
  • Heavy calcium carbonate can be obtained, for example, by crushing and classifying natural calcium carbonate such as calcite (limestone, chalk, marble, etc.), shells, and corals.
  • pulverization method in the method for producing heavy calcium carbonate either wet pulverization or dry pulverization can be employed. Dry pulverization, which does not require a dehydration step, a drying step, or the like, is preferable from an economical point of view.
  • the pulverizer used for pulverization is not particularly limited, and examples thereof include impact pulverizers, pulverizers using pulverizing media (such as ball mills), and roller mills.
  • the ground calcium carbonate may or may not be surface-treated.
  • the surface treatment can be performed at any time (before pulverization, during pulverization, before classification, after classification, etc.) in the method for producing heavy calcium carbonate.
  • the surface treatment of heavy calcium carbonate includes physical methods (plasma treatment, etc.) and chemical methods (methods using coupling agents, surfactants, etc.).
  • coupling agents used in chemical methods include, for example, silane coupling agents and titanium coupling agents.
  • surfactants used in chemical methods include anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants. More specific examples include higher fatty acids, higher fatty acid esters, higher fatty acid amides, and higher fatty acid salts.
  • heavy calcium carbonate that has not been subjected to surface treatment is preferable in that it can reduce the risk of odor generation due to thermal decomposition of the surface treatment agent during molding.
  • ground calcium carbonate is not particularly limited, but from the viewpoint of good dispersibility in the resin composition, it is preferably particulate.
  • the ground calcium carbonate When the ground calcium carbonate is particulate, its average particle size is preferably 0.7 ⁇ m or more and 6.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less, still more preferably 1.5 ⁇ m or more and 3.0 ⁇ m. It is below.
  • the average particle size of the heavy calcium carbonate is within the above range, the dispersibility in the resin composition is good, and an excessive increase in viscosity of the resin composition can be prevented. Furthermore, the heavy calcium carbonate particles are less likely to protrude from the surface of the molded product obtained from the resin composition and fall off, or the surface properties, mechanical strength, etc. are less likely to be impaired, and the effects of the present invention are more likely to be achieved.
  • the "average particle size” means a value calculated from the measurement results of the specific surface area by the air permeation method according to JIS M-8511.
  • a specific surface area measuring device “SS-100 type” manufactured by Shimadzu Corporation can be preferably used.
  • the heavy calcium carbonate is particulate, it is preferable that particles with a particle diameter of 45 ⁇ m or more are not included in the particle size distribution.
  • ground calcium carbonate When ground calcium carbonate is particulate, its irregularity can be represented by the degree of spheroidization of the shape, ie, the degree of circularity. A lower roundness means a higher irregularity.
  • the ground calcium carbonate When the ground calcium carbonate is particulate, its circularity is preferably 0.50 or more and 0.95 or less, more preferably 0.55 or more and 0.93 or less, and still more preferably 0.60 or more and 0.90. It is below.
  • roundness refers to a value obtained by dividing the projected area of a particle by the area of a circle having the same perimeter as the projected perimeter of the particle ((projected area of the particle)/(projected perimeter of the particle) means the area of a circle with the same perimeter)).
  • the method of measuring the roundness is not particularly limited, but for example, the roundness can be specified by analyzing a projected image of particles obtained with a scanning microscope, a stereomicroscope, or the like, using commercially available image analysis software.
  • the projected area of the particle (A), the area of the circle having the same perimeter as the projected perimeter of the particle (B), the radius of the circle having the same perimeter as the projected perimeter of the particle (r), the particle can be calculated by the following formula based on the measurement results of the projection perimeter (PM) of the .
  • the upper limit of the content of the biodegradable resin is preferably 70% by mass or less, more preferably 50% by mass or less, relative to the resin composition.
  • the lower limit of the content of the biodegradable resin is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the resin composition.
  • the upper limit of the content of heavy calcium carbonate is preferably 90% by mass or less, more preferably 80% by mass or less, relative to the resin composition.
  • the lower limit of the content of heavy calcium carbonate is preferably 30% by mass or more, more preferably 50% by mass or more, relative to the resin composition.
  • the resin composition of the present invention contains epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and One or more epoxy compounds selected from the group consisting of bisphenol F type epoxy resins are contained in an amount of 2.0% by mass or more and 8.0% by mass or less based on 100% by mass of the resin composition.
  • Epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, and epoxidized palm oil are known and commercially available. Both are epoxidized vegetable oils such as soybean oil, linseed oil, castor oil, and palm oil. In this specification, epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, and epoxidized palm oil may be collectively referred to as "epoxidized vegetable oil”.
  • epoxidized vegetable oils are made from natural oils, and the degree of epoxidation varies between varieties, between lots, and between molecules within the same lot. over.
  • oils not made solely from soybean oil or flax are supplied as "epoxidized soybean oil” or the like because they have a similar structure, but such epoxidized products are also epoxy compounds used in the present invention. subsumed in Examples of representative chemical structures of epoxidized soybean oil and epoxidized linseed oil are shown below, but the epoxidized vegetable oil that can be used in the present invention is not limited to these.
  • the molecular weights of epoxidized soybean oil and epoxidized linseed oil shown in the above formula are 960 and 974, respectively.
  • an epoxidized vegetable oil of any molecular weight can be used, but considering the balance between the molding processability of the resin composition and the mechanical properties of the molded product, the average molecular weight is preferably about 500 to 2000. , more preferably about 700 to 1,500, and particularly preferably about 800 to 1,200.
  • Epoxy resin is a general term for thermosetting resins that can be cured by crosslinking epoxy groups remaining in the polymer. In a broad sense, it includes both prepolymers before cross-linking and curing and resins after curing, but prepolymers are used in the present invention.
  • the bisphenol A type epoxy resin and the bisphenol F type epoxy resin may be collectively referred to as "prepolymer". These prepolymers can generally be obtained by copolymerizing bisphenol A or bisphenol F with epichlorohydrin, and various types are available on the market depending on the state of polymerization. Their representative chemical structures are shown below.
  • prepolymers generally tend to be solid at room temperature when "n” in the above formula is 2 to 3 or more and the molecular weight is about 700 to 1000 or more.
  • a liquid prepolymer is preferred from the viewpoint of improving the flexibility of the resin composition. More preferably, prepolymers in which "n" is 1 or less, especially 0 are used.
  • the above prepolymer is often used as a main raw material for thermosetting resins, that is, as a component that usually accounts for 50% by mass or more, or 70% by mass or more.
  • the epoxidized vegetable oil is frequently used as a resin plasticizer, and is usually blended in a resin composition in an amount of about 10 to 30% by mass.
  • these epoxy compounds are added in an amount of 2.0% by mass or more and 8.0% by mass based on 100% by mass of the resin composition.
  • Mechanical properties such as elongation at break are greatly improved by blending in a relatively small amount such as the following. This is a completely unexpected finding.
  • the present invention is not limited by any particular theory, one possible reason why the present invention is effective is that the epoxy compound reacts with the decomposition products of PBAT and PBSA.
  • ester resins such as PBAT and PBSA are hydrolyzed to reduce their molecular weights and produce decomposition products having carboxylic acid ends.
  • an epoxy compound coexists here, it reacts with the carboxy group of the generated decomposition product, resulting in suppression of a decrease in the molecular weight of the resin, and the reaction product can also function as a high-molecular-weight plasticizer.
  • the molecular weight and chemical structure of the epoxidized vegetable oil and prepolymer to be blended in the resin composition of the present invention are not particularly limited, but compounds having an epoxy equivalent of 100 g/eq to 200 g/eq are preferred. . If the epoxy equivalent is 200 g/eq or less, even if the amount is small, a sufficient amount of epoxy groups relative to the biodegradable resin coexist in the resin composition. It reacts to suppress the reduction in molecular weight, and the mechanical properties of the molded product can be improved. Moreover, since it is possible to reduce the compounding amount, the risk of bleeding on the surface of the molded product is also reduced.
  • the epoxy equivalent of the epoxy compound is more preferably 120 g/eq or more and less than 200 g/eq, and particularly preferably 150 g/eq or more and 190 g/eq or less.
  • the content of these epoxy compounds is preferably 2.2% by mass or more relative to 100% by mass of the resin composition, and 2.5% by mass. More preferably, it should be 3.0% by mass or more, and particularly preferably 3.0% by mass or more.
  • the content of these epoxy compounds is preferably 6.0% by mass or less with respect to 100% by mass of the resin composition. It is more preferably less than 0% by mass, even more preferably 4.5% by mass or less, and particularly preferably 4.0% by mass or less.
  • an epoxy compound having an epoxy equivalent of more than 200 g/eq may bleed to the surface of the molded article if it is blended in a large amount, so the content is preferably less than 5.0% by mass.
  • the resin composition of the present invention may further contain optional components within a range that does not impair the effects of the present invention.
  • optional components can be used singly or in combination of two or more. Further, the type and blending amount of such components can be appropriately set according to the effect to be obtained.
  • Components that can be contained in the resin composition of the present invention include plasticizers, natural organic substances, resins other than biodegradable resins, antistatic agents, fillers (other than heavy calcium carbonate), coloring agents, lubricants, and antioxidants. , flame retardants, foaming agents, and the like.
  • plasticizers examples include acetyltributyl citrate, triethyl citrate, acetyltriethyl citrate, dibutyl phthalate, diaryl phthalate, dimethyl phthalate, diethyl phthalate, di-2-methoxyethyl phthalate, dibutyl tartrate, o -benzoyl benzoic acid ester, diacetin and the like.
  • Epoxy compounds such as the epoxidized soybean oil described above can also be used as plasticizers.
  • acetyltributyl citrate in combination with heavy calcium carbonate, does not impair the biodegradability of the biodegradable resin and particularly suppresses the reduction in tensile strength and elongation at break of the molded product. It has the advantage of being easy.
  • the upper limit of the plasticizer content is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, relative to the resin composition of the present invention.
  • the resin composition of the present invention has improved mechanical properties such as elongation at break due to the action of the contained epoxy compound, and is flexible.
  • the lower limit of the content is preferably 5.0% by mass or more, more preferably 7.5% by mass or more, relative to the resin composition of the present invention.
  • the upper limit of its content is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, relative to the resin composition of the present invention.
  • the lower limit of its content is preferably 5.0% by mass or more, more preferably 7.5% by mass or more, relative to the resin composition of the present invention.
  • Any component that can be incorporated into the resin composition can be used as the natural organic substance.
  • one or more selected from the group consisting of cellulose powder, wood flour, starch, rice husks, bean curd refuse, and wheat bran impairs the biodegradability of the biodegradable resin in combination with heavy calcium carbonate. It has the advantage that it is particularly easy to suppress the decrease in the tensile strength and elongation at break of the molded product.
  • cellulose powder is not particularly limited as long as it is powdered cellulose.
  • the average particle size of the cellulose powder is preferably 5 ⁇ m or more and 45 ⁇ m or less, more preferably 10 ⁇ m or more and 30 ⁇ m or less.
  • a commercially available product may be used as the cellulose powder.
  • wood powder is not particularly limited as long as it is powder obtained from any tree (cypress, Japanese cedar, etc.).
  • the average particle size of the wood flour is preferably 20 ⁇ m or more and 300 ⁇ m or less, more preferably 20 ⁇ m or more and 45 ⁇ m or less.
  • wood flour for example, what is known as “sawdust” can be used.
  • Starch in the present invention can be of any form that can be blended with a resin.
  • the starch may be powdered, for example.
  • rice husk means the outermost hull of rice, and any form that can be blended with resin can be used.
  • the rice hulls may be powdered, for example.
  • okara means soybean milk lees, and any form that can be blended with resin can be used.
  • Okara is preferably a dried product, more preferably a dried powder.
  • bran means the skin (outer skin, germ, etc.) removed during wheat milling, and any form that can be blended with resin can be used.
  • the bran may be powdered, for example.
  • the upper limit of the content (total amount) of natural organic matter is preferably 20.0% by mass or less, more preferably 10.0% by mass or less, relative to the resin composition.
  • the lower limit of the content (total amount) of natural organic matter is preferably 3.0% by mass or more, more preferably 5.0% by mass or more, relative to the resin composition.
  • Polyolefin-based resins such as polyethylene-based resins, polypropylene-based resins, polymethyl-1-pentene, and ethylene-cyclic olefin copolymers; Ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, metal salt of ethylene-methacrylic acid copolymer (ionomer), ethylene-alkyl acrylate copolymer, ethylene- Functional group-containing polyolefin resins such as methacrylic acid alkyl ester copolymers, maleic acid-modified polyethylene, and maleic acid-modified polypropylene; Polyamide resins such as nylon-6, nylon-6,6, nylon-6,10, nylon-6,12; Aromatic polyester resins such as polyethylene terephthalate and its copolymers, polyethylene naphthalate, and polybutylene terephthalate; Polys
  • the resin composition of the present invention does not contain a resin other than a biodegradable resin, or even if it contains a small amount (for example, 1.0 % by mass or less).
  • the antistatic agent examples include fatty acid diethanolamides such as lauryl diethanolamide and stearyl diethanolamide, and hydroxyl group-containing compounds such as alcohol amine compounds. Alcohol amines such as monoethanolamine, diethanolamine, triethanolamine and the like are particularly preferred. Two or more antistatic agents can be used in combination. These antistatic agents may be supported on calcium silicate, calcium carbonate, or the like. It should be noted that the number of carbon atoms in the acyl group of the fatty acid diethanolamide is preferably in the range of about 8 to 22 from the viewpoint of exhibiting a sufficient antistatic effect.
  • the amount of such an antistatic agent is about 0.01 to 8.00% by mass, more preferably 0.02%, when the total mass of the inorganic powder-blended thermoplastic resin composition is 100% by mass. It is desired that the content be blended in a proportion of up to 4.00% by mass, more preferably 0.05 to 3.00% by mass, particularly about 0.10 to 1.50% by mass. By using it within this range, in addition to obtaining a sufficient antistatic effect, there is little possibility that the surface of the resin will become sticky or that the physical properties of the resin will be adversely affected.
  • Fillers can be either synthetic or of natural mineral origin.
  • Examples of fillers include carbonates (excluding heavy calcium carbonate) such as calcium, magnesium, aluminum, titanium, iron and zinc, sulfates, silicates, phosphates, borates, oxides, or these and hydrates of More specifically, light calcium carbonate, magnesium carbonate, dolomite, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, calcium silicate , aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, potassium titanate, bentonite, wollastonite, graphite etc.
  • carbonates excluding heavy calcium carbonate
  • the resin composition of the present invention does not contain a filler other than heavy calcium carbonate, or if it does contain a small amount (for example, 0.00% of the resin composition). 1% by mass or less).
  • organic pigments include azo-based, anthraquinone-based, phthalocyanine-based, quinacridone-based, isoindolinone-based, diosazine-based, perinone-based, quinophthalone-based, and perylene-based pigments.
  • inorganic pigments include ultramarine blue, titanium oxide, titanium yellow, iron oxide (rouge), chromium oxide, zinc white, and carbon black.
  • lubricants examples include fatty acid-based lubricants (stearic acid, hydroxystearic acid, complex stearic acid, oleic acid, sodium, potassium, magnesium, calcium salts thereof, etc.), fatty alcohol-based lubricants, and aliphatic amide-based lubricants.
  • fatty acid-based lubricants stearic acid, hydroxystearic acid, complex stearic acid, oleic acid, sodium, potassium, magnesium, calcium salts thereof, etc.
  • fatty alcohol-based lubricants examples include aliphatic amide-based lubricants.
  • Step 4 (Stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, methylolamide, methylenebisstearamide, methylenebisstearobehenamide, higher fatty acid bisamic acids, complex amides, etc.), aliphatic esters Lubricants (n-butyl stearate, methyl hydroxystearate, polyhydric alcohol fatty acid esters, saturated fatty acid esters, ester waxes, etc.), fatty acid metal soap-based lubricants, and the like.
  • Lubricants n-butyl stearate, methyl hydroxystearate, polyhydric alcohol fatty acid esters, saturated fatty acid esters, ester waxes, etc.
  • fatty acid metal soap-based lubricants and the like.
  • antioxidants examples include phosphorus antioxidants, phenolic antioxidants, and pentaerythritol antioxidants.
  • flame retardants include halogen-based flame retardants, phosphorus-based flame retardants, and non-phosphorus-based non-halogen flame retardants such as metal hydrates.
  • blowing agents include aliphatic hydrocarbons (propane, butane, pentane, hexane, heptane, etc.), alicyclic hydrocarbons (cyclobutane, cyclopentane, cyclohexane, etc.), halogenated hydrocarbons (chlorodifluoromethane , difluoromethane, trifluoromethane, trichlorofluoromethane, dichloromethane, dichlorofluoromethane, dichlorodifluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, dichloro tetrafluoroethane, trichlorotrifluoroethane, tetrachlorodifluoro
  • (Preferred composition of resin composition) As a preferred embodiment of the resin composition of the present invention, for example, 55 to 65% by mass of PBAT and/or PBSA; 25 to 35% by mass of heavy calcium carbonate: epoxidized soybean oil, epoxidized An epoxy compound selected from linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin is 2.0 to 8.0% by mass, particularly 2.2% by mass or more5 less than .0% by weight, including those containing 0 to 15% by weight, especially 5 to 10% by weight, of acetyltributyl citrate.
  • the resin composition of the present invention can be produced using the above-described components according to a conventionally known method for producing a resin composition.
  • the resin composition is obtained, for example, through mixing of components, melt-kneading, and the like.
  • the timing of mixing and melt-kneading can be appropriately set according to the molding method to be adopted (extrusion molding, injection molding, vacuum molding, etc.). For example, mixing may be performed before charging from the hopper of the molding machine or at the same time as molding.
  • Melt-kneading may be performed by, for example, a twin-screw kneader, a kneader, a Banbury mixer, or the like.
  • the biodegradable resin, ground calcium carbonate, and epoxy compound may be added at the same time, and two of these components may be used as a spare. You can knead it. It is also possible to melt-knead a biodegradable resin composition in which heavy calcium carbonate is kneaded and a biodegradable resin composition in which an epoxy compound is kneaded.
  • the form of the resin composition of the present invention can be, for example, pellets of any size and shape.
  • the shape of the pellet is not particularly limited, and may be, for example, cylindrical, spherical, or oval.
  • the size of the pellet is not particularly limited.
  • spherical pellets may be 1-10 mm in diameter.
  • the aspect ratio can be 0.1 to 1.0 and the length and width can be 1 to 10 mm.
  • cylindrical pellets they can be 1-10 mm in diameter and 1-10 mm in length.
  • a desired molded product can be obtained by molding after drying the resin composition of the present invention as necessary.
  • the molded article of the present invention can be obtained by molding the resin composition of the present invention by any molding method.
  • the molded article of the present invention may have any shape according to its use.
  • the molded article of the present invention includes, for example, films, sheets, containers (food containers, etc.), daily necessities (various disposable products, etc.), automotive parts, electrical and electronic parts, various consumables (such as those in the field of construction materials, etc.). etc.
  • the resin composition of the present invention has good mechanical properties, it is particularly suitable for inflation molding or extrusion molding. Accordingly, the molded article of the present invention is preferably a blown or extruded article.
  • inflation-molded products examples include films, sheets, and bags (such as plastic shopping bags).
  • the thickness of the inflation molded product is not particularly limited, but is preferably 10 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m.
  • Extruded products include films, sheets, and hollow products.
  • the method for producing the molded article of the present invention can be appropriately selected according to the molded article to be obtained.
  • Examples of methods for producing the molded article of the present invention include inflation molding, extrusion molding, injection molding, foam injection molding, injection compression molding, blow molding, press molding, calendar molding, and vacuum molding. etc.
  • the molding conditions can be appropriately set according to the composition of the resin composition, the type of molded product, etc.
  • the molded product When the molded product is a film, sheet, or the like, it may or may not be stretched uniaxially, biaxially, or multiaxially during or after molding.
  • average particle diameter is a value calculated from the results of specific surface area measurement by an air permeation method according to JIS M-8511 using a specific surface area measuring device "SS-100 type” manufactured by Shimadzu Corporation. is.
  • Biodegradable resin 1 70% by mass of polybutylene adipate terephthalate and 30% by mass of polylactic acid.
  • Biodegradable resin 2 70% by mass of polybutylene succinate adipate and 30% by mass of polylactic acid.
  • Biodegradable resin 3 100% by mass of polybutylene adipate terephthalate
  • CC1 heavy calcium carbonate particles (average particle size: 2.2 ⁇ m, no surface treatment)
  • CC2 Heavy calcium carbonate particles (average particle size: 2.3 ⁇ m, surface treated with stearic acid)
  • CC3 light calcium carbonate particles (average particle size: 1.5 ⁇ m, no surface treatment)
  • EP1 epoxidized soybean oil (molecular weight about 920, oxirane oxygen 6.7-7.0%, epoxy equivalent 228-239 g/eq)
  • EP2 epoxidized linseed oil (molecular weight about 950, oxirane oxygen ⁇ 8.5%, epoxy equivalent ⁇ 188 g/eq)
  • EP3 bisphenol A type epoxy resin (epoxy equivalent 180-190 g/eq, liquid at room temperature)
  • EP4 Bisphenol F type epoxy resin (epoxy equivalent 160-180 g/eq, liquid at room temperature)
  • EP5 Bisphenol A type epoxy resin (epoxy equivalent 180-190 g/eq, liquid at room temperature, low chlorine type)
  • Plasticizer 1 Glycerin fatty acid ester Plasticizer 2: Acetyltributyl citrate
  • Antistatic agent HS15N: Antistatic agent containing lauryl diethanolamide and diethanolamine (manufactured by Kao Corporation)
  • CP cellulose powder with an average particle size of 20 ⁇ m
  • test piece (Biodegradable) The size of each film was adjusted to 30 mm long ⁇ 30 mm wide to obtain a test piece. The obtained test piece was placed in a 25 ml vial with seawater (10 ml) temperature-controlled to the same temperature as room temperature (25° C. ⁇ 5° C.), and allowed to stand for one month. Next, the state of each test piece was visually observed and evaluated according to the following criteria. A: The test piece is almost completely decomposed. B: The test piece is partially decomposed, or no change is observed in the test piece.
  • the resin compositions of Examples 1 to 4 containing 2.0% by mass or more and 8.0% by mass or less of a specific epoxy compound together with the biodegradable resin and heavy calcium carbonate have good workability.
  • the addition of the epoxy compound did not impair the biodegradability.
  • Examples 5-10, Comparative Examples 5-6 The same operation as in Example 1 was performed, except that the types and blending amounts of the raw materials used were changed as shown in Table 2. Table 2 shows the evaluation results of each sample.
  • the resin compositions of Examples 5 to 10 containing specific epoxy compounds are excellent in moldability, give molded articles with good mechanical properties and particularly excellent elongation at break, and no bleeding is observed. I didn't.
  • the resin composition of Comparative Example 5 which did not contain an epoxy compound, had low moldability and a small elongation at break of the molded product.
  • the resin composition of Comparative Example 6 containing a general-purpose plasticizer the moldability was good, but the mechanical properties of the molded product were low, and bleeding of the plasticizer was conspicuous. The advantages of using certain epoxy compounds are clear.
  • Example 5 The same experiment as in Example 5 and Comparative Example 5 was conducted with the mass ratio of biodegradable resin to heavy calcium carbonate set to 90:10, but no significant improvement in elongation at break due to the addition of the epoxy compound was observed. rice field.
  • the improvement of the mechanical properties in the resin composition of the present invention is not due to the plasticizing effect of the epoxy compound itself, but the decomposition product of the biodegradable resin component in the presence of heavy calcium carbonate reacts with the epoxy compound. It is suggested that it is brought about by
  • Examples 11 to 12, Comparative Example 7 The same operation as in Example 1 was performed with the types and blending amounts of the raw materials to be used changed as shown in Table 3. Table 3 shows the evaluation results of each sample.
  • the resin composition of Example 11 which contains about 7% by mass of acetyltributyl citrate in addition to the biodegradable resin, ground calcium carbonate, and specific epoxy compound, has extremely excellent moldability and mechanical properties. gave good moldings.
  • the molded article of Example 12 containing about 7% by mass of cellulose powder exhibited good mechanical properties.
  • biodegradable resin-containing composition that has good molding processability, excellent mechanical properties, particularly excellent elongation at break, and that gives a molded article that is less likely to deteriorate in appearance due to bleeding. It became clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

The present invention addresses the problem of providing a biodegradable-resin-containing composition having excellent molding processability, the biodegradable-resin-containing composition being capable of yielding a molded article that has exceptional mechanical properties, especially elongation at break, and that is unlikely to undergo deterioration of appearance due to bleeding. The present invention provides a resin composition containing a biodegradable resin, heavy calcium carbonate, and an epoxy compound, the mass ratio of the biodegradable resin and the heavy calcium carbonate ranging from 10:90 to 70:30, the biodegradable resin including at least polybutylene adipate terephthalate or polybutylene succinate adipate, the epoxy compound being one or more compounds selected from the group consisting of epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A epoxy resin, and bisphenol F epoxy resin, and the epoxy compound content being 2-8 mass% inclusive relative to 100 mass% of the resin composition.

Description

樹脂組成物、及び成形品Resin composition and molded article
 本発明は、樹脂組成物、及び成形品に関する。 The present invention relates to resin compositions and molded articles.
 生分解性樹脂は、微生物の作用や加水分解により、自然界に元来存在する物質へ分解されることから、環境に優しい樹脂として注目されている。生分解性樹脂に対し、環境負荷の小ささを損なわずに良好な諸特性等を付与するため、様々な成分を配合することが提案されている(例えば、特許文献1、2等)。この様な成分として、炭酸カルシウム等が挙げられる。 Biodegradable resins are attracting attention as environmentally friendly resins because they decompose into substances that originally exist in nature through the action of microorganisms and hydrolysis. It has been proposed to add various components to biodegradable resins in order to impart favorable properties without impairing the low environmental load (for example, Patent Documents 1 and 2). Calcium carbonate etc. are mentioned as such a component.
 炭酸カルシウムを高配合した生分解性樹脂組成物では、該組成物を成形して得られる成形品の機械特性、特に切断時伸びが低下する可能性がある。中でも、ポリブチレンアジペートテレフタレート等の生分解性樹脂に炭酸カルシウムを多量に、例えば30質量%程度以上添加した樹脂組成物では、成形し難い上、成形時に加水分解が進行して機械特性及び成形品の表面外観が低下し、実用に耐える成形品が得られない場合すら生じる。樹脂組成物の機械特性を改善する技術として、クエン酸エステルやグリセロール等の可塑剤を配合することが提案されている(例えば、特許文献3、4等)。また、特許文献5では、ポリブチレンアジペートテレフタレート又はポリブチレンサクシネートアジペートと、重質炭酸カルシウムとを組み合わせた樹脂組成物が開示されている。 With a biodegradable resin composition containing a high content of calcium carbonate, there is a possibility that the mechanical properties of the molded product obtained by molding the composition, especially the elongation at break, will decrease. Among them, a resin composition in which a large amount of calcium carbonate, for example, about 30% by mass or more, is added to a biodegradable resin such as polybutylene adipate terephthalate, is difficult to mold, and hydrolysis proceeds during molding, resulting in deterioration of mechanical properties and molded products. The surface appearance of the surface is deteriorated, and there are even cases where a molded article that can withstand practical use cannot be obtained. As a technique for improving the mechanical properties of a resin composition, it has been proposed to add a plasticizer such as a citrate ester or glycerol (for example, Patent Documents 3 and 4). Further, Patent Document 5 discloses a resin composition in which polybutylene adipate terephthalate or polybutylene succinate adipate and heavy calcium carbonate are combined.
特開2017-119850号公報JP 2017-119850 A 特表2018-527416号公報Japanese Patent Publication No. 2018-527416 特表2020-531678号公報Japanese Patent Publication No. 2020-531678 特開2020-183496号公報JP 2020-183496 A 特許第6916571号公報Japanese Patent No. 6916571
 可塑剤の配合によって切断時伸びはある程度改善し得るものの、可塑剤のブリードが生じて成形品の表面外観を悪化させる場合がある。ブリード防止のために可塑剤量を抑制すると、機械特性の大幅改善がなされない上、成形性も改善され難くなるため、炭酸カルシウム等の添加量を減じざるを得ない。特許文献3及び4記載の樹脂組成物においても、炭酸カルシウムの含有量は20質量%以下、さらには10質量%程度以下に止められている。特許文献5記載の樹脂組成物では、30~90質量%程度の重質炭酸カルシウムが含有されており、ブリードも抑制されているが、用途によっては切断時伸びのさらなる改善が求められる。 Although the elongation at break can be improved to some extent by adding a plasticizer, the plasticizer may bleed and deteriorate the surface appearance of the molded product. If the amount of the plasticizer is suppressed to prevent bleeding, the mechanical properties are not significantly improved, and the moldability is also difficult to improve. Also in the resin compositions described in Patent Documents 3 and 4, the content of calcium carbonate is limited to 20% by mass or less, and further to about 10% by mass or less. The resin composition described in Patent Document 5 contains about 30 to 90% by mass of heavy calcium carbonate, which suppresses bleeding, but further improvement in elongation at break is required depending on the application.
 本発明は以上の実情に鑑みてなされたものであり、成形加工性が良好で、機械特性、特に切断時伸びに優れ、ブリードによる外観悪化も来し難い成形品を得ることができる、生分解性樹脂含有樹脂組成物の提供を目的とする。 The present invention has been made in view of the above circumstances, and it is possible to obtain a molded product that has good moldability, excellent mechanical properties, especially excellent elongation at cutting, and is unlikely to cause deterioration in appearance due to bleeding. An object of the present invention is to provide a resin composition containing a flexible resin.
 本発明者は、ポリブチレンアジペートテレフタレート又はポリブチレンサクシネートアジペートを少なくとも含む生分解性樹脂を用い、これを重質炭酸カルシウムと組み合わせ、さらに特定のエポキシ化合物を所定量配合することで上記課題を解決できる点を見出し、本発明を完成するに至った。より具体的には、本発明は以下を提供する。 The present inventors solved the above problems by using a biodegradable resin containing at least polybutylene adipate terephthalate or polybutylene succinate adipate, combining it with ground calcium carbonate, and adding a predetermined amount of a specific epoxy compound. The inventors have found the points that can be achieved, and have completed the present invention. More specifically, the present invention provides:
 (1) 生分解性樹脂、重質炭酸カルシウム、及びエポキシ化合物を含有する樹脂組成物であって、
 前記生分解性樹脂と、前記重質炭酸カルシウムとの質量比が10:90~70:30であり、
 前記生分解性樹脂が、ポリブチレンアジペートテレフタレート又はポリブチレンサクシネートアジペートを少なくとも含み、
 前記エポキシ化合物が、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、エポキシ化パーム油、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂からなる群より選択される1種以上の化合物であり、
 前記エポキシ化合物の含有量が、前記樹脂組成物100質量%に対して2.0質量%以上8.0質量%以下である、
樹脂組成物。
(1) A resin composition containing a biodegradable resin, ground calcium carbonate, and an epoxy compound,
The biodegradable resin and the heavy calcium carbonate have a mass ratio of 10:90 to 70:30,
The biodegradable resin contains at least polybutylene adipate terephthalate or polybutylene succinate adipate,
The epoxy compound is one or more compounds selected from the group consisting of epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin. can be,
The content of the epoxy compound is 2.0% by mass or more and 8.0% by mass or less with respect to 100% by mass of the resin composition.
Resin composition.
 (2) 前記エポキシ化合物が、エポキシ当量が100g/eq以上200g/eq以下の化合物である、(1)に記載の樹脂組成物。 (2) The resin composition according to (1), wherein the epoxy compound has an epoxy equivalent of 100 g/eq to 200 g/eq.
 (3) 前記生分解性樹脂と前記重質炭酸カルシウムとを質量比10:90~50:50の割合で含有する、(1)又は(2)に記載の樹脂組成物。 (3) The resin composition according to (1) or (2), which contains the biodegradable resin and the ground calcium carbonate at a mass ratio of 10:90 to 50:50.
 (4) 前記生分解性樹脂が、ポリブチレンアジペートテレフタレート及びポリ乳酸からなり、
 前記ポリブチレンアジペートテレフタレートと、前記ポリ乳酸との質量比が50:50~90:10である、
(1)~(3)の何れかに記載の樹脂組成物。
(4) the biodegradable resin comprises polybutylene adipate terephthalate and polylactic acid;
The mass ratio of the polybutylene adipate terephthalate and the polylactic acid is 50:50 to 90:10,
(1) The resin composition according to any one of (3).
 (5) 前記生分解性樹脂が、ポリブチレンサクシネートアジペート及びポリ乳酸からなり、
 前記ポリブチレンサクシネートアジペートと、前記ポリ乳酸との質量比が50:50~90:10である、
(1)~(3)の何れかに記載の樹脂組成物。
(5) the biodegradable resin comprises polybutylene succinate adipate and polylactic acid;
The mass ratio of the polybutylene succinate adipate and the polylactic acid is 50:50 to 90:10,
(1) The resin composition according to any one of (3).
 (6) 前記樹脂組成物100質量%に対して、5質量%以上30質量%以下の天然有機物を更に含み、
 前記天然有機物が、セルロースパウダー、木粉、デンプン、モミ殻、オカラ、及びフスマからなる群から選択される1以上である、
(1)~(5)の何れかに記載の樹脂組成物。
(6) further comprising 5% by mass or more and 30% by mass or less of a natural organic substance with respect to 100% by mass of the resin composition;
The natural organic matter is one or more selected from the group consisting of cellulose powder, wood flour, starch, rice husk, bean curd refuse, and wheat bran.
(1) The resin composition according to any one of (5).
 (7) 前記重質炭酸カルシウムの、JIS M-8511に準じた空気透過法による平均粒子径が、0.7μm以上6.0μm以下である、(1)~(6)の何れかに記載の樹脂組成物。 (7) According to any one of (1) to (6), the average particle size of the heavy calcium carbonate measured by an air permeation method according to JIS M-8511 is 0.7 μm or more and 6.0 μm or less. Resin composition.
 (8) さらにクエン酸アセチルトリブチルを、前記樹脂組成物100質量%に対して5質量%以上20質量%以下の量で含有する、(1)~(7)の何れかに記載の樹脂組成物。 (8) The resin composition according to any one of (1) to (7), further containing acetyltributyl citrate in an amount of 5% by mass or more and 20% by mass or less with respect to 100% by mass of the resin composition. .
 (9) (1)~(8)の何れかに記載の樹脂組成物から得られた成形品。 (9) A molded article obtained from the resin composition according to any one of (1) to (8).
 (10) 前記成形品がインフレーションフィルムである、(9)に記載の成形品。 (10) The molded product according to (9), wherein the molded product is an inflation film.
 (11) 前記成形品が押出成形シートである、(9)に記載の成形品。 (11) The molded article according to (9), wherein the molded article is an extruded sheet.
 本発明によれば、成形加工性が良好な上、機械特性、特に切断時伸びに優れ、ブリードによる外観悪化も来し難い成形品を得ることができる、生分解性樹脂含有組成物が提供される。 According to the present invention, there is provided a biodegradable resin-containing composition that is excellent in moldability, excellent in mechanical properties, especially elongation at break, and capable of producing a molded article that is less likely to deteriorate in appearance due to bleeding. be.
 以下、本発明の実施形態について説明するが、本発明はこれに限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited thereto.
<樹脂組成物>
 本発明の樹脂組成物は、生分解性樹脂、重質炭酸カルシウム、及びエポキシ化合物を含有する樹脂組成物であって、
 前記生分解性樹脂と、前記重質炭酸カルシウムとの質量比が10:90~70:30であり、
 前記生分解性樹脂が、ポリブチレンアジペートテレフタレート又はポリブチレンサクシネートアジペートを少なくとも含み、
 前記エポキシ化合物が、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、エポキシ化パーム油、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂からなる群より選択される1種以上の化合物であり、
 前記エポキシ化合物の含有量が、前記樹脂組成物100質量%に対して2.0質量%以上8.0質量%以下のものである。
<Resin composition>
The resin composition of the present invention is a resin composition containing a biodegradable resin, ground calcium carbonate, and an epoxy compound,
The biodegradable resin and the heavy calcium carbonate have a mass ratio of 10:90 to 70:30,
The biodegradable resin contains at least polybutylene adipate terephthalate or polybutylene succinate adipate,
The epoxy compound is one or more compounds selected from the group consisting of epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin. can be,
The content of the epoxy compound is 2.0% by mass or more and 8.0% by mass or less with respect to 100% by mass of the resin composition.
 ポリブチレンアジペートテレフタレート(PBAT)や、ポリブチレンサクシネートアジペート(PBSA)は、良好な生分解性を有する。
 この様な生分解性樹脂とともに、炭酸カルシウムを配合した生分解性樹脂組成物によれば、該組成物から得られる成形品に対して、良好な特性(引き裂き性等)を付与できることが知られる。
Polybutylene adipate terephthalate (PBAT) and polybutylene succinate adipate (PBSA) have good biodegradability.
It is known that a biodegradable resin composition containing calcium carbonate together with such a biodegradable resin can impart good properties (tearability, etc.) to molded articles obtained from the composition. .
 しかし、本発明者は先に、生分解性樹脂組成物中の炭酸カルシウムが多い場合、該組成物から得られる成形品における引張強さや切断時伸びが損なわれやすくなること、並びに、炭酸カルシウムとして重質炭酸カルシウムを選択することで、引張強さ及び切断時伸びの低下を抑制できることを見出した。 However, the present inventors have previously found that when the biodegradable resin composition contains a large amount of calcium carbonate, the tensile strength and elongation at break of the molded article obtained from the composition are likely to be impaired, and that calcium carbonate It was found that by selecting heavy calcium carbonate, it is possible to suppress a decrease in tensile strength and elongation at break.
 本発明者はさらに検討を重ね、特定のエポキシ化合物を比較的少量配合することによって、成形性が改善される上に成形品の機械特性の低下が抑制され、特に切断時伸びは大きく改善されて、しかもブリードによる外観悪化も来し難いことを見出した。 The present inventors conducted further studies and found that by blending a specific epoxy compound in a relatively small amount, the moldability was improved and the deterioration of the mechanical properties of the molded product was suppressed, and in particular, the elongation at break was greatly improved. Furthermore, it was found that deterioration of the appearance due to bleeding hardly occurs.
 この種のエポキシ化合物の一部は、後記するように可塑剤として樹脂組成物中に10~30質量%程度配合される場合があるが、今回、8.0質量%以下という少量で機械特性、特に切断時伸びが大きく改善されるという、予想外の知見が得られた。この理由は定かではなく、また、本発明は特定の理論により限定されるものでもないが、本発明で配合するエポキシ化合物が、後記するように生分解性樹脂の分解物と反応している可能性が考えられる。 Some of this type of epoxy compound may be blended as a plasticizer in a resin composition in an amount of about 10 to 30% by mass, as will be described later. In particular, an unexpected finding was obtained that the elongation at break was significantly improved. The reason for this is not clear, and the present invention is not limited by any particular theory, but it is possible that the epoxy compound blended in the present invention reacts with the decomposition product of the biodegradable resin as described later. gender can be considered.
 本発明において「生分解性」とは、微生物の作用や加水分解によって分解する性質を意味し、実施例に示した方法で評価できる。 In the present invention, "biodegradability" means the property of being decomposed by the action of microorganisms or hydrolysis, and can be evaluated by the method shown in the Examples.
 本発明において「引張強さ」とは、対象に引張荷重を加えて破断させた場合における、破断に至るまでに到達した最大荷重を、引張荷重負荷前の断面積で除した値を意味し、実施例に示した方法で評価できる。 In the present invention, the term "tensile strength" means the value obtained by dividing the maximum load reached before breaking by the cross-sectional area before applying the tensile load, when the target is broken by applying a tensile load. It can be evaluated by the method shown in Examples.
 本発明において「切断時伸び」とは、対象に引張荷重を加えて破断させた場合における、破断時点の伸びを意味し、実施例に示した方法で評価できる。 In the present invention, "elongation at break" means the elongation at break when a tensile load is applied to an object to break it, and can be evaluated by the method shown in the Examples.
 本発明において「機械特性が改善されている」、「引張強さ及び切断時伸びの低下が抑制されている」等の文言は、本発明の要件を満たす樹脂組成物から得られた成形品の引張強さ及び切断時伸び等の機械特性の少なくとも一つが、生分解性樹脂の種類や配合量が共通する点以外は本発明の要件を満たさない樹脂組成物から得られた成形品の特性値と同等程度以上であることを意味する。 In the present invention, phrases such as "improved mechanical properties" and "suppressed reduction in tensile strength and elongation at break" refer to molded articles obtained from resin compositions that satisfy the requirements of the present invention. At least one of mechanical properties such as tensile strength and elongation at break is a characteristic value of a molded article obtained from a resin composition that does not satisfy the requirements of the present invention except that the type and amount of biodegradable resin are common. means equal to or greater than
 以下、本発明の樹脂組成物の構成について説明する。 The configuration of the resin composition of the present invention will be described below.
(生分解性樹脂の種類)
 本発明における生分解性樹脂は、ポリブチレンアジペートテレフタレート(以下、「PBAT」ともいう。)又はポリブチレンサクシネートアジペート(以下、「PBSA」ともいう。)を少なくとも含む。つまり、発明における生分解性樹脂は、PBAT又はPBSAの何れかのみを含んでいてもよく、両方を含んでいても良い。
(Type of biodegradable resin)
The biodegradable resin in the present invention includes at least polybutylene adipate terephthalate (hereinafter also referred to as "PBAT") or polybutylene succinate adipate (hereinafter also referred to as "PBSA"). That is, the biodegradable resin in the invention may contain either PBAT or PBSA, or both.
 本発明における生分解性樹脂としては、PBAT及びPBSA以外の生分解性樹脂を含んでいてもよく、含んでいなくとも良い。尚、ポリブチレンアジペートテレフタレート又はポリブチレンサクシネートアジペートの含有量は、生分解性樹脂に対して50質量%以上、特に70質量%以上であることが好ましい。 The biodegradable resin in the present invention may or may not contain biodegradable resins other than PBAT and PBSA. The content of polybutylene adipate terephthalate or polybutylene succinate adipate is preferably 50% by mass or more, particularly 70% by mass or more, relative to the biodegradable resin.
 本発明の樹脂組成物に含まれ得る、PBAT及びPBSA以外の生分解性樹脂としては、例えば、ポリ乳酸、ポリヒドロキシブチレート、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2-オキセタノン)等が挙げられる。これらのうち、本発明の効果を奏しやすいという観点からポリ乳酸が好ましい。 Examples of biodegradable resins other than PBAT and PBSA that can be contained in the resin composition of the present invention include polylactic acid, polyhydroxybutyrate, and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). , polycaprolactone, polybutylene succinate, polyethylene succinate, polymalic acid, polyglycolic acid, polydioxanone, poly(2-oxetanone) and the like. Among these, polylactic acid is preferable from the viewpoint that the effects of the present invention are likely to be exhibited.
 なお、本発明において「ポリ乳酸」とは、原料モノマーとして乳酸成分のみを縮重合させて得られるポリ乳酸ホモポリマー、及び、原料モノマーとして乳酸成分と該乳酸成分と共重合可能なその他のモノマー成分とを縮重合させて得られるポリ乳酸コポリマーを包含する。
 本発明においては、ポリ乳酸として知られる任意の重合体を使用できる。
In the present invention, "polylactic acid" refers to a polylactic acid homopolymer obtained by condensation polymerization of only a lactic acid component as a raw material monomer, a lactic acid component as a raw material monomer, and other monomer components copolymerizable with the lactic acid component. It includes a polylactic acid copolymer obtained by condensation polymerization of and.
Any polymer known as polylactic acid can be used in the present invention.
 乳酸と共重合可能なその他のモノマー成分としては、特に限定されないが、例えば、オキシ酸、二価アルコール類、三価以上の多価アルコール類、芳香族ヒドロキシ化合物、二価のカルボン酸、三価以上の多価カルボン酸、ラクトン類等が挙げられる。 Other monomer components that can be copolymerized with lactic acid are not particularly limited. The above polyvalent carboxylic acids, lactones and the like can be mentioned.
 オキシ酸としては、例えば、グリコール酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシ安息香酸、ヒドロキシヘプタン酸等のオキシ酸が挙げられる。 Examples of oxyacids include oxyacids such as glycolic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxybenzoic acid, and hydroxyheptanoic acid.
 二価アルコール類としては、例えば、エチレングリコール、プロピレングリコール、プロパンジオール、ブタンジオール、ヘプタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ジエチレングリコール、トリエチエレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等が挙げられる。 Examples of dihydric alcohols include ethylene glycol, propylene glycol, propanediol, butanediol, heptanediol, hexanediol, octanediol, nonanediol, decanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, diethylene glycol, Examples include triethylene glycol, polyethylene glycol, polytetramethylene glycol and the like.
 三価以上の多価アルコール類としては、例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。 Examples of trihydric or higher polyhydric alcohols include glycerin, trimethylolpropane, and pentaerythritol.
 芳香族ヒドロキシ化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA等が挙げられる。 Examples of aromatic hydroxy compounds include hydroquinone, resorcin, bisphenol A, and the like.
 二価のカルボン酸としては、例えば、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジオン酸、マロン酸、グルタル酸、シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸、ビス(4-カルボキシフェニル)メタン、アントラセンジカルボン酸、ビス(4-カルボキシフェニル)エーテル、5-スルホイソフタル酸ナトリウム等が挙げられる。 Examples of divalent carboxylic acids include oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, malonic acid, glutaric acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, and naphthalene dicarboxylic acid. acid, bis(4-carboxyphenyl)methane, anthracenedicarboxylic acid, bis(4-carboxyphenyl)ether, sodium 5-sulfoisophthalate and the like.
 三価以上の多価カルボン酸としては、例えば、トリメリット酸、ピロメリット酸等が挙げられる。 Examples of trivalent or higher polyvalent carboxylic acids include trimellitic acid and pyromellitic acid.
 ラクトン類としては、例えば、カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オン等が挙げられる。 Examples of lactones include caprolactone, valerolactone, propiolactone, undecalactone, 1,5-oxepan-2-one and the like.
(生分解性樹脂の組成)
 生分解性樹脂の組成としては、PBAT及びPBSAを少なくとも含む限り特に限定されないが、以下の何れかの態様が特に好ましい。
(態様1)生分解性樹脂がPBATからなる。
(態様2)生分解性樹脂がPBSAからなる。
(態様3)生分解性樹脂がPBAT及びPBSAからなる。
(態様4)生分解性樹脂が、PBAT及び/又はPBSAと、ポリ乳酸とからなる。
(Composition of biodegradable resin)
The composition of the biodegradable resin is not particularly limited as long as it contains at least PBAT and PBSA, but any one of the following aspects is particularly preferable.
(Mode 1) The biodegradable resin consists of PBAT.
(Mode 2) The biodegradable resin is PBSA.
(Mode 3) The biodegradable resin consists of PBAT and PBSA.
(Mode 4) The biodegradable resin consists of PBAT and/or PBSA and polylactic acid.
 本発明において「生分解性樹脂が樹脂Xからなる」とは、樹脂組成物中の生分解性樹脂として樹脂Xのみを含むことを意味する。 In the present invention, "the biodegradable resin consists of resin X" means that only resin X is included as the biodegradable resin in the resin composition.
 上記(態様3)について、PBAT及びPBSAの配合比は特に限定されないが、PBATとPBSAとの質量比が、好ましくはPBAT:PBSA=10:90~90:10である。 Regarding the above (aspect 3), the mixing ratio of PBAT and PBSA is not particularly limited, but the mass ratio of PBAT and PBSA is preferably PBAT:PBSA=10:90 to 90:10.
 上記(態様4)について、PBAT及びPBSAと、ポリ乳酸との配合比は特に限定されないが、PBAT及びPBSA(総量)と、ポリ乳酸との質量比が、好ましくはPBAT及びPBSA:ポリ乳酸=50:50~90:10、より好ましくはPBAT及びPBSA:ポリ乳酸=70:30~90:10である。 Regarding the above (mode 4), the mixing ratio of PBAT and PBSA to polylactic acid is not particularly limited, but the mass ratio of PBAT and PBSA (total amount) to polylactic acid is preferably PBAT and PBSA: polylactic acid = 50. : 50 to 90:10, more preferably PBAT and PBSA: polylactic acid = 70:30 to 90:10.
 上記(態様4)について、PBATと、ポリ乳酸との配合比は特に限定されないが、PBATと、ポリ乳酸との質量比が、好ましくはPBAT:ポリ乳酸=50:50~90:10、より好ましくはPBAT:ポリ乳酸=70:30~90:10である。 Regarding the above (mode 4), the blending ratio of PBAT and polylactic acid is not particularly limited, but the mass ratio of PBAT and polylactic acid is preferably PBAT:polylactic acid = 50:50 to 90:10, more preferably is PBAT: polylactic acid = 70:30 to 90:10.
 上記(態様4)について、PBSAと、ポリ乳酸との配合比は特に限定されないが、PBSAと、ポリ乳酸との質量比が、好ましくはPBSA:ポリ乳酸=50:50~90:10、より好ましくはPBSA:ポリ乳酸=70:30~90:10である。 Regarding the above (mode 4), the blending ratio of PBSA and polylactic acid is not particularly limited, but the mass ratio of PBSA and polylactic acid is preferably PBSA:polylactic acid = 50:50 to 90:10, more preferably is PBSA: polylactic acid = 70:30 to 90:10.
(重質炭酸カルシウム)
 本発明において「重質炭酸カルシウム」とは、天然炭酸カルシウムを機械的に粉砕等することで得られるものであり、化学的沈殿反応等によって製造される合成炭酸カルシウム(すなわち、軽質炭酸カルシウム)とは明確に区別されるものである。
(heavy calcium carbonate)
In the present invention, "heavy calcium carbonate" is obtained by mechanically pulverizing natural calcium carbonate. are distinct.
 重質炭酸カルシウムは、例えば、方解石(石灰石、チョーク、大理石等)、貝殻、サンゴ等の天然炭酸カルシウムを粉砕、及び分級することで得られる。 Heavy calcium carbonate can be obtained, for example, by crushing and classifying natural calcium carbonate such as calcite (limestone, chalk, marble, etc.), shells, and corals.
 重質炭酸カルシウムの製造方法における粉砕方法としては、湿式粉砕、及び乾式粉砕のうち何れも採用できる。経済的な観点から、脱水工程や乾燥工程等が不要な乾式粉砕が好ましい。
 粉砕に用いる粉砕機は特に限定されず、衝撃式粉砕機、粉砕メディア(ボールミル等)を用いた粉砕機、ローラーミル等が挙げられる。
As the pulverization method in the method for producing heavy calcium carbonate, either wet pulverization or dry pulverization can be employed. Dry pulverization, which does not require a dehydration step, a drying step, or the like, is preferable from an economical point of view.
The pulverizer used for pulverization is not particularly limited, and examples thereof include impact pulverizers, pulverizers using pulverizing media (such as ball mills), and roller mills.
 重質炭酸カルシウムの製造方法における分級は、空気分級、湿式サイクロン、デカンター等の従来知られる手段を採用できる。 For classification in the manufacturing method of heavy calcium carbonate, conventionally known means such as air classification, wet cyclone, and decanter can be adopted.
 重質炭酸カルシウムは、表面処理が施されていてもよく、施されていなくとも良い。表面処理は、重質炭酸カルシウムの製造方法における任意の時点(粉砕前、粉砕中、分級前、分級後等)で行い得る。 The ground calcium carbonate may or may not be surface-treated. The surface treatment can be performed at any time (before pulverization, during pulverization, before classification, after classification, etc.) in the method for producing heavy calcium carbonate.
 重質炭酸カルシウムの表面処理としては、物理的方法(プラズマ処理等)や、化学的方法(カップリング剤、界面活性剤等を用いた方法)が挙げられる。 The surface treatment of heavy calcium carbonate includes physical methods (plasma treatment, etc.) and chemical methods (methods using coupling agents, surfactants, etc.).
 重質炭酸カルシウムの表面処理のうち、化学的方法において用いられるカップリング剤としては、例えば、シランカップリング剤やチタンカップリング剤等が挙げられる。 Among the surface treatments of heavy calcium carbonate, coupling agents used in chemical methods include, for example, silane coupling agents and titanium coupling agents.
 重質炭酸カルシウムの表面処理のうち、化学的方法において用いられる界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、及び両性界面活性剤が挙げられる。より具体的には、例えば、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩等が挙げられる。 Among the surface treatments of heavy calcium carbonate, surfactants used in chemical methods include anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants. More specific examples include higher fatty acids, higher fatty acid esters, higher fatty acid amides, and higher fatty acid salts.
 上記のような表面処理を施すことで、重質炭酸カルシウムの分散性等を高めることがきる。
 ただし、表面処理を施されていない重質炭酸カルシウムは、成形時における表面処理剤の熱分解等による臭気の発生リスクを低減できる点で好ましい。
By applying the surface treatment as described above, the dispersibility of heavy calcium carbonate can be improved.
However, heavy calcium carbonate that has not been subjected to surface treatment is preferable in that it can reduce the risk of odor generation due to thermal decomposition of the surface treatment agent during molding.
 重質炭酸カルシウムの形態は特に限定されないが、樹脂組成物中の分散性が良好であるという観点から、好ましくは粒子状である。 The form of ground calcium carbonate is not particularly limited, but from the viewpoint of good dispersibility in the resin composition, it is preferably particulate.
 重質炭酸カルシウムが粒子状である場合、その平均粒子径は、好ましくは0.7μm以上6.0μm以下、より好ましくは1.0μm以上5.0μm以下、更に好ましくは1.5μm以上3.0μm以下である。
 重質炭酸カルシウムの平均粒子径が上記範囲であると、樹脂組成物中での分散性が良好であり、樹脂組成物の過度な粘度上昇を防ぐことができる。更には、樹脂組成物から得られる成形品表面から重質炭酸カルシウム粒子が突出して脱落したり、表面性状や機械的強度等を損なったりしにくく、本発明の効果をより奏しやすくなる。
When the ground calcium carbonate is particulate, its average particle size is preferably 0.7 μm or more and 6.0 μm or less, more preferably 1.0 μm or more and 5.0 μm or less, still more preferably 1.5 μm or more and 3.0 μm. It is below.
When the average particle size of the heavy calcium carbonate is within the above range, the dispersibility in the resin composition is good, and an excessive increase in viscosity of the resin composition can be prevented. Furthermore, the heavy calcium carbonate particles are less likely to protrude from the surface of the molded product obtained from the resin composition and fall off, or the surface properties, mechanical strength, etc. are less likely to be impaired, and the effects of the present invention are more likely to be achieved.
 本発明において「平均粒子径」とは、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値を意味する。
 平均粒子径の測定機器としては、例えば、島津製作所社製の比表面積測定装置「SS-100型」を好ましく用いることができる。
In the present invention, the "average particle size" means a value calculated from the measurement results of the specific surface area by the air permeation method according to JIS M-8511.
As a device for measuring the average particle diameter, for example, a specific surface area measuring device “SS-100 type” manufactured by Shimadzu Corporation can be preferably used.
 重質炭酸カルシウムが粒子状である場合、その粒径分布において、粒子径45μm以上の粒子が含まれないことが好ましい。 When the heavy calcium carbonate is particulate, it is preferable that particles with a particle diameter of 45 μm or more are not included in the particle size distribution.
 重質炭酸カルシウムが粒子状である場合、その不定形性は、形状の球形化の度合い、すなわち真円度によって表すことができる。真円度が低いほど、不定形性が高いことを意味する。
 重質炭酸カルシウムが粒子状である場合、その真円度は、好ましくは0.50以上0.95以下、より好ましくは0.55以上0.93以下、更に好ましくは0.60以上0.90以下である。
When ground calcium carbonate is particulate, its irregularity can be represented by the degree of spheroidization of the shape, ie, the degree of circularity. A lower roundness means a higher irregularity.
When the ground calcium carbonate is particulate, its circularity is preferably 0.50 or more and 0.95 or less, more preferably 0.55 or more and 0.93 or less, and still more preferably 0.60 or more and 0.90. It is below.
 本発明において「真円度」とは、粒子の投影面積を、粒子の投影周囲長と同一周囲長を持つ円の面積で割った値((粒子の投影面積)/(粒子の投影周囲長と同一周囲長を持つ円の面積))を意味する。
 真円度の測定方法は特に限定されないが、例えば、走査型顕微鏡や実体顕微鏡等で得られる粒子の投影図を、市販の画像解析ソフトで解析することで特定できる。
 具体的には、粒子の投影面積(A)、粒子の投影周囲長と同一周囲長を持つ円の面積(B)、粒子の投影周囲長と同一周囲長を持つ円の半径(r)、粒子の投影周囲長(PM)の測定結果に基づき、下式によって算出できる。
 「真円度」=A/B=A/πr=A×4π/(PM)
In the present invention, the term “roundness” refers to a value obtained by dividing the projected area of a particle by the area of a circle having the same perimeter as the projected perimeter of the particle ((projected area of the particle)/(projected perimeter of the particle) means the area of a circle with the same perimeter)).
The method of measuring the roundness is not particularly limited, but for example, the roundness can be specified by analyzing a projected image of particles obtained with a scanning microscope, a stereomicroscope, or the like, using commercially available image analysis software.
Specifically, the projected area of the particle (A), the area of the circle having the same perimeter as the projected perimeter of the particle (B), the radius of the circle having the same perimeter as the projected perimeter of the particle (r), the particle can be calculated by the following formula based on the measurement results of the projection perimeter (PM) of the .
"Roundness" = A/B = A/πr 2 = A x 4π/(PM) 2
(樹脂組成物の組成)
 本発明の樹脂組成物の組成は、生分解性樹脂と、重質炭酸カルシウムとの質量比が、生分解性樹脂:重質炭酸カルシウム=10:90~70:30であり、かつ特定のエポキシ化合物を2.0~8.0質量%含有する点以外は特に限定されない。
 本発明によれば、重質炭酸カルシウムの含有量が上記のように多いにも拘らず、成形性に優れ、機械特性、特に切断時伸びが良好で、成形品表面へのブリードも生じ難い成形品を与える樹脂組成物を提供することができる。
(Composition of resin composition)
The composition of the resin composition of the present invention is such that the mass ratio of biodegradable resin and ground calcium carbonate is biodegradable resin: ground calcium carbonate = 10:90 to 70:30, and a specific epoxy There is no particular limitation except that the content of the compound is 2.0 to 8.0% by mass.
According to the present invention, despite the high content of heavy calcium carbonate as described above, molding is excellent in moldability, mechanical properties, particularly good elongation at break, and bleeding to the surface of the molded product is less likely to occur. It is possible to provide a resin composition that provides a product.
 本発明の樹脂組成物において、生分解性樹脂と重質炭酸カルシウムとの質量比は、生分解性樹脂:重質炭酸カルシウム=10:90~50:50が好ましく、20:80~50:50がより好ましく、30:70~50:50がさらに好ましい。 In the resin composition of the present invention, the mass ratio of the biodegradable resin and the heavy calcium carbonate is preferably biodegradable resin: heavy calcium carbonate = 10:90 to 50:50, and 20:80 to 50:50. is more preferred, and 30:70 to 50:50 is even more preferred.
 生分解性樹脂の含有量の上限は、樹脂組成物に対して、好ましくは70質量%以下、より好ましくは50質量%以下である。 The upper limit of the content of the biodegradable resin is preferably 70% by mass or less, more preferably 50% by mass or less, relative to the resin composition.
 生分解性樹脂の含有量の下限は、樹脂組成物に対して、好ましくは10質量%以上、より好ましくは20質量%以上である。 The lower limit of the content of the biodegradable resin is preferably 10% by mass or more, more preferably 20% by mass or more, relative to the resin composition.
 重質炭酸カルシウムの含有量の上限は、樹脂組成物に対して、好ましくは90質量%以下、より好ましくは80質量%以下である。 The upper limit of the content of heavy calcium carbonate is preferably 90% by mass or less, more preferably 80% by mass or less, relative to the resin composition.
 重質炭酸カルシウムの含有量の下限は、樹脂組成物に対して、好ましくは30質量%以上、より好ましくは50質量%以上である。 The lower limit of the content of heavy calcium carbonate is preferably 30% by mass or more, more preferably 50% by mass or more, relative to the resin composition.
(エポキシ化合物)
 本発明の樹脂組成物は、上記の生分解性樹脂及び重質炭酸カルシウムに加えて、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、エポキシ化パーム油、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂からなる群より選択される1種以上のエポキシ化合物を、樹脂組成物100質量%に対して2.0質量%以上8.0質量%以下の量にて含有する。
(epoxy compound)
In addition to the above biodegradable resin and ground calcium carbonate, the resin composition of the present invention contains epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and One or more epoxy compounds selected from the group consisting of bisphenol F type epoxy resins are contained in an amount of 2.0% by mass or more and 8.0% by mass or less based on 100% by mass of the resin composition.
 エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、及びエポキシ化パーム油は公知であり、市販もされている。いずれも大豆油、アマニ油、ヒマシ油、及びパーム油といった植物油をエポキシ化したものである。尚、本明細書中において、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、及びエポキシ化パーム油を総称して、「エポキシ化植物油」という場合がある。 Epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, and epoxidized palm oil are known and commercially available. Both are epoxidized vegetable oils such as soybean oil, linseed oil, castor oil, and palm oil. In this specification, epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, and epoxidized palm oil may be collectively referred to as "epoxidized vegetable oil".
 これらエポキシ化植物油は、天然油が原料である上、エポキシ化の度合いにも品種毎の相違やロット間でのバラツキ、同一ロット内での分子間のバラツキがあるため、その構造や分子量は多岐に亘る。また、大豆油や亜麻のみを原料としていない油が、同様の構造を有するために「エポキシ化大豆油」等として供給されている事例もあるが、こうしたエポキシ化物も、本発明で使用するエポキシ化合物に包含される。以下に、エポキシ化大豆油及びエポキシ化アマニ油の代表的な化学構造の一例を示すが、本発明で使用し得るエポキシ化植物油は、これらに限定されない。 These epoxidized vegetable oils are made from natural oils, and the degree of epoxidation varies between varieties, between lots, and between molecules within the same lot. over. In addition, there are cases where oils not made solely from soybean oil or flax are supplied as "epoxidized soybean oil" or the like because they have a similar structure, but such epoxidized products are also epoxy compounds used in the present invention. subsumed in Examples of representative chemical structures of epoxidized soybean oil and epoxidized linseed oil are shown below, but the epoxidized vegetable oil that can be used in the present invention is not limited to these.
 エポキシ化大豆油の代表的な化学構造の一例:
Figure JPOXMLDOC01-appb-C000001
An example of a representative chemical structure of epoxidized soybean oil:
Figure JPOXMLDOC01-appb-C000001
 エポキシ化アマニ油の代表的な化学構造の一例:
Figure JPOXMLDOC01-appb-C000002
An example of a representative chemical structure of epoxidized linseed oil:
Figure JPOXMLDOC01-appb-C000002
 上記式で示したエポキシ化大豆油、エポキシ化アマニ油の分子量は、それぞれ960、974である。本発明においてはどのような分子量のエポキシ化植物油をも使用することができるが、樹脂組成物の成形加工性と成形品の機械特性とのバランスを考慮すると、好ましくは平均分子量が500~2000程度、より好ましくは700~1500程度、特に好ましくは800~1200程度のものが望ましい。 The molecular weights of epoxidized soybean oil and epoxidized linseed oil shown in the above formula are 960 and 974, respectively. In the present invention, an epoxidized vegetable oil of any molecular weight can be used, but considering the balance between the molding processability of the resin composition and the mechanical properties of the molded product, the average molecular weight is preferably about 500 to 2000. , more preferably about 700 to 1,500, and particularly preferably about 800 to 1,200.
 ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂も公知であり、汎用樹脂材料として種々の品種のものが市販されている。尚、エポキシ樹脂とは、高分子内に残存させたエポキシ基を架橋することで硬化可能な熱硬化性樹脂の総称である。広義には架橋硬化前のプレポリマーと硬化後の樹脂の両者を包含するが、本発明においてはプレポリマーを使用する。以下で、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂とを総称して、「プレポリマー」という場合がある。これらプレポリマーは、一般にビスフェノールA又はビスフェノールFとエピクロロヒドリンとを共重合体させて得ることができ、重合状態に応じた種々の品種が上市されている。それらの代表的な化学構造を、以下に示す。 Bisphenol A-type epoxy resins and bisphenol F-type epoxy resins are also known, and various types are commercially available as general-purpose resin materials. Epoxy resin is a general term for thermosetting resins that can be cured by crosslinking epoxy groups remaining in the polymer. In a broad sense, it includes both prepolymers before cross-linking and curing and resins after curing, but prepolymers are used in the present invention. Hereinafter, the bisphenol A type epoxy resin and the bisphenol F type epoxy resin may be collectively referred to as "prepolymer". These prepolymers can generally be obtained by copolymerizing bisphenol A or bisphenol F with epichlorohydrin, and various types are available on the market depending on the state of polymerization. Their representative chemical structures are shown below.
 ビスフェノールA型エポキシ樹脂の代表的な化学構造の一例:
Figure JPOXMLDOC01-appb-C000003
An example of a representative chemical structure of a bisphenol A type epoxy resin:
Figure JPOXMLDOC01-appb-C000003
 ビスフェノールF型エポキシ樹脂の代表的な化学構造の一例:
Figure JPOXMLDOC01-appb-C000004
An example of a representative chemical structure of a bisphenol F type epoxy resin:
Figure JPOXMLDOC01-appb-C000004
 これらプレポリマーは、一般に上記式中の「n」が2~3以上、分子量が700~1000程度以上になると室温で固体となる傾向にある。本発明においてはどのような形態のプレポリマーを使用することもできるが、樹脂組成物の柔軟性向上の観点からは、液状のプレポリマーが好ましい。より好ましくは、「n」が1以下、特に0のプレポリマーを使用する。 These prepolymers generally tend to be solid at room temperature when "n" in the above formula is 2 to 3 or more and the molecular weight is about 700 to 1000 or more. Although any form of prepolymer can be used in the present invention, a liquid prepolymer is preferred from the viewpoint of improving the flexibility of the resin composition. More preferably, prepolymers in which "n" is 1 or less, especially 0 are used.
 上記のプレポリマーは熱硬化性樹脂の主原料として、すなわち、通常は50質量%以上、あるいは70質量%以上を占める成分として多用される。また、上記のエポキシ化植物油は樹脂可塑剤として多用されており、通常は樹脂組成物中に10~30質量%程度配合される。しかしながら本発明のようにPBAT又はPBSAと重質炭酸カルシウムとを主成分とする樹脂組成物においては、これらエポキシ化合物を樹脂組成物100質量%に対して2.0質量%以上8.0質量%以下という比較的少ない量にて配合することにより、切断時伸び等の機械特性が大きく改善される。これは全く予想外の知見である。 The above prepolymer is often used as a main raw material for thermosetting resins, that is, as a component that usually accounts for 50% by mass or more, or 70% by mass or more. Further, the epoxidized vegetable oil is frequently used as a resin plasticizer, and is usually blended in a resin composition in an amount of about 10 to 30% by mass. However, in the resin composition mainly composed of PBAT or PBSA and ground calcium carbonate as in the present invention, these epoxy compounds are added in an amount of 2.0% by mass or more and 8.0% by mass based on 100% by mass of the resin composition. Mechanical properties such as elongation at break are greatly improved by blending in a relatively small amount such as the following. This is a completely unexpected finding.
 本発明は特定の理論により限定されるものではないが、本発明が効果を奏する理由として、エポキシ化合物がPBATやPBSAの分解生成物と反応している可能性が考えられる。一般にPBATやPBSA等のエステル系樹脂は、加水分解によって分子量を低下させ、カルボン酸末端を有する分解生成物を生じる。ここでエポキシ化合物が共存すると、生成した分解生成物のカルボキシ基と反応する結果、樹脂の分子量低下が抑制され、また、反応生成物が高分子量の可塑剤として機能することも可能となる。さらに、樹脂の分解によって生じかけたカルボン酸がエポキシ化合物と反応する結果、PBATやPBSAが加速度的に加水分解するリスクも低減される。2.0~8.0質量%という、液状成分配合による大きな可塑化効果が通常は得られない配合量であっても、後記する実施例に示すような切断時伸びの大きな改善が図られる理由は、そのためと考えられる。通常の可塑剤とは異なり、成形品表面にブリードし難い利点も、配合したエポキシ化合物の一部が、ポリマー成分と結合するためと考えることができる。 Although the present invention is not limited by any particular theory, one possible reason why the present invention is effective is that the epoxy compound reacts with the decomposition products of PBAT and PBSA. In general, ester resins such as PBAT and PBSA are hydrolyzed to reduce their molecular weights and produce decomposition products having carboxylic acid ends. When an epoxy compound coexists here, it reacts with the carboxy group of the generated decomposition product, resulting in suppression of a decrease in the molecular weight of the resin, and the reaction product can also function as a high-molecular-weight plasticizer. Furthermore, the risk of accelerated hydrolysis of PBAT and PBSA as a result of the reaction of the carboxylic acid, which is about to be generated by the decomposition of the resin, with the epoxy compound is reduced. The reason why the elongation at break can be greatly improved as shown in the examples described later even at a blending amount of 2.0 to 8.0% by mass, at which a large plasticizing effect is not normally obtained by blending the liquid component. is thought to be for this reason. The reason why it is difficult to bleed to the surface of the molded product, unlike ordinary plasticizers, can be attributed to the fact that part of the compounded epoxy compound bonds with the polymer component.
 上記のように、本発明の樹脂組成物に配合するエポキシ化植物油やプレポリマーの分子量や化学構造に特に制限はないが、エポキシ当量が100g/eq以上200g/eq以下の化合物であることが好ましい。エポキシ当量が200g/eq以下であれば、配合量がたとえ少なくても、生分解性樹脂に対して十分な量のエポキシ基が樹脂組成物中に共存するため、PBATやPBSAの加水分解物と反応して低分子量化を抑制し、成形品の機械特性をより優れたものとすることができる。また、配合量を減じることが可能となるので、成形品表面にブリードするリスクも低減される。エポキシ当量が100g/eq以上であれば、多種の製品が上市されているため、コスト的に有利である。上記エポキシ化合物のエポキシ当量は、より好ましくは120g/eq以上200g/eq未満、特に好ましくは150g/eq以上190g/eq以下である。 As described above, the molecular weight and chemical structure of the epoxidized vegetable oil and prepolymer to be blended in the resin composition of the present invention are not particularly limited, but compounds having an epoxy equivalent of 100 g/eq to 200 g/eq are preferred. . If the epoxy equivalent is 200 g/eq or less, even if the amount is small, a sufficient amount of epoxy groups relative to the biodegradable resin coexist in the resin composition. It reacts to suppress the reduction in molecular weight, and the mechanical properties of the molded product can be improved. Moreover, since it is possible to reduce the compounding amount, the risk of bleeding on the surface of the molded product is also reduced. If the epoxy equivalent is 100 g/eq or more, it is advantageous in terms of cost because various products are on the market. The epoxy equivalent of the epoxy compound is more preferably 120 g/eq or more and less than 200 g/eq, and particularly preferably 150 g/eq or more and 190 g/eq or less.
 また、エポキシ化合物の含有による機械特性改善効果を高める上で、これらエポキシ化合物の含有量を、樹脂組成物100質量%に対して2.2質量%以上とするのが好ましく、2.5質量%以上とするのがより好ましく、3.0質量%以上とするのが特に好ましい。 In addition, in order to enhance the effect of improving mechanical properties due to the inclusion of epoxy compounds, the content of these epoxy compounds is preferably 2.2% by mass or more relative to 100% by mass of the resin composition, and 2.5% by mass. More preferably, it should be 3.0% by mass or more, and particularly preferably 3.0% by mass or more.
 一方で、エポキシ化合物が成形品表面にブリードするリスクを低減する観点から、これらエポキシ化合物の含有量を、樹脂組成物100質量%に対して6.0質量%以下とすることが好ましく、5.0質量%未満とすることがより好ましく、4.5質量%以下とすることがさらに好ましく、4.0質量%以下とすることが特に好ましい。特に、エポキシ当量が200g/eqを超えるエポキシ化合物は、多めに配合すると成形品表面にブリードする可能性が生じるので、含有量を5.0質量%未満とするのが好ましい。 On the other hand, from the viewpoint of reducing the risk of the epoxy compound bleeding onto the surface of the molded product, the content of these epoxy compounds is preferably 6.0% by mass or less with respect to 100% by mass of the resin composition. It is more preferably less than 0% by mass, even more preferably 4.5% by mass or less, and particularly preferably 4.0% by mass or less. In particular, an epoxy compound having an epoxy equivalent of more than 200 g/eq may bleed to the surface of the molded article if it is blended in a large amount, so the content is preferably less than 5.0% by mass.
(樹脂組成物中のその他の成分)
 本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、上記の成分に加えて、任意の成分が更に含まれ得る。この様な成分は、単独又は2種以上の組み合わせで使用できる。また、この様な成分の種類や配合量は、得ようとする効果等に応じて適宜設定し得る。
(Other components in the resin composition)
In addition to the above components, the resin composition of the present invention may further contain optional components within a range that does not impair the effects of the present invention. Such ingredients can be used singly or in combination of two or more. Further, the type and blending amount of such components can be appropriately set according to the effect to be obtained.
 本発明の樹脂組成物に含まれ得る成分としては、可塑剤、天然有機物、生分解性樹脂以外の樹脂、帯電防止剤、充填剤(重質炭酸カルシウム以外)、色剤、滑剤、酸化防止剤、難燃剤、発泡剤等が挙げられる。 Components that can be contained in the resin composition of the present invention include plasticizers, natural organic substances, resins other than biodegradable resins, antistatic agents, fillers (other than heavy calcium carbonate), coloring agents, lubricants, and antioxidants. , flame retardants, foaming agents, and the like.
[可塑剤]
 可塑剤としては、例えば、クエン酸アセチルトリブチル、クエン酸トリエチル、クエン酸アセチルトリエチル、フタル酸ジブチル、フタル酸ジアリール、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ-2-メトキシエチル、酒石酸ジブチル、o-ベンゾイル安息香酸エステル、ジアセチン等が挙げられる。また、上記したエポキシ化大豆油等のエポキシ化合物を、可塑剤としても使用することができる。
[Plasticizer]
Examples of plasticizers include acetyltributyl citrate, triethyl citrate, acetyltriethyl citrate, dibutyl phthalate, diaryl phthalate, dimethyl phthalate, diethyl phthalate, di-2-methoxyethyl phthalate, dibutyl tartrate, o -benzoyl benzoic acid ester, diacetin and the like. Epoxy compounds such as the epoxidized soybean oil described above can also be used as plasticizers.
 上記可塑剤のうち、クエン酸アセチルトリブチルは、重質炭酸カルシウムとの組み合わせにおいて、生分解性樹脂の生分解性を損なわずに、成形品の引張強さ及び切断時伸びの低下を特に抑制しやすいという利点を有する。 Among the above plasticizers, acetyltributyl citrate, in combination with heavy calcium carbonate, does not impair the biodegradability of the biodegradable resin and particularly suppresses the reduction in tensile strength and elongation at break of the molded product. It has the advantage of being easy.
 可塑剤の含有量の上限は、本発明の樹脂組成物に対して、好ましくは20.0質量%以下、より好ましくは15.0質量%以下である。 The upper limit of the plasticizer content is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, relative to the resin composition of the present invention.
 本発明の樹脂組成物は、含有するエポキシ化合物の作用によって切断時伸び等の機械特性が改善され、柔軟性を備えているので別途可塑剤を配合する必要性は薄いが、可塑剤を添加する場合、その含有量の下限は、本発明の樹脂組成物に対して、好ましくは5.0質量%以上、より好ましくは7.5質量%以上である。 The resin composition of the present invention has improved mechanical properties such as elongation at break due to the action of the contained epoxy compound, and is flexible. In this case, the lower limit of the content is preferably 5.0% by mass or more, more preferably 7.5% by mass or more, relative to the resin composition of the present invention.
 可塑剤としてクエン酸アセチルトリブチルを用いる場合、その含有量の上限は、本発明の樹脂組成物に対して、好ましくは20.0質量%以下、より好ましくは15.0質量%以下である。 When acetyltributyl citrate is used as a plasticizer, the upper limit of its content is preferably 20.0% by mass or less, more preferably 15.0% by mass or less, relative to the resin composition of the present invention.
 可塑剤としてクエン酸アセチルトリブチルを用いる場合、その含有量の下限は、本発明の樹脂組成物に対して、好ましくは5.0質量%以上、より好ましくは7.5質量%以上である。 When acetyltributyl citrate is used as a plasticizer, the lower limit of its content is preferably 5.0% by mass or more, more preferably 7.5% by mass or more, relative to the resin composition of the present invention.
[天然有機物]
 天然有機物としては、樹脂組成物に配合され得る任意の成分を使用できる。
[Natural organic matter]
Any component that can be incorporated into the resin composition can be used as the natural organic substance.
 天然有機物のうち、セルロースパウダー、木粉、デンプン、モミ殻、オカラ、及びフスマからなる群から選択される1以上が、重質炭酸カルシウムとの組み合わせにおいて、生分解性樹脂の生分解性を損なわずに、成形品の引張強さ及び切断時伸びの低下を特に抑制しやすいという利点を有する。 Among the natural organic substances, one or more selected from the group consisting of cellulose powder, wood flour, starch, rice husks, bean curd refuse, and wheat bran impairs the biodegradability of the biodegradable resin in combination with heavy calcium carbonate. It has the advantage that it is particularly easy to suppress the decrease in the tensile strength and elongation at break of the molded product.
 本発明において「セルロースパウダー」とは、粉末状のセルロースであれば特に限定されない。
 セルロースパウダーの平均粒子径は、好ましくは5μm以上45μm以下、より好ましくは10μm以上30μm以下である。
 セルロースパウダーとしては市販品を使用しても良い。
In the present invention, "cellulose powder" is not particularly limited as long as it is powdered cellulose.
The average particle size of the cellulose powder is preferably 5 μm or more and 45 μm or less, more preferably 10 μm or more and 30 μm or less.
A commercially available product may be used as the cellulose powder.
 本発明において「木粉」とは、任意の樹木(ヒノキ、スギ等)から得られた粉末であれば特に限定されない。
 木粉の平均粒子径は、好ましくは20μm以上300μm以下、より好ましくは20μm以上45μm以下である。
 木粉としては、例えば、「おがくず」として知られるものを使用できる。
In the present invention, "wood powder" is not particularly limited as long as it is powder obtained from any tree (cypress, Japanese cedar, etc.).
The average particle size of the wood flour is preferably 20 μm or more and 300 μm or less, more preferably 20 μm or more and 45 μm or less.
As wood flour, for example, what is known as "sawdust" can be used.
 本発明において「デンプン」とは、樹脂とともに配合され得る任意の形態のものを使用できる。デンプンは、例えば粉末状であっても良い。 "Starch" in the present invention can be of any form that can be blended with a resin. The starch may be powdered, for example.
 本発明において「モミ殻」とは籾の最外皮を意味し、樹脂とともに配合され得る任意の形態のものを使用できる。モミ殻は、例えば粉末状であっても良い。 In the present invention, "rice husk" means the outermost hull of rice, and any form that can be blended with resin can be used. The rice hulls may be powdered, for example.
 本発明において「オカラ」とは豆乳の搾り滓を意味し、樹脂とともに配合され得る任意の形態のものを使用できる。オカラは、乾燥物が好ましく、粉末乾燥物がより好ましい。 In the present invention, "okara" means soybean milk lees, and any form that can be blended with resin can be used. Okara is preferably a dried product, more preferably a dried powder.
 本発明において「フスマ」とは小麦の製粉時に除かれる皮(外皮部、胚芽等)を意味し、樹脂とともに配合され得る任意の形態のものを使用できる。フスマは、例えば粉末状であっても良い。 In the present invention, "wheat bran" means the skin (outer skin, germ, etc.) removed during wheat milling, and any form that can be blended with resin can be used. The bran may be powdered, for example.
 天然有機物の含有量(総量)の上限は、樹脂組成物に対して、好ましくは20.0質量%以下、より好ましくは10.0質量%以下である。 The upper limit of the content (total amount) of natural organic matter is preferably 20.0% by mass or less, more preferably 10.0% by mass or less, relative to the resin composition.
 天然有機物の含有量(総量)の下限は、樹脂組成物に対して、好ましくは3.0質量%以上、より好ましくは5.0質量%以上である。 The lower limit of the content (total amount) of natural organic matter is preferably 3.0% by mass or more, more preferably 5.0% by mass or more, relative to the resin composition.
[その他]
 以下、本発明の樹脂組成物に含まれ得るその他の成分を例示する。
[others]
Other components that can be contained in the resin composition of the present invention are exemplified below.
 生分解性樹脂以外の樹脂としては、
 ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチル-1-ペンテン、エチレン-環状オレフィン共重合体等のポリオレフィン系樹脂;
 エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸共重合体の金属塩(アイオノマー)、エチレン-アクリル酸アルキルエステル共重合体、エチレン-メタクリル酸アルキルエステル共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂;
 ナイロン-6、ナイロン-6,6、ナイロン-6,10、ナイロン-6,12等のポリアミド系樹脂;
 ポリエチレンテレフタレート及びその共重合体、ポリエチレンナフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル系樹脂;
 アタクティックポリスチレン、シンジオタクティックポリスチレン、アクリロニトリル-スチレン(AS)共重合体、アクリロニトリル-ブタジエン-スチレン(ABS)共重合体等のポリスチレン系樹脂;
 ポリ塩化ビニル、ポリ塩化ビニリデン等のポリ塩化ビニル系樹脂;
 ポリフェニレンスルフィド;
 ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン等のポリエーテル系樹脂等
が挙げられる。
 ただし、本発明の効果を奏しやすいという観点から、本発明の樹脂組成物には、生分解性樹脂以外の樹脂を含まないか、含むとしても少量(例えば、樹脂組成物に対して1.0質量%以下)であることが好ましい。
As resins other than biodegradable resins,
Polyolefin-based resins such as polyethylene-based resins, polypropylene-based resins, polymethyl-1-pentene, and ethylene-cyclic olefin copolymers;
Ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, metal salt of ethylene-methacrylic acid copolymer (ionomer), ethylene-alkyl acrylate copolymer, ethylene- Functional group-containing polyolefin resins such as methacrylic acid alkyl ester copolymers, maleic acid-modified polyethylene, and maleic acid-modified polypropylene;
Polyamide resins such as nylon-6, nylon-6,6, nylon-6,10, nylon-6,12;
Aromatic polyester resins such as polyethylene terephthalate and its copolymers, polyethylene naphthalate, and polybutylene terephthalate;
Polystyrene resins such as atactic polystyrene, syndiotactic polystyrene, acrylonitrile-styrene (AS) copolymer, acrylonitrile-butadiene-styrene (ABS) copolymer;
Polyvinyl chloride resins such as polyvinyl chloride and polyvinylidene chloride;
polyphenylene sulfide;
Polyether-based resins such as polyether sulfone, polyether ketone, polyether ether ketone, and the like are included.
However, from the viewpoint that the effect of the present invention is likely to be exhibited, the resin composition of the present invention does not contain a resin other than a biodegradable resin, or even if it contains a small amount (for example, 1.0 % by mass or less).
 帯電防止剤としては、例えばラウリルジエタノールアミド、ステアリルジエタノールアミド等の脂肪酸ジエタノールアミド、アルコールアミン系化合物を始めとする水酸基含有化合物等を用いることが可能である。特に、アルコールアミン類、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が好ましい。2種以上の帯電防止剤を併用することもできる。これら帯電防止剤は、ケイ酸カルシウムや炭酸カルシウム等に担持されていても良い。なお、脂肪酸ジエタノールアミドのアシル基の炭素数の範囲としては8~22程度が、十分な帯電防止効果を発揮し得る上から望ましい。
 このような帯電防止剤の配合量としては、無機物質粉末配合熱可塑性樹脂組成物全体の質量を100質量%とした場合に、0.01~8.00質量%程度、より好ましくは0.02~4.00質量%、さらに好ましくは0.05~3.00質量%、特に0.10~1.50質量%程度となる割合で配合されることが望まれる。この範囲内で用いることにより、十分な帯電防止効果が得られることに加え、樹脂表面がべとついたり樹脂物性への悪影響が生じる虞れも少ない。
Examples of the antistatic agent include fatty acid diethanolamides such as lauryl diethanolamide and stearyl diethanolamide, and hydroxyl group-containing compounds such as alcohol amine compounds. Alcohol amines such as monoethanolamine, diethanolamine, triethanolamine and the like are particularly preferred. Two or more antistatic agents can be used in combination. These antistatic agents may be supported on calcium silicate, calcium carbonate, or the like. It should be noted that the number of carbon atoms in the acyl group of the fatty acid diethanolamide is preferably in the range of about 8 to 22 from the viewpoint of exhibiting a sufficient antistatic effect.
The amount of such an antistatic agent is about 0.01 to 8.00% by mass, more preferably 0.02%, when the total mass of the inorganic powder-blended thermoplastic resin composition is 100% by mass. It is desired that the content be blended in a proportion of up to 4.00% by mass, more preferably 0.05 to 3.00% by mass, particularly about 0.10 to 1.50% by mass. By using it within this range, in addition to obtaining a sufficient antistatic effect, there is little possibility that the surface of the resin will become sticky or that the physical properties of the resin will be adversely affected.
 充填剤としては、合成物又は天然鉱物由来物の何れも使用できる。
 充填剤としては、例えば、カルシウム、マグネシウム、アルミニウム、チタン、鉄、亜鉛等の炭酸塩(重質炭酸カルシウムを除く)、硫酸塩、珪酸塩、リン酸塩、ホウ酸塩、酸化物、又はこれらの水和物等が挙げられる。
 より具体的には、軽質炭酸カルシウム、炭酸マグネシウム、ドロマイト、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、硫酸アルミニウム、硫酸マグネシウム、硫酸カルシウム、リン酸マグネシウム、硫酸バリウム、珪砂、カーボンブラック、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、亜硫酸カルシウム、硫酸ナトリウム、チタン酸カリウム、ベントナイト、ウォラストナイト、黒鉛等が挙げられる。
 ただし、本発明の効果を奏しやすいという観点から、本発明の樹脂組成物には、重質炭酸カルシウム以外の充填剤を含まないか、含むとしても少量(例えば、樹脂組成物に対して0.1質量%以下)であることが好ましい。
Fillers can be either synthetic or of natural mineral origin.
Examples of fillers include carbonates (excluding heavy calcium carbonate) such as calcium, magnesium, aluminum, titanium, iron and zinc, sulfates, silicates, phosphates, borates, oxides, or these and hydrates of
More specifically, light calcium carbonate, magnesium carbonate, dolomite, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, calcium silicate , aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, potassium titanate, bentonite, wollastonite, graphite etc.
However, from the viewpoint that the effect of the present invention is likely to be exhibited, the resin composition of the present invention does not contain a filler other than heavy calcium carbonate, or if it does contain a small amount (for example, 0.00% of the resin composition). 1% by mass or less).
 色剤としては、従来知られる有機顔料、無機顔料又は染料の何れも使用できる。
 有機顔料としては、アゾ系、アンスラキノン系、フタロシアニン系、キナクリドン系、イソインドリノン系、ジオオサジン系、ペリノン系、キノフタロン系、ペリレン系顔料等が挙げられる。
 無機顔料としては、群青、酸化チタン、チタンイエロー、酸化鉄(弁柄)、酸化クロム、亜鉛華、カーボンブラック等が挙げられる。
Any conventionally known organic pigment, inorganic pigment or dye can be used as the colorant.
Examples of organic pigments include azo-based, anthraquinone-based, phthalocyanine-based, quinacridone-based, isoindolinone-based, diosazine-based, perinone-based, quinophthalone-based, and perylene-based pigments.
Examples of inorganic pigments include ultramarine blue, titanium oxide, titanium yellow, iron oxide (rouge), chromium oxide, zinc white, and carbon black.
 滑剤としては、例えば、脂肪酸系滑剤(ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸、及びそれらのナトリウム、カリウム、マグネシウム、カルシウム塩等)、脂肪族アルコール系滑剤、脂肪族アマイド系滑剤(ステアロアミド、オキシステアロアミド、オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド、メチロールアミド、メチレンビスステアロアミド、メチレンビスステアロベヘンアミド、高級脂肪酸のビスアミド酸、複合型アミド等)、脂肪族エステル系滑剤(ステアリン酸-n-ブチル、ヒドロキシステアリン酸メチル、多価アルコール脂肪酸エステル、飽和脂肪酸エステル、エステル系ワックス等)、脂肪酸金属石鹸系滑剤等が挙げられる。 Examples of lubricants include fatty acid-based lubricants (stearic acid, hydroxystearic acid, complex stearic acid, oleic acid, sodium, potassium, magnesium, calcium salts thereof, etc.), fatty alcohol-based lubricants, and aliphatic amide-based lubricants. (Stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, methylolamide, methylenebisstearamide, methylenebisstearobehenamide, higher fatty acid bisamic acids, complex amides, etc.), aliphatic esters Lubricants (n-butyl stearate, methyl hydroxystearate, polyhydric alcohol fatty acid esters, saturated fatty acid esters, ester waxes, etc.), fatty acid metal soap-based lubricants, and the like.
 酸化防止剤としては、例えば、リン系酸化防止剤、フェノール系酸化防止剤、ペンタエリスリトール系酸化防止剤等が挙げられる。 Examples of antioxidants include phosphorus antioxidants, phenolic antioxidants, and pentaerythritol antioxidants.
 難燃剤としては、例えば、ハロゲン系難燃剤、リン系難燃剤、金属水和物等の非リン系非ハロゲン系難燃剤等が挙げられる。 Examples of flame retardants include halogen-based flame retardants, phosphorus-based flame retardants, and non-phosphorus-based non-halogen flame retardants such as metal hydrates.
 発泡剤としては、例えば、脂肪族炭化水素類(プロパン、ブタン、ペンタン、ヘキサン、ヘプタン等)、脂環式炭化水素類(シクロブタン、シクロペンタン、シクロヘキサン等)、ハロゲン化炭化水素類(クロロジフルオロメタン、ジフロオロメタン、トリフルオロメタン、トリクロロフルオロメタン、ジクロロメタン、ジクロロフルオロメタン、ジクロロジフルオロメタン、クロロメタン、クロロエタン、ジクロロトリフルオロエタン、ジクロロペンタフルオロエタン、テトラフルオロエタン、ジフルオロエタン、ペンタフルオロエタン、トリフルオロエタン、ジクロロテトラフルオロエタン、トリクロロトリフルオロエタン、テトラクロロジフルオロエタン、パーフルオロシクロブタン等)、無機ガス(二酸化炭素、窒素、空気等)、水等が挙げられる。 Examples of blowing agents include aliphatic hydrocarbons (propane, butane, pentane, hexane, heptane, etc.), alicyclic hydrocarbons (cyclobutane, cyclopentane, cyclohexane, etc.), halogenated hydrocarbons (chlorodifluoromethane , difluoromethane, trifluoromethane, trichlorofluoromethane, dichloromethane, dichlorofluoromethane, dichlorodifluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, dichloro tetrafluoroethane, trichlorotrifluoroethane, tetrachlorodifluoroethane, perfluorocyclobutane, etc.), inorganic gases (carbon dioxide, nitrogen, air, etc.), water and the like.
(樹脂組成物の好ましい組成)
 本発明の樹脂組成物の好ましい態様として、例えば、樹脂組成物に対して、PBAT及び/又はPBSAを55~65質量%;重質炭酸カルシウムを25~35質量%:エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、エポキシ化パーム油、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂から選択されるエポキシ化合物を2.0~8.0質量%、特に2.2質量%以上5.0質量%未満;クエン酸アセチルトリブチルを0~15質量%、特に5~10質量%含むものが挙げられる。
(Preferred composition of resin composition)
As a preferred embodiment of the resin composition of the present invention, for example, 55 to 65% by mass of PBAT and/or PBSA; 25 to 35% by mass of heavy calcium carbonate: epoxidized soybean oil, epoxidized An epoxy compound selected from linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin is 2.0 to 8.0% by mass, particularly 2.2% by mass or more5 less than .0% by weight, including those containing 0 to 15% by weight, especially 5 to 10% by weight, of acetyltributyl citrate.
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、上記の成分を用いて、樹脂組成物の製造方法として従来知られる方法に基づき製造できる。
<Method for producing resin composition>
The resin composition of the present invention can be produced using the above-described components according to a conventionally known method for producing a resin composition.
 樹脂組成物は、例えば、成分の混合及び溶融混練等を経て得られる。
 混合や溶融混練のタイミングは、採用しようとする成形方法(押出成形、射出成形、真空成形等)に応じて適宜設定できる。例えば、混合は、成形機のホッパーから投入する前や、成形と同時に行っても良い。
The resin composition is obtained, for example, through mixing of components, melt-kneading, and the like.
The timing of mixing and melt-kneading can be appropriately set according to the molding method to be adopted (extrusion molding, injection molding, vacuum molding, etc.). For example, mixing may be performed before charging from the hopper of the molding machine or at the same time as molding.
 溶融混練は、例えば、二軸混練機やニーダー、バンバリーミキサー等によって行っても良い。また、混練機への各成分の投入順序にも特に制限はなく、生分解性樹脂、重質炭酸カルシウム、エポキシ化合物の3者を同時に投入してもよく、これら成分の内の2者を予備混練しても良い。重質炭酸カルシウムを混練した生分解性樹脂の組成物と、エポキシ化合物を混練した生分解性樹脂の組成物とを、溶融混練して製造することも可能である。 Melt-kneading may be performed by, for example, a twin-screw kneader, a kneader, a Banbury mixer, or the like. In addition, there is no particular restriction on the order of adding each component to the kneader, and the biodegradable resin, ground calcium carbonate, and epoxy compound may be added at the same time, and two of these components may be used as a spare. You can knead it. It is also possible to melt-knead a biodegradable resin composition in which heavy calcium carbonate is kneaded and a biodegradable resin composition in which an epoxy compound is kneaded.
 本発明の樹脂組成物の形態は、例えば、任意の大きさ及び形状のペレットであり得る。 The form of the resin composition of the present invention can be, for example, pellets of any size and shape.
 ペレットの形状は特に限定されず、例えば、円柱、球形、楕円球状等であっても良い。 The shape of the pellet is not particularly limited, and may be, for example, cylindrical, spherical, or oval.
 ペレットのサイズは特に限定されない。例えば、球形ペレットの場合、直径1~10mmであり得る。楕円球状のペレットの場合、縦横比0.1~1.0、縦横の長さ1~10mmであり得る。円柱ペレットの場合、直径1~10mm、長さ1~10mmであり得る。 The size of the pellet is not particularly limited. For example, spherical pellets may be 1-10 mm in diameter. In the case of elliptical pellets, the aspect ratio can be 0.1 to 1.0 and the length and width can be 1 to 10 mm. For cylindrical pellets, they can be 1-10 mm in diameter and 1-10 mm in length.
 本発明の樹脂組成物を必要に応じて乾燥させた後、成形することで、所望の成形品を得ることができる。 A desired molded product can be obtained by molding after drying the resin composition of the present invention as necessary.
<成形品>
 本発明の成形品は、任意の成形方法によって本発明の樹脂組成物を成形することで得られる。
<Molded product>
The molded article of the present invention can be obtained by molding the resin composition of the present invention by any molding method.
 本発明の成形品は、用途等に応じた任意の形状であり得る。
 本発明の成形品は、例えば、フィルム、シート、容器体(食品容器等)、日用品(各種使い捨て製品等)、自動車用部品、電気電子部品、各種消耗品(建築部材等の分野におけるもの等)等であり得る。
The molded article of the present invention may have any shape according to its use.
The molded article of the present invention includes, for example, films, sheets, containers (food containers, etc.), daily necessities (various disposable products, etc.), automotive parts, electrical and electronic parts, various consumables (such as those in the field of construction materials, etc.). etc.
 本発明の樹脂組成物は機械特性が良好であるため、特に、インフレーション成形又は押出成形に適する。したがって、本発明の成形品は、好ましくはインフレーション成形品又は押出成形品である。 Because the resin composition of the present invention has good mechanical properties, it is particularly suitable for inflation molding or extrusion molding. Accordingly, the molded article of the present invention is preferably a blown or extruded article.
 インフレーション成形品としては、フィルム、シート、袋(レジ袋等)が挙げられる。
 インフレーション成形品の肉厚は特に限定されないが、好ましくは10μm~200μm、更に好ましくは30μm~100μmである。
Examples of inflation-molded products include films, sheets, and bags (such as plastic shopping bags).
The thickness of the inflation molded product is not particularly limited, but is preferably 10 μm to 200 μm, more preferably 30 μm to 100 μm.
 押出成形品としては、フィルム、シート、中空品が挙げられる。 Extruded products include films, sheets, and hollow products.
<成形品の製造方法>
 本発明の成形品の製造方法は、得ようとする成形品に応じて適宜選択できる。
 本発明の成形品の製造方法としては、例えば、インフレーション成形法、押出成形法、射出成形法、発泡射出成形法、射出圧縮成形法、ブロー成形法、プレス成形法、カレンダー成形法、真空成形法等が挙げられる。
<Manufacturing method of molded product>
The method for producing the molded article of the present invention can be appropriately selected according to the molded article to be obtained.
Examples of methods for producing the molded article of the present invention include inflation molding, extrusion molding, injection molding, foam injection molding, injection compression molding, blow molding, press molding, calendar molding, and vacuum molding. etc.
 成形条件は、樹脂組成物の組成や、成形品の種類等に応じて適宜設定できる。 The molding conditions can be appropriately set according to the composition of the resin composition, the type of molded product, etc.
 成形品がフィルムやシート等である場合、その成形時又は成形後に、一軸若しくは二軸方向、又は多軸方向に延伸しても良いし、しなくとも良い。 When the molded product is a film, sheet, or the like, it may or may not be stretched uniaxially, biaxially, or multiaxially during or after molding.
 以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
<樹脂組成物の作製>
 表1~3に示す各成分を含む樹脂組成物を準備した。なお、表中の組成の数値の単位は「質量部」である。
<Preparation of resin composition>
A resin composition containing each component shown in Tables 1 to 3 was prepared. In addition, the unit of the numerical value of a composition in a table|surface is a "mass part."
 樹脂組成物中の各成分の詳細は下記の通りである。なお、以下、「平均粒径」とは、島津製作所社製の比表面積測定装置「SS-100型」を用い、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値である。 The details of each component in the resin composition are as follows. In addition, hereinafter, "average particle diameter" is a value calculated from the results of specific surface area measurement by an air permeation method according to JIS M-8511 using a specific surface area measuring device "SS-100 type" manufactured by Shimadzu Corporation. is.
(生分解性樹脂)
 生分解性樹脂1:ポリブチレンアジペートテレフタレート70質量%、及びポリ乳酸30質量%からなる。
 生分解性樹脂2:ポリブチレンサクシネートアジペート70質量%、及びポリ乳酸30質量%からなる。
 生分解性樹脂3:ポリブチレンアジペートテレフタレート100質量%
(biodegradable resin)
Biodegradable resin 1: 70% by mass of polybutylene adipate terephthalate and 30% by mass of polylactic acid.
Biodegradable resin 2: 70% by mass of polybutylene succinate adipate and 30% by mass of polylactic acid.
Biodegradable resin 3: 100% by mass of polybutylene adipate terephthalate
(炭酸カルシウム)
 CC1:重質炭酸カルシウム粒子(平均粒径:2.2μm、表面処理なし)
 CC2:重質炭酸カルシウム粒子(平均粒径:2.3μm、ステアリン酸による表面処理品)
 CC3:軽質炭酸カルシウム粒子(平均粒径:1.5μm、表面処理なし)
(calcium carbonate)
CC1: heavy calcium carbonate particles (average particle size: 2.2 μm, no surface treatment)
CC2: Heavy calcium carbonate particles (average particle size: 2.3 μm, surface treated with stearic acid)
CC3: light calcium carbonate particles (average particle size: 1.5 μm, no surface treatment)
(エポキシ化合物)
 EP1:エポキシ化大豆油(分子量約920、オキシラン酸素6.7~7.0%、エポキシ当量228~239g/eq)
 EP2:エポキシ化アマニ油(分子量約950、オキシラン酸素≧8.5%、エポキシ当量≦188g/eq)
 EP3:ビスフェノールA型エポキシ樹脂(エポキシ当量180~190g/eq、室温で液状)
 EP4:ビスフェノールF型エポキシ樹脂(エポキシ当量160~180g/eq、室温で液状)
 EP5:ビスフェノールA型エポキシ樹脂(エポキシ当量180~190g/eq、室温で液状、低塩素タイプ)
(epoxy compound)
EP1: epoxidized soybean oil (molecular weight about 920, oxirane oxygen 6.7-7.0%, epoxy equivalent 228-239 g/eq)
EP2: epoxidized linseed oil (molecular weight about 950, oxirane oxygen ≧8.5%, epoxy equivalent ≦188 g/eq)
EP3: bisphenol A type epoxy resin (epoxy equivalent 180-190 g/eq, liquid at room temperature)
EP4: Bisphenol F type epoxy resin (epoxy equivalent 160-180 g/eq, liquid at room temperature)
EP5: Bisphenol A type epoxy resin (epoxy equivalent 180-190 g/eq, liquid at room temperature, low chlorine type)
(可塑剤)
 可塑剤1:グリセリン脂肪酸エステル
 可塑剤2:クエン酸アセチルトリブチル
(Plasticizer)
Plasticizer 1: Glycerin fatty acid ester Plasticizer 2: Acetyltributyl citrate
(帯電防止剤)
 HS15N:ラウリルジエタノールアミドとジエタノールアミンを含有する帯電防止剤 (花王株式会社製)
(Antistatic agent)
HS15N: Antistatic agent containing lauryl diethanolamide and diethanolamine (manufactured by Kao Corporation)
(天然有機物)
 CP:平均粒径20μmのセルロースパウダー
(natural organic matter)
CP: cellulose powder with an average particle size of 20 μm
 [実施例1~4、比較例1~4]
<樹脂組成物の作製>
 上記の各原材料を、後記する表1に示す配合量にて、(株)パーカーコーポレーション製同方向回転二軸混錬押出機HK-25D(φ25mm、L/D=41)に投入した。これをシリンダー温度190~200℃でストランド押出後、冷却、カットすることで、各種組成の樹脂組成物のペレットを作製した。
[Examples 1 to 4, Comparative Examples 1 to 4]
<Preparation of resin composition>
Each of the above raw materials was put into a co-rotating twin-screw kneading extruder HK-25D (φ25 mm, L/D=41) manufactured by Parker Corporation in the amounts shown in Table 1 below. After extruding strands at a cylinder temperature of 190 to 200° C., the strands were cooled and cut to produce pellets of resin compositions of various compositions.
<インフレーション成形品の作製>
 インフレーション成形品として、フィルムを作製した。
 具体的には、インフレーションフィルム押出ライン(60mmの円形ダイ、1.2mmのダイギャップ、30mmのネジ直径、L/D比=30)に上記ペレットを投入し、厚さ30μmのフィルムを作製した。フィルムは、2.5のBUR(ブローアップ比)で処理した。
 なお、押出機において、各区域の温度は180℃~200℃に設定し、回転数は20rpmに維持した。
<Preparation of inflation molded product>
A film was produced as an inflation molded product.
Specifically, the pellets were put into a blown film extrusion line (60 mm circular die, 1.2 mm die gap, 30 mm screw diameter, L/D ratio=30) to produce a 30 μm thick film. Films were processed at a BUR (blow-up ratio) of 2.5.
In addition, in the extruder, the temperature of each zone was set to 180° C. to 200° C., and the rotation speed was maintained at 20 rpm.
<樹脂組成物・フィルムの評価>
 得られた樹脂組成物及びフィルムについて、成形性、引張強さ、切断時伸び、及びブリードの状態を下記の方法で評価した。その結果を、後記する表1に示す。
<Evaluation of resin composition/film>
The moldability, tensile strength, elongation at break, and bleeding state of the obtained resin composition and film were evaluated by the following methods. The results are shown in Table 1 below.
(成形性)
 混練・押出成形時の状態に基づき、以下の基準で評価した。一部の試料については、成形時の押出機のトルク値を測定し、成形性の評価材料とした。
・◎:混練・押出操作が極めてスムーズに進行し、厚みの均一なフィルムを容易に成形することができた。
・○:無機物質粉末の偏在がなく、厚みの均一なフィルムを成形することができた。
・△:無機物質粉末の偏在が観察されたか、あるいは均一なフィルムを成形することが困難であった。
・×:混練時の粘度上昇が著しく、押出成形ができなかった。
(Moldability)
Based on the state during kneading and extrusion molding, evaluation was made according to the following criteria. For some of the samples, the torque value of the extruder during molding was measured and used as a material for evaluating moldability.
· A: The kneading and extrusion operations proceeded extremely smoothly, and a film with a uniform thickness could be easily formed.
○: A film having a uniform thickness could be formed without uneven distribution of the inorganic substance powder.
Δ: Uneven distribution of the inorganic substance powder was observed, or it was difficult to form a uniform film.
x: Viscosity increased significantly during kneading and could not be extruded.
(引張強さ、及び切断時伸び)
 各フィルムから、JIS K6251:2017のダンベル状3号形試験片を得た。
 得られた試験片の引張試験を、ストログラフ(株式会社東洋精機製作所製)を用いて、23℃で行った。延伸速度は100mm/分に設定した。
 得られた応力-歪曲線に基づき、引張強さ(Ts、単位:MPa)及び切断時伸び(EB、単位:%)を測定した。
(Tensile strength and elongation at break)
A JIS K6251:2017 dumbbell-shaped No. 3 test piece was obtained from each film.
A tensile test of the obtained test piece was performed at 23° C. using a strograph (manufactured by Toyo Seiki Seisakusho Co., Ltd.). The drawing speed was set at 100 mm/min.
Based on the obtained stress-strain curve, tensile strength (Ts, unit: MPa) and elongation at break (EB, unit: %) were measured.
(ブリード)
 各フィルムの外観を目視で観察し、以下の基準で評価した。
・○:フィルムの表面にブリードが全く観察されなかった。
・△:フィルムの表面にブリードが僅かに生じていた。
・×:フィルム表面のブリードが目立った。
(bleed)
The appearance of each film was visually observed and evaluated according to the following criteria.
○: Bleeding was not observed at all on the surface of the film.
Δ: Slight bleeding occurred on the surface of the film.
x: Bleeding on the film surface was conspicuous.
(生分解性)
 各フィルムの大きさを、縦30mm×横30mmに調整し、試験片を得た。
 得られた試験片を、室温(25℃±5℃)と同程度に温度調整した海水(10ml)とともに25mlのバイアル瓶内に入れ、1か月間放置した。
 次いで、各試験片の状態を目視観察し、以下の基準で評価した。
 A:試験片がほぼ完全に分解されている。
 B:試験片が部分的に分解されているか、又は試験片に変化が認められない。
(Biodegradable)
The size of each film was adjusted to 30 mm long×30 mm wide to obtain a test piece.
The obtained test piece was placed in a 25 ml vial with seawater (10 ml) temperature-controlled to the same temperature as room temperature (25° C.±5° C.), and allowed to stand for one month.
Next, the state of each test piece was visually observed and evaluated according to the following criteria.
A: The test piece is almost completely decomposed.
B: The test piece is partially decomposed, or no change is observed in the test piece.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明に従い、生分解性樹脂及び重質炭酸カルシウムと共に、特定のエポキシ化合物を2.0質量%以上8.0質量%以下含有する実施例1~4の樹脂組成物は、加工性が良好な上、機械特性、特に切断時伸びが良好な成形品を与え、ブリードも全く観察されなかった。また、エポキシ化合物の配合によって生分解性が損なわれることもなかった。 According to the present invention, the resin compositions of Examples 1 to 4 containing 2.0% by mass or more and 8.0% by mass or less of a specific epoxy compound together with the biodegradable resin and heavy calcium carbonate have good workability. In addition, molded articles with good mechanical properties, especially elongation at break, were obtained, and no bleeding was observed. In addition, the addition of the epoxy compound did not impair the biodegradability.
 [実施例5~10、比較例5~6]
 使用する原材料の種類及び配合量を表2の記載のように変えた以外は、実施例1と同様の操作を行った。各試料の評価結果を、表2に示す。
[Examples 5-10, Comparative Examples 5-6]
The same operation as in Example 1 was performed, except that the types and blending amounts of the raw materials used were changed as shown in Table 2. Table 2 shows the evaluation results of each sample.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明に従い、特定のエポキシ化合物を含有する実施例5~10の樹脂組成物は、成形性に優れる上、機械特性が良好で特に切断時伸びに優れた成形品を与え、ブリードも全く観察されなかった。一方でエポキシ化合物不含の比較例5の樹脂組成物では、成形性が低く、成形品の切断時伸びも小さかった。また、汎用の可塑剤を配合した比較例6の樹脂組成物では、成形性は良好であったものの成形品の機械特性は低く、可塑剤のブリードも目立った。特定のエポキシ化合物を使用することの利点が、明らかである。中でも、エポキシ当量が100g/eq以上200g/eq以下のEP2~EP5を用いた実施例6~9の成形品、及びEP1の配合量が3質量%の実施例10の成形品では、機械特性が特に良好であった。 In accordance with the present invention, the resin compositions of Examples 5 to 10 containing specific epoxy compounds are excellent in moldability, give molded articles with good mechanical properties and particularly excellent elongation at break, and no bleeding is observed. I didn't. On the other hand, the resin composition of Comparative Example 5, which did not contain an epoxy compound, had low moldability and a small elongation at break of the molded product. Further, in the resin composition of Comparative Example 6 containing a general-purpose plasticizer, the moldability was good, but the mechanical properties of the molded product were low, and bleeding of the plasticizer was conspicuous. The advantages of using certain epoxy compounds are clear. Among them, the molded articles of Examples 6 to 9 using EP2 to EP5 having an epoxy equivalent of 100 g/eq to 200 g/eq or less, and the molded article of Example 10 having a blending amount of EP1 of 3% by mass, had poor mechanical properties. It was particularly good.
 尚、生分解性樹脂:重質炭酸カルシウムの質量比を90:10として実施例5及び比較例5と同様の実験を行ったが、エポキシ化合物の配合による切断時伸びの大幅改善は観測されなかった。本発明の樹脂組成物における機械特性の改善は、エポキシ化合物自体の可塑化効果に起因するのではなく、重質炭酸カルシウム存在下での生分解性樹脂成分の分解生成物が、エポキシ化合物と反応することによってもたらされていることが示唆される。 The same experiment as in Example 5 and Comparative Example 5 was conducted with the mass ratio of biodegradable resin to heavy calcium carbonate set to 90:10, but no significant improvement in elongation at break due to the addition of the epoxy compound was observed. rice field. The improvement of the mechanical properties in the resin composition of the present invention is not due to the plasticizing effect of the epoxy compound itself, but the decomposition product of the biodegradable resin component in the presence of heavy calcium carbonate reacts with the epoxy compound. It is suggested that it is brought about by
 [実施例11~12、比較例7]
 使用する原材料の種類及び配合量を、さらに表3の記載のように変え、実施例1と同様の操作を行った。各試料の評価結果を、表3に示す。
[Examples 11 to 12, Comparative Example 7]
The same operation as in Example 1 was performed with the types and blending amounts of the raw materials to be used changed as shown in Table 3. Table 3 shows the evaluation results of each sample.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明に従い、生分解性樹脂、重質炭酸カルシウム、及び特定のエポキシ化合物と共に、さらにクエン酸アセチルトリブチルを7質量%程度含有する実施例11の樹脂組成物は、成形性が極めて優れ、機械特性が良好な成形品を与えた。また、セルロースパウダーを7質量%程度含有する実施例12の成形品は、良好な機械特性を示した。 According to the present invention, the resin composition of Example 11, which contains about 7% by mass of acetyltributyl citrate in addition to the biodegradable resin, ground calcium carbonate, and specific epoxy compound, has extremely excellent moldability and mechanical properties. gave good moldings. In addition, the molded article of Example 12 containing about 7% by mass of cellulose powder exhibited good mechanical properties.
 本発明によれば、成形加工性が良好な上、機械特性、特に切断時伸びに優れ、ブリードによる外観悪化も来し難い成形品を与える生分解性樹脂含有組成物が提供されることが、明らかとなった。 According to the present invention, it is possible to provide a biodegradable resin-containing composition that has good molding processability, excellent mechanical properties, particularly excellent elongation at break, and that gives a molded article that is less likely to deteriorate in appearance due to bleeding. It became clear.

Claims (11)

  1.  生分解性樹脂、重質炭酸カルシウム、及びエポキシ化合物を含有する樹脂組成物であって、
     前記生分解性樹脂と、前記重質炭酸カルシウムとの質量比が10:90~70:30であり、
     前記生分解性樹脂が、ポリブチレンアジペートテレフタレート又はポリブチレンサクシネートアジペートを少なくとも含み、
     前記エポキシ化合物が、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化ヒマシ油、エポキシ化パーム油、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂からなる群より選択される1種以上の化合物であり、
     前記エポキシ化合物の含有量が、前記樹脂組成物100質量%に対して2.0質量%以上8.0質量%以下である、
    樹脂組成物。
    A resin composition containing a biodegradable resin, ground calcium carbonate, and an epoxy compound,
    The biodegradable resin and the heavy calcium carbonate have a mass ratio of 10:90 to 70:30,
    The biodegradable resin contains at least polybutylene adipate terephthalate or polybutylene succinate adipate,
    The epoxy compound is one or more compounds selected from the group consisting of epoxidized soybean oil, epoxidized linseed oil, epoxidized castor oil, epoxidized palm oil, bisphenol A type epoxy resin, and bisphenol F type epoxy resin. can be,
    The content of the epoxy compound is 2.0% by mass or more and 8.0% by mass or less with respect to 100% by mass of the resin composition.
    Resin composition.
  2.  前記エポキシ化合物が、エポキシ当量が100g/eq以上200g/eq以下の化合物である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the epoxy compound is a compound having an epoxy equivalent of 100 g/eq or more and 200 g/eq or less.
  3.  前記生分解性樹脂と前記重質炭酸カルシウムとを質量比10:90~50:50の割合で含有する、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, containing the biodegradable resin and the heavy calcium carbonate at a mass ratio of 10:90 to 50:50.
  4.  前記生分解性樹脂が、ポリブチレンアジペートテレフタレート及びポリ乳酸からなり、
     前記ポリブチレンアジペートテレフタレートと、前記ポリ乳酸との質量比が50:50~90:10である、
    請求項1~3の何れかに記載の樹脂組成物。
    The biodegradable resin is composed of polybutylene adipate terephthalate and polylactic acid,
    The mass ratio of the polybutylene adipate terephthalate and the polylactic acid is 50:50 to 90:10,
    The resin composition according to any one of claims 1 to 3.
  5.  前記生分解性樹脂が、ポリブチレンサクシネートアジペート及びポリ乳酸からなり、
     前記ポリブチレンサクシネートアジペートと、前記ポリ乳酸との質量比が50:50~90:10である、
    請求項1~3の何れかに記載の樹脂組成物。
    The biodegradable resin is composed of polybutylene succinate adipate and polylactic acid,
    The mass ratio of the polybutylene succinate adipate and the polylactic acid is 50:50 to 90:10,
    The resin composition according to any one of claims 1 to 3.
  6.  前記樹脂組成物100質量%に対して、5質量%以上30質量%以下の天然有機物を更に含み、
     前記天然有機物が、セルロースパウダー、木粉、デンプン、モミ殻、オカラ、及びフスマからなる群から選択される1以上である、
    請求項1~5の何れかに記載の樹脂組成物。
    Further containing 5% by mass or more and 30% by mass or less of natural organic matter with respect to 100% by mass of the resin composition,
    The natural organic matter is one or more selected from the group consisting of cellulose powder, wood flour, starch, rice husk, bean curd refuse, and wheat bran.
    The resin composition according to any one of claims 1 to 5.
  7.  前記重質炭酸カルシウムの、JIS M-8511に準じた空気透過法による平均粒子径が、0.7μm以上6.0μm以下である、請求項1~6の何れかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the ground calcium carbonate has an average particle size of 0.7 µm or more and 6.0 µm or less by an air permeation method according to JIS M-8511.
  8.  さらにクエン酸アセチルトリブチルを、前記樹脂組成物100質量%に対して5質量%以上20質量%以下の量で含有する、請求項1~7の何れかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, further comprising acetyltributyl citrate in an amount of 5% by mass or more and 20% by mass or less with respect to 100% by mass of the resin composition.
  9.  請求項1~8の何れかに記載の樹脂組成物から得られた成形品。 A molded article obtained from the resin composition according to any one of claims 1 to 8.
  10.  前記成形品がインフレーションフィルムである、請求項9に記載の成形品。 The molded product according to claim 9, wherein the molded product is a blown film.
  11.  前記成形品が押出成形シートである、請求項9に記載の成形品。 The molded product according to claim 9, wherein the molded product is an extruded sheet.
PCT/JP2022/040376 2021-12-17 2022-10-28 Resin composition and molded article WO2023112514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021205436A JP7094590B1 (en) 2021-12-17 2021-12-17 Resin composition and molded product
JP2021-205436 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023112514A1 true WO2023112514A1 (en) 2023-06-22

Family

ID=82270819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040376 WO2023112514A1 (en) 2021-12-17 2022-10-28 Resin composition and molded article

Country Status (2)

Country Link
JP (1) JP7094590B1 (en)
WO (1) WO2023112514A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240775B1 (en) * 2022-07-28 2023-03-16 株式会社Tbm Resin composition and molded article
CN116376247A (en) * 2023-04-13 2023-07-04 辽宁秸盟科技有限公司 Modified plant fiber biodegradable composite material and preparation method thereof
JP7474537B1 (en) 2023-08-23 2024-04-25 株式会社Tbm Biodegradable laminates and molded articles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527120A (en) * 2005-01-12 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Biodegradable polyester blend
JP2013179881A (en) * 2012-03-01 2013-09-12 Maruzen Petrochem Co Ltd Mulch film
JP2017505837A (en) * 2014-01-31 2017-02-23 バイオ−テック ビオローギッシュ ナチューフェアパックンゲン ゲーエムベーハー ウント コンパニ カーゲー Polymer composition comprising PLLA and PDLA
CN107418163A (en) * 2017-07-27 2017-12-01 上海弘睿生物科技有限公司 The preparation method of water vapor rejection PBAT complete biodegradables resin combination and film
CN110654095A (en) * 2019-09-27 2020-01-07 深圳万达杰环保新材料股份有限公司 Biodegradable film and method for producing same
CN110819040A (en) * 2019-11-27 2020-02-21 吴超雄 Degradable and disintegrable PVC plastic and application thereof
CN111409346A (en) * 2020-04-28 2020-07-14 睿泊(中国)环保科技有限公司 Degradable film and preparation method thereof
CN111742748A (en) * 2020-07-10 2020-10-09 广东省生物工程研究所(广州甘蔗糖业研究所) Biodegradable nutrition pot for boron-nitrogen-phosphorus slow-release compound fertilizer and preparation method and application thereof
JP6916571B1 (en) * 2021-03-25 2021-08-11 株式会社Tbm Resin composition and molded product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527120A (en) * 2005-01-12 2008-07-24 ビーエーエスエフ ソシエタス・ヨーロピア Biodegradable polyester blend
JP2013179881A (en) * 2012-03-01 2013-09-12 Maruzen Petrochem Co Ltd Mulch film
JP2017505837A (en) * 2014-01-31 2017-02-23 バイオ−テック ビオローギッシュ ナチューフェアパックンゲン ゲーエムベーハー ウント コンパニ カーゲー Polymer composition comprising PLLA and PDLA
CN107418163A (en) * 2017-07-27 2017-12-01 上海弘睿生物科技有限公司 The preparation method of water vapor rejection PBAT complete biodegradables resin combination and film
CN110654095A (en) * 2019-09-27 2020-01-07 深圳万达杰环保新材料股份有限公司 Biodegradable film and method for producing same
CN110819040A (en) * 2019-11-27 2020-02-21 吴超雄 Degradable and disintegrable PVC plastic and application thereof
CN111409346A (en) * 2020-04-28 2020-07-14 睿泊(中国)环保科技有限公司 Degradable film and preparation method thereof
CN111742748A (en) * 2020-07-10 2020-10-09 广东省生物工程研究所(广州甘蔗糖业研究所) Biodegradable nutrition pot for boron-nitrogen-phosphorus slow-release compound fertilizer and preparation method and application thereof
JP6916571B1 (en) * 2021-03-25 2021-08-11 株式会社Tbm Resin composition and molded product

Also Published As

Publication number Publication date
JP7094590B1 (en) 2022-07-04
JP2023090470A (en) 2023-06-29

Similar Documents

Publication Publication Date Title
KR102380168B1 (en) Resin composition, and molded article
WO2023112514A1 (en) Resin composition and molded article
US8927632B2 (en) Polylactic acid based film
JP5867084B2 (en) Polylactic acid film
JP2007246624A (en) Aliphatic polyester resin extrusion-molded sheet excellent in heat resistance and container
TWI490257B (en) Polylactic resin composition
JP4618649B2 (en) Acetylcellulose resin composition
JP2014162799A (en) Polylactic acid-based mulching film
JP2006089643A (en) Resin composition and molded body thereof
JP6755569B1 (en) Biodegradable resin compositions and molded products
CN114423812B (en) Biodegradable rubber composition, method for producing biodegradable rubber composition, and biodegradable rubber molded article
JP4629217B2 (en) Antistatic polylactic acid resin composition
WO2024024362A1 (en) Resin composition and molded article
JP2010126619A (en) Chip-formed material consisting of polylactic acid-based resin composition
JP2014162884A (en) Biodegradable film
JP2007246610A (en) Aliphatic polyester resin composition excellent in heat resistance, and foamed sheet and molded product thereof
JP7178754B1 (en) Resin composition and molded article
JP7227667B1 (en) PLASTICIZER FOR BIODEGRADABLE RESIN, RESIN COMPOSITION AND MOLDED PRODUCT CONTAINING THE SAME
JP2007238855A (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907048

Country of ref document: EP

Kind code of ref document: A1