WO2023112433A1 - Method for producing hydrogen substitution product of 1,2-dichloro-1,2-difluoroethylene - Google Patents

Method for producing hydrogen substitution product of 1,2-dichloro-1,2-difluoroethylene Download PDF

Info

Publication number
WO2023112433A1
WO2023112433A1 PCT/JP2022/037013 JP2022037013W WO2023112433A1 WO 2023112433 A1 WO2023112433 A1 WO 2023112433A1 JP 2022037013 W JP2022037013 W JP 2022037013W WO 2023112433 A1 WO2023112433 A1 WO 2023112433A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
difluoroethylene
dichloro
catalyst
cfo
Prior art date
Application number
PCT/JP2022/037013
Other languages
French (fr)
Japanese (ja)
Inventor
耀 岩崎
拓 山田
秀一 岡本
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023112433A1 publication Critical patent/WO2023112433A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present disclosure relates to a method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene.
  • CFC chlorofluorocarbons
  • HCFC hydrochlorofluorocarbons
  • CFCs and HCFCs have been pointed out to affect the ozone layer in the stratosphere, and are currently subject to regulation.
  • HFC hydrofluorocarbons such as difluoromethane, tetrafluoroethane, pentafluoroethane
  • HFOs hydrofluoroolefins
  • GWP global warming potential
  • HFO-1132 is prepared by reacting 1,2-dichloro-1,2-difluoroethylene (hereinafter also referred to as “CFO-1112”) with hydrogen in the presence of a hydrogenation catalyst such as a Pd catalyst to obtain a hydrogen-substituted product.
  • CFO-1112 1,2-dichloro-1,2-difluoroethylene
  • HCFO-1122a 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene
  • HFO-1132 and HCFO-1122a are collectively referred to as “CFO-1112
  • An object of the present invention is to provide a method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene which can selectively produce a hydrogen-substituted product.
  • Means for solving the above problems include the following aspects.
  • ⁇ 2> The 1,2-dichloro-1,2-difluoro according to ⁇ 1> above, wherein in the mixed metal catalyst, the ratio of the mass of the platinum group metal to the mass of the second metal is 1/1 or less.
  • the mixed metal catalyst is supported by a carrier, and the total supported amount of the platinum group metal and the second metal supported on the carrier is 1 to 20 parts by mass with respect to 100 parts by mass of the carrier.
  • ⁇ 4> The method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene according to ⁇ 3>, wherein the carrier contains activated carbon.
  • ⁇ 5> 1, according to any one of ⁇ 1> to ⁇ 4> above, wherein the temperature at which the 1,2-dichloro-1,2-difluoroethylene and the hydrogen are reacted is 150 to 400°C.
  • ⁇ 6> any one of ⁇ 1> to ⁇ 5> above, wherein the molar ratio of the amount of hydrogen used to the amount of 1,2-dichloro-1,2-difluoroethylene used is 1 to 50;
  • ⁇ 7> The 1,2-dichloro-1, according to any one of ⁇ 1> to ⁇ 6>, wherein the platinum group metal is one or more metals selected from the group consisting of platinum and nickel.
  • ⁇ 8> The 1,2-dichloro-1, according to any one of ⁇ 1> to ⁇ 7>, wherein the second metal is one or more metals selected from the group consisting of copper and silver.
  • ⁇ 9> The above ⁇ 1> to ⁇ , wherein the hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene contains at least one of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene. 8>.
  • the hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene includes 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene, and the 1-chloro-1,2 - 1, according to any one of ⁇ 1> to ⁇ 9>, wherein difluoroethylene is recovered and the 1-chloro-1,2-difluoroethylene is reacted with hydrogen in the presence of the mixed metal catalyst.
  • a method for producing a hydrogen-substituted 2-dichloro-1,2-difluoroethylene is reacted with hydrogen in the presence of the mixed metal catalyst.
  • a method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene that can suppress the production of by-products and selectively produce a hydrogen-substituted CFO-1112. can.
  • FIG. 1 is a schematic diagram showing an embodiment of a reactor that can be used in the method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene of the present disclosure.
  • each component may contain multiple types of applicable substances.
  • the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
  • CFO-1112, HFO-1132, and HCFO-1122a exist as geometric isomers, Z-isomer and E-isomer, depending on the position of the substituent on the double bond.
  • a compound name or a compound abbreviation indicates at least one selected from the group consisting of Z isomer and E isomer, more specifically, Z isomer or E isomer, Alternatively, it represents a mixture of Z isomer and E isomer in an arbitrary ratio.
  • (E) or (Z) is attached to the end of a compound name or a compound abbreviation, the (E)-form or (Z)-form of the respective compound is indicated.
  • CFO-1112(Z) indicates the Z form
  • CFO-1112(E) indicates the E form.
  • the method for producing a hydrogen-substituted CFO-1112 of the present disclosure is one selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium.
  • a metal mixed catalyst containing a first catalyst containing the above platinum group metals and a second catalyst containing at least one second metal selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt CFO-1112 with hydrogen.
  • production of by-products can be suppressed, and hydrogen-substituted CFO-1112 can be selectively produced.
  • CFO-1112 produced by the production method of the present disclosure may contain at least one of HFO-1132 and HCFO-1122a.
  • the production method of the present disclosure recovers it by a conventionally known method such as distillation, and 1-chloro-1,2- in the presence of a mixed metal catalyst. Difluoroethylene may be reacted with hydrogen. As a result, HFO-1132, which is a hydrogen-substituted product of HCFO-1122a, is obtained.
  • the mixed metal catalyst used in the production method of the present disclosure contains the first catalyst containing the platinum group metal and the second catalyst containing the second metal.
  • the ratio of the mass of the platinum group metal to the mass of the second metal is preferably 1/1 or less, more preferably 1/20 or less, and 1/60. The following is more preferable, 1/80 or less is particularly preferable, and 1/100 or less is most preferable.
  • the ratio is preferably 1/600 or more, more preferably 1/500 or more, and even more preferably 1/300 or more.
  • the first catalyst contains one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium.
  • platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium.
  • the first catalyst include palladium, platinum, nickel, iridium, rhodium, ruthenium, oxides thereof, and halides thereof.
  • platinum and nickel It preferably contains one or more metals selected from the group consisting of
  • the valence of the platinum group metal is not particularly limited, but from the viewpoint of improving the reactivity between CFO-1112 and hydrogen, it is preferably divalent or tetravalent, more preferably divalent.
  • the second catalyst contains one or more second metals selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt.
  • the second catalyst includes copper, silver, gold, zinc, chromium, cobalt, oxides thereof, and halides thereof. From the viewpoint of suppressing the production of by-products, It preferably contains one or more selected metals. Examples of the halides include fluorides and chlorides, and chlorides are preferred from the viewpoint of suppressing the production of by-products.
  • the mixed metal catalyst contains a first catalyst selected from the group consisting of platinum and platinum halides and a second catalyst selected from the group consisting of copper and copper halides.
  • the mixed metal catalyst may be supported by a carrier.
  • the metal mixed catalyst is supported on a support, from the viewpoint of improving the specific surface area of the metal mixed catalyst and improving the reactivity between CFO-1112 and hydrogen, the platinum group metal supported on the support with respect to 100 parts by mass of the support and
  • the total amount of the second metal supported is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and even more preferably 3 to 10 parts by mass.
  • the carrier includes at least one selected from the group consisting of activated carbon, alumina, chromia, silica, zirconia, alkali metal oxides and alkaline earth metal oxides, and has a large surface area for supporting metals. For this reason, activated carbon is preferred.
  • the carrier may be subjected to a treatment such as acid washing in order to enhance the function of supporting the catalyst.
  • a conventionally known method can be adopted as a method for preparing a mixed metal catalyst supported on a carrier. industrial Practice", 2nd. (McGraw-Hill, N. York, 1991), pp. 87-112, by either precipitation or impregnation methods.
  • the reaction of CFO-1112 and hydrogen may be carried out in a reactor.
  • the shape and structure of the reactor are not particularly limited.
  • a cylindrical vertical reactor that can be filled with a catalyst inside the reactor.
  • Materials for the reactor include glass, iron, nickel, stainless steel, iron, nickel, and alloys thereof.
  • the reactor may be internally equipped with a heating unit such as an electric heater.
  • the reactor may have a sheath tube into which a thermometer is inserted to measure the temperature inside.
  • the temperature at which CFO-1112 and hydrogen are reacted is preferably 150 to 400°C, and 200 to 380°C. More preferably, 270 to 370°C is even more preferable.
  • the reaction temperature refers to the temperature of the environment where CFO-1112 and hydrogen react, and when the reaction is carried out in a reactor, the temperature inside the reactor corresponds to the reaction temperature.
  • the molar ratio of the amount of hydrogen used to the amount of CFO-1112 used is preferably 1 to 50. , more preferably 2 to 30, more preferably 2 to 20, and particularly preferably 2 to 10.
  • the reaction between CFO-1112 and hydrogen may be either a liquid phase reaction or a gas phase reaction, and the gas phase reaction is preferred from the viewpoint of improving the reactivity between CFO-1112 and hydrogen.
  • a liquid phase reaction means a reaction between CFO-1112 in a liquid state and hydrogen
  • a gas phase reaction means a reaction between CFO-1112 in a gaseous state and hydrogen.
  • the above reaction may be carried out in any of a batch system, a semi-continuous system and a continuous flow system.
  • a gas phase reaction will be described in detail.
  • gaseous CFO-1112 and hydrogen are separately and continuously supplied into a reactor, and gaseous state is generated in the presence of a metal mixed catalyst packed in the reactor. of CFO-1112 and hydrogen.
  • a gas inert to the reaction may be supplied to the reactor from the viewpoint of being effective in adjusting the flow rate, suppressing by-products, suppressing deactivation of the catalyst, and the like.
  • Diluent gases include nitrogen, carbon dioxide, helium, argon, and the like.
  • the time for gas phase reaction between CFO-1112 and hydrogen (hereinafter also referred to as "gas phase reaction time”) is preferably 1 second to 1000 seconds, 5 seconds to 800 seconds is more preferable, and 10 seconds to 500 seconds is even more preferable.
  • the reaction time means the residence time of CFO-1112 and hydrogen in the reactor.
  • the pressure of the reaction system (pressure inside the reactor) in the gas phase reaction is preferably 0 to 2.0 MPa, more preferably 0 to 0.5 MPa.
  • the pressure inside the reactor may be negative pressure.
  • the pressure inside the reactor is particularly preferably normal pressure (atmospheric pressure) from the viewpoint of ease of handling. In the present disclosure, pressure indicates gauge pressure unless otherwise specified.
  • the liquid phase reaction will be explained in detail.
  • the liquid phase reaction between CFO-1112 and hydrogen can be carried out by continuously or discontinuously supplying hydrogen into a reactor in which a mixture of CFO-1112 and a mixed metal catalyst exists in a liquid state. Further, the hydrogen-substituted CFO-1112 produced by the reaction can be continuously or discontinuously withdrawn from the reactor.
  • the liquid phase reaction time between CFO-1112 and hydrogen (hereinafter also referred to as “liquid phase reaction time”) is 0.1 to 100 hours. Preferably, 0.5 hours to 50 hours, and even more preferably 1 hour to 20 hours.
  • a liquid phase reaction may be carried out in the presence of a solvent, if desired.
  • the solvent include straight-chain perfluoroalkyl compounds having 5 to 8 carbon atoms represented by CF 3 (CF 2 )nCF 3 (wherein n represents an integer of 3 to 6). .
  • reference numeral 20 designates a reactor used for gas phase reactions.
  • Reactor 20 comprises reactor 1 .
  • the reactor 1 is connected to a CFO-1112 supply line 2, a hydrogen supply line 3, and a diluent gas supply line 4.
  • the reactor 1 includes a heating section such as an electric heater (not shown).
  • the supply line 2 and the supply line 3 are connected before the reactor 1 and connected to the reactor 1.
  • each reactor is separately connected. 1 may be connected.
  • feed line 2, feed line 3 and feed line 4 are connected before the reactor, and the mixture of CFO-1112, hydrogen and diluent gas is fed to reactor 1 via mixture feed line 5. supplied to
  • the supply line 2, the supply line 3 and the supply line 4 are provided with preheaters (preheaters) 2a, 3a and 4a provided with electric heaters and the like, respectively.
  • the CFO-1112, hydrogen and nitrogen supplied to the reactor 1 are preferably preheated to predetermined temperatures by preheaters 2a, 3a and 4a, respectively, before being supplied to the reactor 1. Thereby, CFO-1112, hydrogen and nitrogen can be efficiently heated to a predetermined reaction temperature inside the reactor 1 .
  • Preheaters 2a, 3a and 4a are preferably, but not essential, installed.
  • an outlet line 7 is connected to the outlet of the reactor 1 via a cooling section 6 such as a heat exchanger.
  • the outlet line 7 is further connected with a recovery tank 8 for water vapor and acid liquid, an alkali washing device 9, and a dehydration tower 10 in this order.
  • the reaction mixture taken out from the reactor 1 is treated after the exit line 7 to remove acidic substances such as hydrogen chloride and hydrogen fluoride, water vapor and water.
  • the gas thus obtained is hereinafter referred to as "outlet gas".
  • Each component in the outlet gas is analyzed and quantified by an analyzer 11 such as gas chromatography (GC).
  • GC gas chromatography
  • the outlet gas contains at least one of HFO-1132 and HCFO-1122a.
  • Compounds other than HFO-1132 and HCFO-1122a contained in the outlet gas include CFO-1112, water, hydrogen, hydrogen chloride, and hydrogen fluoride.
  • HFO-1132 contained in the outlet gas can be removed and recovered by a conventionally known method such as distillation.
  • HCFO-1122a has a boiling point of ⁇ 15 to 15° C.
  • HFO-1132 has a boiling point of ⁇ 44 to ⁇ 28° C. Since there is a large difference in boiling points, recovery by distillation is possible.
  • the recovered HCFO-1122a may be returned to the reactor as part of the feedstock, thereby improving the production efficiency of HFO-1132.
  • the mixed metal catalyst for the production of hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene of the present disclosure includes at least one platinum group selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium. It contains a first catalyst containing a metal and a second catalyst containing at least one second metal selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt. Preferred aspects such as the ratio of the mass of the platinum group metal to the mass of the second metal are as described above, and are omitted here.
  • Examples 1 to 10 are examples
  • Example 11 is a comparative example.
  • the supported catalyst in the flask is transferred to the reaction tube, and then the reaction tube is kept at 200° C. and 16.7 mL of nitrogen gas is supplied. /sec for 16 hours and dried.
  • activated carbon carrying a mixed metal catalyst A containing copper (I) chloride and platinum (II) chloride (referred to as CuCl—PtCl 2 catalyst in Table 1) was obtained.
  • the mass ratio of Pt to the mass of Cu supported on the activated carbon (Pt/Cu) was 1/100.
  • the total amount of Cu and Pt carried on the activated carbon per 100 parts by mass of the activated carbon was 6 parts by mass.
  • activated carbon carrying a mixed metal catalyst B containing copper (I) chloride and palladium chloride (referred to as CuCl—PdCl 2 in Table 1) was obtained.
  • the mass ratio of Pd to the mass of Cu supported on the activated carbon (Pd/Cu) was 1/100.
  • the total amount of Cu and Pd carried on the activated carbon per 100 parts by mass of the activated carbon was 6 parts by mass.
  • activated carbon carrying a mixed metal catalyst C containing copper (I) chloride and nickel (II) chloride (referred to as CuCl—NiCl 2 in Table 1) was obtained.
  • the ratio of the mass of Ni to the mass of Cu supported on the activated carbon (N i/Cu) was 1/100.
  • the total amount of Cu and Ni carried on the activated carbon per 100 parts by mass of the activated carbon was 6 parts by mass.
  • activated carbon supporting catalyst X containing palladium(II) chloride (referred to as Pd/C catalyst in Table 1) was obtained.
  • the amount of Pd carried on the activated carbon was 0.5 parts by mass with respect to 100 parts by mass of the activated carbon.
  • Example 1 A reaction apparatus 20 shown in FIG. 1 described above was prepared.
  • a reaction tube made of SUS304, inner diameter 35.3 mm installed in an electric furnace was used.
  • a thermometer was inserted into the sheath tube of the reaction tube to measure the internal temperature.
  • the reaction tube was filled with activated carbon carrying mixed metal catalyst A with a length of 50 cm.
  • the temperature inside the reaction tube was controlled at 249°C.
  • Reactor 1 was continuously fed with CFO-1112, hydrogen and nitrogen through feed lines 2-4, which were stainless steel tubes, respectively.
  • the molar ratio of CFO-1112, hydrogen and nitrogen supplied to the reactor 1 was controlled to be 1:2:0.1.
  • the mixed gas flow rate (supply amount per unit time) was controlled so that the residence time of the mixed gas (CFO-1112, hydrogen and nitrogen) inside the reactor 1 was 23 seconds.
  • the pressure inside the reactor 1 was the same as the atmospheric pressure.
  • the preheaters 2a to 4a electric furnaces set to a furnace temperature of 200° C. were used.
  • the composition analysis of the resulting outlet gas was performed using gas chromatography (GC).
  • GC gas chromatography
  • DB-1301 length 60 m ⁇ inner diameter 250 ⁇ m ⁇ thickness 1 ⁇ m, manufactured by Agilent Technologies
  • HFO-1132, HCFO-1122a, dichlorodifluoroethane (hereinafter also referred to as “HCFC-132”), difluoroethane (hereinafter also referred to as “HFC-152”) in the outlet gas relative to the molar amount of CFO-1112 supplied to the reactor ) and fluoroethane (hereinafter also referred to as “HFC-161”) were determined (unit: %).
  • Example 2 After obtaining the outlet gas in the same manner as in Example 1, except that the temperature inside the reaction tube was changed to 269° C. and the residence time was changed to 22.1 seconds, HFO-1132 selectivity, HCFO-1122a selectivity , HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
  • Example 3 In the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:3:0.1 and the residence time was changed to 16.7 seconds. After obtaining the outlet gas, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1. rice field.
  • Example 4 Change the temperature in the reaction tube to 301° C., change the residence time to 33.9 seconds, and change the molar ratio of CFO-1112, hydrogen and nitrogen supplied to the reactor 1 to 1:1:0.1. After obtaining the outlet gas, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z was determined and summarized in Table 1.
  • Example 5 After obtaining the outlet gas, the HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
  • Example 6 Change the temperature in the reaction tube to 301° C., change the residence time to 17.4 seconds, and change the molar ratio of CFO-1112, hydrogen and nitrogen supplied to the reactor 1 to 1:3:0.1. After obtaining the outlet gas, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z was determined and summarized in Table 1.
  • Example 7 Using activated carbon in which the mass ratio of Pt and Cu of the activated carbon supporting the mixed metal catalyst A was changed to 1/20, the temperature in the reaction tube was changed to 303 ° C., the residence time was changed to 16.1 seconds, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:2:0.1, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
  • Example 8 Using activated carbon with a length of 30 cm supporting metal mixed catalyst B instead of the activated carbon supporting metal mixed catalyst A, changing the temperature in the reaction tube to 200 ° C., changing the residence time to 28.9 seconds, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:1:0.1, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
  • Example 9 After obtaining the outlet gas in the same manner as in Example 7, except that the temperature inside the reaction tube was changed to 281° C. and the residence time was changed to 24.7 seconds, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
  • Example 10 Using activated carbon with a length of 30 cm supporting mixed metal catalyst C instead of activated carbon supporting mixed metal catalyst A, changing the temperature in the reaction tube to 352° C., changing the residence time to 14.8 seconds, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:2:0.1, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
  • Example 11 Catalyst X was used instead of activated carbon supporting mixed metal catalyst A, the temperature in the reaction tube was changed to 80°C, the residence time was changed to 35.5 seconds, nitrogen was not supplied to reactor 1, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112 and hydrogen supplied to the reactor 1 was changed to 1:2, HFO-1132 selectivity, HCFO-1122a selectivity , HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity and conversion were determined and summarized in Table 1.
  • the first catalyst containing one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium and the group consisting of copper, silver, gold, zinc, chromium and cobalt
  • platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium and the group consisting of copper, silver, gold, zinc, chromium and cobalt

Abstract

A method for producing a hydrogen substitution product of 1,2-dichloro-1,2-difluoroethylene, the method comprising causing 1,2-dichloro-1,2-difluoroethylene to react with hydrogen in the presence of a metal catalyst mixture containing a first catalyst including at least one platinum group metal selected from the group consisting of palladium, platinum, nickel, iridium, rhodium, and ruthenium, and a second catalyst containing at least one second metal selected from the group consisting of copper, silver, gold, zinc, chromium, and cobalt.

Description

1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法Method for producing hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene
 本開示は、1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法に関する。 The present disclosure relates to a method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene.
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体及び二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(以下、「CFC」とも記す。)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(以下、「HCFC」とも記す。)が用いられてきた。しかし、CFC及びHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。 Conventionally, refrigerants for refrigerators, refrigerants for air conditioners, working media for power generation systems (waste heat recovery power generation, etc.), working media for latent heat transport devices (heat pipes, etc.), and working media for heat cycle systems such as secondary cooling media As such, chlorofluorocarbons such as chlorotrifluoromethane and dichlorodifluoromethane (hereinafter also referred to as "CFC") and hydrochlorofluorocarbons such as chlorodifluoromethane (hereinafter also referred to as "HCFC") have been used. However, CFCs and HCFCs have been pointed out to affect the ozone layer in the stratosphere, and are currently subject to regulation.
 このような経緯から、熱サイクル用作動媒体としては、CFC及びHCFCに代えて、オゾン層への影響が少ない、ジフルオロメタン、テトラフルオロエタン、ペンタフルオロエタン等のヒドロフルオロカーボン(以下、「HFC」とも記す。)が用いられるようになった。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。 From this background, hydrofluorocarbons such as difluoromethane, tetrafluoroethane, pentafluoroethane (hereinafter also referred to as "HFC"), which have less impact on the ozone layer, have been replaced with CFCs and HCFCs as working fluids for thermal cycles. ) came to be used. However, it has been pointed out that HFCs may cause global warming.
 近年、地球温暖化係数(GWP)が小さいことから、HFCに代えて、1,2-ジフルオロエチレン(以下、「HFO-1132」とも記す。)等のヒドロフルオロオレフィン(HFO)の使用が検討されている。
 HFO-1132は、1,2-ジクロロー1,2-ジフルオロエチレン(以下、「CFO-1112」とも記す。)を、Pd触媒等の水素化触媒の存在下で水素と反応させ、水素置換体とすることにより製造できる(特開2013-237624号公報等参照)。
In recent years, the use of hydrofluoroolefins (HFOs) such as 1,2-difluoroethylene (hereinafter also referred to as "HFO-1132"), etc., has been studied in place of HFCs because of their low global warming potential (GWP). ing.
HFO-1132 is prepared by reacting 1,2-dichloro-1,2-difluoroethylene (hereinafter also referred to as “CFO-1112”) with hydrogen in the presence of a hydrogenation catalyst such as a Pd catalyst to obtain a hydrogen-substituted product. (See Japanese Patent Laid-Open No. 2013-237624, etc.).
 今般、本発明者らは、Pd触媒等を用いてCFO-1112と水素との反応を行うと、二重結合に水素が付加した水添体、フッ素原子が水素原子に置換された過還元体等の副生成物が製造される場合があり、製造されるHFO-1132及びその前駆体である1,2-ジフルオロエチレン及び1-クロロ-1,2-ジフルオロエチレン(以下、「HCFO-1122a」とも記す。)の選択性には改善の余地があるとの知見を得た。
 本開示の一実施形態が解決しようとする課題は、副生成物の生成を抑制でき、且つHFO-1132及びHCFO-1122a(以下、HFO-1132及びHCFO-1122aをまとめて、「CFO-1112の水素置換体」とも記す。)を選択的に製造できる、1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法を提供することである。
The present inventors have found that when CFO-1112 is reacted with hydrogen using a Pd catalyst or the like, a hydrogenated product in which hydrogen is added to the double bond, a superreduced product in which the fluorine atom is replaced by a hydrogen atom By-products such as HFO-1132 and its precursors 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene (hereinafter “HCFO-1122a”) may be produced. Also described.) was found to have room for improvement in selectivity.
The problem to be solved by one embodiment of the present disclosure is that the generation of by-products can be suppressed, and HFO-1132 and HCFO-1122a (hereinafter, HFO-1132 and HCFO-1122a are collectively referred to as “CFO-1112 An object of the present invention is to provide a method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene which can selectively produce a hydrogen-substituted product.
 上記課題を解決するための手段は、以下の態様を含む。
<1> パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される1種以上の白金族金属を含む第一触媒及び銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む第二触媒を含有する金属混
合触媒の存在下、1,2-ジクロロー1,2-ジフルオロエチレンを水素と反応させる、1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<2> 前記金属混合触媒において、前記第二金属の質量に対する前記白金族金属の質量の比が、1/1以下である、前記<1>に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<3> 前記金属混合触媒が、担体により担持されており、且つ
 前記担体100質量部に対する前記担体に担持される前記白金族金属及び前記第二金属の合計担持量が、1~20質量部である、前記<1>又は<2>に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<4> 前記担体が、活性炭を含む、前記<3>に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<5> 前記1,2-ジクロロー1,2-ジフルオロエチレンと前記水素とを反応させる温度が、150~400℃である、前記<1>~<4>のいずれか1つに記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<6> 前記1,2-ジクロロー1,2-ジフルオロエチレンの使用量に対する、前記水素の使用量のモル比が、1~50である、前記<1>~<5>のいずれか1つに記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<7> 前記白金族金属が、白金及びニッケルからなる群より選択される1種以上の金属である、前記<1>~<6>のいずれか1つに記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<8> 前記第二金属が、銅及び銀からなる群より選択される1種以上の金属である、前記<1>~<7>のいずれか1つに記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<9> 前記1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体が、1,2-ジフルオロエチレン及び1-クロロ-1,2-ジフルオロエチレンの少なくとも一方を含む、前記<1>~<8>のいずれか1つに記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
<10> 前記1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体が、1,2-ジフルオロエチレン及び1-クロロ-1,2-ジフルオロエチレンを含み、且つ
 前記1-クロロ-1,2-ジフルオロエチレンを回収し、前記金属混合触媒の存在下、前記1-クロロ-1,2-ジフルオロエチレンを水素と反応させる、前記<1>~<9>のいずれか1つに記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
Means for solving the above problems include the following aspects.
<1> A first catalyst containing one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium, and selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt reacting 1,2-dichloro-1,2-difluoroethylene with hydrogen in the presence of a mixed metal catalyst containing a second catalyst comprising one or more second metals of 1,2-dichloro-1,2- A method for producing a hydrogen-substituted difluoroethylene.
<2> The 1,2-dichloro-1,2-difluoro according to <1> above, wherein in the mixed metal catalyst, the ratio of the mass of the platinum group metal to the mass of the second metal is 1/1 or less. A method for producing a hydrogen-substituted ethylene.
<3> The mixed metal catalyst is supported by a carrier, and the total supported amount of the platinum group metal and the second metal supported on the carrier is 1 to 20 parts by mass with respect to 100 parts by mass of the carrier. A method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene according to <1> or <2> above.
<4> The method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene according to <3>, wherein the carrier contains activated carbon.
<5> 1, according to any one of <1> to <4> above, wherein the temperature at which the 1,2-dichloro-1,2-difluoroethylene and the hydrogen are reacted is 150 to 400°C. A method for producing a hydrogen-substituted 2-dichloro-1,2-difluoroethylene.
<6> any one of <1> to <5> above, wherein the molar ratio of the amount of hydrogen used to the amount of 1,2-dichloro-1,2-difluoroethylene used is 1 to 50; A method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene described above.
<7> The 1,2-dichloro-1, according to any one of <1> to <6>, wherein the platinum group metal is one or more metals selected from the group consisting of platinum and nickel. A method for producing a hydrogen-substituted 2-difluoroethylene.
<8> The 1,2-dichloro-1, according to any one of <1> to <7>, wherein the second metal is one or more metals selected from the group consisting of copper and silver. A method for producing a hydrogen-substituted 2-difluoroethylene.
<9> The above <1> to <, wherein the hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene contains at least one of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene. 8>.
<10> The hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene includes 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene, and the 1-chloro-1,2 - 1, according to any one of <1> to <9>, wherein difluoroethylene is recovered and the 1-chloro-1,2-difluoroethylene is reacted with hydrogen in the presence of the mixed metal catalyst. A method for producing a hydrogen-substituted 2-dichloro-1,2-difluoroethylene.
 本開示によれば、副生成物の生成を抑制でき、且つCFO-1112の水素置換体を選択的に製造できる、1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法を提供できる。 According to the present disclosure, there is provided a method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene that can suppress the production of by-products and selectively produce a hydrogen-substituted CFO-1112. can.
図1は、本開示の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法において使用できる反応装置の一実施形態を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of a reactor that can be used in the method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene of the present disclosure.
 以下、本開示の実施形態を実施するための形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。 Hereinafter, the form for implementing the embodiment of the present disclosure will be described in detail. However, embodiments of the present disclosure are not limited to the following embodiments. In the following embodiments, the constituent elements (including element steps and the like) are not essential unless otherwise specified. The same applies to numerical values and their ranges, which do not limit the embodiments of the present disclosure.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値
がそれぞれ最小値及び最大値として含まれる。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に記載しない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
In the present disclosure, the numerical range indicated using "-" includes the numerical values before and after "-" as the minimum and maximum values, respectively.
In the present disclosure, each component may contain multiple types of applicable substances. When there are multiple types of substances corresponding to each component in the composition, the content rate or content of each component is the total content rate or content of the multiple types of substances present in the composition unless otherwise specified. means quantity.
 CFO-1112、HFO-1132、及びHCFO-1122aは、二重結合上の置換基の位置により、幾何異性体であるZ体とE体とが存在する。
 本開示において、特に断らずに化合物名や化合物の略称を用いた場合には、Z体及びE体からなる群から選ばれる少なくとも1種を示し、より具体的には、Z体若しくはE体、又は、Z体とE体との任意の割合の混合物を示す。
 化合物名又は化合物の略称の後ろに(E)又は(Z)を付した場合には、それぞれの化合物の(E)体又は(Z)体を示す。例えば、CFO-1112(Z)はZ体を示し、CFO-1112(E)はE体を示す。
CFO-1112, HFO-1132, and HCFO-1122a exist as geometric isomers, Z-isomer and E-isomer, depending on the position of the substituent on the double bond.
In the present disclosure, when a compound name or a compound abbreviation is used without particular mention, it indicates at least one selected from the group consisting of Z isomer and E isomer, more specifically, Z isomer or E isomer, Alternatively, it represents a mixture of Z isomer and E isomer in an arbitrary ratio.
When (E) or (Z) is attached to the end of a compound name or a compound abbreviation, the (E)-form or (Z)-form of the respective compound is indicated. For example, CFO-1112(Z) indicates the Z form and CFO-1112(E) indicates the E form.
 本開示のCFO-1112の水素置換体の製造方法(以下、単に「本開示の製造方法」とも記す。)は、パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される1種以上の白金族金属を含む第一触媒及び銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む第二触媒を含有する金属混合触媒の存在下、CFO-1112を水素と反応させる。
 本開示の製造方法によれば、副生成物の製造を抑制でき、且つCFO-1112の水素置換体を選択的に製造できる。その作用機構は定かではないが、概ね以下のように推定している。
 Pd触媒等の1種の金属触媒の存在下でCFO-1112を水素と反応させた場合、Pd原子の結合間に水素分子が取り込まれ、取り込まれた水素分子が、CFO-1112が有する塩素原子のみならず、CFO-1112の二重結合にも反応し、水添体及び過還元体等の副生成物が製造される場合がある。
 本開示の製造方法においては、パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される、1種以上の白金族金属を含む第一触媒と、銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む第二触媒とを含有する金属混合触媒を使用している。すなわち、金属混合触媒は、水素との親和性の高い白金族金属を含む第一触媒に加えて、水素との親和性の低い第二金属を含む第二触媒を含有しており、CFO-1112の二重結合への水素の反応が抑制され、
副生成物の製造を抑制でき、且つCFO-1112の水素置換体が選択的に製造されると推測される。
The method for producing a hydrogen-substituted CFO-1112 of the present disclosure (hereinafter also simply referred to as the “production method of the present disclosure”) is one selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium. In the presence of a metal mixed catalyst containing a first catalyst containing the above platinum group metals and a second catalyst containing at least one second metal selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt , CFO-1112 with hydrogen.
According to the production method of the present disclosure, production of by-products can be suppressed, and hydrogen-substituted CFO-1112 can be selectively produced. Although the mechanism of action is not clear, it is roughly estimated as follows.
When CFO-1112 is reacted with hydrogen in the presence of one kind of metal catalyst such as a Pd catalyst, hydrogen molecules are taken in between the bonds of Pd atoms, and the taken-in hydrogen molecules become chlorine atoms possessed by CFO-1112. In addition, it may also react with the double bond of CFO-1112 to produce by-products such as hydrogenated products and overreduced products.
In the production method of the present disclosure, a first catalyst containing one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium, and copper, silver, gold, zinc, chromium and a second catalyst containing at least one second metal selected from the group consisting of cobalt. That is, the metal mixed catalyst contains, in addition to the first catalyst containing a platinum group metal having a high affinity with hydrogen, a second catalyst containing a second metal having a low affinity with hydrogen, and CFO-1112 The reaction of hydrogen to the double bond of is suppressed,
It is speculated that the production of by-products can be suppressed and the hydrogen-substituted CFO-1112 is selectively produced.
 本開示の製造方法により製造されるCFO-1112は、HFO-1132及びHCFO-1122aの少なくとも一方を含んでもよい。 CFO-1112 produced by the production method of the present disclosure may contain at least one of HFO-1132 and HCFO-1122a.
 CFO-1112の水素置換体が、HCFO-1122aを含む場合、本開示の製造方法は、蒸留等の従来公知の方法により、回収し、金属混合触媒の存在下、1-クロロ-1,2-ジフルオロエチレンを水素と反応させてもよい。
 これにより、HCFO-1122aの水素置換体であるHFO-1132が得られる。
When the hydrogen-substituted product of CFO-1112 contains HCFO-1122a, the production method of the present disclosure recovers it by a conventionally known method such as distillation, and 1-chloro-1,2- in the presence of a mixed metal catalyst. Difluoroethylene may be reacted with hydrogen.
As a result, HFO-1132, which is a hydrogen-substituted product of HCFO-1122a, is obtained.
 本開示の製造方法において使用する金属混合触媒は、上記白金族金属を含む第一触媒及
び上記第二金属を含む第二触媒を含有する。
 副生成物の製造を抑制する観点から、前記金属混合触媒において、第二金属の質量に対する白金族金属の質量の比は、1/1以下が好ましく、1/20以下がより好ましく、1/60以下がさらに好ましく、1/80以下が特に好ましく、1/100以下が最も好ましい。
 CFO-1112と水素との反応性を向上する観点から、上記比は、1/600以上が好ましく、1/500以上がより好ましく、1/300以上がさらに好ましい。
The mixed metal catalyst used in the production method of the present disclosure contains the first catalyst containing the platinum group metal and the second catalyst containing the second metal.
From the viewpoint of suppressing the production of by-products, in the mixed metal catalyst, the ratio of the mass of the platinum group metal to the mass of the second metal is preferably 1/1 or less, more preferably 1/20 or less, and 1/60. The following is more preferable, 1/80 or less is particularly preferable, and 1/100 or less is most preferable.
From the viewpoint of improving the reactivity between CFO-1112 and hydrogen, the ratio is preferably 1/600 or more, more preferably 1/500 or more, and even more preferably 1/300 or more.
 第一触媒は、パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される1種以上の白金族金属を含む。
 第一触媒としては、パラジウム、白金、ニッケル、イリジウム、ロジウム、ルテニウム、これらの酸化物、及びこれらのハロゲン化物が挙げられ、CFO-1112と水素との反応性を向上する観点から、白金及びニッケルからなる群より選択される1種以上の金属を含むことが好ましい。
 白金族金属の価数は、特に限定されるものではないが、CFO-1112と水素との反応性を向上する観点から、2価又は4価が好ましく、2価がより好ましい。
The first catalyst contains one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium.
Examples of the first catalyst include palladium, platinum, nickel, iridium, rhodium, ruthenium, oxides thereof, and halides thereof. From the viewpoint of improving the reactivity between CFO-1112 and hydrogen, platinum and nickel It preferably contains one or more metals selected from the group consisting of
The valence of the platinum group metal is not particularly limited, but from the viewpoint of improving the reactivity between CFO-1112 and hydrogen, it is preferably divalent or tetravalent, more preferably divalent.
 第二触媒は、銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む。
 第二触媒としては、銅、銀、金、亜鉛、クロム、コバルト、これらの酸化物、およびこれらのハロゲン化物が挙げられ、副生成物の製造を抑制する観点から、銅及び銀からなる群より選択される1種以上の金属を含むことが好ましい。
 上記ハロゲン化物としては、フッ化物、塩化物等が挙げられるが、副生成物の製造を抑制する観点から、塩化物が好ましい。
The second catalyst contains one or more second metals selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt.
The second catalyst includes copper, silver, gold, zinc, chromium, cobalt, oxides thereof, and halides thereof. From the viewpoint of suppressing the production of by-products, It preferably contains one or more selected metals.
Examples of the halides include fluorides and chlorides, and chlorides are preferred from the viewpoint of suppressing the production of by-products.
 特に好ましい態様において、金属混合触媒は、白金及び白金のハロゲン化物からなる群より選択される第一触媒と、銅及び銅のハロゲン化物からなる群より選択される第二触媒とを含有する。 In a particularly preferred embodiment, the mixed metal catalyst contains a first catalyst selected from the group consisting of platinum and platinum halides and a second catalyst selected from the group consisting of copper and copper halides.
 金属混合触媒は、担体により担持されるものであってもよい。
 金属混合触媒が担体により担持される場合、金属混合触媒の比表面積を向上し、CFO-1112と水素との反応性を向上する観点から、担体100質量部に対する担体に担持される白金族金属及び前記第二金属の合計担持量は、1~20質量部が好ましく、2~15質量部がより好ましく、3~10質量部がさらに好ましい。
The mixed metal catalyst may be supported by a carrier.
When the metal mixed catalyst is supported on a support, from the viewpoint of improving the specific surface area of the metal mixed catalyst and improving the reactivity between CFO-1112 and hydrogen, the platinum group metal supported on the support with respect to 100 parts by mass of the support and The total amount of the second metal supported is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and even more preferably 3 to 10 parts by mass.
 担体としては、活性炭、アルミナ、クロミア、シリカ、ジルコニア、アルカリ金属酸化物及びアルカリ土類金属酸化物からなる群から選ばれる少なくとも1種を含む担体が挙げられ、金属を担持するための表面積が大きいという理由から、活性炭が好ましい。
 担体は、触媒を担持する機能を高めるために、酸洗浄などの処理が施されてもよい。
 担体に担持された金属混合触媒の調製方法は、従来公知の方法を採用でき、例えば、Satterfield著、「HeterogeneousCatalystsinIn
dustrialPractice」、2nded.(McGraw-Hill、N
ewYork、1991)、pp.87~112に記載された通りに、析出法及び含浸法のいずれかの方法によって調製できる。
The carrier includes at least one selected from the group consisting of activated carbon, alumina, chromia, silica, zirconia, alkali metal oxides and alkaline earth metal oxides, and has a large surface area for supporting metals. For this reason, activated carbon is preferred.
The carrier may be subjected to a treatment such as acid washing in order to enhance the function of supporting the catalyst.
A conventionally known method can be adopted as a method for preparing a mixed metal catalyst supported on a carrier.
industrial Practice", 2nd. (McGraw-Hill, N.
York, 1991), pp. 87-112, by either precipitation or impregnation methods.
 CFO-1112と水素との反応は、反応器内において行ってもよい。反応器の形状及び構造は特に限定されるものではなく、例えば、気相反応により、CFO-1112と水素との反応を行う場合、反応器の内部に触媒を充填できる円筒状の縦型反応器が挙げられる。反応器の材質としては、ガラス、鉄、ニッケル、ステンレス鋼、鉄、ニッケル、これらの合金等が挙げられる。
 反応器は、電気ヒータ等の加熱部を内部に備えていてもよい。反応器は、内部の温度を測定するための温度計が挿入される、さや管を有していてもよい。
The reaction of CFO-1112 and hydrogen may be carried out in a reactor. The shape and structure of the reactor are not particularly limited. For example, when performing a reaction between CFO-1112 and hydrogen by a gas phase reaction, a cylindrical vertical reactor that can be filled with a catalyst inside the reactor. is mentioned. Materials for the reactor include glass, iron, nickel, stainless steel, iron, nickel, and alloys thereof.
The reactor may be internally equipped with a heating unit such as an electric heater. The reactor may have a sheath tube into which a thermometer is inserted to measure the temperature inside.
 CFO-1112と水素との反応性を向上する観点から、CFO-1112と水素とを反応させる温度(以下、「反応温度」とも記す。)は、150~400℃が好ましく、200~380℃がより好ましく、270~370℃がさらに好ましい。
 本開示において、反応温度とは、CFO-1112と水素とが反応する環境の温度を指し、該反応を反応器内で行う場合は、反応器内の温度が反応温度に該当する。
From the viewpoint of improving the reactivity between CFO-1112 and hydrogen, the temperature at which CFO-1112 and hydrogen are reacted (hereinafter also referred to as "reaction temperature") is preferably 150 to 400°C, and 200 to 380°C. More preferably, 270 to 370°C is even more preferable.
In the present disclosure, the reaction temperature refers to the temperature of the environment where CFO-1112 and hydrogen react, and when the reaction is carried out in a reactor, the temperature inside the reactor corresponds to the reaction temperature.
 CFO-1112と水素との反応性を向上する観点から、CFO-1112の使用量に対する、水素の使用量のモル比(水素の使用量/CFO-1112の使用量)は、1~50が好ましく、2~30がより好ましく、2~20がさらに好ましく2~10が特に好ましい。 From the viewpoint of improving the reactivity between CFO-1112 and hydrogen, the molar ratio of the amount of hydrogen used to the amount of CFO-1112 used (amount of hydrogen used/amount of CFO-1112 used) is preferably 1 to 50. , more preferably 2 to 30, more preferably 2 to 20, and particularly preferably 2 to 10.
 CFO-1112と水素との反応は、液相反応及び気相反応のいずれでもよく、CFO-1112と水素との反応性を向上する観点から、気相反応が好ましい。
 液相反応とは、液体状態のCFO-1112と水素との反応を意味し、気相反応とは、気体状態のCFO-1112と水素との反応を意味する。
 上記反応は、バッチ式、半連続式及び連続流通式のいずれの方式で行なってもよい。
The reaction between CFO-1112 and hydrogen may be either a liquid phase reaction or a gas phase reaction, and the gas phase reaction is preferred from the viewpoint of improving the reactivity between CFO-1112 and hydrogen.
A liquid phase reaction means a reaction between CFO-1112 in a liquid state and hydrogen, and a gas phase reaction means a reaction between CFO-1112 in a gaseous state and hydrogen.
The above reaction may be carried out in any of a batch system, a semi-continuous system and a continuous flow system.
 気相反応について詳細に説明する。
 CFO-1112と水素との気相反応は、ガス状態のCFO-1112と水素とを別々に反応器内に連続的に供給して、反応器に充填された金属混合触媒の存在下、ガス状態のCFO-1112及び水素とを接触させることにより行える。
 流量の調整、副生物の抑制、触媒失活の抑制等に有効である点から、上記反応に不活性なガス(希釈ガス)を反応器に供給してもよい。希釈ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン等が挙げられる。
A gas phase reaction will be described in detail.
In the gas phase reaction of CFO-1112 and hydrogen, gaseous CFO-1112 and hydrogen are separately and continuously supplied into a reactor, and gaseous state is generated in the presence of a metal mixed catalyst packed in the reactor. of CFO-1112 and hydrogen.
A gas inert to the reaction (diluent gas) may be supplied to the reactor from the viewpoint of being effective in adjusting the flow rate, suppressing by-products, suppressing deactivation of the catalyst, and the like. Diluent gases include nitrogen, carbon dioxide, helium, argon, and the like.
 CFO-1112と水素との反応性を向上する観点から、CFO-1112と水素とを気相反応させる時間(以下、「気相反応時間」とも記す。)は、1秒間~1000秒間が好ましく、5秒間~800秒間がより好ましく、10秒間~500秒間がさらに好ましい。
 CFO-1112と水素との反応を反応器内において行う場合、反応時間は、反応器内におけるCFO-1112及び水素の滞留時間を意味する。
From the viewpoint of improving the reactivity between CFO-1112 and hydrogen, the time for gas phase reaction between CFO-1112 and hydrogen (hereinafter also referred to as "gas phase reaction time") is preferably 1 second to 1000 seconds, 5 seconds to 800 seconds is more preferable, and 10 seconds to 500 seconds is even more preferable.
When the reaction of CFO-1112 and hydrogen is carried out in a reactor, the reaction time means the residence time of CFO-1112 and hydrogen in the reactor.
 気相反応における反応系の圧力(反応器内の圧力)は、0~2.0MPaが好ましく、0~0.5MPaがより好ましい。なお、反応器内の圧力は、陰圧でもよい。反応器内の圧力は、取り扱い性の点から、常圧(大気圧)が特に好ましい。本開示において、特に断らない限り、圧力はゲージ圧を示す。 The pressure of the reaction system (pressure inside the reactor) in the gas phase reaction is preferably 0 to 2.0 MPa, more preferably 0 to 0.5 MPa. The pressure inside the reactor may be negative pressure. The pressure inside the reactor is particularly preferably normal pressure (atmospheric pressure) from the viewpoint of ease of handling. In the present disclosure, pressure indicates gauge pressure unless otherwise specified.
 液相反応について詳細に説明する。
 CFO-1112と水素との液相反応は、CFO-1112と金属混合触媒との混合物が液体状態として存在する反応器内に、連続的又は非連続的に水素を供給することにより行える。また、反応によって生成するCFO-1112の水素置換体を反応器内から連続的又は非連続的に抜き出せる。
 CFO-1112と水素との反応性を向上する観点から、CFO-1112と水素とを液相反応させる時間(以下、「液相反応時間」とも記す。)は、0.1時間~100時間が好ましく、0.5時間~50時間がより好ましく、1時間~20時間が更に好ましい。
 液相反応は、必要に応じて、溶媒の存在下にて実施してもよい。溶媒としては、例えばCF(CF)nCF(ただし、式中nは、3~6の整数を表す。)で表される炭素
数5~8の直鎖パーフルオロアルキル化合物等が挙げられる。
The liquid phase reaction will be explained in detail.
The liquid phase reaction between CFO-1112 and hydrogen can be carried out by continuously or discontinuously supplying hydrogen into a reactor in which a mixture of CFO-1112 and a mixed metal catalyst exists in a liquid state. Further, the hydrogen-substituted CFO-1112 produced by the reaction can be continuously or discontinuously withdrawn from the reactor.
From the viewpoint of improving the reactivity between CFO-1112 and hydrogen, the liquid phase reaction time between CFO-1112 and hydrogen (hereinafter also referred to as “liquid phase reaction time”) is 0.1 to 100 hours. Preferably, 0.5 hours to 50 hours, and even more preferably 1 hour to 20 hours.
A liquid phase reaction may be carried out in the presence of a solvent, if desired. Examples of the solvent include straight-chain perfluoroalkyl compounds having 5 to 8 carbon atoms represented by CF 3 (CF 2 )nCF 3 (wherein n represents an integer of 3 to 6). .
 次に、CFO-1112と水素との気相反応の一態様を、図1を参照し、より詳細に説明する。
 図1において、気相反応に使用する反応装置を符号20で示す。なお、符号20で示す反応装置は、一実施形態であり、これに限定されるものではない。
 反応装置20は、反応器1を備える。反応器1には、CFO-1112の供給ライン2と、水素の供給ライン3と、希釈ガスの供給ライン4とが接続されている。反応器1は、電気ヒータ等の加熱部を備える(図示せず)。
 図1においては、供給ライン2及び供給ライン3は、反応器1の手前で連結されて反応器1に接続される態様を示したが、これに限定されるものではなく、それぞれ別々に反応器1に接続されてもよい。
 図1においては、供給ライン2、供給ライン3及び供給ライン4が、反応器の手前で連結され、CFO-1112、水素及び希釈ガスの混合物が、混合物供給ライン5を経由して、反応器1に供給される。
Next, one aspect of the gas phase reaction between CFO-1112 and hydrogen will be described in more detail with reference to FIG.
In FIG. 1, reference numeral 20 designates a reactor used for gas phase reactions. Note that the reaction apparatus indicated by reference numeral 20 is one embodiment, and the present invention is not limited to this.
Reactor 20 comprises reactor 1 . The reactor 1 is connected to a CFO-1112 supply line 2, a hydrogen supply line 3, and a diluent gas supply line 4. The reactor 1 includes a heating section such as an electric heater (not shown).
In FIG. 1, the supply line 2 and the supply line 3 are connected before the reactor 1 and connected to the reactor 1. However, it is not limited to this, and each reactor is separately connected. 1 may be connected.
In FIG. 1, feed line 2, feed line 3 and feed line 4 are connected before the reactor, and the mixture of CFO-1112, hydrogen and diluent gas is fed to reactor 1 via mixture feed line 5. supplied to
 図1に示す反応装置20においては、供給ライン2、供給ライン3及び供給ライン4には、それぞれ、電気ヒータ等を備えた予熱器(プレヒータ)2a、3a及び4aが設けられている。
 反応器1に供給されるCFO-1112、水素及び窒素は、それぞれ、予熱器2a、3a及び4aによって所定の温度に予熱されてから反応器1に供給されることが好ましい。これにより、CFO-1112、水素及び窒素を、反応器1の内部で所定の反応温度まで効率よく昇温できる。予熱器2a、3a及び4aは、必須ではないが、設置されることが好ましい。
In the reactor 20 shown in FIG. 1, the supply line 2, the supply line 3 and the supply line 4 are provided with preheaters (preheaters) 2a, 3a and 4a provided with electric heaters and the like, respectively.
The CFO-1112, hydrogen and nitrogen supplied to the reactor 1 are preferably preheated to predetermined temperatures by preheaters 2a, 3a and 4a, respectively, before being supplied to the reactor 1. Thereby, CFO-1112, hydrogen and nitrogen can be efficiently heated to a predetermined reaction temperature inside the reactor 1 . Preheaters 2a, 3a and 4a are preferably, but not essential, installed.
 図1に示す反応装置20においては、反応器1の出口に、熱交換器などの冷却部6を介して、出口ライン7が接続される。
 出口ライン7には、更に、水蒸気及び酸性液の回収槽8、アルカリ洗浄装置9、並びに、脱水塔10が順に接続されている。
 反応器1から取り出された反応混合物は、出口ライン7以降の処理によって、塩化水素、フッ化水素等の酸性物質、水蒸気及び水が除去される。こうして得られたガスを、以下、「出口ガス」という。出口ガス中の各成分が、ガスクロマトグラフィ(GC)等の分析装置11により分析及び定量される。
In the reactor 20 shown in FIG. 1, an outlet line 7 is connected to the outlet of the reactor 1 via a cooling section 6 such as a heat exchanger.
The outlet line 7 is further connected with a recovery tank 8 for water vapor and acid liquid, an alkali washing device 9, and a dehydration tower 10 in this order.
The reaction mixture taken out from the reactor 1 is treated after the exit line 7 to remove acidic substances such as hydrogen chloride and hydrogen fluoride, water vapor and water. The gas thus obtained is hereinafter referred to as "outlet gas". Each component in the outlet gas is analyzed and quantified by an analyzer 11 such as gas chromatography (GC).
 出口ガスは、HFO-1132及びHCFO-1122aの少なくとも一方を含む。出口ガスに含まれるHFO-1132及びHCFO-1122a以外の化合物としては、CFO-1112、水、水素、塩化水素、フッ化水素等が挙げられる。 The outlet gas contains at least one of HFO-1132 and HCFO-1122a. Compounds other than HFO-1132 and HCFO-1122a contained in the outlet gas include CFO-1112, water, hydrogen, hydrogen chloride, and hydrogen fluoride.
 出口ガスに含まれるHFO-1132以外の化合物は、蒸留等の従来公知の方法により除去回収できる。例えば、HCFO-1122aは、沸点が-15~15℃であるのに対し、HFO-1132の沸点は-44~-28℃と、沸点に大きな差があるため、蒸留による回収が可能である。
 回収したHCFO-1122aは、原料の一部として、反応器に戻してもよく、これにより、HFO-1132の生産効率を向上できる。
Compounds other than HFO-1132 contained in the outlet gas can be removed and recovered by a conventionally known method such as distillation. For example, HCFO-1122a has a boiling point of −15 to 15° C., whereas HFO-1132 has a boiling point of −44 to −28° C. Since there is a large difference in boiling points, recovery by distillation is possible.
The recovered HCFO-1122a may be returned to the reactor as part of the feedstock, thereby improving the production efficiency of HFO-1132.
 本開示の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造用金属混合触媒は、パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される1種以上の白金族金属を含む第一触媒及び銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む第二触媒を含有する。
 第二金属の質量に対する白金族金属の質量の比等の好ましい態様については、上記した
通りのため、ここでは記載を省略する。
The mixed metal catalyst for the production of hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene of the present disclosure includes at least one platinum group selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium. It contains a first catalyst containing a metal and a second catalyst containing at least one second metal selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt.
Preferred aspects such as the ratio of the mass of the platinum group metal to the mass of the second metal are as described above, and are omitted here.
 以下、実施例によって本開示の実施形態を詳細に説明するが、本開示の実施形態はこれらに限定されない。
 本開示において、例1~例10が実施例であり、例11が比較例である。
Hereinafter, embodiments of the present disclosure will be described in detail by examples, but the embodiments of the present disclosure are not limited to these.
In the present disclosure, Examples 1 to 10 are examples, and Example 11 is a comparative example.
(金属混合触媒Aを担持する活性炭の調製)
 塩化銅(I)(15g、ナカライテスク株式会社製)、塩化白金(II)(0.14g、純正化学社製)、35質量%塩酸(320g、ナカライテスク株式会社製)及び活性炭(150g、大阪ガスケミカル株式会社製、ヤシ殻原料、4~6メッシュの粒状成型体(ペレット状)、BET比表面積1336m/g、活性炭に対する前処理は実施せず)をフラスコ内で混合し、12時間静置した後、エバポレーターを用いて60℃にて塩化水素、水を減圧留去した。
 担持触媒の質量に対する水の割合(含水率)が30質量%以下になった段階でフラスコ内の担持触媒を、反応管に移した後、反応管を200℃に保ち、窒素ガスを16.7mL/秒で16時間供給して乾燥した。これにより、塩化銅(I)及び塩化白金(II)を含有する金属混合触媒A(表1においては、CuCl-PtCl触媒と記す。)を担持する活性炭を得た。
 金属混合触媒Aにおいて、活性炭に担持されるCuの質量に対するPtの質量の比(Pt/Cu)は、1/100であった。
 活性炭の100質量部に対する活性炭に担持されるCu及びPtの合計担持量は、6質量部であった。
(Preparation of activated carbon supporting mixed metal catalyst A)
Copper (I) chloride (15 g, manufactured by Nacalai Tesque Co., Ltd.), platinum (II) chloride (0.14 g, manufactured by Junsei Chemical Co., Ltd.), 35% by mass hydrochloric acid (320 g, manufactured by Nacalai Tesque Co., Ltd.) and activated carbon (150 g, Osaka Gas Chemical Co., Ltd. Coconut shell raw material, 4 to 6 mesh granular compact (pellet), BET specific surface area 1336 m 2 /g, no pretreatment for activated carbon) were mixed in a flask and left static for 12 hours. After placing, hydrogen chloride and water were distilled off under reduced pressure at 60° C. using an evaporator.
When the ratio of water (water content) to the weight of the supported catalyst becomes 30% by mass or less, the supported catalyst in the flask is transferred to the reaction tube, and then the reaction tube is kept at 200° C. and 16.7 mL of nitrogen gas is supplied. /sec for 16 hours and dried. As a result, activated carbon carrying a mixed metal catalyst A containing copper (I) chloride and platinum (II) chloride (referred to as CuCl—PtCl 2 catalyst in Table 1) was obtained.
In the mixed metal catalyst A, the mass ratio of Pt to the mass of Cu supported on the activated carbon (Pt/Cu) was 1/100.
The total amount of Cu and Pt carried on the activated carbon per 100 parts by mass of the activated carbon was 6 parts by mass.
(金属混合触媒Bを担持する活性炭の調製)
 上記塩化銅(I)(15g)、塩化パラジウム(II)(0.16g、純正化学株式会社製)、イオン交換水(300g)、上記35質量%塩酸(41g)及び上記活性炭(150g)をフラスコ内で混合し、18時間静置した後、エバポレーターを用いて60℃にて塩化水素、水を減圧留去した。
 担持触媒の質量に対する水の割合(含水率)が30質量%以下になった段階でフラスコ内の担持触媒を、反応管に移した後、反応管を200℃に保ち、窒素ガスを16.7mL/秒で16時間供給して乾燥した。これにより、塩化銅(I)及び塩化パラジウムを含有する金属混合触媒B(表1においては、CuCl-PdClと記す。)を担持する活性炭を得た。
 金属混合触媒Bにおいて、活性炭に担持されるCuの質量に対するPdの質量の比(Pd/Cu)は、1/100であった。
 活性炭の100質量部に対する活性炭に担持されるCu及びPdの合計担持量は、6質量部であった。
(Preparation of activated carbon supporting mixed metal catalyst B)
The above copper (I) chloride (15 g), palladium (II) chloride (0.16 g, manufactured by Junsei Chemical Co., Ltd.), deionized water (300 g), the above 35% by mass hydrochloric acid (41 g) and the above activated carbon (150 g) were placed in a flask. After the mixture was mixed inside and allowed to stand for 18 hours, hydrogen chloride and water were distilled off under reduced pressure at 60°C using an evaporator.
When the ratio of water (water content) to the weight of the supported catalyst becomes 30% by mass or less, the supported catalyst in the flask is transferred to the reaction tube, and then the reaction tube is kept at 200° C. and 16.7 mL of nitrogen gas is supplied. /sec for 16 hours and dried. As a result, activated carbon carrying a mixed metal catalyst B containing copper (I) chloride and palladium chloride (referred to as CuCl—PdCl 2 in Table 1) was obtained.
In the mixed metal catalyst B, the mass ratio of Pd to the mass of Cu supported on the activated carbon (Pd/Cu) was 1/100.
The total amount of Cu and Pd carried on the activated carbon per 100 parts by mass of the activated carbon was 6 parts by mass.
(金属混合触媒Cを担持する活性炭の調製)
 上記塩化銅(I)(15g)、塩化ニッケル(II)(0.21g、純正化学株式会社製)、イオン交換水(75g)、上記35質量%塩酸(188g)及び上記活性炭(150g)をフラスコ内で混合し、18時間静置した後、エバポレーターを用いて60℃にて塩化水素、水を減圧留去した。
 担持触媒の質量に対する水の割合(含水率)が30質量%以下になった段階でフラスコ内の担持触媒を、反応管に移した後、反応管を200℃に保ち、窒素ガスを16.7mL/秒で16時間供給して乾燥した。これにより、塩化銅(I)及び塩化ニッケル(II)を含有する金属混合触媒C(表1においては、CuCl-NiClと記す。)を担持する活性炭を得た。
 金属混合触媒Cにおいて、活性炭に担持されるCuの質量に対するNiの質量の比(N
i/Cu)は、1/100であった。
 活性炭の100質量部に対する活性炭に担持されるCu及びNiの合計担持量は、6質量部であった。
(Preparation of activated carbon supporting mixed metal catalyst C)
The above copper (I) chloride (15 g), nickel (II) chloride (0.21 g, manufactured by Junsei Chemical Co., Ltd.), deionized water (75 g), the above 35% by mass hydrochloric acid (188 g) and the above activated carbon (150 g) were placed in a flask. After the mixture was mixed inside and allowed to stand for 18 hours, hydrogen chloride and water were distilled off under reduced pressure at 60°C using an evaporator.
When the ratio of water (water content) to the weight of the supported catalyst becomes 30% by mass or less, the supported catalyst in the flask is transferred to the reaction tube, and then the reaction tube is kept at 200° C. and 16.7 mL of nitrogen gas is supplied. /sec for 16 hours and dried. As a result, activated carbon carrying a mixed metal catalyst C containing copper (I) chloride and nickel (II) chloride (referred to as CuCl—NiCl 2 in Table 1) was obtained.
In the mixed metal catalyst C, the ratio of the mass of Ni to the mass of Cu supported on the activated carbon (N
i/Cu) was 1/100.
The total amount of Cu and Ni carried on the activated carbon per 100 parts by mass of the activated carbon was 6 parts by mass.
(触媒Xを担持する活性炭の調製)
 塩化パラジウム(II)(1.25g、純正化学社製)、上記35質量%塩酸(320g)及び上記活性炭(37.5g)をフラスコ内で混合し、12時間静置した後、エバポレーターを用いて60℃にて塩化水素、水を減圧留去した。
 担持触媒の質量に対する水の割合(含水率)が30質量%以下になった段階でフラスコ内の担持触媒を、反応管に移した後、反応管を200℃に保ち、窒素ガスを16.7mL/秒で16時間供給して乾燥した。これにより、塩化パラジウム(II)を含有する触媒X(表1においては、Pd/C触媒と記す。)を担持する活性炭を得た。
 活性炭の100質量部に対する活性炭に担持されるPdの担持量は、0.5質量部であった。
(Preparation of activated carbon supporting catalyst X)
Palladium (II) chloride (1.25 g, manufactured by Junsei Chemical Co., Ltd.), the 35% by mass hydrochloric acid (320 g) and the activated carbon (37.5 g) were mixed in a flask, allowed to stand for 12 hours, and then evaporated using an evaporator. Hydrogen chloride and water were distilled off under reduced pressure at 60°C.
When the ratio of water (water content) to the weight of the supported catalyst becomes 30% by mass or less, the supported catalyst in the flask is transferred to the reaction tube, and then the reaction tube is kept at 200° C. and 16.7 mL of nitrogen gas is supplied. /sec for 16 hours and dried. As a result, activated carbon supporting catalyst X containing palladium(II) chloride (referred to as Pd/C catalyst in Table 1) was obtained.
The amount of Pd carried on the activated carbon was 0.5 parts by mass with respect to 100 parts by mass of the activated carbon.
[例1]
 上述した図1に示す反応装置20を用意した。反応器1として、電気炉内に設置した反応管(SUS304製、内径35.3mm)を使用した。また、反応管のさや管には、内部の温度を測定するための温度計を挿入した。
 反応管に、金属混合触媒Aを担持する活性炭を50cmの長さで充填した。反応管内の温度は249℃に管理した。 
 反応器1に、ステンレス鋼製チューブである供給ライン2~4から、それぞれ、CFO-1112、水素及び窒素を連続的に供給した。なお、供給するCFO-1112、水素及び窒素のモル比が、1:2:0.1となるように制御して反応器1に供給した。
 また、反応器1の内部における混合ガス(CFO-1112、水素及び窒素)の滞留時間が23秒間となるように、混合ガスの流量(単位時間当たりの供給量)を制御した。反応器1の内部の圧力は、大気圧と同一とした。
 なお、予熱器2a~4aとしては、炉内温度200℃に設定した電気炉を用いた。
[Example 1]
A reaction apparatus 20 shown in FIG. 1 described above was prepared. As the reactor 1, a reaction tube (made of SUS304, inner diameter 35.3 mm) installed in an electric furnace was used. In addition, a thermometer was inserted into the sheath tube of the reaction tube to measure the internal temperature.
The reaction tube was filled with activated carbon carrying mixed metal catalyst A with a length of 50 cm. The temperature inside the reaction tube was controlled at 249°C.
Reactor 1 was continuously fed with CFO-1112, hydrogen and nitrogen through feed lines 2-4, which were stainless steel tubes, respectively. The molar ratio of CFO-1112, hydrogen and nitrogen supplied to the reactor 1 was controlled to be 1:2:0.1.
In addition, the mixed gas flow rate (supply amount per unit time) was controlled so that the residence time of the mixed gas (CFO-1112, hydrogen and nitrogen) inside the reactor 1 was 23 seconds. The pressure inside the reactor 1 was the same as the atmospheric pressure.
As the preheaters 2a to 4a, electric furnaces set to a furnace temperature of 200° C. were used.
 得られた出口ガスの組成分析は、ガスクロマトグラフィ(GC)を用いて行なった。GCにおいて、カラムはDB-1301(長さ60m×内径250μm×厚み1μm、アジレント・テクノロジー株式会社製)を用いた。
 反応器に供給したCFO-1112のモル量に対する、出口ガス中のHFO-1132、HCFO-1122a、ジクロロジフルオロエタン(以下、「HCFC-132」とも記す。)、ジフルオロエタン(以下、「HFC-152」とも記す。)、フルオロエタン(以下、「HFC-161」とも記す。)それぞれのモル量の割合(単位:%)を求めた。
 そして、CFO-1112の転化量に対するHFO-1132のモル量の割合及びHCFO-1122aのモル量の割合を、それぞれ、「HFO-1132選択率」及び「HCFO-1122a選択率」として、表1にまとめた。
 同様に、「HCFC-132選択率」、「HFC-152選択率」、「HFC-161選択率」を、表1にまとめた。
 また、転化率及びHFO-1132に含まれるZ体の質量に対するE体の質量の比(E体の質量/Z体の質量)を求め、表1にまとめた(表1においては、「E/Z」と記載する。)。以降の例においても同様にE/Zを求め、表1にまとめた。
The composition analysis of the resulting outlet gas was performed using gas chromatography (GC). In the GC, DB-1301 (length 60 m×inner diameter 250 μm×thickness 1 μm, manufactured by Agilent Technologies) was used as a column.
HFO-1132, HCFO-1122a, dichlorodifluoroethane (hereinafter also referred to as “HCFC-132”), difluoroethane (hereinafter also referred to as “HFC-152”) in the outlet gas relative to the molar amount of CFO-1112 supplied to the reactor ) and fluoroethane (hereinafter also referred to as “HFC-161”) were determined (unit: %).
Then, the ratio of the molar amount of HFO-1132 and the ratio of the molar amount of HCFO-1122a to the conversion amount of CFO-1112 are shown in Table 1 as "HFO-1132 selectivity" and "HCFO-1122a selectivity", respectively. Summarized.
Similarly, "HCFC-132 selectivity", "HFC-152 selectivity" and "HFC-161 selectivity" are summarized in Table 1.
In addition, the conversion rate and the ratio of the mass of E isomer to the mass of Z isomer contained in HFO-1132 (mass of E isomer/mass of Z isomer) were determined and summarized in Table 1 (in Table 1, "E/ Z”). E/Z was obtained in the same manner in the following examples and summarized in Table 1.
[例2]
 反応管内の温度を269℃に変更し、且つ滞留時間を22.1秒に変更した以外は、例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率
及びE/Zを求め、表1にまとめた。
[Example 2]
After obtaining the outlet gas in the same manner as in Example 1, except that the temperature inside the reaction tube was changed to 269° C. and the residence time was changed to 22.1 seconds, HFO-1132 selectivity, HCFO-1122a selectivity , HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
[例3]
 反応器1へ供給するCFO-1112、水素及び窒素のモル比を、1:3:0.1に変更し、且つ滞留時間を16.7秒に変更した以外は、例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 3]
In the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:3:0.1 and the residence time was changed to 16.7 seconds. After obtaining the outlet gas, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1. rice field.
[例4]
 反応管内の温度を301℃に変更し、滞留時間を33.9秒に変更し、且つ反応器1へ供給するCFO-1112、水素及び窒素のモル比を、1:1:0.1に変更した以外は例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 4]
Change the temperature in the reaction tube to 301° C., change the residence time to 33.9 seconds, and change the molar ratio of CFO-1112, hydrogen and nitrogen supplied to the reactor 1 to 1:1:0.1. After obtaining the outlet gas, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z was determined and summarized in Table 1.
[例5]
 反応管内の温度を301℃に変更し、且つ滞留時間を21.0秒に変更した以外は例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 5]
After obtaining the outlet gas, the HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
[例6]
 反応管内の温度を301℃に変更し、滞留時間を17.4秒に変更し、且つ反応器1へ供給するCFO-1112、水素及び窒素のモル比を、1:3:0.1に変更した以外は例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 6]
Change the temperature in the reaction tube to 301° C., change the residence time to 17.4 seconds, and change the molar ratio of CFO-1112, hydrogen and nitrogen supplied to the reactor 1 to 1:3:0.1. After obtaining the outlet gas, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z was determined and summarized in Table 1.
[例7]
 金属混合触媒Aを担持する活性炭のPtとCuの質量比を1/20に変更した活性炭を使用し、反応管内の温度を303℃に変更し、滞留時間を16.1秒に変更し、且つ反応器1へ供給するCFO-1112、水素及び窒素のモル比を、1:2:0.1に変更した以外は例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 7]
Using activated carbon in which the mass ratio of Pt and Cu of the activated carbon supporting the mixed metal catalyst A was changed to 1/20, the temperature in the reaction tube was changed to 303 ° C., the residence time was changed to 16.1 seconds, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:2:0.1, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
[例8]
 金属混合触媒Aを担持する活性炭に代えて金属混合触媒Bを担持する長さ30cmの活性炭を使用し、反応管内の温度を200℃に変更し、滞留時間を28.9秒に変更し、且つ反応器1へ供給するCFO-1112、水素及び窒素のモル比を、1:1:0.1に変更した以外は例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 8]
Using activated carbon with a length of 30 cm supporting metal mixed catalyst B instead of the activated carbon supporting metal mixed catalyst A, changing the temperature in the reaction tube to 200 ° C., changing the residence time to 28.9 seconds, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:1:0.1, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
[例9]
 反応管内の温度を281℃に変更し、且つ滞留時間を24.7秒に変更した以外は例7と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 9]
After obtaining the outlet gas in the same manner as in Example 7, except that the temperature inside the reaction tube was changed to 281° C. and the residence time was changed to 24.7 seconds, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
[例10]
 金属混合触媒Aを担持する活性炭に代えて金属混合触媒Cを担持する長さ30cmの活性炭を使用し、反応管内の温度を352℃に変更し、滞留時間を14.8秒に変更し、且つ反応器1へ供給するCFO-1112、水素及び窒素のモル比を、1:2:0.1に変更した以外は例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率、転化率及びE/Zを求め、表1にまとめた。
[Example 10]
Using activated carbon with a length of 30 cm supporting mixed metal catalyst C instead of activated carbon supporting mixed metal catalyst A, changing the temperature in the reaction tube to 352° C., changing the residence time to 14.8 seconds, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112, hydrogen and nitrogen supplied to reactor 1 was changed to 1:2:0.1, HFO-1132 selectivity, HCFO-1122a selectivity, HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity, conversion and E/Z were determined and summarized in Table 1.
[例11]
 金属混合触媒Aを担持する活性炭に代えて触媒Xを使用し、反応管内の温度を80℃に変更し、滞留時間を35.5秒に変更し、反応器1は窒素を供給せず、且つ反応器1へ供給するCFO-1112及び水素のモル比を、1:2に変更した以外は、例1と同様にして、出口ガスを得た後、HFO-1132選択率、HCFO-1122a選択率、HCFC-132選択率、HFC-152選択率、HFC-161選択率及び転化率を求め、表1にまとめた。
 
[Example 11]
Catalyst X was used instead of activated carbon supporting mixed metal catalyst A, the temperature in the reaction tube was changed to 80°C, the residence time was changed to 35.5 seconds, nitrogen was not supplied to reactor 1, and After obtaining the outlet gas in the same manner as in Example 1, except that the molar ratio of CFO-1112 and hydrogen supplied to the reactor 1 was changed to 1:2, HFO-1132 selectivity, HCFO-1122a selectivity , HCFC-132 selectivity, HFC-152 selectivity, HFC-161 selectivity and conversion were determined and summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される1種以上の白金族金属を含む第一触媒及び銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む第二触媒を含有する金属混合触媒の存在下、CFO-1112を水素と反応させることにより、副生成物の生成を抑制でき、且つHFO-1132及びHCFO-1122aが高い選択性で合成されて
おり、CFO-1112の水素置換体が選択的に製造できることが分かる。
From Table 1, the first catalyst containing one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium and the group consisting of copper, silver, gold, zinc, chromium and cobalt By reacting CFO-1112 with hydrogen in the presence of a mixed metal catalyst containing a second catalyst containing one or more selected second metals, the formation of by-products can be suppressed and HFO-1132 and HCFO-1122a was synthesized with high selectivity, and it can be seen that hydrogen-substituted CFO-1112 can be selectively produced.
 2021年12月14日に出願された日本国特許出願2021-202874号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2021-202874 filed on December 14, 2021 is incorporated herein by reference in its entirety. All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually indicated to be incorporated by reference. incorporated herein by reference.

Claims (10)

  1.  パラジウム、白金、ニッケル、イリジウム、ロジウム及びルテニウムからなる群より選択される1種以上の白金族金属を含む第一触媒及び銅、銀、金、亜鉛、クロム及びコバルトからなる群より選択される1種以上の第二金属を含む第二触媒を含有する金属混合触媒の存在下、1,2-ジクロロー1,2-ジフルオロエチレンを水素と反応させる、1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 A first catalyst containing one or more platinum group metals selected from the group consisting of palladium, platinum, nickel, iridium, rhodium and ruthenium and one selected from the group consisting of copper, silver, gold, zinc, chromium and cobalt reacting 1,2-dichloro-1,2-difluoroethylene with hydrogen in the presence of a mixed metal catalyst containing a second catalyst comprising at least one second metal; A method for producing a hydrogen-substituted product.
  2.  前記金属混合触媒において、前記第二金属の質量に対する前記白金族金属の質量の比が、1/1以下である、請求項1に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 2. Hydrogenation of 1,2-dichloro-1,2-difluoroethylene according to claim 1, wherein in the mixed metal catalyst, the ratio of the mass of the platinum group metal to the mass of the second metal is 1/1 or less. body manufacturing method.
  3.  前記金属混合触媒が、担体により担持されており、且つ
     前記担体100質量部に対する前記担体に担持される前記白金族金属及び前記第二金属の合計担持量が、1~20質量部である、請求項1又は請求項2に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
    The mixed metal catalyst is supported by a carrier, and the total supported amount of the platinum group metal and the second metal supported on the carrier with respect to 100 parts by mass of the carrier is 1 to 20 parts by mass. 3. The method for producing the hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene according to claim 1 or 2.
  4.  前記担体が、活性炭を含む、請求項3に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 The method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene according to claim 3, wherein the carrier contains activated carbon.
  5.  前記1,2-ジクロロー1,2-ジフルオロエチレンと前記水素とを反応させる温度が、150~400℃である、請求項1~請求項4のいずれか一項に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 The 1,2-dichloro-1 according to any one of claims 1 to 4, wherein the temperature at which the 1,2-dichloro-1,2-difluoroethylene and the hydrogen are reacted is 150 to 400°C. A method for producing a hydrogen-substituted product of ,2-difluoroethylene.
  6.  前記1,2-ジクロロー1,2-ジフルオロエチレンの使用量に対する、前記水素の使用量のモル比が、1~50である、請求項1~請求項5のいずれか一項に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 1, according to any one of claims 1 to 5, wherein the molar ratio of the amount of hydrogen used to the amount of 1,2-dichloro-1,2-difluoroethylene used is 1 to 50. A method for producing a hydrogen-substituted 2-dichloro-1,2-difluoroethylene.
  7.  前記白金族金属が、白金及びニッケルからなる群より選択される1種以上の金属である、請求項1~請求項6のいずれか一項に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 The 1,2-dichloro-1,2-difluoroethylene according to any one of claims 1 to 6, wherein the platinum group metal is one or more metals selected from the group consisting of platinum and nickel. A method for producing a hydrogen-substituted product of
  8.  前記第二金属が、銅及び銀からなる群より選択される1種以上の金属である、請求項1~請求項7のいずれか一項に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 The 1,2-dichloro-1,2-difluoroethylene according to any one of claims 1 to 7, wherein the second metal is one or more metals selected from the group consisting of copper and silver. A method for producing a hydrogen-substituted product of
  9.  前記1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体が、1,2-ジフルオロエチレン及び1-クロロ-1,2-ジフルオロエチレンの少なくとも一方を含む、請求項1~請求項8のいずれか一項に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。 Any one of claims 1 to 8, wherein the hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene includes at least one of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene. A method for producing a hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene according to any one of items.
  10.  前記1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体が、1,2-ジフルオロエチレン及び1-クロロ-1,2-ジフルオロエチレンを含み、且つ
     前記1-クロロ-1,2-ジフルオロエチレンを回収し、前記金属混合触媒の存在下、前記1-クロロ-1,2-ジフルオロエチレンを水素と反応させる、請求項1~請求項9のいずれか一項に記載の1,2-ジクロロー1,2-ジフルオロエチレンの水素置換体の製造方法。
    The hydrogen-substituted 1,2-dichloro-1,2-difluoroethylene includes 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene, and the 1-chloro-1,2-difluoroethylene 1,2-dichloro-1 according to any one of claims 1 to 9, wherein the 1-chloro-1,2-difluoroethylene is reacted with hydrogen in the presence of the mixed metal catalyst. A method for producing a hydrogen-substituted product of ,2-difluoroethylene.
PCT/JP2022/037013 2021-12-14 2022-10-03 Method for producing hydrogen substitution product of 1,2-dichloro-1,2-difluoroethylene WO2023112433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-202874 2021-12-14
JP2021202874 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023112433A1 true WO2023112433A1 (en) 2023-06-22

Family

ID=86774322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037013 WO2023112433A1 (en) 2021-12-14 2022-10-03 Method for producing hydrogen substitution product of 1,2-dichloro-1,2-difluoroethylene

Country Status (1)

Country Link
WO (1) WO2023112433A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230730A (en) * 1985-06-10 1987-02-09 アウシモント・ソチエタ・ペル・アツイオニ Manufacture of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene
JPH01287044A (en) * 1988-01-15 1989-11-17 Ausimont Spa Production of 1, 2-difluoroethane and 1, 1, 2-trifluoroethane
JPH04288028A (en) * 1990-11-06 1992-10-13 Elf Atochem Sa Preparation of fluoroethylene and chlorofluoroethylene
JPH07126197A (en) * 1993-02-01 1995-05-16 Central Glass Co Ltd Production of fluorinated hydrocarbon
JP2013237624A (en) * 2012-05-14 2013-11-28 Asahi Glass Co Ltd Method of producing 1,2-dichloro-1,2-difluoroethylene and 1,2-difluoroethylene
WO2016031777A1 (en) * 2014-08-25 2016-03-03 旭硝子株式会社 Process for producing hydrofluoroolefin
JP2016056132A (en) * 2014-09-10 2016-04-21 旭硝子株式会社 Method for producing 1,2-difluoroethylene
WO2020105608A1 (en) * 2018-11-20 2020-05-28 ダイキン工業株式会社 Production method of 1,2-difluoroethylene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230730A (en) * 1985-06-10 1987-02-09 アウシモント・ソチエタ・ペル・アツイオニ Manufacture of 1,2-difluoroethylene and 1-chloro-1,2-difluoroethylene
JPH01287044A (en) * 1988-01-15 1989-11-17 Ausimont Spa Production of 1, 2-difluoroethane and 1, 1, 2-trifluoroethane
JPH04288028A (en) * 1990-11-06 1992-10-13 Elf Atochem Sa Preparation of fluoroethylene and chlorofluoroethylene
JPH07126197A (en) * 1993-02-01 1995-05-16 Central Glass Co Ltd Production of fluorinated hydrocarbon
JP2013237624A (en) * 2012-05-14 2013-11-28 Asahi Glass Co Ltd Method of producing 1,2-dichloro-1,2-difluoroethylene and 1,2-difluoroethylene
WO2016031777A1 (en) * 2014-08-25 2016-03-03 旭硝子株式会社 Process for producing hydrofluoroolefin
JP2016056132A (en) * 2014-09-10 2016-04-21 旭硝子株式会社 Method for producing 1,2-difluoroethylene
WO2020105608A1 (en) * 2018-11-20 2020-05-28 ダイキン工業株式会社 Production method of 1,2-difluoroethylene

Similar Documents

Publication Publication Date Title
EP2546223B1 (en) Method for producing fluorinated organic compounds
JP6650523B2 (en) Method for simultaneous production of 1-chloro-3,3,3-trifluoropropylene, 2,3,3,3-tetrafluoropropylene and 1,3,3,3-tetrafluoropropylene
CN103483141B (en) The preparation method of chloro-3,3, the 3-tri-fluoro-1-propylene of fluoro-propane, propylene halide and 2-and the Azeotrope compositions of HF and the Azeotrope compositions of 1,1,1,2,2-pentafluoropropane and HF
JP5570219B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
US20150315108A1 (en) Method for producing fluorinated organic compounds
WO2017104828A1 (en) Method for producing hydrofluoroolefin
JPWO2014178352A1 (en) Composition comprising trifluoroethylene
CN106536462A (en) Integrated process for the production of z-1,1,1,4,4,4-hexafluoro-2-butene
JP6477712B2 (en) Method for producing hydrofluoroolefin
JP2013523734A (en) Improvement of catalyst life in gas phase fluorination of chlorocarbons.
WO2008054779A1 (en) Processes for producing 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
JP2019206600A (en) Manufacturing method of 1-chloro-1,2-difluoroethylene
JP5828761B2 (en) Highly selective process for producing dihydrofluoroalkenes
JPWO2017002925A1 (en) Method for producing hydrochlorofluoroolefin and method for producing 2,3,3,3-tetrafluoropropene
JP6780696B2 (en) Method for producing 1-chloro-2,3,3,3-tetrafluoropropene
JP5817591B2 (en) Method for producing 2,3,3,3-tetrafluoropropene
JP6881457B2 (en) Method for producing 1-chloro-2,3,3,3-tetrafluoropropene
JP2015229768A (en) Actuation medium for heat cycle and manufacturing method therefor
JP2007531732A (en) Process for producing difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane
CA2167698A1 (en) Process for combining chlorine-containing molecules to synthesize fluorine-containing products
KR20160100335A (en) Catalytic chlorination of 3,3,3-trifluoropropene to 2,3-dichloro-1,1,1-trifluoropropane
JP2021107328A (en) Production method of chlorine-containing propene
WO2023112433A1 (en) Method for producing hydrogen substitution product of 1,2-dichloro-1,2-difluoroethylene
CN113527046A (en) Process for preparing HFO-1234ze
WO2020213600A1 (en) Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906968

Country of ref document: EP

Kind code of ref document: A1