WO2023112310A1 - Resin composite material film and method for manufacturing resin composite material film - Google Patents

Resin composite material film and method for manufacturing resin composite material film Download PDF

Info

Publication number
WO2023112310A1
WO2023112310A1 PCT/JP2021/046749 JP2021046749W WO2023112310A1 WO 2023112310 A1 WO2023112310 A1 WO 2023112310A1 JP 2021046749 W JP2021046749 W JP 2021046749W WO 2023112310 A1 WO2023112310 A1 WO 2023112310A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
resin composite
resin
particles
film
Prior art date
Application number
PCT/JP2021/046749
Other languages
French (fr)
Japanese (ja)
Inventor
圭理 安藤
義則 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022527694A priority Critical patent/JP7123288B1/en
Priority to PCT/JP2021/046749 priority patent/WO2023112310A1/en
Publication of WO2023112310A1 publication Critical patent/WO2023112310A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/08Flame spraying
    • B05D1/10Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present disclosure relates to a resin composite film containing inorganic particles and resin particles, and a method for producing the same.
  • Patent Document 1 As a technique for imparting high heat dissipation to a resin film, for example, there is a method of providing high heat conductive fibers in a resin (see, for example, Patent Document 1).
  • an adhesive resin containing a thermally conductive filler in a thermosetting resin is placed on both sides of a highly thermally conductive sheet containing a highly thermally conductive fiber oriented through the film thickness direction and a binder resin.
  • a layered insulating high thermal conductivity sheet is disclosed.
  • Patent Document 1 does not mention surface unevenness, and although it is possible to improve the thermal conductivity inside the member by highly thermally conductive fibers oriented in the film thickness direction, the surface area of the member surface is small, and the member Since the heat radiation from the surface is insufficient, the heat radiation cannot be fully exhibited.
  • Patent Document 1 discloses that a resin composite film having thermal conductivity in the film thickness direction has moderate surface unevenness that improves heat dissipation and water and oil repellency. No reference was made to the size, and heat dissipation and water and oil repellency could not be exhibited sufficiently.
  • the present disclosure has been made to solve the above problems, and aims to provide a resin composite film with improved heat dissipation and water and oil repellency compared to conventional ones, and a method for producing the same. .
  • the resin composite film according to the present disclosure is a resin composite film containing a plurality of resin particles forming a matrix phase and a plurality of thermally conductive inorganic particles, wherein the inorganic particles have different shapes. It has an anisotropic property and is oriented in the film thickness direction, and surface irregularities having a surface roughness with a root-mean-square height of 40 ⁇ m or more and 600 ⁇ m or less are formed on the film surface.
  • the method for producing a resin composite material film according to the present disclosure includes a resin composite containing a plurality of resin particles constituting a mother phase and a plurality of inorganic particles having anisotropic shape and thermal conductivity.
  • a method for producing a material film by spraying a mixed powder containing a plurality of the resin particles and a plurality of the inorganic particles onto a substrate, the inorganic particles are oriented in the film thickness direction, and a square A step of forming surface irregularities having a surface roughness with a root mean square height of 40 ⁇ m or more and 600 ⁇ m or less is provided.
  • a plurality of inorganic particles having anisotropic shape and thermal conductivity are oriented in the film thickness direction, and the film surface has a surface roughness with a root mean square height of 40 ⁇ m or more. Since the surface unevenness is formed, thermal conductivity in the film thickness direction is secured by multiple inorganic particles, and the surface area of the resin composite film surface is increased, resulting in higher thermal radiation than before. be done. Further, since the root-mean-square height of the surface irregularities is 40 ⁇ m or more and 600 ⁇ m or less, the heat dissipation and water/oil repellency of the film surface can be improved more than before.
  • FIG. 1 is a schematic diagram showing a state in which a resin composite material film according to Embodiment 1 is provided on a base material;
  • FIG. 4 is a schematic diagram showing a first modification of the resin composite material film according to Embodiment 1.
  • FIG. FIG. 10 is a diagram showing a manufacturing process of a resin composite material film according to Embodiment 2;
  • FIG. 6 is a schematic diagram showing a cold spray apparatus used for manufacturing a resin composite material film according to Embodiment 2;
  • FIG. 1 is a schematic diagram showing a state in which a resin composite material film 1 according to Embodiment 1 is provided on a substrate 9.
  • the resin composite film 1 is provided, for example, on the surface of heat exchangers of air conditioners or other electronic devices, and by imparting flexibility and water and oil repellency to the surfaces of these devices, it mitigates the impact on the device surfaces. and prevent dirt from adhering.
  • the resin composite film 1 has a plurality of thermally conductive inorganic particles 3 and has a function of dissipating heat from the surface of the device on which the resin composite film 1 is provided.
  • the configuration of the resin composite material film 1 of Embodiment 1 will be described based on FIG.
  • the resin composite film 1 comprises a plurality of aggregated resin particles 2 and a plurality of inorganic particles 3.
  • the resin composite film 1 is provided on the substrate 9 .
  • the resin composite film 1 has film surface irregularities 1a having convex portions 12p and concave portions 12r on the surface of the film that is not in contact with the substrate 9.
  • the surface of the resin composite material coating 1 on the substrate 9 side is defined as a first surface 11
  • the surface of the coating opposite to the first surface 11 is defined as a second surface 12 .
  • the coating surface unevenness 1 a is formed on the second surface 12 of the resin composite material coating 1 .
  • a portion of the resin composite material film 1 closer to the substrate 9 than the surface layer portion where the film surface irregularities 1a are formed is referred to as a film base portion 1b.
  • the convex portions 12p and the concave portions 12r in the film surface unevenness 1a are defined on the basis of the average plane.
  • the resin particles 2 form the mother phase of the coating surface irregularities 1a and the coating base 1b by adhering to each other.
  • adhesion refers to the fact that the respective surfaces of two solids melt and fuse in a liquid state and adhere firmly, and in the present disclosure, the resin particles 2 are aggregated in such a state.
  • the inorganic particles 3 have an anisotropic shape and are oriented in the film thickness direction D2 of the resin composite film 1 . That is, the inorganic particles 3 are dispersed in the film surface unevenness 1a and the film base 1b so that the long axis thereof is oriented in the film thickness direction D2 of the resin composite material film 1.
  • the anisotropic shape is not limited to a columnar shape extending in one direction, such as a needle shape, and may be any shape that differs depending on the direction. The shape and material of the inorganic particles 3 will be described later.
  • the volume ratio of the inorganic particles 3 is defined as the volume occupied by the inorganic particles 3 contained in the resin composite film 1 divided by the volume occupied by the resin particles 2 and the inorganic particles 3 .
  • the aspect ratio of the inorganic particles 3 is defined as the value obtained by dividing the major axis L31 of the inorganic particles 3 by the minor axis L32.
  • this angle is defined as the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1
  • the supplementary angle of this angle is defined as the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite film 1.
  • the resin composite material film 1 according to Embodiment 1 includes deposited resin particles 2 and inorganic particles 3 dispersed in the resin film formed by depositing the resin particles 2 . It is desirable that the resin particles 2 strongly adhere to each other, the inorganic particles 3 strongly adhere to each other, and the resin particles 2 and the inorganic particles 3 strongly adhere to each other. Further, it is more desirable that the inorganic particles 3 are arranged in the resin film formed by depositing the resin particles 2, ie, in the mother phase, with the resin film interposed therebetween.
  • the plurality of inorganic particles 3 are dispersed in the surface direction D1 of the resin composite material film 1.
  • the coating base portion 1b but also the coating surface irregularities 1a are provided with a plurality of resin particles 2 and a plurality of inorganic particles 3.
  • the inorganic particles 3 are also arranged in the convex portions 12p of the film surface unevenness 1a, and the convex portions 12p include at least a portion of the oriented inorganic particles 3 and a plurality of resin particles 2 provided so as to cover this portion. and have
  • the plurality of inorganic particles 3 are also dispersed in the film thickness direction D2 of the resin composite material film 1, forming the first inorganic particle group, the second inorganic particle group, and the third inorganic particle group. and an inorganic particle group.
  • the first inorganic particle group arranged closest to the base material 9 side among the plurality of inorganic particles 3 is arranged such that the end face on the base material 9 side is exposed on the first surface 11 and contacts the base material 9. are placed.
  • the second inorganic particle group arranged on the side of the second surface 12, which is the surface of the film, among the plurality of inorganic particles 3, the ends or the whole of the oriented inorganic particles 3 are the convex portions 12p of the film surface unevenness 1a. and each covered with a plurality of resin particles 2 .
  • the third inorganic particle group arranged closer to the second surface 12 than the first inorganic particle group among the plurality of inorganic particles 3 is arranged in the matrix of the film base 1b, and the whole is made of a plurality of resins. It is covered with particles 2 .
  • FIG. 1 shows a case where the plurality of inorganic particles 3 are dispersed in the film thickness direction D2. It may extend into the unevenness 1 a and may be covered with a plurality of resin particles 2 .
  • the root-mean-square height corresponds to the standard deviation of the height distribution, and is also called the RMS value.
  • the root-mean-square height of the film surface unevenness 1a is 40 ⁇ m or more.
  • the root-mean-square height of the film surface unevenness 1a is more preferably 100 ⁇ m or more, and still more preferably 140 ⁇ m or more.
  • the root-mean-square height of the film surface irregularities 1a is 40 ⁇ m or more, the surface area of the resin composite film 1 is increased, and thermal radiation can be enhanced.
  • the root-mean-square height of the coating surface unevenness 1a is less than 40 ⁇ m, when droplets such as water droplets or oil droplets adhere to the surface of the resin composite material coating 1, the liquid will flow into the concave portions of the coating surface unevenness 1a. It is not preferable because the water and oil repellency decreases due to the permeation of droplets.
  • the root-mean-square height of the film surface unevenness 1a is 600 ⁇ m or less, more preferably 540 ⁇ m or less, still more preferably 520 ⁇ m or less.
  • the root-mean-square height of the film surface unevenness 1a is 600 ⁇ m or less, when a droplet such as a water droplet or an oil droplet adheres to the surface of the resin composite material film 1, the convex portion of the film surface unevenness 1a becomes a droplet. is maintained, and an air layer is formed between the concave portion and the droplet, thereby exhibiting excellent water and oil repellency.
  • the root-mean-square height of the film surface irregularities 1a exceeds 600 ⁇ m, the film surface irregularities 1a are likely to come off due to abrasion or the like, so high water and oil repellency and thermal radiation cannot be ensured for a long period of time. .
  • the coating surface unevenness 1a having a surface roughness such that the root-mean-square height is 40 ⁇ m or more and 600 ⁇ m or less may be referred to as moderate coating surface unevenness 1a.
  • the film surface unevenness 1a is determined by the material of the resin particles 2, the particle size of the resin particles 2, the particle size of the inorganic particles 3, the aspect ratio of the inorganic particles 3, the volume ratio of the inorganic particles 3, and the process conditions for forming the film, which will be described later. can be adjusted by selecting
  • the root-mean-square height of the film surface unevenness 1a can be measured by an optical microscope, a laser microscope, a stylus-type surface profiler, cross-sectional observation, or the like.
  • the root-mean-square height is a statistic obtained from one field of view at an observation position, and may be measured at a sufficient number (for example, 10) of different positions and obtained as an average value.
  • the inorganic particles 3 exhibit thermal conductivity in the resin composite material film 1 .
  • the plurality of inorganic particles 3 constituting the resin composite material film 1 may be, for example, acicular particles, fibrous particles, scale-like particles, plate-like particles, flat particles, or the like. It is composed of at least one selected from particles, amorphous particles, and the like.
  • the plurality of inorganic particles 3 forming the resin composite film 1 more preferably contains at least one selected from acicular particles and fibrous particles, and more preferably contains acicular particles. In the example shown in FIG. 1, the inorganic particles 3 are defined as acicular particles.
  • the plurality of inorganic particles 3 constituting the resin composite film 1 are alumina, silicon carbide, silicon nitride, potassium titanate, aluminum borate, titanium oxide, calcium carbonate, magnesium sulfate, calcium sulfate, zinc oxide, graphite, and aluminum nitride. , tin oxide, boron nitride, mica, talc, boehmite, mullite, carbon fiber, and composite oxides or mixtures thereof.
  • the minor axis L32 of the inorganic particles 3 is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more. Since the minor axis L32 of the inorganic particles 3 is 0.2 ⁇ m or more, the inorganic particles 3 firmly adhere to the resin particles 2 and the other inorganic particles 3 in the film forming step described later, and the resin composite The material film 1 can be a film with high mechanical strength. On the other hand, if the minor axis L32 of the inorganic particles 3 is less than 0.2 ⁇ m, the shape of the inorganic particles 3 is likely to be deformed in the step of producing the mixed powder described later, which is not practical for producing the resin composite film 1.
  • the minor axis L32 of the inorganic particles 3 is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the number of the inorganic particles 3 increases when the volume ratio of the inorganic particles 3 is the same as compared to when the minor axis L32 of the inorganic particles 3 exceeds 20 ⁇ m.
  • the distance between the inorganic particles 3 in the surface direction D1 can be shortened, the heat conduction path of the resin composite material film 1 can be easily formed, and high heat dissipation can be exhibited.
  • the minor axis L32 of the inorganic particles 3 exceeds 20 ⁇ m, the inorganic particles 3 per one are large, so the inorganic particles 3 are likely to be exposed on the surface of the resin composite material film 1, and water droplets, oil droplets, or the like are formed. In some cases, the droplets adhere only to the inorganic particles 3 exposed on the surface of the resin composite film 1 and not to the resin particles 2 having high water and oil repellency, making it impossible to ensure high water and oil repellency.
  • the short diameter L32 of the inorganic particles 3 can be measured by observing with a scanning electron microscope.
  • the minor axis L32 of the inorganic particles 3 may be obtained as an average value by observing a sufficient number (for example, 200) of the inorganic particles 3 .
  • the aspect ratio of the inorganic particles 3 is preferably 10 or more, more preferably 20 or more.
  • the aspect ratio of the inorganic particles 3 is 10 or more, the film surface unevenness 1a is easily formed in the film forming step described later, so that the heat dissipation and water and oil repellency of the resin composite film 1 can be improved. can.
  • the inorganic particles 3 become thinner in the plane direction D1 and elongated in the film thickness direction D2, so that one end of the inorganic particles 3 is covered with the resin particles 2.
  • convex portions 12p are formed, and concave portions 12r are formed between the inorganic particles 3. As shown in FIG.
  • the aspect ratio of the inorganic particles 3 is less than 10, it is difficult for the resin composite material film 1 to form a thermal conduction path, and high thermal conductivity cannot be ensured.
  • the aspect ratio of the inorganic particles 3 is preferably 200 or less, more preferably 150 or less.
  • the inorganic particles 3 are oriented in the film thickness direction D2 of the resin composite material film 1 in the film forming step described later, so that the thermal conductivity in the film thickness direction D2 is improved. can be enhanced.
  • the aspect ratio of the inorganic particles 3 exceeds 200, the entangled inorganic particles 3 are difficult to untangle in the step of producing the mixed powder described later, and the shape of the inorganic particles 3 is not stable. Since it becomes difficult to disperse 3 uniformly, high heat dissipation cannot be ensured.
  • the aspect ratio of the inorganic particles 3 can be measured by observing with a scanning electron microscope. The aspect ratio of the inorganic particles 3 may be determined as an average value by observing a sufficient number (for example, 200) of the inorganic particles 3 .
  • the volume ratio of the inorganic particles 3 is preferably 5% by volume or more, more preferably 10% by volume or more.
  • the inorganic particles 3 having a high aspect ratio tend to amplify the film surface unevenness 1a during film formation, that is, the root mean square height of the film surface unevenness 1a is Since it tends to be high, thermal radiation and water and oil repellency are improved.
  • the volume ratio of the inorganic particles 3 is less than 5% by volume, it becomes difficult to form a heat conduction path inside the resin composite material film 1, and high heat dissipation cannot be ensured.
  • the volume ratio of the inorganic particles 3 is preferably 40% by volume or less, more preferably 35% by volume or less.
  • the volume ratio of the inorganic particles 3 is 40% by volume or less, a strong resin film is formed by the resin particles 2, so that the resin composite film 1 can exhibit high mechanical strength.
  • the volume ratio of the inorganic particles 3 exceeds 40% by volume, the ratio of the resin particles 2 on the surface of the resin composite film 1 decreases, so that high water/oil repellency and thermal radiation can be secured. it gets harder.
  • the volume ratio of the inorganic particles 3 can be calculated by measuring the cross-sectional area of the resin particles 2 and the cross-sectional area of the inorganic particles 3 from observation with a scanning electron microscope.
  • the volume ratio of the inorganic particles 3 is a statistic obtained from one field of view at an observation position, and may be measured at a sufficient number of different positions (for example, 10 positions) and calculated as an average value.
  • the long axis direction of the inorganic particles 3 is oriented in the film thickness direction D2 of the resin composite film 1 .
  • the angle of the long axis of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 is preferably 70° or more, more preferably 80° or more.
  • the inorganic particles 3 oriented in the film thickness direction D2 improve the mechanical strength of the film surface unevenness 1a. The utility of the resin composite film 1 can be enhanced.
  • the longitudinal direction of the inorganic particles 3 is the radial direction. That is, when the inorganic particles 3 are such cylindrical flat particles, the radial direction of the inorganic particles 3 is the film thickness direction D2 of the resin composite film 1, and the thickness direction of the inorganic particles 3 is the resin composite film. 1 are arranged in the plane direction D1.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite film 1 is adjusted by selecting the particle size of the inorganic particles 3 and the aspect ratio of the inorganic particles 3, the volume ratio of the inorganic particles 3, and the process conditions for film formation described later. can do. Further, the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 can be measured by observing a cross section of the resin composite material film 1 parallel to the film thickness direction D2 with a scanning electron microscope.
  • the resin particles 2 are particles of resin powder, and are composed of at least one selected from polyimide resins, polyester resins, polypropylene resins, acrylic resins, and fluorine resins from the viewpoint of improving the water and oil repellency of the resin composite film 1. be done.
  • the particle size of the resin particles 2 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more. When the particle size of the resin particles 2 is 1 ⁇ m or more, the resin particles 2 are firmly adhered to the resin particles 2 and the inorganic particles 3 in the film forming process described later, so that the resin composite material film 1 has a mechanical strength. A high film can be obtained.
  • the particle diameter of the resin particles 2 is preferably 400 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the particle diameter of the resin particles 2 is 400 ⁇ m or less, the surface area per unit volume of the resin particles 2 exposed on the surface of the resin composite material film 1 increases, and the resin composite material film 1 exhibits high thermal radiation. becomes possible.
  • the particle size of the resin particles 2 exceeds 400 ⁇ m, the film surface unevenness 1a becomes excessively coarse, and water droplets or oil droplets enter the concave portions of the film surface unevenness 1a, making it impossible to ensure high water and oil repellency. . Furthermore, when the particle size of the resin particles 2 exceeds 400 ⁇ m, the adhesion of the resin particles 2 to the resin particles 2 and the inorganic particles 3 becomes insufficient in the process of forming the film, which will be described later. It becomes impossible to ensure the practicality of
  • FIG. 2 is a schematic diagram showing a first modification of the resin composite material film 1 according to Embodiment 1.
  • FIG. 1 illustrates the case where the inorganic particles 3 in the resin composite film 1 are acicular particles, the inorganic particles 3 may have any shape as long as they have anisotropic shape. Shapes having anisotropy include flat shapes in addition to shapes elongated in one direction, such as filamentous or fibrous shapes.
  • the example shown in FIG. 2 shows the case where the resin composite material film 1 contains flat (for example, thin columnar) inorganic particles 3 .
  • the inorganic particles 3 are thin cylindrical flattened particles, the inorganic particles 3 can have a circular or rectangular cross section in cross-sectional observation.
  • the resin composite material film 1 of Embodiment 1 is a resin composite material film 1 containing a plurality of resin particles 2 forming a matrix and a plurality of thermally conductive inorganic particles 3. .
  • the inorganic particles 3 have an anisotropic shape and are oriented in the film thickness direction D2.
  • surface irregularities (film surface irregularities 1a) having surface roughness with a root-mean-square height of 40 ⁇ m or more and 600 ⁇ m or less are formed.
  • the surface area of the film surface is increased by the surface unevenness, so that the film has a higher thermal radiation property than before, thereby improving heat dissipation.
  • the surface unevenness has a surface roughness with a root mean square height of 40 ⁇ m or more and 600 ⁇ m or less, the heat dissipation and water/oil repellency of the film surface can be improved more than before.
  • the plurality of resin particles 2 contain one or more resins selected from polyimide resin, polyester resin, polypropylene resin, acrylic resin, and fluororesin. This increases options for the matrix phase of the resin composite film 1 with improved heat dissipation and water and oil repellency.
  • the average particle size of the plurality of resin particles 2 is 1 ⁇ m or more and 400 ⁇ m or less.
  • the resin particles 2 can be sprayed onto the base material 9 at an appropriate speed during production, so that the resin composite material film 1 with high mechanical strength can be obtained by adhesion.
  • the plurality of inorganic particles 3 are alumina, silicon carbide, silicon nitride, potassium titanate, aluminum borate, titanium oxide, calcium carbonate, magnesium sulfate, calcium sulfate, zinc oxide, graphite, aluminum nitride, tin oxide, and boron nitride. , mica, talc, boehmite, mullite, carbon fiber, and composite oxides or mixtures thereof. This increases the options for the thermally conductive material of the resin composite film 1 with improved heat dissipation and water/oil repellency.
  • the inorganic particles 3 have a flat or acicular shape, and the average aspect ratio of the plurality of inorganic particles 3 is 10 or more and 200 or less.
  • the average aspect ratio of the plurality of inorganic particles 3 is 10 or more, the inorganic particles 3 tend to adhere to the convex portions of the surface unevenness during film formation, and the film surface unevenness 1a is easily formed. The heat dissipation and water/oil repellency of the coating 1 can be improved.
  • the average aspect ratio of the plurality of inorganic particles 3 is 200 or less, it is possible to avoid the entanglement of the inorganic particles 3 and the overturning of the inorganic particles 3 with respect to the substrate 9 during film formation. , the orientation and dispersion of the inorganic particles 3 can further enhance the thermal conductivity of the resin composite film 1 .
  • the average short diameter of the plurality of inorganic particles 3 is 0.2 ⁇ m or more and 20 ⁇ m or less.
  • the inorganic particles 3 firmly adhere to the resin particles 2 and the other inorganic particles 3 in the process of forming the film, and the mechanical strength A resin composite material film 1 having a high
  • the number of the inorganic particles 3 can be increased by setting the average short diameter of the plurality of inorganic particles 3 to 20 ⁇ m or less, it becomes easier to form a heat conduction path in the resin composite material film 1, and high heat dissipation can be exhibited. .
  • the resin composite film 1 contains 5% by volume or more and less than 40% by volume of the inorganic particles 3 .
  • the volume ratio of the inorganic particles 3 is 5% by volume or more, it becomes easy to increase the film surface unevenness 1a during film formation.
  • the volume ratio of the inorganic particles 3 is less than 40% by volume, the volume ratio of the resin particles 2 can be ensured and the mechanical strength of the resin composite film 1 can be increased.
  • the inorganic particles 3 are oriented so that their long axes are inclined by 70° or more with respect to the surface direction D1.
  • the mechanical strength of the coating surface unevenness 1a is improved by the inorganic particles 3 oriented in the film thickness direction D2, so that the practicality of the resin composite material coating 1 can be enhanced.
  • the resin composite film 1 is provided on the base material 9, and the surface of the film on which the surface unevenness (film surface unevenness 1a) is formed is different from the surface on the side of the base material 9 (first surface 11). It is the opposite surface (second surface 12).
  • the convex portion 12p of the uneven surface has at least a portion of the oriented inorganic particles 3 and a plurality of resin particles 2 that are arranged to cover a portion of the convex portion 12p and constitute the surface of the convex portion 12p.
  • the inorganic particles 3 are arranged up to the vicinity of the surface in contact with the air, and the radiation area is increased by the plurality of resin particles 2 covering the inorganic particles 3. Therefore, the thermal conductivity and thermal radiation of the resin composite film 1 can be further enhanced.
  • the plurality of inorganic particles 3 are arranged so as to be dispersed in the surface direction D1 and the film thickness direction D2 in the matrix.
  • the inorganic particles 3 are dispersed throughout the resin composite material film 1, so that heat can be efficiently dissipated from each inorganic particle 3, and the heat dissipation property of the resin composite material film 1 can be further enhanced. .
  • Embodiment 2 relates to a method for manufacturing the resin composite material film 1 .
  • FIG. 3 is a diagram showing a manufacturing process of the resin composite material film 1 according to Embodiment 2. As shown in FIG.
  • the method for producing the resin composite material film 1 includes a first step (steps ST101 to ST103) of producing a mixed powder containing the resin particles 2 and the inorganic particles 3, and spraying the mixed powder on the substrate 9 to produce the resin composite material. and a second step of forming the film 1 (steps ST104 to ST105).
  • the powder containing the resin particles 2 and the powder containing the inorganic particles 3 are each weighed to a set amount (steps ST101 to ST102) and transferred to a container with a lid.
  • a mixed powder containing resin particles 2 and inorganic particles 3 is obtained by stirring for a period of time (for example, 10 minutes) (step ST103).
  • the amount of the powder containing the resin particles 2 and the amount of the powder containing the inorganic particles 3 are, for example, a predetermined volume ratio (for example, 5 % by volume and less than 40% by volume).
  • the resin particles 2 and the inorganic particles 3 contained in the mixed powder are referred to without distinction, the resin particles 2 and the inorganic particles 3 contained in the mixed powder are defined as mixed powder particles.
  • the 1st process which produces mixed powder is not limited to said case.
  • the base material 9 is prepared, and the mixed powder produced in the first step is sprayed onto the base material 9 (steps ST104 to ST105) to form the resin composite material film 1 on the surface of the base material 9. .
  • the mixed powder is sprayed from a direction perpendicular to the surface of the substrate 9 .
  • the inorganic particles 3 are dispersed, and the inorganic particles 3 are oriented so that the direction of the least air resistance, that is, the longitudinal direction of the inorganic particles 3, is the direction in which the mixed powder is sprayed.
  • the inorganic particles 3 dispersed in the resin composite film 1 are oriented in the direction in which the film is formed. Since the resin particles 2 and the inorganic particles 3 are different particles and have different shapes, fine surface irregularities are generated on the surface of the resin composite material film 1 while the mixed powder is being sprayed. The sprayed mixed powder particles are likely to collide and adhere to the convex portions of the fine surface irregularities of the resin composite material film 1 formed during the spraying of the mixed powder.
  • the sprayed mixed powder particles are less likely to collide with and adhere to the recessed portions of the fine surface unevenness. Therefore, while the mixed powder is being sprayed, the fine surface unevenness of the resin composite material film 1 increases, and coarse film surface unevenness 1a is formed.
  • a cold spray device is used for spraying by the cold spray method.
  • the cold spray method is a technique of forming a film by colliding cold spray powder against the substrate 9 in a solid state below the melting temperature.
  • a mixed powder is used as the material powder for cold spray.
  • Film formation by the cold spray method can be carried out using a commercially available low-pressure cold spray device such as PCS-1000 manufactured by Plasma Giken Kogyo Co., Ltd.
  • the cold spray method is classified as a type of thermal spraying, but compared to the conventional thermal spraying method in which material particles are melted by thermal energy and sprayed, the material particles are not melted and the film is formed mainly by kinetic energy. There is a big difference.
  • the mixed powder is collided with the base material 9 in a solid phase state.
  • the inorganic particles 3 can be selected not only from materials having thermal conductivity but also from those that exhibit thermal conductivity due to having a crystalline structure.
  • a blowing velocity exceeding the critical velocity Vcr (Critical Velocity) is required. If the spraying speed is less than the critical speed Vcr, no film is formed on the base material 9, the base material 9 is erosion-weared, and small crater-like depressions are formed in the base material 9. On the other hand, if the spray speed exceeds the critical speed Vcr, plastic deformation occurs near the interface between the material particles and the substrate 9 when the material particles collide with the substrate 9 . Due to this collision and deformation, the temperature rises near the interface and a film-like jet is pushed outward.
  • Vcr Critical Velocity
  • the method for producing the resin composite material film 1 of the present disclosure is not limited to the cold spray method using the cold spray apparatus described above, and other Apparatus and manufacturing methods may be used.
  • the resin composite film 1 is preferably formed by spraying powder for cold spray onto the substrate 9 using a low-pressure cold spray device.
  • An advantage of using a low-pressure cold spray apparatus is that the long axes of the inorganic particles 3 can be oriented in the film formation direction.
  • fine surface irregularities derived from the shape of the resin particles 2 are formed, and high water and oil repellency and high heat dissipation are exhibited. can do.
  • a high-pressure type cold spray apparatus is used, the impact when the mixed powder particles are sprayed becomes strong, and the irregularities 1a on the surface of the coating fall off, so that a good coating cannot be formed.
  • the thermally conductive material is not dispersed in the film thickness direction D2 of the resin composite film.
  • FIG. 4 is a schematic diagram showing a cold spray device 4 used for manufacturing the resin composite material film 1 according to Embodiment 2.
  • the dashed line arrow represents the flow direction of the carrier gas
  • the dashed-dotted line arrow represents the flow direction of the mixed powder.
  • solid line arrows indicate film formation directions.
  • a cold spray device 4 shown in FIG. 4 has a gas supply port 5 , a heater 6 , a powder supply section 7 and a nozzle 8 .
  • the cold spray device 4 heats the pressurized carrier gas supplied from the gas supply port 5 with the heater 6, and the resin particles 2 and the inorganic particles 3 contained in the mixed powder supplied from the powder supply unit 7, together with the nozzle 8 toward the base material 9 to form the resin composite material film 1 on the base material 9 .
  • the low-pressure cold spray device 4 refers to one having a carrier gas pressure of 1 Mpa or less.
  • the temperature when heating the carrier gas is preferably 100°C or higher and 500°C or lower. If this temperature is less than 100° C., the rate of adhesion of the resin particles 2 and the inorganic particles 3 to the substrate 9 will be low, which is not preferable. If the temperature exceeds 500° C., the resin particles 2 are dissolved and the antifouling property is deteriorated, which is not preferable.
  • the pressure of the carrier gas is preferably 0.2 MPa or more and 0.8 MPa or less. If the pressure of the carrier gas is less than 0.2 MPa, sufficient adhesion between the base material 9 and the resin composite material film 1 formed on the base material 9 cannot be obtained, which is not preferable. It is not preferable for the pressure of the carrier gas to exceed 0.8 MPa because it is difficult to implement in terms of equipment.
  • the particle size of the resin particles 2 and the short diameter L32 of the inorganic particles 3 affect the spraying speed of the mixed powder particles.
  • the particle diameter of the resin particles 2 is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more.
  • the particle size of the resin particles 2 is 1 ⁇ m or more, the momentum of the resin particles 2 is large and it is difficult to decelerate. I can do it.
  • the particle size of the resin particles 2 is less than 1 ⁇ m, the aggregated resin particles 2 cannot be disintegrated in the first step and cannot be sufficiently mixed with the inorganic particles 3. Therefore, in the second step, Also, the inorganic particles 3 cannot be uniformly dispersed in the resin composite film 1 .
  • the particle size of the resin particles 2 is preferably 400 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the particle diameter of the resin particles 2 exceeds 400 ⁇ m, the resin particles 2 are difficult to be accelerated by the carrier gas, the spraying speed of the resin particles 2 is below the critical speed Vcr, and the mechanical strength of the resin composite film 1 cannot be ensured.
  • the minor axis L32 of the inorganic particles 3 is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more.
  • the minor axis L32 of the inorganic particles 3 is 0.2 ⁇ m or more, the inorganic particles 3 can obtain a large momentum due to the acceleration of the carrier gas. Since it is difficult to decelerate, the spraying speed exceeds the critical speed Vcr, and the resin composite material film 1 can exhibit high mechanical strength.
  • the minor axis L32 of the inorganic particles 3 is less than 0.2 ⁇ m, the shape of the inorganic particles 3 is likely to be deformed when the mixed powder is stirred in the first step. It becomes impossible to ensure the practicality of
  • the aspect ratio of the inorganic particles 3 affects the orientation of the inorganic particles 3.
  • the aspect ratio of the inorganic particles 3 is preferably 10 or more, more preferably 20 or more.
  • the aspect ratio of the inorganic particles 3 is 10 or more, the inorganic particles 3 having a high aspect ratio adhere to the surface of the resin composite material film 1 during film formation, and the film surface irregularities 1a are easily formed.
  • the heat dissipation and water/oil repellency of the resin composite film 1 can be improved.
  • the aspect ratio of the inorganic particles 3 is preferably 200 or less, more preferably 150 or less.
  • the resin composite material film 1 Since the aspect ratio of the inorganic particles 3 is 200 or less, the resin composite material film 1 is formed in an oriented state without overturning when the inorganic particles 3 collide with the substrate 9 during film formation. , can exhibit high thermal conductivity. On the other hand, when the aspect ratio of the inorganic particles 3 exceeds 200, the entangled inorganic particles 3 are difficult to unravel when the mixed powder is stirred in the first step, and the inorganic particles 3 are uniformly dispersed in the resin composite film 1. I can't.
  • Table 1 shows the conditions of Examples and Comparative Examples, the angle of the inorganic particles 3 with respect to the plane direction D1, and the root mean square height of the film surface irregularities 1a.
  • a scanning electron microscope (manufactured by Hitachi High-Tech Co., Ltd.; SU3800) is used for cross-sectional observation of the formed resin composite material film 1, and a laser microscope ( Olympus Corporation; LEXT (registered trademark) OLS5100) was used.
  • Example 1 In “Example 1" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, the volume ratio of the inorganic particles 3, indicates As the resin particles 2, PTFE (polytetrafluoroethylene) powder HMP-30 manufactured by Mtech Chemical Co., Ltd. was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. A mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa.
  • PTFE polytetrafluoroethylene
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 2 the resin particles 2 constituting the resin composite material film 1, the inorganic particles 3, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 , are different from the first embodiment, and the rest is the same as the first embodiment. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3, which are shown in "Example 2" in Table 1 A ratio and a were used.
  • Dynion (registered trademark) TF9202Z manufactured by 3M was used as the resin particles 2.
  • alumina filler AP20 manufactured by DIC Corporation was used as the inorganic particles 3.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 200° C. and a gas pressure of 0.45 MPa.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 3 the resin particles 2 constituting the resin composite material film 1, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 are different from those of Example 1. , and the others are the same as those of the first embodiment. That is, in “Example 3" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • the resin particles 2 PTFE powder HMP-70 manufactured by Mtech Chemical Co., Ltd. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 400° C. and a gas pressure of 0.55 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 4 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from Example 1. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3 shown in "Example 4" in Table 1 A ratio and a were used.
  • the resin particles 2 PTFE powder Microdispers-3000 manufactured by PolySciences was used.
  • As the inorganic particles 3 alumina filler AP20 manufactured by DIC Corporation was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 5 is the same as Example 1 except that the resin particles 2 forming the resin composite material film 1 are different from those of Example 1. That is, in “Example 5" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • the resin particles 2 Fluon (registered trademark) G350 manufactured by AGC Co., Ltd. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 6 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 that constitute the resin composite film 1 are different from those of Example 1. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3 shown in "Example 6" in Table 1 A ratio and a were used.
  • the resin particles 2 PTFE powder HMP-50 manufactured by Mtech Chemical Co., Ltd. was used.
  • As the inorganic particles 3 boron nitride filler UHP-2 manufactured by Showa Denko K.K. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 7 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1 are different from those of Example 1. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the minor diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3 shown in "Example 7" in Table 1 A ratio and a were used.
  • the resin particles 2 PTFE powder Microdispers-3000 manufactured by PolySciences was used. Silicon carbide nitride whisker Silar (registered trademark) SCW manufactured by Tateho Chemical Industry Co., Ltd. was used as the inorganic particles 3 .
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 8 is different from Example 1 in the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1, and the gas pressure when forming the resin composite material film 1. Same as Example 1. That is, in “Example 8" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • the resin particles 2 Fluon (registered trademark) G163 manufactured by AGC Co., Ltd. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.4 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 9 is different from Example 1 in the resin particles 2 and inorganic particles 3 constituting the resin composite material film 1, and the gas pressure when forming the resin composite material film 1. Same as Example 1. That is, in “Example 9" of Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • the resin particles 2 Fluon (registered trademark) G190 manufactured by AGC Co., Ltd. was used.
  • boehmite filler BMF-920 manufactured by Kawai Lime Industry Co., Ltd. was used.
  • a mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.6 MPa.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 10 differs from Example 1 in the volume ratio of the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1, and the gas temperature when forming the resin composite material film 1. Others are the same as the first embodiment. That is, in “Example 10" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • Dynion (registered trademark) TF9205 manufactured by 3M was used.
  • a mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 250° C. and a gas pressure of 0.5 MPa.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 11 is different from Example 1 in the resin particles 2 and inorganic particles 3 constituting the resin composite material film 1, and the gas temperature when forming the resin composite material film 1. Same as Example 1. That is, in “Example 11" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • the resin particles 2 Dynion (registered trademark) TF9201Z manufactured by 3M Corporation was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 350° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 12 the resin particles 2 constituting the resin composite material film 1, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 are different from those of Example 1. , and the others are the same as those of the first embodiment. That is, in “Example 12" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate.
  • Dynion (registered trademark) TF9207Z manufactured by 3M was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 350° C. and a gas pressure of 0.7 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 13 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from Example 1.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 13" in Table 1. was used.
  • As the resin particles 2 PTFE powder HMP-50 manufactured by Mtech Chemical Co., Ltd. was used.
  • As the inorganic particles 3 boron nitride filler UHP-1K manufactured by Showa Denko K.K. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the plane direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 14 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from Example 1.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 14" in Table 1. was used.
  • As the resin particles 2 PTFE powder Microdispers-3000 manufactured by PolySciences was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 15 differs from Example 1 in the resin particles 2, the inorganic particles 3, and the gas pressure used to form the resin composite material film 1, which constitute the resin composite film 1. Same as Example 1.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 15" in Table 1. was used.
  • As the resin particles 2 Fluon (registered trademark) G163 manufactured by AGC Co., Ltd. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.4 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 16 differs from Example 1 in the resin particles 2, the inorganic particles 3, and the gas pressure used to form the resin composite material film 1, which constitute the resin composite film 1. Same as Example 1.
  • the particle size of the resin particles 2, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3, which constitute the resin composite film 1, shown in "Example 16" in Table 1. was used.
  • As the resin particles 2 Fluon (registered trademark) G190 manufactured by AGC Co., Ltd. was used.
  • a mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.6 MPa.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 17 differs from Example 1 in the resin particles 2, the inorganic particles 3, and the gas temperature used to form the resin composite material film 1, which constitute the resin composite film 1. Same as Example 1.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 17" in Table 1. was used.
  • Dynion (registered trademark) TF9205 manufactured by 3M was used.
  • As the inorganic particles 3 alumina filler AP20 manufactured by DIC Corporation was used.
  • a mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 250° C. and a gas pressure of 0.5 MPa.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 18 differs from Example 1 in the volume ratio of the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1, and the gas temperature when forming the resin composite material film 1. Others are the same as the first embodiment.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 18" in Table 1. was used.
  • Dynion (registered trademark) TF9201Z manufactured by 3M Corporation was used.
  • As the inorganic particles 3M boron nitride filler Platelets CFP 012P was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 350° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Example 19 the resin particles 2 constituting the resin composite material film 1, the inorganic particles 3, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 , are different from the first embodiment, and the rest is the same as the first embodiment.
  • Dynion (registered trademark) TF9207Z manufactured by 3M was used as the resin particles 2.
  • silicon nitride whiskers NCW manufactured by Tateho Chemical Industry Co., Ltd. were used as the inorganic particles 3.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 400° C. and a gas pressure of 0.7 MPa.
  • the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope.
  • the surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Comparative Example 1 is an example in which the resin composite material film 1 does not contain the inorganic particles 3, and the rest is the same as Example 1. That is, the particle size of the resin particles 2 constituting the resin composite film 1 shown in "Comparative Example 1" in Table 1 was used.
  • the resin particles 2 PTFE powder HMP-30 manufactured by Mtech Chemical Co., Ltd. was used.
  • a resin film was formed on the substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite material film 1, the film surface unevenness was measured by observing the surface with a laser microscope. Table 1 shows the results.
  • Comparative Example 2 In Comparative Example 2, the resin particles 2 constituting the resin composite material film 1, the inorganic particles 3, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 , are different from the first embodiment, and the rest is the same as the first embodiment.
  • Dynion (registered trademark) TF9202Z manufactured by 3M was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 150° C. and a gas pressure of 0.4 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 2, the size of the surface unevenness was 36 ⁇ m, which was smaller than the moderate surface unevenness.
  • Comparative Example 3 In Comparative Example 3, the resin particles 2 constituting the resin composite material film 1, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 are different from those of Example 1. , and the others are the same as those of the first embodiment.
  • As the resin particles 2 PTFE powder HMP-70 manufactured by Mtech Chemical Co., Ltd. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 500° C. and a gas pressure of 0.6 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 3, the size of the surface unevenness was larger than the moderate surface unevenness, and was 623 ⁇ m.
  • Comparative Example 4 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1 are different from those of Example 1.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Comparative Example 4" in Table 1. was used.
  • As the resin particles 2 PTFE powder Microdispers-200 manufactured by PolySciences was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the plane direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 4, the size of the surface unevenness was 32 ⁇ m, which was smaller than the moderate surface unevenness.
  • Comparative Example 5 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from those of Example 1.
  • the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Comparative Example 5" in Table 1. was used.
  • resin particles 2 PTFE powder F-104 manufactured by Daikin Industries, Ltd. was used.
  • a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 5, the size of the surface unevenness was larger than the moderate surface unevenness, and was 703 ⁇ m.
  • Table 2 shows the evaluation results of water repellency, oil repellency, and heat dissipation of the resin composite film 1 obtained in each of Examples and Comparative Examples.
  • the water repellency was evaluated using an aluminum plate as the base material 9 which was left at room temperature (25° C.) for 1 hour. About 5 ⁇ L of water droplets are dropped on the surface of the resin composite film 1 from the tip of a PTFE (polytetrafluoroethylene)-coated needle with an inner diameter of 0.1 mm, and a contact angle meter (CX-150 manufactured by Kyowa Interface Science Co., Ltd.) is measured. was used to measure the contact angle (initial water contact angle). It can be said that the larger the contact angle, the better the water repellency. Water repellency was evaluated according to the following criteria. That is, the smaller the number from 1 to 5, the larger the contact angle, that is, the better the water repellency.
  • Table 2 shows the results. 1: A contact angle of 150° or more. 2: The contact angle is 130° or more and less than 150°. 3: The contact angle is 110° or more and less than 130°. 4: The contact angle is 90° or more and less than 110°. 5: The contact angle is less than 90°.
  • the oil repellency was evaluated using an aluminum plate as the substrate 9 which was left at room temperature (25° C.) for 1 hour. About 5 ⁇ L of oil droplets (edible salad oil) are dropped on the surface of the resin composite film 1 from the tip of a PTFE (polytetrafluoroethylene)-coated needle with an inner diameter of 0.1 mm, and a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd. CX-150 model) was used to measure the contact angle (initial oil contact angle). It can be said that the larger the contact angle, the better the oil repellency. Oil repellency was evaluated according to the following criteria.
  • the contact angle is 80° or more.
  • the contact angle is 70° or more and less than 80°.
  • the contact angle is 60° or more and less than 70°.
  • the contact angle is 50° or more and less than 60°. 5: The contact angle is less than 50°.
  • the heat dissipation property was evaluated by measuring the temperature of the aluminum plate, which is the substrate 9, heated at a constant output at room temperature (25°C).
  • a rubber heater manufactured by Mizuho Craft Co., Ltd.; MC50-50
  • a thermocouple manufactured by Hakko Electric Co., Ltd.; HTK0219
  • a rubber heater was arranged opposite to the surface on which the resin composite material film 1 was applied, and a thermocouple was arranged between the aluminum plate and the rubber heater. After heating for 1 hour with an output of 15 W using a rubber heater, the temperature was measured using a thermocouple.
  • the temperature when using an aluminum plate without the resin composite film 1 was defined as the reference temperature, and the value obtained by subtracting the reference temperature from the measured temperature was defined as the radiation temperature.
  • Heat dissipation was evaluated according to the following criteria. In other words, the smaller the number from 1 to 5, the better the heat dissipation. Table 2 shows the results. 1: The heat radiation temperature is 12°C or higher. 2: The heat radiation temperature is 8°C or more and less than 12°C. 3: The heat radiation temperature is 4°C or more and less than 8°C. 4: The heat radiation temperature is 0°C or more and less than 4°C. 5: The heat radiation temperature is less than 0°C.
  • the resin composite film 1 of Examples 1 to 19 has a water repellency and oil repellency evaluation result of 3 or less, and the water repellency and oil repellency based on the contact angle are good. .
  • the resin composite film 1 having heat dissipation properties of Examples 1 to 19 had a heat dissipation evaluation result of 3 or less, and the heat dissipation properties based on the measured temperature under constant heating were good.
  • the resin composite film 1 having water/oil repellency and heat dissipation of Example 1 had good water/oil repellency and the best heat dissipation.
  • the resin composite material film 1 was formed by spraying a mixed powder containing a plurality of resin particles 2 and a plurality of inorganic particles 3 onto the substrate 9, and the film of the formed resin composite material film 1 On the surface, surface irregularities having a surface roughness with a root-mean-square height of 40 ⁇ m or more and 600 ⁇ m or less are formed.
  • the resin composite film 1 having high water/oil repellency and high heat dissipation can be produced by satisfying the conditions of the materials and the size of the surface unevenness.
  • Comparative Examples 1 to 5 do not satisfy the above conditions, so desired water/oil repellency or heat dissipation cannot be obtained.
  • Comparative Example 1 does not satisfy the material condition, and Comparative Examples 2 to 5 do not satisfy the surface irregularity size condition.
  • the resin film of Comparative Example 1 does not include the inorganic particles 3, the thermal conductivity of the film deteriorates, resulting in a marked deterioration in heat dissipation.
  • the resin composite material film 1 of Comparative Example 2 has small surface unevenness, the water and oil repellency cannot be improved by the effect of the surface shape, and the heat dissipation area does not increase, so the heat dissipation is not improved. It has become.
  • the resin composite film 1 of Comparative Example 3 has excessively large surface unevenness, water droplets or oil droplets enter the recessed portions of the surface unevenness, resulting in a significant deterioration in water and oil repellency.
  • Comparative Examples 4 and 5 since the particle size of the resin particles 2 is too small or too large, appropriate surface unevenness is not formed, and the adhesion of the resin particles 2 is deteriorated. 1 becomes brittle and the film peels off. Therefore, the resin composite material films 1 of Comparative Examples 4 and 5 have poor water/oil repellency and heat dissipation.
  • the method for producing the resin composite film 1 according to the second embodiment includes a plurality of resin particles 2 forming the mother phase, a plurality of inorganic particles having an anisotropic shape and thermal conductivity. 3, and a method for producing a resin composite material film 1.
  • the method for producing the resin composite film 1 includes spraying a mixed powder containing a plurality of resin particles 2 and a plurality of inorganic particles 3 onto a substrate 9 to orient the inorganic particles 3 in the film thickness direction D2 and to form a film surface. (2) forming surface unevenness having a surface roughness with a root mean square height of 40 ⁇ m or more and 600 ⁇ m or less (second step);
  • the mixed powder is collided with the base material 9 in a solid state.
  • thermal conductivity can be imparted to the resin composite material film 1 using crystals that could not be used in the conventional thermal spraying method in which material particles are melted and sprayed, increasing options for thermally conductive materials.
  • the configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technology. It is also possible to omit and change parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This resin composite material film includes: a plurality of resin particles that form a matrix; and a plurality of inorganic particles that are thermally conductive. The inorganic particles are anisotropic in shape and oriented in a film-thickness direction, and surface contours having a surface roughness such that the root mean square height is at least 40 μm and no more than 600 μm are formed on the surface of the film. Also provided is a method for manufacturing a resin composite material film that includes a plurality of resin particles that form a matrix and a plurality of inorganic particles that are anisotropic in shape and thermally conductive, wherein: a mixed powder that includes the plurality of resin particles and the plurality of inorganic particles is blown onto a substrate so that the inorganic particles are oriented in a film-thickness direction; and on the surface of the film, surface contours are formed, having a surface roughness such that the root mean square height is at least 40 μm and no more than 600 μm.

Description

樹脂複合材料皮膜及び樹脂複合材料皮膜の製造方法Resin composite film and method for producing resin composite film
 本開示は、無機粒子と樹脂粒子とを含む樹脂複合材料皮膜、およびその製造方法に関する。 The present disclosure relates to a resin composite film containing inorganic particles and resin particles, and a method for producing the same.
 近年、電子機器の小型化及び薄型化と高出力化とに伴う発熱密度の増加により、放熱性能の向上が重要になっている。また、冷暖房機器では、省エネ性能の向上のために、熱交換器の熱交換性能の向上が求められている。電子機器および熱交換器の表面には、樹脂皮膜が施工され、これによって柔軟性と撥水撥油性とを付与することで、機器表面への衝撃の緩和及び汚れの付着防止を図っている。電子機器の放熱性および熱交換器の熱交換性能の向上のために、電子機器又は熱交換器の表面部材として、高放熱性を有した樹脂皮膜が求められている。樹脂皮膜に高放熱性を付与する技術としては、例えば、樹脂中に高熱伝導性繊維を設ける方法がある(例えば、特許文献1参照)。特許文献1には、膜厚方向に貫通配向した高熱伝導性繊維と、バインダ樹脂と、を含有した高熱伝導性シートの両面側に、熱硬化性樹脂に熱伝導性フィラーを含有した接着性樹脂層が配置された絶縁高熱伝導性シートが開示されている。 In recent years, the improvement of heat dissipation performance has become important due to the increase in heat generation density accompanying the miniaturization and thinning of electronic devices and the increase in output. In addition, in air conditioners, there is a demand for improved heat exchange performance of heat exchangers in order to improve energy saving performance. The surfaces of electronic devices and heat exchangers are coated with a resin film to impart flexibility and water and oil repellency, thereby mitigating impact on the surfaces of the devices and preventing dirt from adhering to them. In order to improve the heat dissipation properties of electronic devices and the heat exchange performance of heat exchangers, there is a demand for resin films with high heat dissipation properties as surface members of electronic devices or heat exchangers. As a technique for imparting high heat dissipation to a resin film, for example, there is a method of providing high heat conductive fibers in a resin (see, for example, Patent Document 1). In Patent Document 1, an adhesive resin containing a thermally conductive filler in a thermosetting resin is placed on both sides of a highly thermally conductive sheet containing a highly thermally conductive fiber oriented through the film thickness direction and a binder resin. A layered insulating high thermal conductivity sheet is disclosed.
特開2017-135137号公報JP 2017-135137 A
 一般に、放熱性の向上には、部材内部の熱伝導性向上に加え、部材表面からの熱放射性の向上が求められる。そして、部材表面からの熱放射性の向上には、表面凹凸により放熱面積を増やす手段が有効である。しかしながら、特許文献1には表面凹凸について言及されておらず、膜厚方向に配向された高熱伝導性繊維により部材内部の熱伝導性を向上させることはできるが、部材表面の表面積が小さく、部材表面からの熱放射性が不十分であるので、放熱性が十分に発揮できない。また、部材表面の形状により撥水撥油性が変わるが、特許文献1には、膜厚方向に熱伝導性を有する樹脂複合材料皮膜において放熱性と撥水撥油性とを向上させる適度な表面凹凸の大きさに言及されておらず、放熱性と撥水撥油性とを十分に発揮することができなかった。 In general, to improve heat dissipation, it is required to improve heat radiation from the surface of the member in addition to improving the heat conductivity inside the member. In order to improve the heat radiation from the surface of the member, it is effective to increase the heat radiation area by surface unevenness. However, Patent Document 1 does not mention surface unevenness, and although it is possible to improve the thermal conductivity inside the member by highly thermally conductive fibers oriented in the film thickness direction, the surface area of the member surface is small, and the member Since the heat radiation from the surface is insufficient, the heat radiation cannot be fully exhibited. In addition, although the water and oil repellency varies depending on the shape of the surface of the member, Patent Document 1 discloses that a resin composite film having thermal conductivity in the film thickness direction has moderate surface unevenness that improves heat dissipation and water and oil repellency. No reference was made to the size, and heat dissipation and water and oil repellency could not be exhibited sufficiently.
 本開示は、上記のような課題を解決するためになされたもので、放熱性および撥水撥油性を従来よりも向上させた樹脂複合材料皮膜、及びその製造方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a resin composite film with improved heat dissipation and water and oil repellency compared to conventional ones, and a method for producing the same. .
 本開示に係る樹脂複合材料皮膜は、母相を構成する複数の樹脂粒子と、熱伝導性を有する複数の無機粒子と、を含む樹脂複合材料皮膜であって、前記無機粒子は、形状に異方性を有するものであって、膜厚方向に配向され、皮膜表面には、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸が形成されている。 The resin composite film according to the present disclosure is a resin composite film containing a plurality of resin particles forming a matrix phase and a plurality of thermally conductive inorganic particles, wherein the inorganic particles have different shapes. It has an anisotropic property and is oriented in the film thickness direction, and surface irregularities having a surface roughness with a root-mean-square height of 40 μm or more and 600 μm or less are formed on the film surface.
 また、本開示に係る樹脂複合材料皮膜の製造方法は、母相を構成する複数の樹脂粒子と、形状に異方性を有し、熱伝導性を有する複数の無機粒子と、を含む樹脂複合材料皮膜の製造方法であって、複数の前記樹脂粒子と複数の前記無機粒子とを含む混合粉末を基材に吹き付けることによって、前記無機粒子を膜厚方向に配向させ、且つ皮膜表面に、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸を形成する工程を備える。 In addition, the method for producing a resin composite material film according to the present disclosure includes a resin composite containing a plurality of resin particles constituting a mother phase and a plurality of inorganic particles having anisotropic shape and thermal conductivity. In a method for producing a material film, by spraying a mixed powder containing a plurality of the resin particles and a plurality of the inorganic particles onto a substrate, the inorganic particles are oriented in the film thickness direction, and a square A step of forming surface irregularities having a surface roughness with a root mean square height of 40 μm or more and 600 μm or less is provided.
 本開示によれば、形状に異方性を有した熱伝導性を有する複数の無機粒子が膜厚方向に配向され、皮膜表面には、二乗平均平方根高さが40μm以上となる表面粗さを有した表面凹凸が形成されているので、複数の無機粒子によって膜厚方向の熱伝導性を確保しつつ、樹脂複合材料皮膜の皮膜表面の表面積が増加することで従来よりも高い熱放射性が得られる。そして、表面凹凸の二乗平均平方根高さは40μm以上且つ600μm以下であるので、皮膜表面における放熱性と撥水撥油性とを従来よりも向上させることができる。 According to the present disclosure, a plurality of inorganic particles having anisotropic shape and thermal conductivity are oriented in the film thickness direction, and the film surface has a surface roughness with a root mean square height of 40 μm or more. Since the surface unevenness is formed, thermal conductivity in the film thickness direction is secured by multiple inorganic particles, and the surface area of the resin composite film surface is increased, resulting in higher thermal radiation than before. be done. Further, since the root-mean-square height of the surface irregularities is 40 μm or more and 600 μm or less, the heat dissipation and water/oil repellency of the film surface can be improved more than before.
実施の形態1に係る樹脂複合材料皮膜が基材に設けられた状態を示す模式図である。1 is a schematic diagram showing a state in which a resin composite material film according to Embodiment 1 is provided on a base material; FIG. 実施の形態1に係る樹脂複合材料皮膜の第1変形例を示す模式図である。4 is a schematic diagram showing a first modification of the resin composite material film according to Embodiment 1. FIG. 実施の形態2に係る樹脂複合材料皮膜の製造工程を示す図である。FIG. 10 is a diagram showing a manufacturing process of a resin composite material film according to Embodiment 2; 実施の形態2に係る樹脂複合材料皮膜の製造に用いるコールドスプレー装置を示す概略図である。FIG. 6 is a schematic diagram showing a cold spray apparatus used for manufacturing a resin composite material film according to Embodiment 2;
 以下、高い放熱性および撥水撥油性を有する樹脂複合材料皮膜について、図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係および形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは明細書の全文において共通するものとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。 The resin composite film having high heat dissipation and water and oil repellency will be described below with reference to the drawings. In the following drawings including FIG. 1, the relative dimensional relationship and shape of each constituent member may differ from the actual ones. Moreover, in the following drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the specification. The forms of the constituent elements shown in the entire specification are merely examples, and are not limited to the forms described in the specification.
実施の形態1.
 図1は、実施の形態1に係る樹脂複合材料皮膜1が基材9に設けられた状態を示す模式図である。樹脂複合材料皮膜1は、例えば冷暖房機器の熱交換器あるいは他の電子機器の表面に設けられ、これらの機器表面に柔軟性と撥水撥油性を付与することで、機器表面への衝撃を緩和し、且つ汚れの付着を防止する。また、樹脂複合材料皮膜1は、熱伝導性を有する複数の無機粒子3を有し、樹脂複合材料皮膜1が設けられた機器表面から放熱させる機能を有する。以下、図1に基づき、実施の形態1の樹脂複合材料皮膜1の構成について説明する。
Embodiment 1.
FIG. 1 is a schematic diagram showing a state in which a resin composite material film 1 according to Embodiment 1 is provided on a substrate 9. FIG. The resin composite film 1 is provided, for example, on the surface of heat exchangers of air conditioners or other electronic devices, and by imparting flexibility and water and oil repellency to the surfaces of these devices, it mitigates the impact on the device surfaces. and prevent dirt from adhering. Moreover, the resin composite film 1 has a plurality of thermally conductive inorganic particles 3 and has a function of dissipating heat from the surface of the device on which the resin composite film 1 is provided. Hereinafter, the configuration of the resin composite material film 1 of Embodiment 1 will be described based on FIG.
 樹脂複合材料皮膜1は、凝集した複数の樹脂粒子2と、複数の無機粒子3とを備える。樹脂複合材料皮膜1は、基材9に設けられている。樹脂複合材料皮膜1は、基材9と接することのない皮膜表面において、凸部分12pと凹部分12rとを有する皮膜表面凹凸1aを備えている。以下、樹脂複合材料皮膜1における基材9の側の面を第1面11と定義し、また、第1面11と反対側の皮膜表面を第2面12と定義する。皮膜表面凹凸1aは、樹脂複合材料皮膜1の第2面12に形成されている。また、樹脂複合材料皮膜1において皮膜表面凹凸1aが形成された表層部分よりも基材9の側の部分を、皮膜基部1bと称する。また、皮膜表面凹凸1aにおける凸部分12p及び凹部分12rは、平均面を基準に定義される。 The resin composite film 1 comprises a plurality of aggregated resin particles 2 and a plurality of inorganic particles 3. The resin composite film 1 is provided on the substrate 9 . The resin composite film 1 has film surface irregularities 1a having convex portions 12p and concave portions 12r on the surface of the film that is not in contact with the substrate 9. As shown in FIG. Hereinafter, the surface of the resin composite material coating 1 on the substrate 9 side is defined as a first surface 11 , and the surface of the coating opposite to the first surface 11 is defined as a second surface 12 . The coating surface unevenness 1 a is formed on the second surface 12 of the resin composite material coating 1 . In addition, a portion of the resin composite material film 1 closer to the substrate 9 than the surface layer portion where the film surface irregularities 1a are formed is referred to as a film base portion 1b. Also, the convex portions 12p and the concave portions 12r in the film surface unevenness 1a are defined on the basis of the average plane.
 樹脂粒子2は、互いに凝着することで、皮膜表面凹凸1a及び皮膜基部1bの母相を構成している。ここで、凝着とは、2つの固体同士のそれぞれの面が液状に溶けて融合し、しっかりと付着することをいい、本開示では樹脂粒子2同士がそのような状態で凝集していることをいう。無機粒子3は形状に異方性を有し、かつ、樹脂複合材料皮膜1の膜厚方向D2に配向されている。すなわち、無機粒子3は、その長軸が樹脂複合材料皮膜1の膜厚方向D2に配向するように、皮膜表面凹凸1a及び皮膜基部1bに分散している。ここで、異方性を有する形状とは、針形状のような一方向に延びた柱状形状に限定されず、形状が方向によって異なるものであればよい。無機粒子3の形状及び材質については、後述する。 The resin particles 2 form the mother phase of the coating surface irregularities 1a and the coating base 1b by adhering to each other. Here, adhesion refers to the fact that the respective surfaces of two solids melt and fuse in a liquid state and adhere firmly, and in the present disclosure, the resin particles 2 are aggregated in such a state. Say. The inorganic particles 3 have an anisotropic shape and are oriented in the film thickness direction D2 of the resin composite film 1 . That is, the inorganic particles 3 are dispersed in the film surface unevenness 1a and the film base 1b so that the long axis thereof is oriented in the film thickness direction D2 of the resin composite material film 1. As shown in FIG. Here, the anisotropic shape is not limited to a columnar shape extending in one direction, such as a needle shape, and may be any shape that differs depending on the direction. The shape and material of the inorganic particles 3 will be described later.
 以下では、樹脂複合材料皮膜1に含まれる無機粒子3が占める体積を、樹脂粒子2および無機粒子3が占める体積にて除した値を、無機粒子3の体積割合と定義する。また、無機粒子3の長径L31を短径L32にて除した値を、無機粒子3のアスペクト比と定義する。また、樹脂複合材料皮膜1の面方向D1に対する無機粒子3のなす角の角度が90°以下の場合は、この角度を樹脂複合材料皮膜1の面方向D1に対する無機粒子3の角度と定義し、樹脂複合材料皮膜1の面方向D1に対する無機粒子3のなす角の角度が90°を超える場合は、この角度の補角を樹脂複合材料皮膜1の面方向D1に対する無機粒子3の角度と定義する。 In the following, the volume ratio of the inorganic particles 3 is defined as the volume occupied by the inorganic particles 3 contained in the resin composite film 1 divided by the volume occupied by the resin particles 2 and the inorganic particles 3 . Further, the aspect ratio of the inorganic particles 3 is defined as the value obtained by dividing the major axis L31 of the inorganic particles 3 by the minor axis L32. Further, when the angle formed by the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 is 90° or less, this angle is defined as the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1, When the angle formed by the inorganic particles 3 with respect to the surface direction D1 of the resin composite film 1 exceeds 90°, the supplementary angle of this angle is defined as the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite film 1. .
 本実施の形態1に係る樹脂複合材料皮膜1は、堆積した樹脂粒子2と、樹脂粒子2が堆積して形成された樹脂皮膜に分散した無機粒子3と、を含んでいる。樹脂粒子2が互いに強固に凝着し、かつ、無機粒子3が互いに強固に凝着し、さらに、樹脂粒子2と無機粒子3とが互いに強固に凝着することが望ましい。また、樹脂粒子2が堆積して形成された樹脂皮膜中に、すなわち母相中に、無機粒子3は互い樹脂皮膜を介するようにして離間して配置されることがより望ましい。 The resin composite material film 1 according to Embodiment 1 includes deposited resin particles 2 and inorganic particles 3 dispersed in the resin film formed by depositing the resin particles 2 . It is desirable that the resin particles 2 strongly adhere to each other, the inorganic particles 3 strongly adhere to each other, and the resin particles 2 and the inorganic particles 3 strongly adhere to each other. Further, it is more desirable that the inorganic particles 3 are arranged in the resin film formed by depositing the resin particles 2, ie, in the mother phase, with the resin film interposed therebetween.
 樹脂複合材料皮膜1において、複数の無機粒子3は、樹脂複合材料皮膜1の面方向D1に分散している。皮膜基部1bだけでなく皮膜表面凹凸1aも、複数の樹脂粒子2と複数の無機粒子3とを備える。詳しくは、皮膜表面凹凸1aの凸部分12p内にも無機粒子3が配され、凸部分12pは、配向した無機粒子3の少なくとも一部分と、この一部分を覆うように設けられた複数の樹脂粒子2と、を有する。 In the resin composite material film 1, the plurality of inorganic particles 3 are dispersed in the surface direction D1 of the resin composite material film 1. Not only the coating base portion 1b but also the coating surface irregularities 1a are provided with a plurality of resin particles 2 and a plurality of inorganic particles 3. As shown in FIG. More specifically, the inorganic particles 3 are also arranged in the convex portions 12p of the film surface unevenness 1a, and the convex portions 12p include at least a portion of the oriented inorganic particles 3 and a plurality of resin particles 2 provided so as to cover this portion. and have
 また、図1に示される例では、複数の無機粒子3は、樹脂複合材料皮膜1の膜厚方向D2にも分散して、第1の無機粒子群と第2の無機粒子群と第3の無機粒子群とを有する。複数の無機粒子3のうち最も基材9の側に配置された第1の無機粒子群は、その基材9の側の端面が第1面11において露出して基材9と接触するように配置されている。また、複数の無機粒子3のうち皮膜表面である第2面12の側に配された第2の無機粒子群は、配向した無機粒子3の端部又は全体が皮膜表面凹凸1aの凸部分12p内に位置するように配置され、それぞれ、複数の樹脂粒子2によって覆われている。また、複数の無機粒子3のうち第1の無機粒子群よりも第2面12寄りに配置された第3の無機粒子群は、皮膜基部1bの母相内に配置され、全体が複数の樹脂粒子2により覆われている。 Further, in the example shown in FIG. 1, the plurality of inorganic particles 3 are also dispersed in the film thickness direction D2 of the resin composite material film 1, forming the first inorganic particle group, the second inorganic particle group, and the third inorganic particle group. and an inorganic particle group. The first inorganic particle group arranged closest to the base material 9 side among the plurality of inorganic particles 3 is arranged such that the end face on the base material 9 side is exposed on the first surface 11 and contacts the base material 9. are placed. In addition, the second inorganic particle group arranged on the side of the second surface 12, which is the surface of the film, among the plurality of inorganic particles 3, the ends or the whole of the oriented inorganic particles 3 are the convex portions 12p of the film surface unevenness 1a. and each covered with a plurality of resin particles 2 . Further, the third inorganic particle group arranged closer to the second surface 12 than the first inorganic particle group among the plurality of inorganic particles 3 is arranged in the matrix of the film base 1b, and the whole is made of a plurality of resins. It is covered with particles 2 .
 なお、図1には、複数の無機粒子3が、膜厚方向D2において分散している場合が示されるが、複数の無機粒子3のそれぞれが基材9の側の第1面11から皮膜表面凹凸1a内まで延び、複数の樹脂粒子2で覆われる構成であってもよい。 FIG. 1 shows a case where the plurality of inorganic particles 3 are dispersed in the film thickness direction D2. It may extend into the unevenness 1 a and may be covered with a plurality of resin particles 2 .
 [皮膜表面凹凸1a]
 以下、皮膜表面の表面粗さを、二乗平均平方根高さを用いて説明する。二乗平均平方根高さは、高さ分布の標準偏差に相当するもので、RMS値ともいわれる。皮膜表面凹凸1aの二乗平均平方根高さは、40μm以上である。皮膜表面凹凸1aの二乗平均平方根高さは、より好ましくは100μm以上、さらに好ましくは140μm以上である。皮膜表面凹凸1aの二乗平均平方根高さが40μm以上であることによって、樹脂複合材料皮膜1の表面積が増大し、熱放射性を高めることができる。一方で、皮膜表面凹凸1aの二乗平均平方根高さが40μm未満であると、樹脂複合材料皮膜1の表面に水滴または油滴などの液滴が付着した際に、皮膜表面凹凸1aの凹部に液滴が浸透することによって、撥水撥油性が低下するため好ましくない。また、皮膜表面凹凸1aの二乗平均平方根高さは、600μm以下であり、より好ましくは540μm以下、さらに好ましくは520μm以下である。皮膜表面凹凸1aの二乗平均平方根高さが600μm以下であることによって、樹脂複合材料皮膜1の表面に水滴または油滴などの液滴が付着した際に、皮膜表面凹凸1aの凸部が液滴を保持し、凹部および液滴の間に空気層が形成されることで、優れた撥水撥油性を発揮することができる。一方で、皮膜表面凹凸1aの二乗平均平方根高さが600μmを超えると、皮膜表面凹凸1aが擦過などで脱落しやすくなるため、高い撥水撥油性および熱放射性を長期間確保することができなくなる。
[Coating surface unevenness 1a]
Hereinafter, the surface roughness of the film surface will be described using the root mean square height. The root-mean-square height corresponds to the standard deviation of the height distribution, and is also called the RMS value. The root-mean-square height of the film surface unevenness 1a is 40 μm or more. The root-mean-square height of the film surface unevenness 1a is more preferably 100 μm or more, and still more preferably 140 μm or more. When the root-mean-square height of the film surface irregularities 1a is 40 μm or more, the surface area of the resin composite film 1 is increased, and thermal radiation can be enhanced. On the other hand, if the root-mean-square height of the coating surface unevenness 1a is less than 40 μm, when droplets such as water droplets or oil droplets adhere to the surface of the resin composite material coating 1, the liquid will flow into the concave portions of the coating surface unevenness 1a. It is not preferable because the water and oil repellency decreases due to the permeation of droplets. The root-mean-square height of the film surface unevenness 1a is 600 μm or less, more preferably 540 μm or less, still more preferably 520 μm or less. Since the root-mean-square height of the film surface unevenness 1a is 600 μm or less, when a droplet such as a water droplet or an oil droplet adheres to the surface of the resin composite material film 1, the convex portion of the film surface unevenness 1a becomes a droplet. is maintained, and an air layer is formed between the concave portion and the droplet, thereby exhibiting excellent water and oil repellency. On the other hand, if the root-mean-square height of the film surface irregularities 1a exceeds 600 μm, the film surface irregularities 1a are likely to come off due to abrasion or the like, so high water and oil repellency and thermal radiation cannot be ensured for a long period of time. .
 二乗平均平方根高さが40μm以上且つ600μm以下となるような表面粗さを有した表面凹凸を皮膜表面に設けることで、樹脂複合材料皮膜1の放熱性と皮膜表面における撥水撥油性とを向上させることができる。そのため、以降の説明において、二乗平均平方根高さが40μm以上且つ600μm以下となるような表面粗さを有した皮膜表面凹凸1aを、適度な皮膜表面凹凸1aと称する場合がある。 By providing surface irregularities having a surface roughness with a root mean square height of 40 μm or more and 600 μm or less on the film surface, the heat dissipation of the resin composite film 1 and the water and oil repellency of the film surface are improved. can be made Therefore, in the following description, the coating surface unevenness 1a having a surface roughness such that the root-mean-square height is 40 μm or more and 600 μm or less may be referred to as moderate coating surface unevenness 1a.
 皮膜表面凹凸1aは、樹脂粒子2の材質と、樹脂粒子2の粒径、無機粒子3の粒径、無機粒子3のアスペクト比、無機粒子3の体積割合、さらに、後述する皮膜形成の工程条件の選択などによって調整することができる。また、皮膜表面凹凸1aの二乗平均平方根高さは、光学顕微鏡、レーザー顕微鏡、触針式表面形状測定器または断面観察などで測定することが可能である。二乗平均平方根高さは、観察位置における一視野から得られる統計量であり、十分な数(例えば10箇所)の異なる位置で測定して平均値として求めるとよい。 The film surface unevenness 1a is determined by the material of the resin particles 2, the particle size of the resin particles 2, the particle size of the inorganic particles 3, the aspect ratio of the inorganic particles 3, the volume ratio of the inorganic particles 3, and the process conditions for forming the film, which will be described later. can be adjusted by selecting The root-mean-square height of the film surface unevenness 1a can be measured by an optical microscope, a laser microscope, a stylus-type surface profiler, cross-sectional observation, or the like. The root-mean-square height is a statistic obtained from one field of view at an observation position, and may be measured at a sufficient number (for example, 10) of different positions and obtained as an average value.
[無機粒子3]
 無機粒子3は、樹脂複合材料皮膜1中において熱伝導性を発揮するものである。樹脂複合材料皮膜1を構成する複数の無機粒子3は、樹脂複合材料皮膜1の熱伝導性を向上させる観点から、例えば、針状粒子、繊維状粒子、鱗片状粒子、板状粒子、扁平状粒子および不定形状粒子などから選ばれる少なくとも1種で構成される。樹脂複合材料皮膜1を構成する複数の無機粒子3は、針状粒子および繊維状粒子から選ばれる少なくとも1種を含むことがより好ましく、針状粒子を含むことがさらに好ましい。図1に示される例では、無機粒子3が針状粒子であるものと定義している。
[Inorganic particles 3]
The inorganic particles 3 exhibit thermal conductivity in the resin composite material film 1 . From the viewpoint of improving the thermal conductivity of the resin composite material film 1, the plurality of inorganic particles 3 constituting the resin composite material film 1 may be, for example, acicular particles, fibrous particles, scale-like particles, plate-like particles, flat particles, or the like. It is composed of at least one selected from particles, amorphous particles, and the like. The plurality of inorganic particles 3 forming the resin composite film 1 more preferably contains at least one selected from acicular particles and fibrous particles, and more preferably contains acicular particles. In the example shown in FIG. 1, the inorganic particles 3 are defined as acicular particles.
 樹脂複合材料皮膜1を構成する複数の無機粒子3は、アルミナ、炭化ケイ素、窒化ケイ素、チタン酸カリウム、ホウ酸アルミニウム、酸化チタン、炭酸カルシウム、硫酸マグネシウム、硫酸カルシウム、酸化亜鉛、黒鉛、窒化アルミニウム、酸化スズ、窒化ホウ素、雲母、タルク、ベーマイト、ムライト、炭素繊維およびこれらの複合酸化物または混合物から選ばれる少なくとも1種で構成される。 The plurality of inorganic particles 3 constituting the resin composite film 1 are alumina, silicon carbide, silicon nitride, potassium titanate, aluminum borate, titanium oxide, calcium carbonate, magnesium sulfate, calcium sulfate, zinc oxide, graphite, and aluminum nitride. , tin oxide, boron nitride, mica, talc, boehmite, mullite, carbon fiber, and composite oxides or mixtures thereof.
 無機粒子3の短径L32は、0.2μm以上であることが好ましく、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。無機粒子3の短径L32が0.2μm以上であることによって、後述する皮膜形成の工程において、無機粒子3は、樹脂粒子2と、他の無機粒子3と、に強固に密着し、樹脂複合材料皮膜1を機械強度の高い皮膜とすることができる。一方で、無機粒子3の短径L32が0.2μmに満たないと、後述する混合粉末を作製する工程において、無機粒子3の形状が崩れやすく、樹脂複合材料皮膜1を製造する上での実用性を確保できなくなる。また、無機粒子3の短径L32は、20μm以下であることが好ましく、10μm以下であることがより好ましい。無機粒子3の短径L32が20μm以下であることによって、無機粒子3の体積割合が同じ場合では、無機粒子3の短径L32が20μmを超える場合と比べて無機粒子3の本数が多くなるので、面方向D1における無機粒子3間の距離を短くすることができ、樹脂複合材料皮膜1の熱伝導パスを形成しやすくなり、高い放熱性を発揮できる。一方で、無機粒子3の短径L32が20μmを超えると、1つ当たりの無機粒子3が大きいため、樹脂複合材料皮膜1の表面に無機粒子3が露出し易くなり、水滴または油滴などの液滴が、樹脂複合材料皮膜1の表面に露出した無機粒子3のみに付着し、撥水撥油性の高い樹脂粒子2に付着しない場合があり、高い撥水撥油性を確保できなくなる。なお、無機粒子3の短径L32は、走査型電子顕微鏡により観察することで測定が可能である。無機粒子3の短径L32は、十分な数(例えば200個)の無機粒子3を観察して平均値として求めるとよい。 The minor axis L32 of the inorganic particles 3 is preferably 0.2 μm or more, more preferably 0.5 μm or more, and still more preferably 1 μm or more. Since the minor axis L32 of the inorganic particles 3 is 0.2 μm or more, the inorganic particles 3 firmly adhere to the resin particles 2 and the other inorganic particles 3 in the film forming step described later, and the resin composite The material film 1 can be a film with high mechanical strength. On the other hand, if the minor axis L32 of the inorganic particles 3 is less than 0.2 μm, the shape of the inorganic particles 3 is likely to be deformed in the step of producing the mixed powder described later, which is not practical for producing the resin composite film 1. sex cannot be guaranteed. Also, the minor axis L32 of the inorganic particles 3 is preferably 20 μm or less, more preferably 10 μm or less. When the minor axis L32 of the inorganic particles 3 is 20 μm or less, the number of the inorganic particles 3 increases when the volume ratio of the inorganic particles 3 is the same as compared to when the minor axis L32 of the inorganic particles 3 exceeds 20 μm. , the distance between the inorganic particles 3 in the surface direction D1 can be shortened, the heat conduction path of the resin composite material film 1 can be easily formed, and high heat dissipation can be exhibited. On the other hand, when the minor axis L32 of the inorganic particles 3 exceeds 20 μm, the inorganic particles 3 per one are large, so the inorganic particles 3 are likely to be exposed on the surface of the resin composite material film 1, and water droplets, oil droplets, or the like are formed. In some cases, the droplets adhere only to the inorganic particles 3 exposed on the surface of the resin composite film 1 and not to the resin particles 2 having high water and oil repellency, making it impossible to ensure high water and oil repellency. The short diameter L32 of the inorganic particles 3 can be measured by observing with a scanning electron microscope. The minor axis L32 of the inorganic particles 3 may be obtained as an average value by observing a sufficient number (for example, 200) of the inorganic particles 3 .
 無機粒子3のアスペクト比は、10以上であることが好ましく、20以上であることがより好ましい。無機粒子3のアスペクト比が10以上であることによって、後述する皮膜形成の工程において、皮膜表面凹凸1aが形成しやすいため、樹脂複合材料皮膜1の放熱性及び撥水撥油性を向上させることができる。具体的には、アスペクト比を大きくするほど無機粒子3が面方向D1でより細く、膜厚方向D2でより長くなるような細長い形状となるので、無機粒子3の一端が樹脂粒子2により覆われるようにして凸部分12pが形成され、無機粒子3間に凹部分12rが形成される。一方で、無機粒子3のアスペクト比が10に満たないと、樹脂複合材料皮膜1は熱伝導パスを形成しにくいため、高い熱伝導性を確保できなくなる。また、無機粒子3のアスペクト比は、200以下であることが好ましく、150以下であることがより好ましい。無機粒子3のアスペクト比が200以下であることによって、後述する皮膜形成の工程において、無機粒子3が樹脂複合材料皮膜1の膜厚方向D2に配向するため、膜厚方向D2の熱伝導性を高めることができる。一方で、無機粒子3のアスペクト比が200を超えると、後述する混合粉末を作製する工程において、絡み合った無機粒子3が解けにくく、また、形状が安定しないことで樹脂複合材料皮膜1に無機粒子3を均一に分散させることが困難となるので、高い放熱性を確保できなくなる。なお、無機粒子3のアスペクト比は、走査型電子顕微鏡により観察することで測定が可能である。無機粒子3のアスペクト比は、十分な数(例えば200個)の無機粒子3を観察して平均値として求めるとよい。 The aspect ratio of the inorganic particles 3 is preferably 10 or more, more preferably 20 or more. When the aspect ratio of the inorganic particles 3 is 10 or more, the film surface unevenness 1a is easily formed in the film forming step described later, so that the heat dissipation and water and oil repellency of the resin composite film 1 can be improved. can. Specifically, as the aspect ratio increases, the inorganic particles 3 become thinner in the plane direction D1 and elongated in the film thickness direction D2, so that one end of the inorganic particles 3 is covered with the resin particles 2. Thus, convex portions 12p are formed, and concave portions 12r are formed between the inorganic particles 3. As shown in FIG. On the other hand, if the aspect ratio of the inorganic particles 3 is less than 10, it is difficult for the resin composite material film 1 to form a thermal conduction path, and high thermal conductivity cannot be ensured. Also, the aspect ratio of the inorganic particles 3 is preferably 200 or less, more preferably 150 or less. When the aspect ratio of the inorganic particles 3 is 200 or less, the inorganic particles 3 are oriented in the film thickness direction D2 of the resin composite material film 1 in the film forming step described later, so that the thermal conductivity in the film thickness direction D2 is improved. can be enhanced. On the other hand, when the aspect ratio of the inorganic particles 3 exceeds 200, the entangled inorganic particles 3 are difficult to untangle in the step of producing the mixed powder described later, and the shape of the inorganic particles 3 is not stable. Since it becomes difficult to disperse 3 uniformly, high heat dissipation cannot be ensured. In addition, the aspect ratio of the inorganic particles 3 can be measured by observing with a scanning electron microscope. The aspect ratio of the inorganic particles 3 may be determined as an average value by observing a sufficient number (for example, 200) of the inorganic particles 3 .
 無機粒子3の体積割合は、5体積%以上であることが好ましく、10体積%以上であることがより好ましい。無機粒子3の体積割合が5体積%以上であると、アスペクト比の高い無機粒子3によって、皮膜形成の途中において皮膜表面凹凸1aが増幅されやすく、すなわち皮膜表面凹凸1aの二乗平均平方根高さが高くなりやすいので、熱放射性及び撥水撥油性が向上する。一方で、無機粒子3の体積割合が5体積%に満たないと、樹脂複合材料皮膜1の内部において熱伝導パスが形成されにくくなるため、高い放熱性を確保できなくなる。また、無機粒子3の体積割合は、40体積%以下であることが好ましく、35体積%以下であることがより好ましい。無機粒子3の体積割合が40体積%以下であることによって、樹脂粒子2により強固な樹脂皮膜が形成されるため、樹脂複合材料皮膜1は高い機械強度を発揮できる。一方で、無機粒子3の体積割合が40体積%を超えると、樹脂複合材料皮膜1の表面において、樹脂粒子2が占める割合が低下するため、高い撥水撥油性および熱放射性を確保することが難しくなる。なお、無機粒子3の体積割合は、走査型電子顕微鏡による観察から樹脂粒子2の断面積および無機粒子3の断面積を測定することで算出が可能である。無機粒子3の体積割合は、観察位置における一視野から得られる統計量であり、十分な数(例えば10箇所)の異なる位置で測定して平均値として求めるとよい。 The volume ratio of the inorganic particles 3 is preferably 5% by volume or more, more preferably 10% by volume or more. When the volume ratio of the inorganic particles 3 is 5% by volume or more, the inorganic particles 3 having a high aspect ratio tend to amplify the film surface unevenness 1a during film formation, that is, the root mean square height of the film surface unevenness 1a is Since it tends to be high, thermal radiation and water and oil repellency are improved. On the other hand, if the volume ratio of the inorganic particles 3 is less than 5% by volume, it becomes difficult to form a heat conduction path inside the resin composite material film 1, and high heat dissipation cannot be ensured. Moreover, the volume ratio of the inorganic particles 3 is preferably 40% by volume or less, more preferably 35% by volume or less. When the volume ratio of the inorganic particles 3 is 40% by volume or less, a strong resin film is formed by the resin particles 2, so that the resin composite film 1 can exhibit high mechanical strength. On the other hand, when the volume ratio of the inorganic particles 3 exceeds 40% by volume, the ratio of the resin particles 2 on the surface of the resin composite film 1 decreases, so that high water/oil repellency and thermal radiation can be secured. it gets harder. The volume ratio of the inorganic particles 3 can be calculated by measuring the cross-sectional area of the resin particles 2 and the cross-sectional area of the inorganic particles 3 from observation with a scanning electron microscope. The volume ratio of the inorganic particles 3 is a statistic obtained from one field of view at an observation position, and may be measured at a sufficient number of different positions (for example, 10 positions) and calculated as an average value.
 無機粒子3は樹脂複合材料皮膜1の膜厚方向D2に長軸方向が配向していることが望ましい。具体的には、樹脂複合材料皮膜1の面方向D1に対する無機粒子3の長軸の角度が70°以上であることが好ましく、80°以上がさらに好ましい。樹脂複合材料皮膜1の面方向D1に対する無機粒子3の長軸の角度が70°以上であることによって、膜厚方向D2に配向した無機粒子3によって皮膜表面凹凸1aの機械強度が向上するため、樹脂複合材料皮膜1の実用性を高めることができる。一方で、樹脂複合材料皮膜1の面方向D1に対する無機粒子3の長軸の角度が70°に満たない場合では、樹脂複合材料皮膜1の膜厚方向D2の熱伝導性が低下し、高い放熱性を確保できなくなる。 It is desirable that the long axis direction of the inorganic particles 3 is oriented in the film thickness direction D2 of the resin composite film 1 . Specifically, the angle of the long axis of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 is preferably 70° or more, more preferably 80° or more. When the angle of the long axis of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 is 70° or more, the inorganic particles 3 oriented in the film thickness direction D2 improve the mechanical strength of the film surface unevenness 1a. The utility of the resin composite film 1 can be enhanced. On the other hand, when the angle of the long axis of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 is less than 70°, the thermal conductivity of the resin composite material film 1 in the film thickness direction D2 is reduced, resulting in high heat dissipation. sex cannot be guaranteed.
 ここで、無機粒子3が、例えば、厚さが直径よりも小さくなるような円柱状の扁平状粒子である場合、無機粒子3の長軸方向は径方向である。すなわち、無機粒子3がこのような円柱状の扁平状粒子である場合、無機粒子3の径方向が樹脂複合材料皮膜1の膜厚方向D2で、無機粒子3の厚さ方向が樹脂複合材料皮膜1の面方向D1となるように配置される。 Here, when the inorganic particles 3 are, for example, cylindrical flat particles whose thickness is smaller than their diameter, the longitudinal direction of the inorganic particles 3 is the radial direction. That is, when the inorganic particles 3 are such cylindrical flat particles, the radial direction of the inorganic particles 3 is the film thickness direction D2 of the resin composite film 1, and the thickness direction of the inorganic particles 3 is the resin composite film. 1 are arranged in the plane direction D1.
 樹脂複合材料皮膜1の面方向D1に対する無機粒子3の角度は、無機粒子3の粒径と無機粒子3のアスペクト比、無機粒子3の体積割合、後述する皮膜形成の工程条件の選択などによって調整することができる。また、樹脂複合材料皮膜1の面方向D1に対する無機粒子3の角度は、樹脂複合材料皮膜1の膜厚方向D2に平行な断面を、走査型電子顕微鏡により観察することで測定が可能である。 The angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite film 1 is adjusted by selecting the particle size of the inorganic particles 3 and the aspect ratio of the inorganic particles 3, the volume ratio of the inorganic particles 3, and the process conditions for film formation described later. can do. Further, the angle of the inorganic particles 3 with respect to the surface direction D1 of the resin composite material film 1 can be measured by observing a cross section of the resin composite material film 1 parallel to the film thickness direction D2 with a scanning electron microscope.
[樹脂粒子]
 樹脂粒子2は、樹脂粉末の粒子であり、樹脂複合材料皮膜1の撥水撥油性を向上させる観点から、ポリイミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂、アクリル樹脂およびフッ素樹脂から選ばれる少なくとも1種で構成される。樹脂粒子2の粒径は、1μm以上であることが好ましく、より好ましくは5μm以上、さらに好ましくは10μm以上である。樹脂粒子2の粒径が1μm以上であると、後述する皮膜形成の工程において、樹脂粒子2は、樹脂粒子2および無機粒子3と強固に密着されるため、樹脂複合材料皮膜1を機械強度の高い皮膜とすることができる。一方で、樹脂粒子2の粒径が1μm未満であると、後述する混合粉末を作製する工程において、塊となった樹脂粒子2を解すことができず、樹脂複合材料皮膜1に無機粒子3を均一に分散させることが困難であるため、高い放熱性を確保できなくなる。また、樹脂粒子2の粒径は、好ましくは400μm以下であり、より好ましくは100μm以下である。樹脂粒子2の粒径が400μm以下であることによって、樹脂複合材料皮膜1の表面に露出した樹脂粒子2の単位体積当たりの表面積が増大し、樹脂複合材料皮膜1の高い熱放射性を発揮することが可能となる。一方で、樹脂粒子2の粒径が400μmを超えると、皮膜表面凹凸1aが過度に粗大となり、水滴または油滴が皮膜表面凹凸1aの凹部に入り込むことで、高い撥水撥油性を確保できなくなる。さらに、樹脂粒子2の粒径が400μmを超えると、後述する皮膜形成の工程において、樹脂粒子2の樹脂粒子2および無機粒子3との密着性が不十分となり、樹脂複合材料皮膜1の皮膜としての実用性を確保できなくなる。
[Resin particles]
The resin particles 2 are particles of resin powder, and are composed of at least one selected from polyimide resins, polyester resins, polypropylene resins, acrylic resins, and fluorine resins from the viewpoint of improving the water and oil repellency of the resin composite film 1. be done. The particle size of the resin particles 2 is preferably 1 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more. When the particle size of the resin particles 2 is 1 μm or more, the resin particles 2 are firmly adhered to the resin particles 2 and the inorganic particles 3 in the film forming process described later, so that the resin composite material film 1 has a mechanical strength. A high film can be obtained. On the other hand, if the particle size of the resin particles 2 is less than 1 μm, the aggregated resin particles 2 cannot be disassembled in the step of producing the mixed powder described later, and the inorganic particles 3 are not formed in the resin composite film 1. Since it is difficult to disperse them uniformly, high heat dissipation cannot be ensured. Also, the particle diameter of the resin particles 2 is preferably 400 μm or less, more preferably 100 μm or less. When the particle diameter of the resin particles 2 is 400 μm or less, the surface area per unit volume of the resin particles 2 exposed on the surface of the resin composite material film 1 increases, and the resin composite material film 1 exhibits high thermal radiation. becomes possible. On the other hand, if the particle size of the resin particles 2 exceeds 400 μm, the film surface unevenness 1a becomes excessively coarse, and water droplets or oil droplets enter the concave portions of the film surface unevenness 1a, making it impossible to ensure high water and oil repellency. . Furthermore, when the particle size of the resin particles 2 exceeds 400 μm, the adhesion of the resin particles 2 to the resin particles 2 and the inorganic particles 3 becomes insufficient in the process of forming the film, which will be described later. It becomes impossible to ensure the practicality of
 図2は、実施の形態1に係る樹脂複合材料皮膜1の第1変形例を示す模式図である。図1には、樹脂複合材料皮膜1における無機粒子3が針状粒子である場合について図示したが、無機粒子3は、形状に異方性を有していれば、どのような形状でもよい。異方性を有する形状には、糸状又は繊維状といった一方向に長い形状以外に、扁平状が含まれる。図2に示される例では、樹脂複合材料皮膜1が扁平状(例えば、薄い円柱状)の無機粒子3を含む場合が示される。無機粒子3が薄い円柱状の扁平状粒子である場合、断面観察において、無機粒子3は、円形及び長方形といった断面を取り得る。 FIG. 2 is a schematic diagram showing a first modification of the resin composite material film 1 according to Embodiment 1. FIG. Although FIG. 1 illustrates the case where the inorganic particles 3 in the resin composite film 1 are acicular particles, the inorganic particles 3 may have any shape as long as they have anisotropic shape. Shapes having anisotropy include flat shapes in addition to shapes elongated in one direction, such as filamentous or fibrous shapes. The example shown in FIG. 2 shows the case where the resin composite material film 1 contains flat (for example, thin columnar) inorganic particles 3 . When the inorganic particles 3 are thin cylindrical flattened particles, the inorganic particles 3 can have a circular or rectangular cross section in cross-sectional observation.
 以上のように、実施の形態1の樹脂複合材料皮膜1は、母相を構成する複数の樹脂粒子2と、熱伝導性を有する複数の無機粒子3と、を含む樹脂複合材料皮膜1である。無機粒子3は、形状に異方性を有するものであって、膜厚方向D2に配向されている。樹脂複合材料皮膜1の皮膜表面には、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸(皮膜表面凹凸1a)が形成されている。 As described above, the resin composite material film 1 of Embodiment 1 is a resin composite material film 1 containing a plurality of resin particles 2 forming a matrix and a plurality of thermally conductive inorganic particles 3. . The inorganic particles 3 have an anisotropic shape and are oriented in the film thickness direction D2. On the film surface of the resin composite material film 1, surface irregularities (film surface irregularities 1a) having surface roughness with a root-mean-square height of 40 μm or more and 600 μm or less are formed.
 これにより、複数の無機粒子3によって膜厚方向D2の熱伝導性を確保しつつ、表面凹凸により皮膜表面の表面積が増加することで従来よりも高い熱放射性を有するので、放熱性が向上する。そして、表面凹凸は、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有しているので、皮膜表面における放熱性と撥水撥油性とを従来よりも向上させることができる。 As a result, while the thermal conductivity in the film thickness direction D2 is secured by the plurality of inorganic particles 3, the surface area of the film surface is increased by the surface unevenness, so that the film has a higher thermal radiation property than before, thereby improving heat dissipation. Further, since the surface unevenness has a surface roughness with a root mean square height of 40 μm or more and 600 μm or less, the heat dissipation and water/oil repellency of the film surface can be improved more than before.
 また、複数の樹脂粒子2は、ポリイミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂、アクリル樹脂およびフッ素樹脂のうち1種類以上の樹脂を含むものである。これにより、放熱性と撥水撥油性とを向上させた樹脂複合材料皮膜1の母相の選択肢が増える。 Also, the plurality of resin particles 2 contain one or more resins selected from polyimide resin, polyester resin, polypropylene resin, acrylic resin, and fluororesin. This increases options for the matrix phase of the resin composite film 1 with improved heat dissipation and water and oil repellency.
 また、複数の樹脂粒子2の平均粒径は、1μm以上かつ400μm以下である。これにより、製造時に適度な速度で樹脂粒子2を基材9に吹き付けることができるので、凝着により高い機械強度の樹脂複合材料皮膜1を得ることができる。 Also, the average particle size of the plurality of resin particles 2 is 1 μm or more and 400 μm or less. As a result, the resin particles 2 can be sprayed onto the base material 9 at an appropriate speed during production, so that the resin composite material film 1 with high mechanical strength can be obtained by adhesion.
 また、複数の無機粒子3は、アルミナ、炭化ケイ素、窒化ケイ素、チタン酸カリウム、ホウ酸アルミニウム、酸化チタン、炭酸カルシウム、硫酸マグネシウム、硫酸カルシウム、酸化亜鉛、黒鉛、窒化アルミニウム、酸化スズ、窒化ホウ素、雲母、タルク、ベーマイト、ムライト、炭素繊維およびこれらの複合酸化物または混合物のうち少なくとも1種以上で構成されたものである。これにより、放熱性と撥水撥油性とを向上させた樹脂複合材料皮膜1の熱伝導性材料の選択肢が増える。 In addition, the plurality of inorganic particles 3 are alumina, silicon carbide, silicon nitride, potassium titanate, aluminum borate, titanium oxide, calcium carbonate, magnesium sulfate, calcium sulfate, zinc oxide, graphite, aluminum nitride, tin oxide, and boron nitride. , mica, talc, boehmite, mullite, carbon fiber, and composite oxides or mixtures thereof. This increases the options for the thermally conductive material of the resin composite film 1 with improved heat dissipation and water/oil repellency.
 また、無機粒子3は、扁平状または針状の形状を有し、複数の無機粒子3の平均アスペクト比は、10以上かつ200以下である。複数の無機粒子3の平均アスペクト比が10以上であることによって、皮膜形成の途中において、表面凹凸の凸部分に無機粒子3が凝着して皮膜表面凹凸1aが形成され易いので、樹脂複合材料皮膜1の放熱性及び撥水撥油性を向上させることができる。また、複数の無機粒子3の平均アスペクト比が200以下であることによって、皮膜形成の途中において、無機粒子3同士が絡み合うこと、及び無機粒子3が基材9に対して転倒することが回避でき、無機粒子3の配向と分散とにより樹脂複合材料皮膜1の熱伝導性をより高めることができる。 In addition, the inorganic particles 3 have a flat or acicular shape, and the average aspect ratio of the plurality of inorganic particles 3 is 10 or more and 200 or less. When the average aspect ratio of the plurality of inorganic particles 3 is 10 or more, the inorganic particles 3 tend to adhere to the convex portions of the surface unevenness during film formation, and the film surface unevenness 1a is easily formed. The heat dissipation and water/oil repellency of the coating 1 can be improved. In addition, since the average aspect ratio of the plurality of inorganic particles 3 is 200 or less, it is possible to avoid the entanglement of the inorganic particles 3 and the overturning of the inorganic particles 3 with respect to the substrate 9 during film formation. , the orientation and dispersion of the inorganic particles 3 can further enhance the thermal conductivity of the resin composite film 1 .
 また、複数の無機粒子3の平均短径は、0.2μm以上かつ20μm以下である。複数の無機粒子3の平均短径が0.2μm以上であることによって、皮膜形成の工程において、無機粒子3が、樹脂粒子2と、他の無機粒子3と、に強固に密着し、機械強度の高い樹脂複合材料皮膜1が得られる。また、複数の無機粒子3の平均短径が20μm以下であることによって、無機粒子3の本数を多くできるので、樹脂複合材料皮膜1の熱伝導パスを形成しやすくなり、高い放熱性を発揮できる。 In addition, the average short diameter of the plurality of inorganic particles 3 is 0.2 μm or more and 20 μm or less. When the average short diameter of the plurality of inorganic particles 3 is 0.2 μm or more, the inorganic particles 3 firmly adhere to the resin particles 2 and the other inorganic particles 3 in the process of forming the film, and the mechanical strength A resin composite material film 1 having a high In addition, since the number of the inorganic particles 3 can be increased by setting the average short diameter of the plurality of inorganic particles 3 to 20 μm or less, it becomes easier to form a heat conduction path in the resin composite material film 1, and high heat dissipation can be exhibited. .
 また、樹脂複合材料皮膜1は、無機粒子3を5体積%以上かつ40体積%未満含む。無機粒子3の体積割合が5体積%以上であることによって、皮膜形成の途中において皮膜表面凹凸1aの増大が容易となる。また、無機粒子3の体積割合が40体積%未満であることによって、樹脂粒子2の体積割合を確保して樹脂複合材料皮膜1の機械強度を高めることができる。 In addition, the resin composite film 1 contains 5% by volume or more and less than 40% by volume of the inorganic particles 3 . When the volume ratio of the inorganic particles 3 is 5% by volume or more, it becomes easy to increase the film surface unevenness 1a during film formation. In addition, when the volume ratio of the inorganic particles 3 is less than 40% by volume, the volume ratio of the resin particles 2 can be ensured and the mechanical strength of the resin composite film 1 can be increased.
 また、無機粒子3は、面方向D1に対して長軸が70°以上傾斜するように配向されている。これにより、膜厚方向D2に配向した無機粒子3によって皮膜表面凹凸1aの機械強度が向上するので、樹脂複合材料皮膜1の実用性を高めることができる。 In addition, the inorganic particles 3 are oriented so that their long axes are inclined by 70° or more with respect to the surface direction D1. As a result, the mechanical strength of the coating surface unevenness 1a is improved by the inorganic particles 3 oriented in the film thickness direction D2, so that the practicality of the resin composite material coating 1 can be enhanced.
 また、樹脂複合材料皮膜1は、基材9上に設けられており、表面凹凸(皮膜表面凹凸1a)が形成された皮膜表面は、基材9の側の面(第1面11)とは反対側の面(第2面12)である。そして、表面凹凸の凸部分12pは、配向された無機粒子3の少なくとも一部分と、一部分を覆うように配されて凸部分12pの表面を構成する複数の樹脂粒子2と、を有する。 In addition, the resin composite film 1 is provided on the base material 9, and the surface of the film on which the surface unevenness (film surface unevenness 1a) is formed is different from the surface on the side of the base material 9 (first surface 11). It is the opposite surface (second surface 12). The convex portion 12p of the uneven surface has at least a portion of the oriented inorganic particles 3 and a plurality of resin particles 2 that are arranged to cover a portion of the convex portion 12p and constitute the surface of the convex portion 12p.
 これにより、空気と接する表面の付近まで無機粒子3が配され、かつ無機粒子3を覆う複数の樹脂粒子2により放射面積が増す。よって、樹脂複合材料皮膜1の熱伝導性と熱放射性とを更に高めることができる。 As a result, the inorganic particles 3 are arranged up to the vicinity of the surface in contact with the air, and the radiation area is increased by the plurality of resin particles 2 covering the inorganic particles 3. Therefore, the thermal conductivity and thermal radiation of the resin composite film 1 can be further enhanced.
 また、複数の無機粒子3は、母相中において面方向D1および膜厚方向D2で分散するように配置されている。これにより、樹脂複合材料皮膜1の全体に無機粒子3が分散することで、各無機粒子3からの放熱を効率的に行うことができ、樹脂複合材料皮膜1の放熱性を更に高めることができる。 In addition, the plurality of inorganic particles 3 are arranged so as to be dispersed in the surface direction D1 and the film thickness direction D2 in the matrix. As a result, the inorganic particles 3 are dispersed throughout the resin composite material film 1, so that heat can be efficiently dissipated from each inorganic particle 3, and the heat dissipation property of the resin composite material film 1 can be further enhanced. .
実施の形態2.
 実施の形態2は、樹脂複合材料皮膜1の製造方法に関するものである。図3は、実施の形態2に係る樹脂複合材料皮膜1の製造工程を示す図である。
Embodiment 2.
Embodiment 2 relates to a method for manufacturing the resin composite material film 1 . FIG. 3 is a diagram showing a manufacturing process of the resin composite material film 1 according to Embodiment 2. As shown in FIG.
 樹脂複合材料皮膜1の製造方法は、樹脂粒子2と無機粒子3とを含む混合粉末を作製する第1工程(ステップST101~ステップST103)と、この混合粉末を基材9に吹き付けて樹脂複合材料皮膜1を形成する第2工程(ステップST104~ステップST105)と、を含む。 The method for producing the resin composite material film 1 includes a first step (steps ST101 to ST103) of producing a mixed powder containing the resin particles 2 and the inorganic particles 3, and spraying the mixed powder on the substrate 9 to produce the resin composite material. and a second step of forming the film 1 (steps ST104 to ST105).
 第1工程の一例を示す。第1工程では、樹脂粒子2を含む粉末と、無機粒子3を含む粉末と、をそれぞれ設定された量となるように計量して(ステップST101~ステップST102)蓋つき容器に移し入れ、十分な時間(例えば10分)攪拌を行うことで樹脂粒子2と無機粒子3とを含む混合粉末を得る(ステップST103)。ここで、樹脂粒子2を含む粉末の量および無機粒子3を含む粉末の量は、例えば、製造後の樹脂複合材料皮膜1において無機粒子3の体積割合が予め決められた体積割合(例えば、5体積%以上かつ40体積%未満)となるように、予め質量比を決めておくとよい。以下、混合粉末に含まれる樹脂粒子2および無機粒子3を区別せずに呼称する場合に、混合粉末に含まれる樹脂粒子2および無機粒子3を混合粉末粒子と定義する。なお、混合粉末を作製する第1工程は、上記の場合に限定されない。 An example of the first step is shown. In the first step, the powder containing the resin particles 2 and the powder containing the inorganic particles 3 are each weighed to a set amount (steps ST101 to ST102) and transferred to a container with a lid. A mixed powder containing resin particles 2 and inorganic particles 3 is obtained by stirring for a period of time (for example, 10 minutes) (step ST103). Here, the amount of the powder containing the resin particles 2 and the amount of the powder containing the inorganic particles 3 are, for example, a predetermined volume ratio (for example, 5 % by volume and less than 40% by volume). Hereinafter, when the resin particles 2 and the inorganic particles 3 contained in the mixed powder are referred to without distinction, the resin particles 2 and the inorganic particles 3 contained in the mixed powder are defined as mixed powder particles. In addition, the 1st process which produces mixed powder is not limited to said case.
 第2工程の一例を紹介する。第2工程では、基材9を準備し、第1工程で製作した混合粉末を基材9に吹き付けることにより(ステップST104~ステップST105)、基材9の表面に樹脂複合材料皮膜1を形成する。例えば、基材9の表面と垂直な方向から混合粉末を吹き付ける。混合粉末を基材9に吹き付けることにより、混合粉末粒子が基材9に衝突して凝着し、基材9に凝着した混合粉末粒子の上に、さらに混合粉末を吹き付けることにより、混合粉末粒子が衝突して凝着することによって樹脂複合材料皮膜1が形成される。混合粉末を吹き付ける過程で、無機粒子3は分散し、また、無機粒子3は空気抵抗の最も小さい方向、つまり無機粒子3の長軸方向が混合粉末の吹き付ける方向となるように配向する。これにより、樹脂複合材料皮膜1に分散した無機粒子3は皮膜の形成方向に配向した構成となる。樹脂粒子2と無機粒子3とは異なる粒子であり、形状が互いに異なるので、混合粉末の吹き付けを行っている最中の樹脂複合材料皮膜1の表面には微細な表面凹凸が生じる。混合粉末の吹き付けを行っている最中に形成される、樹脂複合材料皮膜1の微細な表面凹凸の凸部分には、吹き付けられた混合粉末粒子が衝突して凝着しやすい。一方で、微細な表面凹凸の凹部分には、吹き付けられた混合粉末粒子が衝突しにくく、かつ、凝着しにくい。そのため、混合粉末の吹き付けを行っている最中に、樹脂複合材料皮膜1の微細な表面凹凸は増大し、粗大な皮膜表面凹凸1aが形成される。 I will introduce an example of the second process. In the second step, the base material 9 is prepared, and the mixed powder produced in the first step is sprayed onto the base material 9 (steps ST104 to ST105) to form the resin composite material film 1 on the surface of the base material 9. . For example, the mixed powder is sprayed from a direction perpendicular to the surface of the substrate 9 . By spraying the mixed powder onto the base material 9, the mixed powder particles collide with and adhere to the base material 9, and by further spraying the mixed powder onto the mixed powder particles adhered to the base material 9, the mixed powder The resin composite material film 1 is formed by the particles colliding and adhering. In the process of spraying the mixed powder, the inorganic particles 3 are dispersed, and the inorganic particles 3 are oriented so that the direction of the least air resistance, that is, the longitudinal direction of the inorganic particles 3, is the direction in which the mixed powder is sprayed. As a result, the inorganic particles 3 dispersed in the resin composite film 1 are oriented in the direction in which the film is formed. Since the resin particles 2 and the inorganic particles 3 are different particles and have different shapes, fine surface irregularities are generated on the surface of the resin composite material film 1 while the mixed powder is being sprayed. The sprayed mixed powder particles are likely to collide and adhere to the convex portions of the fine surface irregularities of the resin composite material film 1 formed during the spraying of the mixed powder. On the other hand, the sprayed mixed powder particles are less likely to collide with and adhere to the recessed portions of the fine surface unevenness. Therefore, while the mixed powder is being sprayed, the fine surface unevenness of the resin composite material film 1 increases, and coarse film surface unevenness 1a is formed.
 混合粉末を基材9に吹き付ける際には、コールドスプレー法による吹き付けを行うコールドスプレー装置が用いられる。コールドスプレー法は、コールドスプレー用粉末を溶融温度以下の固相状態で基材9へ衝突させ、皮膜を形成する技術である。ここでは、コールドスプレー用材料粉末に混合粉末が用いられる。コールドスプレー法による皮膜形成は、市販の低圧コールドスプレー装置、例えばプラズマ技研工業株式会社製のPCS-1000などを用いて行うことができる。コールドスプレー法は溶射の一種と分類されるが、熱エネルギーにより材料粒子を溶かして吹き付ける従来の溶射法と比較すると、材料粒子を溶融させず、主に運動エネルギーで皮膜を形成するという点で、大きな違いがある。 When spraying the mixed powder onto the base material 9, a cold spray device is used for spraying by the cold spray method. The cold spray method is a technique of forming a film by colliding cold spray powder against the substrate 9 in a solid state below the melting temperature. Here, a mixed powder is used as the material powder for cold spray. Film formation by the cold spray method can be carried out using a commercially available low-pressure cold spray device such as PCS-1000 manufactured by Plasma Giken Kogyo Co., Ltd. The cold spray method is classified as a type of thermal spraying, but compared to the conventional thermal spraying method in which material particles are melted by thermal energy and sprayed, the material particles are not melted and the film is formed mainly by kinetic energy. There is a big difference.
 コールドスプレー法では混合粉末を固相状態で基材9へ衝突させるので、従来のように材料粒子を溶かして吹き付ける溶射法では使用できなかった結晶を用いて、樹脂複合材料皮膜1に熱伝導性を付与することができる。つまり、コールドスプレー法では混合粉末を溶融させないので、無機粒子3としては、熱伝導性を有する材質だけでなく、結晶構造を有することで熱伝導性を発揮するものも選択できる。 In the cold spray method, the mixed powder is collided with the base material 9 in a solid phase state. can be given. In other words, since the mixed powder is not melted in the cold spray method, the inorganic particles 3 can be selected not only from materials having thermal conductivity but also from those that exhibit thermal conductivity due to having a crystalline structure.
 材料粒子すなわち混合粉末粒子が基材9に衝突して凝着するには、吹き付け速度として、臨界速度Vcr(Critical Velocity)を超える速度が必要である。吹き付け速度が臨界速度Vcr以下では、基材9に皮膜が形成されず、基材9がエロージョン摩耗し、基材9に小さなクレーター状のくぼみが形成される。一方、吹き付け速度が臨界速度Vcrを超えると、材料粒子が基材9に衝突する際、材料粒子と基材9との界面付近で塑性変形が生じる。この衝突および変形により、界面付近では温度が上昇し、外に向かって膜状のジェットが押し出される。これらの過程で、材料粒子と基材9との間、および材料粒子と皮膜界面との間に固相接合が生じ、皮膜が形成されるとされている。吹き付け速度が臨界速度Vcrを超える場合、材料粒子の熱変質を抑えることもできる。 In order for the material particles, that is, the mixed powder particles to collide and adhere to the base material 9, a blowing velocity exceeding the critical velocity Vcr (Critical Velocity) is required. If the spraying speed is less than the critical speed Vcr, no film is formed on the base material 9, the base material 9 is erosion-weared, and small crater-like depressions are formed in the base material 9. On the other hand, if the spray speed exceeds the critical speed Vcr, plastic deformation occurs near the interface between the material particles and the substrate 9 when the material particles collide with the substrate 9 . Due to this collision and deformation, the temperature rises near the interface and a film-like jet is pushed outward. It is said that in these processes, solid-phase bonding occurs between the material particles and the substrate 9 and between the material particles and the coating interface to form the coating. If the blowing speed exceeds the critical speed Vcr, thermal alteration of the material particles can also be suppressed.
 本開示の樹脂複合材料皮膜1の製造方法は、前述のコールドスプレー装置を用いたコールドスプレー法に限定されるものではなく、実施の形態1の構造を有する樹脂複合材料皮膜1が形成できれば他の装置及び製造方法を用いても良い。しかし、樹脂複合材料皮膜1は、低圧型のコールドスプレー装置を用いて、基材9にコールドスプレー用粉末を吹き付けて形成することが好ましい。低圧型のコールドスプレー装置を用いることで、無機粒子3の長軸を皮膜の形成方向に配向できることが利点として挙げられる。また、液剤塗布型コーティング皮膜に比較して、粉末状の樹脂粒子2を用いることで、樹脂粒子2の形状に由来した微細な表面凹凸を形成し、高い撥水撥油性および高い放熱性を発揮することができる。高圧型のコールドスプレー装置を用いた場合、混合粉末粒子が吹き付けられる際の衝撃が強くなり、皮膜表面凹凸1aが脱落するため、良好な皮膜を形成できない。 The method for producing the resin composite material film 1 of the present disclosure is not limited to the cold spray method using the cold spray apparatus described above, and other Apparatus and manufacturing methods may be used. However, the resin composite film 1 is preferably formed by spraying powder for cold spray onto the substrate 9 using a low-pressure cold spray device. An advantage of using a low-pressure cold spray apparatus is that the long axes of the inorganic particles 3 can be oriented in the film formation direction. In addition, compared to a liquid coating type coating film, by using powdered resin particles 2, fine surface irregularities derived from the shape of the resin particles 2 are formed, and high water and oil repellency and high heat dissipation are exhibited. can do. When a high-pressure type cold spray apparatus is used, the impact when the mixed powder particles are sprayed becomes strong, and the irregularities 1a on the surface of the coating fall off, so that a good coating cannot be formed.
 また、第2工程のように混合粉末を基材9に吹き付けて樹脂複合材料皮膜1を形成することにより、複数の無機粒子3が樹脂複合材料皮膜1の面方向D1だけでなく膜厚方向D2にもが分散された構成が、容易に得られる。従来のように熱伝導性の材料を静電植毛して配置する製造方法では、熱伝導性の材料が樹脂複合材料皮膜の膜厚方向D2には分散されない。 In addition, by spraying the mixed powder onto the base material 9 to form the resin composite material film 1 as in the second step, the plurality of inorganic particles 3 are dispersed not only in the surface direction D1 of the resin composite material film 1 but also in the film thickness direction D2. A distributed configuration is easily obtained. In the conventional manufacturing method of electrostatically flocking and arranging a thermally conductive material, the thermally conductive material is not dispersed in the film thickness direction D2 of the resin composite film.
 図4は、実施の形態2に係る樹脂複合材料皮膜1の製造に用いるコールドスプレー装置4を示す概略図である。図4中、破線矢印はキャリアガスの流れ方向を表し、一点鎖線矢印は混合粉末の流れ方向を表す。また、図4中、実線矢印は、成膜方向を表す。図4に示されるコールドスプレー装置4は、ガス供給口5と、ヒーター6と、粉末供給部7と、ノズル8と、を有している。コールドスプレー装置4は、ガス供給口5から供給される加圧されたキャリアガスをヒーター6で加熱し、粉末供給部7から供給される混合粉末に含まれる樹脂粒子2および無機粒子3と共に、ノズル8の先端から基材9に向けて噴射し、基材9上に樹脂複合材料皮膜1を形成する。低圧型のコールドスプレー装置4は、キャリアガスの圧力が1Mpa以下であるものを指す。 FIG. 4 is a schematic diagram showing a cold spray device 4 used for manufacturing the resin composite material film 1 according to Embodiment 2. FIG. In FIG. 4, the dashed line arrow represents the flow direction of the carrier gas, and the dashed-dotted line arrow represents the flow direction of the mixed powder. Further, in FIG. 4, solid line arrows indicate film formation directions. A cold spray device 4 shown in FIG. 4 has a gas supply port 5 , a heater 6 , a powder supply section 7 and a nozzle 8 . The cold spray device 4 heats the pressurized carrier gas supplied from the gas supply port 5 with the heater 6, and the resin particles 2 and the inorganic particles 3 contained in the mixed powder supplied from the powder supply unit 7, together with the nozzle 8 toward the base material 9 to form the resin composite material film 1 on the base material 9 . The low-pressure cold spray device 4 refers to one having a carrier gas pressure of 1 Mpa or less.
 キャリアガスを加熱する際の温度は、100℃以上、且つ500℃以下であることが好ましい。この温度が100℃未満であると、樹脂粒子2および無機粒子3の基材9への付着率が低くなるため、好ましくない。温度が500℃を超えると、樹脂粒子2が溶解し、防汚性が劣化するため好ましくない。また、キャリアガスの圧力は、0.2MPa以上、0.8MPa以下であることが好ましい。キャリアガスの圧力が0.2MPa未満であると、基材9と基材9上に形成された樹脂複合材料皮膜1との密着力が十分得られないため好ましくない。キャリアガスの圧力が0.8MPaを超えることは、装置上、実現困難であるため好ましくない。 The temperature when heating the carrier gas is preferably 100°C or higher and 500°C or lower. If this temperature is less than 100° C., the rate of adhesion of the resin particles 2 and the inorganic particles 3 to the substrate 9 will be low, which is not preferable. If the temperature exceeds 500° C., the resin particles 2 are dissolved and the antifouling property is deteriorated, which is not preferable. Moreover, the pressure of the carrier gas is preferably 0.2 MPa or more and 0.8 MPa or less. If the pressure of the carrier gas is less than 0.2 MPa, sufficient adhesion between the base material 9 and the resin composite material film 1 formed on the base material 9 cannot be obtained, which is not preferable. It is not preferable for the pressure of the carrier gas to exceed 0.8 MPa because it is difficult to implement in terms of equipment.
 樹脂複合材料皮膜1の形成において、樹脂粒子2の粒径と、無機粒子3の短径L32と、は混合粉末粒子の吹き付け速度に影響を及ぼす。 In the formation of the resin composite material film 1, the particle size of the resin particles 2 and the short diameter L32 of the inorganic particles 3 affect the spraying speed of the mixed powder particles.
 樹脂粒子2の粒径は、1μm以上であることが好ましく、より好ましくは5μm以上、さらに好ましくは10μm以上である。樹脂粒子2の粒径が1μm以上であることによって、樹脂粒子2の運動量が大きく、減速しにくいため、樹脂粒子2の吹き付け速度は臨界速度Vcrを上回り、樹脂複合材料皮膜1は高い機械強度を発揮できる。一方で、樹脂粒子2の粒径が1μm未満であると、第1工程において、塊状の樹脂粒子2を解すことができず、無機粒子3との混合が十分に行えないため、第2工程においても樹脂複合材料皮膜1に無機粒子3を均一に分散させることができない。また、樹脂粒子2の粒径は、400μm以下であることが好ましく、100μm以下であることがより好ましい。樹脂粒子2の粒径が400μmを超えると、樹脂粒子2はキャリアガスによる加速がされにくく、樹脂粒子2の吹き付け速度が臨界速度Vcrを下回り、樹脂複合材料皮膜1の機械強度を確保できない。 The particle diameter of the resin particles 2 is preferably 1 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more. When the particle size of the resin particles 2 is 1 μm or more, the momentum of the resin particles 2 is large and it is difficult to decelerate. I can do it. On the other hand, if the particle size of the resin particles 2 is less than 1 μm, the aggregated resin particles 2 cannot be disintegrated in the first step and cannot be sufficiently mixed with the inorganic particles 3. Therefore, in the second step, Also, the inorganic particles 3 cannot be uniformly dispersed in the resin composite film 1 . Also, the particle size of the resin particles 2 is preferably 400 μm or less, more preferably 100 μm or less. When the particle diameter of the resin particles 2 exceeds 400 μm, the resin particles 2 are difficult to be accelerated by the carrier gas, the spraying speed of the resin particles 2 is below the critical speed Vcr, and the mechanical strength of the resin composite film 1 cannot be ensured.
 無機粒子3の短径L32は、0.2μm以上であることが好ましく、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。無機粒子3の短径L32が0.2μm以上であることによって、無機粒子3はキャリアガスの加速により大きな運動量を得ることができ、基材9の表面に形成されるキャリアガスの速度境界層においても減速しにくいため、吹き付け速度は臨界速度Vcrを上回り、樹脂複合材料皮膜1は高い機械強度を発揮できる。一方で、無機粒子3の短径L32が0.2μm未満であると、第1工程において混合粉末を攪拌する際に、無機粒子3の形状が崩れやすく、樹脂複合材料皮膜1を製造する上での実用性を確保できなくなる。 The minor axis L32 of the inorganic particles 3 is preferably 0.2 μm or more, more preferably 0.5 μm or more, and still more preferably 1 μm or more. When the minor axis L32 of the inorganic particles 3 is 0.2 μm or more, the inorganic particles 3 can obtain a large momentum due to the acceleration of the carrier gas. Since it is difficult to decelerate, the spraying speed exceeds the critical speed Vcr, and the resin composite material film 1 can exhibit high mechanical strength. On the other hand, if the minor axis L32 of the inorganic particles 3 is less than 0.2 μm, the shape of the inorganic particles 3 is likely to be deformed when the mixed powder is stirred in the first step. It becomes impossible to ensure the practicality of
 樹脂複合材料皮膜1の形成において、無機粒子3のアスペクト比は、無機粒子3の配向性に影響を及ぼす。無機粒子3のアスペクト比は、10以上であることが好ましく、20以上であることがより好ましい。無機粒子3のアスペクト比が10以上であることによって、皮膜の形成途中において、アスペクト比が高い無機粒子3が樹脂複合材料皮膜1の表面に凝着し、皮膜表面凹凸1aが形成しやすいため、樹脂複合材料皮膜1の放熱性及び撥水撥油性を向上できる。また、無機粒子3のアスペクト比は、200以下であることが好ましく、150以下であることがより好ましい。無機粒子3のアスペクト比が200以下であることによって、皮膜形成の途中において、無機粒子3が基材9に衝突した際に転倒することなく、配向した状態で樹脂複合材料皮膜1を形成するため、高い熱伝導性を発揮できる。一方で、無機粒子3のアスペクト比が200を超えると、第1工程において混合粉末を攪拌する際に、絡み合った無機粒子3が解けにくく、樹脂複合材料皮膜1に無機粒子3を均一に分散させることができない。 In the formation of the resin composite material film 1, the aspect ratio of the inorganic particles 3 affects the orientation of the inorganic particles 3. The aspect ratio of the inorganic particles 3 is preferably 10 or more, more preferably 20 or more. When the aspect ratio of the inorganic particles 3 is 10 or more, the inorganic particles 3 having a high aspect ratio adhere to the surface of the resin composite material film 1 during film formation, and the film surface irregularities 1a are easily formed. The heat dissipation and water/oil repellency of the resin composite film 1 can be improved. Also, the aspect ratio of the inorganic particles 3 is preferably 200 or less, more preferably 150 or less. Since the aspect ratio of the inorganic particles 3 is 200 or less, the resin composite material film 1 is formed in an oriented state without overturning when the inorganic particles 3 collide with the substrate 9 during film formation. , can exhibit high thermal conductivity. On the other hand, when the aspect ratio of the inorganic particles 3 exceeds 200, the entangled inorganic particles 3 are difficult to unravel when the mixed powder is stirred in the first step, and the inorganic particles 3 are uniformly dispersed in the resin composite film 1. I can't.
 以下、実施例および比較例により本開示の詳細を説明するが、これらによって本開示の内容が限定されるものではない。 The details of the present disclosure will be described below with reference to examples and comparative examples, but the content of the present disclosure is not limited by these.
(共通条件)
 ここで、実施例および比較例のいずれにおいても共通の条件について説明する。基材9としては、JIS H4000に規定する合金番号がA3003のアルミニウムからなる板厚2mmのアルミニウム板を用いた。
(common conditions)
Here, conditions common to both the examples and the comparative examples will be described. As the substrate 9, an aluminum plate with a plate thickness of 2 mm made of aluminum with an alloy number of A3003 defined in JIS H4000 was used.
 実施例および比較例のそれぞれの条件、並びに面方向D1に対する無機粒子3の角度及び皮膜表面凹凸1aの二乗平均平方根高さの測定結果を、表1に示す。形成された樹脂複合材料皮膜1の断面観察には、走査型電子顕微鏡(株式会社日立ハイテク製;SU3800)が使用され、また、形成された樹脂複合材料皮膜1の表面観察には、レーザー顕微鏡(オリンパス株式会社製;LEXT(登録商標)OLS5100)が使用された。 Table 1 shows the conditions of Examples and Comparative Examples, the angle of the inorganic particles 3 with respect to the plane direction D1, and the root mean square height of the film surface irregularities 1a. A scanning electron microscope (manufactured by Hitachi High-Tech Co., Ltd.; SU3800) is used for cross-sectional observation of the formed resin composite material film 1, and a laser microscope ( Olympus Corporation; LEXT (registered trademark) OLS5100) was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1>
 表1の「実施例1」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、エムテック化学株式会社製PTFE(ポリテトラフルオロエチレン)粉末HMP-30を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と無機粒子3とを混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 1>
In "Example 1" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, the volume ratio of the inorganic particles 3, indicates As the resin particles 2, PTFE (polytetrafluoroethylene) powder HMP-30 manufactured by Mtech Chemical Co., Ltd. was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. A mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例2>
 実施例2は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス温度と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例2」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9202Zを用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP20を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度200℃、ガス圧0.45MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 2>
In Example 2, the resin particles 2 constituting the resin composite material film 1, the inorganic particles 3, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 , are different from the first embodiment, and the rest is the same as the first embodiment. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3, which are shown in "Example 2" in Table 1 A ratio and a were used. As the resin particles 2, Dynion (registered trademark) TF9202Z manufactured by 3M was used. As the inorganic particles 3, alumina filler AP20 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 200° C. and a gas pressure of 0.45 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例3>
 実施例3は、樹脂複合材料皮膜1を構成する樹脂粒子2と、樹脂複合材料皮膜1を形成する際のガス温度と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例3」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、エムテック化学株式会社製PTFE粉末HMP-70を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度400℃、ガス圧0.55MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 3>
In Example 3, the resin particles 2 constituting the resin composite material film 1, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 are different from those of Example 1. , and the others are the same as those of the first embodiment. That is, in "Example 3" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, PTFE powder HMP-70 manufactured by Mtech Chemical Co., Ltd. was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 400° C. and a gas pressure of 0.55 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例4>
 実施例4は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例4」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、PolySciences社製PTFE粉末Microdispers-3000を用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP20を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 4>
Example 4 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from Example 1. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3 shown in "Example 4" in Table 1 A ratio and a were used. As the resin particles 2, PTFE powder Microdispers-3000 manufactured by PolySciences was used. As the inorganic particles 3, alumina filler AP20 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例5>
 実施例5は、樹脂複合材料皮膜1を構成する樹脂粒子2が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例5」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、AGC株式会社製Fluon(登録商標)G350を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 5>
Example 5 is the same as Example 1 except that the resin particles 2 forming the resin composite material film 1 are different from those of Example 1. That is, in "Example 5" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, Fluon (registered trademark) G350 manufactured by AGC Co., Ltd. was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例6>
 実施例6は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例6」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、エムテック化学株式会社製PTFE粉末HMP-50を用いた。無機粒子3には、昭和電工株式会社製窒化ホウ素フィラーUHP-2を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 6>
Example 6 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 that constitute the resin composite film 1 are different from those of Example 1. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3 shown in "Example 6" in Table 1 A ratio and a were used. As the resin particles 2, PTFE powder HMP-50 manufactured by Mtech Chemical Co., Ltd. was used. As the inorganic particles 3, boron nitride filler UHP-2 manufactured by Showa Denko K.K. was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例7>
 実施例7は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例7」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、PolySciences社製PTFE粉末Microdispers-3000を用いた。無機粒子3には、タテホ化学工業株式会社製窒化炭化ケイ素ウィスカーSilar(登録商標)SCWを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 7>
Example 7 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1 are different from those of Example 1. That is, the particle size of the resin particles 2 constituting the resin composite material film 1, the minor diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume of the inorganic particles 3 shown in "Example 7" in Table 1 A ratio and a were used. As the resin particles 2, PTFE powder Microdispers-3000 manufactured by PolySciences was used. Silicon carbide nitride whisker Silar (registered trademark) SCW manufactured by Tateho Chemical Industry Co., Ltd. was used as the inorganic particles 3 . Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例8>
 実施例8は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例8」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、AGC株式会社製Fluon(登録商標)G163を用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP10を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.4MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 8>
Example 8 is different from Example 1 in the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1, and the gas pressure when forming the resin composite material film 1. Same as Example 1. That is, in "Example 8" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, Fluon (registered trademark) G163 manufactured by AGC Co., Ltd. was used. As the inorganic particles 3, alumina filler AP10 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.4 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例9>
 実施例9は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例9」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、AGC株式会社製Fluon(登録商標)G190を用いた。無機粒子3には、河合石灰工業株式会社製ベーマイトフィラーBMF-920を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.6MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 9>
Example 9 is different from Example 1 in the resin particles 2 and inorganic particles 3 constituting the resin composite material film 1, and the gas pressure when forming the resin composite material film 1. Same as Example 1. That is, in "Example 9" of Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, Fluon (registered trademark) G190 manufactured by AGC Co., Ltd. was used. For the inorganic particles 3, boehmite filler BMF-920 manufactured by Kawai Lime Industry Co., Ltd. was used. A mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.6 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例10>
 実施例10は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3の体積割合と、樹脂複合材料皮膜1を形成する際のガス温度と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例10」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9205を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度250℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 10>
Example 10 differs from Example 1 in the volume ratio of the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1, and the gas temperature when forming the resin composite material film 1. Others are the same as the first embodiment. That is, in "Example 10" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, Dynion (registered trademark) TF9205 manufactured by 3M was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. A mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 250° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例11>
 実施例11は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス温度と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例11」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9201Zを用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP20を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度350℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 11>
Example 11 is different from Example 1 in the resin particles 2 and inorganic particles 3 constituting the resin composite material film 1, and the gas temperature when forming the resin composite material film 1. Same as Example 1. That is, in "Example 11" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, Dynion (registered trademark) TF9201Z manufactured by 3M Corporation was used. As the inorganic particles 3, alumina filler AP20 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 350° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例12>
 実施例12は、樹脂複合材料皮膜1を構成する樹脂粒子2と、樹脂複合材料皮膜1を形成する際のガス温度と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。つまり、表1の「実施例12」に、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を示す。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9207Zを用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度350℃、ガス圧0.7MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 12>
In Example 12, the resin particles 2 constituting the resin composite material film 1, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 are different from those of Example 1. , and the others are the same as those of the first embodiment. That is, in "Example 12" in Table 1, the particle size of the resin particles 2 constituting the resin composite film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 and indicate. As the resin particles 2, Dynion (registered trademark) TF9207Z manufactured by 3M was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 350° C. and a gas pressure of 0.7 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例13>
 実施例13は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例13」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、エムテック化学株式会社製PTFE粉末HMP-50を用いた。無機粒子3には、昭和電工株式会社製窒化ホウ素フィラーUHP-1Kを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 13>
Example 13 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from Example 1. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 13" in Table 1. , was used. As the resin particles 2, PTFE powder HMP-50 manufactured by Mtech Chemical Co., Ltd. was used. As the inorganic particles 3, boron nitride filler UHP-1K manufactured by Showa Denko K.K. was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the plane direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例14>
 実施例14は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例14」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、PolySciences社製PTFE粉末Microdispers-3000を用いた。無機粒子3には、タテホ化学工業株式会社製窒化ケイ素ウィスカーNCWを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 14>
Example 14 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from Example 1. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 14" in Table 1. , was used. As the resin particles 2, PTFE powder Microdispers-3000 manufactured by PolySciences was used. As the inorganic particles 3, silicon nitride whiskers NCW manufactured by Tateho Chemical Industry Co., Ltd. were used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例15>
 実施例15は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例15」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、AGC株式会社製Fluon(登録商標)G163を用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP05を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.4MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 15>
Example 15 differs from Example 1 in the resin particles 2, the inorganic particles 3, and the gas pressure used to form the resin composite material film 1, which constitute the resin composite film 1. Same as Example 1. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 15" in Table 1. , was used. As the resin particles 2, Fluon (registered trademark) G163 manufactured by AGC Co., Ltd. was used. As the inorganic particles 3, alumina filler AP05 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.4 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例16>
 実施例16は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例16」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、AGC株式会社製Fluon(登録商標)G190を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーFlakes CFF 200-15を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.6MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 16>
Example 16 differs from Example 1 in the resin particles 2, the inorganic particles 3, and the gas pressure used to form the resin composite material film 1, which constitute the resin composite film 1. Same as Example 1. The particle size of the resin particles 2, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3, which constitute the resin composite film 1, shown in "Example 16" in Table 1. , was used. As the resin particles 2, Fluon (registered trademark) G190 manufactured by AGC Co., Ltd. was used. As the inorganic particles 3, a boron nitride filler Flakes CFF 200-15 manufactured by 3M was used. A mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.6 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例17>
 実施例17は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス温度と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例17」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9205を用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP20を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度250℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 17>
Example 17 differs from Example 1 in the resin particles 2, the inorganic particles 3, and the gas temperature used to form the resin composite material film 1, which constitute the resin composite film 1. Same as Example 1. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 17" in Table 1. , was used. As the resin particles 2, Dynion (registered trademark) TF9205 manufactured by 3M was used. As the inorganic particles 3, alumina filler AP20 manufactured by DIC Corporation was used. A mixed powder obtained by mixing resin particles 2 and inorganic particles 3 was used to form a resin composite material film 1 on a substrate 9 by cold spraying at a gas temperature of 250° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例18>
 実施例18は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3の体積割合と、樹脂複合材料皮膜1を形成する際のガス温度と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例18」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9201Zを用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度350℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 18>
Example 18 differs from Example 1 in the volume ratio of the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1, and the gas temperature when forming the resin composite material film 1. Others are the same as the first embodiment. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 18" in Table 1. , was used. As the resin particles 2, Dynion (registered trademark) TF9201Z manufactured by 3M Corporation was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 350° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<実施例19>
 実施例19は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス温度と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「実施例19」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9207Zを用いた。無機粒子3には、タテホ化学工業株式会社製窒化ケイ素ウィスカーNCWを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度400℃、ガス圧0.7MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Example 19>
In Example 19, the resin particles 2 constituting the resin composite material film 1, the inorganic particles 3, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 , are different from the first embodiment, and the rest is the same as the first embodiment. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Example 19" in Table 1. , was used. As the resin particles 2, Dynion (registered trademark) TF9207Z manufactured by 3M was used. As the inorganic particles 3, silicon nitride whiskers NCW manufactured by Tateho Chemical Industry Co., Ltd. were used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 400° C. and a gas pressure of 0.7 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results.
<比較例1>
 比較例1は、樹脂複合材料皮膜1に無機粒子3を含んでいない例であり、その他は実施例1と同様である。つまり、表1の「比較例1」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径を用いた。樹脂粒子2には、エムテック化学株式会社製PTFE粉末HMP-30を用いた。樹脂粒子2を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂皮膜を形成した。樹脂複合材料皮膜1の形成後、レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。
<Comparative Example 1>
Comparative Example 1 is an example in which the resin composite material film 1 does not contain the inorganic particles 3, and the rest is the same as Example 1. That is, the particle size of the resin particles 2 constituting the resin composite film 1 shown in "Comparative Example 1" in Table 1 was used. As the resin particles 2, PTFE powder HMP-30 manufactured by Mtech Chemical Co., Ltd. was used. Using the resin particles 2, a resin film was formed on the substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite material film 1, the film surface unevenness was measured by observing the surface with a laser microscope. Table 1 shows the results.
<比較例2>
 比較例2は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、樹脂複合材料皮膜1を形成する際のガス温度と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「比較例2」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、スリーエム社製ダイニオン(登録商標)TF9202Zを用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP20を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度150℃、ガス圧0.4MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。比較例2の樹脂複合材料皮膜1では、表面凹凸の大きさが適度な表面凹凸よりも小さく、36μmであった。
<Comparative Example 2>
In Comparative Example 2, the resin particles 2 constituting the resin composite material film 1, the inorganic particles 3, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 , are different from the first embodiment, and the rest is the same as the first embodiment. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Comparative Example 2" in Table 1. , was used. As the resin particles 2, Dynion (registered trademark) TF9202Z manufactured by 3M was used. As the inorganic particles 3, alumina filler AP20 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 150° C. and a gas pressure of 0.4 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 2, the size of the surface unevenness was 36 μm, which was smaller than the moderate surface unevenness.
<比較例3>
 比較例3は、樹脂複合材料皮膜1を構成する樹脂粒子2と、樹脂複合材料皮膜1を形成する際のガス温度と、樹脂複合材料皮膜1を形成する際のガス圧と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「比較例3」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、エムテック化学株式会社製PTFE粉末HMP-70を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度500℃、ガス圧0.6MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。比較例3の樹脂複合材料皮膜1では、表面凹凸の大きさが適度な表面凹凸よりも大きく、623μmであった。
<Comparative Example 3>
In Comparative Example 3, the resin particles 2 constituting the resin composite material film 1, the gas temperature when forming the resin composite material film 1, and the gas pressure when forming the resin composite material film 1 are different from those of Example 1. , and the others are the same as those of the first embodiment. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Comparative Example 3" in Table 1. , was used. As the resin particles 2, PTFE powder HMP-70 manufactured by Mtech Chemical Co., Ltd. was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 500° C. and a gas pressure of 0.6 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 3, the size of the surface unevenness was larger than the moderate surface unevenness, and was 623 μm.
<比較例4>
 比較例4は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「比較例4」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、PolySciences社製PTFE粉末Microdispers-200を用いた。無機粒子3には、DIC株式会社製アルミナフィラーAP20を用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。比較例4の樹脂複合材料皮膜1では、表面凹凸の大きさが適度な表面凹凸よりも小さく、32μmであった。
<Comparative Example 4>
Comparative Example 4 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite material film 1 are different from those of Example 1. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Comparative Example 4" in Table 1. , was used. As the resin particles 2, PTFE powder Microdispers-200 manufactured by PolySciences was used. As the inorganic particles 3, alumina filler AP20 manufactured by DIC Corporation was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the plane direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 4, the size of the surface unevenness was 32 μm, which was smaller than the moderate surface unevenness.
<比較例5>
 比較例5は、樹脂複合材料皮膜1を構成する樹脂粒子2と、無機粒子3と、が実施例1と異なるものであり、その他は実施例1と同様である。表1の「比較例5」に示す、樹脂複合材料皮膜1を構成する樹脂粒子2の粒径と、無機粒子3の短径と、無機粒子3のアスペクト比と、無機粒子3の体積割合と、を用いた。樹脂粒子2には、ダイキン工業株式会社製PTFE粉末F-104を用いた。無機粒子3には、スリーエム社製窒化ホウ素フィラーPlatelets CFP 012Pを用いた。樹脂粒子2と、無機粒子3と、を混合した混合粉末を用いて、コールドスプレーによりガス温度300℃、ガス圧0.5MPaにて基材9に樹脂複合材料皮膜1を形成した。樹脂複合材料皮膜1の形成後、走査型電子顕微鏡による断面観察から、面方向D1に対する無機粒子3の角度を測定した。レーザー顕微鏡による表面観察から、皮膜表面凹凸を測定した。結果を表1に示す。比較例5の樹脂複合材料皮膜1では、表面凹凸の大きさが適度な表面凹凸よりも大きく、703μmであった。
<Comparative Example 5>
Comparative Example 5 is the same as Example 1 except that the resin particles 2 and the inorganic particles 3 constituting the resin composite film 1 are different from those of Example 1. The particle size of the resin particles 2 constituting the resin composite material film 1, the short diameter of the inorganic particles 3, the aspect ratio of the inorganic particles 3, and the volume ratio of the inorganic particles 3 shown in "Comparative Example 5" in Table 1. , was used. As resin particles 2, PTFE powder F-104 manufactured by Daikin Industries, Ltd. was used. As the inorganic particles 3, 3M boron nitride filler Platelets CFP 012P was used. Using a mixed powder obtained by mixing resin particles 2 and inorganic particles 3, a resin composite material film 1 was formed on a substrate 9 by cold spraying at a gas temperature of 300° C. and a gas pressure of 0.5 MPa. After forming the resin composite film 1, the angle of the inorganic particles 3 with respect to the surface direction D1 was measured by cross-sectional observation with a scanning electron microscope. The surface roughness of the film was measured by observing the surface with a laser microscope. Table 1 shows the results. In the resin composite material film 1 of Comparative Example 5, the size of the surface unevenness was larger than the moderate surface unevenness, and was 703 μm.
 また、実施例および比較例のそれぞれで得られた樹脂複合材料皮膜1の撥水性、撥油性、及び放熱性の評価結果を、表2に示す。 Table 2 shows the evaluation results of water repellency, oil repellency, and heat dissipation of the resin composite film 1 obtained in each of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 撥水性については、室温(25℃)にて1時間放置した、基材9であるアルミニウム板を用いて評価した。内径0.1mmのPTFE(ポリテトラフルオロエチレン)コートされた針の先端から約5μLの水滴を樹脂複合材料皮膜1の表面に滴下し、接触角計(共和界面科学株式会社製CX-150型)を用いて、接触角(初期水接触角)を測定した。接触角が大きいほど撥水性が良好であるといえる。撥水性は、下記の基準に従って評価した。つまり、1~5のうち小さい数字ほど、接触角が大きい、すなわち撥水性が良好である。結果を表2に示す。
   1:接触角が150°以上のもの。
   2:接触角が130°以上、150°未満のもの。
   3:接触角が110°以上、130°未満のもの。
   4:接触角が90°以上、110°未満のもの。
   5:接触角が90°未満のもの。
The water repellency was evaluated using an aluminum plate as the base material 9 which was left at room temperature (25° C.) for 1 hour. About 5 μL of water droplets are dropped on the surface of the resin composite film 1 from the tip of a PTFE (polytetrafluoroethylene)-coated needle with an inner diameter of 0.1 mm, and a contact angle meter (CX-150 manufactured by Kyowa Interface Science Co., Ltd.) is measured. was used to measure the contact angle (initial water contact angle). It can be said that the larger the contact angle, the better the water repellency. Water repellency was evaluated according to the following criteria. That is, the smaller the number from 1 to 5, the larger the contact angle, that is, the better the water repellency. Table 2 shows the results.
1: A contact angle of 150° or more.
2: The contact angle is 130° or more and less than 150°.
3: The contact angle is 110° or more and less than 130°.
4: The contact angle is 90° or more and less than 110°.
5: The contact angle is less than 90°.
 撥油性については、室温(25℃)にて1時間放置した、基材9であるアルミニウム板を用いて評価した。内径0.1mmのPTFE(ポリテトラフルオロエチレン)コートされた針の先端から約5μLの油滴(食用サラダ油)を樹脂複合材料皮膜1の表面に滴下し、接触角計(共和界面科学株式会社製CX-150型)を用いて、接触角(初期油接触角)を測定した。接触角が大きいほど撥油性が良好であるといえる。撥油性は、下記の基準に従って評価した。つまり、1~5のうち小さい数字ほど、接触角が大きい、すなわち撥油性が良好である。結果を表2に示す。
   1:接触角が80°以上のもの。
   2:接触角が70°以上、80°未満のもの。
   3:接触角が60°以上、70°未満のもの。
   4:接触角が50°以上、60°未満のもの。
   5:接触角が50°未満のもの。
The oil repellency was evaluated using an aluminum plate as the substrate 9 which was left at room temperature (25° C.) for 1 hour. About 5 μL of oil droplets (edible salad oil) are dropped on the surface of the resin composite film 1 from the tip of a PTFE (polytetrafluoroethylene)-coated needle with an inner diameter of 0.1 mm, and a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd. CX-150 model) was used to measure the contact angle (initial oil contact angle). It can be said that the larger the contact angle, the better the oil repellency. Oil repellency was evaluated according to the following criteria. That is, the smaller the number from 1 to 5, the larger the contact angle, that is, the better the oil repellency. Table 2 shows the results.
1: The contact angle is 80° or more.
2: The contact angle is 70° or more and less than 80°.
3: The contact angle is 60° or more and less than 70°.
4: The contact angle is 50° or more and less than 60°.
5: The contact angle is less than 50°.
 放熱性については、室温(25℃)にて一定出力で加熱した、基材9であるアルミニウム板の温度を測定することで評価した。加熱には、ラバーヒーター(ミズホクラフト株式会社製;MC50-50)を用いた。温度測定には、熱電対(株式会社八光電機製;HTK0219)を用いた。測定では、樹脂複合材料皮膜1を施工した面の対面にラバーヒーターを配置して、アルミニウム板と、ラバーヒーターと、の間に熱電対を配置した。ラバーヒーターを用いて出力を15Wとして1時間加熱を行った後に、熱電対を用いて温度を測定した。樹脂複合材料皮膜1を備えないアルミニウム板を用いた場合の温度を基準温度と定義して、測定された温度から基準温度を差し引いた値を放熱温度と定義した。放熱性は、下記の基準に従って評価した。つまり、1~5のうち小さい数字ほど放熱性が良好である。結果を表2に示す。
   1:放熱温度が12℃以上のもの。
   2:放熱温度が8℃以上、12℃未満のもの。
   3:放熱温度が4℃以上、8℃未満のもの。
   4:放熱温度が0℃以上、4℃未満のもの。
   5:放熱温度が0℃未満のもの。
The heat dissipation property was evaluated by measuring the temperature of the aluminum plate, which is the substrate 9, heated at a constant output at room temperature (25°C). A rubber heater (manufactured by Mizuho Craft Co., Ltd.; MC50-50) was used for heating. A thermocouple (manufactured by Hakko Electric Co., Ltd.; HTK0219) was used for temperature measurement. In the measurement, a rubber heater was arranged opposite to the surface on which the resin composite material film 1 was applied, and a thermocouple was arranged between the aluminum plate and the rubber heater. After heating for 1 hour with an output of 15 W using a rubber heater, the temperature was measured using a thermocouple. The temperature when using an aluminum plate without the resin composite film 1 was defined as the reference temperature, and the value obtained by subtracting the reference temperature from the measured temperature was defined as the radiation temperature. Heat dissipation was evaluated according to the following criteria. In other words, the smaller the number from 1 to 5, the better the heat dissipation. Table 2 shows the results.
1: The heat radiation temperature is 12°C or higher.
2: The heat radiation temperature is 8°C or more and less than 12°C.
3: The heat radiation temperature is 4°C or more and less than 8°C.
4: The heat radiation temperature is 0°C or more and less than 4°C.
5: The heat radiation temperature is less than 0°C.
 表2に示されているように、実施例1~19の樹脂複合材料皮膜1は、撥水性および撥油性の評価結果が3以下であり、接触角に基づく撥水性および撥油性が良好である。また、実施例1~19の放熱性を有する樹脂複合材料皮膜1は、放熱性の評価結果が3以下であり、一定加熱下での測定温度に基づく放熱性が良好である。中でも、実施例1の撥水撥油性および放熱性を有する樹脂複合材料皮膜1は、撥水撥油性が良好であると共に、放熱性が最も良好であった。実施例1~19では、複数の樹脂粒子2と複数の無機粒子3とを含む混合粉末を基材9に吹き付けることによって樹脂複合材料皮膜1が形成され、形成された樹脂複合材料皮膜1の皮膜表面には、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸が形成されている。実施例1~19は、このような材料および表面凹凸の大きさの条件を満たすことで、高い撥水撥油性および高い放熱性を有する樹脂複合材料皮膜1を製造できる。 As shown in Table 2, the resin composite film 1 of Examples 1 to 19 has a water repellency and oil repellency evaluation result of 3 or less, and the water repellency and oil repellency based on the contact angle are good. . In addition, the resin composite film 1 having heat dissipation properties of Examples 1 to 19 had a heat dissipation evaluation result of 3 or less, and the heat dissipation properties based on the measured temperature under constant heating were good. Among them, the resin composite film 1 having water/oil repellency and heat dissipation of Example 1 had good water/oil repellency and the best heat dissipation. In Examples 1 to 19, the resin composite material film 1 was formed by spraying a mixed powder containing a plurality of resin particles 2 and a plurality of inorganic particles 3 onto the substrate 9, and the film of the formed resin composite material film 1 On the surface, surface irregularities having a surface roughness with a root-mean-square height of 40 μm or more and 600 μm or less are formed. In Examples 1 to 19, the resin composite film 1 having high water/oil repellency and high heat dissipation can be produced by satisfying the conditions of the materials and the size of the surface unevenness.
 一方、比較例1~5では上記の条件を満たさないので、所望の撥水撥油性あるいは放熱性が得られない。比較例1は、材料の条件を満たしておらず、比較例2~5は、表面凹凸の大きさの条件を満たしていない。具体的には、比較例1の樹脂皮膜は、無機粒子3を備えていないため、皮膜の熱伝導性が悪化し、放熱性が著しく悪化する結果となっている。また、比較例2の樹脂複合材料皮膜1は、表面凹凸が小さいため、表面形状の効果による撥水撥油性の向上が得られず、また、放熱面積が増えないため、放熱性が向上しない結果となっている。また、比較例3の樹脂複合材料皮膜1は、表面凹凸が過度に大きいため、表面凹凸の凹部分に水滴または油滴が入り込むことで、撥水撥油性が著しく悪化する結果となっている。また、比較例4および比較例5では、樹脂粒子2の粒径が小さすぎる又は大きすぎることにより、適度な表面凹凸が形成されず、また樹脂粒子2の密着性が悪くなるので樹脂複合材料皮膜1が脆くなり、皮膜が剥離してしまう。したがって、比較例4および比較例5の樹脂複合材料皮膜1は、撥水撥油性および放熱性が悪化する結果となっている。 On the other hand, Comparative Examples 1 to 5 do not satisfy the above conditions, so desired water/oil repellency or heat dissipation cannot be obtained. Comparative Example 1 does not satisfy the material condition, and Comparative Examples 2 to 5 do not satisfy the surface irregularity size condition. Specifically, since the resin film of Comparative Example 1 does not include the inorganic particles 3, the thermal conductivity of the film deteriorates, resulting in a marked deterioration in heat dissipation. In addition, since the resin composite material film 1 of Comparative Example 2 has small surface unevenness, the water and oil repellency cannot be improved by the effect of the surface shape, and the heat dissipation area does not increase, so the heat dissipation is not improved. It has become. In addition, since the resin composite film 1 of Comparative Example 3 has excessively large surface unevenness, water droplets or oil droplets enter the recessed portions of the surface unevenness, resulting in a significant deterioration in water and oil repellency. In addition, in Comparative Examples 4 and 5, since the particle size of the resin particles 2 is too small or too large, appropriate surface unevenness is not formed, and the adhesion of the resin particles 2 is deteriorated. 1 becomes brittle and the film peels off. Therefore, the resin composite material films 1 of Comparative Examples 4 and 5 have poor water/oil repellency and heat dissipation.
 以上のように、実施の形態2の樹脂複合材料皮膜1の製造方法は、母相を構成する複数の樹脂粒子2と、形状に異方性を有し、熱伝導性を有する複数の無機粒子3と、を含む樹脂複合材料皮膜1の製造方法である。樹脂複合材料皮膜1の製造方法は、複数の樹脂粒子2と複数の無機粒子3とを含む混合粉末を基材9に吹き付けることによって、無機粒子3を膜厚方向D2に配向させ、且つ皮膜表面に、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸を形成する工程(第2工程)を備える。 As described above, the method for producing the resin composite film 1 according to the second embodiment includes a plurality of resin particles 2 forming the mother phase, a plurality of inorganic particles having an anisotropic shape and thermal conductivity. 3, and a method for producing a resin composite material film 1. The method for producing the resin composite film 1 includes spraying a mixed powder containing a plurality of resin particles 2 and a plurality of inorganic particles 3 onto a substrate 9 to orient the inorganic particles 3 in the film thickness direction D2 and to form a film surface. (2) forming surface unevenness having a surface roughness with a root mean square height of 40 μm or more and 600 μm or less (second step);
 この製造方法によれば、上記の結果からも分かるように、高い撥水撥油性および高い放熱性を有する樹脂複合材料皮膜1の製造方法を提供することができる。 According to this manufacturing method, as can be seen from the above results, it is possible to provide a method for manufacturing the resin composite film 1 having high water and oil repellency and high heat dissipation.
 また、樹脂複合材料皮膜1の製造方法では、第2工程において、混合粉末を固相状態で基材9へ衝突させる。これにより、従来のように材料粒子を溶かして吹き付ける溶射法では使用できなかった結晶を用いて、樹脂複合材料皮膜1に熱伝導性を付与することができ、熱伝導性材料の選択肢が増す。 In addition, in the method for manufacturing the resin composite material film 1, in the second step, the mixed powder is collided with the base material 9 in a solid state. As a result, thermal conductivity can be imparted to the resin composite material film 1 using crystals that could not be used in the conventional thermal spraying method in which material particles are melted and sprayed, increasing options for thermally conductive materials.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略および変更することも可能である。 The configuration shown in the above embodiment shows an example of the content of the present disclosure, and can be combined with another known technology. It is also possible to omit and change parts.
 1 樹脂複合材料皮膜、1a 皮膜表面凹凸、1b 皮膜基部、2 樹脂粒子、3 無機粒子、4 コールドスプレー装置、5 ガス供給口、6 ヒーター、7 粉末供給部、8 ノズル、9 基材、11 第1面、12 第2面、12p 凸部分、12r 凹部分、D1 面方向、D2 膜厚方向、L31 (無機粒子の)長径、L32 (無機粒子の)短径、Vcr 臨界速度。 1 Resin composite film, 1a Film surface unevenness, 1b Film base, 2 Resin particles, 3 Inorganic particles, 4 Cold spray device, 5 Gas supply port, 6 Heater, 7 Powder supply part, 8 Nozzle, 9 Base material, 11 Second 1 surface, 12 second surface, 12p convex portion, 12r concave portion, D1 surface direction, D2 film thickness direction, L31 (inorganic particle) major diameter, L32 (inorganic particle) minor diameter, Vcr critical velocity.

Claims (12)

  1.  母相を構成する複数の樹脂粒子と、熱伝導性を有する複数の無機粒子と、を含む樹脂複合材料皮膜であって、
     前記無機粒子は、形状に異方性を有するものであって、膜厚方向に配向され、
     皮膜表面には、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸が形成されている、
     樹脂複合材料皮膜。
    A resin composite film containing a plurality of resin particles constituting a mother phase and a plurality of thermally conductive inorganic particles,
    The inorganic particles have an anisotropic shape and are oriented in the film thickness direction,
    On the surface of the film, surface irregularities having a surface roughness with a root mean square height of 40 μm or more and 600 μm or less are formed.
    Resin composite film.
  2.  複数の前記樹脂粒子は、ポリイミド樹脂、ポリエステル樹脂、ポリプロピレン樹脂、アクリル樹脂およびフッ素樹脂のうち1種類以上の樹脂を含む、
     請求項1に記載の樹脂複合材料皮膜。
    The plurality of resin particles contain one or more resins selected from polyimide resin, polyester resin, polypropylene resin, acrylic resin and fluororesin,
    The resin composite film according to claim 1.
  3.  複数の前記樹脂粒子の平均粒径は、1μm以上かつ400μm以下である、
     請求項1又は2に記載の樹脂複合材料皮膜。
    The average particle size of the plurality of resin particles is 1 μm or more and 400 μm or less.
    The resin composite film according to claim 1 or 2.
  4.  複数の前記無機粒子は、アルミナ、炭化ケイ素、窒化ケイ素、チタン酸カリウム、ホウ酸アルミニウム、酸化チタン、炭酸カルシウム、硫酸マグネシウム、硫酸カルシウム、酸化亜鉛、黒鉛、窒化アルミニウム、酸化スズ、窒化ホウ素、雲母、タルク、ベーマイト、ムライト、炭素繊維およびこれらの複合酸化物または混合物のうち少なくとも1種以上で構成されたものである、
     請求項1~3のいずれか一項に記載の樹脂複合材料皮膜。
    The plurality of inorganic particles are alumina, silicon carbide, silicon nitride, potassium titanate, aluminum borate, titanium oxide, calcium carbonate, magnesium sulfate, calcium sulfate, zinc oxide, graphite, aluminum nitride, tin oxide, boron nitride, and mica. , at least one of talc, boehmite, mullite, carbon fiber and composite oxides or mixtures thereof,
    The resin composite film according to any one of claims 1 to 3.
  5.  前記無機粒子は、扁平状または針状の形状を有し、
     複数の前記無機粒子の平均アスペクト比は、10以上かつ200以下である、
     請求項1~4のいずれか一項に記載の樹脂複合材料皮膜。
    The inorganic particles have a flat or acicular shape,
    The average aspect ratio of the plurality of inorganic particles is 10 or more and 200 or less.
    The resin composite film according to any one of claims 1 to 4.
  6.  複数の前記無機粒子の平均短径は、0.2μm以上かつ20μm以下である、
     請求項1~5のいずれか一項に記載の樹脂複合材料皮膜。
    The average short diameter of the plurality of inorganic particles is 0.2 μm or more and 20 μm or less.
    The resin composite film according to any one of claims 1 to 5.
  7.  前記無機粒子を5体積%以上かつ40体積%未満含む
     請求項1~6のいずれか一項に記載の樹脂複合材料皮膜。
    The resin composite film according to any one of claims 1 to 6, comprising 5% by volume or more and less than 40% by volume of the inorganic particles.
  8.  前記無機粒子は、面方向に対して長軸が70°以上傾斜するように配向されている
     請求項1~7のいずれか一項に記載の樹脂複合材料皮膜。
    The resin composite film according to any one of claims 1 to 7, wherein the inorganic particles are oriented such that the long axis is inclined at 70° or more with respect to the plane direction.
  9.  前記樹脂複合材料皮膜は、基材上に設けられており、
     前記表面凹凸が形成された前記皮膜表面は、前記基材の側の面とは反対側の面であり、
     前記表面凹凸の凸部分は、配向された前記無機粒子の少なくとも一部分と、当該一部分を覆うように配されて前記凸部分の表面を構成する複数の前記樹脂粒子と、を有する
     請求項1~8のいずれか一項に記載の樹脂複合材料皮膜。
    The resin composite film is provided on a substrate,
    The coating surface on which the surface unevenness is formed is the surface opposite to the surface on the substrate side,
    8. The convex portion of the surface unevenness comprises at least a portion of the oriented inorganic particles, and a plurality of the resin particles arranged to cover the portion and constituting the surface of the convex portion. The resin composite film according to any one of .
  10.  複数の前記無機粒子は、前記母相中において面方向および膜厚方向で分散するように配置されている
     請求項1~9のいずれか一項に記載の樹脂複合材料皮膜。
    The resin composite film according to any one of claims 1 to 9, wherein the plurality of inorganic particles are arranged so as to be dispersed in the matrix in the plane direction and the film thickness direction.
  11.  母相を構成する複数の樹脂粒子と、形状に異方性を有し、熱伝導性を有する複数の無機粒子と、を含む樹脂複合材料皮膜の製造方法であって、
     複数の前記樹脂粒子と複数の前記無機粒子とを含む混合粉末を基材に吹き付けることによって、前記無機粒子を膜厚方向に配向させ、且つ皮膜表面に、二乗平均平方根高さが40μm以上且つ600μm以下となる表面粗さを有した表面凹凸を形成する工程を備える
     樹脂複合材料皮膜の製造方法。
    A method for producing a resin composite film containing a plurality of resin particles constituting a mother phase and a plurality of inorganic particles having an anisotropic shape and thermal conductivity,
    By spraying a mixed powder containing a plurality of the resin particles and a plurality of the inorganic particles onto the substrate, the inorganic particles are oriented in the film thickness direction, and the root mean square height is 40 μm or more and 600 μm on the film surface. A method for producing a resin composite film, comprising the step of forming surface irregularities having the following surface roughness.
  12.  前記工程において、前記混合粉末を固相状態で前記基材へ衝突させる
     請求項11に記載の樹脂複合材料皮膜の製造方法。
    12. The method for producing a resin composite material film according to claim 11, wherein in the step, the mixed powder is collided with the base material in a solid phase state.
PCT/JP2021/046749 2021-12-17 2021-12-17 Resin composite material film and method for manufacturing resin composite material film WO2023112310A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527694A JP7123288B1 (en) 2021-12-17 2021-12-17 Resin composite film and method for producing resin composite film
PCT/JP2021/046749 WO2023112310A1 (en) 2021-12-17 2021-12-17 Resin composite material film and method for manufacturing resin composite material film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046749 WO2023112310A1 (en) 2021-12-17 2021-12-17 Resin composite material film and method for manufacturing resin composite material film

Publications (1)

Publication Number Publication Date
WO2023112310A1 true WO2023112310A1 (en) 2023-06-22

Family

ID=82940092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046749 WO2023112310A1 (en) 2021-12-17 2021-12-17 Resin composite material film and method for manufacturing resin composite material film

Country Status (2)

Country Link
JP (1) JP7123288B1 (en)
WO (1) WO2023112310A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150064A (en) * 1995-11-28 1997-06-10 Mitsubishi Heavy Ind Ltd Denitrification catalyst and manufacture thereof
JPH09314032A (en) * 1996-05-24 1997-12-09 Suruzaameteko Japan Kk Forming method of composite resin flame spray film
JP2005246193A (en) * 2004-03-03 2005-09-15 Konica Minolta Holdings Inc Method for producing composite film, particle for thermal spraying, composite film and radiation image transformation panel using the composite film
JP2006051439A (en) * 2004-08-11 2006-02-23 Fujikoo:Kk Photocatalyst functional coating film and its forming method
JP2009006294A (en) * 2007-06-29 2009-01-15 Iwate Industrial Research Center Method of forming organic film
US20090202732A1 (en) * 2005-06-28 2009-08-13 Krueger Ursus Method for Producing Ceramic Layers
JP2015227497A (en) * 2014-06-02 2015-12-17 国立大学法人東北大学 Powder for cold spray, manufacturing method of polymer coating film, and polymer coating film
WO2015199244A1 (en) * 2014-06-27 2015-12-30 株式会社フジミインコーポレーテッド Formation material and formation method which are used for forming structure
CN108720620A (en) * 2017-04-25 2018-11-02 佛山市顺德区美的电热电器制造有限公司 Non-sticking lining and preparation method thereof and cookware and equipment of cooking

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150064A (en) * 1995-11-28 1997-06-10 Mitsubishi Heavy Ind Ltd Denitrification catalyst and manufacture thereof
JPH09314032A (en) * 1996-05-24 1997-12-09 Suruzaameteko Japan Kk Forming method of composite resin flame spray film
JP2005246193A (en) * 2004-03-03 2005-09-15 Konica Minolta Holdings Inc Method for producing composite film, particle for thermal spraying, composite film and radiation image transformation panel using the composite film
JP2006051439A (en) * 2004-08-11 2006-02-23 Fujikoo:Kk Photocatalyst functional coating film and its forming method
US20090202732A1 (en) * 2005-06-28 2009-08-13 Krueger Ursus Method for Producing Ceramic Layers
JP2009006294A (en) * 2007-06-29 2009-01-15 Iwate Industrial Research Center Method of forming organic film
JP2015227497A (en) * 2014-06-02 2015-12-17 国立大学法人東北大学 Powder for cold spray, manufacturing method of polymer coating film, and polymer coating film
WO2015199244A1 (en) * 2014-06-27 2015-12-30 株式会社フジミインコーポレーテッド Formation material and formation method which are used for forming structure
CN108720620A (en) * 2017-04-25 2018-11-02 佛山市顺德区美的电热电器制造有限公司 Non-sticking lining and preparation method thereof and cookware and equipment of cooking

Also Published As

Publication number Publication date
JPWO2023112310A1 (en) 2023-06-22
JP7123288B1 (en) 2022-08-22

Similar Documents

Publication Publication Date Title
KR101493781B1 (en) High thermally conductive ceramic-poly composite and manufacturing method of the same
JP2009179700A (en) Thermally conductive powder coating composition
TW201540822A (en) Graphene dissipation structure
JP6843460B2 (en) Thermal conductivity composition, thermal conductive member, manufacturing method of thermal conductive member, heat dissipation structure, heat generation composite member, heat dissipation composite member
Koivuluoto A review of thermally sprayed polymer coatings
CN115477885A (en) Multifunctional anti-icing coating and fan blade
Zhang et al. Wettability of hierarchically-textured ceramic coatings produced by suspension HVOF spraying
Koithara et al. High deposition efficiency and delamination issues during high-pressure cold spraying metallization of PEEK using spherical copper powders
Park et al. Drop impact phenomena and spray cooling on hot nanotextured surfaces of various architectures and dynamic wettability
KR102570913B1 (en) black light blocking member
JP7123288B1 (en) Resin composite film and method for producing resin composite film
US20210340391A1 (en) 3D Printed Component Part Comprising a Matrix Material-Boron Nitride Composite, Method for Making a 3D Printed Component Part and Use of a 3D Printed Component Part
JP2008208316A (en) Carbon fiber composite material
KR20210033046A (en) 3D printed components comprising composite materials of thermoplastic materials and boron nitride, methods of making 3D printed components and the use of 3D printed components
WO2021241547A1 (en) Method for producing dispersion
JP2007084649A (en) Carbon fiber composite sheet and its manufacturing method
WO2019022096A1 (en) Structure, laminated body thereof, and manufacturing method and manufacturing device thereof
WO2020013268A1 (en) Highly thermally conductive material having flexing properties
JP2008214543A (en) Carbon fiber composite and its production method
JPWO2023112310A5 (en)
TWI710416B (en) Method for using laser to sinter and coat polymer material on metal surface
WO2022190736A1 (en) Carbon fiber reinforced plastic molded article having metal film
CN117355561A (en) Heat conductive film and heat dissipation structure using same
CN117396542A (en) Heat conductive film and heat dissipation structure using same
CN211921394U (en) Transparent resin member for vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022527694

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968223

Country of ref document: EP

Kind code of ref document: A1