WO2023112190A1 - たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 - Google Patents
たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 Download PDFInfo
- Publication number
- WO2023112190A1 WO2023112190A1 PCT/JP2021/046222 JP2021046222W WO2023112190A1 WO 2023112190 A1 WO2023112190 A1 WO 2023112190A1 JP 2021046222 W JP2021046222 W JP 2021046222W WO 2023112190 A1 WO2023112190 A1 WO 2023112190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tobacco
- liquid
- molded article
- molded body
- atomizing
- Prior art date
Links
- 241000208125 Nicotiana Species 0.000 title claims abstract description 172
- 235000002637 Nicotiana tabacum Nutrition 0.000 title claims abstract description 172
- 238000000889 atomisation Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000000034 method Methods 0.000 title description 28
- 239000000284 extract Substances 0.000 claims abstract description 52
- 239000007788 liquid Substances 0.000 claims description 124
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 33
- 239000000126 substance Substances 0.000 claims description 23
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 22
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 18
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 claims description 18
- 239000000443 aerosol Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 235000011187 glycerol Nutrition 0.000 claims description 11
- 235000013772 propylene glycol Nutrition 0.000 claims description 11
- 235000019437 butane-1,3-diol Nutrition 0.000 claims description 9
- 239000001087 glyceryl triacetate Substances 0.000 claims description 9
- 235000013773 glyceryl triacetate Nutrition 0.000 claims description 9
- 229960002622 triacetin Drugs 0.000 claims description 9
- 235000019505 tobacco product Nutrition 0.000 claims 1
- 239000000796 flavoring agent Substances 0.000 description 60
- 235000019634 flavors Nutrition 0.000 description 60
- 238000011144 upstream manufacturing Methods 0.000 description 30
- 230000004048 modification Effects 0.000 description 18
- 238000012986 modification Methods 0.000 description 18
- 230000009467 reduction Effects 0.000 description 18
- 238000003860 storage Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 230000000391 smoking effect Effects 0.000 description 9
- 230000002123 temporal effect Effects 0.000 description 8
- 239000013618 particulate matter Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 230000000717 retained effect Effects 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- NIDGCIPAMWNKOA-WOJBJXKFSA-N Neophytadiene Natural products [C@H](CCC[C@@H](CCCC(C)C)C)(CCCC(C=C)=C)C NIDGCIPAMWNKOA-WOJBJXKFSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- NIDGCIPAMWNKOA-UHFFFAOYSA-N neophytadiene Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(=C)C=C NIDGCIPAMWNKOA-UHFFFAOYSA-N 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229940055329 tobacco leaf extract Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
Definitions
- the present invention relates to a tobacco molded article, an atomizing unit for a suction tool, a suction tool, a method for manufacturing a tobacco molded body, and a method for manufacturing an atomizing unit for a suction tool.
- a non-combustion heating type suction tool there is a liquid storage part that stores a predetermined liquid, and an electric load that introduces the liquid in the liquid storage part and atomizes the introduced liquid to generate an aerosol. and , wherein powder of tobacco leaves is dispersed in the liquid of the liquid container (see, for example, Patent Document 1).
- Patent document 2 and patent document 3 can be cited as other prior art documents.
- Patent Literature 2 discloses a basic configuration of a non-combustion heating suction tool.
- Patent Document 3 discloses information on tobacco leaf extracts.
- the present invention has been made in view of the above, and one of the objects thereof is to provide a technology capable of efficiently releasing flavor components from tobacco moldings while hardening tobacco leaves.
- a tobacco molded article includes: a columnar main body; through holes or recesses formed in the main body; tobacco extract held in the through holes or recesses; Prepare.
- the flavor components contained in the tobacco extract can be efficiently released from the through-holes or recesses while hardening the tobacco leaves. Accordingly, it is possible to provide an inhaler that efficiently generates flavor while suppressing reduction in liquid supplied for atomization.
- the inner diameter of the opening of the through-hole or recess on the surface of the tobacco molded body may be smaller than the depth of the through-hole or recess.
- the inner diameter of the opening may be 10 ⁇ m or more and 3 mm or less.
- the main body may be cylindrical.
- the suction device is adjusted so that the release of the flavor component from the tobacco molded body is not too fast, and the flavor changes over time are suppressed. can be provided. In addition, it is easy to mold, and a tobacco molded product can be produced efficiently.
- the opening of the through-hole or the recess may be formed so as to surround a central axis extending in the longitudinal direction of the main body on the surface on which the opening is formed.
- the release of the flavor component is adjusted so as not to be too fast. Accordingly, it is possible to provide an inhaler in which temporal change in flavor is suppressed.
- an atomizing unit for a suction device includes a liquid storage portion for storing an atomizing liquid, and the above-described aspects 1 to 5 stored in the liquid storage portion A cigarette molded article according to any one of the above, and an electrical load into which the atomizing liquid is introduced into the liquid containing portion and atomizes the introduced atomizing liquid to generate an aerosol.
- the flavor component can be efficiently released from the through-holes or recesses of the tobacco molded body while hardening the tobacco leaves. Accordingly, it is possible to provide an inhaler that efficiently generates flavor while suppressing reduction in liquid supplied for atomization.
- the liquid containing portion may contain the atomizing liquid that contacts the tobacco molded article.
- the user does not need to introduce the liquid for atomization into the suction tool by himself/herself.
- a suction tool according to one aspect of the present invention includes the atomizing unit for a suction tool according to aspect 6 or 7 above.
- the flavor component can be efficiently released from the through-holes or recesses of the tobacco molded body while hardening the tobacco leaves. Accordingly, it is possible to provide an inhaler that efficiently generates flavor while suppressing reduction in liquid supplied for atomization.
- a method for producing a tobacco molded article according to an aspect of the present invention includes a forming step of hardening tobacco leaves to form a columnar tobacco molded article in which through holes or recesses are formed; and an introducing step of introducing the tobacco extract into the hole or recess.
- the flavor components can be efficiently released from the through-holes or recesses while hardening the tobacco leaves. Accordingly, it is possible to provide an inhaler that efficiently generates flavor while suppressing reduction in liquid supplied for atomization.
- a method for manufacturing an atomizing unit for a suction device includes disposing tobacco molded articles manufactured by the method for manufacturing tobacco molded articles according to aspect 9 above in a liquid container. including the assembly process.
- the flavor component can be efficiently released from the through-holes or recesses of the tobacco molded body while hardening the tobacco leaves. Accordingly, it is possible to provide an inhaler that efficiently generates flavor while suppressing reduction in liquid supplied for atomization.
- the liquid containing part contains at least one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water. It may further include a housing step of housing in.
- the substance serves as a suitable solvent for the flavor component, so the flavor can be adjusted efficiently.
- the user does not need to introduce the liquid for atomization into the suction device by himself/herself.
- FIG. 3 is a schematic cross-sectional view showing the main part of the atomization unit for suction tools according to the embodiment;
- FIG. 3 is a diagram schematically showing a cross section taken along line A1-A1 of FIG. 2;
- FIG. 3 is a schematic perspective view of a molded body according to the embodiment;
- FIG. 4 is a schematic bottom view of the molded body according to the embodiment;
- FIG. 4 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized component contained in 1 g of atomizing liquid. It is a flow chart for explaining a manufacturing method concerning the above-mentioned embodiment.
- FIG. 3 is a schematic cross-sectional view showing the main part of the atomization unit for suction tools according to the embodiment;
- FIG. 3 is a diagram schematically showing a cross section taken along line A1-A1 of FIG. 2;
- FIG. 3 is a schematic perspective view of a molded body according to the embodiment;
- FIG. 4 is
- FIG. 10 is a schematic perspective view of a molded body according to modification 1;
- FIG. 5 is a schematic bottom view of a molded body according to Modification 1;
- FIG. 11 is a schematic perspective view of a molded body according to modification 2;
- FIG. 11 is a schematic bottom view of a molded body according to modification 2;
- a suction tool 10 according to an embodiment of the present invention will be described below with reference to the drawings. It should be noted that the drawings of the present application are schematically illustrated in order to facilitate understanding of the features of the embodiments, and the dimensional ratios and the like of each component are not necessarily the same as the actual ones. In addition, XYZ orthogonal coordinates are illustrated in the drawings of the present application as needed.
- FIG. 1 is a perspective view schematically showing the appearance of a suction tool 10 according to this embodiment.
- the suction tool 10 according to the present embodiment is a non-combustion heating suction tool, specifically, a non-combustion heating electronic cigarette.
- the suction tool 10 extends in the direction of the central axis CL of the suction tool 10 .
- the suction tool 10 has a “long axis direction (direction of the central axis CL)”, a “width direction” orthogonal to the long axis direction, and a “thickness direction” orthogonal to the long axis direction and the width direction. It has an external shape with a direction. The dimensions in the long axis direction, width direction, and thickness direction of the suction tool 10 decrease in this order.
- the Z-axis direction corresponds to the major axis direction
- the X-axis direction corresponds to the width direction
- the Y-axis direction corresponds to the thickness direction.
- the suction tool 10 has a power supply unit 11 and an atomization unit 12.
- the power supply unit 11 is detachably connected to the atomization unit 12 .
- a battery as a power supply, a control device, and the like are arranged inside the power supply unit 11.
- the atomization unit 12 is connected to the power supply unit 11, the power supply of the power supply unit 11 and the load 40 of the atomization unit 12, which will be described later, are electrically connected.
- the atomization unit 12 is provided with a discharge port 13 for discharging air (that is, air). Air containing aerosol is discharged from this discharge port 13 .
- air that is, air
- the user of the suction tool 10 can suck the air discharged from the discharge port 13 .
- the power supply unit 11 is provided with a sensor that outputs the value of the pressure change inside the suction tool 10 caused by the user's suction through the discharge port 13 .
- the sensor senses the start of sucking air and notifies the control device, which starts energizing the load 40 of the atomization unit 12, which will be described later. Further, when the user finishes sucking air, the sensor senses the finish of sucking air and informs the control device, and the control device stops energizing the load 40 .
- the power supply unit 11 may be provided with an operation switch for transmitting an air suction start request and an air suction end request to the control device by user's operation.
- the user can operate the operation switch to transmit an air suction start request or a suction end request to the control device.
- the control device Upon receiving the air suction start request and suction end request, the control device starts and terminates energization of the load 40 .
- the configuration of the power supply unit 11 as described above is the same as that of the power supply unit of a known suction device as exemplified in Patent Document 2, for example, so further detailed description will be omitted.
- FIG. 2 is a schematic cross-sectional view showing the main part of the atomization unit 12 of the suction tool 10.
- FIG. 2 schematically shows a cross section of the main part of the atomization unit 12 taken along a plane including the central axis CL.
- FIG. 3 is a diagram schematically showing a cross section along line A1-A1 of FIG. 2 (that is, a cross section taken along a plane normal to the center axis CL).
- the atomization unit 12 will be described with reference to FIGS. 2 and 3.
- the atomization unit 12 includes a plurality of walls (walls 70a to 70g) extending in the longitudinal direction (direction of the central axis CL) and a plurality of walls (walls 70a to 70g) extending in the width direction. 71a to wall portion 71c).
- the atomization unit 12 also includes an air passage 20 , a wick 30 , an electrical load 40 , a liquid container 50 and a molding 60 .
- the air passage 20 is a passage through which air passes when the user inhales air (that is, inhales aerosol).
- the air passage 20 according to this embodiment includes an upstream passage portion, a load passage portion 22 and a downstream passage portion 23 .
- the upstream passage portion according to the present embodiment includes a plurality of upstream passage portions, specifically, an upstream passage portion 21a (“first upstream passage portion”) and an upstream passage portion 21b. (“second upstream passage portion”).
- the upstream passage portions 21a and 21b are arranged upstream of the load passage portion 22 (upstream in the direction of air flow). Downstream end portions of the upstream passage portions 21 a and 21 b communicate with the load passage portion 22 .
- the load passage portion 22 is a passage portion in which the load 40 is arranged.
- the downstream passage portion 23 is a passage portion arranged on the downstream side (downstream side in the air flow direction) of the load passage portion 22 .
- An upstream end portion of the downstream passage portion 23 communicates with the load passage portion 22 .
- a downstream end of the downstream passage portion 23 communicates with the discharge port 13 described above. Air that has passed through the downstream passage portion 23 is discharged from the discharge port 13 .
- the upstream passage portion 21a is provided in a region surrounded by the wall portion 70a, the wall portion 70b, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
- the upstream passage portion 21b is provided in a region surrounded by the wall portion 70c, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b.
- the load passage portion 22 is provided in a region surrounded by the wall portion 70a, the wall portion 70d, the wall portion 70e, the wall portion 70f, the wall portion 71b, and the wall portion 71c.
- the downstream passage portion 23 is provided in a region surrounded by the tubular wall portion 70g.
- a hole 72a and a hole 72b are provided in the wall portion 71a. Air flows into the upstream passage portion 21a through the hole 72a, and flows into the upstream passage portion 21b through the hole 72b. Further, holes 72c and 72d are provided in the wall portion 71b. Air passing through the upstream passage portion 21a flows into the load passage portion 22 through the hole 72c, and air passing through the upstream passage portion 21b flows into the load passage portion 22 through the hole 72d.
- the direction of air flow in the upstream passage portions 21 a and 21 b is opposite to the direction of air flow in the downstream passage portion 23 .
- the direction of air flow in the upstream passage portions 21a and 21b is the -Z direction
- the direction of air flow in the downstream passage portion 23 is the Z direction.
- the upstream passage portion 21a and the upstream passage portion 21b according to the present embodiment sandwich the liquid storage portion 50 between the upstream passage portion 21a and the upstream passage portion 21b. As shown in FIG.
- the upstream passage portion 21a is a cross-sectional view cut along a cut plane normal to the central axis CL, and the liquid storage portion 50 is sandwiched between the upstream passage portions 21a. side (-X direction side).
- the upstream passage portion 21b is arranged on the other side (the side in the X direction) across the liquid storage portion 50 in this cross-sectional view.
- the upstream passage portion 21 a is arranged on one side of the liquid containing portion 50 in the width direction of the suction tool 10
- the upstream passage portion 21 b is arranged on the side of the liquid containing portion 50 in the width direction of the suction tool 10 . located on the other side.
- the wick 30 is a member for introducing the liquid in the liquid storage section 50 to the load 40 in the load passage section 22 .
- the specific configuration of the wick 30 is not particularly limited as long as it has such a function. 50 liquids are introduced to the load 40;
- the load 40 is an electrical load for introducing the liquid in the liquid containing portion 50 and atomizing the introduced liquid to generate an aerosol.
- a specific configuration of the load 40 is not particularly limited, and for example, a heating element such as a heater or an element such as an ultrasonic generator can be used.
- a heater is used as an example of the load 40 .
- a heating resistor that is, a heating wire
- a ceramic heater that is, a ceramic heater, a dielectric heating type heater, or the like
- a heating resistor is used as an example of this heater.
- the heater as the load 40 has a coil shape. That is, the load 40 according to this embodiment is a so-called coil heater. This coil heater is wound around a wick 30 .
- the load 40 is arranged in the wick 30 portion inside the load passage portion 22 as an example.
- the load 40 is electrically connected to the power supply and the control device of the power supply unit 11 described above, and heats up when electricity from the power supply is supplied to the load 40 (that is, heats up when energized). Also, the operation of the load 40 is controlled by a control device.
- the load 40 heats the liquid in the liquid containing portion 50 introduced into the load 40 through the wick 30 to atomize the liquid to generate an aerosol.
- the configurations of the wick 30 and the load 40 are the same as the wick and the load used in a known suction tool as exemplified in Patent Document 2, for example, so further detailed description will be omitted.
- the liquid containing portion 50 is a part for containing liquid for atomization. This liquid is hereinafter appropriately referred to as "atomizing liquid".
- the liquid storage portion 50 according to this embodiment is provided in a region surrounded by the wall portion 70b, the wall portion 70c, the wall portion 70e, the wall portion 70f, the wall portion 71a, and the wall portion 71b. Further, in the present embodiment, the downstream passage portion 23 described above is provided so as to penetrate the liquid storage portion 50 in the direction of the central axis CL.
- the specific type of the predetermined solvent that constitutes the liquid for atomization is not particularly limited, but is selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, for example.
- a liquid containing one selected substance or two or more substances selected from this group can be used.
- glycerin and propylene glycol are used as examples of the predetermined solvent.
- the atomizing liquid may be a liquid containing tobacco leaf flavor components, such as a tobacco leaf extract.
- tobacco leaf extract an extract of tobacco components from tobacco leaves is referred to as a tobacco extract.
- the liquid extract contained in the tobacco molded body 60 can be released from the tobacco molded body 60 efficiently and appropriately adjusted.
- flavor components of tobacco leaves include nicotine and neophytadiene.
- two molded bodies 60 are arranged inside the liquid of the liquid containing portion 50.
- the number of molded bodies 60 is not limited to this, and may be one or three or more.
- the molded body 60 is obtained by hardening tobacco leaves and molding them into a predetermined shape.
- the molded body 60 has a columnar main body and a through hole 600 formed therein.
- the external shape of the molded body 60 excluding the through holes 600 is cylindrical.
- a first surface 61 , a second surface 62 and side surfaces 63 are formed on the molded body 60 .
- the first surface 61 and the second surface 62 facing the first surface 61 have circular outer peripheries.
- the first surface 61 and the second surface 62 correspond to the bottom surface or top surface of the cylinder.
- the side surface 63 has the shape of a cylindrical surface and connects the first surface 61 and the second surface 62 .
- width (that is, outer diameter) (W1) which is the length in the lateral direction of the molded body 60
- the total length (L) which is the length in the longitudinal direction of the molded body 60
- an example of the numerical value is as follows. That is, as the width (W1) of the molded body 60, a value selected from a range of, for example, 2 mm or more and 20 mm or less can be used. As the total length (L) of the molded body 60, a value selected from the range of, for example, 5 mm or more and 50 mm or less can be used. However, these values are only examples of the width (W1) and the total length (L) of the molded body 60, and the width (W1) and the total length (L) of the molded body 60 are suitable according to the size of the suction tool 10. value should be set.
- Openings 610 of through-holes 600 are formed on the first surface 61 and the second surface 62 of the molded body 60 .
- the inner side surface 620 of the tobacco molded body 60 which is the side surface of the through-hole 600, is schematically shown by broken lines.
- a central axis CA is set in the longitudinal direction of the columnar molded body 60 .
- a central axis CA is an axis passing through the geometric center of the first surface 61 excluding the opening 610 and extending in the longitudinal direction.
- the central axis CA is an axis that passes through the centers of two circles corresponding to the first surface 61 and the second surface 62 and is parallel to the side surface 63 .
- opening 610 of through hole 600 is formed to surround central axis CA on first surface 61 in which opening 610 is formed. Since the opening 610 is formed in the central portion of the molded body 60 in this way, it is possible to prevent the tobacco extract LE from permeating the molded body 60 and diffusing too quickly to the outside of the molded body 60. . As a result, it is possible to suppress temporal changes in flavor during inhalation.
- the inner diameter W2 of the opening 610 of the through-hole 600 on the surface of the molded body 60 is smaller than the depth D1 of the through-hole 600 .
- the inner diameter W2 of the opening 610 indicates the maximum width of the width of the opening 610 on the straight line passing through the central axis CA in the first surface 61 .
- the depth D1 of the through-hole 600 is the distance between the first surface 61 and the second surface 62 . Since the inner diameter W2 of the opening 610 is smaller than the depth of the through hole 600, the molded body 60 can easily retain the tobacco extract LE. This can prevent too fast diffusion of the tobacco extract LE.
- the inner diameter W2 of the opening 610 is preferably 3 mm or less, more preferably 2 mm or less, even more preferably 1.5 mm or less, and even more preferably 1 mm or less. .
- the tobacco extract LE can be retained by capillarity. If the tobacco extract LE can be retained by capillary action, it not only suppresses diffusion into the liquid storage section 50, but also prevents the tobacco extract LE from flowing out of the molded body 60 when the atomization unit 12 is assembled. , the molded body 60 can be easily handled, which is preferable.
- the inner diameter W2 of the opening 610 is too small, it becomes difficult to introduce the tobacco extract LE into the through hole 600, or the amount that can be introduced is reduced. It is set as above.
- the density (mass per unit volume) of the compact 60 is, for example, 1100 mg/cm 3 or more and 1450 mg/cm 3 or less.
- the density of the compact 60 is not limited to this, and may be less than 1100 mg/cm 3 or greater than 1450 mg/cm 3 .
- the suction using the suction tool 10 is performed as follows. First, when the user starts sucking air, the air passes through the upstream passage portions 21 a and 21 b of the air passage 20 and flows into the load passage portion 22 . Aerosol generated in the load 40 is added to the air that has flowed into the load passage portion 22 . This aerosol contains the flavor component eluted from the compact 60 . The aerosol-added air passes through the downstream passage portion 23 and is discharged from the discharge port 13 to be sucked by the user.
- the suction tool 10 since the molded body 60 formed by hardening tobacco leaves is used, the supply of the liquid for atomization is hindered due to contact of the tobacco leaves with the wick 30 or the like. can be prevented. In addition, since the swelling of tobacco leaves is suppressed, it is possible to prevent the reduction of usable atomizing liquid. It is also an advantage that the tobacco leaves can be sufficiently compacted without particular restrictions. In addition to this, the tobacco extract LE can be efficiently released from the through holes 600 of the compact 60 even when the tobacco leaves are hardened. Furthermore, the outflow of the tobacco extract LE from the compact 60 can be adjusted by the size and shape of the through-holes 600 . Thereby, the temporal change in flavor can be adjusted.
- the amount (mg) of the carbonized component contained in 1 g of the atomizing liquid in which the compact 60 is arranged is preferably 6 mg or less, more preferably 3 mg or less.
- the carbonized component contained in the atomizing liquid in which the compact 60 is arranged specifically refers to the carbonized component contained in the atomizing liquid before the compact 60 is arranged. and the amount of the carbonized component eluted from the compact 60 into the atomizing liquid.
- carbonized component refers to a component that becomes a carbide when heated to 250°C.
- carbonized component refers to a component that does not form a carbide at a temperature of less than 250°C, but that forms a carbide when the temperature is maintained at 250°C for a predetermined period of time.
- the “amount (mg) of the carbonized component contained in 1 g of the atomizing liquid in which the compact 60 is arranged” can be measured, for example, by the following method. First, a predetermined amount (g) of atomizing liquid in which the molded body 60 is arranged is prepared. Next, this atomizing liquid is heated to 180° C. to volatilize the solvent (liquid component) to obtain a “residue composed of non-volatile components”. The residue is then heated to 250° C. to carbonize the residue to obtain a carbide. The amount (mg) of this carbide is then measured.
- the amount (mg) of chars contained in a predetermined amount (g) of the atomizing liquid it is possible to measure the amount (mg) of chars contained in a predetermined amount (g) of the atomizing liquid, and based on this measured value, the amount of chars contained in 1 g of the atomizing liquid. (that is, the amount (mg) of the carbonized component) can be calculated.
- FIG. 5 is a diagram showing the results of measuring the TPM reduction rate with respect to the amount of carbonized component contained in 1 g of atomizing liquid.
- the horizontal axis of FIG. 5 indicates the amount of carbonized components contained in 1 g of the atomizing liquid, and the vertical axis indicates the TPM reduction rate (R TPM ) (%).
- the TPM reduction rate (R TPM : %) in FIG. 5 was measured by the following method. First, a plurality of suction tool samples having different amounts of carbonized components contained in 1 g of the atomizing liquid were prepared. Specifically, five samples (sample SA1 to sample SA5) were prepared as samples of the plurality of suction tools. These five samples were prepared by the following steps.
- Step 1 20 (wt%) of potassium carbonate in terms of dry weight was added to tobacco raw material composed of tobacco leaves, and then heat distillation treatment was performed.
- the distillation residue after the heat distillation treatment is immersed in water of 15 times the weight of the tobacco raw material before the heat distillation treatment for 10 minutes, dehydrated with a dehydrator, and then dried with a dryer to obtain tobacco. A residue was obtained.
- Step 2 Next, a portion of the tobacco residue obtained in step 1 was washed with water to prepare a tobacco residue containing a small amount of charcoal.
- Step 3 25 g of an immersion liquid (propylene glycol 47.5 wt%, glycerin 47.5 wt%, water 5 wt%) as an extract liquid was added to 5 g of the tobacco residue obtained in step 2, and the temperature of the immersion liquid was raised to 60. °C and allowed to stand.
- the standing time that is, the immersion time in the immersion liquid
- the amount of carbonized component eluted into the immersion liquid tobacco extract
- the CRM 81 smoking condition is a condition in which 55 cc of aerosol is inhaled over 3 seconds, and is performed multiple times every 30 seconds.
- the amount of total particulate matter collected by the Cambridge filter of the automatic smoking machine was then measured. Based on the measured amount of total particulate matter, the TPM reduction rate (R TPM ) was calculated using the following formula (1).
- the TPM reduction rate (R TPM ) in FIG. 5 was measured by the above method.
- R TPM (%) (1-TPM (201 puff to 250 puff) / TPM (1 puff to 50 puff)) x 100 (1)
- TPM Total Particle Molecule
- TPM (1 puff to 50 puff) indicates the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff of the automatic smoking machine.
- TPM (201 puff to 250 puff) indicates the amount of total particulate matter captured by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine.
- the TPM reduction rate (R TPM ) in Equation (1) is defined as "the amount of total particulate matter collected by the Cambridge filter from the 201st puff to the 250th puff of the automatic smoking machine. 1 minus the value obtained by dividing by the amount of total particulate matter collected by the Cambridge filter from the 1st puff to the 50th puff, and multiplied by 100.
- FIG. 6 is a flowchart for explaining a method of manufacturing the suction tool atomization unit 12 including the molded body 60 according to this embodiment.
- step S10 flavor components are extracted from tobacco leaves.
- the specific method of step S10 is not particularly limited, for example, the following method can be used.
- an alkaline substance is applied to tobacco leaves (referred to as alkaline treatment).
- a basic substance such as an aqueous solution of potassium carbonate can be used.
- the alkali-treated tobacco leaves are heated at a predetermined temperature (for example, a temperature of 80°C or more and less than 150°C) (referred to as heat treatment). Then, during this heat treatment, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group Two or more substances are brought into contact with tobacco leaves.
- a predetermined temperature for example, a temperature of 80°C or more and less than 150°C
- heat treatment for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or a substance selected from this group Two or more substances are brought into contact with tobacco leaves.
- flavor components are included here
- the collection solvent for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, or two types selected from this group The above substances can be used.
- a collection solvent containing flavor components can be obtained (that is, flavor components can be extracted from tobacco leaves).
- step S10 can be configured without using the collection solvent as described above. Specifically, in this case, after subjecting the alkali-treated tobacco leaves to the above-described heat treatment, the components released from the tobacco leaves into the gas phase are cooled using a condenser or the like. can be condensed to extract flavor components.
- step S10 may be configured without the alkali treatment as described above.
- tobacco leaves tobacco leaves that have not been subjected to alkali treatment
- glycerin glycerin
- propylene glycol glycerin
- triacetin 1,3-butanediol
- water glycerin
- triacetin 1,3-butanediol
- water water
- a selected substance or two or more substances selected from this group are added.
- the tobacco leaves to which this has been added are heated, and the components released during this heating are collected in a collection solvent or condensed using a condenser or the like. Flavor components can also be extracted by such a process.
- step S10 an aerosol in which one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is aerosolized, or an aerosol selected from this group
- Tobacco leaves tobacco leaves that have not been subjected to alkali treatment
- the aerosol that has passed through the tobacco leaves is collected by a collection solvent.
- Flavor components can also be extracted by such a process.
- step S10 extraction step
- step S10 reduces "the amount of carbonized components that become carbonized when heated to 250 ° C.” contained in the flavor components extracted by the above-described method. It may further include According to this configuration, it is possible to effectively suppress adhesion of carbonized components to the load 40 . As a result, scorching of the load 40 can be effectively suppressed.
- a specific method for reducing the amount of the carbonized component contained in the extracted flavor component is not particularly limited, but for example, the component precipitated by cooling the extracted flavor component is
- the amount of carbonized components contained in the extracted flavor component may be reduced by filtering with filter paper or the like.
- the amount of carbonized components contained in the extracted flavor component may be reduced by centrifuging the extracted flavor component with a centrifuge.
- a reverse osmosis membrane RO filter
- step S10 After step S10, a molding process related to step S20 and a concentration process related to step S30, which will be described below, are executed.
- step S20 the "tobacco residue", which is the tobacco leaves after being extracted in the extraction process of step S10, is solidified and formed into a columnar shape with through holes 600 formed therein, thereby manufacturing the compact 60.
- the method for shaping tobacco leaves is not particularly limited.
- the through holes 600 may be punched after the tobacco leaves are compacted into a columnar shape, or the molded body 60 may be formed by compacting the tobacco leaves around a mold based on the shape of the through holes 600 .
- coating or the like may be performed as follows.
- the surface of the molded body 60 is coated with a coating material.
- the molded body 60 having a structure in which the surface of the hardened tobacco residue is covered with the coating material can be manufactured.
- wax can be used as this coating material.
- this wax include Microcrystalline WAX manufactured by Nippon Seiro Co., Ltd. (model number: Hi-Mic-1080 or model number: Hi-Mic-1090), and water-dispersed ionomer manufactured by Mitsui Chemicals (model number: Chemipearl S120). ), Mitsui Chemicals Hi-Wax (model number: 110P), or the like can be used.
- corn protein can be used as the coating material.
- Zein model number: Kobayashi Zein DP-N manufactured by Kobayashi Koryo Co., Ltd.
- polyvinyl acetate can be used as the coating material.
- the coating material covering the surface of the molded body 60 is provided with a plurality of holes (fine holes) through which the flavor component remaining in the tobacco residue can pass while suppressing passage of the tobacco residue. preferably. That is, the pores of the coating material may be larger than the size of the flavor component and smaller than the size of the tobacco residue. According to this configuration, the flavor component remaining in the tobacco residue can be eluted into the atomizing liquid while suppressing the elution of the tobacco residue into the atomizing liquid.
- the specific size (inner diameter) of the holes provided in this coating material is not particularly limited, but to give a specific example, for example, a value selected from the range of 10 ⁇ m or more and 3 mm or less can be used. can.
- the inner diameter of the holes in the coating material is preferably 2 mm or less, more preferably 1.5 mm or less, and even more preferably 1.0 mm or less.
- the inner diameter of the hole is 1.5 mm or less, the liquid contained in the tobacco residue can be retained by capillarity. If the liquid can be retained by capillary action, the liquid will not flow out of the molded body 60 even when the atomization unit 12 is assembled.
- a net-like mesh member can also be used as the coating material.
- the flavor component remaining in the tobacco residue can be eluted into the atomizing liquid while suppressing the elution of the tobacco residue into the atomizing liquid.
- the tobacco residue can be mixed with a resin to harden the tobacco residue to produce the molded body 60.
- the flavor component remaining in the tobacco residue can be eluted into the atomizing liquid while suppressing the elution of the tobacco residue into the atomizing liquid.
- the tobacco residue may be washed with a cleaning liquid, and the molded product 60 may be manufactured by molding the washed tobacco residue by the method described above.
- the amount of carbonized components contained in the tobacco residue is reduced as much as possible by washing, and the compact 60 can be manufactured using the tobacco residue with the reduced amount of carbonized components.
- scorching of the load 40 can be effectively suppressed.
- step S30 the flavor components extracted in step S10 are concentrated. Specifically, in step S30 according to the present embodiment, the flavor components contained in the collection solvent containing the flavor components extracted in step S10 are concentrated.
- step S40 the tobacco extract LE is produced by adding the flavor component concentrated in step S30 to a predetermined solvent.
- a predetermined solvent is not particularly limited, for example, one substance selected from the group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water, Alternatively, two or more substances selected from this group can be used.
- the concentration step of step S30 may be omitted, and the liquid extract production step of step S40 may be performed using flavor components that have not been concentrated.
- step S30 is executed is preferable in that the amount of the flavor component contained in the tobacco extract LE can be increased compared to the case where this is not executed.
- step S50 the tobacco extract LE produced in step S40 is introduced into the through holes 600 of the compact 60 formed in step S20.
- the tobacco extract LE can be introduced from the opening 610 of the through-hole 600 using an injector or the like having a thin tubular end.
- step S50 the assembly process related to step S60 is executed. Specifically, in step S60, the atomization unit 12 in which the molded body 60 is not stored is prepared, and the molded body 60 after step S50 is stored in the liquid storage section 50 of the atomization unit 12. do.
- step S70 a liquid containing a group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is placed in the liquid storage section 50 of the atomization unit 12 so as to be in contact with the compact 60.
- a liquid containing a group consisting of glycerin, propylene glycol, triacetin, 1,3-butanediol, and water is placed in the liquid storage section 50 of the atomization unit 12 so as to be in contact with the compact 60.
- a flavoring component may be added to the liquid contained in the liquid container 50 separately from the tobacco extract LE introduced into the compact 60 in step S50.
- step S70 may be executed before step S60.
- the atomization unit 12 may be provided to the user without executing step S70. In this case, the user himself/herself can introduce the atomizing liquid.
- the manufacturing method of the tobacco molded body and the atomizing unit for suction device of the present embodiment includes a molding step of hardening tobacco leaves to mold the columnar tobacco molded body 60 having the through holes 600 formed therein, and and an introduction step of introducing the extract LE.
- a molding step of hardening tobacco leaves to mold the columnar tobacco molded body 60 having the through holes 600 formed therein, and and an introduction step of introducing the extract LE.
- the tobacco extract LE can be efficiently released from the through holes 600 of the compact 60 even when the tobacco leaves are hardened. Furthermore, by appropriately setting the size or shape of the through-holes 600, the outflow of the flavor components contained in the tobacco extract LE can be adjusted. As a result, it is possible to provide an inhaler with improved temporal change in flavor.
- the outer shape of the molded body may be a shape other than a cylindrical shape.
- the through hole of the molded body may have a side surface with a shape other than a cylindrical surface. Even in such a case, the tobacco extract can be efficiently discharged from the through holes while the tobacco leaves are hardened, and the same effects as those of the above-described embodiment can be achieved.
- FIGS. 7A and 7B are a schematic perspective view and a bottom view, respectively, of a molded body 60A of this modified example.
- 60 A of through-holes are formed in the rectangular parallelepiped-shaped main body 60A of moldings.
- the molded body 60A except for the through holes 600A has a rectangular parallelepiped outer shape.
- a first surface 61A, a second surface 62A and side surfaces 63A are formed on the molded body 60A.
- the first surface 61A and the second surface 62A facing the first surface 61A have rectangular outer contours.
- the first surface 61A and the second surface 62A correspond to the bottom surface or top surface of the quadrangular prism.
- the side surface 63A includes four rectangular surfaces and connects the first surface 61 and the second surface 62 .
- An opening 610A of the through hole 600A is formed on the first surface 61A and the second surface 62A of the molded body 60A.
- the inner side surface 620A of the molded body 60A which is the side surface of the through hole 600A, is schematically shown by a dashed line.
- the inner side surface 620A has a shape similar to the side surface of a quadrangular prism.
- the outer shape of the molded body 60A is a quadrangular prism, but the outer shape of the molded body 60A is not particularly limited as long as it is columnar.
- the external shape of the molded body 60A may be, for example, a columnar shape having a cross-sectional outline of a triangle, a pentagon, or a polygon having 6 or more corners.
- the molded body 60B has a cylindrical main body with a recess 700 formed therein.
- the outer shape of the molded body 60B excluding the recess 700 is cylindrical.
- a first surface 61, a second surface 62B and side surfaces 63 are formed on the molded body 60B.
- a second surface 62B facing the first surface 61 is circular.
- the first surface 61 and the second surface 62B correspond to the bottom surface or top surface of the cylinder.
- the side surface 63 has a cylindrical shape and connects the first surface 61 and the second surface 62B.
- the width (that is, the outer diameter) (W1), which is the length in the lateral direction of the molded body 60B, and the total length (L), which is the length in the longitudinal direction of the molded body 60B, are not particularly limited. can be set in the same manner as in the molded body 60 of .
- An opening 710 of the recess 700 is formed on the first surface 61 of the molded body 60B.
- the inner side surface 720 of the molded body 60B, which is the side surface of the recessed portion 700, and the recess bottom surface 730, which is the bottom surface of the recessed portion 700, are schematically shown by dashed lines.
- the recess 700 holds the tobacco extract LE. Opening 710 of recess 700 is formed to surround central axis CA on first surface 61 in which opening 710 is formed. Since the opening 710 is formed in the central portion of the molded body 60B in this manner, the tobacco extract LE is prevented from permeating the molded body 60B and diffusing too quickly to the outside of the molded body 60B. As a result, it is possible to suppress temporal changes in flavor during inhalation.
- the inner diameter W3 of the opening 710 of the recess 700 on the surface of the molded body 60B is smaller than the depth D2 of the recess 700.
- the inner diameter W3 of the opening 710 indicates the maximum width of the width of the opening 710 on the straight line passing through the central axis CA in the first surface 61 . Since the inner diameter W3 of the opening 710 is smaller than the depth D2 of the recess 700, the molded body 60B can easily retain the tobacco extract LE. This can prevent too fast diffusion of the tobacco extract LE.
- the inner diameter W3 of the opening 710 is preferably 3 mm or less, more preferably 2 mm or less, even more preferably 1.5 mm or less, and even more preferably 1 mm or less. .
- the tobacco extract LE can be retained by capillarity. If the tobacco extract LE can be retained by capillary action, it not only suppresses diffusion into the liquid storage section 50, but also prevents the tobacco extract LE from flowing out of the molded body 60B when the atomization unit 12 is assembled. , the molded body 60B can be easily handled, which is preferable.
- the inner diameter W3 of the opening 710 is too small, it becomes difficult to introduce the tobacco extract LE into the recess 700, or the amount that can be introduced is reduced. etc.
- the manufacturing method of the tobacco molded body and the suction tool atomizing unit of this modified example includes a forming step of molding the columnar tobacco molded body 60B having the concave portion 700 formed therein, and an introduction step of introducing the tobacco extract LE into the concave portion 700.
- the tobacco extract LE can be efficiently released from the concave portions 700 of the molded body 60B. Furthermore, by appropriately setting the size or shape of the recess 700, it is possible to adjust the outflow of the flavor component contained in the tobacco extract LE. This makes it possible to provide an inhaler with improved temporal change in flavor.
- Modification 3 Although one through-hole or recess is provided in the molded body in the above-described embodiment or modified example, a plurality of through-holes or recesses may be provided in the molded body. One or more through-holes and one or more recesses may be provided in combination in the molded body. Even in such a case, the tobacco extract can be efficiently released from the compact while the tobacco leaves are hardened, and the same effects as those of the above-described embodiment or modification can be achieved.
- the through-holes or recesses are provided along the longitudinal direction of the molded body in the above-described embodiments or modifications, the through-holes or recesses may be provided along any direction of the molded body.
- through holes or recesses may be provided along a direction orthogonal to the longitudinal direction of the molded body. Even in such a case, the tobacco extract can be efficiently released from the compact while the tobacco leaves are hardened, and the same effects as those of the above-described embodiment or modification can be achieved.
- the end faces of the molded article are described as being substantially perpendicular to the longitudinal direction, but the end faces of the molded article may be perpendicular to the longitudinal direction or may be inclined. may be
Landscapes
- Manufacture Of Tobacco Products (AREA)
Abstract
たばこ成形体(60)は、柱状の本体と、前記本体に形成された貫通孔(600)と、前記貫通孔(600)に保持されるたばこ抽出液と、を備える。
Description
本発明は、たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法に関する。
従来、非燃焼加熱型の吸引具として、所定の液体を収容する液体収容部と、この液体収容部の液体が導入されるとともに、導入された液体を霧化してエアロゾルを発生させる電気的な負荷と、を有する霧化ユニットを備え、この液体収容部の液体の内部に、たばこ葉の粉体が分散されたことを特徴とする吸引具が知られている(例えば、特許文献1参照)。
なお、他の先行技術文献として、特許文献2や特許文献3が挙げられる。特許文献2には、非燃焼加熱型の吸引具の基本的な構成態様が開示されている。特許文献3には、たばこ葉の抽出液に関する情報が開示されている。
上述の特許文献1に例示されるような、液体収容部の液体にたばこ葉が分散される従来の吸引具の場合、たばこ葉が液体と共に流れて霧化用のヒータ等に接し、液体の霧化を阻害したり、たばこ葉の膨潤により使用できる液体の量が減少する問題がある。一方、たばこ葉の分散を防ぐためたばこ葉を固めると、液体がたばこ葉に浸透しにくくなり、香味成分の放出が阻害される可能性がある。
本発明は、上記のことを鑑みてなされたものであり、たばこ葉を固めつつ、たばこ成形体から香味成分を効率よく放出することができる技術を提供することを目的の一つとする。
(態様1)
上記目的を達成するため、本発明の一態様に係るたばこ成形体は、柱状の本体と、前記本体に形成された貫通孔または凹部と、前記貫通孔または凹部に保持されるたばこ抽出液 と、を備える。
上記目的を達成するため、本発明の一態様に係るたばこ成形体は、柱状の本体と、前記本体に形成された貫通孔または凹部と、前記貫通孔または凹部に保持されるたばこ抽出液 と、を備える。
この態様によれば、たばこ葉を固めつつ、貫通孔または凹部から、たばこ抽出液に含まれる香味成分を効率よく放出することができる。これにより、霧化のために供給される液体の減少を抑制しつつ、効率よく香味を発生させる吸引具を提供することができる。
(態様2)
上記の態様1において、前記貫通孔または凹部の、前記たばこ成形体の表面における開口部の内径は、前記貫通孔または凹部の深さより小さくてもよい。
上記の態様1において、前記貫通孔または凹部の、前記たばこ成形体の表面における開口部の内径は、前記貫通孔または凹部の深さより小さくてもよい。
この態様によれば、たばこ成形体からの香味成分の放出を速すぎないように調整し、香味の時間的変化が抑制された吸引具を提供することができる。
(態様3)
上記の態様1または2において、前記開口部の内径は、10μm以上3mm以下であってもよい。
上記の態様1または2において、前記開口部の内径は、10μm以上3mm以下であってもよい。
この態様によれば、より確実に、たばこ成形体からの香味成分の放出を速すぎないように調整し、香味の時間的変化が抑制された吸引具を提供することができる。
(態様4)
上記の態様1から3において、前記本体は、円柱状であってもよい。
上記の態様1から3において、前記本体は、円柱状であってもよい。
この態様によれば、たばこ成形体の体積と比較して表面積が小さくなるため、たばこ成形体からの香味成分の放出を速すぎないように調整し、香味の時間的変化が抑制された吸引具を提供することができる。また、成形しやすく、効率よくたばこ成形体を製造することができる。
(態様5)
上記の態様1から4において、前記貫通孔または前記凹部の開口部は、前記開口部が形成された面において、前記本体の長手方向に伸びる中心軸を囲うように形成されていてもよい。
上記の態様1から4において、前記貫通孔または前記凹部の開口部は、前記開口部が形成された面において、前記本体の長手方向に伸びる中心軸を囲うように形成されていてもよい。
この態様によれば、開口部がたばこ成形体の側面に近い位置にある場合と比較して、香味成分の放出が速すぎないように調整される。これにより、香味の時間的変化が抑制された吸引具を提供することができる。
(態様6)
上記目的を達成するため、本発明の一態様に係る吸引具用霧化ユニットは、霧化用液体を収容するための液体収容部と、前記液体収容部に収容された上記態様1から5のいずれかに記載のたばこ成形体と、前記液体収容部の前記霧化用液体が導入されるとともに、導入された前記霧化用液体を霧化してエアロゾルを発生させる電気的な負荷とを備える。
上記目的を達成するため、本発明の一態様に係る吸引具用霧化ユニットは、霧化用液体を収容するための液体収容部と、前記液体収容部に収容された上記態様1から5のいずれかに記載のたばこ成形体と、前記液体収容部の前記霧化用液体が導入されるとともに、導入された前記霧化用液体を霧化してエアロゾルを発生させる電気的な負荷とを備える。
この態様によれば、たばこ葉を固めつつ、たばこ成形体の貫通孔または凹部から香味成分を効率よく放出することができる。これにより、霧化のために供給される液体の減少を抑制しつつ、効率よく香味を発生させる吸引具を提供することができる。
(態様7)
上記態様6において、前記液体収容部は、前記たばこ成形体と接触する前記霧化用液体を含んでもよい。
上記態様6において、前記液体収容部は、前記たばこ成形体と接触する前記霧化用液体を含んでもよい。
この態様によれば、あらかじめ霧化用液体を収容した吸引具を提供することで、ユーザは自ら霧化用液体を吸引具に導入する必要がない。
(態様8)
上記目的を達成するため、本発明の一態様に係る吸引具は、上記態様6または7の吸引具用霧化ユニットを備える。
上記目的を達成するため、本発明の一態様に係る吸引具は、上記態様6または7の吸引具用霧化ユニットを備える。
この態様によれば、たばこ葉を固めつつ、たばこ成形体の貫通孔または凹部から香味成分を効率よく放出することができる。これにより、霧化のために供給される液体の減少を抑制しつつ、効率よく香味を発生させる吸引具を提供することができる。
(態様9)
上記目的を達成するため、本発明の一態様に係るたばこ成形体の製造方法は、たばこ葉を固めて、貫通孔または凹部が形成された柱状のたばこ成形体を成形する成形工程と、前記貫通孔または凹部にたばこ抽出液を導入する導入工程と、を含む。
上記目的を達成するため、本発明の一態様に係るたばこ成形体の製造方法は、たばこ葉を固めて、貫通孔または凹部が形成された柱状のたばこ成形体を成形する成形工程と、前記貫通孔または凹部にたばこ抽出液を導入する導入工程と、を含む。
この態様によれば、たばこ葉を固めつつ、貫通孔または凹部から香味成分を効率よく放出することができる。これにより、霧化のために供給される液体の減少を抑制しつつ、効率よく香味を発生させる吸引具を提供することができる。
(態様10)
上記目的を達成するため、本発明の一態様に係る吸引具用霧化ユニットの製造方法は、上記態様9に記載のたばこ成形体の製造方法により製造されたたばこ成形体を液体収容部に配置する組立工程を含む。
上記目的を達成するため、本発明の一態様に係る吸引具用霧化ユニットの製造方法は、上記態様9に記載のたばこ成形体の製造方法により製造されたたばこ成形体を液体収容部に配置する組立工程を含む。
この態様によれば、たばこ葉を固めつつ、たばこ成形体の貫通孔または凹部から香味成分を効率よく放出することができる。これにより、霧化のために供給される液体の減少を抑制しつつ、効率よく香味を発生させる吸引具を提供することができる。
(態様11)
上記態様10において、前記液体収容部に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種類以上の物質を含む液体を前記液体収容部に収容する収容工程をさらに含んでもよい。
上記態様10において、前記液体収容部に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種類以上の物質を含む液体を前記液体収容部に収容する収容工程をさらに含んでもよい。
この態様によれば、上記物質が香味成分の好適な溶媒となるため、効率よく香味を調整することができる。また、あらかじめ霧化用液体を収容した吸引具を提供する場合、ユーザは自ら霧化用液体を吸引具に導入する必要がない。
本発明の態様によれば、たばこ葉を固めつつ、たばこ成形体から香味成分を効率よく放出することができる。
以下、本発明の実施形態に係る吸引具10について、図面を参照しつつ説明する。なお、本願の図面は、実施形態の特徴の理解を容易にするために模式的に図示されており、各構成要素の寸法比率等は実際のものと同じであるとは限らない。また、本願の図面には、必要に応じて、X-Y-Zの直交座標が図示されている。
図1は、本実施形態に係る吸引具10の外観を模式的に示す斜視図である。本実施形態に係る吸引具10は、非燃焼加熱型の吸引具であり、具体的には、非燃焼加熱型の電子たばこである。
本実施形態に係る吸引具10は、一例として、吸引具10の中心軸線CLの方向に延在している。具体的には、吸引具10は、一例として、「長軸方向(中心軸線CLの方向)」と、長軸方向に直交する「幅方向」と、長軸方向及び幅方向に直交する「厚み方向」と、を有する外観形状を呈している。吸引具10の長軸方向、幅方向、及び、厚み方向の寸法は、この順に小さくなっている。なお、本実施形態において、X-Y-Zの直交座標のうち、Z軸の方向(Z方向又は-Z方向)は長軸方向に相当し、X軸の方向(X方向又は-X方向)は幅方向に相当し、Y軸の方向(Y方向又は-Y方向)は厚み方向に相当する。
吸引具10は、電源ユニット11と、霧化ユニット12とを有している。電源ユニット11は、霧化ユニット12に着脱自在に接続されている。電源ユニット11の内部には、電源としてのバッテリや、制御装置等が配置されている。霧化ユニット12が電源ユニット11に接続されると、電源ユニット11の電源と、霧化ユニット12の後述する負荷40とが電気的に接続される。
霧化ユニット12には、エア(すなわち、空気)を排出するための排出口13が設けられている。エアロゾルを含むエアは、この排出口13から排出される。吸引具10の使用時において、吸引具10のユーザは、この排出口13から排出されたエアを吸い込むことができる。
電源ユニット11には、排出口13を通じたユーザの吸引により生じた吸引具10の内部の圧力変化の値を出力するセンサが配置されている。ユーザによるエアの吸引が開始すると、このエアの吸引開始をセンサが感知して、制御装置に伝え、制御装置が後述する霧化ユニット12の負荷40への通電を開始させる。また、ユーザによるエアの吸引が終了すると、このエアの吸引終了をセンサが感知して、制御装置に伝え、制御装置が負荷40への通電を終了させる。
なお、電源ユニット11には、ユーザの操作によって、エアの吸引開始要求、及び、エアの吸引終了要求を制御装置に伝えるための操作スイッチが配置されていてもよい。この場合、ユーザが操作スイッチを操作することで、エアの吸引開始要求や吸引終了要求を制御装置に伝えることができる。そして、このエアの吸引開始要求や吸引終了要求を受けた制御装置は、負荷40への通電開始や通電終了を行う。
なお、上述したような電源ユニット11の構成は、例えば、特許文献2に例示されるような公知の吸引具の電源ユニットと同様であるので、これ以上詳細な説明は省略する。
図2は、吸引具10の霧化ユニット12の主要部を示す模式的断面図である。具体的には図2は、霧化ユニット12の主要部を、中心軸線CLを含む平面で切断した断面を模式的に図示している。図3は、図2のA1-A1線断面(すなわち、中心軸線CLを法線とする切断面で切断した断面)を模式的に示す図である。図2及び図3を参照しつつ、霧化ユニット12について説明する。
霧化ユニット12は、長軸方向(中心軸線CLの方向)に延在する複数の壁部(壁部70a~壁部70g)を備えるとともに、幅方向に延在する複数の壁部(壁部71a~壁部71c)を備えている。また、霧化ユニット12は、エア通路20と、ウィック30と、電気的な負荷40と、液体収容部50と、成形体60とを備えている。
エア通路20は、ユーザによるエアの吸引時(すなわち、エアロゾルの吸引時)に、エア(Air)が通過するための通路である。本実施形態に係るエア通路20は、上流通路部と、負荷通路部22と、下流通路部23とを備えている。本実施形態に係る上流通路部は、一例として、複数の上流通路部、具体的には、上流通路部21a(「第1の上流通路部」)、及び、上流通路部21b(「第2の上流通路部」)を備えている。
上流通路部21a,21bは、負荷通路部22よりも上流側(エア流動方向で上流側)に配置されている。上流通路部21a,21bの下流側端部は、負荷通路部22に連通している。負荷通路部22は、負荷40が内部に配置された通路部である。下流通路部23は、負荷通路部22よりも下流側(エア流動方向で下流側)に配置された通路部である。下流通路部23の上流側端部は負荷通路部22に連通している。また、下流通路部23の下流側端部は、前述した排出口13に連通している。下流通路部23を通過したエアは、排出口13から排出される。
具体的には、本実施形態に係る上流通路部21aは、壁部70aと壁部70bと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、上流通路部21bは、壁部70cと壁部70dと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。負荷通路部22は、壁部70aと壁部70dと壁部70eと壁部70fと壁部71bと壁部71cとによって囲まれた領域に設けられている。下流通路部23は、筒状の壁部70gによって囲まれた領域に設けられている。
壁部71aには、孔72a及び孔72bが設けられている。エアは、孔72aから上流通路部21aに流入し、孔72bから上流通路部21bに流入する。また、壁部71bには、孔72c及び孔72dが設けられている。上流通路部21aを通過したエアは、孔72cから負荷通路部22に流入し、上流通路部21bを通過したエアは、孔72dから負荷通路部22に流入する。
本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、下流通路部23におけるエアの流動方向の反対方向である。具体的には、本実施形態において、上流通路部21a,21bにおけるエアの流動方向は、-Z方向であり、下流通路部23におけるエアの流動方向は、Z方向である。
また、図2及び図3を参照して、本実施形態に係る上流通路部21a及び上流通路部21bは、上流通路部21aと上流通路部21bとによって液体収容部50を挟持するように、液体収容部50に隣接して配置されている。
具体的には、本実施形態に係る上流通路部21aは、図3に示すように、中心軸線CLを法線とする切断面で切断した断面視で、液体収容部50を挟んで一方の側(-X方向の側)に配置されている。一方、上流通路部21bは、この断面視で、液体収容部50を挟んで他方の側(X方向の側)に配置されている。換言すると、上流通路部21aは、吸引具10の幅方向で、液体収容部50の一方の側に配置され、上流通路部21bは、吸引具10の幅方向で、液体収容部50の他方の側に配置されている。
ウィック30は、液体収容部50の液体を負荷通路部22の負荷40に導入するための部材である。このような機能を有するものであれば、ウィック30の具体的な構成は特に限定されるものではないが、本実施形態に係るウィック30は、一例として、毛管現象を利用して、液体収容部50の液体を負荷40に導入している。
負荷40は、液体収容部50の液体が導入されるとともに、この導入された液体を霧化してエアロゾルを発生させるための電気的な負荷である。負荷40の具体的な構成は特に限定されるものではなく、例えば、ヒータのような発熱素子や、超音波発生器のような素子を用いることができる。本実施形態では、負荷40の一例として、ヒータを用いている。このヒータとしては、発熱抵抗体(すなわち、電熱線)や、セラミックヒータ、誘電加熱式ヒータ等を用いることができる。本実施形態では、このヒータの一例として、発熱抵抗体を用いている。また、本実施形態において、負荷40としてのヒータは、コイル形状を有している。すなわち、本実施形態に係る負荷40は、いわゆるコイルヒータである。このコイルヒータは、ウィック30に巻き付けられている。
また、本実施形態に係る負荷40は、一例として、負荷通路部22の内部において、ウィック30の部分に配置されている。負荷40は、前述した電源ユニット11の電源や制御装置と電気的に接続されており、電源からの電気が負荷40に供給されることで発熱する(すなわち、通電時に発熱する)。また、負荷40の動作は、制御装置によって制御されている。負荷40は、ウィック30を介して負荷40に導入された液体収容部50の液体を加熱することで霧化して、エアロゾルを発生させる。
なお、このウィック30や負荷40の構成は、例えば特許文献2等に例示されるような公知の吸引具に用いられているウィックや負荷と同様であるので、これ以上詳細な説明は省略する。
液体収容部50は、霧化用の液体を収容するための部位である。この液体を以下、適宜「霧化用液体」と呼ぶ。本実施形態に係る液体収容部50は、壁部70bと壁部70cと壁部70eと壁部70fと壁部71aと壁部71bとによって囲まれた領域に設けられている。また、本実施形態において、前述した下流通路部23は、液体収容部50を、中心軸線CLの方向に貫通するように設けられている。
霧化用液体を構成する所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を含む液体を用いることができる。本実施形態では、所定の溶媒の一例として、グリセリン及びプロピレングリコールを用いている。
なお、霧化用液体は、たばこ葉の抽出液等の、たばこ葉の香味成分が含有された液体でもよい。以下では、たばこ葉からのたばこ成分の抽出液をたばこ抽出液と呼ぶ。このような場合でも、たばこ成形体60に含まれる抽出液については、たばこ成形体60から効率よく、適宜調整して抽出液を放出できる。たばこ葉の香味成分の具体例を挙げると、例えばニコチン、ネオフィタジエン等が挙げられる。
図2および図3が示す通り、本実施形態に係る成形体60は、液体収容部50の液体の内部に2個配置されている。但し、成形体60の個数は、これに限定されるものではなく、1個でもよく、3個以上であってもよい。成形体60は、たばこ葉が固められて所定形状に成形されたものである。
図4Aおよび4Bは、それぞれ、成形体60の模式的な斜視図および底面図である。成形体60は、円柱状の本体に、貫通孔600が形成されている。換言すれば、貫通孔600を除いた成形体60の外形は円柱状である。成形体60には、第1面61、第2面62および側面63が形成されている。第1面61および、第1面61に向き合う第2面62は円形状の外周を有する。第1面61および第2面62は、円柱の底面または上面に相当する。側面63は、円柱面の形状をしており、第1面61および第2面62を接続している。
成形体60の短手方向の長さである幅(すなわち外径)(W1)、及び、成形体60の長手方向の長さである全長(L)の具体的な値は、特に限定されるものではないが、数値の一例を挙げると、以下のとおりである。すなわち、成形体60の幅(W1)として、例えば2mm以上20mm以下の範囲から選択された値を用いることができる。成形体60の全長(L)として、例えば5mm以上50mm以下の範囲から選択された値を用いることができる。但し、これらの値は成形体60の幅(W1)及び全長(L)の一例に過ぎず、成形体60の幅(W1)及び全長(L)は、吸引具10のサイズに応じて好適な値を設定すればよい。
成形体60の第1面61および第2面62には、貫通孔600の開口部610が形成されている。図4Aでは、貫通孔600の側面である、たばこ成形体60の内側面620を破線で模式的に示した。
柱状の成形体60の長手方向に中心軸CAが設定されている。中心軸CAは、開口部610を除いた第1面61の幾何中心を通り長手方向に伸びる軸とする。本実施形態では、中心軸CAは、第1面61および第2面62に相当する2つの円の中心を通り、側面63に平行な軸となっている。
図4Bでは、貫通孔600にたばこ抽出液LEが保持されている点を(LE)の符号で示した。貫通孔600の開口部610は、開口部610が形成された第1面61において、中心軸CAを囲うように形成されている。このように、開口部610が成形体60の中央部に形成されていることで、成形体60を浸透して成形体60の外側へとたばこ抽出液LEの速すぎる拡散が起きることを抑制する。これにより吸引の際の香味の時間的変化を抑制することができる。
貫通孔600の、成形体60の表面における開口部610の内径W2は、貫通孔600の深さD1よりも小さい。ここで、開口部610の内径W2は、第1面61における中心軸CAを通る直線上の開口部610の幅のうち、最大のものを指す。本実施形態では、貫通孔600の深さD1は、第1面61と第2面62との間の距離となる。開口部610の内径W2が貫通孔600の深さに比べて小さいことで、成形体60がたばこ抽出液LEを保持しやすくなる。これにより、たばこ抽出液LEの速すぎる拡散を抑制し得る。
成形体60にたばこ抽出液LEを保持しやすくする観点からは、開口部610の内径W2は、3mm以下が好ましく、2mm以下がより好ましく、1.5mm以下がさらに好ましく、1mm以下がより一層好ましい。開口部610の内径Wが1.5mm以下だと、毛管現象によりたばこ抽出液LEを保持することができる。毛管現象によりたばこ抽出液LEを保持できると、液体収容部50への拡散を抑制するだけでなく、霧化ユニット12の組立の際にも、成形体60からたばこ抽出液LEが流出しなくなるため、成形体60の取扱いが容易となり好ましい。一方、開口部610の内径W2が小さすぎると、たばこ抽出液LEの貫通孔600への導入が難しくなったり、導入可能な量が減少するため、開口部610の内径W2は、10μm以上または100μm以上等に設定される。
また、本実施形態において、成形体60の密度(単位体積当たりの質量)は、一例として、1100mg/cm3以上、1450mg/cm3以下である。但し、成形体60の密度は、これに限定されるものではなく、1100mg/cm3未満でもよく、あるいは、1450mg/cm3より大きくてもよい。
吸引具10を用いた吸引は以下のように行われる。まず、ユーザがエアの吸引を開始した場合、エアはエア通路20の上流通路部21a,21bを通過して、負荷通路部22に流入する。負荷通路部22に流入したエアには、負荷40において発生したエアロゾルが付加される。このエアロゾルには、成形体60から溶出した香味成分が含まれている。このエアロゾルが付加されたエアは、下流通路部23を通過して排出口13から排出されて、ユーザに吸引される。
以上説明したような本実施形態に係る吸引具10によれば、たばこ葉を固めた成形体60を用いるため、ウィック30にたばこ葉が接触するなどして霧化用液体の供給が阻害されることを防ぐことができる。また、たばこ葉の膨潤が抑制されるため使用可能な霧化用液体の減少を防ぐことができる。たばこ葉を特に制約なく十分にしっかり固めることができることも利点である。これに加え、たばこ葉を固めても成形体60の貫通孔600から効率よくたばこ抽出液LEを放出することができる。さらに、貫通孔600の大きさおよび形状により、成形体60からのたばこ抽出液LEの流出を調整することができる。これにより、香味の時間的変化を調整することができる。
また、成形体60が配置された状態の霧化用液体1g中に含まれる炭化成分の量(mg)は、6mg以下であることが好ましく、3mg以下であることがより好ましい。
この構成によれば、電気的な負荷40に付着する炭化成分の量をできるだけ抑制しつつ、たばこ葉の香味を味わうことができる。これにより、負荷40に焦げが発生することをできるだけ抑制しつつ、たばこ葉の香味を味わうことができる。
なお、「成形体60が配置された状態の霧化用液体中に含まれる炭化成分」は、具体的には、成形体60が配置される前の状態の霧化用液体に含まれる炭化成分の量と、成形体60から霧化用液体に溶出した炭化成分の量とを合計した値に相当する。
また、本実施形態において、「炭化成分」とは、250℃に加熱された場合に炭化物になる成分をいう。具体的には、「炭化成分」は、250℃未満の温度では炭化物にならないが、250℃の温度に所定時間維持した場合に炭化物になる成分をいう。
なお、この「成形体60が配置された状態の霧化用液体1g中に含まれる炭化成分の量(mg)」は、例えば、以下の手法によって測定することができる。まず、成形体60が配置された状態の霧化用液体を所定量(g)、準備する。次いで、この霧化用液体を180℃に加熱して、溶媒(液体成分)を揮発させることで、「不揮発成分からなる残留物」を得る。次いで、この残留物を250℃に加熱することで残留物を炭化させて、炭化物を得る。次いで、この炭化物の量(mg)を測定する。以上の手法により、所定量(g)の霧化用液体に含まれる炭化物の量(mg)を測定することができ、この測定値に基づいて、霧化用液体1g中に含まれる炭化物の量(すなわち、炭化成分の量(mg))を算出することができる。
続いて、霧化用液体1g中に含まれる炭化成分の量とTPM減少率との関係について説明する。図5は、霧化用液体1g中に含まれる炭化成分の量に対するTPM減少率を測定した結果を示す図である。図5の横軸は霧化用液体1g中に含まれる炭化成分の量を示し、縦軸は、TPM減少率(RTPM)(%)を示している。
図5のTPM減少率(RTPM:%)は以下の手法によって測定された。まず、霧化用液体1g中に含まれる炭化成分の量が互いに異なる複数の吸引具のサンプルを準備した。具体的には、この複数の吸引具のサンプルとして、5つのサンプル(サンプルSA1~サンプルSA5)を準備した。これらの5つのサンプルは、以下の工程によって準備されたものである。
(工程1)
たばこ葉からなるたばこ原料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
たばこ葉からなるたばこ原料に対して、乾燥重量で20(wt%)の炭酸カリウムを添加し、次いで、加熱蒸留処理を行った。この加熱蒸留処理後の蒸留残渣を、加熱蒸留処理前のたばこ原料の重量に対して15倍量の水に10分間浸漬した後に、脱水機で脱水し、その後、乾燥機で乾燥させて、たばこ残渣を得た。
(工程2)
次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
次いで、工程1で得られたたばこ残渣の一部を水で洗浄することで、含有される炭化物の量の少ないたばこ残渣を準備した。
(工程3)
次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(たばこ抽出液)に溶出する炭化成分の量を異ならせた。
次いで、工程2で得られたたばこ残渣5gに対して、抽出液としての浸漬リキッド(プロピレングリコール47.5wt%、グリセリン47.5wt%、水5wt%)を25g添加し、浸漬リキッドの温度を60℃にして静置した。この静置時間(すなわち、浸漬リキッドへの浸漬時間)を異ならせることで、浸漬リキッド(たばこ抽出液)に溶出する炭化成分の量を異ならせた。
以上の工程によって、浸漬リキッド(たばこ抽出液)からなる霧化用液体1g中に含まれる炭化成分の量の異なる複数のサンプルを準備した。
次いで、上述した工程で準備された複数のサンプルについて、自動喫煙機(Borgwaldt社製の「Analytical Vaping Machine」)を用いて、「CRM(Coresta Recommended Method)81の喫煙条件」で、自動喫煙を行った。なお、CRM81の喫煙条件とは、3秒かけて55ccのエアロゾルを吸引することを、30秒毎に複数回行うという条件である。
次いで、自動喫煙機が有するケンブリッジフィルターに捕集された全粒子状物質の量を測定した。この測定された全粒子状物質の量に基づいて、下記式(1)を用いて、TPM減少率(RTPM)を算出した。以上の手法により、図5のTPM減少率(RTPM)は測定された。
RTPM(%)=(1-TPM(201puff~250puff)/TPM(1puff~50puff))×100・・・(1)
ここで、TPM(Total Particle Molecule)は、自動喫煙機のケンブリッジフィルターに捕集された全粒子状物質を示している。式(1)中の「TPM(1puff~50puff)」は、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。式(1)中の「TPM(201puff~250puff)」は、自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を示している。
すなわち、式(1)のTPM減少率(RTPM)は、「自動喫煙機の201パフ目から250パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量を、自動喫煙機の1パフ目から50パフ目までの間にケンブリッジフィルターに捕集された全粒子状物質の量で割った値」を1から差し引いた値に、100を掛けた値、によって算出されている。
図5から分かるように、霧化用液体1g中に含まれる炭化成分の量とTPM減少率とは比例関係にある。そして、図5の特にサンプルSA1~サンプルSA4から分かるように、霧化用液体1g中に含まれる炭化成分の量が6mg以下の場合、TPM減少率を20%以下に抑えられる。
図6は、本実施形態に係る成形体60を含む吸引具用霧化ユニット12の製造方法を説明するためのフロー図である。
ステップS10に係る抽出工程においては、たばこ葉から香味成分を抽出する。このステップS10の具体的な手法は、特に限定されるものではないが、例えば、以下の手法を用いることができる。まず、アルカリ物質を、たばこ葉に付与する(アルカリ処理と称する)。ここで用いられるアルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。
次いで、アルカリ処理が施されたたばこ葉を、所定の温度(例えば80℃以上且つ150℃未満の温度)で加熱する(加熱処理と称する)。そして、この加熱処理の際に、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質をたばこ葉に接触させる。
この加熱処理によって、たばこ葉から気相中に放出される放出成分(ここには香味成分が含まれている)を、所定の捕集溶媒に捕集させる。捕集溶媒としては、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を用いることができる。これにより、香味成分を含む捕集溶媒を得ることができる(すなわち、たばこ葉から香味成分を抽出することができる)。
あるいは、ステップS10は、上述したような捕集溶媒を使用しない構成とすることもできる。具体的には、この場合、アルカリ処理が施されたたばこ葉に対して上記の加熱処理を施した後に、コンデンサー等を用いて冷却することで、たばこ葉から気相中に放出された放出成分を凝縮して、香味成分を抽出することもできる。
あるいは、ステップS10は、上述したようなアルカリ処理を行わない構成とすることもできる。具体的には、この場合、ステップS10において、たばこ葉(アルカリ処理が施されていないたばこ葉)に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を添加する。次いで、これが添加されたたばこ葉を加熱し、この加熱の際に放出された成分を、捕集溶媒に捕集させる、又は、コンデンサー等を用いて凝縮する。このような工程によっても、香味成分を抽出することができる。
あるいは、ステップS10において、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質がエアロゾル化したエアロゾル、または、この群の中から選択される2種類以上の物質がエアロゾル化したエアロゾルを、たばこ葉(アルカリ処理が施されていないたばこ葉)を通過させ、このたばこ葉を通過したエアロゾルを捕集溶媒に捕集させる。このような工程によっても、香味成分を抽出することができる。
また、本実施形態に係るステップS10(抽出工程)は、上述したような手法で抽出された香味成分に含まれる、「250℃に加熱された場合に炭化物になる炭化成分の量」を低減させることをさらに含んでいてもよい。この構成によれば、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。
この抽出された香味成分に含まれる炭化成分の量を低減させるための具体的な方法は、特に限定されるものではないが、例えば、抽出された香味成分を冷却することで析出した成分を、濾紙等で濾過することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、抽出された香味成分を遠心分離器で遠心分離することで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。あるいは、逆浸透膜(ROフィルタ)を用いることで、抽出された香味成分に含まれる炭化成分の量を低減させてもよい。
ステップS10の後において、以下に説明するステップS20に係る成形工程及びステップS30に係る濃縮工程を実行する。
ステップS20においては、ステップS10に係る抽出工程で抽出された後のたばこ葉である「たばこ残渣」を固めて、貫通孔600が形成された柱状に成形することで、成形体60を製造する。たばこ葉を成形する方法は特に限定されない。例えば、たばこ葉を柱状に固めた後、貫通孔600を穿孔により形成してもよいし、貫通孔600の形状に基づく型の周りにたばこ葉を固めて成形体60を形成してもよい。このステップS20または後述のステップS50において、以下のとおりコーティング等を実施してもよい。
例えば、成形体60の表面を、コーティング材でコーティングする。これにより、成形体60として、固められたたばこ残渣の表面がコーティング材で覆われた構造の成形体60を製造することができる。
このコーティング材としては、例えば、ワックスを用いることができる。このワックスとしては、例えば、日本精蝋社製のマイクロクリスタンWAX(型番:Hi-Mic-1080、又は、型番:Hi-Mic-1090)や、三井化学社製の水分散アイオノマー(型番:ケミパールS120)や、三井化学社製のハイワックス(型番:110P)等を用いることができる。
あるいは、コーティング材として、トウモロコシのタンパク質を用いることもできる。この具体例を挙げると、小林香料社製のツェイン(型番:小林ツェインDP-N)が挙げられる。
あるいは、コーティング材として、ポリ酢酸ビニルを用いることもできる。
成形体60の表面を覆っているコーティング材には、たばこ残渣が通過することを抑制しつつ、たばこ残渣に残存した香味成分が通過することが可能な孔(微細な孔)が複数設けられていることが好ましい。すなわち、このコーティング材の孔は、香味成分の大きさよりも大きく且つたばこ残渣の大きさよりも小さいサイズの孔であればよい。この構成によれば、たばこ残渣が霧化用液体に溶出することを抑制しつつ、たばこ残渣に残存した香味成分を霧化用液体に溶出させることができる。
このコーティング材に設けられた孔の具体的なサイズ(内径)は、特に限定されるものではないが、具体例を挙げると、例えば、10μm以上3mm以下の範囲から選択された値を用いることができる。コーティング材の上記孔の内径は、2mm以下が好ましく、1.5mm以下がより好ましく、1.0mm以下がさらに好ましい。上記孔の内径が1.5mm以下だと、毛管現象によりたばこ残渣に含まれる液体を保持することができる。毛管現象により液体を保持できると、霧化ユニット12の組立の際にも、成形体60から液体が流出しなくなるため、成形体60の取扱いが容易となり好ましい。
なお、コーティング材として、網状のメッシュ部材を用いることもできる。この場合においても、たばこ残渣が霧化用液体に溶出することを抑制しつつ、たばこ残渣に残存した香味成分を霧化用液体に溶出させることができる。
また、ステップS20に係る成形工程において、たばこ残渣を樹脂と混合することで、たばこ残渣を固めて成形体60を製造することもできる。この場合においても、たばこ残渣が霧化用液体に溶出することを抑制しつつ、たばこ残渣に残存した香味成分を霧化用液体に溶出させることができる。
あるいは、ステップS20に係る成形工程において、たばこ残渣を洗浄液で洗浄し、この洗浄後のたばこ残渣を上述した方法で成形して成形体60を製造することもできる。この構成によれば、洗浄によって、たばこ残渣に含まれる炭化成分の量をできるだけ低減させ、この炭化成分の量が低減されたたばこ残渣を用いて成形体60を製造することができる。これにより、負荷40に炭化成分が付着することを効果的に抑制することができる。この結果、負荷40に焦げが発生することを効果的に抑制することができる。
一方、ステップS30に係る濃縮工程においては、ステップS10で抽出された香味成分を濃縮する。具体的には、本実施形態に係るステップS30においては、ステップS10で抽出された香味成分を含む捕集溶媒に含まれる香味成分を濃縮する。
ステップS30の後に、ステップS40に係る抽出液製造工程を実行する。具体的には、ステップS40において、ステップS30で濃縮された香味成分を所定の溶媒に添加することで、たばこ抽出液LEを製造する。所定の溶媒の具体的な種類は特に限定されるものではないが、例えば、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を用いることができる。なお、ステップS30の濃縮工程を省略し、濃縮していない香味成分を用いてステップS40の抽出液製造工程を実行してもよい。但し、ステップS30を実行する場合の方が、これを実行しない場合に比較して、たばこ抽出液LEに含まれる香味成分の量を多くすることができる点で好ましい。
ステップS20およびS40の後に、ステップS50に係る導入工程を実行する。具体的には、ステップS50において、ステップS40で製造されたたばこ抽出液LEを、ステップS20で成形された成形体60の貫通孔600に導入する。例えば、貫通孔600の開口部610から、細い管状の端部を有する注入器等を用いてたばこ抽出液LEを導入することができる。
ステップS50の後に、ステップS60に係る組立工程を実行する。具体的には、ステップS60においては、成形体60が収容されていない状態の霧化ユニット12を準備し、この霧化ユニット12の液体収容部50に、ステップS50の後の成形体60を収容する。
ステップS60の後に、ステップS70に係る収容工程を実行する。具体的には、ステップS70においては、霧化ユニット12の液体収容部50に、成形体60と接触するようにグリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される一つの物質、または、この群の中から選択される2種類以上の物質を含む霧化用液体を収容する。なお、この場合において、前述したステップS50で成形体60に導入されたたばこ抽出液LEとは別に、液体収容部50に収容された上記の液体に、香味成分をさらに添加してもよい。以上の工程で、本実施形態に係る吸引具10の霧化ユニット12が製造される。なお、ステップS60の前にステップS70を実行してもよい。また、ステップS70を実行せずに霧化ユニット12をユーザに提供してもよい。この場合、ユーザが自ら霧化用液体を導入することができる。
本実施形態のたばこ成形体および吸引具用霧化ユニットの製造方法は、たばこ葉を固めて、貫通孔600が形成された柱状のたばこ成形体60を成形する成形工程と、貫通孔600にたばこ抽出液LEを導入する導入工程と、を含む。これにより、たばこ葉を固めた成形体60を用いるため、ウィック30にたばこ葉が接触するなどして霧化用液体の供給が阻害されることを防ぐことができる。また、たばこ葉の膨潤が抑制されるため使用可能な霧化用液体の減少を防ぐことができる。たばこ葉を特に制約なく十分にしっかり固めることができることも利点である。これに加え、たばこ葉を固めても成形体60の貫通孔600から効率よくたばこ抽出液LEを放出することができる。さらに、貫通孔600の大きさまたは形状を適宜設定することで、たばこ抽出液LEに含まれる香味成分の流出を調整することができる。その結果、香味の時間的変化が改善された吸引具を提供することができる。
次のような変形も本発明の範囲内であり、上述の実施形態若しくは他の変形と組み合わせることが可能である。以下の変形例において、上述の実施形態と同様の構造、機能を示す部位等に関しては、同一の符号で参照し、適宜説明を省略する。
(変形例1)
上述の実施形態において、成形体の外形は、円柱状以外の形状であってもよい。また、成形体の貫通孔は、円柱面以外の形状の側面を有していてもよい。このような場合でも、たばこ葉を固めつつ、たばこ抽出液を貫通孔から効率よく放出することができ、上述の実施形態と同様の作用効果を奏することができる。
上述の実施形態において、成形体の外形は、円柱状以外の形状であってもよい。また、成形体の貫通孔は、円柱面以外の形状の側面を有していてもよい。このような場合でも、たばこ葉を固めつつ、たばこ抽出液を貫通孔から効率よく放出することができ、上述の実施形態と同様の作用効果を奏することができる。
図7Aおよび7Bは、それぞれ、本変形例の成形体60Aの模式的な斜視図および底面図である。成形体60Aは、直方体形状の本体に、貫通孔600Aが形成されている。換言すれば、貫通孔600Aを除いた成形体60Aの外形は直方体形状である。成形体60Aには、第1面61A、第2面62Aおよび側面63Aが形成されている。第1面61Aおよび、第1面61Aに向き合う第2面62Aは外側の輪郭が長方形の形状である。第1面61Aおよび第2面62Aは、四角柱の底面または上面に相当する。側面63Aは、長方形の形状をした4つの面を含み、第1面61および第2面62を接続している。
成形体60Aの第1面61Aおよび第2面62Aには、貫通孔600Aの開口部610Aが形成されている。図7Aでは、貫通孔600Aの側面である、成形体60Aの内側面620Aを破線で模式的に示した。内側面620Aは、四角柱の側面と同様の形状をしている。
本変形例では、成形体60Aの外形を四角柱としたが、成形体60Aの外形は、柱状であれば特に限定されない。成形体60Aの外形は、例えば、三角形、五角形、または、角の数が6以上の多角形等を断面の輪郭とする柱状であってもよい。
(変形例2)
上述の実施形態において、貫通孔ではなく凹部を成形体に形成してもよい。このような場合にも、たばこ葉を固めつつ、たばこ抽出液を凹部から効率よく放出することができ、上述の実施形態と同様の作用効果を奏することができる。
上述の実施形態において、貫通孔ではなく凹部を成形体に形成してもよい。このような場合にも、たばこ葉を固めつつ、たばこ抽出液を凹部から効率よく放出することができ、上述の実施形態と同様の作用効果を奏することができる。
図8Aおよび8Bは、それぞれ、本変形例の成形体60Bの模式的な斜視図および底面図である。成形体60Bは、円柱状の本体に、凹部700が形成されている。換言すれば、凹部700を除いた成形体60Bの外形は円柱状である。成形体60Bには、第1面61、第2面62Bおよび側面63が形成されている。第1面61に向き合う第2面62Bは円形状である。第1面61および第2面62Bは、円柱の底面または上面に相当する。側面63は、円柱面の形状をしており、第1面61および第2面62Bを接続している。
成形体60Bの短手方向の長さである幅(すなわち外径)(W1)、及び、成形体60Bの長手方向の長さである全長(L)は、特に限定されず、上述の実施形態の成形体60の場合と同様に設定することができる。
成形体60Bの第1面61には、凹部700の開口部710が形成されている。図8Aでは、凹部700の側面である、成形体60Bの内側面720、および、凹部700の底面である凹部底面730を破線で模式的に示した。
凹部700には、たばこ抽出液LEが保持されている。凹部700の開口部710は、開口部710が形成された第1面61において、中心軸CAを囲うように形成されている。このように、開口部710が成形体60Bの中央部に形成されていることで、成形体60Bを浸透して成形体60Bの外側へとたばこ抽出液LEの速すぎる拡散を抑制する。これにより吸引の際の香味の時間的変化を抑制することができる。
凹部700の、成形体60Bの表面における開口部710の内径W3は、凹部700の深さD2よりも小さい。ここで、開口部710の内径W3は、第1面61における中心軸CAを通る直線上の開口部710の幅のうち、最大のものを指す。開口部710の内径W3が凹部700の深さD2に比べて小さいことで、成形体60Bがたばこ抽出液LEを保持しやすくなる。これにより、たばこ抽出液LEの速すぎる拡散を抑制し得る。
成形体60Bにたばこ抽出液LEを保持しやすくする観点からは、開口部710の内径W3は、3mm以下が好ましく、2mm以下がより好ましく、1.5mm以下がさらに好ましく、1mm以下がより一層好ましい。開口部710の内径W3が1.5mm以下だと、毛管現象によりたばこ抽出液LEを保持することができる。毛管現象によりたばこ抽出液LEを保持できると、液体収容部50への拡散を抑制するだけでなく、霧化ユニット12の組立の際にも、成形体60Bからたばこ抽出液LEが流出しなくなるため、成形体60Bの取扱いが容易となり好ましい。一方、開口部710の内径W3が小さすぎると、たばこ抽出液LEの凹部700への導入が難しくなったり、導入可能な量が減少するため、開口部710の径W3は、10μm以上または100μm以上等に設定される。
本変形例のたばこ成形体および吸引具用霧化ユニットの製造方法は、凹部700が形成された柱状のたばこ成形体60Bを成形する成形工程と、凹部700にたばこ抽出液LEを導入する導入工程とを含むことができる。これにより、たばこ葉を固めた成形体60Bを用いるため、ウィック30にたばこ葉が接触するなどして霧化用液体の供給が阻害されることを防ぐことができる。また、たばこ葉の膨潤が抑制されるため使用可能な霧化用液体の減少を防ぐことができる。たばこ葉を特に制約なく十分にしっかり固めることができることも利点である。これに加え、たばこ葉を固めても成形体60Bの凹部700から効率よくたばこ抽出液LEを放出することができる。さらに、凹部700の大きさまたは形状を適宜設定することで、たばこ抽出液LEに含まれる香味成分の流出を調整することができる。これにより、香味の時間的変化が改善された吸引具を提供することができる。
(変形例3)
上述の実施形態または変形例では、貫通孔または凹部を成形体に1つ設けているが、成形体に貫通孔または凹部を複数設けてもよい。成形体に1以上の貫通孔および1以上の凹部を組み合わせて設けてもよい。このような場合でも、たばこ葉を固めつつ、成形体からたばこ抽出液を効率よく放出することができ、上述の実施形態または変形例と同様の効果を奏することができる。
上述の実施形態または変形例では、貫通孔または凹部を成形体に1つ設けているが、成形体に貫通孔または凹部を複数設けてもよい。成形体に1以上の貫通孔および1以上の凹部を組み合わせて設けてもよい。このような場合でも、たばこ葉を固めつつ、成形体からたばこ抽出液を効率よく放出することができ、上述の実施形態または変形例と同様の効果を奏することができる。
(変形例4)
上述の実施形態または変形例では、貫通孔または凹部を成形体の長手方向に沿って設けているが、貫通孔または凹部は、成形体のいずれの方向に沿って設けてもよい。例えば、成形体の長手方向に直交する方向に沿って貫通孔または凹部を設けてもよい。このような場合でも、たばこ葉を固めつつ、成形体からたばこ抽出液を効率よく放出することができ、上述の実施形態または変形例と同様の効果を奏することができる。また、上述の実施形態または変形例において、成形体の端面は、長手方向に対して略垂直な例が記載されているが、成形体の端面は長手方向に対して垂直でもよいし、傾斜していてもよい。
上述の実施形態または変形例では、貫通孔または凹部を成形体の長手方向に沿って設けているが、貫通孔または凹部は、成形体のいずれの方向に沿って設けてもよい。例えば、成形体の長手方向に直交する方向に沿って貫通孔または凹部を設けてもよい。このような場合でも、たばこ葉を固めつつ、成形体からたばこ抽出液を効率よく放出することができ、上述の実施形態または変形例と同様の効果を奏することができる。また、上述の実施形態または変形例において、成形体の端面は、長手方向に対して略垂直な例が記載されているが、成形体の端面は長手方向に対して垂直でもよいし、傾斜していてもよい。
(変形例5)
上述の実施形態または変形例において、成形体の表面における、貫通孔または凹部の開口部の内径が、貫通孔または凹部の深さよりも小さい例が記載されている。しかし、開口部の内径は、貫通孔または凹部の深さと同じか、当該深さの値よりも大きくてもよい。これにより、貫通孔または凹部から、さらに効率よくたばこ抽出液を放出することができる。
上述の実施形態または変形例において、成形体の表面における、貫通孔または凹部の開口部の内径が、貫通孔または凹部の深さよりも小さい例が記載されている。しかし、開口部の内径は、貫通孔または凹部の深さと同じか、当該深さの値よりも大きくてもよい。これにより、貫通孔または凹部から、さらに効率よくたばこ抽出液を放出することができる。
以上、本発明の実施形態や変形例について詳述したが、本発明はかかる特定の実施形態や変形例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 吸引具
12 霧化ユニット
20 エア通路
40 負荷
50 液体収容部
60,60A,60B 成形体
61,61A 第1面
62,62A,62B 第2面
63,63A 側面
600,600A 貫通孔
610,610A,710 開口部
620,620A,720 内側面
730 凹部底面
CA 中心軸
D1 貫通孔の深さ
D2 凹部の深さ
L 成形体の全長
LE 抽出液
W1 成形体の外径
W2,W3 開口部の内径
12 霧化ユニット
20 エア通路
40 負荷
50 液体収容部
60,60A,60B 成形体
61,61A 第1面
62,62A,62B 第2面
63,63A 側面
600,600A 貫通孔
610,610A,710 開口部
620,620A,720 内側面
730 凹部底面
CA 中心軸
D1 貫通孔の深さ
D2 凹部の深さ
L 成形体の全長
LE 抽出液
W1 成形体の外径
W2,W3 開口部の内径
Claims (11)
- 柱状の本体と、
前記本体に形成された貫通孔または凹部と、
前記貫通孔または凹部に保持されるたばこ抽出液と、
を備えるたばこ成形体。 - 前記貫通孔または凹部の、前記たばこ成形体の表面における開口部の内径は、前記貫通孔または凹部の深さよりも小さい、請求項1に記載のたばこ成形体。
- 前記開口部の内径は、10μm以上3mm以下である、請求項1または2に記載のたばこ成形体。
- 前記本体は、円柱状である、請求項1から3に記載のたばこ成形体。
- 前記貫通孔または前記凹部の開口部は、前記開口部が形成された面において、前記本体の長手方向に伸びる中心軸を囲うように形成されている、請求項1から4に記載のたばこ成形体。
- 霧化用液体を収容するための液体収容部と、
前記液体収容部に収容された請求項1から5のいずれか一項に記載のたばこ成形体と、
前記液体収容部の前記霧化用液体が導入されるとともに、導入された前記霧化用液体を霧化してエアロゾルを発生させる電気的な負荷とを備える、吸引具用霧化ユニット。 - 前記液体収容部は、前記たばこ成形体と接触する前記霧化用液体を含む、請求項6に記載の吸引具用霧化ユニット。
- 請求項6または7に記載の吸引具用霧化ユニットを備える吸引具。
- たばこ葉を固めて、貫通孔または凹部が形成された柱状のたばこ成形体を成形する成形工程と、
前記貫通孔または凹部にたばこ抽出液を導入する導入工程と、
を含むたばこ成形体の製造方法。 - 請求項9に記載のたばこ成形体の製造方法により製造されたたばこ成形体を液体収容部に配置する組立工程を含む、吸引具用霧化ユニットの製造方法。
- 前記液体収容部に、グリセリン、プロピレングリコール、トリアセチン、1,3-ブタンジオール、及び、水からなる群の中から選択される1種類以上の物質を含む液体を前記液体収容部に収容する収容工程をさらに含む、請求項10に記載の吸引具用霧化ユニットの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/046222 WO2023112190A1 (ja) | 2021-12-15 | 2021-12-15 | たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/046222 WO2023112190A1 (ja) | 2021-12-15 | 2021-12-15 | たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023112190A1 true WO2023112190A1 (ja) | 2023-06-22 |
Family
ID=86773779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/046222 WO2023112190A1 (ja) | 2021-12-15 | 2021-12-15 | たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023112190A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018532394A (ja) * | 2015-09-16 | 2018-11-08 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 可視的な液体容器を有する電子たばこ |
WO2021100110A1 (ja) * | 2019-11-19 | 2021-05-27 | 日本たばこ産業株式会社 | 霧化ユニット及び非燃焼加熱型香味吸引器具 |
-
2021
- 2021-12-15 WO PCT/JP2021/046222 patent/WO2023112190A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018532394A (ja) * | 2015-09-16 | 2018-11-08 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 可視的な液体容器を有する電子たばこ |
WO2021100110A1 (ja) * | 2019-11-19 | 2021-05-27 | 日本たばこ産業株式会社 | 霧化ユニット及び非燃焼加熱型香味吸引器具 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3284500B1 (de) | Inhalator | |
KR20210052463A (ko) | E-베이핑 장치용 필터, 필터를 갖는 e-베이핑 장치, 및 필터를 형성하는 방법 | |
WO2023112190A1 (ja) | たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 | |
WO2023112191A1 (ja) | たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 | |
KR20210053879A (ko) | 인서트를 가진 e-베이핑 장치 | |
WO2023112129A1 (ja) | 霧化ユニットの製造方法 | |
WO2023286238A1 (ja) | 吸引具、及び、吸引具の霧化ユニットの製造方法 | |
WO2023112130A1 (ja) | 霧化ユニットの製造方法 | |
WO2023286239A1 (ja) | 吸引具及び吸引具の製造方法 | |
WO2023105746A1 (ja) | 吸引具、及び、吸引具の霧化ユニットの製造方法 | |
WO2023162195A1 (ja) | 吸引具用霧化ユニット、吸引具、及び、吸引具用霧化ユニットの製造方法 | |
WO2023188328A1 (ja) | 香味成形体及びその製造方法、霧化ユニット、並びに吸引具 | |
WO2023286291A1 (ja) | たばこ成形体、吸引具用霧化ユニット、吸引具、たばこ成形体の製造方法、及び、吸引具用霧化ユニットの製造方法 | |
WO2023188327A1 (ja) | 香味成形体及びその製造方法、霧化ユニット、並びに吸引具 | |
WO2023112291A1 (ja) | 霧化ユニット及び吸引具 | |
WO2023112292A1 (ja) | 霧化ユニット、吸引具、及び、霧化ユニットの製造方法 | |
WO2023188377A1 (ja) | 霧化ユニット及びその製造方法、並びに吸引具 | |
WO2023248461A1 (ja) | 霧化ユニット、吸引具、及び霧化ユニットの製造方法 | |
WO2023112293A1 (ja) | 霧化ユニット及び吸引具 | |
WO2023188376A1 (ja) | 霧化ユニット及びその製造方法、並びに吸引具 | |
WO2023188374A1 (ja) | 霧化ユニット及びその製造方法、並びに吸引具 | |
WO2023112188A1 (ja) | たばこ成形体、吸引具用霧化ユニット、吸引具、及び、吸引具用霧化ユニットの製造方法 | |
WO2023188436A1 (ja) | 霧化ユニット及びその製造方法、並びに吸引具 | |
WO2023188373A1 (ja) | 霧化ユニット及びその製造方法、並びに吸引具 | |
WO2023188375A1 (ja) | 霧化ユニット及びその製造方法、並びに吸引具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21968107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |