WO2023109836A1 - 一种超声增强的纳米制剂连续化、规模化生产方法 - Google Patents

一种超声增强的纳米制剂连续化、规模化生产方法 Download PDF

Info

Publication number
WO2023109836A1
WO2023109836A1 PCT/CN2022/138806 CN2022138806W WO2023109836A1 WO 2023109836 A1 WO2023109836 A1 WO 2023109836A1 CN 2022138806 W CN2022138806 W CN 2022138806W WO 2023109836 A1 WO2023109836 A1 WO 2023109836A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase solution
phase
nano
pipeline
preparation
Prior art date
Application number
PCT/CN2022/138806
Other languages
English (en)
French (fr)
Inventor
张富尧
万家勋
Original Assignee
上海弼领生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海弼领生物技术有限公司 filed Critical 上海弼领生物技术有限公司
Publication of WO2023109836A1 publication Critical patent/WO2023109836A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to the technical field of biomedicine, in particular to a preparation system for continuous and large-scale production of nano-preparations and a preparation method thereof.
  • the production method specifically involves under the action of turbulent shear and at the same time under the action of ultrasound,
  • the two-phase solution mixes rapidly to form a stable nano-formulation with a certain particle size and particle size distribution.
  • the preparation method has good stability and high reproducibility, can realize step-by-step amplification, and is suitable for continuous and large-scale production of nano preparations.
  • the invention belongs to the technical field of nano drug preparations.
  • the antitumor drugs used in the treatment options include chemotherapy drugs, targeted drugs, photosensitive molecules, photothermal molecules, polypeptides, proteins, siRNA, etc., among which Some drugs need to be made into nano dosage forms to achieve the effect of treating tumors.
  • the commonly used forms of nano preparations include: nanoparticles, nanoliposomes, polymer nanomicelles, dendrimers, etc.
  • the large-scale preparation methods of nano-preparations include high-pressure homogenization method, high-shear emulsification, micro-fluidic homogenization, etc., but these preparation methods are batch preparation, there are many process control parameters, poor reproducibility between batches, and the difficulty of enlarging production Big and other shortcomings.
  • the continuous preparation method of nano-preparation can form uniform nanoparticles with adjustable size during continuous operation.
  • the quality of nano-preparation can be monitored in real time, and nano-preparation that meets the quality standards can be collected in real time. .
  • ethanol injection method can be used for continuous production.
  • the microfluidic device of Canada Precision NanoSystems can be used for continuous preparation of liposomes (Langmuir, 2012, 28, 3633), and the lipid organic phase and aqueous phase of laminar flow are rapidly mixed in a staggered static mixer. Parameter optimization can continuously prepare liposomes, but since microfluidic flow channels are usually at the micron level, the fluid flow is under laminar flow conditions, and the output of a single channel is extremely small. Multi-channel parallel connection is required for scale-up production, and the production of each liposome needs to be controlled. unit consistency.
  • the device disclosed in the literature (Pharm Res., 2016, 33, 404-416) and the invention patent (CN201680013882) uses the ethanol injection method to continuously prepare blank liposomes, and can obtain a low polydispersity coefficient by adjusting the flow rates of the ethanol phase and the water phase respectively. blank liposomes.
  • the polymer/drug nanoparticle system can be continuously prepared by flash nanoprecipitation (FNP) (US10940118B2, CN108137819, CN108542894).
  • FNP flash nanoprecipitation
  • the instantaneous nanoprecipitation method is based on the principle of kinetic control and uses the fluid turbulent mixing in chemical engineering to realize the rapid preparation of nanoparticles. It has high drug loading rate, short preparation time (milliseconds), easy control of the size of nanoparticles, easy scaling and Continuous production and other characteristics.
  • the principle of preparing drug/polymer nanoparticles by nanoprecipitation method is: carrier or stabilizer (usually amphiphilic polymer) and hydrophobic drug are dissolved in a good solvent miscible with water to form a homogeneous solution.
  • the preparation devices used in the instantaneous nano-precipitation method include: closed impinging jet mixer (confined impinging jet mixer, CIJM) (Physical Review Letters, 2003, 91, 118301; AIChE Journal, 2003, 49, 2264), multi-entry vortex mixer (multi-inlet vortex mixer, MIVM) (Mol.Pharm., 2013, 10, 4367; Angew. Chem. Int. Ed. Engl., 2021, 60, 15590).
  • closed impinging jet mixer confined impinging jet mixer, CIJM
  • MIVM multi-entry vortex mixer
  • the technical problem solved by the present invention is to overcome the defects and deficiencies of the above-mentioned prior art. After repeated studies and tests, it is found that the mixing of two-phase solutions under the conditions of turbulent shear action and ultrasonic action can solve the problem of nano-preparation amplification. The decrease of drug encapsulation rate and the poor uniformity of particle size of nano-preparation appear in the production process, thus providing a device for continuous, large-scale and controllable production of nano-preparation and an ultrasound-enhanced nano-preparation continuous The advanced and large-scale production method realizes the continuous and controllable scale-up production of nano-preparation.
  • the first object of the present invention is to provide equipment for the continuous, large-scale and controllable production of nano-preparations, which can promote the formation of nanoparticles, improve the encapsulation efficiency of nano-medicines, and prevent the formation of hydrophobic drugs on the tube wall.
  • the deposition of particles improves the uniformity of the particle size of the nanoparticles.
  • the application of the equipment includes but is not limited to the production of nano-preparations with a particle size range of 1-1000nm, and the nano-preparations are polymer nanomicelles, nanoliposomes, and small molecule nanoassemblies.
  • the second object of the present invention is to provide a method for continuous, large-scale and controllable production of nano-preparations.
  • the present invention provides a preparation system for continuous production of nano preparations, which includes (a) a first pipeline, (b) a second pipeline, (f) an ultrasonic device, (c) a combined pipeline and (e) its (fluid) exit;
  • first pipeline and the second pipeline are connected to the combined pipeline, the first pipeline is coaxial with the combined pipeline, the second pipeline is perpendicular to the combined pipeline, the outlet of the first pipeline is located in the combined pipeline, and the first phase solution Entering the combined pipeline through the outlet of the first pipeline, the second phase solution enters the combined pipeline through the outlet of the second pipeline, the ultrasonic device acts on the part or the whole of the combined pipeline, and the first phase solution and the second phase solution are mixed in the combined pipeline to form a combined phase; And flow out through the outlet of the combined pipeline.
  • the nanoformulation is selected from one of polymer nanomicelles, polymer nanoparticles, nanoliposomes, nanolipid particles and small molecule nanoassemblies.
  • the preparation system is characterized in that:
  • the core part of the preparation system includes: (a) first pipeline; (b) second pipeline; (c) combined pipeline; (d) turbulent flow mixing device; (e) fluid outlet; Tuned ultrasonic device;
  • the first pipeline and the second pipeline are connected with the combined pipeline, the first phase solution flows through the outlet of the first pipeline and enters the combined pipeline, the second phase solution flows through the outlet of the second pipeline and enters the combined pipeline, and the first phase solution and the second phase
  • the solutions are combined in the combined pipeline to form a combined phase.
  • the power-adjustable ultrasonic device acts on the part or the whole of the combined pipeline, and after being fully mixed by the turbulent mixing device, it is collected into a suitable container through the outlet of the combined phase pipeline.
  • the nano-preparation is selected from one of polymer nanomicelles, nanoliposomes or small molecule nanoassemblies.
  • the mixing is turbulent mixing.
  • the turbulent mixing can be realized by adding a turbulent mixing device in the merging pipeline.
  • the turbulent mixing device may be one or more.
  • the outlet of the first pipeline is a spray hole with a certain shape and diameter, and the first phase solution passes through the first pipeline and enters the combined pipeline through the spray hole.
  • the range of the nozzle aperture D1 (S) at the end of the first pipeline is selected from 0.03-5.0mm; the range of the second pipeline inner diameter D2 (IN) is selected from 0.3-50.0mm; the range of the combined pipeline inner diameter D3 (IN) is selected from From 0.3-50.0mm.
  • the combined duct length (ie, combined phase length) ranges from 6 to 120 cm, such as 9 cm or 36 cm.
  • the ratio of the length of the combined pipeline to the inner diameter of the combined pipeline is (16-450):1, such as 16.7:1, 30:1 or 450:1.
  • the first pipe outer diameter D 1 (O) is 0.35 mm to 2 mm, such as 0.35 mm, 1 mm or 2 mm.
  • the diameter D 1 (S) of the nozzle hole at the end of the first pipeline is 0.2 to 0.6 mm, such as 0.2 mm, 0.25 mm, 0.3 mm, 0.4 mm or 0.6 mm.
  • the outer diameter D 2 (O) of the second pipe is 6mm.
  • the inner diameter D 2 (IN) of the second pipe is 0.8 mm to 5.4 mm, such as 0.8 mm, 3.0 mm or 5.4 mm.
  • the combined pipe outer diameter D 3 (O) is 6mm.
  • the internal diameter D 3 (IN) of the combined pipe is 0.8 mm to 5.4 mm, such as 0.8 mm, 3.0 mm or 5.4 mm.
  • the second conduit inner diameter D 2 (IN) is the same as the combined conduit inner diameter D 3 (IN).
  • the ratio of the diameter D 1 (S) of the nozzle hole at the end of the first pipeline to the inner diameter D 3 (IN) of the merged pipeline may be 1:(2-50), for example 1:3.2, 1: 7.5, 1:9 or 1:18.
  • the turbulent mixing device is a device that mixes the first phase solution and the second phase solution to achieve a turbulent state, such as a static mixer.
  • the static mixer can be selected from one or more of SV type static mixer, SX type static mixer, SL type static mixer, SH type static mixer and SK type static mixer, preferably SK type static mixer mixer.
  • the materials used in the first pipeline, the second pipeline, the combined pipeline, the turbulent mixing device, and the fluid outlet are each selected from stainless steel, polytetrafluoroethylene, polyethylene, polypropylene, latex, silica gel or other polymer materials one or more of.
  • the turbulent mixing can bring the fluid in the merged phase to a turbulent transition state or turbulent state by increasing the fluid flow rate.
  • the Reynolds number in the merged phase depends on the smoothness of the circular stainless steel pipe wall. For example, when the pipe wall is rough, a lower Reynolds number can also achieve turbulent mixing conditions (such as Re between 500-2000, this range is usually considered as a layer flow conditions).
  • the turbulent mixing can be achieved by making the merged phase a curved pipe with a certain curvature, changing the flow direction of the fluid/enhancing the convection of the fluid, and increasing the mixing of the fluid.
  • the Reynolds number in the merged phase calculated from the fluid in the circular tube may be between 500 and 4000 in addition to being greater than 4000.
  • the turbulent mixing can be realized by equipping a static mixer in the combined phase, and the static mixer includes but not limited to: SV type static mixer, SX type static mixer, SL type static mixer, SH type Static mixer, SK type static mixer, etc., divide the fluid through turbulent mixing elements/change the direction of fluid flow/enhance the convection of fluid and increase the mixing of fluid.
  • the Reynolds number in the merged phase calculated from the fluid in the circular tube may be between 500 and 4000 in addition to being greater than 4000.
  • the flow rate Q of the first phase solution through the first pipeline is selected from the range of 1-1000ml/min; wherein the temperature T of the first phase solution is selected from the range of 0-90°C; wherein the second phase solution is passed through
  • the flow rate Q2 of the second pipeline is selected from the range of 10-10000ml/min; wherein the temperature T2 of the second phase solution is selected from the range of 0-90°C.
  • the ultrasonic frequency of the ultrasonic device with adjustable power is 15kHz-1.0MHz, and the ultrasonic power range is 0.1-20kW.
  • the ultrasonic frequency of the ultrasonic device with adjustable power ranges from 15 kHz to 40 kHz, and the ultrasonic power ranges from 0.1 to 20 kW.
  • the ultrasonic frequency of the ultrasonic device with adjustable power is 15kHz-40kHz, and the ultrasonic power range is 0.1-20kW.
  • the ultrasonic frequency of the ultrasonic device with adjustable power is 15kHz-40kHz, and the ultrasonic power range is 100-1000W.
  • the configuration of the preparation system is as shown in FIG. 1 or FIG. 2 .
  • the polymer nanomicelle is a polymer nanomicelle coated with an antitumor drug, wherein the polymer nanomicelle component is selected from an amphiphilic polymer and an antitumor drug; amphiphilic polymerization
  • the material is selected from PEG-PLA, PEG-PCL, PEG-linker-PLA, and PEG-linker-PCL, wherein, linker is a linker, and its structure is a C 1 -C 30 small molecular fragment; PEG is a number average molecular weight of 400-20000 Between the polyethylene glycol segment or mono-protected polyethylene glycol segment.
  • the nanoliposomes are blank liposomes without drug coating.
  • the nanoliposome is a liposome coated with antitumor drugs.
  • the nano-liposome is a liposome coated with an anti-tumor drug.
  • the small molecule nano-assembly is selected from the group consisting of anti-tumor drug/photosensitizer nano-assembly, anti-tumor drug/anti-tumor drug nano-assembly, anti-tumor drug/other drug (for example, curcumin) nano-assembly, Anti-tumor drug/excipient (such as amphiphilic polymer PEG-PLA, DSPE-PEG or polymer PLGA) nanoassembly, two or more drug nanoassembly (such as SN38 and irinotecan), or small molecule Drug/excipient nanoassemblies.
  • anti-tumor drug/photosensitizer nano-assembly anti-tumor drug/anti-tumor drug nano-assembly
  • anti-tumor drug/other drug for example, curcumin
  • Anti-tumor drug/excipient such as amphiphilic polymer PEG-PL
  • the antineoplastic drug is selected from abemaciclib, abiraterone, abrocitinib, acalabrutinib, afatinib, aldesleukin, alectinib, alflutinib, almonertinib, altretamine, amcenestrant, aminoglutethimide, amsacrine, anastrozole, anlotinib, apalutamide, apatinib, arzoxifene, asciminib , asparaginase, avapritinib, avitinib, axitinib, azacitidine, baricitinib, belinostat, bendamustine, bexarotene, bicalutamide, bicyclol, binimetinib, bleomycin, boanmycin, bortezomib, bosutinib, brigatinib, buserelin,
  • the antineoplastic drug is preferably selected from camptothecin, 9-aminocamptothecin, 9-nitrocamptothecin, letotecan, gematecan, belotecan, 10-hydroxycamptothecin, SN-38, ixitecan, irinotecan, topotecan, deruxtecan, paclitaxel, docetaxel, cabazitaxel, 7-epipaclitaxel, 2'-acetyl paclitaxel, 10-deacetyl paclitaxel, 10 -Deacetyl-7-epitaxol, 7-xylosyl paclitaxel, 10-deacetyl-7-glutaryl paclitaxel, 7-N,N-dimethylglycyl paclitaxel, 7-L-alanine Paclitaxel, lyrontaxel, doxorubicin, epirubicin, daunorubicin, pirarubicin, dox
  • the photosensitizer used includes cyanine molecules, porphyrin molecules, porphyrin molecule precursors, phthalocyanine molecules, and chlorin molecules; wherein, the cyanine molecules are preferably One or more of indocyanine green (IR780), new indocyanine green (IR820), indocyanine green or indocyanine green analogs; the porphyrin molecules are preferably hematoporphyrin monomethyl ether
  • the porphyrin molecule precursor is preferably one of 5-aminopentanruvonic acid and 5-aminopentanruvate; the phthalocyanine molecules are preferably copper phthalocyanine, cobalt phthalocyanine, aluminum phthalocyanine, phthalocyanine One or more of nickel phthalocyanine, calcium phthalocyanine, sodium phthalocyanine, magnesium phthalocyanine, zinc phthalocyanine, indium phthalocyanine, oxytitanium phthalocyanine, magnesium
  • the polymer nanomicelle is a PTX/PEG-PLA polymer micelle or a PTX/PEG-Phe-PLA polymer micelle.
  • the nanoliposomes are HSPC/CHOL/DSPE-PEG blank liposomes or PTX/HSPC/CHOL/DSPE-PEG liposomes.
  • the molar ratio of HSPC/CHOL/DSPE-PEG in the nanoliposome is 56:38:5 or 89:57:4.
  • the nanolipid particle is PolyI nanolipid particle, such as Poly I/ALC-0315/DSPE-PEG2000/HSPC/cholesterol.
  • the polymeric nanoparticles are PEG-PLA polymeric nanoparticles, PLGA polymeric nanoparticles, or PTX/PLGA polymeric nanoparticles.
  • the small molecule nano-assembly is an anti-tumor drug/photosensitizer nano-assembly, preferably SN-38/ICG nanoparticles, PTX/ICG nanoparticles, curcumin/CPT11 nanoparticles or SN-38/ CPT11 nanoparticles.
  • the antitumor drug loading is 10%-90%, such as 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%.
  • the present invention also provides a method for preparing a nano-preparation, which includes the following steps: in the above-mentioned preparation system, the first phase solution and the second phase solution are mixed, and under the action of ultrasound, the combined phase obtained is passed through its The (fluid) outlet can collect the nano-preparation;
  • the solvent in the first phase solution is a good solvent for an anti-tumor drug or a pharmaceutically acceptable salt thereof
  • the solute is (1) an anti-tumor drug or its pharmaceutically acceptable salt.
  • the solvent in the second phase solution is an anti-solvent of an antineoplastic drug or a pharmaceutically acceptable salt thereof, and the solute is (1) absent; or (2) a polymer;
  • the solute in the first phase solution is an antineoplastic drug or a pharmaceutically acceptable salt thereof and a polymer
  • the solute in the second phase solution does not exist
  • the solute in the first phase solution is an antineoplastic drug or a pharmaceutically acceptable salt thereof
  • the solute in the second phase solution is a polymer
  • the solvent of the first phase solution is a good solvent for the polymer, and the solute is (1) a polymer, or (2) a polymer and an antitumor drug;
  • the second phase solution is water or water containing 0.5% PVA;
  • the solvent of the first phase solution is a good solvent for the lipid component
  • the solute is (1) the lipid component of the liposome, or (2) the lipid Body lipid composition and antineoplastic drugs;
  • the second phase solution is water or a buffered aqueous solution with a certain pH value and a certain osmotic pressure
  • the solvent of the first phase solution is a good solvent for the lipid component
  • the solute is the lipid component of the lipid particle
  • the solvent of the second phase solution is a buffered aqueous solution with a certain pH value and a certain osmotic pressure; the solute is an antitumor drug;
  • the solvent in the first phase solution is a good solvent for the antitumor drug or a pharmaceutically acceptable salt thereof, and the solute is (1) an antitumor drug or Its pharmaceutically acceptable salts and photosensitizers, or (2) antineoplastic drugs or their pharmaceutically acceptable salts;
  • the solvent in the second phase solution is an anti-solvent of an antineoplastic drug or a pharmaceutically acceptable salt thereof, and the solute is (1) absent, or (2) a photosensitizer;
  • the solute in the first phase solution is an antineoplastic drug or a pharmaceutically acceptable salt thereof and a photosensitizer
  • the solute in the second phase solution does not exist
  • the solute in the first phase solution is an antineoplastic drug or a pharmaceutically acceptable salt thereof
  • the solute in the second phase solution is a photosensitizer
  • the temperature of the first phase solution is 0-90°C, such as 25°C or 60°C.
  • the temperature of the second phase solution is 0-90°C, such as 25°C or 60°C.
  • the fluid Reynolds number Re of the combined phase is 700-9500 (such as 747, 2884, 3868, 5158, 5505, 5872, 6623, 7865 or 9176), preferably 3000-7000 (such as 3868, 5158 or 6623).
  • the flow rate ratio FVR of the first phase solution to the combined phase is 0.4-6, such as 0.49, 0.64, 0.93, 1.46, 3.38, 3.4, 4.4 or 5.2.
  • the flow rate Q 1 of the first phase solution through the first pipeline is selected from 10-100 ml/min, such as 10, 11, 14, 50, 60, 80 or 100.
  • the flow rate Q 2 of the second phase solution through the second pipeline is selected from 100-1300ml/min, such as 100, 193, 200, 210, 300, 936, 890 or 1248.
  • the ultrasound is an ultrasonic water bath, and the power of the ultrasound is 200W.
  • the present invention also provides a method for preparing polymer micelles, the method comprising: dissolving one or more of the antineoplastic drugs or pharmaceutically acceptable salts thereof in the first phase Among them, the solvent used in the first phase solution is a good solvent for antitumor drugs or pharmaceutically acceptable salts thereof.
  • the solvent used in the first phase solution is a good solvent for antitumor drugs or pharmaceutically acceptable salts thereof.
  • One or more polymers are dissolved in the second phase solution, and the solvent used in the second phase solution is an anti-tumor drug or a pharmaceutically acceptable salt anti-solvent.
  • the first phase solution is combined at flow rate Q1 and the second phase solution at flow rate Q2 in the combined phase.
  • a polymer micelle coated with an antitumor drug that is stably dispersed in a mixed solvent with a second phase has a certain particle size and a distribution coefficient.
  • the deposition of hydrophobic drug particles on the tube wall can be prevented under the action of ultrasound, which ensures the stability and controllability of the scale-up production process of the nano-preparation.
  • the present invention also provides a method for preparing polymer micelles, the method comprising: one or more of the antineoplastic drugs or pharmaceutically acceptable salts thereof and one or more
  • the polymer is dissolved in the first phase, and the solvent used in the first phase solution is a good solvent for the antitumor drug or its pharmaceutically acceptable salt and the polymer.
  • the second phase solution is the antisolvent of the antitumor drug or its pharmaceutically acceptable salt.
  • the first phase solution is combined at flow rate Q1 and the second phase solution at flow rate Q2 is combined in the combined phase.
  • the two-phase solution Under the action of turbulent shear and at the same time, under the action of ultrasound, the two-phase solution is rapidly mixed to form the first
  • the polymer micelles with a certain particle size and distribution coefficient are stably dispersed in the mixed solvent of the first phase and the second phase.
  • the deposition of hydrophobic drug particles on the tube wall can be prevented under the action of ultrasound, which ensures the stability and controllability of the scale-up production process of the nano-preparation.
  • the volume and mass concentration range of the antitumor drug in the first phase solution is 0.1-200 mg/ml, such as 0.1 mg/ml, 1 mg/ml, 5 mg/ml, 10 mg/ml, 20 mg/ml, 40mg/ml, 60mg/ml, 80mg/ml, 100mg/ml, 120mg/ml, 140mg/ml, 160mg/ml, 180mg/ml, 200mg/ml, preferably 10-100mg/ml, more preferably 10-20mg/ml ml, for example 15 mg/ml.
  • the volume mass concentration range of the polymer in the first phase solution or the second phase solution is 0.1-200 mg/ml, such as 0.1 mg/ml, 1 mg/ml, 5 mg/ml, 10 mg/ml , 20mg/ml, 40mg/ml, 60mg/ml, 80mg/ml, 100mg/ml, 120mg/ml, 140mg/ml, 160mg/ml, 180mg/ml, 200mg/ml, preferably 10-100mg/ml, for example 50mg/ml.
  • the present invention also provides a preparation method for continuous production of liposomes, the method comprises: the lipid component of liposomes is dissolved in the first phase, and the solvent used in the first phase solution is Good solvent for lipid components.
  • the second phase solution is water, a buffered aqueous solution with a certain pH value and a certain osmotic pressure.
  • the first phase solution is combined at flow rate Q1 and the second phase solution at flow rate Q2 in the combined phase.
  • the two-phase solutions are rapidly mixed to form the first phase Blank liposomes that are stably dispersed in the mixed solvent of the second phase and have a certain particle size and distribution coefficient.
  • the sedimentation on the tube wall of the combined phase can be reduced and removed, which ensures the stability and controllability of the scale-up production process of the nano-preparation.
  • the volume mass concentration range of the lipid component in the first phase solution is 0.1-200 mg/ml, such as 0.1 mg/ml, 1 mg/ml, 5 mg/ml, 10 mg/ml, 20 mg/ml, 40mg/ml, 60mg/ml, 80mg/ml, 100mg/ml, 120mg/ml, 140mg/ml, 160mg/ml, 180mg/ml, 200mg/ml, preferably 10-100mg/ml.
  • the volume concentration of the HSPC in the first phase solution is 10 mg/ml.
  • the present invention also provides a preparation method for continuous production of anti-tumor drug/photosensitizer nano-assembly, the method includes: one or more of the anti-tumor drug or its pharmaceutically acceptable Salt is dissolved in the first phase.
  • One or more photosensitizers are dissolved in the second phase solution, and the solvent used in the second phase solution is an anti-tumor drug or a pharmaceutically acceptable salt anti-solvent.
  • the first phase solution is combined at flow rate Q1 and the second phase solution at flow rate Q2 in the combined phase.
  • the two-phase solutions are rapidly mixed to form the first phase
  • the composite nano-preparation of photosensitizer and anti-tumor drug which is stably dispersed in the mixed solvent of the second phase and has a certain particle size and distribution coefficient.
  • the deposition of hydrophobic drug particles on the tube wall can be prevented, which ensures the stability and controllability of the scale-up production process of nano preparations.
  • the present invention also provides a preparation method for continuous production of anti-tumor drug/photosensitizer nano-assembly, the method includes: one or more of the anti-tumor drug or its pharmaceutically acceptable
  • the salt and one or more photosensitizers are dissolved in the first phase, and the solvent used in the first phase solution is a good solvent for the antineoplastic drug or its pharmaceutically acceptable salt and the photosensitizer.
  • the second phase solution is the antisolvent of the antitumor drug or its pharmaceutically acceptable salt.
  • the first phase solution is combined at flow rate Q1 and the second phase solution at flow rate Q2 is combined in the combined phase.
  • the two-phase solution is rapidly mixed to form the first A composite nano-preparation of photosensitizer and anti-tumor drug that is stably dispersed in the mixed solvent of the second phase and has a certain particle size and distribution coefficient.
  • the deposition of hydrophobic drug particles on the tube wall can be prevented, which ensures the stability and controllability of the scale-up production process of nano preparations.
  • the molar ratio of the antitumor drug or its pharmaceutically acceptable salt to the photosensitizer is (1-15):1, such as 1:1, 2:1, 5:1, 6 :1, 7:1, 8:1, 10:1 or 15:1, preferably 2:1.
  • the volume and mass concentration range of the antitumor drug in the first phase solution is 0.1-200 mg/ml, such as 0.1 mg/ml, 1 mg/ml, 5 mg/ml, 10 mg/ml, 20 mg/ml, 40mg/ml, 60mg/ml, 80mg/ml, 100mg/ml, 120mg/ml, 140mg/ml, 160mg/ml, 180mg/ml, 200mg/ml, preferably 10-100mg/ml, such as 40mg/ml, 50mg /ml or 100mg/ml.
  • the volume mass concentration range of the photosensitizer in the first phase solution or the second phase solution is 0.1-200 mg/ml, such as 0.1 mg/ml, 1 mg/ml, 5 mg/ml, 10 mg/ml , 20mg/ml, 40mg/ml, 60mg/ml, 80mg/ml, 100mg/ml, 120mg/ml, 140mg/ml, 160mg/ml, 180mg/ml, 200mg/ml, preferably 10-100mg/ml, for example 40mg/ml, 50mg/ml or 150mg/ml.
  • the solvent used for the first phase solution and the second phase solution is water, a buffered aqueous solution with a certain pH value or an organic solvent miscible with water
  • the organic solvent is methanol, ethanol, acetone Alcohol, isopropanol, butanol, isobutanol, tert-butanol, DMF, DMAc, HMPA, N-methylpyrrolidone, dimethylsulfoxide, butylsulfone, sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, acetonitrile, acetone , one or more of ethylene glycol, ethylene glycol methyl ether, ethylene glycol ether, dioxane, formic acid, acetic acid, hydroxypropionic acid, ethylamine, ethylenediamine, glycerin or pyridine.
  • the solvent used in the first phase solution is a nitrile solvent or an alcohol solvent, such as acetonitrile or ethanol.
  • the solvent used in the second phase solution is water.
  • the solvent used in the first phase solution is an alcoholic solvent, such as ethanol.
  • the solvent used in the second phase solution is water or ammonium sulfate aqueous solution, preferably water or 120 mM ammonium sulfate aqueous solution.
  • the solvent used in the first phase solution is an alcohol solvent or a chlorinated alkanes solvent, such as ethanol or dichloromethane.
  • the solvent used in the second phase solution is water or water containing 0.5% PVA.
  • the solvent used in the first phase solution is a sulfoxide solvent, an alcohol solvent, such as dimethyl sulfoxide or Methanol.
  • the solvent used in the second phase solution is water.
  • the first phase solution is an alcoholic solvent, such as ethanol.
  • the second phase solution is a citrate buffer (pH 4.0).
  • the prepared nanoformulations are smaller than 1000 nm.
  • the particle size of the prepared nano-formulation is less than 500 nm.
  • the particle size of the prepared nano-formulation is less than 200nm.
  • the particle size range of the prepared nano-preparation is selected from 20-200nm.
  • the polydispersity index of the prepared nanoformulation is less than 0.3.
  • the polydispersity index of the prepared nanoformulation is less than 0.2.
  • the polydispersity index of the prepared nanoformulation is less than 0.1.
  • the present invention also provides a preparation method for continuous production of SN-38/indocyanine green nano-assembly, the method comprising:
  • SN-38 and indocyanine green are dissolved together in the first phase, wherein the solvent used in the first phase solution is a good solvent for SN-38 and indocyanine green, and the second phase solution is an antineoplastic drug or its pharmaceutically acceptable The anti-solvent of the salt.
  • the first phase solution is combined at flow rate Q1 and the second phase solution at flow rate Q2 is combined in the combined phase. Under the action of turbulent shear and at the same time, under the action of ultrasound, the two-phase solution is rapidly mixed to form the first
  • the SN-38/indocyanine green nano-assembly with certain particle size and distribution coefficient is stably dispersed in the mixed solvent of phase and second phase.
  • the solvent used for the first phase solution and the second phase solution is water, a buffered aqueous solution with a certain pH value or an organic solvent miscible with water
  • the organic solvent is methanol, ethanol, propanol, isopropanol, butanol Alcohol, isobutanol, tert-butanol, DMF, DMAc, HMPA, N-methylpyrrolidone, dimethyl sulfoxide, sulfolane, sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, acetonitrile, acetone, ethylene glycol, ethylene glycol
  • the encapsulation efficiency of SN-38/ICG nanoparticles SN-38 prepared on a scale of 15-20ml without ultrasound is 98.4%, and the particle size of the nanoparticles is 98 ⁇ 4nm.
  • the encapsulation efficiency of SN-38/ICG nanoparticles SN-38 prepared in 1.0 L scale under ultrasonic conditions is close to the encapsulation efficiency of small batch preparation, which is 97.5%, and the average diameter is 109 ⁇ 10nm.
  • the SN-38/ICG nanoparticle SN-38 encapsulation efficiency of SN-38/ICG nanoparticles prepared on a scale of 15-20ml without ultrasound is 98.8%, and the particle size of the nanoparticles is 109 ⁇ 5nm.
  • the encapsulation efficiency of SN-38/ICG nanoparticles SN-38 prepared in 425 mL scale under ultrasonic conditions is close to the encapsulation efficiency of small batch preparation, which is 97.0%, and the average diameter is 113 ⁇ 4nm.
  • the PTX encapsulation efficiency of PTX/ICG nanoparticles prepared on a scale of 20ml without ultrasound is 98.2%, and the particle size of the nanoparticles is 75 ⁇ 3nm.
  • the PTX encapsulation efficiency of PTX/ICG nanoparticles prepared on a scale of 400ml without ultrasound drops to 93.4%, and the particle size of the nanoparticles is 81 ⁇ 5nm.
  • the PTX encapsulation efficiency of PTX/ICG nanoparticles prepared on a scale of 400ml under ultrasonic conditions is close to the encapsulation efficiency of small batch preparation, which is 98.7%, and the average diameter is 72 ⁇ 2nm.
  • HSPC/CHOL/DSPE-PEG blank liposomes are prepared without ultrasound, and the resulting blank liposomes present a multimodal distribution.
  • the HSPC/CHOL/DSPE-PEG blank liposomes prepared under ultrasonic conditions have a monomodal distribution.
  • the particle size was 131.7 ⁇ 2.9nm, which indicated that ultrasound could promote the formation of blank liposomes.
  • the HSPC/CHOL/DSPE-PEG blank liposomes prepared under ultrasonic conditions have a monomodal distribution.
  • the particle size was 115.3 ⁇ 1.6nm, which indicated that ultrasound could promote the formation of blank liposomes.
  • the HSPC/CHOL/DSPE-PEG/paclitaxel liposomes prepared under ultrasonic conditions have a unimodal distribution of the paclitaxel liposomes.
  • the particle size was 81.1 ⁇ 1.7nm, which indicated that ultrasound could promote the formation of paclitaxel liposomes.
  • the PTX/PEG-PLA polymer micelles prepared without ultrasound have more white flocs in the solution, wide particle size distribution, and poor repeatability.
  • the PTX/PEG-PLA polymer micelles prepared under ultrasonic conditions have a uniform particle size distribution, with an average diameter of 25.6 ⁇ 1.0 nm, indicating that ultrasound can promote the formation of drug-loaded polymer micelles.
  • the PTX/PEG-Phe-PLA polymer micelles prepared without ultrasound have more white flocs in the solution, wide particle size distribution, and poor repeatability.
  • the PTX/PEG-Phe-PLA polymer micelles prepared under ultrasonic conditions have uniform particle size distribution, with an average diameter of 23.4 ⁇ 0.8nm, indicating that ultrasound can promote the formation of drug-loaded polymer micelles.
  • the present invention has the following beneficial effects: the preparation system and preparation method of the present invention can significantly increase the encapsulation efficiency of nano-medicine and improve the uniformity of the particle size of nano-particles. In addition, drug deposition is reduced due to the improved encapsulation efficiency. It is beneficial to continuous preparation and production.
  • Figure 1 Schematic diagram of a nano-preparation device without a static mixer
  • Figure 2 Schematic diagram of the nano-preparation device with SK static mixer in the combined phase
  • Figure 3 The particle size distribution of SN-38/ICG nanoparticles prepared under low turbulence conditions with/without ultrasonic conditions in Example 4
  • Example 5 SN-38/ICG nanoparticle size distribution figure can draw from the figure when SN-38/ICG is prepared in a small amount (10-25mL), the nanoparticle that obtains with no ultrasonic preparation device presents Unimodal distribution, average particle size 98 ⁇ 4nm.
  • FIG. 5 Example 6 SN-38/ICG nanoparticle particle size distribution figure, from the figure it can be concluded that when SN-38/ICG was prepared in large quantities (1.0L), the nanoparticles obtained by the non-ultrasonic preparation device presented double peaks Distribution, the average particle size is 111 ⁇ 6nm.
  • Example 7 SN-38/ICG nanoparticle size distribution figure, can draw from the figure when SN-38/ICG is prepared in a large amount (1.0L), the nanoparticle that obtains under ultrasonic action presents unimodal distribution , The average particle size is 109 ⁇ 10nm.
  • Example 20 and embodiment 21 HSPC/CHOL/DSPE-PEG blank liposome particle size distribution figure can draw from the figure when preparing HSPC/CHOL/DSPE-PEG blank liposome without ultrasonic action, obtain The blank liposomes showed a multimodal distribution.
  • Fig. 8 HSPC/CHOL/DSPE-PEG blank liposome particle size distribution figure of embodiment 22 and embodiment 23, can draw from the figure when preparing HSPC/CHOL/DSPE-PEG blank liposome under ultrasonic action, The obtained blank liposomes showed a unimodal distribution.
  • the particle sizes are 131.7 ⁇ 2.9nm and 115.3 ⁇ 1.6nm, respectively.
  • Fig. 9 Example 24 PTX/HSPC/CHOL/DSPE-PEG liposome particle size distribution figure, can draw from the figure when preparing PTX/HSPC/CHOL/DSPE-PEG liposome under ultrasonic action, obtain Paclitaxel liposomes showed a unimodal distribution with a particle size of 81.1 ⁇ 1.7nm.
  • FIG. 10 Example 27 PTX/PEG-PLA nano-micelle particle size distribution diagram, from which it can be concluded that when PTX/PEG-PLA nano-micelle is prepared under the action of ultrasound, the obtained nano-micelle is in a unimodal distribution, The particle size is 45.1 ⁇ 1.1nm.
  • Figure 11 The particle size distribution diagram of PEG-PLA nanoparticles in Example 30. From the figure, it can be concluded that when PEG-PLA nanoparticles are prepared without the action of ultrasound, the obtained nanoparticles are in a multimodal distribution, and the particle size is 69.5 ⁇ 7.3 nm, PI is 0.520.
  • Figure 12 The particle size distribution diagram of PEG-PLA nanoparticles in Example 31. From the figure, it can be concluded that when PEG-PLA nanoparticles are prepared under the action of ultrasound, the obtained nanoparticles are in a unimodal distribution, and the particle size is 25.0 ⁇ 0.1nm , PI is 0.152.
  • Figure 13 The particle size distribution diagram of PLGA nanoparticles in Example 32. From the figure, it can be concluded that when PLGA nanoparticles are prepared under the action of ultrasound, the obtained nanoparticles are in a unimodal distribution, with a particle size of 218.5 ⁇ 2.1nm and a PI of 0.063 .
  • Figure 14 The particle size distribution diagram of PTX/PLGA nanoparticles in Example 33. From the figure, it can be concluded that when PTX/PLGA nanoparticles are prepared under the action of ultrasound, the obtained nanoparticles are in a unimodal distribution, and the particle size is 225.9 ⁇ 1.2nm , PI is 0.027.
  • Figure 15 Example 34 PolyI nano-lipid particle size distribution diagram, from the figure it can be concluded that when PolyI nano-lipid particle is prepared without the joint action of ultrasound, the obtained nanoparticles are multimodal distribution, and the particle size is 89.6 nm, PI is 0.414.
  • Figure 16 Example 35 PolyI nano-lipid particle size distribution diagram. From the figure, it can be concluded that when the PolyI nano-lipid particle is prepared under the combined action of ultrasound, the obtained nanoparticles are in a unimodal distribution with a particle size of 85.7nm , PI is 0.214.
  • ultrasound in the present invention refers to the simultaneous application of ultrasonic action during the turbulent mixing process of the two phases.
  • the turbulent mixing part is a circular pipe with a certain diameter and length, which can achieve turbulent flow conditions through one or more of the following methods:
  • Re is the Reynolds number
  • Q is the flow rate
  • d is the pipe diameter
  • is the fluid velocity in the pipe
  • Re in the range of 500-4000, can also obtain nano-preparations with a certain particle size and particle size distribution.
  • Static mixers include but not limited to: SV type static mixer, SX type static mixer, SL type static mixer, SH type static mixer, SK type static mixer, etc., the fluid is divided/changed by turbulent mixing elements Direction of flow/enhances convection of fluids and increases mixing of fluids.
  • the SV static mixer unit is a cylinder assembled from certain regular corrugated plates.
  • the SX static mixer unit consists of many X-shaped units composed of crossed horizontal bars according to certain rules.
  • the SL type static mixer unit consists of crossed horizontal bars to form a single X-shaped unit according to certain rules.
  • the SK type static mixer unit is assembled and welded by a single-channel left and right twisted helical piece.
  • the SH type static mixer unit is composed of double channels, with a fluid redistribution chamber between the units.
  • Embodiment 1 drug concentration determination
  • Mobile phase use 10mmol/L sodium dihydrogen phosphate solution (phosphoric acid to adjust pH4.0) as phase A, acetonitrile as phase B, and perform gradient elution according to the following table:
  • Embodiment 2 Nanoparticle size measurement
  • Dynamic light scattering method the concentration of nanoparticles is 10-100 ⁇ g/ml, and the particle size and distribution of nanoparticles are measured with a nanometer particle size analyzer (laser light source 633nm). Each sample is measured three times, and the average value and variance of the particle size of nanoparticles are calculated.
  • Embodiment 3 Measuring of drug encapsulation efficiency
  • Embodiment 4 SN-38/ICG nanoparticle preparation (SK static mixer, first phase 11ml/min, second phase 193ml/min, total preparation volume 20ml)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the combined phase Re 747, combined and added SK type static mixer, the size of the static mixer is: 5.3mm*85mm, a total of 16 sections of repeated spiral pieces
  • the flow velocity at the outlet of the first phase is: 0.648m/s
  • Example 5 Preparation of SN-38/ICG nanoparticles (first phase 60ml/min, second phase 936ml/min, no ultrasound, total preparation volume 20ml)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.54m/s
  • the velocity of the second phase is: 0.68m/s
  • Example 6 Preparation of SN-38/ICG nanoparticles (first phase 60ml/min, second phase 936ml/min, no ultrasound, total preparation volume 1.0L)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.54m/s
  • the velocity of the second phase is: 0.68m/s
  • Example 7 Preparation of SN-38/ICG nanoparticles (first phase 60ml/min, second phase 936ml/min, with ultrasound, total preparation volume 1.0L)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.54m/s
  • the velocity of the second phase is: 0.68m/s
  • Example 8 Preparation of SN-38/ICG nanoparticles (SK static mixer, first phase 80ml/min, second phase 1248ml/min, no ultrasound, total preparation volume 20ml)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.72m/s
  • the velocity of the second phase is: 0.91m/s
  • Example 9 Preparation of SN-38/ICG nanoparticles (SK static mixer, first phase 80ml/min, second phase 1248ml/min, no ultrasound, total preparation volume 425ml)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.72m/s
  • the velocity of the second phase is: 0.91m/s
  • Example 10 Preparation of SN-38/ICG nanoparticles (SK static mixer, first phase 80ml/min, second phase 1248ml/min, ultrasonic, total preparation volume 425ml)
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.72m/s
  • the velocity of the second phase is: 0.91m/s
  • Example 11 Preparation of PTX/ICG nanoparticles (first phase 60ml/min, second phase 890ml/min, no ultrasound, total preparation volume 20mL)
  • the first phase solution PTX and ICG were co-dissolved in methanol, the concentration of PTX was 100 mg/ml, the concentration of ICG was 50 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Example 12 Preparation of PTX/ICG nanoparticles (first phase 60ml/min, second phase 890ml/min, no ultrasound, total preparation volume 400mL)
  • the first phase solution PTX and ICG were co-dissolved in methanol, the concentration of PTX was 100 mg/ml, the concentration of ICG was 50 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Example 13 Preparation of PTX/ICG nanoparticles (first phase 60ml/min, second phase 890ml/min, with ultrasound, total preparation volume 400mL)
  • the first phase solution PTX and ICG were co-dissolved in methanol, the concentration of PTX was 100 mg/ml, the concentration of ICG was 50 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Embodiment 14 Preparation of curcumin/CPT11 nanoparticles (first phase 60ml/min, second phase 890ml/min, no ultrasound, total preparation volume 20mL)
  • the first phase solution curcumin and CPT11 were co-dissolved in DMSO, the concentration of curcumin was 50 mg/ml, the concentration of CPT11 was 150 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Embodiment 15 Preparation of curcumin/CPT11 nanoparticles (first phase 60ml/min, second phase 890ml/min, no ultrasound, total preparation volume 400mL)
  • the first phase solution curcumin and CPT11 were co-dissolved in DMSO, the concentration of curcumin was 50 mg/ml, the concentration of CPT11 was 150 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Embodiment 16 Curcumin/CPT11 nanoparticle preparation (first phase 60ml/min, second phase 890ml/min, with ultrasound, total preparation volume 400mL)
  • the first phase solution curcumin and CPT11 were co-dissolved in DMSO, the concentration of curcumin was 50 mg/ml, the concentration of CPT11 was 150 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Example 17 Preparation of SN-38/CPT11 nanoparticles (first phase 60ml/min, second phase 890ml/min, no ultrasound, total preparation volume 20mL)
  • the first phase solution SN-38 and CPT11 were co-dissolved in DMSO, the concentration of SN-38 was 40 mg/ml, the concentration of CPT11 was 40 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Example 18 Preparation of SN-38/CPT11 nanoparticles (first phase 60ml/min, second phase 890ml/min, no ultrasound, total preparation volume 400mL)
  • the first phase solution SN-38 and CPT11 were co-dissolved in DMSO, the concentration of SN-38 was 40 mg/ml, the concentration of CPT11 was 40 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Example 19 Preparation of SN-38/CPT11 nanoparticles (first phase 60ml/min, second phase 890ml/min, with ultrasound, total preparation volume 400mL)
  • the first phase solution SN-38 and CPT11 were co-dissolved in DMSO, the concentration of SN-38 was 40 mg/ml, the concentration of CPT11 was 40 mg/ml, and filtered through a 0.22 ⁇ m nylon filter.
  • the inner diameter of the second pipe D 2 (IN) 3.0mm;
  • the outer diameter D 1 (O) of the first pipe end 1.0mm
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 7.58m/s
  • the velocity of the second phase is: 2.24m/s
  • Example 20 Preparation of HSPC/CHOL/DSPE-PEG blank liposomes (first phase 10ml/min, second phase 100ml/min, no ultrasound, total preparation volume 50mL)
  • the first phase solution HSPC, CHOL, and DSPE-PEG 2k were co-dissolved in ethanol, and filtered through a 0.22 ⁇ m nylon filter.
  • HSPC:CHOL:DSPE-PEG 2k 56:38:5 (molar ratio), and the concentration of HSPC is 10 mg/ml.
  • Second phase solution 120 mM ammonium sulfate aqueous solution.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.4m/s
  • the particle size distribution of the blank liposomes prepared under the condition of no ultrasonic action was multimodal (Fig. 7), and the blank liposomes had larger particle size distribution and variance.
  • Example 21 Preparation of HSPC/CHOL/DSPE-PEG blank liposomes (first phase 10ml/min, second phase 200ml/min, no ultrasound, total preparation volume 50mL)
  • the first phase solution HSPC, CHOL, and DSPE-PEG 2k were co-dissolved in ethanol, and filtered through a 0.22 ⁇ m nylon filter.
  • HSPC:CHOL:DSPE-PEG 2k 56:38:5 (molar ratio), and the concentration of HSPC is 10 mg/ml.
  • Second phase solution 120 mM ammonium sulfate aqueous solution.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.40m/s
  • the combined phase velocity is: 6.96m/s
  • the particle size distribution of the blank liposome prepared under the condition of not applying ultrasound was multimodal ( FIG. 7 ), and the blank liposome had larger particle size distribution and variance.
  • Example 22 Preparation of HSPC/CHOL/DSPE-PEG blank liposomes (first phase 10ml/min, second phase 100ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution HSPC, CHOL, and DSPE-PEG 2k were co-dissolved in ethanol, and filtered through a 0.22 ⁇ m nylon filter.
  • HSPC:CHOL:DSPE-PEG 2k 56:38:5 (molar ratio), and the concentration of HSPC is 10 mg/ml.
  • Second phase solution 120 mM ammonium sulfate aqueous solution.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.4m/s
  • Example 23 Preparation of HSPC/CHOL/DSPE-PEG blank liposomes (first phase 10ml/min, second phase 200ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution HSPC, CHOL, and DSPE-PEG 2k were co-dissolved in ethanol, and filtered through a 0.22 ⁇ m nylon filter.
  • HSPC:CHOL:DSPE-PEG 2k 56:38:5 (molar ratio), and the concentration of HSPC is 10 mg/ml.
  • Second phase solution 120 mM ammonium sulfate aqueous solution.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.40m/s
  • the combined phase velocity is: 6.96m/s
  • Example 24 Preparation of PTX/HSPC/CHOL/DSPE-PEG liposomes (first phase 10ml/min, second phase 200ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution PTX, HSPC, CHOL, and DSPE-PEG 2k were co-dissolved in ethanol, and filtered through a 0.22 ⁇ m nylon filter.
  • PTX:HSPC:CHOL:DSPE-PEG 2k 9:89:57:4 (molar ratio), and the concentration of HSPC is 10 mg/ml.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 3.40m/s
  • the combined phase velocity is: 6.96m/s
  • Example 25 Preparation of PTX/PEG-PLA polymer micelles (first phase 14ml/min, second phase 210ml/min, no ultrasound, total preparation volume 50mL)
  • the first phase solution PTX and PEG-PLA were co-dissolved in acetonitrile, PEG-PLA (50 mg/mL), PTX (15 mg/mL), and filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.75m/s
  • the combined phase velocity is: 7.43m/s
  • the solution obtained under the condition of no ultrasound has more white flocculent precipitates, and the particle size cannot be detected.
  • Example 26 Preparation of PTX/PEG-PLA polymer micelles (first phase 14ml/min, second phase 210ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution PTX and PEG-PLA were co-dissolved in acetonitrile, PEG-PLA (50 mg/mL), PTX (15 mg/mL), and filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.75m/s
  • the combined phase velocity is: 7.43m/s
  • Example 27 Preparation of PTX/PEG-PLA polymer micelles (first phase 50ml/min, second phase 300ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution PTX, PEG-PLA co-dissolved in ethanol, PEG-PLA (50mg/mL), PTX (15mg/mL), 0.22 ⁇ m nylon membrane filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 17.0m/s
  • Example 28 Preparation of PTX/PEG-Phe-PLA polymer micelles (first phase 14ml/min, second phase 210ml/min, no ultrasound, total preparation volume 50mL)
  • the first phase solution PTX, PEG-Phe-PLA co-dissolved in acetonitrile, PEG-Phe-PLA (50mg/mL), PTX (15mg/mL), 0.22 ⁇ m nylon membrane filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.75m/s
  • the combined phase velocity is: 7.43m/s
  • the solution obtained under the condition of no ultrasound has more white flocculent precipitates, and the particle size cannot be detected.
  • Example 29 Preparation of PTX/PEG-Phe-PLA polymer micelles (first phase 14ml/min, second phase 210ml/min, with ultrasound, total preparation volume 50mL)
  • PTX and PEG-Phe-PLA were co-dissolved in acetonitrile, PEG-Phe-PLA (50 mg/mL), PTX (15 mg/mL), and filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 4.75m/s
  • the combined phase velocity is: 7.43m/s
  • Example 30 Preparation of PEG-PLA polymer nanoparticles (first phase 50ml/min, second phase 300ml/min, no ultrasound, total preparation volume 50mL)
  • the first phase solution PEG-PLA was dissolved in ethanol, PEG-PLA (50 mg/mL), filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the temperature of the first phase solution t 1 60°C;
  • the flow velocity at the outlet of the first phase is: 17.0m/s
  • Example 31 Preparation of PEG-PLA polymer nanoparticles (first phase 50ml/min, second phase 300ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution PEG-PLA was dissolved in ethanol, PEG-PLA (50 mg/mL), filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the temperature of the first phase solution t 1 60°C;
  • the flow velocity at the outlet of the first phase is: 17.0m/s
  • Example 32 Preparation of PLGA polymer nanoparticles (first phase 50ml/min, second phase 300ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution PLGA
  • PLGA was dissolved in ethanol and filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the temperature of the first phase solution t 1 60°C;
  • the flow velocity at the outlet of the first phase is: 17.0m/s
  • Example 33 Preparation of PTX/PLGA polymer nanoparticles (first phase 50ml/min, second phase 300ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution PTX and PLGA were dissolved in ethanol and filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution water.
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 17.0m/s
  • PTX/PLGA polymer nanoparticles can be prepared under the combined action of shear force and ultrasound, and the particle size distribution of the particles is narrow and unimodal (Figure 14).
  • Example 34 Preparation of PolyI nanolipid particles (first phase 100ml/min, second phase 200ml/min, no ultrasound, total preparation volume 50mL)
  • the first phase solution 32.31mg ALC-0315 (CAS: 2036272-55-4), 4.08mg DSPE-PEG2000 (CAS: 147867-65-0), 7.08mg HSPC (CAS: 92128-87-5), 14.01mg Cholesterol was dissolved in ethanol and filtered through a 0.22 ⁇ m nylon filter.
  • Second phase solution 5.71mg Poly I (CAS: 30918-54-8) dissolved in 3mM citric acid buffer (pH4.0).
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the temperature of the first phase solution t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 34.0m/s
  • the combined phase velocity is: 9.94m/s
  • PolyI nano-lipid particles prepared without the combined action of ultrasound showed a multimodal distribution (Figure 15), and the encapsulation efficiency was low.
  • Example 35 Preparation of PolyI nanolipid particles (first phase 100ml/min, second phase 200ml/min, with ultrasound, total preparation volume 50mL)
  • the first phase solution 32.31mg ALC-0315, 4.08mg DSPE-PEG2000, 7.08mg HSPC, 14.01mg cholesterol dissolved in ethanol, and filtered through a 0.22 ⁇ m nylon filter.
  • the second phase solution 5.71mg Poly I dissolved in 3mM citric acid buffer (pH4.0).
  • the inner diameter of the second pipe D 2 (IN) 0.8mm
  • the outer diameter D 1 (O) of the first pipe end 0.35mm;
  • the first phase solution temperature t 1 25°C;
  • the flow velocity at the outlet of the first phase is: 34.0m/s
  • the combined phase velocity is: 9.94m/s
  • the first phase solution ICG and SN-38 dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, SN-38 and ICG molar ratio is 2:1, 0.22 ⁇ m nylon membrane filtration .
  • the inner diameter of the second pipe D 2 (IN) 5.4mm;
  • the outer diameter of the first pipe end D 1 (O) 2mm;
  • the outer diameter of the second pipe D 2 (O) 6mm
  • the first phase solution temperature t 1 25°C;
  • the combined phase Re 747, combined and added SK type static mixer, the size of the static mixer is: 5.3mm*85mm, a total of 16 sections of repeated spiral pieces
  • the flow velocity at the outlet of the first phase is: 0.648m/s
  • Comparative example 2 Preparation of SN-38/ICG nanoparticles (only under the action of ultrasound)
  • Solution A ICG and SN-38 were dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, the molar ratio of SN-38 and ICG was 2:1, and filtered through a 0.22 ⁇ m nylon filter.
  • Solution A ICG and SN-38 were dissolved in DMSO, SN-38 content: 3.394wt.%, ICG content: 3.397wt.%, the molar ratio of SN-38 and ICG was 2:1, and filtered through a 0.22 ⁇ m nylon filter.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种超声增强的纳米制剂连续化、规模化生产方法。具体公开了一种连续化生产纳米制剂的制备系统,其包括(a)第一管道,(b)第二管道,(f)超声装置,(c)合并管道及(e)其(流体)出口;其中,所述第一管道、第二管道与合并管道相连,第一相溶液经第一管道出口进入合并管道,第二相溶液经第二管道出口进入合并管道,超声装置作用于合并管道局部或整体,第一相溶液与第二相溶液在合并管道内湍流混合形成合并相;并经合并管道的出口流出。本发明的制备系统和制备方法可以显著提高纳米药物的包封率,改善纳米颗粒的粒径的均一性。

Description

一种超声增强的纳米制剂连续化、规模化生产方法
本申请要求申请日为2021/12/13的中国专利申请202111522472X的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及生物医药技术领域,具体涉及一种纳米制剂的连续化、规模化生产的制备系统及其制备方法,具体涉及的生产方法包括在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成稳定的、具有一定粒径和粒径分布的纳米制剂。该制备方法具有稳定性好,重现性高,可实现逐级放大,适于纳米制剂的连续化、规模化生产。
本发明属于纳米药物制剂技术领域。
背景技术
在肿瘤治疗过程中,有多种治疗方案可以延长肿瘤患者的生存期,治疗方案中所使用抗肿瘤药物包括化疗药物、靶向药物、光敏分子、光热分子、多肽、蛋白质、siRNA等,其中的一些药物需要制成纳米剂型才能达到治疗肿瘤的效果。常用的纳米制剂形式包括:纳米粒子、纳米脂质体、聚合物纳米胶束、树枝状聚合物等。
目前纳米制剂的大规模制备方法包括高压匀质法、高剪切乳化、微射流均质等,但这些制备方法为批次制备,存在工艺控制参数多,批次间重现性差,放大生产难度大等缺点。
与批次制备方法相比,纳米制剂的连续化制备方式可以在连续操作过程中形成具有可调尺寸的均匀纳米粒子,生产过程中可以通过实时监测纳米制剂质量,实时收集符合质量标准的纳米制剂。
例如,对于脂质体体系,可以利用乙醇注入法进行连续化生产。加拿大Precision NanoSystems公司的微流控装置可用于连续化制备脂质体(Langmuir,2012,28,3633),利用层流的脂质有机相和水相在错列的静态混合器中快速混合,通过参数优化可以连续化制备脂质体,但由于微流控流通管道通常在微米级,流体流动为层流条件,单通道产量极小,放大生产需多通道并联,需要控制每个脂质体生产单元的一致性。文献(Pharm Res.,2016,33,404~416)和发明专利(CN201680013882)披露的利用乙醇注入法连续制备空白脂质体的装置,可以通过分别调节乙醇相和水相流速,来获得多分散系数低的空白脂质体。
对于聚合物/药物纳米粒子体系,可以通过瞬时纳米沉淀法(flash nanoprecipitation,FNP)进行连续制备(US10940118B2、CN108137819、CN108542894)。瞬时纳米沉淀法是基于动力学控制原理、利用化学工程中的流体湍流混合实现纳米粒子的快速制备,具有载药率高、制备时间短(毫秒级)、易于控制纳米粒子的尺寸、易于放大和连续化生产等特点。纳米沉淀法制备药物/聚合物纳米粒子的原理为:载体或稳定剂(通常为两亲性聚合物)和疏水性药物溶解于与水互溶的良溶剂中形成均一溶液,该溶液在固定的通道内与反溶剂(通常为水)快速混合,由于此时疏水物质在混合溶剂中为高度过饱和状态,疏水性物质在水中快速成核,成核同时与溶液中的聚合物(通常是两亲性嵌段聚合物)相互作用,聚合物对成核核心包覆形成聚合物纳米粒子,聚合物对纳米粒子起到保护作用,防止形成的纳 米粒子再聚集,从而形成在水中具有良好分散性的纳米粒子(Expert Opin.Drug Deliv.,2009,6,865)。瞬时纳米沉淀法所采用的制备装置包括:封闭撞击流混合器(confined impinging jet mixer,CIJM)(Physical Review Letters,2003,91,118301;AIChE Journal,2003,49,2264)、多入口涡流混合器(multi-inlet vortex mixer,MIVM)(Mol.Pharm.,2013,10,4367;Angew.Chem.Int.Ed.Engl.,2021,60,15590)。
然而,通过现有的瞬时纳米沉淀法(FNP)连续制备疏水药物的纳米颗粒时,在纳米制剂放大制备过程中疏水药物包封率的显著下降和纳米制剂的粒径分布系数增大,从而使得纳米制剂制备工艺的重现性变差,难以控制纳米制剂的质量,增大了纳米制剂放大生产过程中的失败风险。此外,虽然现有技术中有使用超声结合非湍流状态的微流控技术制备空白脂质体以降低其粒径,但空白脂质体并不涉及药物包封率这项参数,因此,在纳米制剂放大制备过程中如何提高疏水药物包封率仍是亟待解决的问题。
发明内容
本发明所解决的技术问题是克服上述现有技术的缺陷和不足,经过反复研究和试验,发现同时在湍流剪切作用和超声作用的条件下进行两相溶液的混合,可以解决在纳米制剂放大生产过程中出现的药物包封率的下降和纳米制剂的粒径均一性差的问题,从而提供了一种纳米制剂连续化、规模化和可控化生产的设备以及一种超声增强的纳米制剂连续化、规模化生产方法,实现了纳米制剂的连续可控放大生产。
本发明的第一个目的是提供了用于纳米制剂连续化、规模化和可控化生产的设备,该设备能够促进纳米粒子的形成,提高纳米药物的包封率,防止管壁上疏水药物颗粒的沉积,改善纳米颗粒的粒径的均一性。该设备用途包括但不限于粒径范围1~1000nm的纳米制剂的生产,纳米制剂为聚合物纳米胶束、纳米脂质体、小分子纳米组装体。
本发明的第二个目的是提供了纳米制剂连续化、规模化和可控化生产的方法。
本发明提供了一种连续化生产纳米制剂的制备系统,其包括(a)第一管道,(b)第二管道,(f)超声装置,(c)合并管道及(e)其(流体)出口;
其中,所述第一管道、第二管道与合并管道相连,所述第一管道与合并管道同轴,所述第二管道垂直于合并管道,第一管道出口位于合并管道内,第一相溶液经第一管道出口进入合并管道,第二相溶液经第二管道出口进入合并管道,超声装置作用于合并管道局部或整体,第一相溶液与第二相溶液在合并管道内混合形成合并相;并经合并管道的出口流出。
在一些实施方式中,所述纳米制剂选自聚合物纳米胶束、聚合物纳米颗粒、纳米脂质体、纳米脂质粒和小分子纳米组装体中的一种。
在一些实施方式中,所述制备系统,其特征在于:
(1)所述制备系统的核心部分包含:(a)第一管道;(b)第二管道;(c)合并管道;(d)湍流混合装置;(e)流体出口;(f)功率可调的超声装置;
其中,第一管道、第二管道与合并管道相连,第一相溶液流经第一管道出口进入合并管道,第二相溶液流经第二管道出口进入合并管道,第一相溶液与第二相溶液在合并管道内合并形成合并相,功率可调的超声装置作用于合并管道局部或整体,并通过湍流混合装置进行充分混合后,经合并相管道 出口收集到合适容器内。
(2)第一相溶液与第二相溶液的混合过程在超声的作用下进行;
(3)所述纳米制剂选自聚合物纳米胶束、纳米脂质体或小分子纳米组装体中的一种。
在一些实施方式中,所述混合为湍流混合。所述湍流混合可通过在合并管道内增加湍流混合装置实现。所述湍流混合装置可为一个或多个。
在一些实施方式中,第一管道出口为具有一定形状和孔径的喷孔,第一相溶液经过第一管道通过喷孔进入合并管道。
在一些实施方式中,第一管道末端喷孔孔径D1(S)范围选自0.03-5.0mm;第二管道内径D2(IN)范围选自0.3-50.0mm;合并管道内径D3(IN)范围选自0.3-50.0mm。
在一些实施方式中,所述合并管道长度(即合并相长度)范围选自6至120cm,例如9cm或36cm。
在一些实施方式中,所述合并管道长度与所述合并管道内径的比例为(16-450):1,例如16.7:1、30:1或450:1。
在一些实施方式中,所述第一管道外径D 1(O)为0.35mm至2mm,例如0.35mm、1mm或2mm。
在一些实施方式中,所述第一管道末端喷孔孔径D 1(S)为0.2至0.6mm,例如0.2mm、0.25mm、0.3mm、0.4mm或0.6mm。
在一些实施方式中,所述第二管道外径D 2(O)为6mm。
在一些实施方式中,所述第二管道内径D 2(IN)为0.8mm至5.4mm,例如0.8mm、3.0mm或5.4mm。
在一些实施方式中,所述合并管道外径D 3(O)为6mm。
在一些实施方式中,所述合并管道内径为D 3(IN)为0.8mm至5.4mm,例如0.8mm、3.0mm或5.4mm。
在一些实施方式中,所述第二管道内径D 2(IN)与所述合并管道内径D 3(IN)相同。
在一些实施方式中,所述第一管道末端喷孔孔径D 1(S)与所述合并管道内径D 3(IN)的比可为1:(2-50),例如1:3.2、1:7.5、1:9或1:18。
在一些实施方式中,所述湍流混合装置为使第一相溶液与第二相溶液混合后达到湍流状态的装置,例如静态混合器。所述静态混合器可选自SV型静态混合器、SX型静态混合器、SL型静态混合器、SH型静态混合器和SK型静态混合器中的一种或多种,优选为SK型静态混合器。
在一些实施方式中,其中第一管道、第二管道、合并管道、湍流混合装置、流体出口所用材料各自选自不锈钢、聚四氟乙烯、聚乙烯、聚丙烯、乳胶、硅胶或者其它高分子材料中的一种或多种。
在一些实施方式中,所述湍流混合可通过增加流体流速来使合并相中流体达到湍流过渡状态或湍流状态。合并相内雷诺数视圆形不锈钢管道管壁光滑程度而定,例如当管壁粗糙时,较低的雷诺数也能达到湍流混合条件(如Re介于500-2000,此范围通常认为为层流条件)。
在一些实施方式中,所述湍流混合可通过使合并相为具有一定曲率的弯折管道,通过改变流体流动方向/增强流体的对流,增加流体的混合实现。此时以圆形管内流体计算出的合并相内雷诺数除了大于4000以外,还可以介于500-4000。
在一些实施方式中,所述湍流混合可通过在合并相内装备静态混合器实现,静态混合器包括但不限于:SV型静态混合器、SX型静态混合器、SL型静态混合器、SH型静态混合器、SK型静态混合器等,通过湍流混合元件对流体进行分割/改变流体流动方向/增强流体的对流,增加流体的混合。此时以圆形管内流体计算出的合并相内雷诺数除了大于4000以外,还可以介于500-4000。
在一些实施方式中,其中第一相溶液经过第一管道的流量Q 1范围选自1-1000ml/min;其中第一相溶液温度T 1范围选自0-90℃;其中第二相溶液经过第二管道的流量Q 2范围选自10-10000ml/min;其中第二相溶液温度T 2范围选自0-90℃。
在一些实施方式中,功率可调的超声装置的超声频率为15kHz~1.0MHz,超声功率范围为0.1~20kW。
在一些实施方式中,功率可调的超声装置的超声频率15kHz~40kHz,超声功率范围为0.1~20kW。
在一些实施方式中,功率可调的超声装置的超声频率为15kHz~40kHz,超声功率范围为0.1~20kW。
在一些实施方式中,功率可调的超声装置的超声频率为15kHz~40kHz,超声功率范围为100~1000W。
在一些实施方式中,所述制备系统的构造如图1或图2所示。
在一些实施方式中,聚合物纳米胶束为包覆抗肿瘤药物的聚合物纳米胶束,其中所述聚合物纳米胶束组分选自两亲性聚合物与抗肿瘤药物;两亲性聚合物选自PEG-PLA、PEG-PCL、PEG-linker-PLA、PEG-linker-PCL,其中,linker为连接子,其结构为C 1-C 30小分子片段;PEG为数均分子量在400~20000之间的聚乙二醇链段或单保护的聚乙二醇链段。
在一些实施方式中,纳米脂质体为未包覆药物的空白脂质体。
在一些实施方式中,所述纳米脂质体为包覆抗肿瘤药物的脂质体。
在一些实施方式中,所述纳米脂质粒为包覆抗肿瘤药物的脂质粒。
在一些实施方式中,小分子纳米组装体选自抗肿瘤药物/光敏剂纳米组装体、抗肿瘤药物/抗肿瘤药物纳米组装体、抗肿瘤药物/其它药物(例如,姜黄素)纳米组装体、抗肿瘤药物/辅料(例如两亲性聚合物PEG-PLA、DSPE-PEG或者聚合物PLGA)纳米组装体、两种或两种以上药物纳米组装体(例如SN38与伊立替康)、或者小分子药物/辅料纳米组装体。
在一些实施方式中,所述抗肿瘤药物选自abemaciclib,abiraterone,abrocitinib,acalabrutinib,afatinib,aldesleukin,alectinib,alflutinib,almonertinib,altretamine,amcenestrant,aminoglutethimide,amsacrine,anastrozole,anlotinib,apalutamide,apatinib,arzoxifene,asciminib,asparaginase,avapritinib,avitinib,axitinib,azacitidine,baricitinib,belinostat,bendamustine,bexarotene,bicalutamide,bicyclol,binimetinib,bleomycin,boanmycin,bortezomib,bosutinib,brigatinib,buserelin,busulfan,cabazitaxel,cabozantinib,calaspargase,calicheamycin,capecitabine,capmatinib,carboplatin,carfilzomib,carmustine,carmofur,cedazuidine,ceritinib,cetrorelix,chidamide,chlorambucil,cisplatin,cladribine,clofarabine,cobimetinib,colchicine,copanlisib,crizotinib,cyclophosphamide,cytarabine,dabrafenib,dacarbazine,dacomitinib,dactinomycin,dalpiciclib,darolutamide,dasatinib,daunorubicin,decitabine,degarelix,delgociclib,denileukin,deruxtecan,docetaxel,donafenib,doxorubicin,duvelisib,enasidenib,encorafenib,ensartinib, entrectinib,enzalutamide,enzastaurin,elacestrant,epirubicin,erdafitinib,eribulin,erlotinib,estradiol,estramustine,etoposide,everolimus,exemestane,fasudil,fedatinib,filgotinib,floxuridine,fludarabine,flumatinib,fluorouracil,flutamide,fluzoparib,formestane,fostamatinib,fruquintinib,fulvestrant,gefitinib,gemcitabine,gilteritinib,giredestrant,glasdegib,goserelin,histrelin,hydroxyurea,ibrutinib,ibudilast,icaritin,icotinib,idarubicin,idelalisib,ifosfamide,imatinib,imiquimod,infigratinib,ingenol mebutate,interferon alfa-2b,irinotecan,ivosidenib,ixabepilone,ixazomib,lanreotide,lapatinib,larotrectinib,lenalidomide,lenvatinib,letrozole,leucovorin,leuprolide,lomustine,lonafarnib,lorlatinib,lurbinctedin,maytansine,mechlorethamine,medroxyprogesterone,megestrol,melphalan,melphlan flufenamide,mercaptopurine,methotrexate,methoxsalen,methylprednisolone,midostaurin,mitomycin,mitotane,mitoxantrone,mitozolomide,mobocertinib,monomethylauristatin E,monomethylauristatin F,nelarabine,nandrolone,neratinib,nearsudil,nilotinib,nilutamide,nintedanib,niraparib,octreotide,olaparib,olmutinib,omacetaxine,orelabrutinib,osimertinib,oxaliplatin,paclitaxel,pacritinib,palbociclib,pamidronate,pamiparib,panobinostat,pazopanib,peficitinib,pegaptanib,pegaspargase,peginteferon alfa-2b,pemigatinib,pemetrexed,pentetreotide,pentostatin,pexidartinib,phenoxybenzamine,pidotimod,plinabulin,plitidepsin,pomalidomide,ponatinib,porfimer,pralatrexate,pralsetinib,prednisolone,procarbazine,pyrotinib,quizartinib,radotinib,raloxifene,raltitrexed,regorafenib,ribociclib,rintatolimod,ripretinib,romidepsin,rucaparib,ruxolitinib,savolitinib,selinexor,selpercatinib,selumetinib,sonidegib,sorafenib,sotorasib,streptozocin,sunitinib,surufatinib,talazoparib,tamoxifen,tazemetostat,tegafur,temozolomide,temsirolimus,teniposide,tepotinib,teprenone,thalidomide,thioguanine,thiotepa,thyrotropin alfa,tipiracil,tipifarnib,tirabrutinib,tirbanibulin,tivozanib,trametinib,tofacitinib,topotecan,toremifene,trabectedin,tretinoin,trifluride,trilaciclib,triptorelin,tucatinib,upadacitinib,umbralisib,utidelone,uroacitide,valrubicin,vandetanib,vemurafenib,venetoclax,vinblastine,vincristine,vindesine,vinflunine,vinorelbine,vismodegib,vorinostat,zanubrutinib,zoledronic acid,amatoxins,anthacyclines,anthracenes,anthramycins,auristatins,bryostatins,camptothecins,carmaphycins,combretastatins,cyclosporines,cryptomycins,ecteinascidins,ellipticenes,esperamicins,mustines,neothramycins,ozogamicins,phenoxazines,podophyllotoxins,pyrrolobenzodiazepines,sibiromycins,thailanstatins,tomamycns,tubulysins,taxanes,vinca alkaloids,7-表紫杉醇、2'-乙酰基紫杉醇、10-脱乙酰基紫杉醇、10-脱乙酰基-7-表紫杉醇、7-木糖基紫杉醇、10-脱乙酰基-7-戊二酰紫杉醇、7-N,N-二甲基甘氨酰紫杉醇、7-L-丙氨酰紫杉醇、莱龙泰素、喜树碱、9-氨基喜树碱、9-硝基喜树碱、勒托替康、吉马替康、贝洛替康、10-羟基喜树碱、10-羟基--乙基-喜树碱(SN-38)、伊喜替康、吡喃阿霉素、阿克拉霉素、西罗莫司、他克莫司、黄体酮、雌激素、雷帕霉素、普卡霉素、三尖杉酯碱或者姜黄素的一种或多种;
进一步地,抗肿瘤药物优选选自喜树碱、9-氨基喜树碱、9-硝基喜树碱、勒托替康、吉马替康、贝洛替康、10-羟基喜树碱、SN-38、伊喜替康、伊立替康、拓扑替康、deruxtecan、紫杉醇、多西他赛、卡巴他赛、7-表紫杉醇、2'-乙酰基紫杉醇、10-脱乙酰基紫杉醇、10-脱乙酰基-7-表紫杉醇、7-木糖基紫杉醇、10-脱乙酰基-7-戊二酰紫杉醇、7-N,N-二甲基甘氨酰紫杉醇、7-L-丙氨酰紫杉醇、莱龙泰素、阿霉素、表阿霉素、柔红霉素、吡喃阿霉素、阿克拉霉素、依托泊苷、替尼泊苷、长春碱、长春新碱、 长春瑞滨、长春地辛、美登素、姜黄素、三尖杉酯碱、高三尖杉酯碱、吉西他滨、卡培他滨、氟达拉滨、克拉曲滨、培美曲塞、硼替佐米、卡非佐米、艾莎佐米、卡莫司汀、氟尿嘧啶、阿糖胞苷、环孢菌素A、艾日布林、曲贝替定、吉非替尼、厄洛替尼、拉帕替尼、阿法替尼、达可替尼、凡德他尼、来那替尼、奥希替尼、伊马替尼、索拉非尼、苏尼替尼、拉帕替尼、达沙替尼、奥拉帕利、尼拉帕利、卢卡帕利、氟唑帕利、帕米帕利、维利帕利、他拉唑帕尼、阿帕替尼、帕博昔利、阿贝昔利、瑞博昔利中的一种或多种。
在一些实施方式中,所采用的光敏剂,包括花菁类分子、卟啉类分子、卟啉分子前驱体、酞菁类分子、二氢卟吩类分子;其中,所述花菁类分子优选为吲哚绿(IR780)、新吲哚菁绿(IR820)、吲哚菁绿或吲哚菁绿类似物中的一种或多种;所述卟啉类分子优选为血卟啉单甲醚;所述卟啉分子前驱体优选为5-氨基戊酮酸、5-氨基戊酮酸酯中的一种;所述酞菁类分子优选为酞菁铜、酞菁钴、酞菁铝、酞菁镍、酞菁钙、酞菁钠、酞菁镁、酞菁锌、铟酞菁、氧钛酞菁、酞菁镁、锰酞菁或酞菁类衍生物中的一种或多种;所述二氢卟吩类分子优选为二氢卟吩、他拉泊芬、维替泊芬、替莫泊芬、罗他泊芬、卟吩姆钠、海姆泊芬、光克洛中的一种或多种。
在一些实施方式中,所述聚合物纳米胶束为PTX/PEG-PLA聚合物胶束或PTX/PEG-Phe-PLA聚合物胶束。
在一些实施方式中,所述纳米脂质体为HSPC/CHOL/DSPE-PEG空白脂质体或PTX/HSPC/CHOL/DSPE-PEG脂质体。
在一些实施方式中,所述纳米脂质体中,HSPC/CHOL/DSPE-PEG的摩尔比为56:38:5或89:57:4。
在一些实施方式中,所述纳米脂质粒为PolyI纳米脂质粒,例如Poly I/ALC-0315/DSPE-PEG2000/HSPC/胆固醇。
在一些实施方式中,所述聚合物纳米颗粒为PEG-PLA聚合物纳米颗粒、PLGA聚合物纳米颗粒或PTX/PLGA聚合物纳米颗粒。
在一些实施方式中,所述小分子纳米组装体为抗肿瘤药物/光敏剂纳米组装体,优选SN-38/ICG纳米粒子、PTX/ICG纳米粒子、姜黄素/CPT11纳米粒子或SN-38/CPT11纳米粒子。
在一些实施方式中,抗肿瘤药物载药量为10%-90%,例如10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%。
本发明还提供了一种纳米制剂的制备方法,其包括如下步骤:在如上所述的制备系统中,第一相溶液和第二相溶液混合,在超声的作用下,得到的合并相经其(流体)出口收集所述纳米制剂即可;
A.当所述的纳米制剂为聚合物纳米胶束时,所述第一相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂,溶质为(1)抗肿瘤药物或其药学上可接受的盐;或(2)所述抗肿瘤药物或其药学上可接受的盐以及聚合物;
所述第二相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的反溶剂,溶质为(1)不存在;或(2)聚合物;
当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐以及聚合物时,第二相溶液中溶质不存在;
当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐时,第二相溶液中溶质为聚合物;
B.当所述的纳米制剂为聚合物纳米颗粒时,所述第一相溶液的溶剂为聚合物的良溶剂,溶质为(1)聚合物,或(2)聚合物和抗肿瘤药物;
所述第二相溶液为水或含有0.5%PVA的水;
C.当所述的纳米制剂为纳米脂质体时,所述第一相溶液的溶剂为脂质成分的良溶剂,溶质为(1)脂质体的脂质成分,或(2)脂质体的脂质成分和抗肿瘤药物;
所述第二相溶液为水或具有一定pH值和一定渗透压的缓冲水溶液;
D.当所述的纳米制剂为纳米脂质粒时,所述第一相溶液的溶剂为脂质成分的良溶剂,溶质为脂质粒的脂质成分;
所述第二相溶液的溶剂为具有一定pH值和一定渗透压的缓冲水溶液;溶质为抗肿瘤药物;
E.当所述的抗肿瘤药物/光敏剂纳米组装体时,所述第一相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂,溶质为(1)抗肿瘤药物或其药学上可接受的盐以及光敏剂,或(2)抗肿瘤药物或其药学上可接受的盐;
所述第二相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的反溶剂,溶质为(1)不存在,或(2)光敏剂;
当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐以及光敏剂时,第二相溶液中溶质不存在;
当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐时,第二相溶液中溶质为光敏剂。
在一些实施方式中,所述第一相溶液的温度为0-90℃,例如25℃或60℃。
在一些实施方式中,所述第二相溶液的温度为0-90℃,例如25℃或60℃。
在一些实施方式中,所述合并相的流体雷诺数Re为700-9500(例如747、2884、3868、5158、5505、5872、6623、7865或9176),优选3000-7000(例如3868、5158或6623)。
在一些实施方式中,所述第一相溶液与所述合并相的流速比FVR为0.4-6,例如0.49、0.64、0.93、1.46、3.38、3.4、4.4或5.2。
在一些实施方式中,所述第一相溶液经过第一管道的流量Q 1范围选自10-100ml/min,例如10、11、14、50、60、80或100。
在一些实施方式中,所述第二相溶液经过第二管道的流量Q 2范围选自100-1300ml/min,例如100、193、200、210、300、936、890或1248。
在一些实施方式中,所述超声为超声水浴,超声的功率为200W。
在一些实施方式中,本发明还提供了一种用于聚合物胶束的制备方法,方法包括:一种或多种的所述抗肿瘤药物或其药学上可接受的盐溶解于第一相中,所述的第一相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂。一种或多种的聚合物溶解于第二相溶液中,所述的第二相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐反溶剂。第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的包覆抗肿瘤药物的聚合物胶束。在两相溶液混合过程中,在超声的作用下可以防止管壁上疏水药物颗粒的沉积,保证了纳米制剂放大生产过程的 稳定性和可控性。
在一些实施方式中,本发明还提供了一种用于聚合物胶束的制备方法,方法包括:一种或多种的所述抗肿瘤药物或其药学上可接受的盐和一种或多种的所述聚合物溶解于第一相中,所述的第一相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐和聚合物的良溶剂。第二相溶液为抗肿瘤药物或其药学上可接受的盐的反溶剂。第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切的作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的聚合物胶束。在两相溶液混合过程中,在超声的作用下可以防止管壁上疏水药物颗粒的沉积,保证了纳米制剂放大生产过程的稳定性和可控性。
在一些实施方式中,抗肿瘤药物在第一相溶液的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,更优选10-20mg/ml,例如15mg/ml。
在一些实施方式中,聚合物在第一相溶液或第二相溶液中的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,例如50mg/ml。
在一些实施方式中,本发明还提供了一种连续化生产脂质体的制备方法,方法包括:脂质体的脂质成分溶解于第一相中,所述的第一相溶液所用溶剂为脂质成分的良溶剂。第二相溶液为水、具有一定pH值和一定渗透压的缓冲水溶液。第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的空白脂质体。在两相溶液混合过程中,在超声的作用下可以减少以及清除合并相管壁的沉降物,保证了纳米制剂放大生产过程的稳定性和可控性。
在一些实施方式中,脂质成分在第一相溶液的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml。
在一些实施方式中,当所述脂质成分为HSPC/CHOL/DSPE-PEG 2k时,所述HSPC在第一相溶液中的体积质量浓度为10mg/ml。
在一些实施方式中,本发明还提供了一种连续化生产抗肿瘤药物/光敏剂纳米组装体的制备方法,方法包括:一种或多种的所述抗肿瘤药物或其药学上可接受的盐溶解于第一相中。一种或多种的所述光敏剂溶解于第二相溶液中,所述的第二相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐反溶剂。第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的光敏剂与抗肿瘤药物复合纳米制剂。在超声的作用下可以防止管壁上疏水药物颗粒的沉积,保证了纳米制剂放大生产过程的稳定性和可控性。
在一些实施方式中,本发明还提供了一种连续化生产抗肿瘤药物/光敏剂纳米组装体的制备方法,方法包括:一种或多种的所述抗肿瘤药物或其药学上可接受的盐和一种或多种的所述光敏剂溶解于第 一相中,所述的第一相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐和光敏剂的良溶剂。第二相溶液为抗肿瘤药物或其药学上可接受的盐的反溶剂。第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切的作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的光敏剂与抗肿瘤药物复合纳米制剂。在超声的作用下可以防止管壁上疏水药物颗粒的沉积,保证了纳米制剂放大生产过程的稳定性和可控性。
在一些实施方式中,所述抗肿瘤药物或其药学上可接受的盐与所述光敏剂的摩尔比为(1-15):1,例如1:1、2:1、5:1、6:1、7:1、8:1、10:1或15:1,优选2:1。
在一些实施方式中,抗肿瘤药物在第一相溶液的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,例如40mg/ml、50mg/ml或100mg/ml。
在一些实施方式中,光敏剂在第一相溶液或第二相溶液中的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,例如40mg/ml、50mg/ml或150mg/ml。
在一些实施方式中,第一相溶液和第二相溶液所用的溶剂为水、具有一定pH值的缓冲水溶液或与水互溶的有机溶剂,进一步地,所述的有机溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、叔丁醇、DMF、DMAc、HMPA、N-甲基吡咯烷酮、二甲亚砜、丁砜、环丁砜、四氢呋喃、2-甲基四氢呋喃、乙腈、丙酮、乙二醇、乙二醇甲醚、乙二醇乙醚、二氧六环、甲酸、乙酸、羟基丙酸、乙胺、乙二胺、甘油或吡啶的一种或多种。
在一些实施方式中,当所述的纳米制剂为聚合物纳米胶束时,所述第一相溶液所用的溶剂为腈类溶剂或醇类溶剂,例如乙腈或乙醇。
在一些实施方式中,当所述的纳米制剂为聚合物纳米胶束时,所述第二相溶液所用的溶剂为水。
在一些实施方式中,当所述的纳米制剂为脂质体时,所述第一相溶液所用的溶剂为醇类溶剂,例如乙醇。
在一些实施方式中,当所述的纳米制剂为脂质体时,所述第二相溶液所用的溶剂为水或硫酸铵水溶液,优选水或120mM硫酸铵水溶液。
在一些实施方式中,当所述的纳米制剂为聚合物纳米颗粒时,所述第一相溶液所用的溶剂为醇类溶剂或氯代烷烃类溶剂,例如乙醇或二氯甲烷。
在一些实施方式中,当所述的纳米制剂为聚合物纳米颗粒时,所述第二相溶液所用的溶剂为水或含有0.5%PVA的水。
在一些实施方式中,当所述的纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述第一相溶液所用的溶剂为亚砜类溶剂、醇类溶剂,例如二甲基亚砜或甲醇。
在一些实施方式中,当所述的纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述第二相溶液所用的溶剂为水。
在一些实施方式中,当所述的纳米制剂为纳米脂质粒时,所述第一相溶液为醇类溶剂,例如乙醇。
在一些实施方式中,当所述的纳米制剂为纳米脂质粒时,所述第二相溶液为柠檬酸缓冲液(pH4.0)。
在一些实施方式中,制备的纳米制剂小于1000nm。
在一些实施方式中,制备的纳米制剂粒径小于500nm。
在一些实施方式中,制备的纳米制剂粒径小于200nm。
在一些实施方式中,制备的纳米制剂粒径范围选自20-200nm。
在一些实施方式中,制备的纳米制剂多分散指数小于0.3。
在一些实施方式中,制备的纳米制剂多分散指数小于0.2。
在一些实施方式中,制备的纳米制剂多分散指数小于0.1。
进一步地,本发明还提供了一种连续化生产SN-38/吲哚菁绿纳米组装体的制备方法,方法包括:
SN-38和吲哚菁绿共同溶解于第一相中,其中第一相溶液所用溶剂为SN-38和吲哚菁绿的良溶剂,第二相溶液为抗肿瘤药物或其药学上可接受的盐的反溶剂。第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切的作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的SN-38/吲哚菁绿纳米组装体。其中第一相溶液和第二相溶液所用的溶剂为水、具有一定pH值的缓冲水溶液或与水互溶的有机溶剂,进一步地,其中有机溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、叔丁醇、DMF、DMAc、HMPA、N-甲基吡咯烷酮、二甲亚砜、丁砜、环丁砜、四氢呋喃、2-甲基四氢呋喃、乙腈、丙酮、乙二醇、乙二醇甲醚、乙二醇乙醚、二氧六环、甲酸、乙酸、羟基丙酸、乙胺、乙二胺、甘油或吡啶的一种或多种。
在一些实施方式中,无超声条件下15-20ml规模制备的SN-38/ICG纳米粒子SN-38包封率98.4%,纳米粒子粒径为98±4nm。
在一些实施方式中,无超声条件下1.0L规模制备的SN-38/ICG纳米粒子SN-38包封率下降到92.4%,出口管道有明显的SN-38药物沉积,纳米粒子粒径为111±6nm。
在一些实施方式中,超声条件下1.0L规模制备的SN-38/ICG纳米粒子SN-38包封率接近小批量制备包封率,为97.5%,平均径109±10nm。
在一些实施方式中,无超声条件下15-20ml规模制备的SN-38/ICG纳米粒子SN-38包封率98.8%,纳米粒子粒径为109±5nm。
在一些实施方式中,无超声条件下425mL规模制备的SN-38/ICG纳米粒子SN-38包封率下降到92.2%,出口管道有明显的SN-38药物沉积,纳米粒子粒径为126±4nm。
在一些实施方式中,超声条件下425mL规模制备的SN-38/ICG纳米粒子SN-38包封率接近小批量制备包封率,为97.0%,平均径113±4nm。
在一些实施方式中,无超声条件下20ml规模制备的PTX/ICG纳米粒子PTX包封率98.2%,纳米粒子粒径为75±3nm。
在一些实施方式中,无超声条件下400ml规模制备的PTX/ICG纳米粒子PTX包封率下降到93.4%,纳米粒子粒径为81±5nm。
在一些实施方式中,超声条件下400ml规模制备的PTX/ICG纳米粒子PTX包封率接近小批量制 备包封率,为98.7%,平均径72±2nm。
在一些实施方式中,无超声条件下制备HSPC/CHOL/DSPE-PEG空白脂质体,得到的空白脂质体呈多峰分布。
在一些实施方式中,超声条件下制备的HSPC/CHOL/DSPE-PEG空白脂质体,得到的空白脂质体呈单峰分布。粒径为131.7±2.9nm,表明超声能够促进空白脂质体的形成。
在一些实施方式中,超声条件下制备的HSPC/CHOL/DSPE-PEG空白脂质体,得到的空白脂质体呈单峰分布。粒径为115.3±1.6nm,表明超声能够促进空白脂质体的形成。
在一些实施方式中,超声条件下制备的HSPC/CHOL/DSPE-PEG/紫杉醇脂质体,得到的紫杉醇脂质体呈单峰分布。粒径为81.1±1.7nm,表明超声能够促进紫杉醇脂质体的形成。
在一些实施方式中,无超声条件下制备的PTX/PEG-PLA聚合物胶束,溶液中有较多白色絮状物,粒径分布宽,重复性较差。
在一些实施方式中,超声条件下制备的PTX/PEG-PLA聚合物胶束,粒径均一分布,平均径25.6±1.0nm,表明超声能够促进载药聚合物胶束的形成。
在一些实施方式中,无超声条件下制备的PTX/PEG-Phe-PLA聚合物胶束,溶液中有较多白色絮状物,粒径分布宽,重复性较差。
在一些实施方式中,超声条件下制备的PTX/PEG-Phe-PLA聚合物胶束,粒径均一分布,平均径23.4±0.8nm,表明超声能够促进载药聚合物胶束的形成。
与现有技术相比,本发明具有以下有益效果:本发明的制备系统和制备方法可以显著提高纳米药物的包封率,改善纳米颗粒的粒径的均一性。此外,由于包封率的提高,减少了药物的沉积。利于连续化制备生产。
附图说明
图1:无静态混合器纳米制剂制备装置示意图
图2:合并相内有SK静态混合器纳米制剂制备装置示意图
图3:实施例4低湍流条件下有/无超声条件下制备的SN-38/ICG纳米粒子粒径分布图
图4:实施例5 SN-38/ICG纳米粒子粒径分布图,从图中可以得出当SN-38/ICG小量制备(10-25mL)时,以无超声制备装置得到的纳米粒子呈现单峰分布,平均粒径98±4nm。
图5:实施例6 SN-38/ICG纳米粒子粒径分布图,从图中可以得出当SN-38/ICG大量制备(1.0L)时,以无超声制备装置得到的纳米粒子呈现双峰分布,平均粒径111±6nm。
图6:实施例7 SN-38/ICG纳米粒子粒径分布图,从图中可以得出当SN-38/ICG大量制备(1.0L)时,在超声作用下得到的纳米粒子呈现单峰分布,平均粒径109±10nm。
图7:实施例20和实施例21 HSPC/CHOL/DSPE-PEG空白脂质体粒径分布图,从图中可以得出无超声作用制备HSPC/CHOL/DSPE-PEG空白脂质体时,得到的空白脂质体呈多峰分布。
图8:实施例22和实施例23 HSPC/CHOL/DSPE-PEG空白脂质体粒径分布图,从图中可以得出在超声作用下制备HSPC/CHOL/DSPE-PEG空白脂质体时,得到的空白脂质体呈单峰分布。粒径分别为131.7±2.9nm和115.3±1.6nm。
图9:实施例24 PTX/HSPC/CHOL/DSPE-PEG脂质体粒径分布图,从图中可以得出在超声作用下制备PTX/HSPC/CHOL/DSPE-PEG脂质体时,得到的紫杉醇脂质体呈单峰分布,粒径为81.1±1.7nm。
图10:实施例27 PTX/PEG-PLA纳米胶束粒径分布图,从图中可以得出在超声作用下制备PTX/PEG-PLA纳米胶束时,得到的纳米胶束呈单峰分布,粒径为45.1±1.1nm。
图11:实施例30 PEG-PLA纳米颗粒粒径分布图,从图中可以得出在没有超声作用下制备PEG-PLA纳米颗粒时,得到的纳米颗粒呈多峰分布,粒径为69.5±7.3nm,PI为0.520。
图12:实施例31 PEG-PLA纳米颗粒粒径分布图,从图中可以得出有超声作用下制备PEG-PLA纳米颗粒时,得到的纳米颗粒呈单峰分布,粒径为25.0±0.1nm,PI为0.152。
图13:实施例32 PLGA纳米颗粒粒径分布图,从图中可以得出在超声作用下制备PLGA纳米颗粒时,得到的纳米颗粒呈单峰分布,粒径为218.5±2.1nm,PI为0.063。
图14:实施例33 PTX/PLGA纳米颗粒粒径分布图,从图中可以得出在超声作用下制备PTX/PLGA纳米颗粒时,得到的纳米颗粒呈单峰分布,粒径为225.9±1.2nm,PI为0.027。
图15:实施例34 PolyI纳米脂质粒粒径分布图,从图中可以得出在没有超声的共同作用下制备PolyI纳米脂质粒时,得到的纳米颗粒呈多峰分布,粒径为89.6nm,PI为0.414。
图16:实施例35 PolyI纳米脂质粒粒径分布图,从图中可以得出在超声的共同作用下制备PolyI纳米脂质粒时,得到的纳米颗粒呈单峰分布,粒径为85.7nm,PI为0.214。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
如无特别说明,本发明中“有超声”均指两相在湍流混合过程中同时施加超声作用。
本发明中使用到的缩写如下表所示:
缩写 全称
D 1(S) 第一管道末端喷孔孔径
D 2(IN) 第二管道内径
D 3(IN) 合并管道内径
Re 雷诺数
Q 1 第一管道的流量
Q 2 第二管道的流量
T 1 第一相溶液温度
T 2 第二相溶液温度
IR780 2-[2-[2-氯-3-[(1,3-二氢-3,3-二甲基-1-丙基-2H-吲哚-2-亚基)亚
  乙基]-1-环己烯-1-基]乙烯基]-3,3-二甲基-1-丙基吲哚鎓碘化物
IR820 新吲哚菁绿;
ICG 吲哚菁绿
SN-38 7-乙基-10-羟基喜树碱
deruxtecan 德鲁替康
DMF N,N-二甲基甲酰胺
DMAc N,N-二甲基乙酰胺
DMSO 二甲基亚砜
THF 四氢呋喃
HMPA 六甲基磷酰三胺
siRNA 小干扰RNA
Ce6 二氢卟吩e6
DOX 阿霉素
HCPT 10-羟基喜树碱
CPT11 伊立替康
PTX 紫杉醇
UA 乌索酸
LA lactobionic acid,乳糖醛酸
PLA 聚乳酸
PCL 聚己内酯
PEG-PLA 甲氧基聚乙二醇-聚乳酸共聚物
PVA 聚乙烯醇
PolyI 聚肌苷酸
ALC-0315 阳离子脂质CAS号:2036272-55-4
DSPE-PEG2000 二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000
HSPC 氢化大豆磷脂酰胆碱
PEG-Phe-PLA 甲氧基聚乙二醇-(CO-苯丙氨酸-NH)-聚乳酸共聚物
FNP flash nanoprecipitation,瞬时纳米沉淀法
CIJM confined impinging jet mixer,封闭撞击流混合器
MIVM multi-inlet vortex mixer,多入口涡流混合器
FVR 流速比
本申请中湍流混合部分为一定直径和长度的圆形管道,通过以下几种方式中的一种或多种达到湍流条件:
1)增加流速:
充分混合需达到湍流,Re>4000
流量Q=πd 2/4*υ
Re=ρυd/μ=4ρQ/(πdμ)>4000
当d=0.25mm
Q>πμd=2.8L/h
当d=4mm
Q>45L/h
当d=40mm
Q>450L/h
其中,Re为雷诺数,Q为流量,d为管道直径,υ为管道内流体流速,μ为流体粘度20℃μ =10 -3Pa·s
其中,需要指出的是,对于制备某些光敏剂和抗肿瘤药物复合纳米粒子,Re在500-4000范围内,也能得到一定粒径和粒径分布的纳米制剂。
2)改变管道形貌:
通过增加管道曲折程度流体流动方向被强行变更,增强流体混合。
3)管道内增加静态混合器:
静态混合器包括但不限于:SV型静态混合器、SX型静态混合器、SL型静态混合器、SH型静态混合器、SK型静态混合器等,通过湍流混合元件对流体进行分割/改变流体流动方向/增强流体的对流,增加流体的混合。
SV型静态混合器单元是由一定规律的波纹板组装而成的圆柱体。
SX型静态混合器单元由交叉的横条按一定规律构成许多的X型单元。
SL型静态混合器单元由交叉的横条按一定规律构成单X型单元。
SK型静态混合器单元由单孔道左、右扭转的螺旋片组焊而成。
SH型静态混合器单元由由双孔道组成,单元之间设有流体再分配室。
实施例1:药物浓度测定
仪器:Agilent1260高效液相色谱仪
色谱柱:Waters XBridge C18 4.6*150mm,3.5μm
流动相:以10mmol/L磷酸二氢钠溶液(磷酸调节pH4.0)为A相,以乙腈为B相,按照下表进行梯度洗脱:
时间(min) A% B%
0 80 20
10 20 80
11 80 20
16 80 20
色谱参数:流速:1ml/min;柱温:35℃;检测波长:264nm;进样量:10μl
计算方法:峰面积外标法
实施例2:纳米粒子粒径测定
动态光散射法:纳米粒子浓度为10~100μg/ml,以纳米粒径仪测定纳米粒子粒度及分布(激光光源633nm),每个样品测量三次,计算纳米粒子粒径平均值和方差。
实施例3:药物包封率测定
取1ml纳米粒子溶液,以0.22μm尼龙针式过滤器过滤,HPLC测定疏水药物浓度。
Figure PCTCN2022138806-appb-000001
实施例4:SN-38/ICG纳米粒子制备(SK静态混合器,第一相11ml/min,第二相193ml/min,总制备量20ml)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000002
按圆形管道内流体计算,合并相Re=747,合并相加SK型静态混合器,静态混合器尺寸为:5.3mm*85mm,共16节重复螺旋片
第一相出口流速为:0.648m/s
合并相流速为:0.148m/s
FVR=4.4
制备量:20ml
Figure PCTCN2022138806-appb-000003
*在湍流混合过程中同时施加超声作用,在200W超声浴中两相合并。
通过对比上述(1)与(2),可以看出,在超声的协同作用下,SN-38包封率由53.5%增加到94.8%,粒径由多峰分布变为单峰分布(图3),平均粒径显著减小。
实施例5:SN-38/ICG纳米粒子制备(第一相60ml/min,第二相936ml/min,无超声,总制备量20ml)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000004
按圆形管道内流体计算,合并相Re=3868,合并相未加静态混合器。
第一相出口流速为:3.54m/s
第二相流速为:0.68m/s
FVR=5.2
制备量:20ml
Figure PCTCN2022138806-appb-000005
实施例6:SN-38/ICG纳米粒子制备(第一相60ml/min,第二相936ml/min,无超声,总制备量1.0L)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000006
按圆形管道内流体计算,合并相Re=3868,合并相未加静态混合器。
第一相出口流速为:3.54m/s
第二相流速为:0.68m/s
FVR=5.2
制备量:1.0L
Figure PCTCN2022138806-appb-000007
对比实施例5与6可以发现,在没有同时施加超声作用的条件下,在放大制备纳米颗粒过程中(从20mL放大到1000mL),包封率显著下降,D90与D10的比率显著增大,粒径呈多峰分布(图5)。
实施例7:SN-38/ICG纳米粒子制备(第一相60ml/min,第二相936ml/min,有超声,总制备量1.0L)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000008
按圆形管道内流体计算,合并相Re=3868,合并相未加静态混合器。
第一相出口流速为:3.54m/s
第二相流速为:0.68m/s
FVR=5.2
制备量:1.0L
Figure PCTCN2022138806-appb-000009
对比实施例7与6可以发现,在放大制备纳米颗粒过程中,同时施加超声作用的条件下,包封率显著提高(97.5%vs 92.4%),D90与D10的比率减少(1.63vs 2.39),粒径呈单峰分布(图6)。在同时施加超声作用的条件下,放大制备纳米颗粒的效果与小量制备条件的试验结果(实施例5)相似。
实施例8:SN-38/ICG纳米粒子制备(SK静态混合器,第一相80ml/min,第二相1248ml/min,无超声,总制备量20ml)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000010
按圆形管道内流体计算,合并相Re=5158,合并相加SK型静态混合器,静态混合器尺寸为:5.3mm*85mm,共16节重复螺旋片。
第一相出口流速为:4.72m/s
第二相流速为:0.91m/s
FVR=5.2
制备量:20ml
Figure PCTCN2022138806-appb-000011
实施例9:SN-38/ICG纳米粒子制备(SK静态混合器,第一相80ml/min,第二相1248ml/min,无超声,总制备量425ml)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000012
按圆形管道内流体计算,合并相Re=5158,合并相加SK型静态混合器,静态混合器尺寸为:5.3mm*85mm,共16节重复螺旋片。
第一相出口流速为:4.72m/s
第二相流速为:0.91m/s
FVR=5.2
制备量:425ml
Figure PCTCN2022138806-appb-000013
对比实施例8与9可以发现,在没有同时施加超声作用的条件下,在放大制备纳米颗粒过程中(从20mL放大到425mL),包封率显著下降,D90与D10的比率增大。
实施例10:SN-38/ICG纳米粒子制备(SK静态混合器,第一相80ml/min,第二相1248ml/min,有超声,总制备量425ml)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000014
按圆形管道内流体计算,合并相Re=5158,合并相加SK型静态混合器,静态混合器尺寸为:5.3mm*85mm,共16节重复螺旋片。
第一相出口流速为:4.72m/s
第二相流速为:0.91m/s
FVR=5.2
制备量:425ml
Figure PCTCN2022138806-appb-000015
对比实施例10与9可以发现,在放大制备纳米颗粒过程中,同时施加超声作用的条件下,包封率显著提高(97.0%vs 92.2%),D90与D10的比率减少(1.52vs 1.94),粒径呈单峰分布。在同时施加超声作用的条件下,放大制备纳米颗粒的效果与小量制备条件的试验结果(实施例8)相似。
实施例11:PTX/ICG纳米粒子制备(第一相60ml/min,第二相890ml/min,无超声,总制备量20mL)
第一相溶液:PTX和ICG共溶解于甲醇,PTX浓度100mg/ml,ICG浓度50mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000016
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:20ml
Figure PCTCN2022138806-appb-000017
实施例12:PTX/ICG纳米粒子制备(第一相60ml/min,第二相890ml/min,无超声,总制备量400mL)
第一相溶液:PTX和ICG共溶解于甲醇,PTX浓度100mg/ml,ICG浓度50mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000018
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:400ml
Figure PCTCN2022138806-appb-000019
对比实施例11与12可以发现,在没有同时施加超声作用的条件下,在放大制备纳米颗粒过程中(从20mL放大到400mL),包封率显著下降,D90与D10的比率增大。
实施例13:PTX/ICG纳米粒子制备(第一相60ml/min,第二相890ml/min,有超声,总制备量400mL)
第一相溶液:PTX和ICG共溶解于甲醇,PTX浓度100mg/ml,ICG浓度50mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000020
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:400ml
Figure PCTCN2022138806-appb-000021
对比实施例13与12可以发现,在放大制备纳米颗粒过程中,同时施加超声作用的条件下,包封率显著提高(98.7%vs 93.4%),D90与D10的比率减少(1.27vs 1.59),粒径呈单峰分布。在同时施加超声作用的条件下,放大制备纳米颗粒的效果与小量制备条件的试验结果(实施例11)相似。
实施例14:姜黄素/CPT11纳米粒子制备(第一相60ml/min,第二相890ml/min,无超声,总制备量20mL)
第一相溶液:姜黄素和CPT11共溶解于DMSO,姜黄素浓度50mg/ml,CPT11浓度150mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000022
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:20ml
Figure PCTCN2022138806-appb-000023
实施例15:姜黄素/CPT11纳米粒子制备(第一相60ml/min,第二相890ml/min,无超声,总制备量400mL)
第一相溶液:姜黄素和CPT11共溶解于DMSO,姜黄素浓度50mg/ml,CPT11浓度150mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000024
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:400ml
Figure PCTCN2022138806-appb-000025
对比实施例15与14可以发现,在没有同时施加超声作用的条件下,在放大制备纳米颗粒过程中(从20mL放大到400mL),包封率显著下降,D90与D10的比率增大。
实施例16:姜黄素/CPT11纳米粒子制备(第一相60ml/min,第二相890ml/min,有超声,总制备量400mL)
第一相溶液:姜黄素和CPT11共溶解于DMSO,姜黄素浓度50mg/ml,CPT11浓度150mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000026
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:400ml
Figure PCTCN2022138806-appb-000027
对比实施例16与15可以发现,在放大制备纳米颗粒过程中,同时施加超声作用的条件下,包封率显著提高(98.2%vs 93.6%),D90与D10的比率减少(1.40vs 1.80),粒径呈单峰分布。在同时施加超声作用的条件下,放大制备纳米颗粒的效果与小量制备条件的试验结果(实施例14)相似。
实施例17:SN-38/CPT11纳米粒子制备(第一相60ml/min,第二相890ml/min,无超声,总制备量20mL)
第一相溶液:SN-38和CPT11共溶解于DMSO,SN-38浓度40mg/ml,CPT11浓度40mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000028
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:20ml
Figure PCTCN2022138806-appb-000029
实施例18:SN-38/CPT11纳米粒子制备(第一相60ml/min,第二相890ml/min,无超声,总制备量400mL)
第一相溶液:SN-38和CPT11共溶解于DMSO,SN-38浓度40mg/ml,CPT11浓度40mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000030
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:400ml
Figure PCTCN2022138806-appb-000031
对比实施例17与18可以发现,在没有同时施加超声作用的条件下,在放大制备纳米颗粒过程中(从20mL放大到400mL),包封率显著下降,D90与D10的比率增大。
实施例19:SN-38/CPT11纳米粒子制备(第一相60ml/min,第二相890ml/min,有超声,总制备量400mL)
第一相溶液:SN-38和CPT11共溶解于DMSO,SN-38浓度40mg/ml,CPT11浓度40mg/ml,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.4mm;
第二管道内径D 2(IN)=3.0mm;
合并管道内径D 3(IN)=3.0mm;
第一管道末端外径D 1(O)=1.0mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000032
按圆形管道内流体计算,合并相Re=6623。
第一相出口流速为:7.58m/s
第二相流速为:2.24m/s
FVR=3.38
制备量:400ml
Figure PCTCN2022138806-appb-000033
对比实施例19与18可以发现,在放大制备纳米颗粒过程中,同时施加超声作用的条件下,包封 率显著提高(98.1%vs 90.2%),D90与D10的比率减少(1.16vs 2.02),粒径呈单峰分布。在同时施加超声作用的条件下,放大制备纳米颗粒的效果与小量制备条件的试验结果(实施例17)相似。
实施例20:制备HSPC/CHOL/DSPE-PEG空白脂质体(第一相10ml/min,第二相100ml/min,无超声,总制备量50mL)
第一相溶液:HSPC、CHOL、DSPE-PEG 2k共溶解于乙醇,0.22μm尼龙滤膜过滤。HSPC:CHOL:DSPE-PEG 2k=56:38:5(摩尔比),HSPC浓度为10mg/ml。
第二相溶液:120mM硫酸铵水溶液。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000034
按圆形管道内流体计算,合并相Re=2884。
第一相出口流速为:3.4m/s
合并相流速为:3.65m/s
FVR=0.93
制备量:50ml
Figure PCTCN2022138806-appb-000035
在没有超声作用的条件下制备的空白脂质体,其粒径分布呈多峰(图7),空白脂质体存在较大粒径分布和方差。
实施例21:制备HSPC/CHOL/DSPE-PEG空白脂质体(第一相10ml/min,第二相200ml/min,无超声,总制备量50mL)
第一相溶液:HSPC、CHOL、DSPE-PEG 2k共溶解于乙醇,0.22μm尼龙滤膜过滤。HSPC:CHOL:DSPE-PEG 2k=56:38:5(摩尔比),HSPC浓度为10mg/ml。
第二相溶液:120mM硫酸铵水溶液。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000036
按圆形管道内流体计算,合并相Re=5505。
第一相出口流速为:3.40m/s
合并相流速为:6.96m/s
FVR=0.49
制备量:50ml
Figure PCTCN2022138806-appb-000037
在没有施加超声作用的条件下制备的空白脂质体,其粒径分布呈多峰(图7),空白脂质体存在较大粒径分布和方差。
实施例22:制备HSPC/CHOL/DSPE-PEG空白脂质体(第一相10ml/min,第二相100ml/min,有超声,总制备量50mL)
第一相溶液:HSPC、CHOL、DSPE-PEG 2k共溶解于乙醇,0.22μm尼龙滤膜过滤。HSPC:CHOL:DSPE-PEG 2k=56:38:5(摩尔比),HSPC浓度为10mg/ml。
第二相溶液:120mM硫酸铵水溶液。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000038
按圆形管道内流体计算,合并相Re=2884。
第一相出口流速为:3.4m/s
合并相流速为:3.65m/s
FVR=0.93
制备量:50ml
Figure PCTCN2022138806-appb-000039
对照实施例22与20可以发现,在同时施加超声作用的条件下制备的空白脂质体,其粒径分布呈单峰(图8)。
实施例23:制备HSPC/CHOL/DSPE-PEG空白脂质体(第一相10ml/min,第二相200ml/min,有超声,总制备量50mL)
第一相溶液:HSPC、CHOL、DSPE-PEG 2k共溶解于乙醇,0.22μm尼龙滤膜过滤。HSPC:CHOL:DSPE-PEG 2k=56:38:5(摩尔比),HSPC浓度为10mg/ml。
第二相溶液:120mM硫酸铵水溶液。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000040
按圆形管道内流体计算,合并相Re=5505。
第一相出口流速为:3.40m/s
合并相流速为:6.96m/s
FVR=0.49
制备量:50ml
Figure PCTCN2022138806-appb-000041
对比实施例23与22可以发现,在同时施加超声作用的条件下,增大第二相的流量,空白脂质体平均径减小,其粒径分布呈单峰(图8)。
实施例24:制备PTX/HSPC/CHOL/DSPE-PEG脂质体(第一相10ml/min,第二相200ml/min,有超声,总制备量50mL)
第一相溶液:PTX、HSPC、CHOL、DSPE-PEG 2k共溶解于乙醇,0.22μm尼龙滤膜过滤。PTX:HSPC:CHOL:DSPE-PEG 2k=9:89:57:4(摩尔比),HSPC浓度为10mg/ml。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000042
按圆形管道内流体计算,合并相Re=5505。
第一相出口流速为:3.40m/s
合并相流速为:6.96m/s
FVR=0.49
制备量:50ml
Figure PCTCN2022138806-appb-000043
在同时施加超声作用的条件下,可以制备较小粒径的PTX脂质体,其粒径分布呈单峰(图9)。
实施例25:PTX/PEG-PLA聚合物胶束的制备(第一相14ml/min,第二相210ml/min,无超声,总制备量50mL)
第一相溶液:PTX、PEG-PLA共溶解于乙腈,PEG-PLA(50mg/mL),PTX(15mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000044
按圆形管道内流体计算,合并相Re=5872。
第一相出口流速为:4.75m/s
合并相流速为:7.43m/s
FVR=0.64
制备量50ml
在无超声条件下所得溶液有较多白色絮状沉淀物,粒径无法检测。
实施例26:PTX/PEG-PLA聚合物胶束的制备(第一相14ml/min,第二相210ml/min,有超声,总制备量50mL)
第一相溶液:PTX、PEG-PLA共溶解于乙腈,PEG-PLA(50mg/mL),PTX(15mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000045
按圆形管道内流体计算,合并相Re=5872。
第一相出口流速为:4.75m/s
合并相流速为:7.43m/s
FVR=0.64
制备量50ml
Figure PCTCN2022138806-appb-000046
从表中可以看出在剪切力和超声的共同作用下制备聚合物纳米胶束,三次平行试验的结果具有良好的重现性和稳定性。
对比实施例26与25可以发现,原来不能形成聚合物纳米胶束的制备条件在同时施加超声作用下,可以制备得到稳定的聚合物纳米胶束。
实施例27:PTX/PEG-PLA聚合物胶束的制备(第一相50ml/min,第二相300ml/min,有超声,总制备量50mL)
第一相溶液:PTX、PEG-PLA共溶解于乙醇,PEG-PLA(50mg/mL),PTX(15mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000047
按圆形管道内流体计算,合并相Re=9176。
第一相出口流速为:17.0m/s
合并相流速为:11.6m/s
FVR=1.46
制备量50ml
Figure PCTCN2022138806-appb-000048
对比实施例26与27可以发现,在剪切力和超声的共同作用下,用不同的有机溶剂以及不同的有机相流速,同样可以制备较小粒径的聚合物纳米胶束,所制得的聚合物纳米胶束具有良好的稳定性(图10)。
实施例28:PTX/PEG-Phe-PLA聚合物胶束的制备(第一相14ml/min,第二相210ml/min,无超声,总制备量50mL)
第一相溶液:PTX、PEG-Phe-PLA共溶解于乙腈,PEG-Phe-PLA(50mg/mL),PTX(15mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000049
按圆形管道内流体计算,合并相Re=5872。
第一相出口流速为:4.75m/s
合并相流速为:7.43m/s
FVR=0.64
制备量50ml
在无超声条件下所得溶液有较多白色絮状沉淀物,粒径无法检测。
实施例29:PTX/PEG-Phe-PLA聚合物胶束的制备(第一相14ml/min,第二相210ml/min,有超声,总制备量50mL)
PTX、PEG-Phe-PLA共溶解于乙腈,PEG-Phe-PLA(50mg/mL),PTX(15mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000050
按圆形管道内流体计算,合并相Re=5872。
第一相出口流速为:4.75m/s
合并相流速为:7.43m/s
FVR=0.64
制备量50ml
Figure PCTCN2022138806-appb-000051
从表中可以看出在剪切力和超声的共同作用下制备聚合物纳米胶束,三次平行试验的结果具有良 好的重现性和稳定性。
对比实施例29与28可以发现,原来不能形成聚合物纳米胶束的制备条件在同时施加超声作用下,可以制备得到稳定的聚合物纳米胶束。
实施例30:PEG-PLA聚合物纳米颗粒的制备(第一相50ml/min,第二相300ml/min,无超声,总制备量50mL)
第一相溶液PEG-PLA溶解于乙醇,PEG-PLA(50mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=60℃;
第二相溶液温度t 2=60℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000052
按圆形管道内流体计算,合并相Re=9176。
第一相出口流速为:17.0m/s
合并相流速为:11.6m/s
FVR=1.46
制备量50ml
Figure PCTCN2022138806-appb-000053
实施例31:PEG-PLA聚合物纳米颗粒的制备(第一相50ml/min,第二相300ml/min,有超声,总制备量50mL)
第一相溶液PEG-PLA溶解于乙醇,PEG-PLA(50mg/mL),0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=60℃;
第二相溶液温度t 2=60℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000054
按圆形管道内流体计算,合并相Re=9176。
第一相出口流速为:17.0m/s
合并相流速为:11.6m/s
FVR=1.46
制备量50ml
Figure PCTCN2022138806-appb-000055
从实施例30(图11)与实施例31(图12)的对比可以看出,不加超声作用得到的纳米颗粒的粒径较大,且呈多峰分布,多分布指数宽,粒径不均匀。而在剪切力和超声的共同作用下,制备的纳米颗粒粒径较小,且呈单峰发布,多分布指数窄,粒径更均匀。说明超声的协同作用在制备小粒径、窄分布的纳米颗粒过程中起到重要作用。
实施例32:PLGA聚合物纳米颗粒的制备(第一相50ml/min,第二相300ml/min,有超声,总制备量50mL)
第一相溶液PLGA溶解于乙醇,0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=60℃;
第二相溶液温度t 2=60℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000056
按圆形管道内流体计算,合并相Re=9176。
第一相出口流速为:17.0m/s
合并相流速为:11.6m/s
FVR=1.46
制备量50ml
Figure PCTCN2022138806-appb-000057
从表中可以看出在剪切力和超声的共同作用下可以制备PLGA聚合物纳米颗粒,颗粒的粒径分布窄,呈单峰分布(图13)。
实施例33:PTX/PLGA聚合物纳米颗粒的制备(第一相50ml/min,第二相300ml/min,有超声,总制备量50mL)
第一相溶液PTX和PLGA溶解于乙醇,0.22μm尼龙滤膜过滤。
第二相溶液:水。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000058
按圆形管道内流体计算,合并相Re=9176。
第一相出口流速为:17.0m/s
合并相流速为:11.6m/s
FVR=1.46
制备量50ml
Figure PCTCN2022138806-appb-000059
从表中可以看出在剪切力和超声的共同作用下制备可以制备PTX/PLGA聚合物纳米颗粒,颗粒的粒径分布窄,呈单峰分布(图14)。
实施例34:PolyI纳米脂质粒的制备(第一相100ml/min,第二相200ml/min,无超声,总制备量50mL)
第一相溶液:32.31mg ALC-0315(CAS:2036272-55-4)、4.08mg DSPE-PEG2000(CAS:147867-65-0)、7.08mg HSPC(CAS:92128-87-5)、14.01mg胆固醇溶解于乙醇,0.22μm尼龙滤膜过滤。
第二相溶液:5.71mg Poly I(CAS:30918-54-8)溶于3mM柠檬酸缓冲液(pH4.0)。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000060
按圆形管道内流体计算,合并相Re=7865。
第一相出口流速为:34.0m/s
合并相流速为:9.94m/s
FVR=3.4
制备量50ml
Figure PCTCN2022138806-appb-000061
在没有超声的共同作用下制备的PolyI纳米脂质粒呈多峰分布(图15),且包封率低。
实施例35:PolyI纳米脂质粒的制备(第一相100ml/min,第二相200ml/min,有超声,总制备量50mL)
第一相溶液:32.31mg ALC-0315、4.08mg DSPE-PEG2000、7.08mg HSPC、14.01mg胆固醇溶解于乙醇,0.22μm尼龙滤膜过滤。
第二相溶液:5.71mg Poly I溶于3mM柠檬酸缓冲液(pH4.0)。
第一管道末端喷孔孔径D 1(S)=0.25mm;
第二管道内径D 2(IN)=0.8mm;
合并管道内径D 3(IN)=0.8mm;
第一管道末端外径D 1(O)=0.35mm;
合并相长度=360mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
在200W超声浴中两相合并
Figure PCTCN2022138806-appb-000062
按圆形管道内流体计算,合并相Re=7865。
第一相出口流速为:34.0m/s
合并相流速为:9.94m/s
FVR=3.4
制备量50ml
Figure PCTCN2022138806-appb-000063
从表中可以看出在剪切力和超声的共同作用下制备PolyI纳米脂质粒呈单峰分布(图16),粒径分布窄,包封率高。
对比例1:SN-38/ICG纳米粒子制备(先混合后,再加超声)
第一相溶液:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
第二相溶液:水
第一管道末端喷孔孔径D 1(S)=0.6mm;
第二管道内径D 2(IN)=5.4mm;
合并管道内径D 3(IN)=5.4mm;
第一管道末端外径D 1(O)=2mm;
第二管道外径D 2(O)=6mm;
合并管道外径D 3(O)=6mm;
合并相长度=90mm;
第一相溶液温度t 1=25℃;
第二相溶液温度t 2=25℃;
Figure PCTCN2022138806-appb-000064
按圆形管道内流体计算,合并相Re=747,合并相加SK型静态混合器,静态混合器尺寸为:5.3mm*85mm,共16节重复螺旋片
第一相出口流速为:0.648m/s
合并相流速为:0.148m/s
FVR=4.4
制备量:20ml。
先按上述条件进行混合,所得的混合液超声处理10分钟(超声功率:200W超声温度25℃)
Figure PCTCN2022138806-appb-000065
与实施例4中(2)相比,纳米颗粒的粒径略有减小,但不能提高包封率。
对比例2:SN-38/ICG纳米粒子制备(仅在超声作用下)
溶液A:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
在烧瓶中加入水45毫升,在超声作用下(超声功率200W),加入5毫升溶液A,在25℃下继续超声10分钟,所得混合液有较多絮状沉淀物,粒径无法检测,不能形成纳米颗粒。
对比例3:SN-38/ICG纳米粒子制备(先超声,再通过混合器混合)
溶液A:ICG和SN-38溶解于DMSO,SN-38含量:3.394wt.%,ICG含量:3.397wt.%,SN-38与ICG摩尔比为2:1,0.22μm尼龙滤膜过滤。
在烧瓶中加入水45毫升,在超声作用下(超声功率200W),加入5毫升溶液A,在25℃下继续超声10分钟,所得混合液(有较多絮状沉淀物),该混合液按实施例4中(2)的条件通过混合器,所得混合液为混浊液,无法形成纳米颗粒,粒径无法检测,管道被堵塞。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (17)

  1. 一种连续化生产纳米制剂的制备系统,其包括(a)第一管道,(b)第二管道,(f)超声装置,(c)合并管道及(e)其(流体)出口;
    其中,所述第一管道、第二管道与合并管道相连,所述第一管道与合并管道同轴,所述第二管道垂直于合并管道,第一管道出口位于合并管道内,第一相溶液经第一管道出口进入合并管道,第二相溶液经第二管道出口进入合并管道,超声装置作用于合并管道局部或整体,第一相溶液与第二相溶液在合并管道内混合形成合并相;并经合并管道的出口流出。
  2. 如权利要求1所述的制备系统,其特征在于:
    (1)所述制备系统的核心部分包含:(a)第一管道;(b)第二管道;(c)合并管道;(d)湍流混合装置;(e)流体出口;(f)功率可调的超声装置;其中,第一管道、第二管道与合并管道相连,第一相溶液流经第一管道出口进入合并管道,第二相溶液流经第二管道出口进入合并管道,第一相溶液与第二相溶液在合并管道内合并形成合并相,功率可调的超声装置作用于合并管道局部或整体,并通过湍流混合装置进行充分混合后,经合并相管道出口收集到合适容器内;
    (2)第一相溶液与第二相溶液的混合过程在超声的作用下进行;
    (3)所述纳米制剂为聚合物纳米胶束、纳米脂质体或小分子纳米组装体。
  3. 如权利要求1或2所述的制备系统,其特征在于,其满足以下条件的一个或多个:
    (1)所述纳米制剂选自聚合物纳米胶束、聚合物纳米颗粒、纳米脂质体、纳米脂质粒和小分子纳米组装体中的一种或多种;
    (2)所述第一管道出口为具有一定形状和孔径的喷孔,所述第一相溶液经过第一管道通过喷孔进入合并管道。
  4. 如权利要求1或2所述的制备系统,其特征在于,其满足以下条件的一个或多个:
    (1)所述合并管道长度范围选自6至120cm,例如9cm或36cm;
    (2)所述合并管道长度与所述合并管道内径的比例为(16-450):1,例如16.7:1、30:1或450:1;
    (3)所述第一管道外径D 1(O)为0.35mm至2mm,例如0.35mm、1mm或2mm;
    (4)所述第一管道末端喷孔孔径D 1(S)范围选自0.03-5.0mm;优选为0.2至0.6mm,例如0.2mm、0.25mm、0.3mm、0.4mm或0.6mm;
    (5)所述第二管道外径D 2(O)为6mm;
    (6)所述第二管道内径D 2(IN)范围选自0.3-50.0mm;优选为0.8mm至5.4mm,例如0.8mm、3.0mm或5.4mm;
    (7)所述合并管道外径D 3(O)为6mm;
    (8)所述合并管道内径D 3(IN)范围选自0.3-50.0mm;优选为0.8mm至5.4mm,例如0.8mm、3.0mm或5.4mm;
    (9)所述第二管道内径D 2(IN)与所述合并管道内径D 3(IN)相同;
    (10)所述第一管道末端喷孔孔径D 1(S)与所述合并管道内径D 3(IN)的比可为1:(2-50),例如1:3.2、1:7.5、1:9或1:18;
    (11)所述混合为湍流混合,所述湍流混合可通过在合并管道内增加湍流混合装置实现;所述湍 流混合装置可为一个或多个;
    (12)所述超声装置为功率可调的超声装置。
  5. 如权利要求4所述的制备系统,其特征在于,其满足以下条件的一个或多个:
    (1)其中所述的第一管道、第二管道、合并管道、湍流混合装置、流体出口所用材料各自选自不锈钢、聚四氟乙烯、聚乙烯、聚丙烯、乳胶、硅胶或者其它高分子材料中的一种或多种;
    (2)所述的湍流混合装置实现湍流的方式包括:(a)增加合并相流速;(b)改变管道曲折程度;(c)管道内增加挡流板或异形物,如静态混合器;
    以圆形管计算合并相中流体雷诺数Re范围选自500-100000;
    (3)所述湍流混合装置为使第一相溶液与第二相溶液混合后达到湍流状态的装置,例如静态混合器;所述静态混合器可选自SV型静态混合器、SX型静态混合器、SL型静态混合器、SH型静态混合器和SK型静态混合器中的一种或多种,优选为SK型静态混合器;
    (4)所述第一相溶液经过第一管道的流量Q 1范围选自1-1000ml/min;所述第一相溶液温度T 1范围选自0-90℃;所述第二相溶液经过第二管道的流量Q 2范围选自10-10000ml/min;所述第二相溶液温度T 2范围选自0-90℃;
    (5)所述功率可调的超声装置的超声频率为15kHz~1.0MHz,优选地,超声频率为15kHz~40kHz,更优选地,超声频率为19kHz~40kHz;超声功率在0.1~20kW范围内可调,优选地,超声功率为100~1000W。
  6. 如权利要求1或2所述的制备系统,其特征在于,其满足以下条件的一个或多个:
    (1)所述聚合物纳米胶束组分选自两亲性聚合物与抗肿瘤药物,所述两亲性聚合物选自PEG-PLA、PEG-PCL、PEG-linker-PLA或PEG-linker-PCL,
    其中,linker为连接子,其结构为C 1-C 30小分子片段;PEG为数均分子量在400~20000之间的聚乙二醇链段或单保护的聚乙二醇链段;
    (2)所述纳米脂质体为未包覆药物的空白脂质体或包覆抗肿瘤药物的脂质体;
    (3)所述纳米脂质粒为包覆抗肿瘤药物的脂质粒;
    (4)所述小分子纳米组装体选自抗肿瘤药物/光敏剂纳米组装体、抗肿瘤药物/抗肿瘤药物纳米组装体、抗肿瘤药物/其它药物(例如姜黄素)纳米组装体、抗肿瘤药物/辅料(例如两亲性聚合物PEG-PLA、DSPE-PEG或者聚合物PLGA)纳米组装体、两种及两种以上药物纳米组装体(例如SN38与伊立替康)或者小分子药物/辅料纳米组装体。
  7. 如权利要求6所述的制备系统,其特征在于,其满足以下条件的一个或多个:
    (1)所述抗肿瘤药物选自abemaciclib,abiraterone,abrocitinib,acalabrutinib,afatinib,aldesleukin,alectinib,alflutinib,almonertinib,altretamine,amcenestrant,aminoglutethimide,amsacrine,anastrozole,anlotinib,apalutamide,apatinib,arzoxifene,asciminib,asparaginase,avapritinib,avitinib,axitinib,azacitidine,baricitinib,belinostat,bendamustine,bexarotene,bicalutamide,bicyclol,binimetinib,bleomycin,boanmycin,bortezomib,bosutinib,brigatinib,buserelin,busulfan,cabazitaxel,cabozantinib,calaspargase,calicheamycin,capecitabine,capmatinib,carboplatin,carfilzomib,carmustine,carmofur,cedazuidine,ceritinib,cetrorelix,chidamide,chlorambucil,cisplatin,cladribine,clofarabine,cobimetinib,colchicine,copanlisib,crizotinib,cyclophosphamide,cytarabine,dabrafenib,dacarbazine,dacomitinib,dactinomycin, dalpiciclib,darolutamide,dasatinib,daunorubicin,decitabine,degarelix,delgociclib,denileukin,deruxtecan,docetaxel,donafenib,doxorubicin,duvelisib,enasidenib,encorafenib,ensartinib,entrectinib,enzalutamide,enzastaurin,elacestrant,epirubicin,erdafitinib,eribulin,erlotinib,estradiol,estramustine,etoposide,everolimus,exemestane,fasudil,fedatinib,filgotinib,floxuridine,fludarabine,flumatinib,fluorouracil,flutamide,fluzoparib,formestane,fostamatinib,fruquintinib,fulvestrant,gefitinib,gemcitabine,gilteritinib,giredestrant,glasdegib,goserelin,histrelin,hydroxyurea,ibrutinib,ibudilast,icaritin,icotinib,idarubicin,idelalisib,ifosfamide,imatinib,imiquimod,infigratinib,ingenol mebutate,interferon alfa-2b,irinotecan,ivosidenib,ixabepilone,ixazomib,lanreotide,lapatinib,larotrectinib,lenalidomide,lenvatinib,letrozole,leucovorin,leuprolide,lomustine,lonafarnib,lorlatinib,lurbinctedin,maytansine,mechlorethamine,medroxyprogesterone,megestrol,melphalan,melphlan flufenamide,mercaptopurine,methotrexate,methoxsalen,methylprednisolone,midostaurin,mitomycin,mitotane,mitoxantrone,mitozolomide,mobocertinib,monomethylauristatin E,monomethylauristatin F,nelarabine,nandrolone,neratinib,nearsudil,nilotinib,nilutamide,nintedanib,niraparib,octreotide,olaparib,olmutinib,omacetaxine,orelabrutinib,osimertinib,oxaliplatin,paclitaxel,pacritinib,palbociclib,pamidronate,pamiparib,panobinostat,pazopanib,peficitinib,pegaptanib,pegaspargase,peginteferon alfa-2b,pemigatinib,pemetrexed,pentetreotide,pentostatin,pexidartinib,phenoxybenzamine,pidotimod,plinabulin,plitidepsin,pomalidomide,ponatinib,porfimer,pralatrexate,pralsetinib,prednisolone,procarbazine,pyrotinib,quizartinib,radotinib,raloxifene,raltitrexed,regorafenib,ribociclib,rintatolimod,ripretinib,romidepsin,rucaparib,ruxolitinib,savolitinib,selinexor,selpercatinib,selumetinib,sonidegib,sorafenib,sotorasib,streptozocin,sunitinib,surufatinib,talazoparib,tamoxifen,tazemetostat,tegafur,temozolomide,temsirolimus,teniposide,tepotinib,teprenone,thalidomide,thioguanine,thiotepa,thyrotropin alfa,tipiracil,tipifarnib,tirabrutinib,tirbanibulin,tivozanib,trametinib,tofacitinib,topotecan,toremifene,trabectedin,tretinoin,trifluride,trilaciclib,triptorelin,tucatinib,upadacitinib,umbralisib,utidelone,uroacitide,valrubicin,vandetanib,vemurafenib,venetoclax,vinblastine,vincristine,vindesine,vinflunine,vinorelbine,vismodegib,vorinostat,zanubrutinib,zoledronic acid,amatoxins,anthacyclines,anthracenes,anthramycins,auristatins,bryostatins,camptothecins,carmaphycins,combretastatins,cyclosporines,cryptomycins,ecteinascidins,ellipticenes,esperamicins,mustines,neothramycins,ozogamicins,phenoxazines,podophyllotoxins,pyrrolobenzodiazepines,sibiromycins,thailanstatins,tomamycns,tubulysins,taxanes,vinca alkaloids,7-表紫杉醇、2'-乙酰基紫杉醇、10-脱乙酰基紫杉醇、10-脱乙酰基-7-表紫杉醇、7-木糖基紫杉醇、10-脱乙酰基-7-戊二酰紫杉醇、7-N,N-二甲基甘氨酰紫杉醇、7-L-丙氨酰紫杉醇、莱龙泰素、喜树碱、9-氨基喜树碱、9-硝基喜树碱、勒托替康、吉马替康、贝洛替康、10-羟基喜树碱、10-羟基--乙基-喜树碱(SN-38)、伊喜替康、吡喃阿霉素、阿克拉霉素、西罗莫司、他克莫司、黄体酮、雌激素、雷帕霉素、普卡霉素、三尖杉酯碱或者姜黄素的一种或多种;
    优选选自喜树碱、9-氨基喜树碱、9-硝基喜树碱、勒托替康、吉马替康、贝洛替康、10-羟基喜树碱、SN-38、伊喜替康、伊立替康、拓扑替康、deruxtecan、紫杉醇、多西他赛、卡巴他赛、7-表紫杉醇、2'-乙酰基紫杉醇、10-脱乙酰基紫杉醇、10-脱乙酰基-7-表紫杉醇、7-木糖基紫杉醇、10-脱乙酰基 -7-戊二酰紫杉醇、7-N,N-二甲基甘氨酰紫杉醇、7-L-丙氨酰紫杉醇、莱龙泰素、阿霉素、表阿霉素、柔红霉素、吡喃阿霉素、阿克拉霉素、依托泊苷、替尼泊苷、长春碱、长春新碱、长春瑞滨、长春地辛、美登素、姜黄素、三尖杉酯碱、高三尖杉酯碱、吉西他滨、卡培他滨、氟达拉滨、克拉曲滨、培美曲塞、硼替佐米、卡非佐米、艾莎佐米、卡莫司汀、氟尿嘧啶、阿糖胞苷、环孢菌素A、艾日布林、曲贝替定、吉非替尼、厄洛替尼、拉帕替尼、阿法替尼、达可替尼、凡德他尼、来那替尼、奥希替尼、伊马替尼、索拉非尼、苏尼替尼、拉帕替尼、达沙替尼、奥拉帕利、尼拉帕利、卢卡帕利、氟唑帕利、帕米帕利、维利帕利、他拉唑帕尼、阿帕替尼、帕博昔利、阿贝昔利、瑞博昔利中的一种或多种;
    (2)所述的光敏剂,包括花菁类分子、卟啉类分子、卟啉分子前驱体、酞菁类分子、二氢卟吩类分子;
    所述的花菁类分子,优选选自IR780、IR820、吲哚菁绿和吲哚菁绿类似物中的一种或多种;所述的卟啉类分子,优选选自血卟啉单甲醚;所述的卟啉分子前驱体,优选选自5-氨基戊酮酸和5-氨基戊酮酸酯中的一种;所述的酞菁类分子,优选选自酞菁铜、酞菁钴、酞菁铝、酞菁镍、酞菁钙、酞菁钠、酞菁镁、酞菁锌、铟酞菁、氧钛酞菁、酞菁镁、锰酞菁和酞菁类衍生物中的一种或多种;所述的二氢卟吩类分子优选选自二氢卟吩、他拉泊芬、维替泊芬、替莫泊芬、罗他泊芬、卟吩姆钠、海姆泊芬和光克洛中的一种或多种。
  8. 如权利要求3所述的制备系统,其特征在于,其满足以下条件的一个或多个:
    (1)所述聚合物纳米胶束为PTX/PEG-PLA聚合物胶束或PTX/PEG-Phe-PLA聚合物胶束;
    (2)所述纳米脂质体为HSPC/CHOL/DSPE-PEG空白脂质体或PTX/HSPC/CHOL/DSPE-PEG脂质体;其中,HSPC/CHOL/DSPE-PEG的摩尔比优选为56:38:5或89:57:4;
    (3)所述纳米脂质粒为PolyI纳米脂质粒,例如Poly I/ALC-0315/DSPE-PEG2000/HSPC/胆固醇;
    (4)所述聚合物纳米颗粒为PEG-PLA聚合物纳米颗粒、PLGA聚合物纳米颗粒或PTX/PLGA聚合物;
    (5)所述小分子纳米组装体为抗肿瘤药物/光敏剂纳米组装体,优选SN-38/ICG纳米粒子、PTX/ICG纳米粒子、姜黄素/CPT11纳米粒子或SN-38/CPT11纳米粒子。
  9. 一种纳米制剂的制备方法,其包括如下步骤:在如权利要求1-8中任一项所述的制备系统中,第一相溶液和第二相溶液混合,在超声的作用下,得到的合并相经其出口收集所述纳米制剂即可;
    A.当所述的纳米制剂为聚合物纳米胶束时,所述第一相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂,溶质为(1)抗肿瘤药物或其药学上可接受的盐;或(2)所述抗肿瘤药物或其药学上可接受的盐以及聚合物;
    所述第二相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的反溶剂,溶质为(1)不存在;或(2)聚合物;
    当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐以及聚合物时,第二相溶液中溶质不存在;
    当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐时,第二相溶液中溶质为聚合物;
    B.当所述的纳米制剂为聚合物纳米颗粒时,所述第一相溶液的溶剂为聚合物的良溶剂,溶质为(1)聚合物,或(2)聚合物和抗肿瘤药物;
    所述第二相溶液为水或含有0.5%PVA的水;
    C.当所述的纳米制剂为纳米脂质体时,所述第一相溶液的溶剂为脂质成分的良溶剂,溶质为(1)脂质体的脂质成分,或(2)脂质体的脂质成分和抗肿瘤药物;
    所述第二相溶液为水或具有一定pH值和一定渗透压的缓冲水溶液;
    D.当所述的纳米制剂为纳米脂质粒时,所述第一相溶液的溶剂为脂质成分的良溶剂,溶质为脂质粒的脂质成分;
    所述第二相溶液的溶剂为具有一定pH值和一定渗透压的缓冲水溶液;溶质为抗肿瘤药物;
    E.当所述的纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述第一相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂,溶质为(1)抗肿瘤药物或其药学上可接受的盐以及光敏剂,或(2)抗肿瘤药物或其药学上可接受的盐;
    所述第二相溶液中溶剂为抗肿瘤药物或其药学上可接受的盐的反溶剂,溶质为(1)不存在,或(2)光敏剂;
    当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐以及光敏剂时,第二相溶液中溶质不存在;
    当第一相溶液中溶质为抗肿瘤药物或其药学上可接受的盐时,第二相溶液中溶质为光敏剂。
  10. 如权利要求9所述的制备方法,其特征在于,其包括如下任一方法:
    a.用于连续化生产聚合物纳米胶束的制备方法,所述方法包括:
    (1)根据权利要求1-5中任一项所述的系统;
    (2)根据权利要求6所述的两亲性聚合物;
    (3)根据权利要求7所述的抗肿瘤药物;
    (4)一种或多种的所述抗肿瘤药物或其药学上可接受的盐溶解于第一相中,所述的第一相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂;
    (5)一种或多种的两亲性聚合物溶解于第二相溶液中,所述的第二相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐反溶剂;
    (6)所述第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的包覆抗肿瘤药物的聚合物纳米胶束;
    b.用于连续化生产聚合物纳米胶束的制备方法,所述方法包括:
    (1)根据权利要求1-5中任一项所述的系统;
    (2)根据权利要求6所述的两亲性聚合物;
    (3)根据权利要求7所述的抗肿瘤药物;
    (4)一种或多种的所述抗肿瘤药物或其药学上可接受的盐和一种或多种的所述两亲性聚合物溶解于第一相中,所述的第一相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐的良溶剂;
    (5)第二相溶液为抗肿瘤药物或其药学上可接受的盐的反溶剂;
    (6)所述第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切的作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的聚合物纳米胶束;
    c.用于连续化生产纳米脂质体的制备方法,所述方法包括:
    (1)根据权利要求1-6中任一项所述的系统;
    (3)脂质体的脂质成分溶解于第一相中,所述的第一相溶液所用溶剂为脂质成分的良溶剂;
    (4)第二相溶液选自水、具有一定pH值和一定渗透压的缓冲水溶液;
    (5)所述第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的空白纳米脂质体;
    d.用于连续化生产抗肿瘤药物/光敏剂纳米组装体的制备方法,所述方法包括:
    (1)根据权利要求1-6中任一项所述的系统;
    (2)根据权利要求7所述的抗肿瘤药物和光敏剂;
    (3)一种或多种的所述抗肿瘤药物或其药学上可接受的盐溶解于第一相中;
    (4)一种或多种的所述光敏剂溶解于第二相溶液中,所述的第二相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐反溶剂;
    (5)所述第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的光敏剂与抗肿瘤药物复合纳米制剂;
    e.用于连续化生产抗肿瘤药物/光敏剂纳米组装体的制备方法,所述方法包括:
    (1)根据权利要求1-6中任一项所述的系统;
    (2)根据权利要求7所述的抗肿瘤药物和光敏剂;
    (3)一种或多种的所述抗肿瘤药物或其药学上可接受的盐和一种或多种的所述光敏剂溶解于第一相中,所述的第一相溶液所用溶剂为抗肿瘤药物或其药学上可接受的盐和光敏剂的良溶剂;
    (4)第二相溶液为抗肿瘤药物或其药学上可接受的盐的反溶剂;
    (5)所述第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切的作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的光敏剂与抗肿瘤药物复合纳米制剂。
  11. 如权利要求9或10所述的制备方法,其特征在于,其满足以下条件的一个或多个:
    (1)所述第一相溶液的温度为0-90℃,例如25℃或60℃;
    (2)所述第二相溶液的温度为0-90℃,例如25℃或60℃;
    (3)所述合并相的流体雷诺数Re为700-9500(例如747、2884、3868、5158、5505、5872、6623、7865或9176),优选3000-7000(例如3868、5158或6623);
    (4)所述第一相溶液与所述合并相的流速比FVR为0.4-6,例如0.49、0.64、0.93、1.46、3.38、3.4、4.4或5.2;
    (5)所述超声为超声水浴,超声的功率为200W;
    (6)所述的第一相溶液和第二相溶液所用的溶剂各自选自水、具有一定pH值的缓冲水溶液或与水互溶的有机溶剂,进一步地,所述的有机溶剂选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、叔丁醇、DMF、DMAc、HMPA、N-甲基吡咯烷酮、二甲亚砜、丁砜、环丁砜、四氢呋喃、2-甲基四氢呋喃、乙腈、丙酮、乙二醇、乙二醇甲醚、乙二醇乙醚、二氧六环、甲酸、乙酸、羟基丙酸、乙胺、乙二胺、甘油或吡啶的一种或多种;
    (7)所述第一相溶液经过第一管道的流量Q 1范围选自10-100ml/min,例如10、11、14、50、60、80或100;
    (8)所述第二相溶液经过第二管道的流量Q 2范围选自100-1300ml/min,例如100、193、200、210、300、936、890或1248。
  12. 如权利要求9或10所述的制备方法,其特征在于,其满足以下条件的一个或多个:
    (1)当所述纳米制剂为聚合物纳米胶束时,所述抗肿瘤药物在第一相溶液的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,更优选10-20mg/ml,例如15mg/ml;
    (2)当所述纳米制剂为聚合物纳米胶束时,所述聚合物在第一相溶液或第二相溶液中的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,例如50mg/ml;
    (3)当所述纳米制剂为纳米脂质体时,所述脂质成分在第一相溶液的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml;
    (4)当所述纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述抗肿瘤药物或其药学上可接受的盐与所述光敏剂的摩尔比为(1-15):1,例如1:1、2:1、5:1、6:1、7:1、8:1、10:1或15:1,优选2:1;
    (5)当所述纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述抗肿瘤药物在第一相溶液的体积质量浓度范围为0.1-200mg/ml,例如0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,例如40mg/ml、50mg/ml或100mg/ml;
    (6)当所述纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述光敏剂在第一相溶液或第二相溶液中的体积质量浓度范围为0.1-200mg/ml,例如可以是0.1mg/ml、1mg/ml、5mg/ml、10mg/ml、20mg/ml、40mg/ml、60mg/ml、80mg/ml、100mg/ml、120mg/ml、140mg/ml、160mg/ml、180mg/ml、200mg/ml,优选为10-100mg/ml,例如40mg/ml、50mg/ml或150mg/ml。
  13. 如权利要求9或10所述的制备方法,其特征在于,其满足以下条件的一个或多个:
    (1)当所述的纳米制剂为聚合物纳米胶束时,所述第一相溶液所用的溶剂为腈类溶剂或醇类溶剂,例如乙腈或乙醇;
    (2)当所述的纳米制剂为聚合物纳米胶束时,所述第二相溶液所用的溶剂为水;
    (3)当所述的纳米制剂为脂质体时,所述第一相溶液所用的溶剂为醇类溶剂,例如乙醇;
    (4)当所述的纳米制剂为脂质体时,所述第二相溶液所用的溶剂为水或硫酸铵水溶液,优选水或120mM硫酸铵水溶液;
    (5)当所述的纳米制剂为聚合物纳米颗粒时,所述第一相溶液所用的溶剂为醇类溶剂或氯代烷烃类溶剂,例如乙醇或二氯甲烷;
    (6)当所述的纳米制剂为聚合物纳米颗粒时,所述第二相溶液所用的溶剂为水或含有0.5%PVA的水;
    (7)当所述的纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述第一相溶液所用的溶剂为亚砜类溶剂、醇类溶剂,例如二甲基亚砜或甲醇;
    (8)当所述的纳米制剂为抗肿瘤药物/光敏剂纳米组装体时,所述第二相溶液所用的溶剂为水;
    (9)当所述的纳米制剂为纳米脂质粒时,所述第一相溶液为醇类溶剂,例如乙醇;
    (10)当所述的纳米制剂为纳米脂质粒时,所述第二相溶液为柠檬酸缓冲液(pH4.0)。
  14. 如权利要求9或10所述的制备方法,其特征在于,所述的纳米制剂的纳米粒子粒径小于1000nm;优选小于500nm;更优选小于200nm;例如选自20-200nm。
  15. 如权利要求9或10所述的制备方法,其特征在于,所述的纳米制剂的纳米粒子多分散指数小于0.4。
  16. 用于连续化生产SN-38/吲哚菁绿纳米组装体的制备方法,所述方法包括
    (1)根据权利要求1-5中任一项所述的系统;
    (2)SN-38和ICG共同溶解于第一相中,所述的第一相溶液所用溶剂为SN-38和ICG的良溶剂;
    (4)第二相溶液为抗肿瘤药物或其药学上可接受的盐的反溶剂;
    (5)所述第一相溶液以流量Q 1和流量为Q 2的第二相溶液在合并相中合并,在湍流剪切的作用下,并且同时在超声的作用下,两相溶液快速混合,形成在第一相和第二相混合溶剂中稳定分散的、具有一定粒径和分布系数的SN-38/吲哚菁绿纳米组装体。
  17. 根据权利要求16所述的制备方法,所述的第一相溶液和第二相溶液所用的溶剂各自选自水、具有一定pH值的缓冲水溶液或与水互溶的有机溶剂,进一步地,所述的有机溶剂选自甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、叔丁醇、DMF、DMAc、HMPA、N-甲基吡咯烷酮、二甲亚砜、丁砜、环丁砜、四氢呋喃、2-甲基四氢呋喃、乙腈、丙酮、乙二醇、乙二醇甲醚、乙二醇乙醚、二氧六环、甲酸、乙酸、羟基丙酸、乙胺、乙二胺、甘油或吡啶的一种或多种。
PCT/CN2022/138806 2021-12-13 2022-12-13 一种超声增强的纳米制剂连续化、规模化生产方法 WO2023109836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111522472.X 2021-12-13
CN202111522472 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109836A1 true WO2023109836A1 (zh) 2023-06-22

Family

ID=86774825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138806 WO2023109836A1 (zh) 2021-12-13 2022-12-13 一种超声增强的纳米制剂连续化、规模化生产方法

Country Status (1)

Country Link
WO (1) WO2023109836A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819217A (zh) * 2018-02-13 2020-10-23 上海时莱生物技术有限公司 一种两亲性嵌段共聚物及其制备方法和纳米胶束载药系统
WO2020263179A1 (en) * 2019-06-26 2020-12-30 National University Of Singapore Systems and methods for fabricating nanoparticles
CN112236459A (zh) * 2018-04-23 2021-01-15 灰色视觉公司 改善的连续微粒制造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819217A (zh) * 2018-02-13 2020-10-23 上海时莱生物技术有限公司 一种两亲性嵌段共聚物及其制备方法和纳米胶束载药系统
CN112236459A (zh) * 2018-04-23 2021-01-15 灰色视觉公司 改善的连续微粒制造
WO2020263179A1 (en) * 2019-06-26 2020-12-30 National University Of Singapore Systems and methods for fabricating nanoparticles

Similar Documents

Publication Publication Date Title
Salvi et al. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier
Li et al. Tumor microenvironment-activated self-recognizing nanodrug through directly tailored assembly of small-molecules for targeted synergistic chemotherapy
Tangri et al. Niosomes: Formulation and evaluation
Miao et al. Drug nanocrystals for cancer therapy
JP2017081954A (ja) 限界サイズ脂質ナノ粒子および関連方法
KR101890503B1 (ko) 안구 장애의 치료를 위한 막-부착성 자가-조립된 시스템
Dana et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer
WO2017198078A1 (zh) 一种超高载药纳米粒子及其制备方法
Yang et al. Optimization of the Preparation Process for an Oral Phytantriol‐Based Amphotericin B Cubosomes
Bayindir et al. Paclitaxel-loaded niosomes for intravenous administration: pharmacokineticsand tissue distribution in rats
Fan et al. Nanocrystal technology as a strategy to improve drug bioavailability and antitumor efficacy for the cancer treatment
GB2538683A (en) Irinotecan hydrochloride composite phospholipid composition preparation method and use thereof
Sudheer et al. Review on niosomes-a novel approach for drug targeting
Wang et al. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways
Li et al. Antitumor activity and safety evaluation of nanaparticle-based delivery of quercetin through intravenous administration in mice
Bnyan et al. The effect of ethanol evaporation on the properties of inkjet produced liposomes
CN112426535A (zh) 一种肿瘤靶向药物纳米晶递送系统
KR20080094473A (ko) 음이온성 지질나노입자 및 이의 제조방법
Michlewska et al. Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocols
US20080171687A1 (en) Compositions And Methods For The Preparation And Administration Of Poorly Water Soluble Drugs
WO2023109836A1 (zh) 一种超声增强的纳米制剂连续化、规模化生产方法
Akhlaghi et al. Hyaluronic acid gel incorporating curcumin-phospholipid complex nanoparticles prevents postoperative peritoneal adhesion
EP3378493B1 (en) Novel anti-cancer drug nano-preparation and preparation method therefor
Liu et al. Cancer chemotherapy with lipid-based nanocarriers
WO2023051796A1 (zh) 一种生产纳米粒子的制备系统及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906581

Country of ref document: EP

Kind code of ref document: A1