WO2023109507A1 - 超高应变回复形状记忆合金筛管材料及制备方法与应用 - Google Patents

超高应变回复形状记忆合金筛管材料及制备方法与应用 Download PDF

Info

Publication number
WO2023109507A1
WO2023109507A1 PCT/CN2022/135116 CN2022135116W WO2023109507A1 WO 2023109507 A1 WO2023109507 A1 WO 2023109507A1 CN 2022135116 W CN2022135116 W CN 2022135116W WO 2023109507 A1 WO2023109507 A1 WO 2023109507A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape memory
memory alloy
ultra
strain
helical coil
Prior art date
Application number
PCT/CN2022/135116
Other languages
English (en)
French (fr)
Inventor
袁斌
向桂宁
李�浩
杨超
高岩
朱敏
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2023109507A1 publication Critical patent/WO2023109507A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to shape memory alloys, in particular to a high temperature resistant ultra-high strain recovery shape memory alloy screen material and its preparation method and application, belonging to the technical field of oil and gas drilling and completion sand control.
  • Oil and gas extraction includes drilling, engineering construction, geophysical prospecting, logging and other processes.
  • Drilling refers to the process of drilling a formation to form a wellbore through a drilling rig, and establishing a connection between the surface and the underground oil layer, which specifically includes drilling fluid preparation, mud logging, logging, cementing, well completion and other links.
  • Well completion as the connection between "drilling engineering” and “production engineering”, not only can realize the connection between oil production pipe and oil and gas reservoir, but also can play a certain sand control function.
  • the completion methods that can achieve sand control mainly include gravel-packed completion and mechanical expansion screen completion.
  • Gravel-packed well completion refers to pumping sand with a certain size distribution between the well wall of the oil production layer and the oil production pipe after the drilling is completed, and the sand is tightly packed to form a filter layer. The mixture can be filtered and at the same time can achieve a certain support effect on the oil production pipe. It is currently the most widely used, but this completion method needs to pump a large amount of sand and gravel to the oil production layer. The construction period is long and the workload is huge. The gravel packing is not enough. Complete boreholes are prone to collapse, and due to the gravitational effect of sand and gravel, it is difficult to completely wrap the production tubing in horizontal wells, so it is not suitable for horizontal wells and complex wells.
  • Mechanical expansion screen means that after the drilling is completed, the expansion screen in the contracted state is lowered into the designated position such as the oil-producing layer, and after the cement is injected to fix the entire expansion system, the expansion system is expanded by a special expansion tool, generally an expansion cone. Deformation, the last second run into the drill bit to remove the excess cement part, this method can support the oil production pipe and have a certain filtering effect, but this completion method cannot achieve the tight fit of the oil production pipe to the well wall, The well wall in the void is easily impacted by sand and stones. In addition, the sand retaining effect is limited, and the technical requirements for application are extremely high.
  • the Baker Hughes Oilfield Technical Services Company of the United States has developed a smart screen material based on porous shape memory polymer (Shape Memory Polymer, SMP) (that is, GeoFORM cartridge assembly) (Shape memory polyurethane foam for downhole sand control filtration devices, US patent 7926565B2, 2011-04-19; Variable Tg Shape memory Polyurethane for wellbore devices US patent, 8365833B2.
  • SMP Shape Memory Polymer
  • GeoFORM cartridge assembly shape memory polyurethane foam for downhole sand control filtration devices
  • the component is mainly composed of a porous base pipe in the inner layer and a shape-memory polymer in the outer layer, and the outer polymer is in a compressed state before going into the well (compression 50 ⁇ 80%), expand spontaneously to the original shape in the high temperature environment downhole, realize the space filling of boreholes with different diameters and the perfect fit and support of the borehole wall, and at the same time block sand and gravel to filter through its porous structure, and its pore size is generally 60- 160 ⁇ m, the filtration accuracy can reach 43 ⁇ m.
  • the principle of spontaneous expansion of this material is due to the change of the internal state of the polymer.
  • the polymer deforms and constrains its shape in the high elastic state, and the temperature drops to the glass state to maintain the shape. After the downhole, the polymer transforms into a highly elastic state, and the shape recovery spontaneously occurs through the shape memory effect to realize the perfect fit of the production tubing to the well wall. Combined with the porous structure, it shows dual effects on the support of the production tubing and sand retention and filtration. 70% of the current oil and gas wells belong to high-temperature environment. This method can realize spontaneous expansion in high-temperature wells.
  • the simple operation can reduce the time cost, so it has great application prospects; however, the high-temperature conditions in the well are complex and changeable, and often Exceeding 100°C or even reaching 350°C, due to the inherent characteristics and shape recovery mechanism of the polymer: low glass transition temperature (Tg, generally lower than 100°C), making its performance at high temperature (above 100°C) and high pressure Unstable, prone to creep and large stress relaxation, even melting failure.
  • Tg glass transition temperature
  • the components of this technology are extremely expensive, and the cost of a single well can reach more than one million US dollars.
  • the present invention provides a shape-memory alloy screen material with ultra-high strain recovery and a preparation method thereof.
  • the screen material of the present invention It has excellent high temperature resistance, can realize spontaneous expansion and deformation under high temperature conditions, and generally has an ultra-high recoverable strain of more than 43%.
  • Its pore structure is characterized by a through-hole structure and the pore size is controllable to ensure the filtering effect , the preparation cost is relatively low.
  • Shape memory alloys (mainly including NiTi-based, Cu-based and Fe-based alloys) have a high melting point and can be stably applied between 100-350°C. However, compared with shape memory polymers, the maximum recoverable strain of shape memory alloys caused by martensitic transformation does not exceed 20%. By introducing pores into dense memory alloys and rationally controlling the pore structure, it is possible to improve the compressive recoverable strain of porous memory alloys. However, the current porous memory alloys prepared by powder metallurgy, 3D printing, melt infiltration and other methods can only exhibit high recovery stress, and their compressive recoverable strain can never exceed the maximum recoverable strain of dense shape memory alloys. , and cannot meet the recovery strain of more than 30% required by the smart screen material.
  • the present invention adopts NiTi shape memory alloy wire with a suitable wire diameter, and prepares a porous NiTi memory alloy wire entanglement material with ultra-high recoverable strain by winding a spiral coil, stretching at a fixed distance, preparing a prefabricated body and cold pressing ( aka metal rubber). This material is prepared by intertwining alloy wires.
  • the special mesoscopic structure endows it with excellent elasticity. Combined with the shape memory effect realized by the martensitic phase transformation at high temperature after the shape memory alloy is deformed, it can be generally Achieve ultra-high recoverable strain.
  • An ultra-high strain recovery shape-memory alloy screen material which is obtained by cold-pressing a prefabricated body.
  • the prefabricated body is made of a NiTi shape-memory alloy wire wound into a helical coil and then made by winding, laying or weaving.
  • the prefabricated body The helical coil structures of the NiTi shape memory alloy wires are embedded or interlocked with each other; the alloy screen material has a recovery strain of 43-83% at a temperature of 100-350 o C.
  • the titanium content of the NiTi shape memory alloy wire is 49.6-56% in terms of atomic ratio.
  • the NiTi shape memory alloy wire is a single martensite phase or a composite phase of Ti 2 Ni and B19' martensite at room temperature.
  • the diameter of the NiTi shape memory alloy wire is 0.05-0.5 mm.
  • the alloy screen material has a porosity of 45-81%, an average pore diameter of 51-500 ⁇ m, a recoverable strain of at least 43%, and a recoverable stress of MPa level.
  • the preparation method of the ultra-high strain recovery shape memory alloy screen material comprises the following steps:
  • prefabricated body the obtained helical coils are wound, arranged or braided to prepare a prefabricated body, and the helical coil structures of NiTi shape memory alloy wires in the prefabricated body are fitted or interlocked with each other;
  • the obtained helical coil before the obtained helical coil is wound, arranged or braided to make the preform, it also includes stretching the helical coil, so that the ratio of the pitch of the helical coil after stretching to the median diameter of the helical coil is 0.95:1 ⁇ 1.05:1; the ratio of the height of the preform to the height of the sample obtained after cold pressing should be controlled at 2:1 ⁇ 7:1; the cleaning is to remove the oil on the surface of the NiTi shape memory alloy wire.
  • the solution used in the cleaning is an alcohol solution with a content of 95%, and the method is ultrasonic cleaning, and the cleaning time is 10-30min.
  • the diameter of the mandrel is 0.5-4 mm, and the metal mandrel is stainless steel; the ratio of the diameter of the mandrel to the diameter of the alloy wire is 5-15:1;
  • the loading rate of the cold press forming is 1-5mm/min, the cold press pressure is 2-80kN, displacement loading control is adopted, and the pressure holding time is 10-60min.
  • Metallic rubber has a special pore structure, excellent damping and recoverable properties, and it is a class of porous metal materials prepared by winding, entanglement and compression molding of metal wires.
  • the screen tube material of the present invention is the porous memory alloy rubber prepared by NiTi shape memory alloy wire.
  • Shape memory effect also known as martensitic phase transition recovery, for dense NiTi memory alloys, the maximum recoverable strain is no more than 30% at present, which is difficult to achieve shape memory polymerization
  • the present invention utilizes the coupling effect of structural recovery (pore structure) and phase transition recovery (martensitic phase transition) to modulate ultra-high recoverable strain (43%-83%), such as by optimizing the winding angle on the martensitic phase transition Apply residual stress and adjust NiTi composition to obtain Ti 2 Ni phase-strengthened B19' martensitic phase structure, so as to realize the excellent recovery characteristics of porous memory alloy rubber at high temperature.
  • the pore size and filtration precision can be adjusted by changing the wire diameter and porosity to meet the corresponding filtration precision requirements in oil and gas production.
  • the screen tube material of the present invention is composed of NiTi shape memory alloy wires entangled with each other.
  • the gaps between the wires constitute the interconnected pores inside the material.
  • the pore size can be adjusted by adjusting the volume ratio of the alloy wires, that is, adjusting the porosity. It can also be realized by adjusting the wire diameter of the alloy wire.
  • the reciprocating winding is only to realize the fitting and interlocking of the silk threads, and there are many ways, such as entanglement, weaving, laying and so on.
  • the helical coil is made to make the microstructure inside the material in a helical coil state. Maintaining this uniform structure can achieve good interlocking and ensure stability, so that the material has excellent recoverable strain.
  • the present invention has the following advantages and beneficial effects:
  • the filter material of the screen tube of the present invention is made into a spiral coil shape by NiTi shape memory alloy wire, and then prepared by entanglement. It has excellent elasticity at room temperature, combined with the shape memory effect of memory alloy, it can be used at high temperature In particular, through the coupling effect of pore structure and martensitic phase transformation, ultra-high recoverable strain can be achieved, and generally, it has a compressive recoverable strain of more than 43% at high temperature (100 ⁇ 350°C). It has not been found that the NiTi shape memory alloy wire can be directly wound or braided without first making a helical coil to achieve a high compressive recoverable strain at high temperature.
  • the screen tube material of the present invention is obtained by entanglement of NiTi shape memory alloy wires.
  • the NiTi alloy has good high temperature stability (100-350°C), corrosion resistance and pressure resistance characteristics, so that the screen tube material of the present invention has Excellent high temperature resistance, weather resistance and long life, especially suitable for almost all oil and gas wells (especially oil and gas production operations in offshore or harsh environments), can significantly improve the sand retaining effect, improve recovery efficiency and oil and gas quality.
  • the screen tube material of the present invention has a simple preparation process, and is manufactured by using suitable alloy wires by winding coils, stretching at fixed distances, preparing prefabricated bodies, and cold pressing. It has high reliability and is easy to realize mass production.
  • Fig. 1 is the flow chart of the preparation method of ultra-high strain recovery shape memory alloy screen tube material
  • Figure 2 is a visual schematic diagram of the preparation process of the ultra-high strain recovery shape memory alloy screen material (reciprocating winding to prepare the preform);
  • Figure 3 is a macroscopic optical photo of the preform and the cold-pressed cylindrical sample in the preparation process of the ultra-high strain recovery shape memory alloy screen material (reciprocating winding to prepare the preform);
  • Fig. 4 is the DSC curve of the NiTi equiatomic ratio (containing titanium 50at.%) shape memory alloy wire of 0.3mm wire diameter in embodiment 1;
  • Fig. 5 is the cyclic compression curve of 0.3mm wire diameter 69.7% porosity sample under 20%, 30%, 40% and 50% compressive strain in embodiment 1;
  • Fig. 6 is the pore size distribution curve of 0.3mm wire diameter 69.7% porosity sample in embodiment 1;
  • Fig. 7 is a working principle diagram of in-situ expansion and sand-retaining filtration after the ultra-high strain recovery shape memory alloy screen material is combined with the porous base pipe;
  • Fig. 8 is the industrial CT photo of 0.3mm wire diameter 77.5% porosity sample in embodiment 2;
  • Fig. 9 is the 65% compressive stress-strain curve of 0.3mm wire diameter 77.5% porosity sample in embodiment 2;
  • Fig. 10 is the pore size distribution curve of 0.3mm silk diameter 77.5% porosity sample in embodiment 2;
  • Fig. 11 is the direct-viewing schematic diagram of the preparation preform and the macroscopic optical photo of the preform and the final cylindrical sample in the layout mode adopted in embodiment 3;
  • Fig. 12 is the 50% compressive stress-strain curve of 0.3mm wire diameter 72.5% porosity sample in embodiment 3
  • Fig. 13 is the pore size distribution curve of 0.3mm silk diameter 72.5% porosity sample in embodiment 3;
  • Fig. 14 is a scanning electron micrograph of NiTi (containing 54 at.% titanium) alloy structure (Ti 2 Ni reinforced NiTi-B19' phase) in Example 4;
  • Fig. 15 is the pore size distribution curve of 0.3mm wire diameter 73.3% porosity sample in embodiment 4.
  • Fig. 16 is the DSC curve of the shape memory alloy wire of 0.5mm wire diameter Ti-rich NiTi (containing 56 at.% titanium) in Example 5;
  • Fig. 17 is the 50% compressive stress-strain curve of 0.5mm wire diameter 57.5% porosity sample in embodiment 5;
  • Figure 18 is the pore size distribution curve of the 0.5mm wire diameter 57.5% porosity sample in Example 5.
  • Fig. 1 is the preparation flowchart of ultra-high strain recovery shape memory alloy screen tube material, as can be seen from Fig. 1, a kind of preparation method of ultra high strain recovery shape memory alloy screen tube material comprises the following steps:
  • step (2) Wind the NiTi memory alloy wire cleaned in step (1) into a spiral coil with a 304 stainless steel mandrel with a diameter of 1.5mm.
  • the ratio is 8.5:1.
  • step (3) Stretch the helical coil obtained in step (2) at a fixed distance, so that the pitch after stretching is equal to the median diameter of the helical coil (ie, the pitch is 2.25 mm).
  • step (4) Place the prefabricated body prepared in step (4) in a cylindrical mold with an inner diameter of 12 mm, and perform cold pressing at a loading rate of 5 mm/min, using displacement control loading, and cold pressing at a pressure of 8 kN and hold for 30 min , to obtain a cylindrical ultra-high strain recovery shape memory alloy screen material, and the final sample height is 17.79mm.
  • Figure 2 is a visual schematic diagram of the preparation process of the ultra-high strain recovery shape memory alloy screen material, in which (a) in the figure is a visual schematic diagram of the spiral coil wound in step (2); in the figure (b) is the process of step (3)
  • the intuitive schematic diagram of the helical coil obtained after stretching at a fixed distance which gives the visual marks of the outer diameter of the coil, the middle diameter of the coil and the pitch, and the pitch is equal to the middle diameter of the coil;
  • (c) in the figure is step (4) reciprocating winding to prepare the prefabricated
  • the schematic diagram of the body gives an intuitive indication of the winding angle, that is, the angle between the coil and the mandrel.
  • Figure 3 is the macroscopic optical photo of the preform and the sample during the sample preparation process.
  • (a) in the figure is the preform
  • (b) and (c) in the figure are the bottom and side surfaces of the cylindrical sample obtained by the final cold pressing, respectively. macroscopic optical photo.
  • Figure 4 shows the DSC data of the shape memory alloy wire with 0.3mm wire diameter NiTi equiatomic ratio (containing 50at.% titanium), where the temperatures of M f , M s , A s and A f are -13.3°C, 38.6°C, and 54.13°C, respectively and 61.4°C, the alloy wire is a single B19' martensite phase at room temperature after quenching.
  • V is the apparent volume of the sample
  • the sample prepared in step (5) was subjected to a compression test in accordance with the ASTM E9-89a standard.
  • the test equipment was INSTRON 5984 universal material testing machine, and the displacement control was used for loading.
  • the loading rate was 0.5mm/min, followed by 20 %, 30%, 40% and 50% compression strain for compression performance test, the test results are shown in Figure 5. It can be seen from Figure 5 that the stress values of the samples at 20%, 30%, 40% and 50% strain are 1.71MPa, 8.36MPa, 31.80MPa and 49.79MPa, respectively.
  • the shape of the sample can be completely restored to the unloaded state, indicating that the recoverable strain of the sample has reached 40%, which is far beyond the NiTi shape memory alloy itself.
  • the measured elastic strain is 38.6%, with a residual strain of 11.4%, which is due to the mesostructure of the material under large strain loading, that is, the arrangement state of the filaments occurs Irreversible rearrangement occurred; by observing the loading sections of 40% and 50% strain, it was found that the two did not overlap.
  • shape-memory polymer materials currently used in screens can also achieve a recoverable strain of 55.0% under high-temperature conditions downhole, due to the nature of the polymer material itself, its mechanical properties are poor at high temperatures, and stress relaxation is very easy to occur and creep phenomenon, the complex high temperature and high pressure environment in the underground greatly limits the application of this type of material.
  • the ultra-high strain recovery shape memory alloy screen material prepared in this example is combined with the porous base pipe, it is lowered into a high-temperature downhole under the constraint of a 50% strain under pressure, and combined with the excellent elasticity of its structure and high temperature
  • the shape memory effect of the shape memory alloy can achieve a recoverable strain of up to 55.0%.
  • NiTi shape memory alloys have stable mechanical properties at high temperatures. After shape recovery, the material is in the austenite phase state. This phase structure has an elastic modulus higher than that of the martensitic phase at room temperature. Extremely stable mechanical properties can completely overcome many shortcomings of the above-mentioned shape memory polymers at high temperatures.
  • the elastic stage of metal rubber prepared by materials such as stainless steel wire, Ni-based superalloy, and aluminum wire does not exceed 20%, while the shape memory effect of porous shape memory alloys cannot reach the performance of the compact state. For example, it is difficult to achieve 8%, and the linear superposition of the above two cannot achieve a recoverable strain of 30%.
  • the coupling effect of structural recovery (pore structure) and phase transition recovery (martensitic phase transition) was used to modulate a shape memory alloy rubber with an ultra-high recovery strain of 55.0%, which can exhibit excellent performance at high temperatures. Reply feature.
  • the thickness direction is the height direction of the sample in Example 1
  • the ultra-high strain recovery shape memory alloy screen material obtained in this embodiment is combined with the porous base pipe, that is, the obtained screen material (ultrahigh strain recovery shape memory alloy screen material, porous shape Memory alloy rubber) is directly prepared into a tubular shape and installed on the outer periphery of the porous base pipe.
  • the initial thickness of the screen material is H 0 when it is not deformed; in the low temperature martensitic phase state (T ⁇ M f ), the load is applied to the screen material to Deform and constrain its shape.
  • the thickness of the screen material after deformation under pressure is H 1 ;
  • the coupling effect of recovery (pore structure) and phase transition recovery (martensitic phase transition) can achieve great strain recovery, and the recovered thickness H 2 of the recovered screen material exceeds the initial thickness H of the screen material 0 .
  • the GeoFORM component can achieve a recoverable strain of 30% in the downhole, while the screen material prepared in this example has achieved a recoverable strain of 55%, and the recovery performance has fully met the downhole requirement.
  • this screen material is composed of NiTi shape memory alloy wire, which can maintain extremely stable and excellent mechanical properties under high temperature downhole, which greatly overcomes the sharp mechanical properties of porous shape memory polymers used in GeoFORM components at high temperatures.
  • the mesoscopic structure inside the expanded screen material is still entangled with alloy wires, maintaining a stable through-hole pore structure. This stable and unique pore structure can ensure oil and gas to pass through the screen smoothly.
  • the pipe material and porous base pipe enter the oil production pipe, and at the same time effectively block the sand and gravel.
  • a method for preparing an ultra-high strain recovery shape memory alloy screen material comprising the following steps:
  • NiTi shape memory alloy wire cleaned in step (1) is wound into a spiral coil with a No. 45 steel mandrel with a diameter of 2.1 mm.
  • the outer diameter of the coil after winding is 3.15 mm.
  • the ratio is 10.5.
  • step (3) Stretch the helical coil obtained in step (2) at a fixed distance, so that the pitch after stretching is 0.95 of the middle diameter of the helical coil (that is, the pitch is 2.71 mm).
  • step (4) Place the prefabricated body prepared in step (4) in a cylindrical mold with an inner diameter of 12 mm, and carry out cold pressing at a loading rate of 3 mm/min, using displacement control loading, and holding the cold pressing pressure at 2 kN After 10 minutes, the ultra-high strain recovery shape memory alloy screen material was obtained. The final sample height was 20.83mm and the porosity was 77.5%.
  • the three-dimensional structure of the sample was characterized by industrial CT, and the results are shown in Figure 8. From Figure 8, it can be seen that the internal wires of the sample have achieved a good cross interlocking with each other, and the metal wires on the cross section and bottom surface also show a uniform distribution status.
  • the sample is subjected to compression test at room temperature according to the ASTM E9-89a standard.
  • the test equipment is INSTRON 5984 universal material testing machine, and the displacement control is used for loading.
  • the loading rate is 0.5mm/min, and the loading and unloading test of 65% compressive strain is directly carried out.
  • Figure 9. It can be seen from Fig. 9 that the corresponding stress of the sample under the compressive strain of 65% is 60.69MPa, the curve in the middle period before loading has been kept smooth, and the buckling section begins to appear at about 60% strain, which is due to the internal silk thread of the sample during compression. caused by friction and sliding.
  • the corresponding height is 7.29 mm.
  • This type of structural rebound strain is defined as the structural recovery strain of the material.
  • the structural recovery strain of the sample is calculated to be 38.0%, and there is a residual strain of 27.0%.
  • the above sample is adjusted to A f
  • the sample size is changed from 15.21mm to 22.09mm, and the rebound size reaches 6.88mm.
  • This kind of rebound is defined as the result of martensitic transformation.
  • the recovery strain of the phase transformation is calculated to reach 33.0%, which is far more than 8% of the maximum recoverable strain of the dense NiTi alloy.
  • the recoverable strain of the sample reached 71.0%, exceeding the 65% compressive strain when preloaded, and the data are shown in Table 1 below.
  • the pore size distribution data of this sample is shown in Figure 10, the pore size is 200-700 ⁇ m, and the average pore size is 370 ⁇ m.
  • a method for preparing an ultra-high strain recovery shape memory alloy screen material comprising the following steps:
  • step (2) The NiTi shape memory alloy wire cleaned in step (1) is wound into a spiral coil with a No. 45 steel mandrel with a diameter of 1.5 mm. After winding, the outer diameter of the coil is 2.55 mm. The ratio is 8.5.
  • step (3) Stretch the helical coil wound in step (2) at a fixed distance, so that the pitch after stretching is equal to the middle diameter of the helical coil (that is, the pitch is 2.71 mm), and divide the stretched helical coil quantitatively into Two parts, the mass ratio of the first part to the second part is 8:1.
  • step (3) Wind the first helical coil obtained in step (3) obliquely onto a rectangular stainless steel plate with a length of 200mm, a width of 50mm, and a thickness of 1mm.
  • the winding length of the first layer is about 120mm, and the second layer
  • the subsequent layers of coils are laid out at an angle of 60° relative to the center line of the helical coil of the previous layer until the coils are wound, as shown in (a) in Figure 11.
  • step (4) Remove the blank obtained in step (4), roll it into a cylindrical blank along the length direction, and then evenly wind the second helical coil on the cylindrical blank at a winding angle of 60°.
  • the winding process is shown in Figure 2 ( As shown in c), the end of the coil is finally inserted into the blank for capping treatment, and a nearly cylindrical preform with a diameter of about 12mm and a height of 55.7mm is obtained.
  • the macroscopic optical picture of the preform is shown in Figure 11(b) .
  • step (6) Place the prefabricated body prepared in step (5) in a cylindrical mold with an inner diameter of 12mm, perform cold press molding at a loading rate of 3mm/min, adopt displacement control loading, and hold the cold press at a pressure of 5kN After 10 minutes, the ultra-high strain recovery shape memory alloy screen tube material was obtained, as shown in (c) of Figure 11, the final sample height was 20.6 mm, and the porosity was 72.5%.
  • the sample is tested for 50% compression strain according to ASTM E9-89a standard, the loading rate is 0.5mm/min, see the compression mechanical property curve.
  • the loading curve remains relatively smooth as a whole, and small twists and turns begin to appear at about 37% strain, which is caused by the friction and sliding of the wires inside the sample during compression.
  • This specimen naturally rebounded to a height of 16.8 mm after strain unloading, corresponding to a structural recovery of 31.5% and a residual strain of 18.5%.
  • the height of the sample is finally stabilized at 19.23mm, corresponding to a recovery strain of 11.8% of the phase transition, and generally has a recovery of 43.3% under high temperature conditions
  • the data are shown in Table 2 below.
  • the pore size distribution data of this sample is shown in Figure 13, the pore size is 150-600 ⁇ m, and the average pore size is 303 ⁇ m.
  • a method for preparing an ultra-high strain recovery shape memory alloy screen material comprising the following steps:
  • NiTi (containing 54at.% titanium) shape memory alloy wire with a wire diameter of 0.3mm. 2 Ni phase, the dark color is NiTi-B19' phase), the wire length is 6.0m, the mass is 2.74g, and placed in 95% alcohol at 25°C for 15 minutes of ultrasonic treatment to remove the oil on the surface of the alloy wire;
  • step (2) The NiTi shape memory alloy wire cleaned in step (1) is wound into a spiral coil with a 201 stainless steel mandrel with a diameter of 3.5mm. is 14.5.
  • step (3) Stretch the helical coil obtained in step (2) at a fixed distance, so that the pitch after stretching is 1.05 times the middle diameter of the helical coil (that is, the pitch is 4.25mm).
  • step (4) Place the blank prepared in step (4) in a cylindrical mold with an inner diameter of 12 mm, and carry out cold pressing at a loading rate of 2 mm/min, using displacement control loading, and cold pressing at a pressure of 4 kN and hold for 30 minutes to obtain Ultra-high strain recovery shape memory alloy screen material, the final sample height is 14.07mm, and the porosity is 73.3%.
  • Porosity structure reply residual strain 1h phase change recovery 2h phase change recovery 5h phase change recovery 73.3% 35.8% 13.5% 33.1% 38.0% 47.5%
  • Example 3 By comparing the pore diameters of the samples in Example 1, Example 2 and Example 3, it is not difficult to find that when using the same silk In the case of the diameter, the pore size of the material will decrease with the decrease of the porosity. It is calculated that the average pore size of the sample with a wire diameter of 0.3 mm can be reduced to 128 ⁇ m when the porosity is 35%.
  • a method for preparing an ultra-high strain recovery shape memory alloy screen material comprising the following steps:
  • NiTi shape memory alloy wire cleaned in step (1) is wound into a spiral coil with a No. 20 steel mandrel with a diameter of 3 mm.
  • the outer diameter of the coil after winding is 4.81 mm.
  • the ratio of the diameter of the spiral coil to the diameter of the metal wire is 9.62.
  • step (3) Stretch the helical coil obtained in step (2) at a fixed distance, so that the pitch after stretching is equal to the median diameter of the helical coil (that is, the pitch is 4.31 mm).
  • step (3) The helical coil stretched at a fixed distance in step (3) is reciprocally wound along a 60° angle with a No. 20 steel rod with a diameter of 3 mm as the mandrel to obtain a prefabricated body with a length of 51.7 mm.
  • step (4) Place the prefabricated body prepared in step (4) in a cylindrical mold with an inner diameter of 20 mm, and carry out cold pressing at a loading rate of 3 mm/min, using displacement control loading, and cold pressing at a pressure of 60 kN and hold for 30 minutes.
  • the ultra-high strain recovery shape memory alloy screen tube material was obtained, the final sample height was 14.20mm, and the porosity was 57.5%.
  • Fig. 16 shows the DSC data of shape memory alloy wires of Ti-rich NiTi (56at.% titanium) with a wire diameter of 0.5 mm, where the temperatures of M f , M s , A s and A f are 12.1°C, 33.8°C, 54.1°C and 85.8 °C, XRD characterization confirmed that its phase composition at room temperature is a composite phase of Ti 2 Ni and B19' martensite.
  • the sample was tested for 50% compressive strain according to the ASTM E9-89a standard, the loading rate was 0.5mm/min, and the compressive mechanical property curve is shown in Figure 17. It can be seen from Figure 17 that the loading curve remains relatively smooth as a whole, and a waviness section begins to appear at about 45% strain, which is caused by the friction and sliding of the wires inside the sample during compression. This specimen naturally rebounded to a height of 12.20 mm after strain unloading, corresponding to a structural recovery of 35.9% and a residual strain of 14.1%.
  • the pore size distribution of this sample is shown in Figure 18, the pore size is 180-680 ⁇ m, and the average pore size is 327 ⁇ m. Comparing this data with Example 4, it can be found that the pore size of the sample with thick wire diameter and low porosity is comparable to that of the sample with thin wire diameter and high porosity, and the control of the pore size can also be realized by adjusting the wire diameter. In addition, it has been measured that the average pore diameter of the sample with a porosity of 45% prepared by using a 0.1mm diameter alloy wire can be reduced to 51 ⁇ m.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Filtering Materials (AREA)

Abstract

一种超高应变回复形状记忆合金筛管材料及制备方法与应用。超高应变回复形状记忆合金筛管材料由预制体冷压成型获得,预制体由NiTi形状记忆合金丝绕制成螺旋线圈后通过缠绕、铺排或编织方式制得,预制体中NiTi形状记忆合金丝的螺旋线圈结构相互嵌合或互锁;合金筛管材料在100~350℃温度下具备43~83%回复应变。合金筛管材料具有极好的高温耐受性,能够在高温条件下实现自发的膨胀变形,总体上具有超过43%的超高可回复应变,其孔隙特征为通孔结构且孔径尺寸可控,以保证过滤效果,制备成本相对较低。

Description

超高应变回复形状记忆合金筛管材料及制备方法与应用 技术领域
本发明涉及形状记忆合金,特别是涉及一种具有耐高温的超高应变回复形状记忆合金筛管材料及制备方法与应用,属于石油天然气钻探完井防砂技术领域。
背景技术
在石油天然气资源的井下开采中,一般会混合着大量的砂石和黏土,尤其是砂石存在导致的“出砂现象”,会严重影响到油气的开采效率和油气质量,延长开采周期,造成井下的不可逆损伤,极大的影响到一口油气井的资源开采总量。
油气开采包括钻井、工程建设、物探、测录井等过程。钻井指的是通过钻机钻开地层形成井眼,建立地面与地下油层联通的过程,具体包括钻井液配制、录井、测井、固井、完井等环节。完井作为“钻井工程”与“开采工程”的衔接,不仅仅可以实现采油管与油气储层的连接,同时可以起到一定的防砂功能。目前可以实现防砂的完井方式主要有砾石填充完井和机械膨胀筛管完井这两种。砾石填充完井是指在钻井完成后,将一定尺寸分布的砂石泵送到采油层的井壁与采油管之间,砂石之间紧密堆积形成过滤层,这一方式不仅能够对油砂混合物实现过滤,同时还可以对采油管实现一定的支撑效果,目前应用最为广泛,但是这一完井方式需要将大量的砂石泵送到采油层,施工周期长且工作量巨大,砾石填充不完全的井眼易发生坍塌,并且由于砂石的重力作用,很难实现对水平井中采油管的完全包裹,不适用于水平井和复杂井。机械膨胀筛管是指钻井完成后,将收缩状态下的膨胀筛管下入到产油层等指定位置,注入水泥固定整个膨胀系统后,通过特殊的膨胀工具,一般为膨胀锥对膨胀系统进行膨胀变形,最后二次下入钻头去除多余的水泥部分,这一方式可以实现对采油管的支撑并具备一定的过滤效果,但是这一完井方式并不能实现采油管对井壁的紧密贴合,空隙处井壁易受砂石冲击,此外挡砂效果有限,应用时技术要求极高。
对此,美国贝克休斯油田技术服务公司开发出了一种基于多孔形状记忆聚合物(Shape Memory Polymer, SMP)的智能筛管材料(即GeoFORM筒组件)(Shape memory polyurethane foam for downhole sand control filtration devices, US patent 7926565B2, 2011-04-19; Variable Tg Shape memory Polyurethane for wellbore devices US patent, 8365833B2. 2013-02-05),该组件主要由内层的多孔基管和外层的形状记忆聚合物构成,在下井前外层聚合物处于压缩状态(压缩50~80%),在井下高温环境自发膨胀至原始形状,实现不同直径井眼的空间充填和井壁的完美贴合支撑,同时通过其多孔结构来阻挡砂石实现过滤,其孔径尺寸一般为60-160μm,过滤精度可以达到43μm。这一材料实现自发膨胀的原理是源于聚合物内部状态的改变,聚合物在高弹态下变形并约束其形状,温度降至玻璃态形状得以保持,此时对应组件压缩状态,在下入高温的井下后,聚合物转变为高弹态,通过形状记忆效应自发发生形状回复实现采油管对井壁的完好贴合,结合多孔结构表现出对采油管支撑和挡砂过滤的双重作用。目前的油气井中70%属于高温环境,这一方式能够在高温井下实现自发的膨胀,此外操作简单能够降低时间成本,因此具有极大的应用前景;但是井下的高温条件复杂多变,并且往往会超过100℃甚至达到350℃,由于聚合物的固有特性和形状回复机理:低的玻璃化转变温度(Tg,一般低于100℃),使得其在高温(高于100℃)和高压下的性能不稳定,极易发生蠕变和大的应力松弛,甚至融化失效。此外,该技术的组件售价极为昂贵,单一油井花费可达上百万美元以上。
技术解决方案
为了解决现有完井作业使用的形状记忆聚合物智能筛管材料中存在的上述问题,本发明提供了一种具有超高应变回复形状记忆合金筛管材料及其制备方法,本发明筛管材料具有极好的高温耐受性,能够在高温条件下实现自发的膨胀变形,总体上具有超过43%的超高可回复应变,其孔隙特征为通孔结构且孔径尺寸可控,以保证过滤效果,制备成本相对较低。
形状记忆合金(主要包括NiTi基、Cu基和Fe基合金)具有高的熔点且能够稳定应用在100-350℃之间。然而,相较于形状记忆聚合物,形状记忆合金由马氏体相变导致的最大可回复应变都不超过20%。通过将孔隙引入致密记忆合金中,并合理调控孔隙结构有可能提升多孔记忆合金的压缩可回复应变。但是,目前采用粉末冶金法、3d打印法、熔融渗入法等方法制备的多孔记忆合金只能展现出较高的回复应力,而其压缩可回复应变始终无法超过致密形状记忆合金的最大可回复应变,更无法满足智能筛管材料要求的30%以上的回复应变。
本发明采用合适丝径的NiTi形状记忆合金丝,通过绕制螺旋线圈、定距拉伸、制备预制体和冷压成型制备出了具有超高可回复应变的多孔NiTi记忆合金丝缠结材料(又名金属橡胶)。这一材料通过合金丝相互缠结制备而成,特殊的细观结构赋予了其极好的弹性,结合形状记忆合金变形后在高温下通过马氏体相变实现的形状记忆效应,总体上可以实现超高的可回复应变。
本发明可以通过以下技术方案实现:
一种超高应变回复形状记忆合金筛管材料,由预制体冷压成型获得,所述的预制体由NiTi形状记忆合金丝绕制成螺旋线圈后通过缠绕、铺排或编织方式制得,预制体中NiTi形状记忆合金丝的螺旋线圈结构相互嵌合或互锁;所述的合金筛管材料在100~350 oC温度下具备43~83%回复应变。
为进一步实现本发明目的,优选地,以原子比计,所述的NiTi形状记忆合金丝的钛含量为49.6~56%。
优选地,所述的NiTi形状记忆合金丝在室温下为单一马氏体相或Ti 2Ni与B19’马氏体复合相。
优选地,所述的NiTi形状记忆合金丝的直径为0.05~0.5mm。
优选地,所述的合金筛管材料的孔隙率为45~81%,平均孔径为51~500μm,可回复应变至少可达43%,回复应力在MPa级。
所述的超高应变回复形状记忆合金筛管材料的制备方法,包括以下步骤:
1)绕制螺旋线圈:将清洗后的NiTi形状记忆合金丝围绕芯轴进行螺旋线圈绕制,制成螺旋线圈;
2)制备预制体:将所得螺旋线圈以缠绕、铺排或编织方式制得预制体,预制体中NiTi形状记忆合金丝的螺旋线圈结构相互嵌合或互锁;
3)冷压成型:将预制体放入模具中进行冷压成型获得超高应变回复形状记忆合金筛管材料。
优选地,所述的将所得螺旋线圈以缠绕、铺排或编织方式制得预制体前还包括对螺旋线圈进行拉伸,使得拉伸后的螺旋线圈螺距与螺旋线圈中径的比值为0.95:1~1.05:1;预制体的高度与冷压成型后得到的试样高度之比应控制在2:1~7:1;所述的清洗是去除NiTi形状记忆合金丝表面油污。
优选地,所述的清洗采用的溶液是含量为95%的酒精溶液,采用方式为超声清洗,清洗时间10~30min.
优选地,所述的芯轴的直径为0.5~4mm,金属芯轴为不锈钢;控制芯轴直径与合金丝直径比值为5~15:1;
所述的冷压成型的加载速率为1~5mm/min,冷压压力为2~80kN,采用位移加载控制,保压时间10~60min。
所述的超高应变回复形状记忆合金筛管材料在石油天然气钻探完井防砂中的应用。
金属橡胶具有特殊的孔隙结构、优异的阻尼和可回复特性,它是通过金属丝的卷绕、缠结和压缩成型制备的一类多孔金属材料。本发明筛管材料就是采用NiTi形状记忆合金丝制备的多孔记忆合金橡胶,它兼具了金属橡胶的优异回复特性(也称结构回复,最大可达20%的回复应变),以及形状记忆合金的形状记忆效应(也称马氏体相变回复,对于致密NiTi记忆合金,最大不超过8%),这两者的线性叠加所获得最大可回复应变目前不超过30%,这难以达到形状记忆聚合物筛管材料超高回复应变(至少超过30%)的应用需求。本发明首次利用结构回复(孔隙结构)和相变回复(马氏体相变)的耦合效应调制出超高可回复应变(43%-83%),诸如通过优化缠绕角对马氏体相变施加残余应力以及调整NiTi成分获得Ti 2Ni相强化的B19’马氏体相结构,从而实现多孔记忆合金橡胶在高温时展现出优异的回复特性。孔径尺寸和过滤精度可以通过改变丝径和孔隙率实现调整,以达到相应的油气开采中过滤精度要求。
本发明所述的筛管材料是由NiTi形状记忆合金丝相互缠结组成,丝线之间的间隙构成了材料内部相互连通的孔隙,孔径尺寸可以通过调整合金丝的体积占比即调整孔隙率而实现,也可以调整合金丝的丝径来实现。需要说明的是,往复缠绕只是为了实现丝线的嵌合互锁,方式有多种,例如缠结、编织、铺排等等。做成螺旋线圈是为了让材料内部的微结构处于一种螺旋线圈的状态,维持这种均匀结构,可实现好的嵌合互锁保证稳定,使得材料具有优异的可回复应变。
有益效果
本发明相对于现有技术具有如下的优点和有益效果:
(1)本发明筛管过滤材料是通过NiTi形状记忆合金丝先制成螺旋线圈形状,再以缠结方式制备而成,室温下具备极好的弹性,结合记忆合金的形状记忆效应能够在高温下实现相变回复;尤其是通过孔隙结构与马氏体相变的耦合效应可以实现超高可回复应变,总体上在高温下(100~350℃)具有超过43%以上的压缩可回复应变。尚未找到不用先将NiTi形状记忆合金丝制成螺旋线圈而直接缠绕或编制能实现高温下较高的压缩可回复应变的做法。
(2)本发明的筛管材料本身是由NiTi形状记忆合金丝缠结得到,NiTi合金具有良好高温稳定性(100-350℃)、耐腐蚀和耐压力特性,使得本发明的筛管材料具有优异的耐高温、耐候性和长寿命的优点,特别适用于几乎所有油气井(特别是海上或恶劣环境下的油气开采作业),可以显著提高挡砂效果、提高采收效率和油气质量。
(3)本发明所述的筛管材料制备工艺简单,使用合适的合金丝通过绕制线圈、定距拉伸、制备预制体和冷压成型制得,可靠性高,容易实现大批量生产。
附图说明
图1为超高应变回复形状记忆合金筛管材料的制备方法流程图;
图2为超高应变回复形状记忆合金筛管材料的制备过程(往复缠绕制备预制体)直观示意图;
图3为超高应变回复形状记忆合金筛管材料制备过程(往复缠绕制备预制体)中预制体和冷压所得圆柱形试样的宏观光学照片;
图4为实施例1中丝径0.3mm的NiTi等原子比(含钛50at.%)形状记忆合金丝的DSC曲线;
图5为实施例1中0.3mm丝径69.7%孔隙率试样在20%、30%、40%和50%压缩应变下的循环压缩曲线;
图6为实施例1中0.3mm丝径69.7%孔隙率试样的孔径分布曲线;
图7为超高应变回复形状记忆合金筛管材料与多孔基管结合后原位膨胀展开和挡砂过滤工作原理图;
图8为实施例2中0.3mm丝径77.5%孔隙率试样的工业CT照片;
图9为实施例2中0.3mm丝径77.5%孔隙率试样的65%压缩应力-应变曲线;
图10为实施例2中0.3mm丝径77.5%孔隙率试样的孔径分布曲线;
图11为实施例3中采用的铺排方式制备预制体的直观示意图和预制体与最终圆柱形试样的宏观光学照片;
图12为实施例3中0.3mm丝径72.5%孔隙率试样的50%压缩应力-应变曲线
图13为实施例3中0.3mm丝径72.5%孔隙率试样的孔径分布曲线;
图14为实施例4中NiTi(含钛54at.%)合金组织(Ti 2Ni增强的NiTi-B19’相)的扫描电镜照片;
图15为实施例4中0.3mm丝径73.3%孔隙率试样的孔径分布曲线;
图16为实施例5中0.5mm丝径富Ti的NiTi(含钛56 at.%)形状记忆合金丝的DSC曲线;
图17为实施例5中0.5mm丝径57.5%孔隙率试样的50%压缩应力-应变曲线;
图18为实施例5中0.5mm丝径57.5%孔隙率试样的孔径分布曲线。
本发明的实施方式
为更好地理解本发明,下面结合实施例和附图对本发明作进一步的描述,但本发明的实现方式不限于此。
实施例1
图1为超高应变回复形状记忆合金筛管材料的制备流程图,从图1可见,一种超高应变回复形状记忆合金筛管材料的制备方法,包括以下步骤:
(1)选取一根丝径0.3mm的NiTi等原子比(含钛50at.%)形状记忆合金丝,丝长8.64m,质量为3.94g,25℃环境下置于95%酒精溶液中超声处理10分钟,以去除合金丝表面的油污。
(2)将步骤(1)清洗处理后的NiTi记忆合金丝以直径1.5mm的304不锈钢芯轴绕制螺旋线圈,绕制后螺旋线圈外径为2.55mm,螺旋线圈外径与金属丝直径之比为8.5:1。
(3)将步骤(2)绕制得到的螺旋线圈进行定距拉伸,使得拉伸后的螺距与螺旋线圈的中径相等(即螺距为2.25mm)。
(4)将步骤(3)定距拉伸的螺旋线圈以直径1.5mm的304不锈钢棒为芯轴,如图2中(c)所示以60°为缠绕角从芯轴中部开始,单向缠绕至边缘后,依次以A→B→C→D→E→F和a→b→c→d→e→f方向不断进行往复缠绕直至线圈缠绕完毕,并最后将线圈末端嵌入内部进行封端处理得到预制体,所得预制体长度为41.2mm,直径略小于12mm。
(5)将步骤(4)制备得到的预制体置于内径为12mm的圆柱形模具中,以5mm/min的加载速率进行冷压成型,采用位移控制加载,冷压压力为8kN并保压30min,获得圆柱形超高应变回复形状记忆合金筛管材料,最终得到的试样高度为17.79mm。
图2为超高应变回复形状记忆合金筛管材料的制备过程中直观示意图,其中图中(a)为步骤(2)绕制螺旋线圈的直观示意图;图中(b)为步骤(3)进行定距拉伸后得到的螺旋线圈直观示意图,给出了线圈外径、线圈中径和螺距的直观标记,且螺距与线圈中径相等;图中(c)为步骤(4)往复缠绕制备预制体的示意图,给出了缠绕角的直观示意,即线圈与芯轴的夹角。
图3为试样制备过程中预制体和试样的宏观光学照片,图中(a)为预制体,图中(b)和(c)分别为最终冷压所得圆柱形试样的底面和侧面的宏观光学照片。
图4为0.3mm丝径NiTi等原子比(含钛50at.%)形状记忆合金丝的DSC数据,其中M f、M s、A s和A f温度分别为-13.3℃、38.6℃、54.13℃和61.4℃,该合金丝经淬火后在室温下为单一B19’马氏体相。
测量并记录经过步骤(5)制备得到试样的质量m、直径D和高度H,V为试样的表观体积,已知NiTi形状记忆合金丝的密度为
Figure dest_path_image002
=6.45g/cm 3,经过如下公式计算得到试样孔隙率P,式中
Figure dest_path_image004
为相对密度,经计算得知孔隙率P=69.7%。
Figure dest_path_image006
在室温下对经过步骤(5)制备得到的试样按照ASTM E9-89a标准进行压缩测试,测试设备为INSTRON 5984万能材料试验机,采用位移控制加载,加载速率为0.5mm/min,依次按20%,30%、40%和50%压缩应变进行压缩性能测试,测试结果见图5。由图5可知,试样在20%、30%、40%和50%应变下的应力值分别为1.71MPa、8.36MPa、31.80MPa和49.79MPa。试样在20%、30%和40%压缩应变加载后,试样形状皆能完全回复至未加载时的状态,表明该样品的可回复应变达到了40%,远远超出NiTi形状记忆合金本身具备的最大可回复应变。在50%预应变加载后,测得其弹性应变(结构回复)为38.6%,具有11.4%的残余应变,这是由于在大的应变加载下材料的细观结构,即丝线的排布状态发生了不可逆的重排;通过观察40%和50%应变的加载段,发现二者并不重合,可以判断材料在40%应变加载时丝线之间就发生了一定的重排,但是这一部分重排是可逆的,同时这种可逆重排导致了结构的弱化,因此后续在50%应变的加载段曲线明显低于先前加载段。试样在经历50%压缩应变后,置于95℃水浴处理一小时,产生了16.4%的相变驱动回弹应变(相变回复),其可回复应变(即结构回复与相变回复之和)达到了55.0%。该试样的孔径分布测试结果见图6,其孔隙尺寸为100~500μm,平均孔径为275μm。
目前在筛管中应用的形状记忆聚合物材料虽然在井下高温条件同样可达到55.0%的可回复应变,但是由于聚合物材料本身的性质,其在高温下力学性能较差,极易出现应力松弛和蠕变现象,井下复杂的高温高压环境大大的限制了这一类材料的应用。
若将本实施例制备得到的超高应变回复形状记忆合金筛管材料与多孔基管结合,在受压50%应变的约束下下入高温的井下,结合其结构具备的极好弹性和高温下形状记忆合金具备的形状记忆效应,其可以实现高达55.0%的可回复应变。NiTi形状记忆合金在高温下具有稳定的力学性能,形状回复后材料处于奥氏体相状态,这一相结构更是有着高于室温马氏体相的弹性模量,因此其在高温下具备有极为稳定的力学性能,能够完全克服上述形状记忆聚合物在高温下的诸多缺点。
目前以不锈钢丝、Ni基高温合金和铝丝等材料制备得到的金属橡胶所具备的弹性阶段都不超过20%,而多孔形状记忆合金的形状记忆效应都无法达到致密态时的性能,以NiTi为例,难以达到8%,将上述二者线性叠加无法达到30%的可回复应变。在本实施例中首次利用结构回复(孔隙结构)和相变回复(马氏体相变)的耦合效应调制出超高回复应变55.0%的形状记忆合金橡胶,其在高温时能展现出优异的回复特性。厚度方向为实施例1中试样的高度方向
如图7所示,将本实施例所得的超高应变回复形状记忆合金筛管材料与多孔基管结合,也就是将所得的筛管材料(超高应变回复形状记忆合金筛管材料,多孔形状记忆合金橡胶)直接制备成管状安装在多孔基管外周,筛管材料未发生变形时的初始厚度为H 0;在低温马氏体相状态下(T<M f)对筛管材料施加载荷以变形,并约束其形状,筛管材料受压形变后的厚度为H 1;然后将多孔基管与筛管材料组件下入井下,井下为高温条件(T>A f),通过筛管材料结构回复(孔隙结构)和相变回复(马氏体相变)的耦合效应,可以实现极大的应变回复,回复后的筛管材料回复后的厚度H 2,超过了筛管材料的初始厚度H 0
目前GeoFORM组件在井下可以实现30%的可回复应变,而在本实施例中所制备出的筛管材料实现了55%的可回复应变,回复性能方面已经完全达到了井下所需。同时这一筛管材料由NiTi形状记忆合金丝构成,其能够在井下高温环境下仍保持极为稳定和优异力学性能,这大大克服了GeoFORM组件中采用的多孔形状记忆聚合物在高温下力学性能急剧弱化的劣势,此外发生形状回复即膨胀后的筛管材料内部的细观结构仍然是合金丝线相互缠结,保持稳定的通孔孔隙结构,这一稳定且独特的孔隙结构能够保证油气顺利通过筛管材料和多孔基管进入采油管,同时对砂石实现有效阻挡。
实施例2
一种超高应变回复形状记忆合金筛管材料的制备方法,包括以下步骤:
(1)选取一根丝径0.3mm的NiTi(含钛51at.%)形状记忆合金丝,丝长7.5m,质量为3.42g,25℃环境下置于95%酒精中超声处理20分钟,以去除合金丝表面的油污;
(2)将步骤(1)清洗处理后的NiTi形状记忆合金丝以直径2.1mm的45号钢芯轴绕制螺旋线圈,绕制后线圈外径为3.15mm,螺旋卷直径与金属丝直径之比为10.5。
(3)将步骤(2)绕制得到的螺旋线圈进行定距拉伸,使得拉伸后的螺距为螺旋线圈中径的0.95(即螺距为2.71mm)。
(4)将步骤(3)定距拉伸的螺旋线圈以直径2.1mm的45号钢棒为芯轴,如图2中(c)所示,以45°为缠绕角从芯轴中部开始,单向缠绕至边缘后,依次以A→B→C→D→E→F和a→b→c→d→e→f方向不断进行往复缠绕,最后将线圈末端嵌入预制体内部进行封端处理得到预制体,所得预制体长度为45.3mm,直径略小于12mm。
(5)将步骤(4)制备的预制体置于内径为12mm的圆柱形模具中,以3mm/min的加载速率进行冷压成型,采用位移控制加载,冷压保压压力为2kN并保压10min,获得超高应变回复形状记忆合金筛管材料,最终的试样高度为20.83mm,孔隙率为77.5%。
通过工业CT对该试样进行了三维结构表征,结果见图8,由图8可知,试样内部丝线相互之间实现了很好的交叉互锁,截面和底面的金属丝也呈现出均匀的分布状态。
在室温下对样品按照ASTM E9-89a标准进行压缩测试,测试设备为INSTRON 5984万能材料试验机,采用位移控制加载,加载速率为0.5mm/min,直接对其进行65%压缩应变的加载卸载试验,测试结果见图9。由图9可知,试样在压缩应变65%下对应的应力为60.69MPa,加载前中期曲线一直保持平滑,在60%应变左右开始出现波折段,这是由于试样内部丝线在压缩时发生的摩擦和滑动所致。试样在65%压缩应变加载时,对应高度为7.29mm,在外加载荷卸载后由于金属橡胶结构赋予的弹性,试样的高度尺寸自然回弹至15.21mm,回弹尺寸达到了7.92mm,将这类结构回弹应变定义为材料的结构回复应变,经计算该试样的结构回复应变为38.0%,存在27.0%的残余应变;基于形状记忆合金的形状记忆效应,将上述试样至于A f温度以上的环境中一段时间,此处采用95℃水浴处理一小时,试样尺寸由15.21mm改变至22.09mm,回弹尺寸达到了6.88mm,将这类回弹定义为马氏体相变导致的相变回复应变,经计算该应变达到了33.0%,远远超过了致密态NiTi合金最大可回复应变的8%。试样的可回复应变达到了71.0%,超过了预加载时的65%压缩应变,其数据如下表1所示。这一试样的孔径分布数据见图10,其孔隙尺寸为200~700μm,平均孔径为370μm。
表1
孔隙率 结构回复 残余应变 相变回复 可回复应变
77.5% 38.0% 27.0% 33.0% 71.0%
 
实施例3
一种超高应变回复形状记忆合金筛管材料的制备方法,包括以下步骤:
(1)选取一根丝径0.3mm的NiTi(含钛51at.%)形状记忆合金丝,丝长9m,质量为4.13g,25℃环境下置于95%酒精中超声处理20分钟,以去除合金丝表面的油污;
(2)将步骤(1)清洗处理后的NiTi形状记忆合金丝以直径1.5mm的45号钢芯轴绕制螺旋线圈,绕制后线圈外径为2.55mm,螺旋卷直径与金属丝直径之比为8.5。
(3)将步骤(2)绕制得到的螺旋线圈进行定距拉伸,使得拉伸后的螺距与螺旋线圈中径相等(即螺距为2.71mm),并将拉伸后的螺旋线圈定量分成两份,第一份与第二份质量比为8:1。
(4)将步骤(3)所得的第一份螺旋线圈依次斜向缠绕到长为200mm、宽为50mm、厚度为1mm的不锈钢长方形薄板上,第一层的缠绕长度约为120mm,第二层及以后的各层线圈以相对上一层螺旋线圈中心线60°角进行铺排,直至线圈缠绕完毕,如图11中(a)所示。
(5)将步骤(4)所得的毛坯取下,沿长度方向卷成圆柱形毛坯,然后将第二份螺旋线圈以60°缠绕角均匀缠绕到圆柱形毛坯上,缠绕过程如图2中(c)所示,最后将线圈末端插入至毛坯内部进行封端处理,得到直径约为12mm,高度为55.7mm的近圆柱形预制体,预制体的宏观光学图片如图11中(b)所示。
(6)将步骤(5)制备的预制体置于内径为12mm的圆柱形模具中,以3mm/min的加载速率进行冷压成型,采用位移控制加载,冷压保压压力为5kN并保压10min,获得超高应变回复形状记忆合金筛管材料,如图11中(c)所示,最终的试样高度为20.6mm,孔隙率为72.5%。
对试样按照ASTM E9-89a标准进行50%压缩应变测试,加载速率为0.5mm/min,压缩力学性能曲线见。如图12可知,加载曲线整体上保持较为平滑的状态,在37%应变左右开始出现细小波折段,这是由于试样内部丝线在压缩时发生的摩擦和滑动所致。这一试样在应变卸载后高度自然回弹至16.8mm,对应着的31.5%的结构回复和18.5%的残余应变。将试样置于A f以上环境中一段时间(95℃水浴处理1h),试样高度最终稳定在19.23mm,对应着11.8%的相变回复应变,高温条件下总体上具有43.3%的可回复应变,其数据如下表2所示。这一试样的孔径分布数据见图13,其孔隙尺寸为150~600μm,平均孔径为303μm。
表2
孔隙率 结构回复 残余应变 相变回复 可回复应变
72.5% 31.5% 18.5% 11.8% 43.3%
实施例4
一种超高应变回复形状记忆合金筛管材料的制备方法,包括以下步骤:
(1)选取一根丝径0.3mm的NiTi(含钛54at.%)形状记忆合金丝,其组织为Ti 2Ni相增强的B19’马氏体相(如图14所示,浅色为Ti 2Ni相,深色为NiTi-B19’相),丝长6.0m,质量为2.74g,25℃环境下置于95%酒精中超声处理15分钟,以去除合金丝表面的油污;
(2)将步骤(1)清洗处理后的NiTi形状记忆合金丝以直径3.5mm的201不锈钢芯轴绕制螺旋线圈,绕制后线圈外径为4.35mm,螺旋卷直径与金属丝直径之比为14.5。
(3)将步骤(2)绕制得到的螺旋线圈进行定距拉伸,使得拉伸后的螺距与螺旋线圈中径的1.05倍(即螺距为4.25mm)。
(4)将步骤(3)定距拉伸的螺旋线圈以直径3.5mm的201不锈钢棒为芯轴,如图2中(c)所示,以30°为缠绕角从芯轴中部开始,单向缠绕至边缘后,依次以A→B→C→D→E→F和a→b→c→d→e→f方向不断进行往复缠绕,最后将线圈末端嵌入预制体内部进行封端处理得到预制体,所得预制体长度为32.6mm,直径略小于12mm。
(5)将步骤(4)制备的毛坯置于内径为12mm的圆柱形模具中,以2mm/min的加载速率进行冷压成型,采用位移控制加载,冷压压力为4kN并保压30min,获得超高应变回复形状记忆合金筛管材料,最终的试样高度为14.07mm,孔隙率为73.3%。
将试样高度压缩至7.14mm,即施加49.3%的压缩应变,并约束24h。在外加载荷去除后,试样高度自发回弹至12.18mm,置于95℃水浴中1h、2h和5h,试样尺寸分别达到了16.87mm、17.52mm和18.87mm,经过计算其应变数据如下表3:
表3
孔隙率 结构回复 残余应变 1h相变回复 2h相变回复 5h相变回复
73.3% 35.8% 13.5% 33.1% 38.0% 47.5%
通过这一约束实验,可以得知长时间的应力约束并不会导致这一超高应变回复形状记忆合金筛管材料的回弹性能变差,在这一试样中长时间约束后同样能够实现远超预加载变形量的回复,5h热处理后可回复应变达到了83.3%,这一特性符合这一材料的实际应用背景,在受压约束的状态下下入井中,然后自发膨胀展开,如图7所示。这一试样的孔径分布数据见图15,其孔隙尺寸为180~680μm,平均孔径为312μm,通过与实施例1、例2和例3试样的孔径对比,不难发现,在采用同一丝径的情况下,材料的孔径尺寸会随着孔隙率的降低而降低,经计算0.3mm丝径的试样在孔隙率为35%时平均孔径尺寸可以降低至128μm。
实施例5
一种超高应变回复形状记忆合金筛管材料的制备方法,包括以下步骤:
(1)选取一根丝径0.5mm的富Ti的NiTi(含钛56at.%)形状记忆合金丝,其组织为Ti 2Ni相增强的B19’马氏体相,丝长12.0m,质量为13.84g,25℃环境下置于95%酒精中超声处理20分钟,以去除合金丝表面的油污;
(2)将步骤(1)清洗处理后的NiTi形状记忆合金丝以直径3mm的20号钢芯轴绕制螺旋线圈,绕制后线圈外径为4.81mm,螺旋卷直径与金属丝直径之比为9.62。
(3)将步骤(2)绕制得到的螺旋线圈进行定距拉伸,使得拉伸后的螺距与螺旋线圈的中径相等(即螺距为4.31mm)。
(4)将步骤(3)定距拉伸的螺旋线圈以直径3mm的20号钢棒为芯轴,沿着60°角进行往复缠绕得到预制体,其长度为51.7mm。
(4)将步骤(3)定距拉伸的螺旋线圈以直径3mm的20号钢棒为芯轴,如图2中(c)所示以60°为缠绕角从芯轴中部开始,单向缠绕至边缘后,依次以A→B→C→D→E→F和a→b→c→d→e→f方向不断进行往复缠绕,最后将线圈末端嵌入预制体内部进行封端处理得到预制体,所得预制体长度为51.7mm,直径略小于20mm。
(5)将步骤(4)制备的预制体置于内径为20mm的圆柱形模具中,以3mm/min的加载速率进行冷压成型,采用位移控制加载,冷压压力为60kN并保压30min,获得超高应变回复形状记忆合金筛管材料,最终的试样高度为14.20mm,孔隙率为57.5%。
图16为0.5mm丝径富Ti的NiTi(含钛56at.%)形状记忆合金丝的DSC数据,其中M f、M s、A s和A f温度分别为12.1℃、33.8℃、54.1℃和85.8℃,经过XRD表征确定其在室温下物相组成为Ti 2Ni与B19’马氏体复合相。
对试样按照ASTM E9-89a标准进行50%压缩应变测试,加载速率为0.5mm/min,压缩力学性能曲线见图17。从图17可知,加载曲线整体上保持较为平滑的状态,在45%应变左右开始出现波折段,这是由于试样内部丝线在压缩时发生的摩擦和滑动所致。这一试样在应变卸载后高度自然回弹至12.20mm,对应着35.9%的结构回复和14.1%的残余应变。将试样置于A f以上环境中一段时间(95℃水浴处理1h),试样高度最终稳定在15.60mm,对应着23.9%的相变回复应变,高温条件下总体上具有59.8%的可回复应变,其数据见下表4:
表4
孔隙率 结构回复 残余应变 相变回复 可回复应变
57.5% 35.9% 14.1% 23.9% 59.8%
这一试样的孔径分布见图18,其孔隙尺寸为180~680μm,平均孔径为327μm。将这一数据与实施例4进行对比,可以发现粗丝径低孔隙率试样的孔径尺寸可以与细丝径高孔隙率试样相当,通过调整丝径同样可以实现孔径尺寸的控制。另经测量采用0.1mm丝径合金丝制备的孔隙率为45%的试样平均孔径可以降低至51μm。
本发明的实施方式并不受限于所述实施例的限制,其他的任何未背离本发明的精神实质和原理下所做的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种超高应变回复形状记忆合金筛管材料,其特征在于,由预制体冷压成型获得,所述的预制体由NiTi形状记忆合金丝绕制成螺旋线圈后通过缠绕、铺排或编织方式制得,预制体中NiTi形状记忆合金丝的螺旋线圈结构相互嵌合或互锁;所述的合金筛管材料在100~350 oC温度下具备43~83%回复应变。
  2. 根据权利要求1所述的超高应变回复形状记忆合金筛管材料,其特征在于,以原子比计,所述的NiTi形状记忆合金丝的钛含量为49.6~56%。
  3. 根据权利要求1所述的超高应变回复形状记忆合金筛管材料,其特征在于,所述的NiTi形状记忆合金丝在室温下为单一马氏体相或Ti 2Ni与B19’马氏体复合相。
  4. 根据权利要求1所述的超高应变回复形状记忆合金筛管材料,其特征在于,所述的NiTi形状记忆合金丝的直径为0.05~0.5mm。
  5. 根据权利要求1所述的超高应变回复形状记忆合金筛管材料,其特征在于,所述的合金筛管材料的孔隙率为45~81%,平均孔径为51~500μm,可回复应变至少可达43%,回复应力在MPa级。
  6. 权利要求1所述的超高应变回复形状记忆合金筛管材料的制备方法,其特征在于包括以下步骤:
    1)绕制螺旋线圈:将清洗后的NiTi形状记忆合金丝围绕芯轴进行螺旋线圈绕制,制成螺旋线圈;
    2)制备预制体:将所得螺旋线圈以缠绕、铺排或编织方式制得预制体,预制体中NiTi形状记忆合金丝的螺旋线圈结构相互嵌合或互锁;
    3)冷压成型:将预制体放入模具中进行冷压成型获得超高应变回复形状记忆合金筛管材料。
  7. 根据权利要求6所述的超高应变回复形状记忆合金筛管材料的制备方法,其特征在于,所述的将所得螺旋线圈以缠绕、铺排或编织方式制得预制体前还包括对螺旋线圈进行拉伸,使得拉伸后的螺旋线圈螺距与螺旋线圈中径的比值为0.95:1~1.05:1;预制体的高度与冷压成型后得到的试样高度之比应控制在2:1~7:1;所述的清洗是去除NiTi形状记忆合金丝表面油污。
  8. 根据权利要求7所述的超高应变回复形状记忆合金筛管材料的制备方法,其特征在于,所述的清洗采用的溶液是含量为95%的酒精溶液,采用方式为超声清洗,清洗时间10~30min。
  9. 根据权利要求6所述的超高应变回复形状记忆合金筛管材料的制备方法,其特征在于,所述的芯轴的直径为0.5~4mm,金属芯轴为不锈钢;控制芯轴直径与合金丝直径比值为5~15:1;
    所述的冷压成型的加载速率为1~5mm/min,冷压压力为2~80kN,采用位移加载控制,保压时间10~60min。
  10. 权利要求1-5任一项所述的超高应变回复形状记忆合金筛管材料在石油天然气钻探完井防砂中的应用。
     
PCT/CN2022/135116 2021-12-17 2022-11-29 超高应变回复形状记忆合金筛管材料及制备方法与应用 WO2023109507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111554837.7A CN114352239B (zh) 2021-12-17 2021-12-17 超高应变回复形状记忆合金筛管材料及制备方法与应用
CN202111554837.7 2021-12-17

Publications (1)

Publication Number Publication Date
WO2023109507A1 true WO2023109507A1 (zh) 2023-06-22

Family

ID=81099275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135116 WO2023109507A1 (zh) 2021-12-17 2022-11-29 超高应变回复形状记忆合金筛管材料及制备方法与应用

Country Status (2)

Country Link
CN (1) CN114352239B (zh)
WO (1) WO2023109507A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114352239B (zh) * 2021-12-17 2023-04-21 华南理工大学 超高应变回复形状记忆合金筛管材料及制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060048936A1 (en) * 2004-09-07 2006-03-09 Fripp Michael L Shape memory alloy for erosion control of downhole tools
CN102224321A (zh) * 2008-10-13 2011-10-19 贝克休斯公司 用于井下防砂过滤装置的形状记忆聚氨酯泡沫
CN104294066A (zh) * 2014-10-15 2015-01-21 中国科学院金属研究所 一种超高强塑性TiNiNbMo形状记忆合金的快速凝固制备方法
CN105038165A (zh) * 2015-08-21 2015-11-11 华南理工大学 具有形状记忆功能的生物基热塑性弹性体及其制备方法
CN105626001A (zh) * 2016-03-04 2016-06-01 中国石油集团渤海钻探工程有限公司 一种新型自膨胀筛管
CN105908000A (zh) * 2016-06-16 2016-08-31 华南理工大学 宽温域轻质高强高韧NiTi形状记忆合金复合阻尼材料及其制备方法与应用
CN108661585A (zh) * 2018-05-16 2018-10-16 中国石油天然气集团公司管材研究所 一种基于记忆合金的膨胀管套损补贴修复方法
CN109047370A (zh) * 2018-08-03 2018-12-21 西安兴硕新材料科技有限公司 一种镍钛形状记忆合金异形管材加工工艺
CN114352239A (zh) * 2021-12-17 2022-04-15 华南理工大学 超高应变回复形状记忆合金筛管材料及制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6648071B2 (en) * 2001-01-24 2003-11-18 Schlumberger Technology Corporation Apparatus comprising expandable bistable tubulars and methods for their use in wellbores
CN1389271A (zh) * 2001-05-31 2003-01-08 东华大学 针织医用金属内支架及其制造方法
US8365833B2 (en) * 2010-03-26 2013-02-05 Baker Hughes Incorporated Variable Tg shape memory polyurethane for wellbore devices
US8783349B2 (en) * 2012-05-04 2014-07-22 Schlumber Technology Corporation Compliant sand screen
US10584564B2 (en) * 2014-11-17 2020-03-10 Terves, Llc In situ expandable tubulars
CN105626002A (zh) * 2016-03-04 2016-06-01 中国石油集团渤海钻探工程有限公司 一种免填充可膨胀筛管
CN106404656A (zh) * 2016-09-18 2017-02-15 华南理工大学 确定形状记忆合金复合阻尼材料应力诱发马氏体相变临界点的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060048936A1 (en) * 2004-09-07 2006-03-09 Fripp Michael L Shape memory alloy for erosion control of downhole tools
CN102224321A (zh) * 2008-10-13 2011-10-19 贝克休斯公司 用于井下防砂过滤装置的形状记忆聚氨酯泡沫
CN104294066A (zh) * 2014-10-15 2015-01-21 中国科学院金属研究所 一种超高强塑性TiNiNbMo形状记忆合金的快速凝固制备方法
CN105038165A (zh) * 2015-08-21 2015-11-11 华南理工大学 具有形状记忆功能的生物基热塑性弹性体及其制备方法
CN105626001A (zh) * 2016-03-04 2016-06-01 中国石油集团渤海钻探工程有限公司 一种新型自膨胀筛管
CN105908000A (zh) * 2016-06-16 2016-08-31 华南理工大学 宽温域轻质高强高韧NiTi形状记忆合金复合阻尼材料及其制备方法与应用
CN108661585A (zh) * 2018-05-16 2018-10-16 中国石油天然气集团公司管材研究所 一种基于记忆合金的膨胀管套损补贴修复方法
CN109047370A (zh) * 2018-08-03 2018-12-21 西安兴硕新材料科技有限公司 一种镍钛形状记忆合金异形管材加工工艺
CN114352239A (zh) * 2021-12-17 2022-04-15 华南理工大学 超高应变回复形状记忆合金筛管材料及制备方法与应用

Also Published As

Publication number Publication date
CN114352239A (zh) 2022-04-15
CN114352239B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
EP0547865B1 (en) Well screen with prepacked screen element
WO2023109507A1 (zh) 超高应变回复形状记忆合金筛管材料及制备方法与应用
DE69117966T2 (de) Sandfilter aus sintermetall
US11225000B2 (en) Periodic structured composite and articles therefrom
US20080179057A1 (en) Well Treating Agents of Metallic Spheres and Methods of Using the Same
US9090955B2 (en) Nanomatrix powder metal composite
WO1994019578A1 (en) Well screen apparatus
CN107558980B (zh) 一种低密度暂堵抑制缝长延伸压裂方法
US9227243B2 (en) Method of making a powder metal compact
US11927082B2 (en) Non-metallic compliant sand control screen
US20130025409A1 (en) Extruded powder metal compact
US20130081821A1 (en) Reinforcing Amorphous PLA with Solid Particles for Downhole Applications
CN106566501B (zh) 一种柔性堵漏剂及其制备方法与应用
CN108456510B (zh) 一种复合承压堵漏浆、制备方法及施工方法
AU2017350521B2 (en) High temperature high extrusion resistant packer
CN105401913B (zh) 封隔器胶筒防突结构
CN104533337B (zh) 一种多轮次高低温热采封隔器胶筒及其制备方法
CN110397420B (zh) 一种适用于老井套管孔眼封堵方法
CN112091221B (zh) 一种页岩油/页岩气深井钻探用聚晶金刚石复合片及其制备方法
Wu et al. Anisotropic compressive properties and energy absorption efficiency of porous twisted short fiber materials
CN110569570A (zh) 一种基于螺纹接头压缩效率的环空压力计算方法
CN112145141B (zh) 致密型油藏开采方法
CN115960585A (zh) 一种纳米无机复合胶凝材料防砂封窜堵漏剂及方法
CN117586761A (zh) 一种耐高温固砂剂及其制备方法和应用
CN114482960A (zh) 一种压裂防砂方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906257

Country of ref document: EP

Kind code of ref document: A1