WO2023109430A1 - Ne-dc架构的适配方法、运行控制装置、基站设备及存储介质 - Google Patents

Ne-dc架构的适配方法、运行控制装置、基站设备及存储介质 Download PDF

Info

Publication number
WO2023109430A1
WO2023109430A1 PCT/CN2022/132947 CN2022132947W WO2023109430A1 WO 2023109430 A1 WO2023109430 A1 WO 2023109430A1 CN 2022132947 W CN2022132947 W CN 2022132947W WO 2023109430 A1 WO2023109430 A1 WO 2023109430A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
drb
base station
activity notification
information
Prior art date
Application number
PCT/CN2022/132947
Other languages
English (en)
French (fr)
Inventor
邱刚
杜高鹏
吴枫
司伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023109430A1 publication Critical patent/WO2023109430A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular to an adaptation method for NE-DC (NR-E-UTRA Dual Connectivity, NE-DC dual connectivity) architecture, an operation control device, base station equipment, and a storage medium.
  • NE-DC NR-E-UTRA Dual Connectivity, NE-DC dual connectivity
  • Option 4 is evolving to 5G, and there are many evolution routes for network deployment options.
  • Option 4 is one of the 5G architectures.
  • the 5G core network is used as the core network
  • the 5G base station is used as the main station
  • the 4G base station is used as the auxiliary station.
  • Stations, 5G base stations and 4G base stations communicate through the NE-DC function, but to support option 4, according to the requirements of 3GPP (3rd Generation Partnership Project, 3rd Generation Partnership Project), LTE (Long Term Evolution) of 4G base stations , Long Term Evolution) network needs to be upgraded to eLTE (Enhanced LTE, evolved LTE) network, which increases the resource consumption of operators upgrading on the original LTE, and also increases the complexity of implementation by equipment manufacturers.
  • 3GPP 3rd Generation Partnership Project, 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • eLTE Enhanced LTE, evolved LTE
  • the purpose of this application is to solve at least one of the technical problems existing in the prior art, and to provide a method for adapting the NE-DC architecture, an operation control device, a base station device, and a storage medium.
  • an embodiment of the present application provides a method for adapting the NE-DC architecture, which is applied to a 4G base station, including: receiving a message from a 5G base station, the message including first information, and the first information is a 5G concept information; deliver the message to the adaptation module; through the adaptation module, convert the first information in the message into second information that can be recognized and operated by the LTE network.
  • the embodiment of the present application provides an operation control device, including at least one control processor and a memory for communicating with the at least one control processor; the memory stores information that can be processed by the at least one control processor. Instructions executed by the processor, the instructions are executed by the at least one control processor, so that the at least one control processor can execute the adaptation method of the NE-DC architecture as described in the embodiment of the first aspect of the present application.
  • the embodiment of the present application provides a base station device, including the operation control device as described in the embodiment of the second aspect of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, which is characterized in that the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to enable a computer to execute the On the one hand, the adaptation method of the NE-DC architecture described in the embodiment.
  • FIG. 1 is a schematic diagram of an NE-DC architecture provided by an embodiment of the present application
  • FIG. 2 is a flow chart of the steps of the adaptation method of the NE-DC architecture provided by the embodiment of the present application;
  • FIG. 3 is a flow chart of some steps of a method for adapting the NE-DC architecture provided in another embodiment of the present application
  • Fig. 4 is an adaptation flowchart provided by another embodiment of the present application.
  • Fig. 5 is an adaptation flowchart provided by another embodiment of the present application.
  • FIG. 6 is a flow chart of the steps of the adaptation method of the NE-DC architecture provided by another embodiment of the present application.
  • FIG. 7 is a flow chart of sub-steps of a method for adapting the NE-DC architecture provided in another embodiment of the present application.
  • FIG. 8 is a flow chart of sub-steps of a method for adapting the NE-DC architecture provided in another embodiment of the present application.
  • Fig. 9 is an adaptation flowchart provided by another embodiment of the present application.
  • FIG. 10 is a flow chart of sub-steps of a method for adapting the NE-DC architecture provided by another embodiment of the present application.
  • Fig. 11 is an adaptation flowchart provided by another embodiment of the present application.
  • Fig. 12 is a structural diagram of an operation control device provided by another embodiment of the present application.
  • Option 4 is one of the 5G network architectures, which is the NE-DC architecture.
  • Option 4 introduces both 5G core network and 5G base stations, but The 5G base station does not directly replace the 4G base station.
  • the 5G core network is used as the core network
  • the 5G base station is used as the primary station
  • the 4G base station is used as the secondary station.
  • the 5G base station and the 4G base station communicate through the NE-DC function.
  • the media data of the 5G core network cannot be sent to the 4G base station, the data of the 5G core network can only be sent to the 5G base station, and then the 5G base station performs data distribution and sends it to the 4G base station through the XN-U channel.
  • 4G base station According to 3GPP regulations, in the NE-DC scenario, the 4G LTE network must be upgraded to an eLTE network, that is, the LTE network needs to add a 5G protocol layer, and has the ability to communicate with the 5G core network for signaling and data.
  • SDAP Service Discovery Application Profile, service discovery application specification
  • 5G QoS Quality of Service, quality of service
  • Session session
  • QoS Flow QoS flow
  • RRC Inactive state etc.
  • eLTE network must have the ability to handle NG (The interface between the radio access network and the 5G core network) has the ability to control signaling and media data, and has the ability to process the control signaling and media data of XN (the network interface between NG-RAN nodes).
  • the embodiment of the present application provides a method for adapting the NE-DC architecture, an operation control device, base station equipment, and a storage medium, which can complete the NE-DC function without upgrading LTE, making the NE-DC architecture easy accomplish.
  • FIG. 1 is a schematic diagram of a NE-DC architecture provided by an embodiment of the present application.
  • the 5G core network serves as the core network
  • the user terminal is connected to a 5G base station as the master station
  • the user terminal is connected to a 4G base station As an auxiliary station, there is no GN-U channel between the 4G base station and the 5G core network.
  • the 4G base station is connected to the 5G base station through the XN interface.
  • the 4G base station is embedded with an adapter module, which can adapt to the NE-DC architecture of option 4.
  • the 5G concept information in the control signaling sent by the 5G base station to the 4G base station converts the 5G information into information that the 4G LTE system can recognize and operate, so that the NE-DC function can operate normally.
  • the switch of the adapter module needs to be configured on the network management system.
  • the adapter module does not need to add additional hardware to the 4G base station, but only adds a separate software module.
  • the NE-DC architecture provided by the embodiment of this application It is easy to implement, and this architecture does not need to upgrade the LTE network of the 4G base station to an eLTE network, which reduces the occupation of physical memory resources of the LTE system of the 4G base station, and minimizes the decline of the RRC specification in the LTE system.
  • Fig. 2 is an adaptation method of the NE-DC architecture provided by the embodiment of the present application.
  • the adaptation method is applied to a 4G base station, and an adaptation module is embedded in the 4G base station.
  • the adaptation method includes but does not It is limited to step S100, step S200 and step S300.
  • Step S100 receiving a message from a 5G base station, where the message includes first information, and the first information is 5G concept information.
  • the message may be an SN Addition Request (secondary station addition request) message or an SN Modification Request (secondary station modification request) message, and in different scenarios, the first information is different.
  • Step S200 deliver the message to the adaptation module.
  • step S300 the adaptation module converts the first information in the message into second information that can be recognized and operated by the LTE system.
  • the 5G base station sends a message including the first information to the 4G base station, where the first information is information about the 5G concept, the 4G base station receives the message, and delivers the message to the adaptation module, and the adaptation module sends the The first information in the message is converted into the second information that the 4G LTE system can recognize and operate, that is, the 4G base station can operate and recognize the 5G concept information from the 5G base station through the adaptation module, so that the NE-DC function can operate.
  • the 4G base station needs to identify the 5G concept information from 5G NR (New Radio, new air interface).
  • 5G NR New Radio, new air interface
  • the DC architecture by embedding an adaptation module in the 4G base station to realize the NE-DC function, there is no need to upgrade the LTE network to an eLTE network, making option 4 in the 5G architecture easy to implement, that is, the NE-DC architecture is easier to implement and reduces
  • the occupation of the physical memory resource of the LTE system of the 4G base station is reduced, and the decline of the RRC specification in the LTE system is reduced as much as possible.
  • Step S310 in FIG. 3 is a refinement step of step S300 in FIG. 2 , and the adaptation method further includes step S320.
  • Step S310 matching the value of 5QI to the value of QCI (QoS Class Identifier, QoS class identifier) of the LTE system in sequence.
  • Step S320 converting the DRB (Data Radio Bearer, data radio bearer) of the NR system mapped by the QoS Flow corresponding to the 5QI into the DRB of the LTE system.
  • DRB Data Radio Bearer, data radio bearer
  • 5QI is 5G concept information, which is used to point to a 5G QoS feature.
  • the matching module converts 5QI into QCI with the same value in sequence.
  • 5QI is mapped to DRB
  • QCI in 4G LTE is also mapped to DRB.
  • the 4G base station receives a message from the 5G base station, the message carries the 5QI of the QoS parameter corresponding to the QoS Flow ID, and the 4G base station delivers the message to the adaptation module, so that the adaptation module matches the 5QI in order is the value of QCI, and converts the DRB of the NR system mapped by QoS Flow corresponding to 5QI into the DRB of the LTE system corresponding to QCI, thereby completing the NE-DC function. , can also identify the control signaling of the 5G base station.
  • the message of the 5G base station can be an SN Addition Request message or an SN Modification Request message.
  • the adaptation module directly converts the DRB of the NR system in the mapping relationship into the DRB of the LTE system, and the converted DRB is mapped to QCI.
  • the adaptation module reassigns the DRB for the LTE system from the range of the standby DRB in the network management.
  • Figure 4 is an adaptation flow chart of the scenario of adding a secondary station under option 4.
  • the network management configures the NE-DC mode as option 4, opens the adaptation module, and the 5G base station receives user For the measurement report of the terminal, the dual connection of the 4G base station is added.
  • the 5G base station sends the SN Addition Request message to the 4G base station.
  • the 4G base station is embedded with an adaptation module, and the 4G base station delivers the SN Addition Request message to the adaptation module.
  • the 5QI of the QoS parameter corresponding to the QoS Flow ID carried in the message is matched to the QCI of the LTE system in sequence; if the message carries the mapping relationship between the QoS Flow and the DRB of the NR system, the adaptation module uses The DRB of the NR system is directly converted to the DRB of the LTE system.
  • the DRB will be reassigned to the LTE system from the range of the standby DRB in the network management, so that the converted The DRB forms a mapping with the converted QCI, and the adaptation module returns the converted QCI and the DRB to which the QCI is mapped to the LTE system, so that the LTE system of the 4G base station can recognize and run the SN Addition Request message from the 5G base station, so that the NE-DC function works fine.
  • Figure 5 is an adaptation flow chart of the secondary station modification scenario under option 4.
  • the network management configures the NE-DC mode as option 4, opens the adaptation module, and the 5G base station transfers to the 4G The base station sends the SN Modification Request message.
  • the 4G base station is embedded with an adaptation module.
  • the 4G base station delivers the SN Modification Request message to the adaptation module.
  • the sequence matches the QCI of the LTE system; if the message carries the mapping relationship between QoS Flow and the DRB of the NR system, the adaptation module directly converts the DRB of the NR system in the mapping relationship to the DRB of the LTE system; if the message does not Carrying the mapping relationship between the QoS Flow and the DRB of the NR system, the DRB is redistributed for the LTE system from the range of the standby DRB in the network management, so that the converted DRB and the converted QCI form a mapping, and the adaptation module converts the converted QCI and The DRB to which the QCI is mapped is returned to the LTE system, so that the LTE system of the 4G base station can recognize and run the SN Modification Request message from the 5G base station, so that the NE-DC function can operate normally.
  • another embodiment of the present application provides a method for adapting an NE-DC architecture, and the adaptation method further includes step S400 .
  • Step S400 according to the message of the 5G base station and the second information, send a corresponding reply message to the 5G base station through the adaptation module.
  • the 5G base station sends a message to the 4G base station, and the 4G base station needs to return a corresponding reply message to the 5G base station, and the 4G base station converts the 5G concept information in the message of the 5G base station into an LTE system that can recognize and operate through the adaptation module.
  • the second information according to the content of the message of the 5G base station and the converted second information, generates a reply message through the adaptation module, and sends the reply message to the 5G base station.
  • the 4G base station does not need to upgrade the LTE network to an eLTE network, and can Complete the NE-DC function through the adaptation module, identify and run the message from the 5G base station, and send a reply message including 5G concept information to the 5G base station through the adaptation module, so that the NE-DC function operates normally, and the NE-DC Architecture is easy to implement.
  • the reply message includes 5G concept information
  • the adaptation module generates the reply message, and returns the reply message to the LTE system of the 4G base station, and the LTE system sends the reply message to the 5G base station.
  • step S300 when the message of the 5G base station is the SN Addition Request message, the first information is the value of the Desired Activity Notification Level, as shown in Figure 7,
  • Figure 7 is a sub-step flow chart of step S300 in Figure 6, step S300 includes but not limited to steps D310 and D320.
  • Step D310 according to the value of Desired Activity Notification Level, save the mapping relationship between the corresponding QoS Flow and DRB in the SN Addition Request message.
  • Step D320 detecting the granularity of the DRB in the mapping relationship to obtain the detection granularity of the DRB.
  • FIG. 8 is a flow chart of sub-steps of step S400 in FIG. 6, and step S400 includes but not limited to steps S410 and S420.
  • Step S410 according to the detection granularity of the DRB, confirm whether the DRB is in an inactive state
  • Step S420 in the case of confirming that the DRB is in an inactive state, according to the value of the Desired Activity Notification Level, send a corresponding Activity Notification message to the 5G base station through the adaptation module.
  • Figure 9 is an adaptation flow chart in the scenario of option 4 user inactivity.
  • the network management configures the NE-DC mode as option 4, and enables Module, in the user inactive scenario of option 4, the 5G base station sends an SN Addition Request message to the 4G base station, the first information in the message is the value of Desired Activity Notification Level, the 4G base station receives the SN Addition Request message, and sends the The message is delivered to the adaptation module, and the adaptation module can convert the QoS Flow, PDU Session or UE activity state in the SN Addition Request message to the DRB activity state according to the value of the Desired Activity Notification Level, that is, according to the value of the Desired Activity Notification Level The value of Activity Notification Level, save the mapping relationship between the corresponding QoS Flow and DRB in the SN Addition Request message, detect the DRB granularity in the mapping relationship, obtain the DRB detection granularity
  • Desired Activity Notification Level is different, and the mapping relationship saved by the adaptation module is also different.
  • the detection range of DRB is also different, and the content of the Activity Notification message sent by the 4G base station to the 5G base station is also different.
  • the Activity Notification message includes 5G concept information.
  • the 4G base station causes the adapter module to generate an Activity Notification message.
  • the adapter module returns the Activity Notification message to the LTE system of the 4G base station, and the 4G base station then sends the Activity Notification message to 5G base station, those skilled in the art should understand that although this process is not shown in FIG. 9 , it does not limit this embodiment.
  • the adaptation module saves the mapping relationship between the QoS Flow and the DRB in the SN Addition Request message, detects the granularity of the DRB in the mapping relationship, and obtains the detection of the DRB Granularity, the DRB detection granularity is returned to the LTE system of the 4G base station, and the 4G base station can determine that the DRB mapped by the QoS Flow is in an inactive state according to the DRB detection granularity, and take the active state of the DRB as the active state of the QoS Flow , so that the adaptation module generates the first Activity Notification message, the first Activity Notification message carries the QoS Flow, the adaptation module returns the first Activity Notification message to the LTE system of the 4G base station, and the LTE system sends the first Activity Notification message For 5G base stations.
  • the adaptation module saves the mapping relationship between QoS Flow and DRB in the PDU Session in the SN Addition Request message, Detect the DRB granularity in the mapping relationship, obtain the DRB detection granularity, and return the DRB detection granularity to the LTE system of the 4G base station.
  • the 4G base station can determine that the DRB mapped by the QoS Flow in the PDU Session is in a different state according to the DRB detection granularity.
  • the adaptation module uses the active state of the PDU Session to use the active state of the PDU Session to use the active state of the PDU Session, so that the adaptation module generates a second Activity Notification message, the second Activity Notification message carries the PDU Session and indicates that the PDU Session is in an inactive state,
  • the adaptation module returns the second Activity Notification message to the LTE system of the 4G base station, and the LTE system sends the second Activity Notification message to the 5G base station.
  • the adaptation module saves the mapping relationship between QoS Flow and DRB in all PDU Sessions of the UE in the SN Addition Request message , detect the granularity of DRB in the mapping relationship, obtain the granularity of DRB detection, return the granularity of DRB detection to the LTE system of the 4G base station, and the 4G base station can determine the QoS Flow mapping in all PDU Sessions of the UE according to the granularity of DRB detection
  • the DRB is in an inactive state, and the active state of the DRB is used as the active state of the UE, so that the adaptation module generates a third Activity Notification message, and the third Activity Notification message indicates that the UE is in an inactive state, and the adaptation module Return the third Activity Notification message to the LTE system of the 4G base station, and the LTE system sends the third Activity Notification message to the 5G base station.
  • FIG. 10 is a flowchart of the sub-steps of step S300 in FIG. 2, and step S300 includes but not limited to step T310 and step T320.
  • step T310 the adaptation module confirms that the Lower Layer presence status change field is carried in the SN Modification Request message.
  • Step T320 if the value of the Lower Layer presence status change field is release lower layers (release lower layers), then make the adaptation module output the first instruction, the first instruction is used to release RLC (Radio Link Control, radio link control) and MAC (Media Access Control, Media Access Control) example; if the value of the Lower Layer presence status change field is release lower layers (suspend the lower layer), then make the adaptation module output the second command, the second command is used to suspend the RLC and MAC instance.
  • RLC Radio Link Control, radio link control
  • MAC Media Access Control, Media Access Control
  • Figure 11 is an adaptation flow chart in the RRC Inactive state scenario of option 4.
  • the 5G base station uses the When the terminal is in the RRC Inactive state, it informs the 4G base station through the Lower Layer presence status change in the SN Modification Request, that is, the 5G base station sends an SN Modification Request message to the 4G base station.
  • the SN Modification Request message carries the Lower Layer presence status change field, and the 4G base station receives it.
  • the SN Modification Request message and deliver the message to the adaptation module, the adaptation module determines that the Lower Layer presence status change field is carried in the SN Modification Request message, and if the value of the Lower Layer presence status change is release lower layers, the adaptation module The configuration module outputs the first command and returns the first command to the LTE system of the 4G base station.
  • the 4G base station can release the RLC and MAC instances according to the first command. If the value of Lower Layer presence status change is suspend lower layers, the applicable
  • the configuration module outputs the second instruction, and returns the second instruction to the LTE system of the 4G base station, and the 4G base station can suspend the RLC and MAC instances according to the second instruction.
  • the embodiment of the present application also provides an operation control device 1200, including at least one control processor 1210 and a memory 1220 for communicating with at least one control processor 1210; the memory 1220 stores information that can be processed by at least one control processor.
  • the instructions executed by the device 1210, the instructions are executed by at least one control processor 1210, so that at least one control processor 1210 can execute the adaptation method of the NE-DC architecture as described in the above embodiment, and the operation control device 1200 can realize this
  • the 4G base station is embedded with an adaptation module.
  • the 4G base station receives a message from the 5G base station, and the message includes 5G concept information, and the 4G base station sends the message Delivered to the adaptation module, and through the adaptation module, the 5G concept information in the message is converted into information that the 4G LTE network can recognize and operate, so that the 5G base station can communicate with the 5G base station without upgrading the LTE network to an eLTE network.
  • Establish NE-DC architecture complete NE-DC functions, do not upgrade LTE to eLTE, only add an adapter module, reduce the occupation of physical memory resources in the LTE system, minimize the decline of RRC specifications in the LTE system, and make NE-DC architecture is easier to implement.
  • the embodiment of the present application also provides a base station device, including the operation control device described in the above embodiment, the base station device can realize the adaptation method of the NE-DC architecture provided in the embodiment of the present application, and the 4G base station is embedded with an adaptation module , under option 4, the 4G base station receives a message from the 5G base station, and the message includes 5G concept information, then the 4G base station delivers the message to the adaptation module, and converts the 5G concept information in the message through the adaptation module
  • the 4G LTE network can identify and operate information, so that without upgrading the LTE network to the eLTE network, the NE-DC architecture can be established with the 5G base station, and the NE-DC function can be completed without upgrading the LTE network to eLTE.
  • An adaptation module reduces the occupation of physical memory resources of the LTE system, minimizes the reduction of RRC specifications in the LTE system, and makes the NE-DC architecture easier to implement.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute the adaptation method of the NE-DC architecture as described in the above embodiments .
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk DVD or other optical disk storage, magnetic cartridges, tape, magnetic disk storage or other magnetic storage devices, or can be used in Any other medium that stores desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种NE-DC架构的适配方法、运行控制装置、基站设备及存储介质,该适配方法应用于4G基站,4G基站嵌有适配模块,该应用于4G基站的适配方法包括:接收来自5G基站的消息,所述消息包括第一信息,所述第一信息为5G概念信息(S100);将所述消息投递给所述适配模块(S200);通过所述适配模块,将所述消息中的所述第一信息转换为LTE系统可以识别和运行的第二信息(S300)。

Description

NE-DC架构的适配方法、运行控制装置、基站设备及存储介质
相关申请的交叉引用
本申请基于申请号为202111517647.8、申请日为2021年12月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通讯领域,尤其涉及一种NE-DC(NR-E-UTRA Dual Connectivity,NE-DC双连接)架构的适配方法、运行控制装置、基站设备及存储介质。
背景技术
目前,4G向5G演进,出现了多种网络部署选项的演进路线,选项4是5G架构中的一种,在选项4中,5G核心网作为核心网,5G基站作为主站,4G基站作为辅站,5G基站与4G基站之间通过NE-DC功能进行通信,但若要支持选项4,按照3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)的要求,4G基站的LTE(Long Term Evolution,长期演进)网络需要升级到eLTE(Enhanced LTE,进化的LTE)网络,增加了运营商在原有LTE上升级的资源消耗,也增加了设备商实现的复杂度。
发明内容
本申请的目的在于至少解决现有技术中存在的技术问题之一,提供一种NE-DC架构的适配方法、运行控制装置、基站设备及存储介质。
第一方面,本申请实施例提供一种NE-DC架构的适配方法,应用于4G基站,包括:接收来自5G基站的消息,所述消息包括第一信息,所述第一信息为5G概念信息;将所述消息投递给所述适配模块;通过所述适配模块,将所述消息中的所述第一信息转换为LTE网络可以识别和运行的第二信息。
第二方面,本申请实施例提供一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,所述指令被所述至少一个控制处理器执行,以使所述至少一个控制处理器能够执行如本申请第一方面实施例所述的NE-DC架构的适配方法。
第三方面,本申请实施例提供一种基站设备,包括如本申请第二方面实施例所述的运行控制装置。
第四方面,本申请实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使计算机执行如本申请第一方面实施例所述的NE-DC架构的适配方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
下面结合附图和实施例对本申请说明;
图1是本申请实施例提供的NE-DC架构的示意图;
图2是本申请实施例提供的NE-DC架构的适配方法的步骤流程图;
图3是本申请另一实施例提供的NE-DC架构的适配方法的部分步骤流程图;
图4是本申请另一实施例提供的适配流程图;
图5是本申请另一实施例提供的一种适配流程图;
图6是本申请另一实施例提供的NE-DC架构的适配方法的步骤流程图;
图7是本申请另一实施例提供的NE-DC架构的适配方法的子步骤流程图;
图8是本申请另一实施例提供的NE-DC架构的适配方法的子步骤流程图;
图9是本申请另一实施例提供的适配流程图;
图10是本申请另一实施例提供的NE-DC架构的适配方法的子步骤流程图;
图11是本申请另一实施例提供的适配流程图;
图12是本申请另一实施例提供的运行控制装置的结构图。
具体实施方式
本部分将详细描述本申请的具体实施例,本申请之实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本申请的每个技术特征和整体技术方案,但其不能理解为对本申请保护范围的限制。
在本申请的描述中,如果有描述到第一、第二、第三只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
目前5G的标准化正在进行,5G的演进之路较为复杂,目前提出了8种5G网络架构,5G网络的部署难以一蹴而就,需要逐步进行,而目前4G的LTE网络的部署非常广泛,为了避免短期内的高投入以及降低部署风险,运行商大多采用保留LTE网络的5G网络架构,选项4是5G网络架构中的一种,是NE-DC架构,选项4同时引入了5G核心网和5G基站,但5G基站没有直接替代4G基站,在选项4中,5G核心网作为核心网,5G基站作为主站,4G基站作为辅站,5G基站与4G基站之间通过NE-DC功能进行通信,4G基站与5G核心网之间没有NG-U通道,5G核心网的媒体数据无法发送到4G基站,5G核心网的数据只能发送给5G基站,再由5G基站进行数据分流后通过XN-U通道发送给4G基站。按照3GPP的规定,在NE-DC场景下,其中4G的LTE网络必须升级为eLTE网络,即LTE网络需要添加5G的协议层,并且具备与5G核心网进行信令和数据互通的能力,必须引入SDAP(Service Discovery Application Profile,服务发现应用规范)协议层、5G QoS(Quality of Service,服务质量)架构、Session(会话)和QoS Flow(QoS流),RRC Inactive状态等,eLTE网络必须具备处理NG(无线接入网和5G核心网之间的接口)控制信令和媒体数据的能力,具备处理XN(NG-RAN节点之间的网络接口)的控制信令和媒体数据的能力。但对于选项4,由于4G的LTE网络与5G核心网无NG接口,并不传递控制信令和媒体数据,在此架构下只需要支持eLTE网络的XN媒体数据处理能力即可,不需要支持NG的控制信令和XN的控制信令、媒体数据处理能力,因此将LTE网络升级为eLTE网络,不仅增加了运营商在原有LTE上升级的资源消耗,也增加了设备商实现的复杂度。
基于此,本申请实施例提供一种NE-DC架构的适配方法、运行控制装置、基站设备及存储介质,能够在不升级LTE的情况下,完成NE-DC功能,使得NE-DC架构易于实现。
下面结合附图,对本申请实施例作阐述。
参照图1,图1是本申请实施例提供的一种NE-DC架构的示意图,在该架构中,5G核心网作为核心网,用户终端连接一个5G基站作为主站,用户终端连接一个4G基站作为辅站,4G基站与5G核心网之间没有GN-U通道,4G基站通过XN接口连接5G基站,4G基站中嵌有适配模块,该适配模块能够适配选项4的NE-DC架构中5G基站向4G基站发送的控制信令中的5G概念信息,将该5G信息转换成4G的LTE系统可以识别和运行的信息,可以使得NE-DC功能正常运转。
需要说明的是,该适配模块的开关需要在网管上进行配置,该适配模块不需要在4G基站上增加额外的硬件,只增加单独的软件模块,本申请实施例提供的NE-DC架构易于实现,且该架构不需要将4G基站的LTE网络升级为eLTE网络,减少了4G基站的LTE系统的物理内存资源的占用,尽可能减少了LTE系统中RRC规格的下降。
参照图2,图2是本申请实施例提供的一种NE-DC架构的适配方法,该适配方法应用于4G基站,该4G基站中嵌有适配模块,该适配方法包括但不限于步骤S100、步骤S200和步骤S300。
步骤S100,接收来自5G基站的消息,该消息包括第一信息,第一信息为5G概念信息。
需要说明的是,该消息可以是SN Addition Request(辅站添加请求)消息,也可以是SN Modification Request(辅站修改请求)消息,而且在不同的场景下,第一信息是不同的。
步骤S200,将消息投递给适配模块。
步骤S300,通过适配模块,将消息中的第一信息转换为LTE系统可以识别和运行的第二信息。
在一实施例中,5G基站向4G基站发送包括第一信息的消息,其中第一信息为5G概念的信息,4G基站接收该消息,并将该消息投递给适配模块,适配模块将该消息中的第一信息转换为4G的LTE系统可以识别和运行的第二信息,即4G基站通过适配模块,可以运行和识别来自5G基站的5G概念信息,从而使得NE-DC功能可以运转。
需要说明的是,5G架构中,4G基站需要识别来自5G NR(New Radio,新空口)的5G概念信息,按照3GPP,需要将LTE网络升级为eLTE网络,但本实施例在选项4的NE-DC架构中,通过在4G基站嵌入适配模块,实现NE-DC功能,不需要将LTE网络升级为eLTE网络,使得5G架构中的选项4易于实现,即NE-DC架构更容易实现,且减少了4G基站的LTE系统的物理内存资源的占用,尽可能地减少了LTE系统中RRC规格的下降。
在一实施例中,当第一信息为QoS Flow ID所对应的QoS参数的5QI,如图3所示,本申请实施例提供一种NE-DC架构的适配方法,图3中的步骤S310是图2的步骤S300的细化步骤,且该适配方法还包括步骤S320。
步骤S310,将5QI的取值按照顺序匹配为LTE系统的QCI(QoS Class Identifier,QoS类标识符)的值。
步骤S320,将5QI对应的QoS Flow映射的NR系统的DRB(Data Radio Bearer,数据无线承载)转换为LTE系统的DRB。
需要说明的是,5QI是5G概念信息,用于指向一个5G QoS特性,5QI的取值为0-255;而QCI是LTE网络可以识别和运行的信息,QCI的取值为0-255,适配模块将5QI按顺序转换为取 值相同的QCI。
还需要说明的是,5G的NR系统中,5QI映射有DRB,4G的LTE中QCI也映射有DRB,为了使得NE-DC功能能够正常运行,既要将5QI转换为QCI,也需要为QCI匹配相应的DRB。
在一实施例中,4G基站接收来自5G基站的消息,消息中携带QoS Flow ID所对应的QoS参数的5QI,4G基站将该消息投递给适配模块,以使适配模块将5QI按照顺序匹配为QCI的值,并将5QI对应的QoS Flow映射的NR系统的DRB转换为QCI对应的LTE系统的DRB,从而完成NE-DC功能,4G基站不将LTE网络升级为eLTE网络,通过适配模块,也可以识别5G基站的控制信令。
需要说明的是,5G基站的消息可以是SN Addition Request消息,也可以是SN Modification Request消息。
在一实施例中,若来自5G基站的消息中携带QoS Flow与NR系统的DRB的映射关系,则适配模块将该映射关系中的NR系统的DRB直接转换成LTE系统的DRB,转换后的DRB映射于QCI。
在一实施例中,若来自5G基站的消息中不携带QoS Flow与NR系统的DRB的映射关系,则适配模块从网管中的备用DRB的范围内为LTE系统重新分配DRB。
本领域技术人员应当理解的是,当需要为LTE系统重新分配DRB,在网管上配置时需要使得备用DRB的范围与NR系统的DRB的范围不重叠。
参照图4,图4是选项4下的辅站添加场景的适配流程图,在本申请的一个实施例中,网管配置NE-DC模式为选项4,打开适配模块,5G基站收到用户终端的测量报告,进行4G基站的双连接添加,5G基站向4G基站发送SN Addition Request消息,该4G基站嵌有适配模块,4G基站将SN Addition Request消息投递给适配模块,适配模块将该消息中携带的QoS Flow ID所对应的QoS参数的5QI,按照顺序匹配为LTE系统的QCI;若该消息中携带QoS Flow与NR系统的DRB的映射关系,则适配模块将该映射关系中的NR系统的DRB直接转换成LTE系统的DRB,若该消息不携带QoS Flow与NR系统的DRB的映射关系,则从网管中的备用DRB的范围内为LTE系统重新分配DRB,使得转换后的DRB与转换的QCI形成映射,适配模块将转换后的QCI以及QCI映射到的DRB返回至LTE系统,使得4G基站的LTE系统可以识别和运行来自5G基站的SN Addition Request消息,使得NE-DC功能可以正常运行。
参照图5,图5是选项4下的辅站修改场景的适配流程图,在本申请的另一个实施例中,网管配置NE-DC模式为选项4,打开适配模块,5G基站向4G基站发送SN Modification Request消息,该4G基站嵌有适配模块,4G基站将SN Modification Request消息投递给适配模块,适配模块将该消息中携带的QoS Flow ID所对应的QoS参数的5QI,按照顺序匹配为LTE系统的QCI;若该消息中携带QoS Flow与NR系统的DRB的映射关系,则适配模块将该映射关系中的NR系统的DRB直接转换成LTE系统的DRB,若该消息不携带QoS Flow与NR系统的DRB的映射关系,则从网管中的备用DRB的范围内为LTE系统重新分配DRB,使得转换后的DRB与转换的QCI形成映射,适配模块将转换后的QCI以及QCI映射到的DRB返回至LTE系统,使得4G基站的LTE系统可以识别和运行来自5G基站的SN Modification Request消息,使得NE-DC功能可以正常运行。
参照图6,本申请另一实施例提供一种NE-DC架构的适配方法,该适配方法还包括步骤S400。
步骤S400,根据5G基站的消息和第二信息,通过适配模块,发送相应的回复消息至5G基 站。
在一实施例中,5G基站向4G基站发送消息,4G基站需要返回相应的回复消息至5G基站,4G基站通过适配模块将5G基站的消息中5G概念信息转换为LTE系统可以识别和运行的第二信息,再根据5G基站的消息的内容和转换后的第二信息,通过适配模块产生回复消息,并将回复消息发送给5G基站,4G基站不需要将LTE网络升级为eLTE网络,可以通过适配模块完成NE-DC功能,识别并运行来自5G基站的消息,且可以通过适配模块,向5G基站发送包括5G概念信息的回复消息,从而使得NE-DC功能正常运行,NE-DC架构易于实现。
需要说明的是,回复消息中包括5G概念信息,适配模块产生该回复消息,并将该回复消息返回至4G基站的LTE系统,LTE系统将该回复消息发送至5G基站。
在一实施例中,当5G基站的消息为SN Addition Request消息,第一信息为Desired Activity Notification Level的取值,如图7所示,图7是图6中步骤S300的子步骤流程图,步骤S300包括但不限于步骤D310和D320。
步骤D310,根据Desired Activity Notification Level的取值,保存该SN Addition Request消息中相应的QoS Flow与DRB的映射关系。
步骤D320,检测该映射关系中的DRB的粒度,得到DRB的检测粒度。
如图8所示,图8是图6中步骤S400的子步骤流程图,步骤S400包括但不限于步骤S410和S420。
步骤S410,根据DRB的检测粒度,确认DRB是否处于不活动状态;
步骤S420,在确认DRB处于不活动状态的情况下,根据Desired Activity Notification Level的取值,通过适配模块,发送相应的Activity Notification消息至5G基站。
下面结合附图作详细说明,如图9所示,图9是在选项4用户不活动场景下的适配流程图,在一实施例中,网管配置NE-DC模式为选项4,打开适配模块,在选项4的用户不活动场景下,5G基站向4G基站发送SN Addition Request消息,该消息中的第一信息为Desired Activity Notification Level的取值,4G基站接收SN Addition Request消息,并将该消息投递给适配模块,适配模块可以根据Desired Activity Notification Level的取值,相应地将该SN Addition Request消息中的QoS Flow、PDU Session或者UE的活动状态转换为DRB的活动状态,即根据Desired Activity Notification Level的取值,保存该SN Addition Request消息中相应的QoS Flow与DRB的映射关系,检测该映射关系中的DRB的粒度,得到DRB的检测粒度,并将DRB的检测粒度返回至4G基站的LTE系统;4G基站可以根据DRB的检测粒度,确认DRB处于不活动状态,在确认DRB处于不活动状态的情况下,根据Desired Activity Notification Level的取值,通过适配模块,发送相应的Activity Notification消息至5G基站。
需要说明的是,Desired Activity Notification Level的取值不同,适配模块保存的映射关系也不同,相应地,DRB的检测范围也不同,4G基站给5G基站发送的Activity Notification消息的内容也不同。
还需要说明的是,Activity Notification消息中包括5G概念信息,4G基站使适配模块产生Activity Notification消息,适配模块将Activity Notification消息返回给4G基站的LTE系统,4G基站再将Activity Notification消息发送给5G基站,本领域技术人员应当理解的是,虽然图9中未示出这一过程,但不对本实施例构成限定。
在一实施例中,若Desired Activity Notification Level的取值为QoS Flow,适配模块保存该 SN Addition Request消息中该QoS Flow与DRB的映射关系,检测该映射关系中DRB的粒度,得到DRB的检测粒度,将DRB的检测粒度返回给4G基站的LTE系统,4G基站可以根据DRB的检测粒度,确定该QoS Flow映射的DRB处于不活动状态,且将该DRB的活动状态作为该QoS Flow的活动状态,从而使适配模块产生第一Activity Notification消息,该第一Activity Notification消息携带该QoS Flow,适配模块将第一Activity Notification消息返回给4G基站的LTE系统,LTE系统将第一Activity Notification消息发送给5G基站。
在另一实施例中,若Desired Activity Notification Level的取值为PDU(Protocol Data Unit,协议数据单元)Session,适配模块保存SN Addition Request消息中该PDU Session中的QoS Flow与DRB的映射关系,检测该映射关系中DRB的粒度,得到DRB的检测粒度,将DRB的检测粒度返回给4G基站的LTE系统,4G基站可以根据DRB的检测粒度,确定该PDU Session中的QoS Flow映射的DRB处于不活动状态,且将该DRB的活动状态作为该PDU Session的活动状态,从而使适配模块产生第二Activity Notification消息,该第二Activity Notification消息携带该PDU Session并标明该PDU Session处于不活动状态,适配模块将第二Activity Notification消息返回给4G基站的LTE系统,LTE系统将第二Activity Notification消息发送给5G基站。
在另一实施例中,若Desired Activity Notification Level的取值为UE(User Equipment,用户设备),适配模块保存该SN Addition Request消息中该UE的所有PDU Session中的QoS Flow与DRB的映射关系,检测该映射关系中DRB的粒度,得到DRB的检测粒度,将DRB的检测粒度返回给4G基站的LTE系统,4G基站可以根据DRB的检测粒度,确定该UE的所有PDU Session中的QoS Flow映射的DRB处于不活动状态,且将该DRB的活动状态作为该UE的活动状态,从而使适配模块产生第三Activity Notification消息,该第三Activity Notification消息标明该UE处于不活动状态,适配模块将第三Activity Notification消息返回给4G基站的LTE系统,LTE系统将第三Activity Notification消息发送给5G基站。
参照图10,当来自5G基站的消息为SN Modification Request消息,第一信息为Lower Layer presence status change(下层状态存在改变)字段,本申请另一实施例提供一种NE-DC架构的适配方法,图10是图2中步骤S300的子步骤流程图,步骤S300包括但不限于步骤T310和步骤T320。
步骤T310,通过适配模块确认SN Modification Request消息中携带Lower Layer presence status change字段。
步骤T320,若Lower Layer presence status change字段的取值为release lower layers(释放下层),则使适配模块输出第一指令,第一指令用于释放RLC(Radio Link Control,无线链路控制)和MAC(Media Access Control,媒体访问控制)实例;若Lower Layer presence status change字段的取值为release lower layers(暂停下层),则使适配模块输出第二指令,第二指令用于挂起RLC和MAC实例。
下面结合附图作详细说明,如图11所示,图11是在选项4的RRC Inactive状态的场景中的适配流程图,在本申请的一个实施例中,当5G基站按照策略,使用户终端处于RRC Inactive状态,则通过SN Modification Request中的Lower Layer presence status change告知4G基站,即5G基站向4G基站发送SN Modification Request消息,该SN Modification Request消息携带Lower Layer presence status change字段,4G基站接收该SN Modification Request消息,并将该消息投递给适配模块,适配模块确定该SN Modification Request消息中携带Lower Layer presence status  change字段,若Lower Layer presence status change的取值为release lower layers,则适配模块输出第一指令,并将第一指令返回至4G基站的LTE系统,4G基站可以根据第一指令,释放RLC和MAC实例,若Lower Layer presence status change的取值为suspend lower layers,则适配模块输出第二指令,并将第二指令返回至4G基站的LTE系统,4G基站可以根据第二指令,挂起RLC和MAC实例。
参照图12,本申请实施例还提供一种运行控制装置1200,包括至少一个控制处理器1210和用于与至少一个控制处理器1210通信连接的存储器1220;存储器1220存储有可被至少一个控制处理器1210执行的指令,指令被至少一个控制处理器1210执行,以使至少一个控制处理器1210能够执行如以上实施例所述的NE-DC架构的适配方法,该运行控制装置1200可以实现本申请实施例提供的NE-DC架构的适配方法,4G基站嵌有适配模块,在选项4下,4G基站接收来自5G基站的消息,该消息中包括5G概念信息,则4G基站将该消息投递给适配模块,并通过适配模块,将该消息中的5G概念信息转换为4G的LTE网络可以识别和运行的信息,从而在不将LTE网络升级为eLTE网络的情况下,与5G基站建立NE-DC架构,完成NE-DC功能,不将LTE升级为eLTE,仅增加一个适配模块,减少了LTE系统的物理内存资源的占用,尽可能减少LTE系统中RRC规格的下降,也使NE-DC架构更容易实现。
本申请实施例还提供一种基站设备,包括如上述实施例所述的运行控制装置,该基站设备可以实现本申请实施例提供的NE-DC架构的适配方法,4G基站嵌有适配模块,在选项4下,4G基站接收来自5G基站的消息,该消息中包括5G概念信息,则4G基站将该消息投递给适配模块,并通过适配模块,将该消息中的5G概念信息转换为4G的LTE网络可以识别和运行的信息,从而在不将LTE网络升级为eLTE网络的情况下,与5G基站建立NE-DC架构,完成NE-DC功能,不将LTE升级为eLTE,仅增加一个适配模块,减少了LTE系统的物理内存资源的占用,尽可能减少LTE系统中RRC规格的下降,也使NE-DC架构更容易实现。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,计算机可执行指令用于使计算机执行如以上实施例所述的NE-DC架构的适配方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质或非暂时性介质和通信介质或暂时性介质。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息诸如计算机可读指令、数据结构、程序模块或其他数据的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘DVD或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所述技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。

Claims (11)

  1. 一种NE-DC架构的适配方法,应用于4G基站,所述4G基站包括适配模块,所述适配方法包括:
    接收来自5G基站的消息,所述消息包括第一信息,所述第一信息为5G概念信息;
    将所述消息投递给所述适配模块;
    通过所述适配模块,将所述消息中的第一信息转换为LTE系统能够识别和运行的第二信息。
  2. 根据权利要求1所述的NE-DC架构的适配方法,其中,当所述第一信息为QoS Flow ID所对应的QoS参数的5QI,所述通过所述适配模块,将所述第一信息转换为LTE系统可以识别和运行的第二信息,包括:
    将所述5QI的取值按照顺序匹配为LTE系统的QCI的值;
    所述适配方法还包括:
    将所述5QI对应的QoS Flow映射的NR系统的DRB转换为LTE系统的DRB。
  3. 根据权利要求2所述的NE-DC架构的适配方法,其中,所述将所述消息的QoS Flow映射的NR系统的DRB转换为LTE系统的DRB,包括:
    若所述消息携带所述QoS Flow与所述NR系统的DRB的映射关系,则将所述映射关系中的所述NR系统的DRB转换成LTE系统的DRB;
    若所述消息不携带所述QoS Flow与所述NR系统的DRB的映射关系,则从网管中的备用DRB的范围内为LTE系统重新分配DRB,所述备用DRB的范围与所述NR系统的DRB的范围不重叠。
  4. 根据权利要求1所述的NE-DC架构的适配方法,还包括:
    根据所述消息和所述第二信息,通过所述适配模块,发送相应的回复消息至5G基站。
  5. 根据权利要求4所述的NE-DC架构的适配方法,其中,当所述消息为SN Addition Request消息,所述第一信息为Desired Activity Notification Level的取值,所述通过所述适配模块,将所述第一信息转换为LTE系统可以识别和运行的第二信息,包括:
    根据所述Desired Activity Notification Level的取值,保存所述SN Addition Request消息中相应的QoS Flow与DRB的映射关系;
    检测所述映射关系中的所述DRB的粒度,得到所述DRB的检测粒度;
    所述根据所述消息和所述第二信息,通过所述适配模块,发送相应的回复消息至5G基站,包括:
    根据所述DRB的检测粒度,确认所述DRB是否处于不活动状态;
    在确认所述DRB处于不活动状态的情况下,根据所述Desired Activity Notification Level的取值,通过所述适配模块,发送相应的Activity Notification消息至所述5G基站。
  6. 根据权利要求5所述的NE-DC架构的适配方法,其中,所述根据所述Desired Activity Notification Level的取值,保存所述SN Addition Request消息中相应的QoS Flow与DRB的映射关系,包括:
    若所述Desired Activity Notification Level的取值为QoS Flow,保存所述消息中所述QoS Flow与DRB的映射关系;
    若所述Desired Activity Notification Level的取值为PDU Session,保存所述消息中所述PDU  Session中的QoS Flow与DRB的映射关系;
    若所述Desired Activity Notification Level的取值为UE,保存所述消息中所述UE的所有PDU Session中的QoS Flow与DRB的映射关系。
  7. 根据权利要求5所述的NE-DC架构的适配方法,其中,所述在确认所述DRB处于不活动状态的情况下,根据所述Desired Activity Notification Level的取值,通过所述适配模块,发送相应的Activity Notification消息至所述5G基站,包括:
    若所述Desired Activity Notification Level的取值为QoS Flow,且确定所述QoS Flow映射的DRB处于不活动状态,则通过所述适配模块,产生第一Activity Notification消息,所述第一Activity Notification消息携带所述QoS Flow;将所述第一Activity Notification消息发送至所述5G基站;
    若所述Desired Activity Notification Level的取值为PDU Session,且确定所述PDU Session中的QoS Flow映射的DRB全部处于不活动状态,则通过所述适配模块,产生第二Activity Notification消息,所述第二Activity Notification消息携带所述PDU Session并标明所述PDU Session处于不活动状态;将所述第二Activity Notification消息发送至所述5G基站;
    若所述Desired Activity Notification Level的取值为UE,且确定所述UE的所有PDU Session中的QoS Flow映射的DRB全部处于不活动状态,则通过所述适配模块,产生第三Activity Notification消息,所述第三Activity Notification消息标明所述UE处于不活动状态;将所述第三Activity Notification消息发送至所述5G基站。
  8. 根据权利要求1所述的NE-DC架构的适配方法,其中,当所述消息为SN Modification Request消息,所述第一信息为Lower Layer presence status change字段,所述通过所述适配模块,将所述消息中的第一信息转换为LTE系统能够识别和运行的第二信息,包括:
    通过所述适配模块确认所述SN Modification Request消息中携带所述Lower Layer presence status change字段;
    若所述Lower Layer presence status change字段的取值为release lower layers,则使适配模块输出第一指令,所述第一指令用于释放RLC和MAC实例;
    若所述Lower Layer presence status change字段的取值为release lower layers,则使适配模块输出第二指令,所述第二指令用于挂起RLC和MAC实例。
  9. 一种运行控制装置,包括至少一个控制处理器和用于与所述至少一个控制处理器通信连接的存储器;所述存储器存储有可被所述至少一个控制处理器执行的指令,当所述指令被所述至少一个控制处理器执行时,以使所述至少一个控制处理器能够执行如权利要求1至8任一项所述的NE-DC架构的适配方法。
  10. 一种基站设备,包括权利要求9所述的运行控制装置。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,当所述计算机可执行指令被处理器执行时,使处理器执行如权利要求1至8任一项所述的NE-DC架构的适配方法。
PCT/CN2022/132947 2021-12-13 2022-11-18 Ne-dc架构的适配方法、运行控制装置、基站设备及存储介质 WO2023109430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111517647.8A CN116264700A (zh) 2021-12-13 2021-12-13 Ne-dc架构的适配方法、运行控制装置、基站设备及存储介质
CN202111517647.8 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109430A1 true WO2023109430A1 (zh) 2023-06-22

Family

ID=86721804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132947 WO2023109430A1 (zh) 2021-12-13 2022-11-18 Ne-dc架构的适配方法、运行控制装置、基站设备及存储介质

Country Status (2)

Country Link
CN (1) CN116264700A (zh)
WO (1) WO2023109430A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813358A (zh) * 2012-11-13 2014-05-21 华为技术有限公司 异网络聚合系统和方法
CN107027151A (zh) * 2017-03-28 2017-08-08 北京小米移动软件有限公司 确保服务质量的方法及装置
CN109587825A (zh) * 2017-09-28 2019-04-05 北京三星通信技术研究有限公司 建立连接的方法、请求辅助小区组配置的方法及相应的基站
US20200100156A1 (en) * 2018-09-20 2020-03-26 Qualcomm Incorporated Avoiding out of order uplink data reception upon data radio bearer release, handover to another data radio bearer, or quality of service flow addition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813358A (zh) * 2012-11-13 2014-05-21 华为技术有限公司 异网络聚合系统和方法
CN107027151A (zh) * 2017-03-28 2017-08-08 北京小米移动软件有限公司 确保服务质量的方法及装置
CN109587825A (zh) * 2017-09-28 2019-04-05 北京三星通信技术研究有限公司 建立连接的方法、请求辅助小区组配置的方法及相应的基站
US20200100156A1 (en) * 2018-09-20 2020-03-26 Qualcomm Incorporated Avoiding out of order uplink data reception upon data radio bearer release, handover to another data radio bearer, or quality of service flow addition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Optionality of mandatory Rel-15 UE features for IAB-MT", 3GPP TSG-RAN WG2 MEETING #109E-BIS R2-2002730, 9 April 2020 (2020-04-09), XP051870139 *

Also Published As

Publication number Publication date
CN116264700A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2021057389A1 (zh) 一种双连接管理方法和通信装置
US10057904B2 (en) Method and device for resumption of RRC state in cellular network
CN110557786B (zh) 一种无线承载建立、业务流的监测方法及装置
JP5117568B2 (ja) 無線構成のバージョンに基づく携帯用通信デバイスにおける電力管理
US20230156758A1 (en) Resource scheduling method, and communication apparatus and system
WO2017173579A1 (zh) QoS生成方法、设备以及系统
CN110831244B (zh) 分配ebi的方法和装置
US11172398B2 (en) Data transmission control method and related product
US20210227606A1 (en) Method for activating packet data convergence protocol duplication and node device
EP3386252A1 (en) Resource requesting method, device, network side node and system
US20220287135A1 (en) Efficient use of physical and logical resources in dual connectivity
KR20120012162A (ko) 이동통신 시스템에서 에이지피에스 트래픽 클래스를 지원하는 장치 및 방법
WO2020228686A1 (zh) 多连接系统中的数据无线承载控制方法、装置和系统
JP2020506629A (ja) ルーティング方法および装置
WO2017138198A1 (ja) ユーザ装置及び通信方法
CN110431866B (zh) 控制面连接管理方法和装置
EP3751934A1 (en) Paging policy determination method, apparatus, ran network element, and core network element
WO2023109430A1 (zh) Ne-dc架构的适配方法、运行控制装置、基站设备及存储介质
JP2022549614A (ja) 直接通信インターフェースベアラ構成変更方法及び端末
US20130039322A1 (en) Method and device for controlling channel transmission
CN102448115B (zh) 一种应用于移动通信的会话管理方法
CN108377519B (zh) 一种处理会话连接的方法及装置
WO2018188447A1 (zh) 一种ip地址配置方法及装置
KR20210096267A (ko) 데이터 오프로딩 전송 방법, 네트워크 마스터노드(mn) 및 네트워크 보조노드(sn)
US10142877B2 (en) Management device, communication system, and communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022906182

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022906182

Country of ref document: EP

Effective date: 20240614