WO2023109382A1 - 电池 - Google Patents

电池 Download PDF

Info

Publication number
WO2023109382A1
WO2023109382A1 PCT/CN2022/130962 CN2022130962W WO2023109382A1 WO 2023109382 A1 WO2023109382 A1 WO 2023109382A1 CN 2022130962 W CN2022130962 W CN 2022130962W WO 2023109382 A1 WO2023109382 A1 WO 2023109382A1
Authority
WO
WIPO (PCT)
Prior art keywords
middle frame
cover
battery
ring
annular middle
Prior art date
Application number
PCT/CN2022/130962
Other languages
English (en)
French (fr)
Inventor
李析隆
卫志达
彭宁
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2023109382A1 publication Critical patent/WO2023109382A1/zh
Priority to US18/531,394 priority Critical patent/US20240128487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery.
  • Batteries can be charged and discharged, and are often used as a power source to replace traditional fossil fuels to solve environmental pollution problems caused by fossil fuels. Batteries have a high demand in the market due to their advantages such as long cycle life and high energy density. At the same time, the market scale is growing rapidly.
  • a battery includes a cell and a case for covering the cell.
  • the casing is composed of an outer cylinder body and an end cap assembly sealed and connected.
  • the outer cylinder of metal material has a high penetration rate in automotive power batteries, and is usually manufactured by stamping technology.
  • the stamping process is a production technology that uses a mold installed on a press to apply a deformation force to the sheet placed in the mold, causing the sheet to deform in the mold, thereby obtaining a product part of a certain shape, size and performance.
  • the outer cylinder generally has depth.
  • the stamping process is used to process the outer cylinder with a large depth, the plates are easily deformed, stacked or cracked by force during the stamping process, which affects the product yield of the shell.
  • the present application provides a battery, which can solve the problem that the deformation, stacking or cracking of the plate caused by the force in the stamping process affects the product yield.
  • the present application provides a battery, which includes a battery cell and a case.
  • the casing includes a first cover, a second cover and an annular middle frame.
  • the ring-shaped middle frame is arranged between the first cover and the second cover, and the first cover, the ring-shaped middle frame and the second cover are sequentially connected to form a closed cavity, and the electric core is arranged in the closed cavity.
  • the first cover, the second cover and the ring-shaped middle frame can be processed independently and then assembled to form a casing. Since the shell is formed by assembling the first cover, the second cover and the ring-shaped middle frame, compared with the integrally formed stamping process, the independently processed first cover, the second cover and the ring-shaped middle frame can solve the problem of existing problems.
  • the outer cylinder structure in the technology has adverse problems such as stacking and cracking caused by the deformation of the plate during the stamping process, which is conducive to improving the product yield of the shell.
  • a first protrusion is provided on the surface of the first cover facing the closed cavity
  • a second protrusion is provided on the surface of the second cover facing the closed cavity
  • the inner wall of the ring-shaped middle frame leans against a first convex portion and a second convex portion
  • the inner wall of the annular middle frame is against the first protrusion and the second protrusion.
  • the first protrusion can be configured as a ring having the same contour as the ring-shaped middle frame, so that the inner wall of the ring-shaped middle frame abuts against the outer edge of the first protrusion, so as to realize the positioning of the first cover and the ring-shaped middle frame.
  • the second protrusion can be configured as a ring having the same contour as the ring-shaped middle frame, so that the inner wall of the ring-shaped middle frame abuts against the outer edge of the second protrusion, so as to realize the positioning of the second cover and the ring-shaped middle frame.
  • the first cover body and the second cover body respectively overlap the upper and lower ends of the ring-shaped middle frame.
  • the first cover and the second cover are respectively overlapped on the ring-shaped middle frame. Since the closed cavity needs to be filled with electrolyte, the battery has high requirements on sealing.
  • the overlapping arrangement of the first cover body, the second cover body and the ring-shaped middle frame can improve the sealing performance of the casing and prevent electrolyte leakage. At the same time, the overlapping method is simple in structure and has high stability.
  • the first cover and the second cover are respectively welded to the ring-shaped middle frame at the overlapping joints, and the welding depth between the first cover and the ring-shaped middle frame is greater than the thickness of the first cover; the second cover The welding depth with the annular middle frame is greater than the thickness of the second cover.
  • the welding depth of the first cover and the annular middle frame is greater than the thickness of the first cover, so that the first cover and the annular middle frame are hermetically connected at the overlapping joint.
  • the welding depth of the second cover and the annular middle frame is greater than the thickness of the second cover, so that the second cover and the annular middle frame are hermetically connected at the lap joint.
  • the welded first cover body, the second cover body and the ring-shaped middle frame constitute a structurally stable and reliable shell.
  • the battery cell includes a first tab and a second tab with opposite polarities, and the battery further includes electrode terminals.
  • the terminal is insulated from the ring-shaped middle frame.
  • One of the first pole lug and the second pole lug is electrically connected to the electrode terminal through the opening in the ring-shaped middle frame, and the other is connected to the first cover and the second cover.
  • the body and one of the annular middle frames are electrically connected.
  • the number of electrode terminals is two, and the two electrode terminals are arranged on the ring-shaped middle frame and located on the side away from the airtight cavity, one electrode terminal is electrically connected to the first tab, and the other electrode terminal is electrically connected to the second pole. Ear connection.
  • the electrode terminals are insulated from the ring-shaped middle frame.
  • the first tab is electrically connected to the electrode terminal.
  • the first tab is not electrically connected to the first cover, the second cover and the ring-shaped middle frame.
  • the second tab can be electrically connected to any one of the first cover, the second cover and the ring-shaped middle frame, and the connection position is not limited, and can be set according to the actual situation when the module is formed.
  • the surface of the first cover facing the airtight cavity is perpendicular to the inner wall of the annular middle frame, and the surface of the second cover facing the airtight cavity is perpendicular to the inner wall of the annular middle frame.
  • the surface of the first cover facing the airtight cavity is perpendicular to the inner wall of the annular middle frame, while the surface of the second cover facing the airtight cavity is perpendicular to the inner wall of the annular middle frame, which can help increase the volume of the airtight cavity, In order to facilitate the arrangement of larger-sized battery cells, it is beneficial to improve the energy density of the battery.
  • the ring-shaped middle frame is an integrally formed structure; or, the ring-shaped middle frame includes more than two plates connected in sequence.
  • the ring-shaped middle frame of the one-piece structure has high strength.
  • the ring-shaped middle frame includes more than two plates connected in sequence. Welding process can be used for the connection of the plates to improve the strength of the ring-shaped middle frame.
  • the annular middle frame is provided with a liquid injection hole
  • the battery is provided with a sealing member
  • the sealing member is connected with the annular middle frame to seal the liquid injection hole.
  • a liquid injection hole is arranged on the annular middle frame, and the liquid injection hole communicates with the airtight cavity.
  • the electrolyte is injected into the airtight cavity through the liquid injection hole. If the electrolyte leaks, it will affect the performance of the battery, and the chemical components in the electrolyte are corrosive. The leaked electrolyte will corrode the case and affect the safety of the battery. Therefore, the sealing component is connected with the annular middle frame to seal the liquid injection hole. The sealing part is used to block the liquid injection hole, so as to prevent the electrolyte from leaking from the liquid injection hole.
  • the sealing component includes a body and an insertion portion, the insertion portion is disposed on the surface of the body facing the closed cavity, the insertion portion is inserted into the liquid injection hole, and the body is connected with the annular middle frame to seal the liquid injection hole.
  • the sealing member includes a body and an insertion portion.
  • the insertion part is arranged on the surface of the body facing the sealed cavity.
  • the insertion part is inserted into the liquid injection hole, so as to realize the positioning of the sealing part, ensure that the position of the main body is at a predetermined position and connect with the annular middle frame to seal the liquid injection hole.
  • the body includes a first part and a second part, the thickness of the first part is smaller than that of the second part, the insertion part is disposed on the first part, and the surface of the second part facing the airtight cavity is connected to the annular middle frame.
  • the ontology includes the first part and the second part.
  • the thickness of the first part is smaller than the thickness of the second part.
  • the insertion part is arranged on the first part.
  • FIG. 1 is a schematic structural view of a battery according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery according to an embodiment of the present application.
  • Fig. 3 is a schematic cross-sectional structure diagram along the A-A direction in Fig. 1;
  • Fig. 4 is the enlarged schematic view of I place in Fig. 3;
  • Fig. 5 is a schematic structural diagram of a sealing component according to an embodiment of the present application.
  • Fig. 6 is a schematic side view of a sealing component according to another embodiment of the present application.
  • the first pole ear
  • the battery 1 of the embodiment of the present application includes a battery cell 20 and a casing 10 .
  • the housing 10 includes a first cover 11 , a second cover 12 and an annular middle frame 13 .
  • the annular middle frame 13 is disposed between the first cover 11 and the second cover 12 .
  • the first cover 11 , the annular middle frame 13 and the second cover 12 are sequentially connected to form a closed cavity 10 a.
  • the battery cell 20 is disposed in the airtight cavity 10a. Electrolyte is injected into the airtight cavity 10a.
  • the first cover 11 , the second cover 12 and the ring-shaped middle frame 13 are assembled into the housing 10 .
  • the casing 10 is a separate assembly structure.
  • the first cover 11 , the second cover 12 and the ring-shaped middle frame 13 can be processed independently and then assembled to form the casing 10 . Since the housing 10 is formed by sequentially assembling the first cover 11, the annular middle frame 13 and the second cover 12, the first cover 11, the second cover 12 and the The ring-shaped middle frame 13 can solve the bad problems such as stacking and cracking caused by the stress deformation of the plates during the punching process of the outer cylinder structure in the prior art.
  • the battery 1 may be a lithium ion battery.
  • the battery 1 can be a square structure.
  • the square battery 1 has a simple structure, and can avoid waste of space when forming a battery module, so as to improve the energy density of the battery module.
  • the first cover 11, the second cover 12, and the ring-shaped middle frame 13 can be made of metal materials, so that the casing 10 can have a higher strength, and effectively prevent the casing 10 from being pierced during transportation of the battery 1, resulting in electrolysis. fluid leaks.
  • the first cover 11 and the second cover 12 may be plate-like structures. The plate structure is easy to process and manufacture.
  • the first cover body 11 and the second cover body 12 may have exactly the same structure, so as to reduce the number of parts and reduce the maintenance cost of the parts. At the same time, the completely identical structure can prevent the first cover 11 and the second cover 12 from being installed incorrectly during the assembly process of the housing 10 , thus causing repeated installation of the housing 10 and reducing assembly efficiency.
  • the respective thicknesses of the first cover 11 and the second cover 12 may range from 0.05 mm to 0.3 mm.
  • the annular middle frame 13 is an annular structure with a hollow interior.
  • the wall thickness of the annular middle frame 13 may range from 0.1 mm to 0.3 mm.
  • the annular middle frame 13 is disposed between the first cover 11 and the second cover 12 .
  • the wall thickness of the annular middle frame 13 is greater than or equal to the thickness of the first cover 11, and the wall thickness of the annular middle frame 13 is greater than or equal to the thickness of the second cover 12.
  • the first cover body 11 , the second cover body 12 and the ring-shaped middle frame 13 of the plate structure can help reduce the weight of the battery 1 .
  • the structures of the first cover 11 , the second cover 12 and the ring-shaped middle frame 13 are simple, so they can be processed by molds. Moreover, the mold manufacturing process is simple, and at the same time, high processing precision can be achieved.
  • the surface of the first cover 11 facing the closed cavity 10 a is provided with a first protrusion 111 .
  • a second protrusion 121 is provided on the surface of the second cover 12 facing the airtight cavity 10 a.
  • the inner wall of the annular middle frame 13 is against the first protrusion 111 and the second protrusion 121 .
  • the first convex part 111 can be set as a ring with the same profile as the ring-shaped middle frame 13, so that the inner wall of the ring-shaped middle frame 13 abuts against the outer edge of the first convex part 111, so as to realize the first cover 11 and the ring-shaped middle frame 13. positioning.
  • the second convex part 121 can be set as an annular shape with the same outline as the annular middle frame 13, so that the inner wall of the annular middle frame 13 abuts against the outer edge of the second convex part 121, so that the second cover body 12 and the annular middle frame 13 positioning.
  • the first protrusion 111 and the second protrusion 121 are processed by stamping.
  • the height and width dimensions of the first convex portion 111 and the second convex portion 121 should occupy the space of the airtight cavity 10a as small as possible while satisfying the positioning, so that a battery cell of a larger size can be arranged in the airtight cavity 10a 20. It is beneficial to improve the energy density of the battery 1 .
  • the height of the first protrusion 111 is less than or equal to the thickness of the first cover 11 .
  • the width of the first protrusion 111 is less than or equal to 0.25mm.
  • the raised height of the second protrusion 121 is less than or equal to the thickness of the second cover 12 .
  • the width of the second protrusion 121 is less than or equal to 0.25 mm.
  • the first cover body 11 and the second cover body 12 of the embodiment of the present application are respectively overlapped on the upper and lower ends of the ring-shaped middle frame 13 . Since the closed cavity 10a needs to be filled with electrolyte, the battery 1 has high requirements on sealing.
  • the overlapping arrangement of the first cover 11 , the second cover 12 and the ring-shaped middle frame 13 can improve the sealing performance of the casing 10 and prevent leakage of the electrolyte. At the same time, the overlapping method is simple in structure and has high stability.
  • the first cover body 11 , the ring-shaped middle frame 13 and the second cover body 12 are sequentially arranged along the axis X of the ring-shaped middle frame 13 .
  • the ring-shaped middle frame 13 has two end faces, upper and lower.
  • the first cover body 11 and the second cover body 12 overlap with the upper and lower end surfaces of the annular middle frame 13 respectively.
  • the outer edge of the first cover 11 overlaps one end surface of the annular middle frame 13
  • the outer edge of the second cover 12 overlaps the other end surface of the annular middle frame 13 .
  • the outer edge of the first cover 11 and the outer edge of the second cover 12 can be flush with the outer wall of the ring-shaped middle frame 13, so as to prevent the first cover 11 or the second cover 12 from exceeding the ring-shaped middle frame when forming a battery module 13 causing waste of space and reducing the energy density of the battery module.
  • the first cover 11 and the second cover 12 of the embodiment of the present application are respectively welded to the ring-shaped middle frame 13 at overlapping points.
  • the first cover 11 and the ring-shaped middle frame 13 are sequentially arranged along the axis X of the ring-shaped middle frame 13 .
  • the welding torch acts on the surface of the first cover 11 away from the airtight cavity 10 a , so that a welding mark 100 is formed at the overlap between the first cover 11 and the ring-shaped middle frame 13 .
  • the solder print 100 extends along the axis X.
  • the solder print 100 runs through the first cover 11 and extends to the inside of the annular middle frame 13 .
  • the welding depth of the first cover 11 and the ring-shaped middle frame 13 is greater than the thickness of the first cover 11 , so that the first cover 11 and the ring-shaped middle frame 13 are hermetically connected at the overlapping joint.
  • the welding torch acts on the surface of the second cover 12 away from the closed cavity 10a, so that the overlap between the second cover 12 and the ring-shaped middle frame 13 forms a welding mark.
  • the solder print 100 extends along the axis X.
  • the solder print 100 runs through the second cover 12 and extends to the inside of the annular middle frame 13 .
  • the welding depth between the second cover body 12 and the annular middle frame 13 is greater than the thickness of the second cover body 12 , so that the second cover body 12 and the annular middle frame 13 are hermetically connected at the overlapping joint.
  • the welded first cover body 11 , second cover body 12 and ring-shaped middle frame 13 form a shell 10 with a stable and reliable structure.
  • the battery cell 20 of the embodiment of the present application includes a first tab 21 and a second tab 22 with opposite polarities.
  • the battery 1 also includes electrode terminals 30 .
  • the electrode terminal 30 is used to connect the first tab 21 or the second tab 22 .
  • the electrode terminals 30 are disposed on the ring-shaped middle frame 13 and located on a side away from the airtight cavity 10a, so as to facilitate electrical connection between the electrode terminals 30 of two adjacent batteries 1 when forming a battery module.
  • the electrode terminal 30 is insulated from the annular middle frame 13 .
  • An insulating pad may be provided between the electrode terminal 30 and the annular middle frame 13 .
  • the ring-shaped middle frame 13 is provided with an opening 131 .
  • the first tab 21 is electrically connected to the electrode terminal 30 through the opening 131 provided in the annular middle frame 13 .
  • the opening 131 is a through hole.
  • the first tab 21 is not electrically connected to the first cover 11 , the second cover 12 and the annular middle frame 13 .
  • the second tab 22 can be electrically connected to any one of the first cover 11, the second cover 12 and the ring-shaped middle frame 13, and the connection position is not limited, and can be determined according to the actual situation when forming the battery module. set up.
  • the number of electrode terminals 30 is two.
  • the two electrode terminals 30 are both disposed on the ring-shaped middle frame 13 and located on a side away from the airtight cavity 10a.
  • One electrode terminal 30 is electrically connected to the first tab 21
  • the other electrode terminal 30 is electrically connected to the second tab 22 .
  • both the first tab 21 and the second tab 22 are insulated and connected to the casing 10 .
  • the surface of the first cover 11 facing the airtight cavity 10 a of the embodiment of the present application is perpendicular to the inner wall of the annular middle frame 13
  • the second cover 12 faces the airtight cavity.
  • the surface of the cavity 10a is perpendicular to the inner wall of the annular middle frame 13 .
  • the battery cell 20 can be formed by lamination process. The stacking process is to stack the positive electrode sheet, the insulating separator and the negative electrode sheet to form the battery cell 20 .
  • the cross-sections of the battery core 20 in the horizontal direction and the vertical direction can both be rectangular.
  • the surface of the first cover body 11 facing the airtight cavity 10a is perpendicular to the inner wall of the ring-shaped middle frame 13, while the surface of the second cover body 12 facing the airtight cavity 10a is perpendicular to the inner wall of the ring-shaped middle frame 13, which can help increase the
  • the volume of the airtight cavity 10 a is convenient for arranging a battery cell 20 with a larger size, thereby improving the energy density of the battery 1 .
  • the ring-shaped middle frame 13 of the embodiment of the present application is an integrally formed structure.
  • the integrally formed annular middle frame 13 has relatively high strength.
  • the ring-shaped middle frame 13 includes more than two plates connected in sequence.
  • the ring-shaped middle frame 13 includes four plates connected in sequence, so that the ring-shaped middle frame 13 is a rectangular frame.
  • the connection method of each plate can adopt welding process to improve the strength of the ring-shaped middle frame 13 .
  • a liquid injection hole 132 is provided on the ring-shaped middle frame 13 of the embodiment of the present application.
  • the liquid injection hole 132 communicates with the airtight cavity 10a.
  • the battery 1 is provided with a sealing member 40 . Electrolyte is filled inside the battery 1 . If the electrolyte leaks, the performance of the battery 1 will be affected, and the chemical components in the electrolyte are corrosive. The leaked electrolyte will corrode the case 10 and affect the safety of the battery 1 . Therefore, the sealing member 40 is connected with the annular middle frame 13 to seal the liquid injection hole 132 . The sealing component 40 is used to block the liquid injection hole 132 , so as to prevent the electrolyte from leaking from the liquid injection hole 132 .
  • the sealing method may be that the sealing member 40 is welded to the annular middle frame 13 . The welding method can be laser welding.
  • the sealing component 40 of the embodiment of the present application includes a body 41 and an insertion portion 42 .
  • the insertion portion 42 is disposed on the surface of the body 41 facing the airtight cavity 10a.
  • the insertion portion 42 is inserted into the liquid injection hole 132 , so as to realize the sealing positioning of the sealing member 40 .
  • the main body 41 is connected with the annular middle frame 13 to seal the liquid injection hole 132 .
  • the electrolytic solution is corrosive, so the sealing member 40 needs to be corrosion-resistant.
  • the sealing member 40 may be made of stainless steel.
  • the thickness of the body 41 in the embodiment of the present application is uniform.
  • the body 41 may be a strip-shaped plate structure.
  • the body 41 includes a first part 411 and a second part 412 .
  • the thickness of the first part 411 is smaller than the thickness of the second part 412 .
  • the insertion part 42 is disposed on the first part 411 .
  • the surface of the second part 412 facing the airtight cavity 10 a is connected to the annular middle frame 13 .
  • the connection position between the first tab 21 or the second tab 22 and the ring-shaped middle frame 13 is closer to the liquid injection hole 131, since the ring-shaped middle frame 13 is a plate-shaped structure with a smaller thickness, it can pass through the larger thickness.
  • the second part 412 strengthens the strength of the annular middle frame 13 .
  • the connection position between the first tab 21 or the second tab 22 and the annular middle frame 13 is set in a region corresponding to the second part 412 .
  • the shape of the first part 411 may be the same as that of the insertion part 42, and along the axial direction of the insertion part 42, the orthographic projection of the insertion part 42 along the axial direction is located within the orthographic projection of the first part 411 along the axial direction, so that After the insertion part 42 is inserted into the liquid injection hole 131 , the contact area between the first part 411 and the annular middle frame 13 is larger than the contact area between the first part 411 and the liquid injection hole 131 , thereby improving the sealing effect of the sealing member 40 .
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a An indirect connection through an intermediary may be an internal communication between two elements or an interaction relationship between two elements.
  • plural herein means two or more.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this paper generally indicates that the contextual objects are an “or” relationship; in the formula, the character "/" indicates that the contextual objects are a "division" relationship.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the order of execution of the processes should be determined by their functions and internal logic, and should not be used in the implementation of this application.
  • the implementation of the examples constitutes no limitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请提供一种电池。电池包括电芯和壳体。壳体包括第一盖体、第二盖体和环形中框。环形中框设置于第一盖体和第二盖体之间。第一盖体、环形中框和第二盖体依次连接形成一个密闭空腔。电芯设置于密闭空腔内。本申请的电池能够解决冲压过程中板材受力导致的形变、堆叠或开裂影响壳体的产品良率的问题。

Description

电池
本申请要求于2021年12月14日提交中国专利局、申请号为202123142307.X、申请名称为“电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,具体涉及一种电池。
背景技术
近年来,我国对环境问题的持续关注,引入了一系列的环保产品。电池能够充电及放电,常被作为动力源来替代传统的石化燃料,以解决石化燃料所引起的环境污染问题。电池以其循环寿命长、能量密度高等优点,在市场具有较高的需求量,同时,市场规模正在高速增长。
电池包括电芯和用于包覆电芯的壳体。壳体由外筒体和端盖组件密封连接构成。金属材料的外筒体在汽车动力电池中的普及率较高,通常采用冲压工艺一体成型加工制造。冲压工艺是利用安装在压力机上的模具,对放置在模里的板料施加变形力,使板料在模具里产生变形,从而获得一定形状、尺寸和性能的产品零件的生产技术。
但是,外筒体通常具有深度。采用冲压工艺对深度较大的外筒体加工时,在冲压过程中板材易受力变形、堆叠或开裂,影响壳体的产品良率。
实用新型内容
本申请提供一种电池,能够解决冲压过程中板材受力导致的形变、堆叠或开裂影响产品良率的问题。
本申请提供一种电池,电池包括电芯和壳体。壳体包括第一盖体、第二盖体和环形中框。环形中框设置于第一盖体和第二盖体之间,第一盖体、环形中框和第二盖体依次连接形成一个密闭空腔,电芯设置于密闭空腔内。
本申请实施例的电池,第一盖体、第二盖体和环形中框可以分别独立加工后进行组装以构成壳体。由于壳体是第一盖体、第二盖体和环形中框拼装形成, 因此相对于一体成型的冲压工艺,分别独立加工的第一盖体、第二盖体和环形中框可以解决现有技术中的外筒体结构在冲压过程中板材受力变形而导致的堆叠、开裂等不良问题,从而有利于提高壳体的产品良率。
根据本申请的一个实施例,第一盖体面向密闭空腔的表面设置有第一凸部,第二盖体面向密闭空腔的表面设置有第二凸部,环形中框的内壁抵靠于第一凸部和第二凸部。
环形中框的内壁抵靠于第一凸部和第二凸部。第一凸部可以设置为与环形中框轮廓相同的环形,以使环形中框的内壁抵靠于第一凸部的外缘,以实现第一盖体与环形中框的定位。第二凸部可以设置为与环形中框轮廓相同的环形,以使环形中框的内壁抵靠于第二凸部的外缘,以实现第二盖体与环形中框的定位。
根据本申请的一个实施例,第一盖体和第二盖体各自搭接于环形中框上下两端。
第一盖体和第二盖体各自搭接于环形中框。由于密闭空腔内需要注有电解液,因此电池对密封性的要求很高。第一盖体、第二盖体和环形中框的搭接设置,可以提高壳体的密封性,避免电解液发生泄漏。同时,搭接方式结构简单,并且具有较高的稳定性。
根据本申请的一个实施例,第一盖体和第二盖体各自在搭接处与环形中框焊接,第一盖体与环形中框的焊接深度大于第一盖体厚度;第二盖体与环形中框的焊接深度大于第二盖体厚度。
第一盖体与环形中框的焊接深度大于第一盖体厚度,以使第一盖体和环形中框在搭接处密封连接。同时,第二盖体与环形中框的焊接深度大于第二盖体厚度,以使第二盖体和环形中框在搭接处密封连接。焊接后的第一盖体、第二盖体和环形中框构成结构稳定、可靠的壳体。
根据本申请的一个实施例,电芯包括极性相反的第一极耳和第二极耳,电池还包括电极端子,电极端子设置于环形中框上并位于背离密闭空腔的一侧,电极端子与环形中框绝缘设置,第一极耳和第二极耳中的一者穿过设置在环形中框中的开孔与电极端子电连接,另一者与第一盖体、第二盖体和环形中框中的一者电连接。或者,电极端子的数量为两个,两个电极端子均设置于环形中框上并位于背离密闭空腔的一侧,一个电极端子与第一极耳电连接,另一个电极端子与第二极耳电连接。
电极端子与环形中框绝缘设置。第一极耳与电极端子电连接。第一极耳与 第一盖体、第二盖体和环形中框均未电连接。第二极耳可以与第一盖体、第二盖体和环形中框的任意一者电连接,连接位置不做限定,可根据构成模组时的实际情况进行设定。
根据本申请的一个实施例,第一盖体面向密闭空腔的表面和环形中框的内壁相垂直,第二盖体面向密闭空腔的表面和环形中框的内壁相垂直。
第一盖体面向密闭空腔的表面和环形中框的内壁相垂直,而第二盖体面向密闭空腔的表面和环形中框的内壁相垂直,可以有利于增大密闭空腔的体积,以便于设置较大尺寸的电芯,从而有利于提高电池的能量密度。
根据本申请的一个实施例,环形中框为一体成型结构;或者,环形中框包括依次相连的两个以上的板件。
一体成型结构的环形中框具有较高的强度。或者,环形中框包括依次相连的两个以上的板件。板件的连接方式可以采用焊接工艺,以提高环形中框的强度。
根据本申请的一个实施例,环形中框上设置有注液孔,电池设置有密封部件,密封部件与环形中框相连以密封注液孔。
环形中框上设置有注液孔,注液孔与密闭空腔相连通。在第一盖体、第二盖体和环形中框完成组装工作后,通过注液孔向密闭空腔内注入电解液。若电解液发生泄漏,会影响电池性能,同时电解液中的化学成分具有腐蚀性。泄漏的电解液会腐蚀壳体,影响电池的使用安全性。因此,密封部件与环形中框相连以密封注液孔。密封部件用于封堵注液孔,从而防止电解液从注液孔处发生泄漏。
根据本申请的一个实施例,密封部件包括本体和插入部,插入部设置在本体面向密闭空腔的表面,插入部插入注液孔内,本体与环形中框连接以密封注液孔。
密封部件包括本体和插入部。插入部设置在本体面向密闭空腔的表面。插入部插入注液孔内,从而实现密封部件的定位,保证本体的位置处于预定位置并与环形中框连接以密封注液孔。
根据本申请的一个实施例,本体包括第一部分和第二部分,第一部分的厚度小于第二部分的厚度,插入部设置于第一部分,第二部分面向密闭空腔的表面与环形中框连接。
本体包括第一部分和第二部分。第一部分的厚度小于第二部分的厚度。插入部设置于第一部分。当第一极耳或第二极耳与环形中框的连接位置距离注液 孔较近时,由于环形中框为厚度较小的板状结构,因此可以通过厚度较大的第二部分对环形中框的强度进行加强。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请一实施例的电池的结构示意图;
图2为本申请一实施例的电池的分解结构示意图;
图3为图1中沿A-A方向的剖视结构示意图;
图4为图3中I处的放大示意图;
图5为本申请一实施例的密封部件结构示意图;
图6为本申请另一实施例的密封部件的侧视结构示意图。
附图标记说明:
1、电池;
10、壳体;
10a、密闭空腔;
100、焊印;
11、第一盖体;
111、第一凸部
12、第二盖体;
121、第二凸部;
13、环形中框;
131、开孔;132、注液孔;
20、电芯;
21、第一极耳;
22、第二极耳;
30、电极端子;
40、密封部件;
41、本体;
411、第一部分;412、第二部分;
42、插入部;
X、轴向。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
参见图1所示,本申请实施例的电池1包括电芯20和壳体10。壳体10包括第一盖体11、第二盖体12和环形中框13。环形中框13设置于第一盖体11和第二盖体12之间。第一盖体11、环形中框13和第二盖体12依次连接形成一个密闭空腔10a。电芯20设置于密闭空腔10a内。密闭空腔10a内注有电解液。第一盖体11、第二盖体12和环形中框13组装成壳体10。
参见图2所示,壳体10为分体组装结构。第一盖体11、第二盖体12和环形中框13可以分别独立加工后进行组装以构成壳体10。由于壳体10是第一盖体11、环形中框13和第二盖体12依次拼装形成,因此相对于一体成型的冲压工艺,分别独立加工的第一盖体11、第二盖体12和环形中框13可以解决现有技术中外筒体结构在冲压过程中板材受力变形而导致的堆叠、开裂等不良问题。
本申请实施例中,电池1可以是锂离子电池。电池1可以是方形结构。方形的电池1结构简单,构成电池模组时,可以避免空间的浪费,以有利于提高电池模组的能量密度。
第一盖体11、第二盖体12和环形中框13可以为金属材料,从而可以使得壳体10具有较高的强度,有效避免电池1在运输过程中壳体10被刺穿,导致电解液泄漏。第一盖体11和第二盖体12可以为板状结构。板状结构易于加工制造。另外,第一盖体11和第二盖体12可以为完全相同的结构,以减少零件数量,降低零件的维护成本。同时,完全相同的结构可以避免壳体10组装过程中将第一盖体11和第二盖体12安装错误,从而造成壳体10的重复安装,降低装配效率。
第一盖体11和第二盖体12各自的厚度取值范围可以为0.05mm至0.3mm。环形中框13为内部中空的环形结构。环形中框13的壁厚取值范围可以为0.1mm至0.3mm。环形中框13设置于第一盖体11和第二盖体12之间。环形中框13的壁厚大 于或者等于第一盖体11的厚度,并且环形中框13的壁厚大于或者等于第二盖体12的厚度。板状结构的第一盖体11、第二盖体12和环形中框13,可以有利于降低电池1的重量。
第一盖体11、第二盖体12和环形中框13各自的结构简单,从而可以采用模具加工。并且,模具制造工序简单,同时还可以达到较高的加工精度。
在一些可实现的方式中,参见图3和图4所示,第一盖体11面向密闭空腔10a的表面设置有第一凸部111。第二盖体12面向密闭空腔10a的表面设置有第二凸部121。环形中框13的内壁抵靠于第一凸部111和第二凸部121。第一凸部111可以设置为与环形中框13轮廓相同的环形,以使环形中框13的内壁抵靠于第一凸部111的外缘,以实现第一盖体11与环形中框13的定位。第二凸部121可以设置为与环形中框13轮廓相同的环形,以使环形中框13的内壁抵靠于第二凸部121的外缘,以实现第二盖体12与环形中框13的定位。示例性地,第一凸部111和第二凸部121采用冲压工艺加工。
第一凸部111和第二凸部121的高度和宽度尺寸在满足定位的同时,应尽量较小地占用密闭空腔10a的空间,从而可以在密闭空腔10a内设置较大尺寸的电芯20,有利于提高电池1的能量密度。在一些示例中,第一凸部111凸起的高度小于或等于第一盖体11的厚度。示例性地,第一凸部111的宽度小于或等于0.25mm。第二凸部121凸起的高度小于或等于第二盖体12的厚度。示例性地,第二凸部121的宽度小于或等于0.25mm。
参见图3所示,本申请实施例的第一盖体11和第二盖体12各自搭接于环形中框13上下两端。由于密闭空腔10a内需要注有电解液,因此电池1对密封性的要求很高。第一盖体11、第二盖体12和环形中框13的搭接设置,可以提高壳体10的密封性,避免电解液发生泄漏。同时,搭接方式结构简单,并且具有较高的稳定性。
示例性地,第一盖体11、环形中框13和第二盖体12依次沿环形中框13的轴向X排布。沿轴向X,环形中框13具有上、下两个端面。第一盖体11和第二盖体12分别与环形中框13的上、下两个端面搭接。第一盖体11的外侧边缘搭接在环形中框13的一个端面上,而第二盖体12的外侧边缘搭接在环形中框13的另一个端面上。第一盖体11的外侧边缘和第二盖体12的外侧边缘可以与环形中框13的外壁齐平,以避免构成电池模组时第一盖体11或第二盖体12超出环形中框13造成空间的浪费,降低电池模组的能量密度。
在一些可实现的方式中,参见图4所示,本申请实施例的第一盖体11和第二 盖体12各自在搭接处与环形中框13焊接。示例性地,第一盖体11与环形中框13的焊接过程中,第一盖体11和环形中框13沿环形中框13的轴向X依次排布。焊枪作用于第一盖体11背离密闭空腔10a的表面,从而第一盖体11和环形中框13的搭接处形成焊印100。焊印100沿轴向X延伸。焊印100贯穿第一盖体11并延伸至环形中框13内部。
示例性地,第一盖体11与环形中框13的焊接深度大于第一盖体11的厚度,以使第一盖体11和环形中框13在搭接处密封连接。第一盖体11与环形中框13焊接为一个整体后,焊枪作用于第二盖体12背离密闭空腔10a的表面,从而第二盖体12和环形中框13的搭接处形成焊印100。焊印100沿轴向X延伸。焊印100贯穿第二盖体12并延伸至环形中框13内部。示例性地,同时,第二盖体12与环形中框13的焊接深度大于第二盖体12的厚度,以使第二盖体12和环形中框13在搭接处密封连接。焊接后的第一盖体11、第二盖体12和环形中框13构成结构稳定、可靠的壳体10。
在一些可实现的方式中,参见图2所示,本申请实施例的电芯20包括极性相反的第一极耳21和第二极耳22。电池1还包括电极端子30。电极端子30用于连接第一极耳21或第二极耳22。电极端子30设置于环形中框13上并位于背离密闭空腔10a的一侧,以在构成电池模组时,便于相邻两个电池1的电极端子30之间进行电连接。电极端子30与环形中框13绝缘设置。在电极端子30与环形中框13之间可以设置有绝缘垫。
在一些示例中,环形中框13上设置有开孔131。第一极耳21穿过设置在环形中框13的开孔131与电极端子30电连接。示例性地,开孔131为贯通孔。第一极耳21与第一盖体11、第二盖体12和环形中框13均未电连接。第二极耳22可以与第一盖体11、第二盖体12和环形中框13中的任意一者电连接,并且连接位置可以不做限定,可根据构成电池模组时的实际情况进行设定。
在另一些示例中,电极端子30的数量为两个。两个电极端子30均设置于环形中框13上并位于背离密闭空腔10a的一侧。一个电极端子30与第一极耳21电连接,另一个电极端子30与第二极耳22电连接。此时,第一极耳21、第二极耳22均与壳体10绝缘连接。
在一些示例中,参见图3和图4所示,本申请实施例的第一盖体11面向密闭空腔10a的表面和环形中框13的内壁相垂直,而第二盖体12面向密闭空腔10a的表面和环形中框13的内壁相垂直。电芯20可以选用叠片工艺形成。叠片工艺是将正极片、绝缘隔膜和负极片堆叠以形成电芯20。电芯20在水平方向和竖直方向 的截面可以均为矩形。第一盖体11面向密闭空腔10a的表面和环形中框13的内壁相垂直,而第二盖体12面向密闭空腔10a的表面和环形中框13的内壁相垂直,可以有利于增大密闭空腔10a的体积,以便于设置较大尺寸的电芯20,从而有利于提高电池1的能量密度。
在一些可实现的方式中,本申请实施例的环形中框13为一体成型结构。一体成型结构的环形中框13具有较高的强度。或者,环形中框13包括依次相连的两个以上的板件。例如,环形中框13包括依次相连的四个板件,从而环形中框13呈矩形框。各个板件的连接方式可以采用焊接工艺,以提高环形中框13的强度。
参见图4所示,本申请实施例的环形中框13上设置有注液孔132。注液孔132与密闭空腔10a相连通。在第一盖体11、第二盖体12和环形中框13完成组装工作后,通过注液孔132向密闭空腔10a内注入电解液。
电池1设置有密封部件40。电池1内部注有电解液。若电解液发生泄漏,会影响电池1性能,同时电解液中的化学成分具有腐蚀性。泄漏的电解液会腐蚀壳体10,影响电池1的使用安全性。因此,密封部件40与环形中框13相连以密封注液孔132。密封部件40用于封堵注液孔132,从而防止电解液从注液孔132处发生泄漏。密封方式可以为密封部件40与环形中框13焊接。焊接方式可以采用激光焊接。
参见图5所示,本申请实施例的密封部件40包括本体41和插入部42。插入部42设置在本体41面向密闭空腔10a的表面。插入部42插入注液孔132内,从而实现密封部件40的密封定位。本体41与环形中框13连接以密封注液孔132。电解液具有腐蚀性,因此密封部件40需具有抗腐蚀性。示例性地,密封部件40可以为不锈钢材质。当密封部件40与注液孔132密封处理后,需进行氦检检测电池1的整体密封性,避免完成装配的电池1存在密封不良的情况而导致电解液发生泄漏的问题。
在一些可实现的方式中,参见图5所示,本申请实施例的本体41的厚度均匀。本体41可以为条形板状结构。
在另一些可实现的方式中,参见图6所示,本体41包括第一部分411和第二部分412。第一部分411的厚度小于第二部分412的厚度。插入部42设置于第一部分411。第二部分412面向密闭空腔10a的表面与环形中框13连接。当第一极耳21或第二极耳22与环形中框13的连接位置距离注液孔131较近时,由于环形中框13为厚度较小的板状结构,因此可以通过厚度较大的第二部分412对环形中框13的 强度进行加强。第一极耳21或第二极耳22与环形中框13的连接位置设置在与第二部分412相对应的区域内。
示例性地,第一部分411的形状可以与插入部42的形状相同,并且沿插入部42的轴向,插入部42沿轴向的正投影位于第一部分411沿轴向的正投影内,以使插入部42插入注液孔131后,第一部分411与环形中框13的接触面积大于第一部分411与注液孔131的接触面积,从而提高密封部件40的密封效果。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。
此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对 本申请的实施例的实施过程构成任何限定。

Claims (10)

  1. 一种电池(1),其特征在于,包括:
    电芯(20);
    壳体(10),包括第一盖体(11)、第二盖体(12)和环形中框(13),所述环形中框(13)设置于所述第一盖体(11)和所述第二盖体(12)之间,所述第一盖体(11)、所述环形中框(13)和所述第二盖体(12)依次连接形成一个密闭空腔(10a),所述电芯(20)设置于所述密闭空腔(10a)内。
  2. 根据权利要求1所述的电池(1),其特征在于,所述第一盖体(11)面向所述密闭空腔(10a)的表面设置有第一凸部(111),所述第二盖体(12)面向所述密闭空腔(10a)的表面设置有第二凸部(121),所述环形中框(13)的内壁抵靠于所述第一凸部(111)和所述第二凸部(121)。
  3. 根据权利要求1所述的电池(1),其特征在于,所述第一盖体(11)和所述第二盖体(12)各自搭接于所述环形中框(13)上下两端。
  4. 根据权利要求3所述的电池(1),其特征在于,所述第一盖体(11)和所述第二盖体(12)各自在搭接处与所述环形中框(13)焊接,所述第一盖体(11)与所述环形中框(13)的焊接深度大于所述第一盖体(11)厚度;所述第二盖体(12)与所述环形中框(13)的焊接深度大于所述第二盖体(12)厚度。
  5. 根据权利要求1至4任一项所述的电池(1),其特征在于,所述电芯(20)包括极性相反的第一极耳(21)和第二极耳(22),所述电池(1)还包括电极端子(30),所述电极端子(30)设置于所述环形中框(13)上并位于背离所述密闭空腔(10a)的一侧,所述电极端子(30)与所述环形中框(13)绝缘设置,所述第一极耳(21)和所述第二极耳(22)中的一者穿过设置在所述环形中框(13)中的开孔(131)与所述电极端子(30)电连接,另一者与所述第一盖体(11)、所述第二盖体(12)和所述环形中框(13)中的一者电连接;或者,
    所述电极端子(30)的数量为两个,两个所述电极端子(30)均设置于所述环形中框(13)上并位于背离所述密闭空腔(10a)的一侧,一个所述电极端子(30)与所述第一极耳(21)电连接,另一个所述电极端子(30)与所述第二极耳(22)电连接。
  6. 根据权利要求1至4任一项所述的电池(1),其特征在于,所述第一盖体(11)面向所述密闭空腔(10a)的表面和所述环形中框(13)的内壁相垂直,所述第二盖体(12)面向所述密闭空腔(10a)的表面和所述环形中框(13)的内壁相垂直。
  7. 根据权利要求1至4任一项所述的电池(1),其特征在于,所述环形中框(13)为一体成型结构;或者,所述环形中框(13)包括依次相连的两个以上的板件。
  8. 根据权利要求1至4任一项所述的电池(1),其特征在于,所述环形中框(13)上设置有注液孔(131),所述电池(1)设置有密封部件(40),所述密封部件(40)与所述环形中框(13)相连以密封所述注液孔(131)。
  9. 根据权利要求8所述的电池(1),其特征在于,所述密封部件(40)包括本体(41)和插入部(42),所述插入部(42)设置在所述本体(41)面向所述密闭空腔(10a)的表面,所述插入部(42)插入所述注液孔(131)内,所述本体(41)与所述环形中框(13)连接以密封所述注液孔(131)。
  10. 根据权利要求9所述的电池(1),其特征在于,所述本体(41)包括第一部分(411)和第二部分(412),所述第一部分(411)的厚度小于所述第二部分(412)的厚度,所述插入部(42)设置于所述第一部分(411),所述第二部分(412)面向所述密闭空腔(10a)的表面与所述环形中框(13)连接。
PCT/CN2022/130962 2021-12-14 2022-11-09 电池 WO2023109382A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/531,394 US20240128487A1 (en) 2021-12-14 2023-12-06 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123142307.X 2021-12-14
CN202123142307.XU CN216435961U (zh) 2021-12-14 2021-12-14 电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/531,394 Continuation US20240128487A1 (en) 2021-12-14 2023-12-06 Battery

Publications (1)

Publication Number Publication Date
WO2023109382A1 true WO2023109382A1 (zh) 2023-06-22

Family

ID=81317712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130962 WO2023109382A1 (zh) 2021-12-14 2022-11-09 电池

Country Status (3)

Country Link
US (1) US20240128487A1 (zh)
CN (1) CN216435961U (zh)
WO (1) WO2023109382A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216435961U (zh) * 2021-12-14 2022-05-03 珠海冠宇电池股份有限公司 电池
CN115117521A (zh) * 2022-06-23 2022-09-27 宁德新能源科技有限公司 壳体、弧形电池及用电设备
CN218602565U (zh) * 2022-10-17 2023-03-10 宁德时代新能源科技股份有限公司 外壳、电池单体、电池及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206364073U (zh) * 2016-10-25 2017-07-28 微宏动力系统(湖州)有限公司 方壳电池
CN211980802U (zh) * 2020-04-29 2020-11-20 湖北亿纬动力有限公司 一种方形铝壳电芯
CN112310574A (zh) * 2020-09-30 2021-02-02 宁德时代新能源科技股份有限公司 圆柱型电池单体、电池、用电装置、制造方法及制造系统
CN212907948U (zh) * 2020-09-01 2021-04-06 上海兰钧新能源科技有限公司 电芯结构、动力电池和电动车辆
CN112736272A (zh) * 2020-12-30 2021-04-30 上海兰钧新能源科技有限公司 一种电芯制造方法、电芯结构、动力电池和电动车辆
CN216435961U (zh) * 2021-12-14 2022-05-03 珠海冠宇电池股份有限公司 电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206364073U (zh) * 2016-10-25 2017-07-28 微宏动力系统(湖州)有限公司 方壳电池
CN211980802U (zh) * 2020-04-29 2020-11-20 湖北亿纬动力有限公司 一种方形铝壳电芯
CN212907948U (zh) * 2020-09-01 2021-04-06 上海兰钧新能源科技有限公司 电芯结构、动力电池和电动车辆
CN112310574A (zh) * 2020-09-30 2021-02-02 宁德时代新能源科技股份有限公司 圆柱型电池单体、电池、用电装置、制造方法及制造系统
CN112736272A (zh) * 2020-12-30 2021-04-30 上海兰钧新能源科技有限公司 一种电芯制造方法、电芯结构、动力电池和电动车辆
CN216435961U (zh) * 2021-12-14 2022-05-03 珠海冠宇电池股份有限公司 电池

Also Published As

Publication number Publication date
CN216435961U (zh) 2022-05-03
US20240128487A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2023109382A1 (zh) 电池
TW439312B (en) Sealed battery in which an electrolyte-injection hole is favorably sealed
CN109075373B (zh) 包括二次压接模具的圆柱型电池单元制造设备
EP3817131A1 (en) Battery
EP3432384B1 (en) Battery pack comprising electrode terminal connection plate
CN103137343A (zh) 一种圆柱电池电容器
WO2015034172A1 (ko) 둘 이상의 부재들로 이루어진 전지케이스를 포함하는 각형 전지셀
US20230126021A1 (en) Battery
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
CN212113760U (zh) 一种储能装置
KR20160107416A (ko) 커버를 갖는 이차 전지
CN101267023A (zh) 塑料壳体锂离子电池及其制备方法
KR102265846B1 (ko) 전극단자 접속 플레이트를 포함하고 있는 전지팩
WO2024082837A1 (zh) 电池
CN219892367U (zh) 一种方壳电池盖板结构、电池及电池模组
WO2023173656A1 (zh) 电池结构组件、电池及电动交通工具
CN213184431U (zh) 一种新型圆柱锂电池盖板结构
CN211929603U (zh) 多极柱端子锂电池
CN201041812Y (zh) 一种电池盖板组件及电池
CN211376817U (zh) 燃料电池的双极板和燃料电池
CN212062474U (zh) 一种方形锂离子顶盖结构
CN110364672A (zh) 一种高电压的扣式电池及其制作方法
CN211088414U (zh) 一种台阶定位凸台
CN110896147A (zh) 燃料电池的双极板和燃料电池
CN2511007Y (zh) 一种圆柱型锂离子电芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906134

Country of ref document: EP

Kind code of ref document: A1