WO2023109378A1 - 一种废石与干尾砂联合处置露天坑方法 - Google Patents

一种废石与干尾砂联合处置露天坑方法 Download PDF

Info

Publication number
WO2023109378A1
WO2023109378A1 PCT/CN2022/130710 CN2022130710W WO2023109378A1 WO 2023109378 A1 WO2023109378 A1 WO 2023109378A1 CN 2022130710 W CN2022130710 W CN 2022130710W WO 2023109378 A1 WO2023109378 A1 WO 2023109378A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
waste rock
pile
dry
tailings
Prior art date
Application number
PCT/CN2022/130710
Other languages
English (en)
French (fr)
Inventor
李涛
周斌
李路
梁昌鸿
Original Assignee
万宝矿产有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万宝矿产有限公司 filed Critical 万宝矿产有限公司
Publication of WO2023109378A1 publication Critical patent/WO2023109378A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F15/00Methods or devices for placing filling-up materials in underground workings
    • E21F15/06Filling-up mechanically
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F16/00Drainage
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere

Definitions

  • the invention belongs to the field of backfill disposal of open pits in mines, and in particular relates to a method for joint disposal of waste rocks and dry tailings in open pits.
  • the open-pit formed by open-pit mining has a great impact on the surrounding environment: on the one hand, the open-pit slope is easy to induce local slope instability under the action of external force, which in turn causes secondary geological disasters such as landslides and debris flows, which is a major safety hazard for mine safety.
  • the catchment water in open pits is easy to seep through fissures and cause groundwater environmental pollution. If left untreated for a long time, surface cracks and subsidence will also occur.
  • the number of mines facing closed pits or open-pit to underground mines is increasing day by day, and the disposal methods of open-pit pits have gradually attracted people's attention. To sum up, the reasonable backfilling of open pits, the tight area of mine dumps and the insufficient storage capacity of tailings reservoirs have become the main problems restricting the development of open pit mines.
  • the backfilling and disposal methods of open pits mainly include low-concentration tailings backfill, paste backfill, dry tailings backfill and waste rock backfill, among which: (1) low-concentration tailings backfill means that the tailings mortar discharged from the concentrator is directly transported through pipelines to The open pit is backfilled.
  • Paste backfill refers to adding cement and other cementitious materials to the dense tailing mortar, and stirring the tailing mortar to make the content of -20um fine particles not less than 15%, and the mass concentration is medium
  • the 75%-80% paste material is transported to the open pit for backfilling through pipelines.
  • This method needs to be equipped with equipment such as deep cone thickener, stirring tank and plunger pump, and the investment in the capital construction period is relatively high.
  • dry tail Sand backfilling refers to press-filtering the tailing mortar to make a filter cake, which is transported to the pit by car or belt for backfilling. Dry tailings and waste rock are backfilled separately, both of which have lower requirements on the permeability of open pits.
  • the combined discharge of waste rock and dry tailings can greatly save land occupation and reduce environmental governance.
  • the technical problem to be solved by the present invention is: how to provide a method for joint disposal of waste rock and dry tailings in an open pit to solve the problem of secondary disasters induced by open slopes.
  • the present invention provides a method for joint disposal of waste rock and dry tailings in an open pit, comprising the following steps:
  • Step 1 Backfill a layer of waste rock layer 2 at the bottom of the open pit, transport the dry tailings after dehydration and pressure filtration to the waste rock layer 2, and compact to form a dry tailings layer 3, waste rock layer 2 and dry tailings layer 3 stack alternately until the open pit is completely backfilled;
  • Step 2 Lay the initial dam 4 above the stacked layer of the waste rock layer 2 and the dry tailings layer 3, and build the dry tailings pile 3' in layers upstream of the initial dam 4 by using an inverted arrangement, and gradually advance toward the initial dam 4 until reaching design elevation;
  • Step 3 use the inverted row type to pile up the waste rock pile 10 on the periphery of the dry tailings pile 3' piled up in step 2, until the top surface of the waste rock pile 10 area borders on the top surface of the dry tailings pile 3' area;
  • Step 4 lay drainage prisms 5 on the periphery of the waste rock pile 10 in step 3;
  • Step 5 In Step 4, a reverse filter layer 6 is constructed between the waste rock pile 10 and the drainage prism 5 .
  • the waste rock layer 2 and the dry tailings layer 3 with low moisture content are stacked alternately, including:
  • Step 11 Calculate the thickness of each layer of waste rock layer 2 and dry tailing sand layer 3 according to the backfill depth of the open pit, control the thickness of each layer of waste rock layer 3 to 5-8m, and control the thickness of dry tailing sand layer 3 below 5m;
  • Step 12 Backfill the open pit according to the thickness of each waste rock layer 2 and dry tailing sand layer 3 in step 11, so that the topmost backfill body at the end of backfilling is the waste rock layer 2.
  • the moisture content of the dry tailings layer 3 is controlled within the interval of 5%-10%;
  • the moisture content of the dry tailings pile 3' is controlled in the range of 10%-20%.
  • the slope of the top surface of the dry tailings pile 3' relative to the ground surface is between 0.5%-1%
  • step 3 the slope of the top surface of the waste rock pile 10 relative to the ground surface is between 1% and 2%.
  • the reverse filter layer 6 includes 3 layers of gravel layers with different particle sizes
  • the particle gradation of the three layers of gravel layers is from small to large along the direction from the waste rock pile 10 to the drainage prism 5 .
  • a horizontal drainage pipe 7 is provided below the dry tailings pile 3' and the waste rock pile 10;
  • One end of the drainage pipe 7 extends outwards and connects to the sump 8;
  • the surface precipitation on the pile surface and the water in the pile are discharged into the sump 8 through the drainage prism 5, the reverse filter layer 6 and the drain pipe 7, so as to reduce the infiltration line in the dry tailings pile 3' and ensure fine particle tailings No loss, thereby enhancing the stability of the pile.
  • the bottom of the open pit and the side slope are cleaned, and the hydraulic channel through which the open pit communicates with groundwater is blocked.
  • the topsoil layer 9 is laid after the slope and top of the waste rock pile 10 are leveled, and the thickness of the soil layer is not less than 0.5m.
  • the present invention has the following beneficial effects:
  • Fig. 1 is the waste rock-dried tailings layered backfill profile of the present invention
  • Fig. 2 is a sectional view of waste rock-dry tailings stockpiled on the surface of the present invention
  • Fig. 3 is a plane view of waste rock-dry tailings stockpiled on the surface of the present invention.
  • this embodiment provides a method for joint disposal of waste rock and dry tailings in an open pit, as shown in Figures 1-3, including the following steps:
  • Step 1 Backfill a layer of waste rock layer 2 at the bottom of the open pit, transport the dry tailings after dehydration and pressure filtration to the waste rock layer 2, and compact to form a dry tailings layer 3, waste rock layer 2 and dry tailings layer 3 stack alternately until the open pit is completely backfilled;
  • Step 2 Lay the initial dam 4 above the stacked layer of the waste rock layer 2 and the dry tailings layer 3, and build the dry tailings pile 3' in layers upstream of the initial dam 4 by using an inverted arrangement, and gradually advance toward the initial dam 4 until reaching design elevation;
  • Step 3 use the inverted row type to pile up the waste rock pile 10 on the periphery of the dry tailings pile 3' piled up in step 2, until the top surface of the waste rock pile 10 area borders on the top surface of the dry tailings pile 3' area;
  • Step 4 lay drainage prisms 5 on the periphery of the waste rock pile 10 in step 3;
  • Step 5 In Step 4, a reverse filter layer 6 is constructed between the waste rock pile 10 and the drainage prism 5 .
  • the waste rock layer 2 and the dry tailings layer 3 with low moisture content are stacked alternately, including:
  • Step 11 Calculate the thickness of each layer of waste rock layer 2 and dry tailing sand layer 3 according to the backfill depth of the open pit, control the thickness of each layer of waste rock layer 3 to 5-8m, and control the thickness of dry tailing sand layer 3 below 5m;
  • Step 12 Backfill the open pit according to the thickness of each waste rock layer 2 and dry tailing sand layer 3 in step 11, so that the topmost backfill body at the end of backfilling is the waste rock layer 2.
  • the moisture content of the dry tailings layer 3 is controlled within the interval of 5%-10%;
  • the moisture content of the dry tailings pile 3' is controlled in the range of 10%-20%.
  • the slope of the top surface of the dry tailings pile 3' relative to the ground surface is between 0.5%-1%
  • step 3 the slope of the top surface of the waste rock pile 10 relative to the ground surface is between 1% and 2%.
  • the reverse filter layer 6 includes 3 layers of gravel layers with different particle sizes
  • the particle gradation of the three layers of gravel layers is from small to large along the direction from the waste rock pile 10 to the drainage prism 5 .
  • a horizontal drainage pipe 7 is provided below the dry tailings pile 3' and the waste rock pile 10;
  • One end of the drainage pipe 7 extends outwards and connects to the sump 8;
  • the surface precipitation on the pile surface and the water in the pile are discharged into the sump 8 through the drainage prism 5, the reverse filter layer 6 and the drain pipe 7, so as to reduce the infiltration line in the dry tailings pile 3' and ensure fine particle tailings No loss, thereby enhancing the stability of the pile.
  • the bottom of the open pit and the side slope are cleaned, and the hydraulic channel through which the open pit communicates with groundwater is blocked.
  • the topsoil layer 9 is laid after the slope and top of the waste rock pile 10 are leveled, and the thickness of the soil layer is not less than 0.5m.
  • the elevation of the closed circle on the surface is set to 0m.
  • the bottom and slope of the open pit shall be cleaned first, and the hydraulic channels connecting the open pit and groundwater shall be blocked to prevent the backfill from polluting the underground and the water in the surrounding surrounding rocks.
  • the waste rock 2 is discharged to the bottom of the open pit by a car or a belt conveyor, and a 5-8m thick waste rock layer is formed after being rolled by a road roller.
  • the dry tailings 3 after pressure filtration and dehydration are transported to the waste rock layer at the bottom by a belt conveyor and compacted to form a dry tailings layer, and the thickness of the dry tailings layer is controlled below 5m.
  • the dry tailings 3 used for backfilling the open pit in the first phase of the disposal project is formed by dense and press-filtered low-concentration full tailings mortar (mass concentration between 15% and 25%), and its moisture content must meet the requirements of rolling compaction , generally between 5% and 10%.
  • the thickness of each layer of waste rock and dry tailings needs to be designed according to the backfill depth of the open pit, so as to ensure that the topmost backfill body at the end of backfill is waste rock.
  • the section view and plan view of the Phase II disposal project are shown in Figures 2 and 3, respectively.
  • the initial dam 4 of the dry tailings pile is constructed, one is to serve as the regional boundary between the dry tailings pile and the waste rock pile, and the other is to support the initial dry tailings pile.
  • the initial dam 4 is constructed by waste rocks and compacted.
  • the 3' moisture content of the dry tailings in the second phase of the disposal project can be controlled between 10% and 20%.
  • the dry tailings are stacked layer by layer from the upstream of the initial dam by using the inverted method, and the layer height is controlled within 5m, and gradually advance to the initial dam until it reaches the design elevation.
  • the final slope of the top surface of the dry tailings pile is between 0.5% and 1%.
  • Drainage prisms 5 are constructed during the stacking of dry tailings piles, and waste rock piles 2 are piled up in layers in an inverted manner, with the layer height controlled at 5-8m, and each layer needs to be rolled to meet the design requirements for compactness .
  • the outer slope of the waste rock pile is determined by the specific physical and mechanical properties of the waste rock, and the slope of the top surface of the waste rock pile is between 1% and 2%.
  • An anti-filter layer 6 is constructed between the drainage prism 5 and the waste rock pile.
  • the anti-filter layer 6 is composed of three layers of gravel with different particle sizes, and the particle gradation is from small to large along the direction from the waste rock pile to the drainage prism 5 .
  • the reverse filter layer 6 and the horizontal drainage pipe 7 laid under the dry tailing sand pile and the waste rock pile the surface precipitation on the pile surface and the water in the dry pile are discharged into the sump 8, which can effectively reduce the dry tail.
  • the infiltration line in the sand pile ensures that the fine-grained tailings will not be lost, thereby enhancing the stability of the pile.
  • the sewage collected in the sump 8 is discharged after reaching the standard through sedimentation treatment. Finally, level up the slope and top of the waste rock pile and lay a topsoil layer with a thickness of not less than 0.5m for later reclamation work.
  • the concentration of the tailings mortar discharged from the concentrator is generally between 15% and 25%. After the low concentration whole tailings mortar is dehydrated and thickened by the thickener, the concentration of the bottom flow can reach 50% to 65%.
  • Cake ie dry tailings.
  • the moisture content of dry tailings used for backfilling of open pits must meet the requirements of roller compaction, generally between 5% and 10%; the moisture content of dry tailings used for surface storage can be between 10% and 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种废石与干尾砂联合处置露天坑方法被公开。该方法包括:在露天坑底部回填一层废石层(2),将脱水压滤后的干尾砂输送至废石层(2)上,压实形成干尾砂层(3),废石层(2)与干尾砂层(3)交替堆叠;在废石层(2)与干尾砂层(3)堆叠层上方铺设初期坝(4),采用倒排式在初期坝(4)上游分层堆筑干尾砂堆(3');采用倒排式堆筑的干尾砂堆(3')外围分层堆筑废石堆(10),直至废石堆(10)区域顶面与干尾砂堆(3')区域顶面接壤;在废石堆(10)外围铺设排水棱体(5);在废石堆(10)与排水棱体(5)之间构筑反滤层(6)。该方法既能降低露天边坡失稳引发滑坡、泥石流等次生地质灾害的风险,又可避免因尾砂泄露及溃坝造成安全事故,实现废石与尾砂的安全堆存。

Description

一种废石与干尾砂联合处置露天坑方法 技术领域
本发明属于矿山露天坑回填处置领域,具体涉及一种废石与干尾砂联合处置露天坑方法。
背景技术
矿山露天开采形成的露天坑对周边环境影响较大:一方面,露天边坡易在外力作用下诱发局部边坡失稳,进而引发滑坡、泥石流等次生地质灾害,是矿山安全生产的重大安全隐患;另一方面,雨季露天坑汇水易通过裂隙渗流造成地下水环境污染,长期不加处置还会产生地表裂缝与塌陷等问题。近年来,面临闭坑或露天转地下的矿山日趋增多,对露天坑的处置方法也逐渐受到人们的关注。综上,露天坑合理回填处置、矿山排土场面积紧张及尾矿库库容不足等已成为制约露天矿山发展的主要难题。
目前露天坑回填处置方式主要有低浓度尾砂回填、膏体回填、干尾砂回填及废石回填,其中:(1)低浓度尾砂回填指将选矿厂排出的尾砂浆直接通过管道输送至露天坑进行回填。此法对露天坑的地质稳定性及矿坑渗透性要求较高,回填前必须进行防渗处理,否则尾矿浆中水分将向矿坑四边外渗;又由于低浓度尾砂浆含水率高,遇到不良地质作用时易发生安全事故;(2)膏体回填指通过在浓密后的尾砂浆中添加水泥等胶凝材料,将尾砂浆搅拌制备成-20um细粒含量不低于15%、质量浓度介于75%-80%的膏体物料,通过管道输送至露天坑回填。此法需配置深锥浓密机、搅拌槽及柱塞泵等设备,基建期投资相对较高,此外,膏体制备需添加絮凝剂与胶凝材料,运营成本相对较高;(3)干尾砂回填指将尾砂浆压滤制成滤饼,通过汽车或皮带输送至矿坑进行回填。干尾砂与废石单独回填,均对露天坑渗透性要求较低,但在多露天采坑矿山或土地面积紧张矿山,废石、干尾砂联合排放可大大节省占地面积,减少环境治理资金投入。
发明内容
本发明要解决的技术问题是:如何提供一种废石与干尾砂联合处置露天坑方法用于解决露天边坡诱发次生灾害的问题。
为解决上述技术问题,本发明提供一种废石与干尾砂联合处置露天坑方法,包括以下步骤:
步骤1:在露天坑底部回填一层废石层2,将脱水压滤后的干尾砂输送至废石层2上,压实形成干尾砂层3,废石层2与干尾砂层3交替堆叠,直至露天坑完全回填;
步骤2:在废石层2与干尾砂层3堆叠层上方铺设初期坝4,采用倒排式在初期坝4上游分层堆筑干尾砂堆3’,逐步向初期坝4推进直至达到设计标高;
步骤3:采用倒排式在步骤2中堆筑的干尾砂堆3’外围分层堆筑废石堆10,直至废石堆10区域顶面与干尾砂堆3’区域顶面接壤;
步骤4:在步骤3中废石堆10外围铺设排水棱体5;
步骤5:在步骤4中废石堆10与排水棱体5之间构筑反滤层6。
其中,所述步骤1中废石层2与低含水率干尾砂层3交替堆叠,包括:
步骤11:根据露天坑回填深度计算每层废石层2与干尾砂层3厚度,每层废石层3厚度控制为5-8m,干尾砂层3厚度控制在5m以下;
步骤12:根据步骤11中每层废石层2与干尾砂层3厚度对露天坑进行回填,使回填结束时的最上层回填体为废石层2。
其中,所述步骤12中干尾砂层3含水率控制在5%-10%区间;
所述步骤2中干尾砂堆3’含水率控制在10%-20%区间。
其中,所述步骤2中干尾砂堆3’顶面相对于地表面坡度介于0.5%-1%之间;
所述步骤3中废石堆10顶面相对于地表面坡度介于1%-2%之间。
其中,所述步骤5中反滤层6包括3层颗粒大小互不不同的碎石层;
所述3层碎石层沿废石堆10至排水棱体5方向颗粒级配由小至大。
其中,所述干尾砂堆3’与废石堆10下方设有水平排水管7;
所述排水管7一端向外延伸,连接集水池8;
通过所述排水棱体5、反滤层6及排水管7将堆面上的地表降水及堆内水分排入集水池8,降低干尾砂堆3’内的浸润线并保证细颗粒尾砂不流失,进而增强堆体的稳定性。
其中,所述步骤1中在露天坑底部回填一层废石层2之前对露天坑底及边坡进行清理,并对露天坑与地下水贯通的水力通道进行封堵。
其中,所述废石堆10坡面及坡顶平整后铺设表土层9,土层厚度不小于0.5m。
与现有技术相比较,本发明具备如下有益效果:
(1)把露天坑治理与排土场、尾矿库建设有效结合,既能降低露天边坡失稳引发滑坡、泥石流等次生地质灾害的风险,又可避免因尾砂泄露及溃坝造成安全事故,实现废石与尾砂的安全堆存。
(2)减少环境破坏,实现资源优化配置、以废置换,为矿山复垦及绿色矿山建设创造条件。
附图说明
图1为本发明废石-干尾砂分层回填剖面图;
图2为本发明废石-干尾砂地表堆存剖面图;
图3为本发明废石-干尾砂地表堆存平面图。
具体实施方式
为使本发明的目的、内容和优点更加清楚,下面对本发明的具体实施方式作进一步详细描述。
为解决上述技术问题,本实施例提供一种废石与干尾砂联合处置露天坑方法,如图1-图3所示,包括以下步骤:
步骤1:在露天坑底部回填一层废石层2,将脱水压滤后的干尾砂输送至废石层2上,压实形成干尾砂层3,废石层2与干尾砂层3交替堆叠,直至露天坑完全回填;
步骤2:在废石层2与干尾砂层3堆叠层上方铺设初期坝4,采用倒排式在初期坝4上游分层堆筑干尾砂堆3’,逐步向初期坝4推进直至达到设 计标高;
步骤3:采用倒排式在步骤2中堆筑的干尾砂堆3’外围分层堆筑废石堆10,直至废石堆10区域顶面与干尾砂堆3’区域顶面接壤;
步骤4:在步骤3中废石堆10外围铺设排水棱体5;
步骤5:在步骤4中废石堆10与排水棱体5之间构筑反滤层6。
其中,所述步骤1中废石层2与低含水率干尾砂层3交替堆叠,包括:
步骤11:根据露天坑回填深度计算每层废石层2与干尾砂层3厚度,每层废石层3厚度控制为5-8m,干尾砂层3厚度控制在5m以下;
步骤12:根据步骤11中每层废石层2与干尾砂层3厚度对露天坑进行回填,使回填结束时的最上层回填体为废石层2。
其中,所述步骤12中干尾砂层3含水率控制在5%-10%区间;
所述步骤2中干尾砂堆3’含水率控制在10%-20%区间。
其中,所述步骤2中干尾砂堆3’顶面相对于地表面坡度介于0.5%-1%之间;
所述步骤3中废石堆10顶面相对于地表面坡度介于1%-2%之间。
其中,所述步骤5中反滤层6包括3层颗粒大小互不不同的碎石层;
所述3层碎石层沿废石堆10至排水棱体5方向颗粒级配由小至大。
其中,所述干尾砂堆3’与废石堆10下方设有水平排水管7;
所述排水管7一端向外延伸,连接集水池8;
通过所述排水棱体5、反滤层6及排水管7将堆面上的地表降水及堆内水分排入集水池8,降低干尾砂堆3’内的浸润线并保证细颗粒尾砂不流失,进而增强堆体的稳定性。
其中,所述步骤1中在露天坑底部回填一层废石层2之前对露天坑底及边坡进行清理,并对露天坑与地下水贯通的水力通道进行封堵。
其中,所述废石堆10坡面及坡顶平整后铺设表土层9,土层厚度不小于0.5m。
实施例1
以深凹露天坑为例,设定地表封闭圈高程为0m。在一期处置工程阶段,首先对露天坑底及边坡进行清理作业,并对露天坑与地下水贯通的水力通 道进行封堵,避免回填体对地下及周边围岩1内水体造成污染。
如图1所示,通过汽车或皮带机将废石2排至露天坑底,经压路机碾压后形成5-8m厚的废石层。随后将压滤脱水后干尾砂3通过皮带机输送至底部废石层上并压实形成干尾砂层,且干尾砂层厚度控制在5m以下。其中,一期处置工程阶段用于露天坑回填的干尾砂3由低浓度全尾砂浆(质量浓度介于15%-25%)浓密并压滤形成,其含水率需符合碾压填筑要求,一般介于5%-10%。如此交替作业,直至露天坑完全回填。其中,需根据露天坑回填深度设计每层废石与干尾砂厚度,以确保回填结束时的最上层回填体为废石。
二期处置工程阶段剖面图及平面图分别如图2、3所示。根据设计选址建设干尾砂堆初期坝4,一是作为干尾砂堆与废石堆的区域分界线,二是对初期干尾砂堆起支撑作用。其中,初期坝4由废石构筑并捣实。为降低压滤成本,二期处置工程阶段的干尾砂3’含水率可控制在10%-20%之间。采用倒排式从初期坝上游分层堆筑干尾砂,层高控制在5m以内,并逐步向初期坝推进直至达到设计标高,最终干尾砂堆顶面坡度介于0.5%-1%。干尾砂堆堆筑过程中构筑排水棱体5,亦采用倒排式分层堆筑废石堆2,层高控制在5-8m,且每层均需碾压以满足密实度的设计要求。废石堆外坡坡度由废石具体的物理力学性质确定,废石堆顶面坡度介于1%-2%。排水棱体5与废石堆间构筑反滤层6,反滤层6由3层颗粒大小不同的碎石构成,沿废石堆至排水棱体5方向颗粒级配由小到大。铺埋反滤层时宜采用平板振捣器捣实且保证层次分明。通过排水棱体5、反滤层6及铺设于干尾砂堆与废石堆下的水平排水管7将堆面上的地表降水及干堆内水分排入集水池8,可有效降低干尾砂堆内的浸润线并保证细颗粒尾砂不流失,进而增强堆体的稳定性。集水池8内汇集的污水经沉淀处理达标后排放。最后,对废石堆坡面及坡顶平进行整并铺设表土层,层厚不小于0.5m,以便后期开展复垦工作。
选矿厂排出的尾砂浆浓度一般介于15%-25%,低浓度全尾砂浆经浓密机脱水浓密后,底流浓度可达50%-65%,高浓度底流浆经压滤机脱水制成滤饼(即干尾砂)。其中,用于露天坑回填的干尾砂含水率需满足碾压填筑要求,一般介于5%-10%;用于地表堆存的干尾砂含水率可介于10%-20%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

  1. 一种废石与干尾砂联合处置露天坑方法,其特征在于,包括以下步骤:
    步骤1:在露天坑底部回填一层废石层(2),将脱水压滤后的干尾砂输送至废石层(2)上,压实形成干尾砂层(3),废石层(2)与干尾砂层(3)交替堆叠,直至露天坑完全回填;
    步骤2:在废石层(2)与干尾砂层(3)堆叠层上方铺设初期坝(4),在初期坝(4)上游分层堆筑干尾砂堆(3’),逐步向初期坝(4)推进直至达到设计标高;
    步骤3:采用倒排式在步骤2中堆筑的干尾砂堆(3’)外围分层堆筑废石堆(10),直至废石堆(10)区域顶面与干尾砂堆(3’)区域顶面接壤;
    步骤4:在步骤3中废石堆(10)外围铺设排水棱体(5);
    步骤5:在步骤4中废石堆(10)与排水棱体(5)之间构筑反滤层(6)。
  2. 如权利要求1所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述步骤1中废石层(2)与低含水率干尾砂层(3)交替堆叠,包括:
    步骤11:根据露天坑回填深度计算每层废石层(2)与干尾砂层(3)厚度,每层废石层(3)厚度控制为5-8m,干尾砂层(3)厚度控制在5m以下;
    步骤12:根据步骤11中每层废石层(2)与干尾砂层(3)厚度对露天坑进行回填,使回填结束时的最上层回填体为废石层(2)。
  3. 如权利要求2所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述步骤12中干尾砂层(3)含水率控制在5%-10%区间;
    所述步骤2中干尾砂堆(3’)含水率控制在10%-20%区间。
  4. 如权利要求3所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述步骤2中干尾砂堆(3’)顶面相对于地表面坡度介于0.5%-1%之间;
    所述步骤3中废石堆(10)顶面相对于地表面坡度介于1%-2%之间。
  5. 如权利要求4所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述步骤5中反滤层(6)包括3层颗粒大小互不不同的碎石层;
    所述3层碎石层沿废石堆(10)至排水棱体(5)方向颗粒级配由小至大。
  6. 如权利要求5所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述干尾砂堆(3’)与废石堆(10)下方设有水平排水管(7);
    所述排水管(7)一端向外延伸,连接集水池(8);
    通过所述排水棱体(5)、反滤层(6)及排水管(7)将堆面上的地表降水及堆内水分排入集水池(8)。
  7. 如权利要求1所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述步骤1中在露天坑底部回填一层废石层(2)之前对露天坑底及边坡进行清理,并对露天坑与地下水贯通的水力通道进行封堵。
  8. 如权利要求1所述的废石与干尾砂联合处置露天坑方法,其特征在于,所述废石堆(10)坡面及坡顶平整后铺设表土层(9),土层厚度不小于0.5m。
PCT/CN2022/130710 2021-12-14 2022-11-08 一种废石与干尾砂联合处置露天坑方法 WO2023109378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111528049.0A CN114294056A (zh) 2021-12-14 2021-12-14 一种废石与干尾砂联合处置露天坑方法
CN202111528049.0 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109378A1 true WO2023109378A1 (zh) 2023-06-22

Family

ID=80967833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130710 WO2023109378A1 (zh) 2021-12-14 2022-11-08 一种废石与干尾砂联合处置露天坑方法

Country Status (2)

Country Link
CN (1) CN114294056A (zh)
WO (1) WO2023109378A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294056A (zh) * 2021-12-14 2022-04-08 万宝矿产有限公司 一种废石与干尾砂联合处置露天坑方法
CN115144567B (zh) * 2022-09-01 2022-11-11 中国有色金属工业昆明勘察设计研究院有限公司 一种上游式尾矿堆积坝勘测与稳定性评价方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216239A (zh) * 2013-04-27 2013-07-24 北京科技大学 一种矿山活动塌陷区回填处置方法
CN104653224A (zh) * 2014-12-12 2015-05-27 河北联合大学 露天坑尾砂胶结充填治理的方法
CN105040711A (zh) * 2015-06-25 2015-11-11 中钢集团马鞍山矿山研究院有限公司 一种利用废石加固尾矿干堆场的方法
CN106894817A (zh) * 2017-03-03 2017-06-27 中南大学 一种机械化上向分层楔合混合充填采矿法
CN108941146A (zh) * 2018-07-02 2018-12-07 北京科技大学 一种废石和全尾砂混合堆存方法
US20200300090A1 (en) * 2017-04-19 2020-09-24 China University Of Mining And Technology Method for controlling subsidence area caused by underground mining in adjoining open-pit mine
US10815631B1 (en) * 2019-05-29 2020-10-27 China Institute Of Water Resources And Hydropower Research Method for cemented material dam construction based on whole-process quality control
CN114294056A (zh) * 2021-12-14 2022-04-08 万宝矿产有限公司 一种废石与干尾砂联合处置露天坑方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103953008B (zh) * 2014-04-25 2015-09-09 化工部长沙设计研究院 一种适用于尾矿库的改进型混合坝
CN106168133B (zh) * 2016-08-25 2019-02-26 中国恩菲工程技术有限公司 露天坑填充方法
CN110409359B (zh) * 2019-06-20 2021-01-15 中国矿业大学 一种内排露天矿坑底水库分段建设方法
CN110566207A (zh) * 2019-09-10 2019-12-13 东北大学 一种露天转地下无底柱分段崩落法覆盖层全尾砂堆置方法
CN112814732A (zh) * 2021-02-20 2021-05-18 中南大学 一种废石与尾砂混合料浆制备与泵送充填装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103216239A (zh) * 2013-04-27 2013-07-24 北京科技大学 一种矿山活动塌陷区回填处置方法
CN104653224A (zh) * 2014-12-12 2015-05-27 河北联合大学 露天坑尾砂胶结充填治理的方法
CN105040711A (zh) * 2015-06-25 2015-11-11 中钢集团马鞍山矿山研究院有限公司 一种利用废石加固尾矿干堆场的方法
CN106894817A (zh) * 2017-03-03 2017-06-27 中南大学 一种机械化上向分层楔合混合充填采矿法
US20200300090A1 (en) * 2017-04-19 2020-09-24 China University Of Mining And Technology Method for controlling subsidence area caused by underground mining in adjoining open-pit mine
CN108941146A (zh) * 2018-07-02 2018-12-07 北京科技大学 一种废石和全尾砂混合堆存方法
US10815631B1 (en) * 2019-05-29 2020-10-27 China Institute Of Water Resources And Hydropower Research Method for cemented material dam construction based on whole-process quality control
CN114294056A (zh) * 2021-12-14 2022-04-08 万宝矿产有限公司 一种废石与干尾砂联合处置露天坑方法

Also Published As

Publication number Publication date
CN114294056A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023109378A1 (zh) 一种废石与干尾砂联合处置露天坑方法
CN103953008B (zh) 一种适用于尾矿库的改进型混合坝
CN101713291A (zh) 一种采煤塌陷区建筑用地混填复垦方法
CN111593742B (zh) 一种基于抛石挤淤法整改尾矿库的施工方法
CN112709233A (zh) 矿山废石与浓缩尾砂协同处置系统及施工方法
CN111648383A (zh) 一种黄土高填方边坡体内部排水方法
CN110541420B (zh) 一种山谷型生活垃圾填埋场安全开采方法及开采结构
CN104652581A (zh) 实现雨污分流的多级边坡锚固结构
CN110644427B (zh) 一种不良地质条件下河道岸坡生态防护结构及清淤方法
CN209338948U (zh) 一种透水性路面结构
Gowan et al. Co-disposal techniques that may mitigate risks associated with storage and management of potentially acid generating wastes
CN114293990A (zh) 一种露天坑的填充方法
CN113605492A (zh) 一种露天矿水资源立体式保护利用方法
CN114855762B (zh) 一种用于尾矿库闭库封场的装置与方法
CN217399609U (zh) 一种用于尾矿库闭库封场的装置
CN110566207A (zh) 一种露天转地下无底柱分段崩落法覆盖层全尾砂堆置方法
CN216477459U (zh) 一种露天坑填充结构
Breitenbach Overview: Tailings disposal and dam construction practices in the 21st century
CN108374468B (zh) 一种用于尾矿库老排洪系统破损封堵的方法
JP2017154127A (ja) 石炭灰の埋立方法
CN215829445U (zh) 一种排土场排水结构
CN218843272U (zh) 一种尾矿库库区和坝体连通式排渗系统
CN114856572B (zh) 一种废弃露天坑尾砂速凝造球充填方法
CN108797259B (zh) 一种在垃圾填埋场的垃圾堆体上行车的道路结构
RU2392377C1 (ru) Способ возведения дамбы наращивания яруса гидроотвала

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906130

Country of ref document: EP

Kind code of ref document: A1