WO2023109342A1 - 一种模拟深海环境的深海采矿混输提升试验系统 - Google Patents
一种模拟深海环境的深海采矿混输提升试验系统 Download PDFInfo
- Publication number
- WO2023109342A1 WO2023109342A1 PCT/CN2022/128867 CN2022128867W WO2023109342A1 WO 2023109342 A1 WO2023109342 A1 WO 2023109342A1 CN 2022128867 W CN2022128867 W CN 2022128867W WO 2023109342 A1 WO2023109342 A1 WO 2023109342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- deep
- lifting
- pump
- sea
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 45
- 238000005065 mining Methods 0.000 title claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 299
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 64
- 239000011707 mineral Substances 0.000 claims abstract description 64
- 238000000926 separation method Methods 0.000 claims abstract description 57
- 238000002156 mixing Methods 0.000 claims abstract description 44
- 238000004891 communication Methods 0.000 claims abstract description 4
- 238000005086 pumping Methods 0.000 claims description 17
- 230000008676 import Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 22
- 239000000463 material Substances 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 4
- 230000001502 supplementing effect Effects 0.000 abstract 3
- 238000010586 diagram Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 5
- 230000032258 transport Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21C—MINING OR QUARRYING
- E21C50/00—Obtaining minerals from underwater, not otherwise provided for
- E21C50/02—Obtaining minerals from underwater, not otherwise provided for dependent on the ship movements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
Definitions
- the invention relates to a deep-sea mining mixed transportation and lifting test system, in particular to a deep-sea mining mixed transportation and lifting test system simulating a deep sea environment.
- the lifting pump is an important component of the deep-sea mining lifting system.
- the lifting pump is an important component of the deep-sea mining lifting system.
- the land test platform that can be used for deep-sea mining lift pumps has the following three problems. First, the function and structure of the existing test platform are not perfect, and it is impossible to simulate the deep-water pressure environment of deep-sea mining.
- the second is that it is impossible to verify the influence of different mineral water mixture concentrations on the performance parameters of the lift pump.
- the third is that it is impossible to verify the influence of different flow rates on the performance parameters of the lift pump. Therefore, designing an onshore test bench that can simulate deep water pressure and change the concentration and flow velocity of mineral water mixture is an important problem facing the research of deep sea mining lift pumps.
- the purpose of the invention is to provide a deep-sea mining mixed transportation and lifting test system that simulates the deep-sea environment, which can simulate the deep-water pressure and change the concentration and flow rate of the mine-water mixture.
- the present invention includes a console, a water mixing system, a water fetching system, a mineral water separation system, a material return system, a lifting system, and a water replenishment system, wherein the water blending system is connected with the bottom bin, the water fetching system, and the water replenishment system
- the other ends of the water pumping system and the water supply system are connected with the mineral water separation system, and the mineral water separation system forms a circulation loop with the bottom bin through the feeding system and the lifting system.
- the water mixing system includes a water tank, the water tank is connected to the bottom tank, and the side of the water tank is provided with a water mixing port, a water fetching inlet and a water replenishing outlet, wherein the water mixing port is connected with a water mixing pump and a water mixing motor,
- the water fetching inlet is connected with the water fetching system, and the water replenishment outlet is connected with the water replenishment system.
- One end of the water fetching system communicates with the water fetching inlet of the water mixing system, and the other end communicates with the water fetching port of the mineral water separation box, and a water pump and a water fetching motor are connected to the pipeline of the water fetching system close to the mineral water separation box,
- the pump for fetching water is connected with the lifting pump, and the connecting pipeline is provided with a flow meter and a pressure gauge of the pumping system, and the other end of the lifting pump is connected with the fetching inlet of the water tank.
- the mine water separation system includes a mine water separation box, the inside of the mine water separation box is provided with a filter screen, the side of the mine water separation box is provided with a water replenishment port connected with the water replenishment system, a water discharge port connected with the water collection system, and a bottom is provided with The return port connected to the return system.
- the material return system includes a material return pipeline, the feed port of the return material pipeline communicates with the material return port on the mineral water separation box, and the material discharge port is placed in the bottom bin.
- the lifting system includes an agitator, the agitator is located in the bottom bin, the other end of the agitator is connected to the lifting pump, and a supercharger is arranged on the pipeline from the lifting pump to the mineral water separation tank.
- a flowmeter of the lifting system is arranged on the connecting pipeline between the lifting pump and the mineral water separation tank.
- the water supply system includes a water supply motor, a water supply pump and a water supply pipeline, the inlet of the water supply pipeline is connected with the water supply pump, the outlet is connected with the water supply port of the mineral water separation tank, and the water supply pump is connected with the water supply inlet of the water tank.
- the console is connected with the lifting pump and the motor, collects flow, pressure and water level information, and displays the collected data for reference by on-site staff.
- the present invention can return the mineral-water mixture and test water lifted by the lifting pump to the bottom bin and the water bin respectively to ensure the water circulation and ore circulation of the test, making the test more efficient and environmentally friendly;
- the present invention changes the rotating speed of water mixing motor and water pumping motor through console, thereby reaches the purpose of changing the concentration and flow velocity of mineral water mixture in the test process, making the test more convenient and quick to reflect the impact of mineral water mixture concentration and flow velocity on The effect of the lift pump;
- the present invention changes the lifting pressure of the lifting pump by controlling the supercharger, thereby simulating the pressure at different depths in the deep sea environment, and is suitable for various test environments;
- the ore particles placed in the bottom bin of the present invention can place ore particles of different diameters according to specific test requirements, and are suitable for various test environments.
- Fig. 1 is the overall structure schematic diagram of the present invention
- Fig. 2 is the schematic diagram of water mixing system of the present invention
- Fig. 3 is a schematic diagram of the water fetching system of the present invention.
- Fig. 4 is the schematic diagram of the mine water separation box of the mine water separation system of the present invention.
- Fig. 5 is a schematic diagram of the feeding system of the present invention.
- Fig. 6 is a schematic diagram of the lifting system of the present invention.
- Fig. 7 is a schematic diagram of the water replenishment system of the present invention.
- the present invention includes a control console 1, a water mixing system 2, a water pumping system 3, a mineral water separation system 4, a material return system 5, a lifting system 6, and a water replenishment system 7, wherein the water mixing system 2 and the bottom
- the main function of the console 1 is to control various motors and valves 9, and to control the operation of the lift pump 18. Collect flow, pressure and water level information, and display the collected data for reference by on-site staff.
- the water mixing system 2 includes a water tank 8, which is placed on the ground for water storage.
- One side of the water tank 8 is provided with a water mixing port and a water intake inlet, and the other side is provided with a water supply outlet, and the water mixing port
- a water-mixing pump 10 and a water-mixing motor 11 are connected at the place, and the flow rate of the water-mixing water pump 10 is controlled by controlling the rotating speed of the water-mixing motor 11.
- a valve 9 is arranged on the connecting pipeline between the water-mixing water pump 10 and the water tank 8, and a valve 9 is passed through the valve 9. Control the opening and closing of the water mixing system 2.
- the water fetching inlet is connected with the water fetching system 3
- the water replenishment outlet is connected with the water replenishment system 7 .
- the main function of the water mixing system 2 is to change the concentration of mineral water in the lifting system 6.
- the flow rate of the water mixing pump 10 can be adjusted by controlling the speed of the water mixing motor 11 to control the water mixing ratio, thereby changing the mixing concentration of the mineral water. .
- the water bin 8 is connected with the bottom bin 12, and a valve 9 is arranged on the connecting pipeline, and the discharge of ore particles is controlled through the valve 9.
- the bottom bin 12 has no cover on the upper part, and an outlet is provided on the lower part, which is used to connect with the water bin 8.
- the bottom bin 12 It is used to store ore particles, thereby simulating the intermediate warehouse of the deep sea mining hoisting system.
- the main function of the water fetching system 3 is to return the waste water separated from the mine water to the water tank 8 and drive the lift pump 18 to provide power for the lift pump 18 .
- One end of the water fetching system 3 communicates with the water fetching inlet of the water mixing system 2, and the other end communicates with the water fetching port 21 of the mineral water separation tank 13, and a water fetching pump 14 is connected to the pipeline of the water fetching system 3 near the mineral water separation tank 13 and the water pumping motor 15, the flow of the water fetching water pump 14 is controlled by controlling the water pumping motor 15 rotating speed, thereby controlling the lifting speed of the lifting pump 18.
- the pump 14 for fetching water is connected with the lift pump 18 through a pipeline, and operates by hydraulically driving the lift pump 18 while discharging waste water.
- the communication pipeline is provided with a flow meter 16 of the water fetching system and a pressure gauge 17 of the water fetching system, and the flow and pressure during the operation of the water fetching system are displayed by the flow meter and the pressure gauge.
- the lift pump 18 is connected together with the water intake of the water bin 8 through a pipeline, so that the waste water discharged from the water fetching system 3 returns to the water bin 8 to ensure the test water circulation.
- the main function of the mineral water separation system 4 is to separate ore and water, and by controlling the slope of the filter screen 19, the mixing concentration of the return material can be adjusted.
- the mineral water separation system 4 includes a mineral water separation box 13, and a filter screen 19 is arranged inside the mine water separation box 13.
- the filter screen 19 is placed in the mine water separation box 13 at a certain angle, and the return material can be adjusted by controlling the slope of the filter screen 19. mixed concentration.
- One side of the mineral water separation box 13 is provided with a water supply port 23, which is connected with the water supply system 7, and the other side is provided with a water supply port 21 and a water level measuring gauge 20, and the water supply port 21 is connected with the water supply system 3, and the water level measuring gauge 20 is used for monitoring
- the water level in the mineral water separation box 13 is provided with a material return port 22 at the bottom, which is connected with the material return system 5 .
- the main function of the material return system 5 is to simulate the process of transporting ore from mine carts to the intermediate warehouse. It can realize mineral circulation improvement and ensure the test ore circulation, including the return pipe 24, the feed port of the return pipe 24 is connected with the return port 22 on the mineral water separation box 13, and the discharge port is directly placed in the bottom bin 12, The mineral water particles separated by the mineral water separation box 13 are directly returned to the bottom bin 12 through the return pipeline 24 to ensure the circulation of the test ore.
- the return pipeline 24 is provided with a return system flow meter 25 for monitoring the flow in the return pipeline 24 .
- the main function of the lifting system 6 is to transport the mixed mineral water mixture to the mineral water separation system 4 to realize the lifting function, including the lifting system flow meter 26, the supercharger 27 and the agitator 28, the agitator 28 is located in the bottom bin 12 and is used to stir the mineral-water mixture in the bottom bin 12 so that the concentration of the mineral-water mixture in the bottom bin 12 is uniform.
- the agitator 28 is connected with the lift pump 18 through the pipeline, and the lift pump 18 lifts the mineral water mixture in the bottom bin 12 to the high mineral water separation tank 13 through the pipeline.
- Lifting system flowmeter 26 and supercharger 27 are arranged in the pipeline from lifting pump 18 to mineral water separation tank 13, and lifting system flowmeter 26 is used for monitoring the flow in pipeline, and supercharger 27 is used for improving pipeline The purpose of this is to simulate the high pressure environment of deep sea mining hoisting systems.
- the main function of the replenishment system 7 is to supplement the water level of the mineral water separation system 4 to ensure that the water volume of the water fetching system 3 is sufficient during the test and to ensure the test water cycle, including a replenishment motor 29 , a replenishment water pump 30 and a replenishment pipeline 31 .
- the inlet of the replenishment pipeline 31 is connected with the replenishment water pump 30, and its outlet is connected with the replenishment water port 23 of the mineral water separation tank 13,
- the replenishment water pump 30 is connected with the replenishment inlet of the water tank 8 through a pipeline, and the replenishment water motor 29 is connected with the replenishment water pump 30,
- the flow rate of the water supplement pump 30 is controlled by controlling the rotational speed of the water supplement motor 29 .
- the console controls the operation of the water mixing motor and the water replenishment motor, thereby driving the operation of the water mixing system and the water replenishment system.
- the water mixing system transports the water in the water tank to the bottom tank, so that the bottom tank forms a mineral water mixture with a suitable concentration.
- the water supply system transports the water in the water tank to the mineral water separation system.
- the console controls the operation of the water pumping motor, and the water pumping system starts to work.
- the water fetching system discharges the water in the mineral water separation system and returns it to the water tank, so as to realize the test water cycle.
- While the water pumping system is draining water, it will also drive the lift pump to work and drive the lift system to run.
- the agitator in the lifting system runs continuously to make the concentration of the mineral water mixture in the bottom bin uniform.
- the lifting system lifts the mineral water mixture in the bottom bin to the mineral water separation system through the lifting pump, and the supercharger in the lifting system will also work to increase the pressure in the lifting system.
- the mineral water separation system adjusts the mixed concentration of mineral water through the filter screen, and discharges the mineral water mixture into the bottom bin through the return system, so as to realize the test Ore cycle.
- the land test bench starts to work in a cycle, and the water mixing system, water replenishment system, water pumping system, lifting system, mineral water separation system and material return system are all in operation, realizing the land test of the deep sea mining lift pump.
- adjusting the speed of the water mixing motor through the console can change the concentration of the mineral water mixture, and adjusting the speed of the water pumping motor through the console can change the working efficiency of the lift pump, thereby changing the flow rate of the mineral water mixture .
- adjusting the speed of the water mixing motor through the console can change the concentration of the mineral water mixture
- adjusting the speed of the water pumping motor through the console can change the working efficiency of the lift pump, thereby changing the flow rate of the mineral water mixture.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
Abstract
一种模拟深海环境的深海采矿混输提升试验系统,包括控制台(1)、掺水系统(2)、打水系统(3)、矿水分离系统(4)、回料系统(5)、提升系统(6)、补水系统(7),其中,所述的掺水系统(2)与底仓(12)、打水系统(3)和补水系统(7)连通,所述的打水系统(3)和补水系统(7)的另一端均与矿水分离系统(4)连通,所述的矿水分离系统(4)通过回料系统(5)和提升系统(6)与底仓(12)形成循环回路。该系统将提升泵(18)提升后的矿水混合物以及试验用水重新分别返回到底仓(12)和水仓(8)中,确保试验的水循环和矿石循环,使试验更加高效环保;通过控制台(1)改变掺水电机(11)和打水电机(15)的转速,从而达到在试验过程中改变矿水混合物浓度和流速的目的,使试验更加方便快捷的反映出矿水混合物浓度及流速对提升泵(18)的影响。
Description
本发明涉及一种深海采矿混输提升试验系统,尤其涉及一种模拟深海环境的深海采矿混输提升试验系统。
为了缓解工业社会对各种矿产资源的急需,提高深海矿产资源的开采技术水平符合国家政策导向和发展战略的需要,而提升泵是深海采矿提升系统的重要部件。为更好地了解到提升泵的性能参数,必须采取试验进行验证,由于直接进行深海试验存在的风险很大,耗费资金与时间也多,因此进行陆上试验可以减小风险和损耗。目前,可用于深海采矿提升泵的陆上试验平台存在着以下三个问题,一是现有试验平台功能结构不完善,无法做到模拟深海采矿深水压强的环境。二是无法验证不同的矿水混合物浓度对提升泵性能参数影响。三是无法验证不同的流速对提升泵性能参数影响。因此,设计出能够模拟深水压强和改变矿水混合物浓度、流速的陆上试验台是目前研究深海采矿提升泵面临的重要问题。
发明内容
发明目的:本发明目的是提供一种模拟深海环境的深海采矿混输提升试验系统,能够模拟深水压强和改变矿水混合物浓度、流速。
技术方案:本发明包括控制台、掺水系统、打水系统、矿水分离系统、回料系统、提升系统、补水系统,其中,所述的掺水系统与底仓、打水系统和补水系统连通,所述的打水系统和补水系统的另一端均与矿水分离系统连通,所述的矿水分离系统通过回料系统和提升系统与底仓形成循环回路。
所述的掺水系统包括水仓,所述的水仓与底仓连通,水仓侧面设有掺水口、打水入口和补水出口,其中,掺水口处连接有掺水水泵和掺水电机,打水入口与打水系统连接,补水出口与补水系统连接。
所述打水系统的一端与掺水系统的打水入口连通,另一端与矿水分离箱的打水口连通,打水系统靠近矿水分离箱的管路上连接有打水水泵和打水电机,打水水泵与提升泵连接,该连通管路上设有打水系统流量表和打水系统压力表,提升泵另一端与水仓的打水入口连接。
所述的矿水分离系统包括矿水分离箱,矿水分离箱内部设有滤网,矿水分离箱侧面设有与补水系统相连的补水口、与打水系统相连的打水口,底部设有与回料系统相连的回料口。
所述的回料系统包括回料管道,回料管道的进料口与矿水分离箱上的回料口连通,出料口放置在底仓内。
所述的提升系统包括搅拌器,所述的搅拌器位于底仓内,搅拌器另一端与提升泵连接,所述的提升泵至矿水分离箱的管路上设置增压器。
所述的提升泵与矿水分离箱的连通管路上设置有提升系统流量表。
所述的补水系统包括补水电机、补水水泵和补水管道,补水管道的进口与补水水泵相连,其出口与矿水分离箱的补水口相连,所述补水水泵与水仓的补水入口相连。
所述的控制台与提升泵和电机连接,采集流量、压力和水位信息,将采集的数据显示出来供现场工作人员参考。
(1)本发明能够将提升泵提升后的矿水混合物以及试验用水重新分别返回到底仓和水仓中,确保试验的水循环和矿石循环,使试验更加高效环保;
(2)本发明通过控制台改变掺水电机和打水电机的转速,从而达到在试验过程中改变矿水混合物浓度和流速的目的,使试验更加方便快捷的反映出矿水混合物浓度及流速对提升泵的影响;
(3)本发明通过控制增压器来改变提升泵的提升压强,从而模拟出深海环境下不同深度的压强,适合多种试验环境;
(4)本发明中底仓放置的矿石颗粒,可按照具体的试验要求放置不同直径的矿石颗粒,适合多种试验环境。
图1为本发明的整体结构示意图;
图2为本发明的掺水系统示意图;
图3为本发明的打水系统示意图;
图4为本发明矿水分离系统的矿水分离箱示意图;
图5为本发明的回料系统示意图;
图6为本发明的提升系统示意图;
图7为本发明的补水系统示意图。
下面结合附图对本发明作进一步说明。
如图1所示,本发明包括控制台1、掺水系统2、打水系统3、矿水分离系统4、回料系统5、提升系统6、补水系统7,其中,掺水系统2与底仓12、打水系统3和补水系统7连通,打水系统3和补水系统7的另一端均与矿水分离系统4连通,矿水分离系统4通过回料系统5和提升系统6与底仓12形成循环回路。控制台1的主要功能是对各种电机和阀门9进行控制,并控制提升泵18的运行。采集流量、压力和水位信息,将采集的数据显示出来供现场工作人员参考。
如图2所示,掺水系统2包括水仓8,水仓8放置在地面用以蓄水,水仓8一侧设有掺水口和打水入口,另一侧设有补水出口,掺水口处连接有掺水水泵10和掺水电机11,通过控制掺水电机11的转速来控制掺水水泵10的流量,掺水水泵10与水仓8的连接管路上设有阀门9,通过阀门9控制掺水系统2的开闭。打水入口与打水系统3连接,补水出口与补水系统7连接。掺水系统2的主要功能是改变提升系统6内的矿水浓度,试验过程中,通过控制掺水电机11的转速可调节掺水水泵10的流量进而控制掺水比例,从而改变矿水混合浓度。
水仓8与底仓12连通,连通管路上设有阀门9,通过阀门9来控制矿石颗粒的排出,底仓12上部无盖,下部设置有一出口,用来与水仓8连接,底仓12用来存储矿石颗粒,从而模拟深海采矿提升系统的中间仓。
如图3所示,打水系统3的主要功能是将矿水分离的废水打回水仓8,同时驱动提升泵18,为提升泵18提供动力。打水系统3的一端与掺水系统2的打水入口连通,另一端与矿水分离箱13的打水口21连通,打水系统3靠近矿水分离箱13的管路上连接有打水水泵14和打水电机15,通过控制打水电机15转速来控制打水水泵14的流量,从而控制提升泵18的提升速度。打水水泵14通过管道与提升泵18连接,在排放废水的同时通过液压驱动提升泵18运行。该连通管路上设有打水系统流量表16和打水系统压力表17,通过流量表和压力表来显示打水系统运行过程中的流量和压力。提升泵18通过管道与水仓8的打水入口连接在一起,使打水系统3排出的废水返回水仓8,保证试验水循环。
如图4所示,矿水分离系统4的主要功能是进行矿石与水分离,通过控制滤网19 斜度,可调节回料混合浓度。矿水分离系统4包括矿水分离箱13,矿水分离箱13内部设有滤网19,滤网19呈一定角度放置在矿水分离箱13中,通过控制滤网19斜度可以调节回料混合浓度。矿水分离箱13一侧设有补水口23,与补水系统7相连,另一侧设有打水口21和水位测量表20,打水口21与打水系统3相连,水位测量表20用来监控矿水分离箱13中的水位,底部设有回料口22,与回料系统5相连。
如图5所示,回料系统5的主要功能是模拟矿车采矿输送到中间仓的过程。可实现矿物循环提升,保证试验矿石循环,包括回料管道24,回料管道24的进料口与矿水分离箱13上的回料口22连通,出料口直接放置在底仓12内,矿水分离箱13分离出来的矿水颗粒通过回料管道24直接返回底仓12,保证试验矿石循环。回料管道24上设有回料系统流量表25,用来监控回料管道24中的流量。
如图6所示,提升系统6的主要功能是将混合好的矿水混合物输送到矿水分离系统4,实现提升功能,包括提升系统流量表26、增压器27以及搅拌器28,搅拌器28位于底仓12内,用来搅拌底仓12中的矿水混合物,使底仓12中的矿水混合物浓度均匀。搅拌器28通过管道与提升泵18连接,提升泵18通过管道将底仓12中的矿水混合物提升到高处的矿水分离箱13中。在提升泵18至矿水分离箱13的管路中设置有提升系统流量表26和增压器27,提升系统流量表26用来监测管路中的流量,增压器27用来提高管路中的压强,其目的是模拟深海采矿提升系统的高压强环境。
如图7所示,补水系统7的主要功能是补充矿水分离系统4的水位,保证试验过程打水系统3水量充足,保障试验水循环,包括补水电机29、补水水泵30以及补水管道31。补水管道31的进口与补水水泵30相连,其出口与矿水分离箱13的补水口23相连,补水水泵30通过管道与水仓8的补水入口相连,补水电机29与补水水泵30连接在一起,通过控制补水电机29的转速来控制补水水泵30的流量。
本发明的工作原理:
陆上试验台开始工作时,水仓中装有适量的水,底仓中也装有适量的矿水混合物。控制台控制掺水电机与补水电机运行,从而带动掺水系统与补水系统运行。掺水系统将水仓中的水输送至底仓中,使底仓形成浓度适合的矿水混合物。同时补水系统将水仓中的水输送至矿水分离系统中,当矿水分离系统中的水位到达一定高度后控制台控制打水电机运行,打水系统开始工作。打水系统将矿水分离系统中的水排出返回至水仓,以此实现试验水循环。
打水系统在排水的同时还会驱动提升泵工作,带动提升系统运行。提升系统中的搅拌器不断运行,使底仓中的矿水混合物浓度均匀。提升系统将底仓中的矿水混合物通过提升泵提升到矿水分离系统中,同时提升系统中的增压器也会工作,提高提升系统中的压强。当提升系统将底仓中的矿水混合物运输到矿水分离系统后,矿水分离系统通过滤网调节矿水混合浓度,并通过回料系统将矿水混合物排放到底仓中,以此实现试验矿石循环。此时陆上试验台开始循环工作,掺水系统、补水系统、打水系统、提升系统、矿水分离系统以及回料系统都在运行,实现深海采矿提升泵的陆上试验。
在陆上试验平台运行过程中,通过控制台调节掺水电机的转速可以改变矿水混合物的浓度,通过控制台调节打水电机的转速可以改变提升泵的工作效率,从而改变矿水混合物的流速。以此验证不同的矿水混合物浓度和流速对提升泵性能参数的影响。
Claims (9)
- 一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,包括控制台(1)、掺水系统(2)、打水系统(3)、矿水分离系统(4)、回料系统(5)、提升系统(6)、补水系统(7),其中,所述的掺水系统(2)与底仓(12)、打水系统(3)和补水系统(7)连通,所述的打水系统(3)和补水系统(7)的另一端均与矿水分离系统(4)连通,所述的矿水分离系统(4)通过回料系统(5)和提升系统(6)与底仓(12)形成循环回路。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述的掺水系统(2)包括水仓(8),所述的水仓(8)与底仓(12)连通,水仓(8)侧面设有掺水口、打水入口和补水出口,其中,掺水口处连接有掺水水泵和掺水电机,打水入口与打水系统(3)连接,补水出口与补水系统(7)连接。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述打水系统(3)的一端与掺水系统(2)的打水入口连通,另一端与矿水分离箱(13)的打水口(21)连通,打水系统(3)靠近矿水分离箱(13)的管路上连接有打水水泵和打水电机,打水水泵与提升泵(18)连接,该连通管路上设有打水系统流量表和打水系统压力表,提升泵(18)另一端与水仓(8)的打水入口连接。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述的矿水分离系统(4)包括矿水分离箱(13),矿水分离箱(13)内部设有滤网(19),矿水分离箱(13)侧面设有与补水系统(7)相连的补水口、与打水系统(3)相连的打水口,底部设有与回料系统相连的回料口(22)。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述的回料系统(5)包括回料管道(24),回料管道(24)的进料口与矿水分离箱(13)上的回料口连通,出料口放置在底仓(12)内。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述的提升系统(6)包括搅拌器(28),所述的搅拌器(28)位于底仓(12)内,搅拌器另一端与提升泵(18)连接,所述的提升泵与矿水分离箱(13)连通,其连通管路上设置有增压器(27)。
- 根据权利要求6所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述的提升泵与矿水分离箱的连通管路上设置有提升系统流量表(26)。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特 征在于,所述的补水系统(7)包括补水电机、补水水泵和补水管道(31),补水管道(31)的进口与补水水泵相连,其出口与矿水分离箱(13)的补水口(23)相连,所述补水水泵与水仓(8)的补水入口相连。
- 根据权利要求1所述的一种模拟深海环境的深海采矿混输提升试验系统,其特征在于,所述的控制台(1)与提升泵(18)和电机连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111516490.7A CN116044775A (zh) | 2021-12-13 | 2021-12-13 | 一种模拟深海环境的深海采矿混输提升试验系统 |
CN202111516490.7 | 2021-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023109342A1 true WO2023109342A1 (zh) | 2023-06-22 |
Family
ID=86124495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/128867 WO2023109342A1 (zh) | 2021-12-13 | 2022-11-01 | 一种模拟深海环境的深海采矿混输提升试验系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116044775A (zh) |
WO (1) | WO2023109342A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116878799A (zh) * | 2023-09-06 | 2023-10-13 | 天津大学 | 深海采矿柔性立管输送螺旋流振动响应测试装置及方法 |
CN117104890A (zh) * | 2023-09-08 | 2023-11-24 | 哈尔滨工业大学(威海) | 一种变质量稳态输送中间仓及其实现的依速变量控制方法 |
CN117145813A (zh) * | 2023-09-26 | 2023-12-01 | 佛山市顺德区卓高电机制造有限公司 | 一种节能水泵 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116839876B (zh) * | 2023-05-09 | 2024-07-02 | 江苏科技大学 | 一种模拟海水运动影响的深海采矿混输提升试验系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208043599U (zh) * | 2018-04-18 | 2018-11-02 | 中南大学 | 一种深海矿石输送系统实验装置 |
CN109611097A (zh) * | 2018-11-27 | 2019-04-12 | 江苏科技大学 | 一种新型深海采矿提升系统 |
CN110006625A (zh) * | 2019-04-02 | 2019-07-12 | 中南大学 | 一种深海矿石水力输送系统模型实验装置 |
CN110220732A (zh) * | 2019-07-08 | 2019-09-10 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | 一种深海料仓溢料试验装置 |
CN110779703A (zh) * | 2019-11-22 | 2020-02-11 | 浙江理工大学 | 一种模拟深海采矿海水波动对管道影响的实验装置 |
CN111322253A (zh) * | 2020-01-30 | 2020-06-23 | 浙江理工大学 | 深海采矿陆上浆料提升实验平台 |
CN112747880A (zh) * | 2021-01-04 | 2021-05-04 | 浙江理工大学 | 一种对深海采矿提升系统振动研究的实验装置 |
-
2021
- 2021-12-13 CN CN202111516490.7A patent/CN116044775A/zh active Pending
-
2022
- 2022-11-01 WO PCT/CN2022/128867 patent/WO2023109342A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208043599U (zh) * | 2018-04-18 | 2018-11-02 | 中南大学 | 一种深海矿石输送系统实验装置 |
CN109611097A (zh) * | 2018-11-27 | 2019-04-12 | 江苏科技大学 | 一种新型深海采矿提升系统 |
CN110006625A (zh) * | 2019-04-02 | 2019-07-12 | 中南大学 | 一种深海矿石水力输送系统模型实验装置 |
CN110220732A (zh) * | 2019-07-08 | 2019-09-10 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | 一种深海料仓溢料试验装置 |
CN110779703A (zh) * | 2019-11-22 | 2020-02-11 | 浙江理工大学 | 一种模拟深海采矿海水波动对管道影响的实验装置 |
CN111322253A (zh) * | 2020-01-30 | 2020-06-23 | 浙江理工大学 | 深海采矿陆上浆料提升实验平台 |
CN112747880A (zh) * | 2021-01-04 | 2021-05-04 | 浙江理工大学 | 一种对深海采矿提升系统振动研究的实验装置 |
Non-Patent Citations (1)
Title |
---|
DAI YU ET AL.: "Numerical and experimental investigations on pipeline internal solid-liquid mixed fluid for deep ocean mining", OCEAN ENGINEERING, no. 220, 3 December 2020 (2020-12-03), pages 1 - 14, XP086445636, ISSN: 0029-8018, DOI: 10.1016/j.oceaneng.2020.108411 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116878799A (zh) * | 2023-09-06 | 2023-10-13 | 天津大学 | 深海采矿柔性立管输送螺旋流振动响应测试装置及方法 |
CN117104890A (zh) * | 2023-09-08 | 2023-11-24 | 哈尔滨工业大学(威海) | 一种变质量稳态输送中间仓及其实现的依速变量控制方法 |
CN117104890B (zh) * | 2023-09-08 | 2024-05-03 | 哈尔滨工业大学(威海) | 一种变质量稳态输送中间仓及其实现的依速变量控制方法 |
CN117145813A (zh) * | 2023-09-26 | 2023-12-01 | 佛山市顺德区卓高电机制造有限公司 | 一种节能水泵 |
CN117145813B (zh) * | 2023-09-26 | 2024-03-19 | 佛山市顺德区卓高电机制造有限公司 | 一种节能水泵 |
Also Published As
Publication number | Publication date |
---|---|
CN116044775A (zh) | 2023-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023109342A1 (zh) | 一种模拟深海环境的深海采矿混输提升试验系统 | |
CN104504970B (zh) | 一种基于压力控制的小型空化实验装置 | |
CN206045936U (zh) | 一种钻井液添加剂的自动配比装置 | |
CN104005730A (zh) | 一种全液压固井车 | |
CN106460492B (zh) | 水合系统和方法 | |
CN202741248U (zh) | 喷射搅拌式浮选机 | |
CN206604404U (zh) | 一种土木工程施工混料供给装置 | |
CN112302965A (zh) | 一种渣浆泵性能检测方法和装置 | |
CN108444718B (zh) | 泵与透平两用多相特性测试台及其测试方法 | |
CN216691417U (zh) | 一种油气水三相混输泵试验系统 | |
CN217755854U (zh) | 一种深海采矿垂直提升实验装置 | |
CN106337678B (zh) | 双泵电动混砂撬 | |
CN215647596U (zh) | 一种线路板生产用药水自动投料装置 | |
CN213986061U (zh) | 一种研究不同流动方向下弯管内部磨损情况的试验台 | |
CN208694927U (zh) | 一种垃圾渗滤液处理用生化添加剂注入装置 | |
CN102901650B (zh) | 一种货油系统的测试装置和方法 | |
CN212563693U (zh) | 测试油液含气量对油泵性能影响的试验台 | |
CN205483554U (zh) | 一种用于测试新能源车辆变速箱的试验台 | |
CN206970192U (zh) | 一种储液箱及灌装机 | |
CN205677560U (zh) | 一种适用于钻井平台用的自动加料装置 | |
CN206372771U (zh) | 一种自动倒罐配液罐 | |
CN205690063U (zh) | 一种一泵带四机橇装设备 | |
CN205091119U (zh) | 滴灌带抗堵塞检测装置 | |
CN221193344U (zh) | 一种智能化水泥土搅拌桩环保型加送料装置 | |
CN201372212Y (zh) | 一种溶盐系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22906094 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |