WO2023109106A1 - 一种短流程贝氏体热作模具及其制备方法 - Google Patents

一种短流程贝氏体热作模具及其制备方法 Download PDF

Info

Publication number
WO2023109106A1
WO2023109106A1 PCT/CN2022/105085 CN2022105085W WO2023109106A1 WO 2023109106 A1 WO2023109106 A1 WO 2023109106A1 CN 2022105085 W CN2022105085 W CN 2022105085W WO 2023109106 A1 WO2023109106 A1 WO 2023109106A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
bainite
nitriding
preparation
hot
Prior art date
Application number
PCT/CN2022/105085
Other languages
English (en)
French (fr)
Inventor
李爽
曹珍
王真
刘龙
时彦林
杨晓彩
杨振
张伦
滑英丽
夏明媚
Original Assignee
河北工业职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北工业职业技术学院 filed Critical 河北工业职业技术学院
Publication of WO2023109106A1 publication Critical patent/WO2023109106A1/zh
Priority to US18/226,219 priority Critical patent/US20230366055A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/24Making specific metal objects by operations not covered by a single other subclass or a group in this subclass dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the present invention provides a short-flow bainite hot-working mold and its preparation method, which solves the problems of long manufacturing cycle of the current hot-working mold, many heat treatment processes, serious time-consuming and energy-consuming problems, etc. technical problem.
  • the preparation steps of the hot work mold are as follows:
  • the cooling rate of the material after forging is controlled between 0.5-3°C/s to obtain a mold material with a bainite structure, and its hardness is 390- 450HV30 hardness range; at the same time, due to the characteristics of material composition, it has the ability of secondary strengthening of bainite tempering.
  • the surface nitriding treatment is to nitriding the mold insert with precise dimensions at 520-600°C, the thickness of the nitriding layer is 110-150 ⁇ m, and the thickness of the white layer is 3- 8 ⁇ m. At this point, the hardness of the mold insert surface increases to 820-920HV 0.3 .
  • the mold insert is mechanically finished after the first tempering to obtain a mold insert with accurate dimensions, the second tempering is omitted, and the second tempering heat treatment is combined with the nitriding heat treatment, by This omits an energy-consuming heat treatment process.
  • the method for preparing the bainite hot-working mold of the present invention is as follows:
  • the forging conditions are as follows: heat the die steel billet to 1050-1150°C for 6-10h, carry out multi-directional forging, control the final forging temperature ⁇ 980°C, and control the cooling at a cooling rate of 0.5-3°C/s after forging to obtain Bainian Body tissue mold blank.
  • the hardness of the mold blank with bainite structure is 390-450HV30, and it can be directly used for mechanical rough machining without special annealing and softening treatment.
  • due to the characteristics of material composition it has the ability of secondary strengthening of bainite tempering.
  • the short-flow bainite hot working die of this embodiment is composed of the following elements by mass percentage: C: 0.55%; Si: 0.22%; Mn: 1.30%; W: 2.50%; Mo: 4.50%; V: 0.80% ; Co: 0.90%; RE: 0.05%, P: 0.01%, S: 0.01%, and the rest are Fe and unavoidable impurities.
  • Comparing Example 1 with Comparative Example 1 it can be seen that the technical solution of the present invention, after omitting one-step forging and annealing and softening, one-step high-temperature quenching and hardening, and one-step secondary tempering treatment, the performance of the mold insert material and the effect of long-process processing Quite, in terms of heart hardness, it is even slightly better. After omitting the above-mentioned process, the preparation cycle of the hot work mold can be significantly reduced, energy consumption can be reduced, and production cost can be reduced.
  • Example 1 Comparing Example 1 with Comparative Example 2, it can be seen that after changing the alloy composition of the mold steel, if the mold insert is still prepared according to the mold preparation process of Example 1 of the present invention, the technical effect of Example 1 cannot be obtained (Example 1 1.
  • the core hardness is 50.5HRC
  • the impact toughness value Ak is 106J
  • the surface hardness is increased to 910HV 0.3 ). This shows that the unique die steel alloy composition of the present invention provides a precondition for omitting process steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Articles (AREA)
  • Forging (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

一种短流程贝氏体热作模具的制备方法,包括:设计模具钢成分为:C:0.50-0.60%,Si:0.20-0.25%,Mn:1.00-1.50%,W:2.10-3.00%,Mo:3.50-5.00%,V:0.50-1.00%,Co:0.60-1.10%,P≤0.02%,RE:0.01-0.10%,[RE]/[S]>3.0,[RE]×[S]<0.004%,余量为Fe和不可避免的杂质。通过对模具钢成分设计和调整,锻造和控冷后的贝氏体组织模具钢材料硬度较低,可直接机粗加工,而锻造及机粗加工后经一次回火处理,使模具钢材料贝氏体发生二次强化效应,此时的模具钢兼具优良的硬度、耐磨性和韧性,具有极佳的综合力学性能。短流程贝氏体热作模具的制备方法省略了现有技术中机械粗加工之间的退火软化和机械粗加工后的淬火硬化工序,缩短热作模具的生产周期,降低了能耗和生产成本。还提供了一种短流程贝氏体热作模具。

Description

一种短流程贝氏体热作模具及其制备方法 技术领域
本发明涉及模具制造技术领域,尤其涉及一种短流程贝氏体热作模具及其制备方法。
背景技术
模具工业作为制造业的基石,在现代工业发展过程中起着非常重要的作用。模具钢,特别是热作模具钢,在工业制造领域中具有非常广泛的应用,如热锻模具、压铸模具和热作模具等。
传统的热作模具从模具材料制造到成品模具往往需要十几道的生产流程。如:模具材料冶炼-铸造-退火处理-锻造-锻造退火-模具机加工(粗加工)-模具热处理-模具精加工-模具渗氮处理等。
在模具的制造过程中,模具要经过多次的加热及冷却热处理进行材料组织调控,以满足机加工和生产过程中对于材料性能的要求,如材料硬度等。在模具材料何模具的制备过程中,材料需要进行多次热处理,包括锻后软化退火、淬火硬化、软化回火、表面强化热处理工艺等。具体地,如模具材料锻造后进行长时间的球化退火处理降低硬度以便进行机加工(硬度太大无法机加工)。机加工后还需要进行淬火硬化和回火处理,以得到良好的综合力学性能。在进行多次回火并进过精加工后还需进行表面强化热处理工艺等。由此可见,目前的热作模具制造周期长,热处理工序多,耗时耗能严重。
发明内容
(一)要解决的技术问题
鉴于现有技术的上述缺点、不足,本发明提供一种短流程贝氏体热作模具及其制备方法,其解决了目前热作模具制造周期长,热处理工序 多,耗时和耗能严重等技术问题。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
第一方面,本发明提供一种短流程贝氏体热作模具的制备方法,其包括:
设计模具钢成分为(按质量百分比计):C:0.50-0.60%,Si:0.20-0.25%,Mn:1.00-1.50%,W:2.10-3.00%,Mo:3.50-5.00%,V:0.50-1.00%,Co:0.60-1.10%,P≤0.02%,RE:0.01-0.10%,[RE]/[S]>3.0,[RE]×[S]<0.004%,余量为Fe和不可避免的杂质;
所述热作模具的制备步骤如下:
S1、按照模具钢成分称量合金原料,经冶炼、铸造、退火,得到模具钢坯料;
S2、将模具钢坯料锻造,得到贝氏体组织模具钢材料;
S3、机械粗加工,制成模具镶块;
S4、回火处理,通过贝氏体二次强化作用得到硬化后的贝氏体模具镶块;
S5、机械精加工,得到尺寸精确的模具镶块;
S6、表面渗氮处理;
S7、组装模具镶块,制得成品模具。
根据本发明的较佳实施例,其中,S2中,将所述模具钢坯料加热到1050-1150℃保温6-10h,进行多向锻造,控制终锻温度≥980℃,锻造后以0.5-3℃/s的冷速控制冷却,得到贝氏体组织模具坯料。此时,贝氏体组织模具坯料的硬度小于450HV30,无需进行专门的退火软化处理,即可直接用于机械粗加工,在粗加工时保留加工尺寸余量。
其中,通过模具材料多向锻造后并控制终锻温度≥980℃,控制锻后材料的冷却速度在0.5-3℃/s之间,得到具有贝氏体组织的模具材料,其硬度在390-450HV30硬度区间;同时,由于材料成分特点而具备贝氏体 回火二次强化的能力。
根据本发明的较佳实施例,S4中,回火处理温度控制在540-680℃,回火2-3次,每次回火时间2.0-6.0小时,优选回火2次、每次2.5小时,使贝氏体组织模具镶块材料产生强烈的二次强化效应,得到兼具高硬度、韧性以及耐磨性好的贝氏体模具镶块,此时,模具镶块的硬度提高至49-51HRC硬度范围,满足冲压模具的硬度要求。
根据本发明的较佳实施例,S6中,所述表面渗氮处理是将尺寸精确的模具镶块在520-600℃下渗氮,渗氮层厚度为110-150μm,白亮层厚度为3-8μm。此时,模具镶块表面的硬度提高至820-920HV 0.3
根据本发明的较佳实施例,S6中,所述表面渗氮处理是采用表面等离子渗氮工艺。
根据本发明的较佳实施例,S6中,所述表面等离子渗氮工艺的条件为:电压:910-980V;气氛比值:NH 3:Ar=1:7;炉压:200-280Pa;渗氮温度:520℃-600℃;渗氮时间:5h-9h。
第二方面,本发明提供一种短流程贝氏体热作模具,其采用上述任一实施例的制备方法制得。
(三)有益效果
(1)通过本发明设计的模具钢成分,在经过锻造后控冷可得到贝氏体组织,该贝氏体组织的模具钢材料无需经过“锻后退火降低硬度”的处理,直接适于机械粗加工。因此可省略掉在机械粗加工之前的“退火软化”处理。
(2)本发明设计的模具钢成分,具有贝氏体回火二次硬化效应,能够在S4的回火温度下产生强烈的二次强化效应,达到提升材料硬度和耐磨性的作用。也就是说,机械粗加工后的高温淬火硬化热处理的目标可在S4的中低温回火处理过程中一并实现。因此,本发明在机械粗加工后S4的回火处理步骤之前,省略掉专门的“高温淬火硬化热处理”的工序。
(3)、本发明在一次回火后便对模具镶块进行机械精加工处理,以 得到尺寸精确的模具镶块,省略第二次回火,将第二次回火热处理与渗氮热处理合并,由此省略一步耗能的热处理工序。
尽管本发明相对现有热作模具的制备流程省略至少三步工序(一次锻后退火降低硬度工序、一次高温淬火硬化工序、第二次回火处理工序),但本发明制备的热作模具仍然具有优异的性能:硬度为49-51HRC,冲击韧性值Ak为106J以上,渗氮后表面维氏硬度达到820HV 0.3以上,尤其适合作为热冲压成型的模具。本发明的一种短流程贝氏体热作模具的制备方法,相比传统的长流程奥氏体模具制作流程,本发明制作的热作模具有热传导性能好,耐磨性能高,抗高温黏着性能好等特点,同时模具材料制造周期短,工序短,耗能少、成本低的等优点。
此外,本发明制备的热作模具能有效的防止模具表面的拉毛,经表面等离子渗氮后更能大大延长模具的使用寿命。模具磨损后,经修模和再此等离子渗氮即可重新投入使用,从而大大地提高热作模具的总使用寿命。
附图说明
图1为本发明中短流程贝氏体热作模具的制备方法流程图。
图2为本发明实施例1中锻造后的贝氏体组织模具钢材料的SEM图。
图3为本发明实施例1中锻造后的贝氏体组织模具钢材料的CCT曲线。
图4为本发明实施例1中经机械粗加工后,回火二次强化后得到的贝氏体模具钢的TEM图。
图5为本发明实施例1中经表面等离子渗氮工艺处理后的材料组织金相图。
图6为现有技术中长流程奥氏体热作模具的制备方法流程图。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实 施方式,对本发明作详细描述。
本发明的短流程贝氏体热作模具,钢成分为:C:0.50-0.60%,Si:0.20-0.25%,Mn:1.00-1.50%,W:2.10-3.00%,Mo:3.50-5.00%,V:0.50-1.00%,Co:0.60-1.10%,P≤0.02%,RE:0.01-0.10%,[RE]/[S]>3.0,[RE]×[S]<0.004%,余量为Fe和不可避免的杂质。
制备流程参见图1所示,依次为:模具材料冶炼→铸造成坯→铸造后退火→锻造→模具机械粗加工→第一次回火处理→机械精加工→表面渗氮处理→组装成品模具。与图6比较可知,图6中虚线框所表示的工序为本发明相对现有技术的省略工序。
具体地,按照上述模具钢的成分设计,制备本发明的贝氏体热作模具的方法如下:
(1)、按照模具钢成分称量合金原料,经冶炼、铸造、退火,得到模具钢坯料。这一步处理按常规操作进行。
(2)、将模具钢坯料锻造,得到贝氏体组织模具钢材料。锻造条件为:将模具钢坯料加热到1050-1150℃保温6-10h,进行多向锻造,控制终锻温度≥980℃,锻造后以0.5-3℃/s的冷速控制冷却,得到贝氏体组织模具坯料。此时,贝氏体组织模具坯料的硬度为390-450HV30,无需进行专门的退火软化处理,即可直接用于机械粗加工。同时,由于材料成分特点而具备贝氏体回火二次强化的能力。
(3)、机械粗加工,制成模具镶块。在粗加工时保留加工尺寸余量。
(4)、回火处理,通过贝氏体二次强化作用得到硬化后的贝氏体模具镶块。在回火过程中,温度控制在540-680℃,回火2-3次,每次回火时间2.0-6.0小时,使贝氏体组织模具镶块材料产生强烈的二次强化效应,得到兼具高硬度、韧性以及耐磨性好的贝氏体模具镶块,此时,模具镶块的硬度提高至49-51HRC硬度范围,满足冲压模具的硬度要求。
(5)、机械精加工,得到尺寸精确的模具镶块。
(6)、表面渗氮处理。采用表面等离子渗氮工艺,在520-600℃下 渗氮,渗氮层厚度为110-150μm,白亮层厚度为3-8μm。渗氮条件为:电压:910-980V;气氛比值:NH 3:Ar=1:7;炉压:200-280Pa;渗氮温度:520℃-600℃;渗氮时间:5h-9h。
渗氮工艺处理后,模具镶块表面的硬度提高至820-920HV 0.3
(7)组装模具镶块,制得成品模具。
相对于现有技术,本发明提供的贝氏体模具钢,通过以上化学元素成份的配比设计和调整,尤其是碳和合金元素的配比量,获得了锻造后控冷可产生二次强化效应的贝氏体模具钢,经锻造和机粗加工后,进行一次回火,即使模具钢材料贝氏体发生二次强化效应,此时的模具钢兼具优良的硬度、耐磨性和韧性,具有极佳的综合力学性能。利用这一特性,省略了现有技术中机械粗加工之间的退火软化处理和机械粗加工后的淬火硬化处理。
在上述技术方案的基础上,进一步地,将机械精加工前的第二回火处理工序和精加工后的表面渗氮工序合并到一个处理工序中,在该处理工序中,同时实现回火以提高模具镶块材料韧性和渗氮提高材料表面硬度两个目的,从而减少工序,缩短现有热作模具的制备流程,降低生产周期和能耗。
以下结合本发明的具体实施例,说明本发明的方案及技术效果。
实施例1
本实施例的短流程贝氏体热作模具,由以下质量百分比的元素组成:C:0.50%;Si:0.20%;Mn:1.00%;W:2.10%;Mo:3.50%;V:0.50%;Co:0.60%;RE:0.01%,P:0.01%,S:0.003%,其余为Fe和不可避免杂质。所述贝氏体热作模具制备步骤如下:
(1)、按照模具钢成分称量合金原料,经1400℃电炉熔炼后浇筑成钢锭,再经电渣重熔后在700℃保温8小时进行退火,得到模具钢坯料。
(2)、将模具钢坯料加热到1150℃保温8小时后,进行多向锻造,控制终锻温度为990℃,并将锻造后的材料在热处理炉中控冷以1℃/s的 冷速控制冷却到室温,得到贝氏体组织模具钢材料,硬度为405HV30。
(3)、机械粗加工,制成贝氏体组织模具镶块。对此时具有全贝氏体组织的模具钢镶块的扫描电镜图如图2所示:此时材料组织为回火贝氏体组织,其中贝氏体碳化物以颗粒状为主。贝氏体模具钢的CCT曲线如图3所示,为新型模具材料的连续冷却转变曲线,在冷速为0.5-10℃/s冷却时,得到贝氏体为主要组织的模具材料。
(4)、将贝氏体组织模具镶块在620℃保温2h回火处理,得到二次强化后的贝氏体模具镶块,硬度为49.5HRC,冲击韧性值Ak为118J,满足冲压模具的硬度要求。经过二次强化后的贝氏体模具钢的透射电镜如图4所示,回火后的材料组织为由高密度位错和细小的碳化物组成,使材料具备良好的性能,如硬度和耐磨性。
(5)、机械精加工,得到尺寸精确的模具镶块。
(6)、表面渗氮处理。采用表面等离子渗氮工艺,在600℃下渗氮,渗氮条件为:电压:920V;气氛比值:NH 3:Ar=1:7;炉压:240Pa,渗氮时间:5h。渗氮层厚度为118μm,模具表面化合物白亮层厚度为5μm。渗氮工艺处理后,模具镶块表面的硬度提高至890HV 0.3。图5所示,为本实施例的模具镶块经表面等离子渗氮工艺处理后的材料组织金相图。由图中可以看出,经渗氮处理后材料表层被一层连续且厚度均匀的化合物层所覆盖,此化合物层硬度可达900HV 0.3左右,能够有效抵抗高温黏着磨损的发生,亚表层是深度为120μm扩散层组织,其由Fe 3N和Fe 4N等化合物及回火贝氏体组织组成,其硬度由亚表层向内呈递减趋势,可以为表层组织提供有效的支撑作用,提高耐高温的性能。
(7)拼装模具镶块,得到热作模具,该模具尤适于用于热冲压模具。
实施例2
本实施例的短流程贝氏体热作模具,由以下质量百分比的元素组成:C:0.55%;Si:0.22%;Mn:1.30%;W:2.50%;Mo:4.50%;V:0.80%;Co:0.90%;RE:0.05%,P:0.01%,S:0.01%,其余为Fe和不可避免杂 质。
所述贝氏体热作模具制备步骤如下:
(1)、按照模具钢成分称量合金原料,经1400℃电炉熔炼后浇筑成钢锭,再经电渣重熔后在700℃保温8小时进行退火,得到模具钢坯料。
(2)、将模具钢坯料加热到1150℃保温8小时后,进行多向锻造,控制终锻温度为1010℃,并将锻造后的材料在热处理炉中控冷以2℃/s的冷速控制冷却到室温,得到贝氏体组织模具钢材料,硬度为425HV30。
(3)、机械粗加工,制成贝氏体组织模具镶块。
(4)、将贝氏体组织模具镶块在580℃保温2h(回火处理),得到二次强化后的贝氏体模具镶块,硬度为50.5HRC,冲击韧性值Ak为106J,满足冲压模具的硬度要求。
(5)、机械精加工,得到尺寸精确的模具镶块。
(6)、表面渗氮处理。采用表面等离子渗氮工艺,在560℃下渗氮,渗氮条件为:电压:950V;气氛比值:NH 3:Ar=1:7;炉压:260Pa,渗氮时间:6h。渗氮层厚度为136μm,模具表面化合物白亮层厚度为4.85μm。渗氮工艺处理后,模具镶块表面的硬度提高至910HV 0.3
(7)拼装模具镶块,得到热冲压模具。
实施例3
本实施例的短流程贝氏体热作模具,由以下质量百分比的元素组成:C:0.60%;Si:0.20%;Mn:1.50%;W:3.00%;Mo:5.0%;V:1.00%;Co:1.10%;RE:0.07%,P:0.01%,S:0.02%,其余为Fe和不可避免杂质。
所述贝氏体热作模具制备步骤如下:
(1)、按照模具钢成分称量合金原料,经1400℃电炉熔炼后浇筑成钢锭,再经电渣重熔后在700℃保温8小时进行退火,得到模具钢坯料。
(2)、将模具钢坯料加热到1050℃保温8小时后,进行多向锻造,控制终锻温度为1000℃,并将锻造后的材料在热处理炉中控冷以2.5℃/s 的冷速控制冷却到室温,得到贝氏体组织模具钢材料,硬度为436HV30。
(3)、机械粗加工,制成贝氏体组织模具镶块。
(4)、将贝氏体组织模具镶块在540℃保温3.5h(回火处理),得到二次强化后的贝氏体模具镶块,硬度为51HRC,冲击韧性值Ak为123J,满足冲压模具的硬度要求。
(5)、机械精加工,得到尺寸精确的模具镶块。
(6)、表面渗氮处理。采用表面等离子渗氮工艺,在520℃下渗氮,渗氮条件为:电压:980V;气氛比值:NH 3:Ar=1:7;炉压:280Pa,渗氮时间:7h。渗氮层厚度为133μm,模具表面化合物白亮层厚度为5.2μm。渗氮工艺处理后,模具镶块表面的硬度提高至928HV 0.3
(7)拼装模具镶块,得到热冲压模具。
对比例1
本对比例的短流程贝氏体热作模具,由以下质量百分比的元素组成:C:0.50%;Si:0.20%;Mn:1.00%;W:2.10%;Mo:3.50%;V:0.50%;Co:0.60%;RE:0.01%,P:0.01%,S:0.003%,其余为Fe和不可避免杂质。所述热作模具的制备方法按照图6所示的长流程处理,并按照实施例1相同的表面渗氮条件进行渗氮。渗氮结束后,模具镶块性能为:心部材料硬度为49.3HRC,冲击韧性值Ak为115J,渗氮层厚度为118μm,模具表面化合物白亮层厚度为5μm。渗氮工艺处理后,模具镶块表面的硬度提高至870HV 0.3
将实施例1与对比例1相比可知,本发明的技术方案,在省略一步锻造后退火软化,一步高温淬火硬化、一步二次回火处理后,模具镶块材料的性能与长流程处理的效果相当,心部硬度方面,甚至略显更优。而省略前述工序后,可明显减少热作模具的制备周期、减少能耗和降低生产成本。
对比例2
本对比例的短流程贝氏体热作模具,改变模具钢的成分为:C:0.40%; Si:0.90%;Mn:0.50%;Cr:4.60%;Mo:1.20%;V:0.80%;RE:0.01%,P:0.01%,S:0.003%。按照实施例1的贝氏体热作模具制备步骤进行制备,渗氮结束后得到的模具镶块性能为:心部材料硬度为45.2HRC,冲击韧性值Ak为105J,渗氮层厚度为118μm,模具表面化合物白亮层厚度为3μm。渗氮工艺处理后,模具镶块表面的硬度提高至790HV 0.3
将实施例1与对比例2相比可知,在改变模具钢的合金组成后,若仍按照本发明实施例1的模具制备流程制备模具镶块,并不能获得实施例1的技术效果(实施例1,心部硬度为50.5HRC、冲击韧性值Ak为106J、表面的硬度提高至910HV 0.3)。这说明,本发明独特的模具钢合金组成,为省略工艺步骤提供了前提条件。
此外,将本发明实施例1-3制备的热作模具,与现有的奥氏体热冲压模具的性能相比较可知,本发明制作的模具与现有奥氏体热冲压模具具备相当的综合力学性能。由此可见,本发明的新型贝氏体模具材料在短流程制备工艺处理后,可以得到与传统制备流程工艺相似的综合性能,但在制备时间和制造成本上具有明显的优势。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 一种短流程贝氏体热作模具的制备方法,其特征在于,其包括:
    设计模具钢成分为:C:0.50-0.60%,Si:0.20-0.25%,Mn:1.00-1.50%,W:2.10-3.00%,Mo:3.50-5.00%,V:0.50-1.00%,Co:0.60-1.10%,P≤0.02%,RE:0.01-0.10%,[RE]/[S]>3.0,[RE]×[S]<0.004%,余量为Fe和不可避免的杂质;
    所述热作模具的制备步骤如下:
    S1、按照模具钢成分称量合金原料,经冶炼、铸造、退火,得到模具钢坯料;
    S2、将模具钢坯料锻造,得到贝氏体组织模具钢材料;
    S3、机械粗加工,制成模具镶块;
    S4、回火处理,通过贝氏体二次强化作用得到硬化后的贝氏体模具镶块;
    S5、机械精加工,得到尺寸精确的模具镶块;
    S6、表面渗氮处理;
    S7、组装模具镶块,制得成品模具。
  2. 根据权利要求1所述的制备方法,其特征在于,S2中,将所述模具钢坯料加热到1050-1150℃保温6-10h,进行多向锻造,控制终锻温度≥980℃,锻造后以0.5-3℃/s的冷速控制冷却,得到贝氏体组织模具坯料。
  3. 根据权利要求1所述的制备方法,其特征在于,S4中,回火处理温度控制在540-680℃,回火2-3次,每次回火时间2.0-6.0小时,使贝氏体组织模具镶块材料产生强烈的二次强化效应。
  4. 根据权利要求1所述的制备方法,其特征在于,S6中,所述表面渗氮处理是将尺寸精确的模具镶块在520-600℃下渗氮,渗氮层厚度为110-150μm,白亮层厚度为3-8μm。
  5. 根据权利要求1所述的制备方法,其特征在于,S6中,所述表面渗氮处理是采用表面等离子渗氮工艺。
  6. 根据权利要求5所述的制备方法,其特征在于,S6中,所述表面 等离子渗氮工艺的条件为:电压:910-980V;气氛比值:NH 3:Ar=1:7;炉压:200-280Pa;渗氮温度:520℃-600℃;渗氮时间:5h-9h。
  7. 一种短流程贝氏体热作模具,其特征在于,是采用上权利要求1-6任一项所述的制备方法制得。
PCT/CN2022/105085 2021-12-15 2022-07-12 一种短流程贝氏体热作模具及其制备方法 WO2023109106A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/226,219 US20230366055A1 (en) 2021-12-15 2023-07-25 Method for preparing bainite hot-working die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111536501.8A CN114535944B (zh) 2021-12-15 2021-12-15 一种短流程贝氏体热作模具及其制备方法
CN202111536501.8 2021-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/226,219 Continuation-In-Part US20230366055A1 (en) 2021-12-15 2023-07-25 Method for preparing bainite hot-working die

Publications (1)

Publication Number Publication Date
WO2023109106A1 true WO2023109106A1 (zh) 2023-06-22

Family

ID=81670374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105085 WO2023109106A1 (zh) 2021-12-15 2022-07-12 一种短流程贝氏体热作模具及其制备方法

Country Status (3)

Country Link
US (1) US20230366055A1 (zh)
CN (1) CN114535944B (zh)
WO (1) WO2023109106A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535944B (zh) * 2021-12-15 2022-11-29 河北工业职业技术学院 一种短流程贝氏体热作模具及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022350A (ja) * 2004-07-06 2006-01-26 Aichi Steel Works Ltd 高強度ベイナイト型窒化部品及びその製造方法
CN102877001A (zh) * 2012-10-29 2013-01-16 北京科技大学 一种低碳免回火全贝氏体组织塑料模具钢及制备方法
CN103276298A (zh) * 2013-06-09 2013-09-04 河冶科技股份有限公司 高硬高韧冷热兼作模具钢及其生产方法
CN103334054A (zh) * 2013-06-18 2013-10-02 上海大学 经济型含铝热挤压模具钢及其制备、热处理和表面处理方法
CN104928586A (zh) * 2015-06-30 2015-09-23 宝山钢铁股份有限公司 一种热冲压模具钢及其生产方法
CN105143473A (zh) * 2013-03-22 2015-12-09 卡特彼勒公司 具有增强渗氮特性的贝氏体微合金钢
CN111850393A (zh) * 2020-06-29 2020-10-30 河北工业职业技术学院 一种贝氏体模具钢及其制备方法
CN113584394A (zh) * 2021-08-05 2021-11-02 安徽安簧机械股份有限公司 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法
CN114535944A (zh) * 2021-12-15 2022-05-27 河北工业职业技术学院 一种短流程贝氏体热作模具及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1005066B (zh) * 1985-12-19 1989-08-30 大连海运学院 轴承钢工件综合强化工艺
JP5268225B2 (ja) * 2005-10-07 2013-08-21 トピー工業株式会社 建設機械下部走行体のローラーシェルの製造方法
EP2065483A4 (en) * 2006-09-15 2016-03-23 Hitachi Metals Ltd HOT FORMING TOOL STEEL HAVING EXCELLENT RIGIDITY AND RESISTANCE QUALITIES AT HIGH TEMPERATURES, AND PROCESS FOR PRODUCING THE SAME
CN101161850A (zh) * 2006-10-11 2008-04-16 宝山钢铁股份有限公司 一种铜时效硬化贝氏体大截面塑料模具钢及其制造工艺
US20100074792A1 (en) * 2006-10-17 2010-03-25 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Cold work die steel, die, and method for production of cold work die steel
US9597725B2 (en) * 2012-03-30 2017-03-21 Hitachi Metals, Ltd. Hot forging die
CN104178771A (zh) * 2013-05-28 2014-12-03 宝山钢铁股份有限公司 热冲压用模具钢sdcm1热处理及表面处理方法
CN104046921B (zh) * 2014-04-28 2016-01-20 如皋市宏茂重型锻压有限公司 超大截面贝氏体预硬化塑胶模具钢及其制备方法
CN104175127A (zh) * 2014-08-12 2014-12-03 玉溪大红山矿业有限公司 一种汽车连杆模具的生产工艺
CN107587081A (zh) * 2017-09-15 2018-01-16 张家港市广大机械锻造有限公司 一种高抛光预硬化模具钢及其制备工艺
CN110527922A (zh) * 2019-10-18 2019-12-03 福建三钢闽光股份有限公司 一种自回火全贝氏体组织塑料模具钢及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022350A (ja) * 2004-07-06 2006-01-26 Aichi Steel Works Ltd 高強度ベイナイト型窒化部品及びその製造方法
CN102877001A (zh) * 2012-10-29 2013-01-16 北京科技大学 一种低碳免回火全贝氏体组织塑料模具钢及制备方法
CN105143473A (zh) * 2013-03-22 2015-12-09 卡特彼勒公司 具有增强渗氮特性的贝氏体微合金钢
CN103276298A (zh) * 2013-06-09 2013-09-04 河冶科技股份有限公司 高硬高韧冷热兼作模具钢及其生产方法
CN103334054A (zh) * 2013-06-18 2013-10-02 上海大学 经济型含铝热挤压模具钢及其制备、热处理和表面处理方法
CN104928586A (zh) * 2015-06-30 2015-09-23 宝山钢铁股份有限公司 一种热冲压模具钢及其生产方法
CN111850393A (zh) * 2020-06-29 2020-10-30 河北工业职业技术学院 一种贝氏体模具钢及其制备方法
CN113584394A (zh) * 2021-08-05 2021-11-02 安徽安簧机械股份有限公司 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法
CN114535944A (zh) * 2021-12-15 2022-05-27 河北工业职业技术学院 一种短流程贝氏体热作模具及其制备方法

Also Published As

Publication number Publication date
US20230366055A1 (en) 2023-11-16
CN114535944B (zh) 2022-11-29
CN114535944A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
JP2021073376A (ja) 優れた機械加工性を有する低温硬質鋼
CN106967930B (zh) 一种高耐热性、高稳定性和高韧性的模具钢及其制造工艺
CN101538686B (zh) 一种结构件用马氏体沉淀硬化不锈钢及其制造方法
CN104928586A (zh) 一种热冲压模具钢及其生产方法
CN100404152C (zh) 一种高速钢复合轧辊及其制备方法
CN102409267B (zh) 一种含硼高速钢轧辊及其制备方法
CN109852880A (zh) 一种高热强性热作模具钢及其制造方法
CN107974636A (zh) 一种高硬度高淬透性预硬化塑料模具钢及其制备方法
CN101311285B (zh) 钴基高弹性合金及其制造方法,由该合金制成的超薄带材及其制造方法
CN104264043A (zh) 一种离心铸造耐磨高速钢复合轧辊及其制备方法
CN108220807A (zh) 一种低密度高铝超高碳轴承钢及其制备方法
CN103334054A (zh) 经济型含铝热挤压模具钢及其制备、热处理和表面处理方法
CN102242316A (zh) H13模具钢及其制备方法
CN110093559A (zh) 基于碳锰协同配分的淬火-回火配分钢板及制备方法
CN104947005A (zh) 大厚度高性能临氢14Cr1MoR钢板及其生产方法
CN110230009A (zh) 一种具有良好切削性能的热作模具钢及其制备方法
WO2023109106A1 (zh) 一种短流程贝氏体热作模具及其制备方法
CN104178771A (zh) 热冲压用模具钢sdcm1热处理及表面处理方法
CN114480806A (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
WO2023137842A1 (zh) 一种具有高热扩散系数模具钢及其制备方法
CN111876663B (zh) 一种针织面板用合金结构钢板及其制造方法
CN108411220A (zh) 高碳高钒耐磨钢及其制备方法
CN113897547A (zh) Cr-Mo-V型中碳热作模具钢及其组织球化方法
CN104099528A (zh) 一种异型轧辊及其制备方法
CN116837192B (zh) 一种超细晶高温渗碳轴承钢及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE