WO2023109012A1 - 一种组串式逆变升压一体机和电站系统 - Google Patents

一种组串式逆变升压一体机和电站系统 Download PDF

Info

Publication number
WO2023109012A1
WO2023109012A1 PCT/CN2022/094953 CN2022094953W WO2023109012A1 WO 2023109012 A1 WO2023109012 A1 WO 2023109012A1 CN 2022094953 W CN2022094953 W CN 2022094953W WO 2023109012 A1 WO2023109012 A1 WO 2023109012A1
Authority
WO
WIPO (PCT)
Prior art keywords
string inverter
string
integrated machine
booster
low
Prior art date
Application number
PCT/CN2022/094953
Other languages
English (en)
French (fr)
Inventor
严龙祥
葛向文
Original Assignee
阳光电源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阳光电源股份有限公司 filed Critical 阳光电源股份有限公司
Priority to EP22905780.7A priority Critical patent/EP4451553A1/en
Publication of WO2023109012A1 publication Critical patent/WO2023109012A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to the technical field of power conversion equipment, in particular to a string-type inverter and booster integrated machine and a power station system.
  • the centralized inverter solution when adopted, due to the large power and large size of the single unit, the centralized inverter is usually integrated with the booster device as an integrated device, which can reduce the number of on-site inverter devices in the power station. Electrical connection and construction costs for step-up equipment.
  • This application proposes a string-type inverter and booster integrated machine and a power station system, which are used to realize the integration of the inverter and the booster equipment, and the string-type inverter and booster integrated machine is convenient and simple to connect on site.
  • the first aspect of the present application discloses a string-type inverter booster integrated machine, including: a low-voltage AC bus, a low-voltage switch, a booster device, and multiple string inverter units;
  • Each of the string inverter units, the low-voltage AC busbar, the low-voltage switch, and the booster device are sequentially arranged on the platform of the string inverter booster integrated machine;
  • each string inverter unit is electrically connected to the step-up device through the low-voltage AC busbar and the low-voltage switchgear in sequence;
  • the DC connection area of each of the string inverter units is set outside the string inverter boost integrated machine.
  • each of the string inverter units is arranged in an array parallel to the length direction of the string inverter and boost integrated machine on the string inverter and boost integrated machine. Press on the platform of the all-in-one machine.
  • the horizontal space between each of the string inverter units reserves a low-voltage AC bus area for arranging the low-voltage AC bus;
  • the length direction of the string inverter and booster integrated machine is horizontal.
  • each of the string inverter units is distributed in two rows.
  • the area reserved between the two rows is used as the low-voltage AC busbar wiring area.
  • the string inverter units in the same row are evenly distributed.
  • the string inverter unit includes: power conversion equipment, an installation rack, and a DC wiring area;
  • the power conversion equipment is installed back-to-back on the upper part of the installation frame;
  • the DC wiring area is used to realize on-site DC wiring of the string inverter and booster integrated machine.
  • the power conversion device includes: at least one string inverter.
  • the power conversion equipment further includes: at least one collection and distribution combiner box;
  • Each of the string inverters is connected to the corresponding collection and distribution combiner box.
  • copper bars are used as electrical connections for the connection between the AC side of each string inverter unit and the low-voltage switchgear.
  • the low-voltage switchgear includes: at least one main switch and communication equipment;
  • the main switch is used to realize the on-off between the booster device and each string inverter unit;
  • the communication device is used to collect the communication data of each of the string inverter units and upload them to the host computer.
  • the second aspect of the present application discloses a power station system, including: a new energy system and at least one string inverter and booster integrated machine as described in any one of the first aspect of the present application;
  • the new energy system is connected to the power grid through the corresponding string inverter and booster integrated machine.
  • a string inverter booster integrated machine includes: a low-voltage switch, a boost device, and a plurality of string inverter units; each string inverter unit, a low-voltage switch and a booster
  • the voltage equipment is set on the platform of the string inverter and booster all-in-one machine; the AC side of each string inverter unit is electrically connected to the booster equipment through the low-voltage AC busbar and low-voltage switchgear in turn; each string inverter unit
  • the DC wiring area is set on the outside of the string inverter booster integrated machine; thus the inverter and booster equipment are integrated together, and the string inverter booster integrated machine is convenient and simple for on-site wiring.
  • Fig. 1 is a schematic diagram of a centralized inverter solution provided by the prior art
  • Fig. 2 is a schematic diagram of a string type inverter and booster integrated machine provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of another string inverter and booster integrated machine provided by the embodiment of the present application.
  • Fig. 4 is an axonometric view of a string inverter and booster integrated machine provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of a string inverter unit in a string inverter booster integrated machine provided by an embodiment of the present application;
  • Fig. 6 is a power station system provided by an embodiment of the present application.
  • the term "comprises”, “comprises” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes none. other elements specifically listed, or also include elements inherent in such a process, method, article, or apparatus.
  • an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
  • An embodiment of the present application provides a string-type inverter and booster integrated machine, which is used to solve the problem in the prior art that there is no precedent for integrating an inverter and a booster device.
  • the string inverter booster integrated machine includes: a low-voltage AC busbar, a low-voltage switch, a booster device and multiple string inverter units.
  • the string inverter booster integrated machine is composed of a certain number of string inverter units, low-voltage AC bus, low-voltage switchgear, and booster equipment.
  • Each string inverter unit, low-voltage AC busbar, low-voltage switch and booster equipment are sequentially arranged on the platform of the string inverter booster integrated machine.
  • each string inverter unit is taken as a whole, that is, the inverter area, the inverter area is set on the left side of the platform, the booster device is set on the right side of the platform, and the low-voltage switch is set Between the inverter area and the step-up device.
  • each string inverter unit, low-voltage switch and booster device can be exchanged (not shown), the inverter area is set on the right side of the platform, and the booster device is set on the left side of the platform, The low-voltage switch is arranged between the inverter area and the booster device.
  • each string inverter unit is electrically connected to the step-up equipment through the low-voltage AC busbar and the low-voltage switchgear in turn.
  • each string inverter unit is connected to the low-voltage AC busbar; the low-voltage AC busbar is also connected to one end of the low-voltage switchgear; the other end of the low-voltage switchgear is connected to the booster device; and here each The connection relationship between devices is an electrical connection.
  • the direction of power flow may be each string inverter unit-low-voltage AC bus-low-voltage switchgear-boosting equipment.
  • the DC connection area of each string inverter unit is set outside the string inverter booster all-in-one machine.
  • each string inverter unit is connected to its own DC connection area; therefore, wiring in the DC connection area can realize the connection relationship of the DC side of the corresponding string inverter unit.
  • wiring can be performed through the DC wiring area set outside the string inverter and boost integrated machine to realize the DC connection of each string inverter unit. side wiring.
  • the inverter and the booster device are integrated together, and the string inverter booster integrated machine is convenient and simple to connect on site.
  • each string inverter unit is set outside the string inverter booster integrated machine, that is, after the integration is completed, there is no need to perform DC wiring in the platform, and
  • the DC wiring can be realized by setting it on the outside of the string inverter and booster integrated machine, and the on-site wiring is simple; and a certain number of string inverters, low-voltage switchgear and booster equipment are integrated into an inverter Booster integrated machine; reduce the electrical connection construction between booster equipment and inverter equipment on site.
  • a maintenance and inspection channel (the maintenance channel shown in FIG. 3 ) is reserved between adjacent string inverter units.
  • the reserved space for maintenance and inspection is larger than the preset space, so that sufficient maintenance passages are reserved between adjacent inverter units, which can facilitate maintenance and inspection.
  • the size of the preset space is not specifically limited here, it can be determined according to the actual situation, and all of them are within the protection scope of the present application.
  • the sizes of the maintenance and inspection passages may be the same, or at least two maintenance and inspection passages may have different sizes, which are not specifically limited here, but can be determined according to the actual situation, and all are within the protection scope of the present application.
  • each string inverter unit is arranged in two rows. At this time, a maintenance and inspection channel is reserved between adjacent string inverter units in the same row. Maintenance and inspection channels may or may not be reserved between string inverter units in different rows; as long as each string inverter unit has a maintenance and inspection channel for on-site maintenance and inspection.
  • FIG 4 shows an axonometric drawing of a series inverter and booster integrated machine; the axonometric drawing can be used as an auxiliary drawing to illustrate the structure, installation, use, etc. of the machine.
  • each string inverter unit is arranged in an array parallel to the length direction of the string inverter and boost integrated machine on the platform of the string inverter and boost integrated machine.
  • each string inverter unit is placed adjacent to each other, it is arranged in an array parallel to the length direction of the string inverter boost integrated machine on the string inverter boost integrated machine platform.
  • each string inverter unit is distributed in two rows. Each row is arranged on a corresponding side of the string inverter and booster unit. Specifically, as shown in Figure 3, the two surfaces parallel to the length direction are used as the front and back; the two surfaces perpendicular to the length direction are used as the left and right sides; a row of string inverter units is installed in the string inverter booster integrated machine the front of the string inverter unit so that the DC connection area of the string inverter unit is set on the outside of the front; another row of string inverter units is close to the back of the string inverter booster integrated machine so that the string inverter unit The DC connection area is set on the outside of the back.
  • the string inverter units in the same row are evenly distributed.
  • the distances between the various string inverter units are equal, that is to say, the sizes of maintenance and repair channels reserved between adjacent string inverter units in the same row are equal.
  • each string inverter unit reserves a low-voltage AC bus wiring area for arranging the low-voltage AC bus.
  • the length direction of the string inverter and booster integrated machine is horizontal.
  • the string inverter units are connected into a line, the line is parallel to the length direction. Therefore, if the installation area of the low-voltage AC busbar is also parallel to the longitudinal direction, the wiring area is small and simple.
  • the area reserved between the two rows is used as the low-voltage AC bus wiring area.
  • the low-voltage AC bus area is set between the two rows, so as to shorten the distance between each row and the low-voltage AC bus area, that is, to reduce the connecting line length.
  • the string inverter unit includes: power conversion equipment, an installation rack and a DC wiring area.
  • the power conversion equipment is installed back to back on the upper part of the installation frame.
  • the power conversion device can be an inverter device or a combiner box; or a combination of an inverter device and a combiner box, which will not be described here one by one. It depends on the actual situation and is within the scope of protection of this application. .
  • the DC wiring area is used to realize the on-site DC wiring of the string inverter and booster integrated machine.
  • the AC side of the power conversion equipment is used as the AC side of the string inverter unit, and is sequentially connected through a low-voltage AC bus, a low-voltage switchgear, and a booster device.
  • the DC side of the power conversion equipment serves as the DC side of the string inverter unit and is connected to the DC connection area.
  • a corresponding number of power conversion devices are installed back-to-back to make the structure compact; it can be integrated with the low-voltage switchgear and booster devices on the same platform to the greatest extent, which is convenient for on-site construction and reduces on-site electrical connections.
  • the power conversion equipment includes: at least one string inverter.
  • the relationship between the inverters may be a series relationship, for example, the inverters are sequentially connected in series.
  • the relationship between the various inverters may be a parallel relationship, for example, all the inverters are connected in parallel.
  • the relationship between the inverters can also be a series-parallel relationship, for example, some inverters are connected in series, and some inverters are connected in parallel.
  • connection between the various inverters should keep the AC side connected to the AC side, and the DC side connected to the DC side.
  • connection relationship of each inverter is not specifically limited here, it can be determined according to the actual situation, and it is all within the protection scope of the present application.
  • each string inverter is used as the AC side of the power conversion equipment, and is connected to the booster equipment through the low-voltage AC busbar and the low-voltage switchgear in turn.
  • each string inverter is used as the DC side of the power conversion device, and is connected to the corresponding DC wiring area.
  • the power conversion equipment further includes: at least one collection and distribution combiner box.
  • Each string inverter is connected to the corresponding collection and distribution combiner box.
  • each string inverter is connected to one side of the collecting and distributing combiner box through the above connection; the other side of the collecting and distributing combiner box is used as the DC side of the power conversion equipment
  • connection between the AC side of each string inverter unit and the low-voltage switchgear uses copper bars as the electrical connection.
  • the copper bar serves as a low-voltage AC bus bar and is respectively connected to the AC side of each string inverter unit and the low-voltage switchgear.
  • the AC side of the string inverter unit and the low-voltage switchgear are connected by copper bars, which not only reduces the cost of direct materials but also reduces the maintenance cost of the power station.
  • the low-voltage switchgear includes: at least one main switch and communication equipment.
  • the main switch is used to realize the on-off between the booster equipment and each string inverter unit.
  • the communication equipment is used to collect the communication data of each string inverter unit and upload it to the host computer.
  • each switch can be at least one of series connection and parallel connection, which is not specifically limited here, but depends on the actual situation, all of which are within the protection scope of the present application.
  • the main switch implements electrical protection for the string inverter units by realizing on-off between the booster equipment and each string inverter unit.
  • Another embodiment of the present application provides a power station system.
  • the power station system includes: a new energy system and at least one string inverter booster integrated machine.
  • the new energy system is connected to the power grid through the corresponding string inverter and booster integrated machine.
  • the new energy system can be a wind power generation system; it can also be a photovoltaic power generation system; of course, it can also be a hybrid energy system of a wind power generation system and a photovoltaic power generation system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本申请提供一种组串式逆变升压一体机和电站系统,该组串式逆变升压一体机,包括:低压开关、升压设备和多个组串逆变单元;各个组串逆变单元、低压开关和升压设备均设置于组串式逆变升压一体机的平台上;各个组串逆变单元的交流侧均依次通过低压交流母线、低压开关柜与升压设备电气相连;各个组串逆变单元的直流接线区域设置于组串式逆变升压一体机的外侧;从而实现逆变器与升压设备集成在一起,且该组串式逆变升压一体机现场接线方便、简单。

Description

一种组串式逆变升压一体机和电站系统
本申请要求于2021年12月13日提交中国专利局、申请号为202123121632.8、发明名称为“一种组串式逆变升压一体机和电站系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功率转化设备技术领域,特别涉及一种组串式逆变升压一体机和电站系统。
背景技术
大型的光伏地面电站通常装机容量较大,所需的逆变器总功率也较大;目前行业中通常采用两种逆变器方案,集中式逆变器和组串式逆变器方案。而采用这两种逆变器方案时,均需采用升压设备并入电网侧。
如图1所示,当采用集中式逆变器方案时,由于集中式逆变器单机功率大,体积也较大,通常与升压设备集成为一体机设备,可以减少电站现场逆变设备与升压设备的电气连接和施工费用。
采用组串式逆变器方案时,目前尚无逆变器与升压设备集成在一起的先例。
发明内容
本申请提出一种组串式逆变升压一体机和电站系统,用于实现逆变器与升压设备集成在一起,且该组串式逆变升压一体机现场接线方便、简单。
为实现上述目的,本发明实施例提供如下技术方案:
本申请第一方面公开了一种组串式逆变升压一体机,包括:低压交流母线、低压开关、升压设备和多个组串逆变单元;
各个所述组串逆变单元、所述低压交流母线、所述低压开关和所述升压设备依次设置于所述组串式逆变升压一体机的平台上;
各个所述组串逆变单元的交流侧均依次通过所述低压交流母线、所述低压开关柜,与所述升压设备电气相连;
各个所述组串逆变单元的直流接线区域设置于所述组串式逆变升压一体机的外侧。
在上述的组串式逆变升压一体机中,相邻的所述组串逆变单元之间预留维 护检修通道。
在上述的组串式逆变升压一体机中,各个所述组串逆变单元与所述组串式逆变升压一体机的长度方向平行成阵列布置在所述组串式逆变升压一体机的平台上。
在上述的组串式逆变升压一体机中,每个所述组串逆变单元之间的横向空间预留低压交流母线区低压交流母线区域,用于布置所述低压交流母线;
其中,所述组串式逆变升压一体机的长度方向为横向。
在上述的组串式逆变升压一体机中,各个所述组串逆变单元呈两行分布。在上述的组串式逆变升压一体机中,两行之间预留区域作为低压交流母线布线区域。
在上述的组串式逆变升压一体机中,同一行的各个所述组串逆变单元均匀分布。
在上述的组串式逆变升压一体机中,所述组串逆变单元包括:功率转化设备、安装机架和直流接线区域;
所述功率转化设备背靠背安装于所述安装机架的上部;
在所述组串逆变单元的侧面设置所述直流接线区域;
所述直流接线区域用于实现组串式逆变升压一体机的现场直流接线。
在上述的组串式逆变升压一体机中,所述功率转化设备包括:至少一个组串逆变器。
在上述的组串式逆变升压一体机中,所述功率转化设备还包括:至少一个集散汇流箱;
各个所述组串逆变器均与相应的所述集散汇流箱相连。
在上述的组串式逆变升压一体机中,各个组串逆变单元的交流侧与所述低压开关柜之间的连接采用铜排作为电气连接。
在上述的组串式逆变升压一体机中,所述低压开关柜包括:至少有一个总开关和通讯设备;
所述总开关用于实现所述升压设备与各个组串逆变单元之间的通断;
所述通讯设备用于收集各个所述组串逆变单元进行通讯数据,并上传至上位机。
本申请第二方面公开一种电站系统,包括:新能源系统和至少一个如本申请第一方面任一项所述的组串式逆变升压一体机;
所述新能源系统通过相应的所述组串式逆变升压一体机接入电网。
从上述技术方案可知,本申请提供的一种组串式逆变升压一体机,包括:低压开关、升压设备和多个组串逆变单元;各个组串逆变单元、低压开关和升压设备均设置于组串式逆变升压一体机的平台上;各个组串逆变单元的交流侧均依次通过低压交流母线、低压开关柜与升压设备电气相连;各个组串逆变单元的直流接线区域设置于组串式逆变升压一体机的外侧;从而实现逆变器与升压设备集成在一起,且该组串式逆变升压一体机现场接线方便、简单。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是现有技术提供的集中式逆变器方案的示意图;
图2是本申请实施例提供的一种组串式逆变升压一体机的示意图;
图3是本申请实施例提供的另一种组串式逆变升压一体机的示意图;
图4是本申请实施例提供的一种组串式逆变升压一体机的轴测图;
图5是本申请实施例提供的一种组串式逆变升压一体机中组串逆变单元的示意图;
图6是本申请实施例提供的一种电站系统。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、 方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请实施例提供了一种组串式逆变升压一体机,用于解决现有技术中,无逆变器与升压设备集成在一起的先例的问题。
如图2所示,该组串式逆变升压一体机,包括:低压交流母线、低压开关、升压设备和多个组串逆变单元。
组串式逆变升压一体机由一定数量的组串逆变单元、低压交流母线、低压开关柜、升压设备4部分组成。
需要说明的是,该组串逆变单元的数量,此处不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
各个组串逆变单元、低压交流母线、低压开关和升压设备依次设置于组串式逆变升压一体机的平台上。
具体的,如图2所示,各个组串逆变单元作为一个整体,即逆变区域,该逆变区域设置于该平台的左侧,升压设备设置于该平台的右侧,低压开关设置于逆变区域与该升压设备之间。
当然,各个组串逆变单元、低压开关和升压设备的顺序可以进行调换(未进行图示),该逆变区域设置于该平台的右侧,升压设备设置于该平台的左侧,低压开关设置于逆变区域与该升压设备之间。
上述设置方式仅是一种示例,其他方式此处在不再一一赘述,均在本申请的保护范围内。
各个组串逆变单元的交流侧均依次通过低压交流母线、低压开关柜与升压设备电气相连。
具体的,各个组串逆变单元的交流侧均连接至低压交流母线;该低压交流母线还与该低压开关柜的一端相连;该低压开关柜的另一端与升压设备相连;而此处各个器件之间的连接关系为电气连接。
也就是说,功率流方向可以是各个组串逆变单元-低压交流母线-低压开关柜-升压设备。
各个组串逆变单元的直流接线区域设置于组串式逆变升压一体机的外侧。
需要说明的是,各个组串逆变单元的直流侧均连接至自身的直流接线区域;因此,在该直流接线区域进行接线,可以是实现相应组串逆变单元的直流侧的连接关系。
也就是说,完成该组串式逆变升压一体机的集成之后,可以通过设置于该组串式逆变升压一体机外侧的直流接线区域进行接线,实现对各个组串逆变单元直流侧的接线。
在本实施例中,实现逆变器与升压设备集成在一起,且该组串式逆变升压一体机现场接线方便、简单。
需要说明的是,尚无逆变器与升压设备集成在一起的先例的原因有由于组串式逆变器自身的功能特点和结构限制,当一定数量的逆变器与升压设备集成一起时,电站现场需进入集成平台内部进行直流接线,现场接线困难;以及,组串式逆变器单机功率较小,单台组串式逆变器与升压设备集成后对于电站整体建设成本较高,需达到一定数量的组串式逆变器时才具有优势。
而本实施例中,将各个组串逆变单元的直流接线区域设置于组串式逆变升压一体机的外侧,也即,在完成集成之后,无需再进行平台内的进行直流接线,而是通过设置于该组串式逆变升压一体机的外侧即可实现直流接线,现场接线简单;以及,将一定数量的组串式逆变器与低压开关柜、升压设备集成为逆变升压一体机;减少现场升压设备与逆变器设备电气连接施工。
在实际应用中,如图3所示,相邻的组串逆变单元之间预留维护检修通道(如图3所示的维护通道)。
需要说明的是,该预留的维护检修通过的空间大于预设空间,以使相邻的逆变单元之间预留足够的维护通道,可以便于维护检修。
当然,该预设空间的大小,此处不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
同时,各个维护检修通道的大小可以是一致的,也可以是至少两个维护检修通道的大小不同,此处不再具体限定,视实际情况而定即可,均在本申请的保护范围内。
如图3所示,各个组串逆变单元呈两行设置,此时,同一行的相邻组串逆变单元之间预留维护检修通道。不同行之间的组串逆变单元之间可以预留维护检修通道,也可以不预留维护检修通道;只要保证每个组串逆变单元均有维护检修通道来进行现场维护检修即可。
如图4所示,其示出了一种组串式逆变升压一体机的轴测图;可依据该轴测图作为辅助图样,来说明机器的结构、安装、使用等情况。
在实际应用中,各个组串逆变单元与组串式逆变升压一体机的长度方向平行成阵列布置在组串式逆变升压一体机的平台上。
具体的,各个组串逆变单元相邻放置后,与组串式逆变升压一体机的长度方向平行成阵列布置在组串式逆变升压一体机平台上。
这样,可以更方便将各个组串逆变单元的直流接线区域设置于组串式逆变升压一体机的外侧。
在实际应用中,各个组串逆变单元呈两行分布。每行均设置于该组串式逆变升压一体的相应侧。具体的,如图3所示,以长度方向平行的两个面作为正背面;与长度方向垂直的两个面作为左右侧面;一行组串逆变单元设置于组串式逆变升压一体机的前面,以使该组串逆变单元的直流接线区设置于该正面的外侧;另一行组串逆变单元靠近组串式逆变升压一体机的背面,以使该组串逆变单元的直流接线区设置于该背面的外侧。
在实际应用中,同一行的各个组串逆变单元均匀分布。
也就是说,同一行中,各个组串逆变单元之间的距离相等,也就是说,同一行中的相邻组串逆变单元之间预留维护检修通道的大小相等。
在实际应用中,每个组串逆变单元之间的横向空间预留低压交流母线布线区,用于布置低压交流母线。
其中,组串式逆变升压一体机的长度方向为横向。
也就是说,将各个组串逆变单元连接成线,则该线与该长度方向是平行的。因此,若该低压交流母线的设置区域也与该长度方向平行,则其布线区域较小,且简单。
在实际应用中,两行之间预留区域作为低压交流母线布线区域。
也即,在各个组串逆变单元呈两行时,将该低压交流母线区域设置于中两行之间,以缩短每行到该低压交流母线区域之间的距离,也即减小连接线的长度。
在实际应用中,如图5所示,组串逆变单元包括:功率转化设备、安装机架和直流接线区域。
功率转化设备背靠背安装于安装机架的上部。
该功率转化设备可以是逆变设备,也可以是汇流箱;或者逆变设备和汇流箱的组合,此处不再一一赘述,视实际情况而定即可,均在本申请的保护范围内。
在组串逆变单元的侧面设置直流接线区域。
直流接线区域用于实现组串式逆变升压一体机的现场直流接线。
需要说明的是,该功率转化设备的交流侧作为该组串逆变单元的交流侧,依次通过低压交流母线、低压开关柜和升压设备相连。
该功率转化设备的直流侧作为该组串逆变单元的直流侧,连接至该直流接线区域。
在本实施例中,将相应数量的功率转化设备背靠背组合安装,使得结构紧凑;可最大程度的与低压开关柜,升压设备组合集成在同一个平台上,便于现场施工,减少现场电气连接。
在实际应用中,功率转化设备包括:至少一个组串逆变器。
具体的,各个逆变器之间的关系可以是串联关系,如各个逆变器依次串联连接。
各个逆变器之间的关系可以是并联关系,如各个逆变器均并联连接。
各个逆变器之间的关系还可以是串并联关系,如部分逆变器之间呈串联关系,部分逆变器之间呈并联关系。
各个逆变器之间的连接,要保持交流侧与交流侧相连,直流侧与直流侧相连。
各个逆变器的连接关系,此处不做具体限定,视实际情况而定即可,均在 本申请的保护范围内。
还值得说明的是,各个组串逆变器连接后的交流侧作为该功率转化设备的交流侧,依次通过低压交流母线、低压开关柜与升压设备相连。
各个组串逆变器连接后的直流侧作为该功率转化设备的直流侧,连接至相应的直流接线区域。
在实际应用中,功率转化设备还包括:至少一个集散汇流箱。
各个组串逆变器均与相应的集散汇流箱相连。
具体的,由上述说明可知,各个组串逆变器之间有多种连接关系,因此组串逆变器与该集散汇流箱之间的关系也有多种。
在集散回流箱的数量为1个时,各个组串逆变器采用上述连接后的直流侧与该集散汇流箱的一侧相连;该集散汇流箱的另一侧作为功率转化设备的直流侧
在实际应用中,各个组串逆变单元的交流侧与低压开关柜之间的连接采用铜排作为电气连接。
也就是说,该铜排作为低压交流母线分别与各个组串逆变单元的交流侧和低压开关柜相连。
需要说明的是,现有技术中,组串式逆变器的交流输出与升压设备电气连接时,传统方案采用线缆连接,线缆成本高且有老化风险,需定期检修维护。
而本实施例中,组串逆变单元的交流侧与低压开关柜之间采用铜排连接,既降低直材成本又减少电站后期维护成本。
在实际应用中,低压开关柜包括:至少有一个总开关和通讯设备。
总开关用于实现升压设备与各个组串逆变单元之间的通断。
通讯设备用于收集各个组串逆变单元进行通讯数据,并上传至上位机。
在总开关为多个时,各个开关可以采用串联连接和并联连接中的至少一种,此处不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
该总开关通过实现对升压设备与各个组串逆变单元之间的通断,来实现对组串逆变单元进行电气保护。
本申请另一实施例提供了一种电站系统。
如图6所示,该电站系统,包括:新能源系统和至少一个组串式逆变升压一体机。
新能源系统通过相应的组串式逆变升压一体机接入电网。
该组串式逆变升压一体机的工作过程及原理,详情参见上述实施例提供的组串式逆变升压一体机,如图2-图5所示,此处不再一一赘述,均在本申请的保护范围内。
该新能源系统可以是风力发电系统;也可以是光伏发电系统;当然,也可以是风力发电系统和光伏发电系统的混合能源系统。
该新能源系统的具体选型,此处不做具体限定,视实际情况而定即可,均在本申请的保护范围内。
本说明书中的各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种组串式逆变升压一体机,其特征在于,包括:低压交流母线、低压开关、升压设备和多个组串逆变单元;
    各个所述组串逆变单元、所述低压交流母线、所述低压开关和所述升压设备依次设置于所述组串式逆变升压一体机的平台上;
    各个所述组串逆变单元的交流侧均依次通过所述低压交流母线、所述低压开关柜,与所述升压设备电气相连;
    各个所述组串逆变单元的直流接线区域设置于所述组串式逆变升压一体机的外侧。
  2. 根据权利要求1所述的组串式逆变升压一体机,其特征在于,相邻的所述组串逆变单元之间预留维护检修通道。
  3. 根据权利要求1所述的组串式逆变升压一体机,其特征在于,各个所述组串逆变单元与所述组串式逆变升压一体机的长度方向平行成阵列布置在所述组串式逆变升压一体机的平台上。
  4. 根据权利要求3所述的组串式逆变升压一体机,其特征在于,每个所述组串逆变单元之间的横向空间预留低压交流母线区域,用于布置所述低压交流母线;
    其中,所述组串式逆变升压一体机的长度方向为横向。
  5. 根据权利要求4所述的组串式逆变升压一体机,其特征在于,各个所述组串逆变单元呈两行分布。
  6. 根据权利要求5所述的组串式逆变升压一体机,其特征在于,两行之间预留区域作为低压交流母线布线区域。
  7. 根据权利要求5所述的组串式逆变升压一体机,其特征在于,同一行的各个所述组串逆变单元均匀分布。
  8. 根据权利要求1所述的组串式逆变升压一体机,其特征在于,所述组串逆变单元包括:功率转化设备、安装机架和直流接线区域;
    所述功率转化设备背靠背安装于所述安装机架的上部;
    在所述组串逆变单元的侧面设置所述直流接线区域;
    所述直流接线区域用于实现组串式逆变升压一体机的现场直流接线。
  9. 根据权利要求8所述的组串式逆变升压一体机,其特征在于,所述功率转化设备包括:至少一个组串逆变器。
  10. 根据权利要求9所述的组串式逆变升压一体机,其特征在于,所述功率转化设备还包括:至少一个集散汇流箱;
    各个所述组串逆变器均与相应的所述集散汇流箱相连。
  11. 根据权利要求1-10任一项所述的组串式逆变升压一体机,其特征在于,各个组串逆变单元的交流侧与所述低压开关柜之间的连接采用铜排作为电气连接。
  12. 根据权利要求1-10任一项所述的组串式逆变升压一体机,其特征在于,所述低压开关柜包括:至少有一个总开关和通讯设备;
    所述总开关用于实现所述升压设备与各个组串逆变单元之间的通断;
    所述通讯设备用于收集各个所述组串逆变单元进行通讯数据,并上传至上位机。
  13. 一种电站系统,其特征在于,包括:新能源系统和至少一个如权利要求1-12任一项所述的组串式逆变升压一体机;
    所述新能源系统通过相应的所述组串式逆变升压一体机接入电网。
PCT/CN2022/094953 2021-12-13 2022-05-25 一种组串式逆变升压一体机和电站系统 WO2023109012A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22905780.7A EP4451553A1 (en) 2021-12-13 2022-05-25 String-type inversion-boost all-in-one machine and power station system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123121632.8U CN216959797U (zh) 2021-12-13 2021-12-13 一种组串式逆变升压一体机和电站系统
CN202123121632.8 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109012A1 true WO2023109012A1 (zh) 2023-06-22

Family

ID=82307504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094953 WO2023109012A1 (zh) 2021-12-13 2022-05-25 一种组串式逆变升压一体机和电站系统

Country Status (3)

Country Link
EP (1) EP4451553A1 (zh)
CN (1) CN216959797U (zh)
WO (1) WO2023109012A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209298901U (zh) * 2018-12-03 2019-08-23 厦门科华恒盛电力能源有限公司 逆变升压装置和预装式光伏变电站
CN212012572U (zh) * 2020-03-09 2020-11-24 国家电投集团青海光伏产业创新中心有限公司 一种集成式逆变升压设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209298901U (zh) * 2018-12-03 2019-08-23 厦门科华恒盛电力能源有限公司 逆变升压装置和预装式光伏变电站
CN212012572U (zh) * 2020-03-09 2020-11-24 国家电投集团青海光伏产业创新中心有限公司 一种集成式逆变升压设备

Also Published As

Publication number Publication date
CN216959797U (zh) 2022-07-12
EP4451553A1 (en) 2024-10-23

Similar Documents

Publication Publication Date Title
CN105703389B (zh) 一种基于中高压直流接入的光伏并网发电系统
DE102014105985A1 (de) Wandlermodul zur Umwandlung elektrischer Leistung und Wechselrichter für eine Photovoltaikanlage mit mindestens zwei Wandlermodulen
TR201811106T4 (tr) Doğrudan bir fotovoltaik enerji santrali tarafından beslenen bir yüksek gerilim doğru akım iletim sistemi içeren bir elektrik akımı besleme sistemi.
CN203313097U (zh) 一种大功率光伏发电系统
CN115714579B (zh) 对称一体双式组合区域优化光伏组件及mlpe发电系统
CN204068287U (zh) 一种分散式光伏发电系统
WO2023109012A1 (zh) 一种组串式逆变升压一体机和电站系统
US10404039B2 (en) Energy storage units and systems with segmented branch interconnects
An et al. Comparative investigation of system-level optimized power conversion system architectures to reduce LCOE for large-scale PV-plus-storage farms
CN113852205A (zh) 一种高性能即插即用型微电网储能系统
JP2002305318A (ja) 太陽光発電システム
CN203434471U (zh) 一种光伏防雷汇流箱
CN213093888U (zh) 一种高性能即插即用型微电网储能系统
CN208209279U (zh) 高压直流配电柜
JPWO2019044747A1 (ja) 蓄電システムおよびコンテナ型蓄電システム
CN106100571A (zh) 一种组串式光伏逆变器交流并联接线结构及光伏并网单元
CN211908389U (zh) 用于分布式光伏电站的虚拟电厂系统
CN103208750A (zh) 一种光伏防雷汇流箱
CN209233170U (zh) 主母线拼接结构
CN203415832U (zh) 一种光伏直流配电柜的断路器布置结构
CN219937956U (zh) 一种储能系统和新能源发电系统
CN207218630U (zh) 一种应用于光伏组的并列直线式串接线结构
Lisy et al. Three case studies of commercial deployment of 400V DC data and telecom centers in the EMEA region
CN212366764U (zh) 一种便于线路连接的高效散热密集型母线槽
CN210093119U (zh) 一种应急电源装置的逆变器柜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022905780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022905780

Country of ref document: EP

Effective date: 20240715