WO2023108928A1 - 基于事件树的飞行超限事件综合后果严重性的计算方法 - Google Patents

基于事件树的飞行超限事件综合后果严重性的计算方法 Download PDF

Info

Publication number
WO2023108928A1
WO2023108928A1 PCT/CN2022/081078 CN2022081078W WO2023108928A1 WO 2023108928 A1 WO2023108928 A1 WO 2023108928A1 CN 2022081078 W CN2022081078 W CN 2022081078W WO 2023108928 A1 WO2023108928 A1 WO 2023108928A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
overrun
flight
severity
comprehensive
Prior art date
Application number
PCT/CN2022/081078
Other languages
English (en)
French (fr)
Inventor
张秀艳
Original Assignee
中国民航大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国民航大学 filed Critical 中国民航大学
Publication of WO2023108928A1 publication Critical patent/WO2023108928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to the technical field of flight data processing and analysis, in particular to a method for calculating the severity of comprehensive consequences of flight overrun events based on an event tree, electronic equipment and a readable storage medium.
  • Flight quality monitoring is a system for collecting and analyzing daily flight data, which is used to improve the control quality of flight crews. It is internationally recognized as one of the important means to ensure flight safety, and has been generally recognized by the world's civil aviation industry.
  • the value of flight quality monitoring lies in identifying safety hazards such as substandard operations, defective procedures, aircraft performance attenuation, and imperfect air traffic control systems as soon as possible by monitoring flight parameters exceeding the limits, so as to formulate improvement measures. and implementation to provide data and information support. Among them, the calculation and analysis of the severity of flight overrun events is an important indicator of flight safety risk analysis.
  • the severity analysis of the consequences of flight overrun events only focuses on the consequences of primary overrun events, and divides overrun events into different levels. This analysis evaluates the severity of the consequences of overrun events from the perspective of loss of results, without considering the consequences of secondary overrun events triggered by primary overrun events. Secondary overrun events reflect the spreading characteristics of primary overrun events in the process of development and evolution. Certain secondary overrun events may result in losses much higher than those of primary overrun events, which belong to the consequences of primary overrun events. However, it is ignored in the analysis of the severity of the consequences of the primary overrun event.
  • the present invention provides a kind of calculation method based on the seriousness of the comprehensive consequences of the flight overrun event based on the event tree, this technical method comprehensively considers primary overrun event and all secondary overrun events, thereby Make the evaluation of the severity of the consequences of flight overrun incidents comprehensive and clear.
  • the present invention provides a method for calculating the severity of the comprehensive consequences of a flight overrun event based on an event tree.
  • the method comprehensively considers the original overrun event and at least one secondary overrun event caused by the original overrun event, including the following steps:
  • the construction of the original overrun event tree model also includes determining the secondary overrun event of the original overrun event, including the following steps:
  • S1.1 Determine the characteristic parameters of the original overrun event.
  • the monitoring parameters used to determine whether the original overrun event occurs or not are the characteristic parameters of the original overrun event;
  • the construction of the correlation degree prediction model specifically includes:
  • the reference sequence be X 0
  • the comparison sequence be X i
  • the reference sequence is a sequence of characteristic parameters
  • the comparison sequence is a sequence of other flight parameters:
  • represents the resolution coefficient
  • the average number of the gray correlation coefficients of the reference sequence and the comparison sequence at each point is used as the gray correlation degree r i of the comparison sequence and the reference sequence, that is:
  • the primary overrun event has a large drop rate.
  • the characteristic parameter of the primary overrun event is instantaneous vertical velocity.
  • flight parameters whose correlation degree of the characteristic parameters is greater than a certain value include airspeed, speedbrake position, flap position, pitch angle and vertical overload.
  • secondary overrun events include high approach descent rate, high approach speed, high landing speed, use of airbrakes at low altitude, late selection of landing flaps, large touchdown pitch angle, and large landing vertical overload.
  • the present invention also provides an electronic device, including a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, it can realize any of the above-mentioned method.
  • the present invention also provides a readable storage medium, wherein a computer program is stored in the readable storage medium, and when the computer program is executed by a processor, the method described in any one of the above is implemented.
  • the invention provides a new method for calculating the severity of the comprehensive consequences of flight overrun events.
  • the associated overrun event is determined, and the original overrun event tree model is established; it is determined according to the event tree path length.
  • the degree of correlation of overrun events, constructing a calculation model for the severity of the comprehensive consequences of flight overrun events can quantitatively calculate the severity of the comprehensive consequences of flight overrun events, and provide a basis for the quantitative implementation of flight quality monitoring; finally, this technical method comprehensively considers the original Over-limit events and all secondary over-limit events, so as to make the evaluation of the severity of flight over-limit events comprehensive and clear.
  • Fig. 1 is a schematic flow chart of a calculation method for the severity of the comprehensive consequences of a flight overrun event based on an event tree provided by an embodiment of the present invention
  • Fig. 2 is a calculation model diagram of the comprehensive consequence severity calculation method of the flight overrun event comprehensive consequence severity based on the event tree provided by an embodiment of the present invention
  • Fig. 3 is a model diagram of an original overrun event tree in an event tree-based calculation method for the comprehensive consequence severity of a flight overrun event provided by an embodiment of the present invention.
  • Event tree analysis method is an inductive reasoning analysis method commonly used in safety system engineering. It originated from decision tree analysis. methods of hazard identification. In this method, the logical relationship between a certain accident that may occur in the system and various causes of the accident is represented by a tree diagram called an event tree. Through qualitative and quantitative analysis of the event tree, the accident can be found The main cause of the occurrence provides a reliable basis for determining safety countermeasures to achieve the purpose of guessing and preventing accidents.
  • Fuzzy comprehensive evaluation method is a comprehensive evaluation method based on fuzzy mathematics.
  • the comprehensive evaluation method converts qualitative evaluation into quantitative evaluation according to the membership degree theory of fuzzy mathematics, that is, uses fuzzy mathematics to make an overall evaluation of things or objects restricted by various factors. It has the characteristics of clear results and strong system, can better solve vague and difficult-to-quantify problems, and is suitable for solving various non-deterministic problems.
  • the present invention provides a method for calculating the severity of the comprehensive consequences of a flight overrun event based on an event tree, which comprehensively considers the original overrun event and at least one secondary overrun event caused by the original overrun event , including the following steps:
  • a key point of the present invention is to determine the secondary overrun event associated with the original overrun event, in order to build the original overrun event tree model, for the original overrun event associated For secondary overrun events, the determination process can be carried out according to the following steps:
  • S1.1 Determine the characteristic parameters of the original overrun event.
  • the monitoring parameters used to determine whether the original overrun event occurs or not are the characteristic parameters of the original overrun event;
  • the monitoring parameter used to determine whether the original overrun event occurs is the characteristic parameter of the event; For example, refer to Table 1 below.
  • the monitoring parameter is the instantaneous vertical speed, so its characteristic parameter is the instantaneous vertical speed.
  • represents the resolution coefficient, which takes a value between 0-1, generally 0.5, and uses the average number of gray correlation coefficients of the reference sequence and the comparison sequence at each point as the comparison sequence and the reference sequence.
  • Gray correlation degree r i namely:
  • the quadratic exponential smoothing is constructed Prediction model:
  • a flight overrun event with a highly relevant flight parameter as the monitoring parameter is defined as a secondary overrun event;
  • Flight parameters with a high degree of correlation include instantaneous vertical speed, airspeed, airbrake position, flap position, pitch angle and vertical overload, so it can be determined that the secondary overrun events are high approach descent rate, approach speed Large, high landing speed, use of speedbrakes at low altitudes, late selection of landing flaps, high touchdown pitch angle, and large landing vertical overload.
  • step S1 a tree model of the original overrun event is constructed: the original overrun event is taken as the initial event, the secondary overrun event is taken as the result event, and the event tree is drawn in combination with the sequence of actual operations during the flight model; taking "large drop rate" as an example, the original overrun event tree model can be drawn as shown in Figure 3.
  • step S2 the calculation of the severity of the comprehensive consequences of the flight overrun event:
  • A ⁇ a 1 , a 2 ,..., a m ⁇
  • the set of weights is a fuzzy subset on the set of factors.
  • V ⁇ v 1 , v 2 ,..., v n ⁇
  • Each factor v i represents various possible total evaluation results.
  • R i (r i1 , r i2 ,..., r in )
  • R 1 (r 11 , r 12 , . . . , r 1n )
  • R 2 (r 21 , r 22 , . . . , r 2n )
  • R m (r m1 , r m2 ,..., r mn )
  • the total evaluation matrix can be obtained by combining the evaluation vectors of each single factor, as follows:
  • R represents the fuzzy subset on the evaluation set V
  • A represents the relative importance of many factors in the system evaluation set.
  • B represents the evaluation result, and finally the normalized processing is performed to obtain the comprehensive evaluation result.
  • the present invention also provides an electronic device, including a processor and a memory, and a computer program is stored in the memory, and when the computer program is executed by the processor, the event tree-based flight is realized. Calculation method for the severity of the comprehensive consequences of overrun events.
  • the processor may be a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller, a microprocessor (such as a GPU (Graphics Processing Unit-graphics processor)) in some embodiments, or other data processing chip.
  • the processor is typically used to control the overall operation of the electronic device.
  • the processor is configured to run program codes or process data stored in the memory, for example, run program codes of the method for calculating the severity of comprehensive consequences of flight overrun events based on event trees.
  • the memory includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card type memory (for example, SD or DX memory, etc.), random access memory (RAM), SRAM Access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disk, optical disk, etc.
  • the storage may be an internal storage unit of the electronic device, such as a hard disk or a memory of the electronic device.
  • the memory may also be an external storage device of the electronic device, such as a plug-in hard disk equipped on the electronic device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital , SD) card, flash memory card (Flash Card), etc.
  • the storage may also include both an internal storage unit of the electronic device and an external storage device thereof.
  • the memory is usually used to store the operation method and various application software installed in the electronic device, such as the program code of the calculation method of the comprehensive consequence severity of the flight overrun event based on the event tree.
  • the memory can also be used to temporarily store various types of data that have been output or will be output.
  • the present invention also provides a readable storage medium, in which a computer program is stored, and when the computer program is executed by a processor, the event tree-based flight overrun event synthesis is realized. Calculation method for severity of consequences.
  • the present invention provides a new method for calculating the severity of the comprehensive consequences of flight overrun events, according to the overrun event characteristic parameter association relationship, determine the associated overrun event, and establish the original overrun event tree model;
  • the path length of the event tree determines the correlation degree of the overrun event, and constructs a calculation model for the comprehensive consequence severity of the flight overrun event, which can quantitatively calculate the comprehensive consequence severity of the flight overrun event, and provides a basis for the quantitative implementation of flight quality monitoring;
  • the The technical method comprehensively considers the primary overrun event and all secondary overrun events, so as to make the evaluation of the severity of the flight overrun event comprehensive and clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Debugging And Monitoring (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及飞行数据处理与分析技术领域,具体涉及一种基于事件树的飞行超限事件综合后果严重性的计算方法,包括如下步骤:构建原生超限事件树模型,其中,以所述原生超限事件为初始事件,以至少一个所述次生超限事件为结果事件;进行飞行超限事件综合后果严重性计算,以次生超限事件的集合作为因素集,以次生超限事件的严重性等级作为评判集,根据评判集和因素集计算在每个因素上被评判类对于评判集中每个类的隶属度,根据隶属度形成模糊矩阵,并以次生超限事件在所述原生超限事件树模型上距离原生超限事件的路径长度作为权重,基于模糊矩阵和权重,定量计算飞行超限事件综合后果严重性。该方法使飞行超限事件后果严重性评价全面化、明确化。

Description

基于事件树的飞行超限事件综合后果严重性的计算方法 技术领域
本发明涉及飞行数据处理与分析技术领域,具体涉及一种基于事件树的飞行超限事件综合后果严重性的计算方法、电子设备及可读存储介质。
背景技术
飞行品质监控是收集和分析日常飞行数据的系统,用于提高飞行机组的操纵品质,是国际上公认的保证飞行安全的重要手段之一,已得到世界民航业的普遍认可。飞行品质监控的价值在于通过监测飞行参数超限情况,尽早地识别出不符合标准的操作、存在缺陷的程序、航空器性能的衰减、空中交通管制系统的不完善等安全隐患,为改进措施的制定及实施提供数据和信息支持。其中,飞行超限事件后果严重性计算分析是飞行安全风险分析的重要指标。
目前,飞行超限事件后果严重性分析仅关注原生超限事件所造成的后果,将超限事件划分为不同等级。这种分析从结果损失的角度评估超限事件后果严重性的高低,未考虑由原生超限事件引发的次生超限事件的后果。次生超限事件反映了原生超限事件在发展演化过程中的蔓延特征,某些次生超限事件可能会导致远高于原生超限事件的结果损失,该损失本属于原生超限事件后果的一部分,但却在原生超限事件后果严重性分析时被忽略。
因此,为了更加准确全面地实施飞行品质监控,需要创新提出一种飞行超限事件后果严重性计算方法,综合考虑原生超限事件和所有次生超限事件,使飞行超限事件后果严重性评价全面化、明确化。
发明内容
解决的技术问题
针对现有技术所存在的上述缺点,本发明提供了一种基于事件树的飞行超限事件综合后果严重性的计算方法,该技术方法综合考虑原生超限事件和所有次生超限事件,从而使飞行超限事件后果严重性评价全面化、明确化。
技术方案
为实现以上目的,本发明通过以下技术方案予以实现:
本发明提供一种基于事件树的飞行超限事件综合后果严重性的计算方法,该方法综合考虑原生超限事件以及所述原生超限事件引发的至少一个次生超限事件,包括如下步骤:
S1、构建原生超限事件树模型,其中,以所述原生超限事件为初始事件,以至少一个所述次生超限事件为结果事件;
S2、进行飞行超限事件综合后果严重性计算,以次生超限事件的集合作为因素集,以次生超限事件的严重性等级作为评判集,根据评判集和因素集计算在每个因素上被评判类对于评判集中每个类的隶属度,根据隶属度形成模糊矩阵,并以次生超限事件在所述原生超限事件树模型上距离原生超限事件的路径长度作为权重,基于模糊矩阵和权重,定量计算飞行超限事件综合后果严重性。
进一步地,所述构建原生超限事件树模型还包括确定原生超限事件的次生超限事件,包括如下步骤:
S1.1、确定原生超限事件的特征参数,用于判定原生超限事件发生与否的监控参数即为该原生超限事件的特征参数;
S1.2、所述特征参数的关联度计算,构建关联度预测模型,定量计算出与所述特征参数的关联度大于一定值的飞行参数;
S1.3、确定次生超限事件,将以所述飞行参数为监控参数的飞行超限事件确定为次生超限事件。
进一步地,所述构建关联度预测模型,具体包括:
设参考数列为X 0,比较数列为X i,其中,所述参考数列为特征参数的数列,所述比较数列为其他飞行参数的数列:
Figure PCTCN2022081078-appb-000001
Figure PCTCN2022081078-appb-000002
计算灰色关联系数ξ i(k),
Figure PCTCN2022081078-appb-000003
其中,ρ表示分辨系数,以所述参考数列与所述比较数列在各点灰关联系数的平均数作为所述比较数列与所述参考数列的灰关联度r i,即:
Figure PCTCN2022081078-appb-000004
r i越大,所述比较数列与所述参考数列的关联程度则越大。
进一步地,其特征在于,原生超限事件为下降率大。
进一步地,其特征在于,所述原生超限事件的特征参数为瞬时垂直速度。
进一步地,所述特征参数的关联度大于一定值的飞行参数包括空速、减速板位置、襟翼位置、俯仰角度和垂直过载。
进一步地,次生超限事件包括进近下降率大、进近速度大、着陆速度 大、低高度使用减速板、选择着陆襟翼晚、接地俯仰角大和着陆垂直过载大。
基于同一发明构想,本发明还提供了一种电子设备,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现上述任一项所述的方法。
基于同一发明构想,本发明还提供了一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现上述任一项所述的方法。
有益效果
本发明提供的技术方案,与已知的公有技术相比,具有如下有益效果:
本发明提供了一种用于计算飞行超限事件综合后果严重性的新方法,根据超限事件特征参数关联关系,确定关联超限事件,建立原生超限事件树模型;根据事件树路径长度确定超限事件关联度,构建飞行超限事件综合后果严重性计算模型,可定量计算飞行超限事件综合后果严重性,为飞行品质监控的定量化实施提供基础依据;最后,该技术方法综合考虑原生超限事件和所有次生超限事件,从而使飞行超限事件后果严重性评价全面化、明确化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附 图。
图1为本发明一实施例提供的基于事件树的飞行超限事件综合后果严重性的计算方法流程示意图;
图2为本发明一实施例提供的基于事件树的飞行超限事件综合后果严重性的计算方法中飞行超限事件综合后果严重性计算模型图;
图3为本发明一实施例提供的基于事件树的飞行超限事件综合后果严重性的计算方法中原生超限事件树模型图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,对本发明涉及到的一些技术术语进行介绍。
事件树分析法:事件树分析法是安全系统工程中常用的一种归纳推理分析方法,起源于决策树分析,它是一种按事故发展的时间顺序由初始事件开始推论可能的后果,从而进行危险源辨识的方法。这种方法将系统可能发生的某种事故与导致事故发生的各种原因之间的逻辑关系用一种称为事件树的树形图表示,通过对事件树的定性与定量分析,找出事故发生的主要原因,为确定安全对策提供可靠依据,以达到猜测与预防事故发生的目的。
模糊综合评价法(模糊模型、模糊矩阵):模糊综合评价法是一种基 于模糊数学的综合评价方法。该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
参阅图1,本发明提供了一种基于事件树的飞行超限事件综合后果严重性的计算方法,该方法综合考虑原生超限事件以及所述原生超限事件引发的至少一个次生超限事件,包括如下步骤:
S1、构建原生超限事件树模型,其中,以所述原生超限事件为初始事件,以至少一个所述次生超限事件为结果事件;
S2、进行飞行超限事件综合后果严重性计算,以次生超限事件的集合作为因素集,以次生超限事件的严重性等级作为评判集,根据评判集和因素集计算在每个因素上被评判类对于评判集中每个类的隶属度,根据隶属度形成模糊矩阵,并以次生超限事件在所述原生超限事件树模型上距离原生超限事件的路径长度作为权重,基于模糊矩阵和权重,定量计算飞行超限事件综合后果严重性。
在本实施例中,如图3所示,本发明的一个关键点就是确定原生超限事件相关联的次生超限事件,才能构建原生超限事件树模型,对于原生超限事件相关联的次生超限事件,其确定过程可以按照如下步骤进行:
S1.1、确定原生超限事件的特征参数,用于判定原生超限事件发生与否的监控参数即为该原生超限事件的特征参数;
S1.2、所述特征参数的关联度计算,构建关联度预测模型,定量计算出与所述特征参数的关联度大于一定值的飞行参数;
S1.3、确定次生超限事件,将以所述飞行参数为监控参数的飞行超限事件确定为次生超限事件。
在本实施例中,对于步骤S1.1,确定原生超限事件特征参数:用于判定原生超限事件发生与否的监控参数即为该事件的特征参数;以原生超限事件为“下降率大”为例,参阅下表1,根据飞行品质监控实施相关规定,其监控参数为瞬时垂直速度,因此其特征参数即为瞬时垂直速度。
表1
Figure PCTCN2022081078-appb-000005
在本实施例中,对于步骤S1.2,特征参数关联度计算:构建关联度预测模型,定量计算出与该特征参数具有高关联度的飞行参数;以特征参数的数列作为参考数列,将其他飞行参数的数列作为比较数列,设参考数列为x 0,比较数列为x i(i=1,2,…m),具体如下:
Figure PCTCN2022081078-appb-000006
Figure PCTCN2022081078-appb-000007
计算灰色关联系数ξ i(k),
Figure PCTCN2022081078-appb-000008
其中,ρ表示分辨系数,在0-1之间取值,一般取0.5,以所述参考数列与所述比较数列在各点灰关联系数的平均数作为所述比较数列与所述 参考数列的灰关联度r i,即:
Figure PCTCN2022081078-appb-000009
r i越大,所述比较数列与所述参考数列的关联程度则越大,可以设置一关联度定值,当r i大于该关联度定值,则认为所述比较数列与所述参考数列具有高关联度,从而确定与特征参数有高关联度的飞行参数。
此外,为了使近期观察在指数平滑值中具有较大作用,平均误差最小,从而使近期观察值能迅速反映在未来的预测值中,确定二次平滑指数为α=0.9,构建二次指数平滑预测模型:
Figure PCTCN2022081078-appb-000010
Figure PCTCN2022081078-appb-000011
其中,
Figure PCTCN2022081078-appb-000012
为t的二次指数平滑值。二次指数平滑值的初始值
Figure PCTCN2022081078-appb-000013
同一次指数平滑法,一般取
Figure PCTCN2022081078-appb-000014
二次指数平滑数列是原时间序列经过两次平滑而得到的数列,因此需要一次指数平滑数列配合,建立预测模型进行预测,因此确定最终预测模型为:
Figure PCTCN2022081078-appb-000015
在本实施例中,对于步骤S1.3,以高关联度飞行参数为监控参数的飞行超限事件定义为次生超限事件;以“下降率大”为例,与特征参数“瞬时垂直速度”具有高关联度的飞行参数包括瞬时垂直速度、空速、减速板位置、襟翼位置、俯仰角度和垂直过载,因此可确定出次生超限事件分别为进近下降率大、进近速度大、着陆速度大、低高度使用减速板、选择着陆襟翼晚、接地俯仰角大、着陆垂直过载大。
在本实施例中,对于步骤S1,构建原生超限事件树模型:以原生超 限事件为初始事件,以次生超限事件为结果事件,结合飞行过程中实际操作的先后顺序,绘制事件树模型;以“下降率大”为例,绘制可得原生超限事件树模型如图3所示。
在本实施例中,对于步骤S2,飞行超限事件综合后果严重性计算:
以次生超限事件为元素建立因素集:
U={u 1,u 2,…,u i}
各元素u i(i=1,2,…,m)代表各影响因素。这些因素通常都具有不同程度的模糊性。
由于各个因素发生的先后顺序不同,其对初始事件的后果的影响程度也有所不同,因此以原生超限事件路径长度作为权重,对各个因素赋权值确定权重集:
A={a 1,a 2,…,a m}
各权数a i应满足归一性和非负性条件:
Figure PCTCN2022081078-appb-000016
它们是各因素u i对“重要”的隶属度。因此,权重集是因素集上的模糊子集。
根据飞行超限事件等级划分方法确定评判集,用V表示。即:
V={v 1,v 2,…,v n}
各因素v i代表各种可能的总评判结果。
其对评判集V中第j个元素v j的隶属度为r ij,则可得出U中第i个因素u i的评判结果,即:
R i=(r i1,r i2,…,r in)
同理得出其他因素的评判集,如下:
R 1=(r 11,r 12,…,r 1n)
R 2=(r 21,r 22,…,r 2n)
...
R m=(r m1,r m2,…,r mn)
将各单因素的评价向量组合起来可得到总评价矩阵,如下:
Figure PCTCN2022081078-appb-000017
最终得到模糊综合决策模型为:
B=A·R
其中,R代表评判集V上的模糊子集,A表示系统评判集诸多因素的相对重要程度。B代表评判结果,最后再进行归一化处理即可得到综合评判结果。
基于同一发明构想,本发明还提供了一种电子设备,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现所述基于事件树的飞行超限事件综合后果严重性的计算方法。
所述处理器在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器(例如GPU(Graphics Processing Unit-图形处理器))、或其他数据处理芯片。该处理器通常用于控制所述电子设备的总体操作。本实施例中,所述处理器用于运行所述存储器中存储的程序代码或者处理数据,例如运行所述基于事件树的飞行超限事件综合后果严重性的计算方法的程序代码。
所述存储器至少包括一种类型的可读存储介质,所述可读存储介质包 括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器可以是所述电子设备的内部存储单元,例如该电子设备的硬盘或内存。在另一些实施例中,所述存储器也可以是所述电子设备的外部存储设备,例如该电子设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器还可以既包括所述电子设备的内部存储单元也包括其外部存储设备。本实施例中,所述存储器通常用于存储安装于所述电子设备的操作方法和各类应用软件,例如所述基于事件树的飞行超限事件综合后果严重性的计算方法的程序代码等。此外,所述存储器还可以用于暂时地存储已经输出或者将要输出的各类数据。
基于同一发明构想,本发明还提供一种可读存储介质,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现所述基于事件树的飞行超限事件综合后果严重性的计算方法。
综上所述,本发明提供了一种用于计算飞行超限事件综合后果严重性的新方法,根据超限事件特征参数关联关系,确定关联超限事件,建立原生超限事件树模型;根据事件树路径长度确定超限事件关联度,构建飞行超限事件综合后果严重性计算模型,可定量计算飞行超限事件综合后果严重性,为飞行品质监控的定量化实施提供基础依据;最后,该技术方法综合考虑原生超限事件和所有次生超限事件,从而使飞行超限事件后果严重 性评价全面化、明确化。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims (9)

  1. 一种基于事件树的飞行超限事件综合后果严重性的计算方法,该方法综合考虑原生超限事件以及所述原生超限事件引发的至少一个次生超限事件,其特征在于,包括如下步骤:
    S1、构建原生超限事件树模型,其中,以所述原生超限事件为初始事件,以至少一个所述次生超限事件为结果事件;
    S2、进行飞行超限事件综合后果严重性计算,以次生超限事件的集合作为因素集,以次生超限事件的严重性等级作为评判集,根据评判集和因素集计算在每个因素上被评判类对于评判集中每个类的隶属度,根据隶属度形成模糊矩阵,并以次生超限事件在所述原生超限事件树模型上距离原生超限事件的路径长度作为权重,基于模糊矩阵和权重,定量计算飞行超限事件综合后果严重性。
  2. 根据权利要求1所述的基于事件树的飞行超限事件综合后果严重性的计算方法,其特征在于,所述构建原生超限事件树模型还包括确定原生超限事件的次生超限事件,包括如下步骤:
    S1.1、确定原生超限事件的特征参数,用于判定原生超限事件发生与否的监控参数即为该原生超限事件的特征参数;
    S1.2、所述特征参数的关联度计算,构建关联度预测模型,定量计算出与所述特征参数的关联度大于一定值的飞行参数;
    S1.3、确定次生超限事件,将以所述飞行参数为监控参数的飞行超限事件确定为次生超限事件。
  3. 根据权利要求2所述的基于事件树的飞行超限事件综合后果严重性的计算方法,其特征在于,所述构建关联度预测模型,具体包括:
    设参考数列为X 0,比较数列为X i,其中,所述参考数列为特征参数的数列,所述比较数列为其他飞行参数的数列:
    Figure PCTCN2022081078-appb-100001
    Figure PCTCN2022081078-appb-100002
    计算灰色关联系数ξ i(k),
    Figure PCTCN2022081078-appb-100003
    其中,ρ表示分辨系数,以所述参考数列与所述比较数列在各点灰关联系数的平均数作为所述比较数列与所述参考数列的灰关联度r i,即:
    Figure PCTCN2022081078-appb-100004
    r i越大,所述比较数列与所述参考数列的关联程度则越大。
  4. 根据权利要求2所述的基于事件树的飞行超限事件综合后果严重性的计算方法,其特征在于,原生超限事件为下降率大。
  5. 根据权利要求4所述的基于事件树的飞行超限事件综合后果严重性的计算方法,其特征在于,所述原生超限事件的特征参数为瞬时垂直速度。
  6. 根据权利要求5所述的基于事件树的飞行超限事件综合后果严重性的计算方法,其特征在于,所述特征参数的关联度大于一定值的飞行参数包括空速、减速板位置、襟翼位置、俯仰角度和垂直过载。
  7. 根据权利要求6所述的基于事件树的飞行超限事件综合后果严重性的计算方法,其特征在于,次生超限事件包括进近下降率大、进近速度大、着陆速度大、低高度使用减速板、选择着陆襟翼晚、接地俯仰角大 和着陆垂直过载大。
  8. 一种电子设备,其特征在于,包括处理器和存储器,所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,实现权利要求1至7中任一项所述的方法。
  9. 一种可读存储介质,其特征在于,所述可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时,实现权利要求1至7中任一项所述的方法。
PCT/CN2022/081078 2021-12-14 2022-03-16 基于事件树的飞行超限事件综合后果严重性的计算方法 WO2023108928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111518990.4A CN113919186B (zh) 2021-12-14 2021-12-14 基于事件树的飞行超限事件综合后果严重性的计算方法
CN202111518990.4 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023108928A1 true WO2023108928A1 (zh) 2023-06-22

Family

ID=79249034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081078 WO2023108928A1 (zh) 2021-12-14 2022-03-16 基于事件树的飞行超限事件综合后果严重性的计算方法

Country Status (2)

Country Link
CN (1) CN113919186B (zh)
WO (1) WO2023108928A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113919186B (zh) * 2021-12-14 2022-03-18 中国民航大学 基于事件树的飞行超限事件综合后果严重性的计算方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090292409A1 (en) * 2006-09-14 2009-11-26 The Boeing Company Responding to aircraft excursions from flight envelopes
CN106570302A (zh) * 2016-11-15 2017-04-19 北京大学 民用机场地形特征对飞行超限事件影响的分析方法
CN110533095A (zh) * 2019-08-27 2019-12-03 中国民航大学 一种基于改进随机森林的航班飞行风险行为识别方法
CN112257914A (zh) * 2020-10-16 2021-01-22 中国人民解放军空军工程大学 一种基于随机森林的航空安全因果预测方法
CN113919186A (zh) * 2021-12-14 2022-01-11 中国民航大学 基于事件树的原生超限事件综合后果严重性的计算方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766169B (zh) * 2015-04-07 2018-07-27 北京城市排水集团有限责任公司 一种地铁建设期间排水设施安全保护分级智能判定方法
CN108596414A (zh) * 2017-12-07 2018-09-28 中国航天标准化研究所 一种针对航天产品的重要度计算方法
CN108133083B (zh) * 2017-12-08 2021-09-03 中国航天标准化研究所 一种空间人机系统安全性影响因素筛选方法
CN108769133A (zh) * 2018-05-04 2018-11-06 珠海市筑巢科技有限公司 一种基于区块链的飞行数据共享方法、计算机装置及计算机可读存储介质
CN111160677A (zh) * 2018-11-08 2020-05-15 中国石油化工股份有限公司 事故情景构建方法和用于事故情景构建的系统
CN110222927A (zh) * 2019-04-29 2019-09-10 南京航空航天大学 一种民用飞机多故障风险识别评估计算方法
CN110782173A (zh) * 2019-10-30 2020-02-11 国网上海市电力公司 一种泛在电力物联网突发电力事件的推演方法
CN111553509B (zh) * 2020-04-01 2023-05-09 中山大学 针对地质环境风险的轨道交通选线评估及成本优化方法
CN111562785B (zh) * 2020-05-15 2021-08-06 中南大学 一种群集机器人协同覆盖的路径规划方法及系统
CN112433609B (zh) * 2020-11-19 2022-03-15 北京航空航天大学 一种基于多主体的信息层次人机交互安全性建模方法
CN112905658B (zh) * 2021-02-03 2024-05-24 中国商用飞机有限责任公司 用于民用飞行器的系统安全性分析方法
CN112948996B (zh) * 2021-02-05 2023-07-25 中铁工程装备集团有限公司 基于故障树与改进层次分析法的刀盘故障风险分析方法
CN112907130A (zh) * 2021-03-24 2021-06-04 上海交通大学 基于盾构施工参数的施工风险等级确定方法、装置及介质
CN113486938B (zh) * 2021-06-28 2022-11-01 重庆大学 基于多分支时间卷积网络的重着陆的分析方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090292409A1 (en) * 2006-09-14 2009-11-26 The Boeing Company Responding to aircraft excursions from flight envelopes
CN106570302A (zh) * 2016-11-15 2017-04-19 北京大学 民用机场地形特征对飞行超限事件影响的分析方法
CN110533095A (zh) * 2019-08-27 2019-12-03 中国民航大学 一种基于改进随机森林的航班飞行风险行为识别方法
CN112257914A (zh) * 2020-10-16 2021-01-22 中国人民解放军空军工程大学 一种基于随机森林的航空安全因果预测方法
CN113919186A (zh) * 2021-12-14 2022-01-11 中国民航大学 基于事件树的原生超限事件综合后果严重性的计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG, XIAOYU ET AL.: "Decision Model of Flight Safety Based on Flight Event", JOURNAL OF CIVIL AVIATION UNIVERSITY OF CHINA, vol. 29, no. 3, 30 June 2011 (2011-06-30), XP009547119, ISSN: 1674-5590 *
ZHANG, ZHAONING ET AL.: "Assessment Model of Collision Risk Based on Event Tree in Free Flight", SCIENCE TECHNOLOGY AND ENGINEERING, vol. 15, no. 2, 31 January 2015 (2015-01-31), XP009547120, ISSN: 1671-1815 *

Also Published As

Publication number Publication date
CN113919186B (zh) 2022-03-18
CN113919186A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN111507371B (zh) 自动评估对训练图像的标签可靠性的方法和装置
WO2020248228A1 (zh) 一种Hadoop平台计算节点负载预测方法
CN104392071A (zh) 一种基于复杂网络的高速列车系统安全评估方法
CN107679734A (zh) 一种用于无标签数据分类预测的方法和系统
CN112330067B (zh) 基于区块链的金融大数据分析系统
CN109462521A (zh) 一种适用于源网荷互动工控系统的网络流量异常检测方法
WO2023108928A1 (zh) 基于事件树的飞行超限事件综合后果严重性的计算方法
CN107392129A (zh) 基于Softmax的人脸检索方法和系统
CN111159396A (zh) 面向数据共享交换的文本数据分类分级模型的建立方法
CN111626366A (zh) 基于运行特征的区域扇区场景相似识别方法
CN112541536A (zh) 用于信用评分的欠采样分类集成方法、设备及存储介质
CN113362299A (zh) 一种基于改进YOLOv4的X光安检图像检测方法
WO2021036277A1 (zh) 基于三元高斯混合模型的多维城市交通异常事件识别方法
CN114358464A (zh) 作业风险评估方法及装置、电子设备和存储介质
CN111260490A (zh) 基于树模型的车险快速理赔方法和系统
CN113284369B (zh) 一种基于ads-b实测航路数据的预测方法
CN114187125A (zh) 理赔案件分流方法、装置、设备及存储介质
CN113723533B (zh) 对流天气影响终端区的模式识别方法及高斯混合聚类模型
CN116579552A (zh) 一种机场跑道配置自适应决策方法
CN113408816B (zh) 一种基于深度神经网络的电网灾情评估方法
WO2021073408A1 (zh) 模型预测能力优化方法、装置、设备及可读存储介质
CN113919689A (zh) 一种基于qar数据的飞行员操作操作性能评分方法和设备
CN111626365B (zh) 基于运行特征的区域扇区场景相似识别系统
CN113095617A (zh) 基于雷达空中监控数据的机场运行容量评估方法及系统
CN112784770A (zh) 一种人脸表情的识别方法、可读存储介质及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905699

Country of ref document: EP

Kind code of ref document: A1