WO2023108924A1 - 用于压缩机的排气单向阀和具有其的压缩机 - Google Patents

用于压缩机的排气单向阀和具有其的压缩机 Download PDF

Info

Publication number
WO2023108924A1
WO2023108924A1 PCT/CN2022/080232 CN2022080232W WO2023108924A1 WO 2023108924 A1 WO2023108924 A1 WO 2023108924A1 CN 2022080232 W CN2022080232 W CN 2022080232W WO 2023108924 A1 WO2023108924 A1 WO 2023108924A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
exhaust
compressor
assembly
hole
Prior art date
Application number
PCT/CN2022/080232
Other languages
English (en)
French (fr)
Inventor
魏琪青
高强
高斌
钟志锋
Original Assignee
广东美芝制冷设备有限公司
广东美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司, 广东美芝精密制造有限公司 filed Critical 广东美芝制冷设备有限公司
Publication of WO2023108924A1 publication Critical patent/WO2023108924A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • This application aims to solve at least one of the technical problems existing in the prior art. Therefore, the present application proposes a discharge check valve for a compressor, which can effectively improve or avoid adverse effects on the energy efficiency of the compressor.
  • the present application also proposes a compressor with the above-mentioned discharge check valve.
  • the exhaust one-way valve for the compressor includes: a valve casing assembly, the valve casing assembly includes a valve casing and an exhaust pipe, the valve casing There is an air outlet on the top, the inlet end of the exhaust pipe is mated to the air outlet, the cross-sectional area of the inlet end is S1, and the compressor is suitable for passing through the outlet end of the exhaust pipe in one direction
  • a valve core assembly the valve core assembly is built into the valve housing, and includes a valve core movable between an open position and a closed position, the valve core assembly has an exhaust hole, and the valve core An exhaust passage is formed between the valve casing and the exhaust hole and the air outlet.
  • the loss of mechanical efficiency and pressure loss can be reduced, and the adverse effect on the energy efficiency of the compressor can be effectively improved or avoided.
  • Fig. 2 is a cross-sectional view of the exhaust check valve shown in Fig. 1 in a closed state
  • Fig. 4 is a partially enlarged view of the exhaust check valve shown in Fig. 3;
  • FIG. 6 is a partial schematic diagram of the compressor shown in FIG. 1 .
  • Compressor 1000
  • the casing assembly 200 The casing assembly 200 ; the driving assembly 300 ; the pump body assembly 400 ; the process pipe 500 ; the suction pipe 600 ;
  • discharge check valve 100 described herein is not a one-way valve integrated in the pump body assembly 400 of the compressor 1000 to control the one-way discharge of the cylinder, but is located outside the pump body assembly 400, and A one-way valve used to realize the discharge of the compressor 1000 to the outside.
  • the discharge check valve 100 when the compressor 1000 is working and the pressure of the high-pressure gas generated in the compressor 1000 is sufficient, the discharge check valve 100 can be pushed open so that the discharge check valve 100 is switched to an open state,
  • the high-pressure gas can be unidirectionally discharged to the outside of the compressor 1000 through the discharge check valve 100 (that is, the compressor 1000 is suitable for unidirectional discharge through the gas outlet 122 of the discharge pipe 12 described later)
  • the discharge check valve 100 can be switched back to the closed state to prevent the fluid outside the compressor 1000 from passing through the discharge check valve 100 Backflow into the compressor 1000.
  • the air inlet 121 is mated to the air outlet 111
  • the relative positional relationship between the air inlet 121 and the air outlet 111 is that the air inlet 121 protrudes into the air outlet 111, rather than limiting the air inlet 121 to the air outlet 111.
  • the fixed connection method between the gas end 121 and the gas outlet 111 for example, in some embodiments, the valve housing 11 and the exhaust pipe 12 can be connected between the gas inlet 121 and the gas outlet 111 by means of welding, expansion tube connection, etc., here No longer.
  • the discharge check valve 100 when the spool 21 moves to the open position, the discharge check valve 100 is in an open state, and the compressor 1000 can discharge gas through the discharge check valve 100 , and when the spool 21 moves to the closed position, the discharge The gas check valve 100 is in a closed state, and the fluid outside the compressor 1000 cannot flow back into the compressor 1000 through the discharge check valve 100 .
  • the valve core assembly 2 has an exhaust hole 221, and an exhaust passage 3 communicating between the exhaust hole 221 and the air outlet 111 is formed between the valve core 21 and the valve housing 11.
  • the gas in the spool assembly 2 can enter the exhaust passage 3 from the exhaust hole 221 and flow to the intake end 121 of the exhaust pipe 12, so that the gas in the exhaust check valve 100 can In the open state, the exhaust pipe 12 exhausts outwards.
  • the valve core 21 when the valve core 21 moves to the open position, the shortest distance between the valve core 21 and the valve housing 11 is d2, the ratio of S1 to d2 is 8-25, and S1 is the row The cross-sectional area of the intake end 121 of the gas pipe 12 (that is, the flow area of the intake end 121 of the exhaust pipe 12). That is to say, the value range of S1/d2 is 8-25, for example, S1/d2 may be: 8, 10, 12, 14, 16, 18, 20, 22, 25 and so on.
  • the position of the valve core 21 will change, specifically, when the valve core 21 moves from the closed position to the open position, the minimum distance of the exhaust passage 3 formed between the valve core 21 and the valve casing 11 will gradually decrease, when When the spool 21 moves to the open position, the limit value (i.e. d2) of the minimum distance between the spool 21 and the valve casing 11 will be obtained.
  • the selection of this size will affect the exhaust volume of the exhaust check valve 100, and further affect the energy efficiency of the compressor 1000.
  • the valve core 21 when the valve core 21 moves to the open position, the shortest distance between the valve core 21 and the valve housing 11 is d2, and the area of the minimum flow surface of the exhaust passage 3 is S2 , wherein, the ratio of S1 to d2 is 8-25, and at the same time, the ratio of S2 to S1 is 1.2-5, and S1 is the cross-sectional area of the intake end 121 of the exhaust pipe 12 (that is, the intake end of the exhaust pipe 12 121 flow area).
  • the position of the spool 21 will change, specifically, when the spool 21 moves from the closed position to the open position, the minimum distance and the minimum flow area of the exhaust passage 3 formed between the spool 21 and the valve housing 11 will both be gradually decreases, when the spool 21 moves to the open position, the limit value of the minimum distance between the spool 21 and the valve housing 11 (that is, d2) and the limit value of the minimum flow area (that is, S2) will be obtained.
  • the adverse effect of the discharge check valve 100 on the energy efficiency of the compressor 1000 can be effectively improved or avoided.
  • the valve core 21 may include a cylindrical section 211 coaxially arranged with the air outlet 111 , that is, the center of the cylindrical section 211 The line coincides with the centerline of the air outlet 111.
  • the spool 21 reciprocates along the axial direction of the cylindrical section 211, specifically, when the spool 21 moves along the axial direction of the cylindrical section 211 toward the direction close to the air outlet 111 (for example, the upward direction shown in FIG. 3 ) , the spool 21 can move to the open position, so that the exhaust one-way valve 100 can exhaust one-way; As shown in the downward direction), the valve core 21 can move to the closed position, so that the exhaust check valve 100 can prevent backflow.
  • the axial end of the cylindrical section 211 facing the air outlet 111 is a free end 2110, that is, the two axial ends of the cylindrical section 211 are respectively one end close to the air outlet 111 and one end far away from the air outlet 111.
  • the above design it is relatively easy to design the ratio of S1 to d2 as the first set value, and it is also easier to reduce the error during assembly, further ensuring that the ratio of S1 to d2 is the first set value, and at the same time through
  • the above design can also make the exhaust more uniform, that is, the gas entering the valve housing 11 from the exhaust hole 221 can flow more evenly and rapidly through the exhaust passage 3 to the intake end 121 of the exhaust pipe 12, thereby further reducing energy consumption , improving the energy efficiency of the compressor 1000 .
  • both the cross-section of the intake end 121 and the cross-section of the cylindrical section 211 can be circular, and the minimum flow surface of the exhaust passage 3 is configured as follows:
  • the axis of the cylindrical section 211 is the center line
  • the shortest connecting line is the generatrix
  • the cross-section of the air outlet 111 that is, the cross-section at the position where the air outlet 111 is used to limit the above-mentioned shortest connecting line
  • the cross section of 2110 is the side of the frustum of the upper bottom, thus, it is easy to calculate the area S2 of the minimum flow surface of the exhaust channel 3 .
  • the area of the cross section at the position where the gas outlet 111 is used to define the shortest connection line is S5, which is approximately equal to the cross section of the valve housing 11 at the gas outlet 111, for example, the valve housing 11 is at the outlet.
  • S2 ⁇ d2(d1/2+D2/2), where D2 is the outer diameter of the free end 2110.
  • the ratio of S2 to S1 can be the second set value.
  • the above design can also make the exhaust more uniform, that is, the gas entering the valve housing 11 from the exhaust hole 221 It can flow through the exhaust passage 3 to the intake end 121 of the exhaust pipe 12 more evenly and quickly, thereby further reducing energy consumption and improving the energy efficiency of the compressor 1000 .
  • the valve housing 11 can be configured as a rotating body with the centerline of the air outlet 111 as the axis of rotation. Therefore, it is convenient for design, processing and assembly, and it is better to ensure that the ratio of S1 to d2 is the first set value, and at the same time, it is better to ensure that the ratio of S2 to S1 can be the second set value.
  • the adverse effect of the discharge check valve 100 on the energy efficiency of the compressor 1000 can be further improved or avoided.
  • the adverse effect of the discharge check valve 100 on the energy efficiency of the compressor 1000 can be more effectively improved or avoided.
  • the ratio of S3 to S2 is 0.3 ⁇ 0.8
  • condition 1 means: the value range of S3/S2 is 0.3 ⁇ 0.8, for example, S3/S2 can be: 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 etc.
  • the ratio of S3 to S1 is 1 ⁇ 2
  • condition 2 means: the value range of S3/S1 is 1 ⁇ 2, for example, S3/S1 can be: 1, 1.2, 1.4, 1.6, 1.8, 2 etc.
  • the ratio of S3 to d2 is 12 to 30
  • condition 3 means: the value range of S3/d2 is 12 to 30, for example, S3/d2 can be: 12, 15, 18, 21, 24, 27 , 30 and so on.
  • the valve core assembly 2 includes a valve inner shell 22 with a central hole 222 on the valve inner shell 22, and the valve core 21 includes a cylindrical section 211 and a stopper section. 212, the cylindrical section 211 is pierced through the central hole 222, the stop section 212 is located in the valve inner shell 22 and connected with the inner end of the cylindrical section 211, so as to limit the inner end of the cylindrical section 211 from the central hole 222, and discharge There are a plurality of air holes 221 distributed on the valve inner housing 22 along the circumferential direction of the cylindrical section 211 .
  • the uniformity of the exhaust can be improved, the exhaust efficiency can be improved, the related technical problems caused by the concentration of the exhaust can be avoided, and the local structural strength of the valve inner shell 22 can also be avoided due to the fact that there is only one exhaust hole 221 and the opening area is relatively large. Insufficient problem, so that under the premise that the total flow area S3 of all exhaust holes 221 meets the above requirements, the structural reliability and compactness of the valve inner shell 22 can be improved, and the service life of the exhaust check valve 100 can be improved. The miniaturization development requirements of the exhaust check valve 100 are met.
  • the number of exhaust holes 221 is not limited, for example, it may be 2-8, for example, it may be 2, 4, 6, 8 and so on.
  • the number of exhaust holes 221 is not limited, for example, it may be 2-8, for example, it may be 2, 4, 6, 8 and so on.
  • the shortest distance between the exhaust hole 221 and the valve housing 11 is d3, wherein the ratio of S1 to d3 is 8-25, and/or, the ratio of d2 to d3 The ratio is 0.7-1.5. That is to say, only one of “the ratio of S1 to d3 is 8-25" and “the ratio of d2 to d3 is 0.7-1.5" can be satisfied, and “the ratio of S1 to d3 is 8-25" and "The ratio of d2 to d3 is 0.7 to 1.5". Therefore, when any one of them is satisfied, the adverse effect of the discharge check valve 100 on the energy efficiency of the compressor 1000 can be effectively improved or avoided. However, when any two of them are satisfied, the adverse effect of the discharge check valve 100 on the energy efficiency of the compressor 1000 can be further improved or avoided.
  • the ratio of S1 to d3 is 8 ⁇ 25 means: the value range of S1/d3 is 8 ⁇ 25, for example, S1/d3 can be: 8, 10, 12, 14, 16, 18, 20, 22 , 25 and so on.
  • the ratio of d2 to d3 is 0.7 ⁇ 1.5 means: the value range of d2/d3 is 0.7 ⁇ 1.5, for example, d2/d3 can be: 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4 , 1.5 and so on.
  • the valve core 21 is used to control the opening and closing of the air inlet 231 .
  • the valve core 21 releases the air intake hole 231, so that the air intake hole 231 is opened, and the high-pressure gas can enter the inner cavity 223 through the air intake hole 231, and then exhaust gas through the normally open state.
  • the hole 221 flows out into the valve casing 11.
  • the exhaust check valve 100 is in an open state, and when the valve core 21 moves to the closed position, the valve core 21 directly or indirectly blocks the air intake hole 231, thereby realizing the air intake hole.
  • the exhaust check valve 100 has a simple structure and is easy to control.
  • the present application is not limited thereto, and in other embodiments of the present application, the valve core 21 may also be configured as a switch for controlling the exhaust hole 221 and the like.
  • the flow area of the inlet hole 231 is S4, there is at least one exhaust hole 221, and the total flow area of all the exhaust holes 221 is S3, wherein, S4
  • the ratio to S3 is 0.8-2. That is to say, the value range of S4/S3 is 0.8 ⁇ 2, for example, S4/S3 can be: 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, etc. wait.
  • S4/S3 can be: 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, etc. wait.
  • the valve core assembly 2 may include a valve inner shell 22 and a valve seat 23, and an inner cavity 223 is defined between the valve inner shell 22 and the valve seat 23, and further
  • the air hole 231 is formed on the valve seat 23, the exhaust hole 221 is formed on the valve inner casing 22, and the valve core 21 is penetrated through the valve inner casing 22 to reciprocate in a direction away from and close to the air inlet hole 231, which can be specifically , when the spool 21 moves toward the direction close to the air inlet 231, it can reach the closed position, and when the spool 21 moves toward the direction away from the air inlet, it can reach the open position. Therefore, the valve core assembly 2 has a simple and compact structure, high operational reliability, easy processing and assembly, and low production cost.
  • the valve core 21 may include a cylindrical section 211 and a stopper section 212, a central hole 222 is formed on the valve inner casing 22, and the cylindrical section 211 passes through the central hole 222,
  • the stop section 212 is located in the valve inner casing 22 and is connected to the inner end of the cylindrical section 211 to limit the inner end of the cylindrical section 211 from protruding from the central hole 222, wherein the centerline of the valve core 21 stops at the centerline of the stop section 212 , the centerline coincides with the centerline of the air inlet 231 .
  • the valve core assembly 2 also includes an elastic element 24, which is arranged between the valve inner shell 22 and the stopper section 212, so as to apply an elastic restoring force to the stopper section 212 toward the direction of the air inlet 231, thereby driving the valve core 21 Movement towards the closed position.
  • the elastic element 24 can be a cylindrical spring and is sleeved outside the cylindrical section 211, so as to facilitate the acquisition of the elastic element 24 and facilitate the removal of the elastic element 24.
  • the installation effectively reduces the problem that the elastic element 24 is detached from the valve core 21 .
  • the working reliability of the elastic element 24 is improved.
  • the present application is not limited thereto.
  • springs of other shapes or elastic airbags may also be used instead of the cylindrical springs.
  • the valve core assembly 2 may also include a valve plate 25, the valve plate 25 is arranged on the side of the stop section 212 away from the cylindrical section 211, along the column
  • the center line of the shape section 211 is used as an orthographic projection, the projected area of the valve plate 25 is greater than the projected area of the stopper section 212, and the projected area of the valve plate 25 is greater than the projected area of the air inlet 231, so that the valve core 21 can pass through the valve plate 25 Close the intake hole 231, thus, the size of the stop section 212 of the valve core 21 can be reduced as much as possible.
  • the stop section 212 only needs to limit the valve core 21 from the central hole 222, and it does not need to be able to block and close the intake port. hole 231, so that even if the flow area of the air inlet 231 is large, there is no need to increase the cross-sectional area of the stop section 212, thus avoiding the need to open a larger cross-sectional area due to the influence of the air inlet 231 on the cross-sectional area of the stop section 212 Larger problem, and then avoided due to the large cross-sectional area of the stop section 212, occupying more space in the valve inner casing 22, affecting the gas holding capacity of the inner cavity 223, and affecting the exhaust of the exhaust hole 221, etc., thereby The overall performance of the exhaust check valve 100 is effectively improved.
  • the axial height of the stopper section 212 can be controlled to control the movement range of the cylindrical section 211 on the one hand, so that the spool 21 and the valve housing 11 The shortest distance d2 between them and the area S2 of the minimum flow surface of the exhaust passage 3 can meet the design requirements.
  • the thickness of the valve plate 25 can be controlled to be thinner, reducing the impact of the valve plate 25 on the space in the valve inner shell 22. Occupation, and affect the exhaust of the exhaust hole 221, thereby improving the overall performance of the exhaust check valve 100.
  • connection method between the valve plate 25 and the valve core 21 is not limited.
  • the screw 26 penetrating from the valve plate 25 to the valve core 21 connects the two, so as to realize the reliable connection between the valve plate 25 and the valve core 21 simply and effectively.
  • the present application is not limited thereto.
  • the connection between the two can also be realized by means of welding, expansion tube connection, etc., which will not be repeated here.
  • the valve housing 11 when the exhaust pipe 12 is a circular pipe and the air outlet 111 of the valve housing 11 is a circular port, the valve housing 11 at the air outlet 111
  • the outer diameter of the nozzle can be d1
  • the inner diameter of the intake end 121 of the exhaust pipe 12 is D1.
  • d1-D1 is 4mm-10mm, for example, d1-D1 may be 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm.
  • this application sets at least one of S2/S1 and S1/d2 to meet the corresponding value range, and at the same time sets S3/S2 and S3 At least one of /S1, S3/d2, S1/d3, d2/d3, and S4/S3 conforms to the corresponding value range, so that the loss of mechanical efficiency and pressure loss can be unexpectedly reduced, and the discharge check valve 100 can be avoided. 1000 energy efficiency caused by a large loss.
  • the value range of S1 is 85mm 2 -105mm 2 , such as 85mm 2 , 90mm 2 , 95mm 2 , 100mm 2 , 105mm 2 , etc.
  • the value range of d2 is 5.5mm-6.5 mm, such as 5.5mm, 5.7mm, 5.9mm, 6.1mm, 6.3mm, 6.5mm, etc.
  • the value range of S2 is 230mm 2 -250mm 2 , such as 230mm 2 , 235mm 2 , 240mm 2 , 245mm 2 , 250mm 2 , etc.
  • the above-mentioned S2/S1 and S1/d2 can meet the corresponding value ranges, so that the mechanical efficiency loss and pressure loss can be unexpectedly reduced, and the energy efficiency of the compressor 1000 caused by the discharge check valve 100 can be avoided. Big loss.
  • the inlet hole 231 on the valve seat 23 is a circular hole with a diameter of D4
  • the compressor 1000 may include: a casing assembly 200, a drive assembly 300 and a pump body assembly 400, the drive assembly 300 and the pump body assembly 400 are both arranged in the casing assembly 200, and the drive assembly 300 is connected with the pump body assembly 400 to drive the pump body assembly 400 to perform compression work.
  • the specific type of the compressor 1000 is not limited.
  • the pump body assembly 400 may include a cylinder with a cylinder chamber inside the cylinder chamber. With piston.
  • the specific composition of the drive assembly 300 is not limited.
  • it may include a motor and a drive shaft.
  • the motor may be an inner rotor motor or an outer rotor motor.
  • the shaft has an eccentric portion, and the piston is sleeved on the eccentric portion, so that when the drive shaft rotates, the piston can roll along the cavity wall of the cylinder cavity.
  • the specific configuration of the pump body assembly 400 is not limited thereto.
  • the cylinder assembly may further include bearings arranged on both sides of the cylinder, etc., which will not be repeated here.
  • the compressor 1000 according to the embodiment of the present application may also include the discharge check valve 100 according to the embodiment of the first aspect of the present application. in the case assembly 200 . Therefore, the loss caused by the energy efficiency of the compressor 1000 can be improved by providing the discharge check valve 100 .
  • the discharge check valve 100 can be housed in the casing assembly 200 of the compressor 1000 and installed directly or indirectly on the casing assembly 200 of the compressor 1000.
  • the discharge pipe 12 can pass through the casing assembly 200 of the compressor 1000 , so that the high-pressure gas in the compressor 1000 can be discharged out of the casing assembly 200 of the compressor 1000 in one direction through the discharge pipe 12 .
  • the structure can be simplified, so that the compressor 1000 has a compact structure, effectively protects the discharge check valve 100 from damage, facilitates installation, and reduces costs.
  • the exhaust pipe 12 may be a complete pipe, or may be a combined pipe formed by splicing several pipe sections, which is not limited here.
  • the high-pressure gas in the casing assembly 200 of the compressor 1000 pushes against the valve plate 25, the discharge check valve 100 is in an open state, and the high-pressure gas It enters the inner cavity 223 of the valve inner housing 22 through the air inlet 231 , then enters the accommodating chamber 112 of the valve housing 11 through the exhaust hole 221 , and then is discharged out of the casing assembly 200 through the exhaust pipe 12 to realize a normal refrigeration cycle.
  • the valve plate 25 closes the intake hole 231 under the action of the elastic element 24, the exhaust check valve 100 is in a closed state, and the gas in the inner cavity 223 cannot flow back to the casing assembly through the intake hole 231 200 (that is, in the space in the casing assembly 200 except for the discharge check valve 100 ), it is beneficial for the compressor 1000 to achieve pressure balance quickly and meet the requirement of quick restart. At the same time, it can avoid the deposition of the refrigerant in the compressor 1000, thereby avoiding the decrease in the viscosity of the lubricating oil caused by dissolving too much refrigerant in the oil pool at the bottom of the compressor 1000, and then avoiding the internal lubrication of the compressor 1000 when the compressor 1000 starts up again.
  • the reliability of the compressor 1000 is improved due to abnormal wear that may be caused by the drop in oil viscosity. In addition, it can reduce heat loss and improve operating efficiency.
  • the specific composition of the casing assembly 200 according to the embodiment of the present application is not limited.
  • the casing when the compressor 1000 is a vertical compressor 1000, the casing may include a main casing and a top and bottom of the main casing. The upper casing and the lower casing at both ends, at this time, in some embodiments, the exhaust check valve 100 can be arranged on the upper casing, and the exhaust pipe 12 can pass through the upper casing. But the present application is not limited thereto.
  • the casing may include a main casing and a left casing and a right casing arranged at the left and right ends of the main casing.
  • the exhaust one-way valve 100 can be arranged on the top of the main casing, and the exhaust pipe 12 can be passed through the main casing, etc., and no more examples are given here.
  • a process pipe 500 may also be provided on the casing assembly 200 .
  • the process pipe 500 may be used in production processes such as oil sealing and vacuuming. Thus, the processing of the casing assembly 200 is facilitated.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Check Valves (AREA)
  • Compressor (AREA)

Abstract

一种用于压缩机的排气单向阀(100)和具有其的压缩机(1000),排气单向阀(100)包括:阀壳组件(1)和阀芯组件(2),阀壳组件(1)包括阀外壳(11)和排气管(12),阀外壳(11)上具有出气口(111),排气管(12)的进气端(121)插配于出气口(111),进气端(121)的横截面积为S1,阀芯(21)与阀外壳(11)之间的最近距离为d2,排气通道(3)的最小过流面的面积为S2,其中,S1与d2的比值为8~25,和/或,S2与S1的比值为1.2~5。这种排气单向阀能够降低对压缩机能效造成的不利影响。

Description

用于压缩机的排气单向阀和具有其的压缩机
相关申请的交叉引用
本申请基于申请号为202111531460.3、申请日为2021-12-14的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及压缩机技术领域,尤其是涉及一种用于压缩机的排气单向阀和具有其的压缩机。
背景技术
相关技术中的一些压缩机,为了实现压差启动功能,增加带弹簧的排气单向阀,但是由于开启阀需要克服弹簧力,以及保持稳定运行时阀片的压差力,从而会造成机械效率损失。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请在于提出一种用于压缩机的排气单向阀,所述排气单向阀可以较为有效地改善或避免对压缩机的能效造成的不利影响。
本申请还提出一种具有上述排气单向阀的压缩机。
根据本申请第一方面实施例的用于压缩机的排气单向阀,所述排气单向阀包括:阀壳组件,所述阀壳组件包括阀外壳和排气管,所述阀外壳上具有出气口,所述排气管的进气端插配于所述出气口,所述进气端的横截面积为S1,所述压缩机适于通过所述排气管的出气端单向排气;阀芯组件,所述阀芯组件内置于所述阀外壳,且包括在打开位置和关闭位置之间可运动的阀芯,所述阀芯组件上具排气孔,所述阀芯与所述阀外壳之间形成有连通在所述排气孔与所述出气口之间的排气通道,在所述阀芯运动至所述打开位置时,所述阀芯组件内的气体可从所述排气孔进入所述排气通道并流向所述进气端,在所述阀芯运动至所述打开位置时,所述阀芯与所述阀外壳之间的最近距离为d2,所述排气通道的最小过流面的面积为S2,其中,S1与d2的比值为8~25,和/或,S2与S1的比值为1.2~5。
根据本申请实施例的用于压缩机的排气单向阀,可以降低机械效率损失以及压力损失,较为有效地改善或避免对压缩机的能效造成的不利影响。
在一些实施例中,所述阀芯包括柱形段,所述柱形段与所述出气口同轴设置,所述阀芯 沿所述柱形段的轴向朝向靠近所述出气口的方向运动可到达所述打开位置,所述柱形段的朝向所述出气口的轴端为自由端,在所述阀芯运动至所述打开位置时,所述自由端的边缘与所述出气口之间的最短连线的长度为所述最近距离d2。
在一些实施例中,所述进气端的横截面和所述柱形段的横截面均为圆形,所述排气通道的最小过流面构造为:以所述柱形段的轴线为中心线,以所述最短连线为母线,以所述出气口的横截面为下底,以所述自由端的横截面为上底的圆台侧面。
在一些实施例中,所述阀外壳形成为以所述出气口的中心线为回转轴线的回转体。
在一些实施例中,所述排气孔为至少一个,且全部所述排气孔的总过流面积为S3,其中,S3与S2的比值为0.3~0.8,和/或,S3与S1的比值为1~2,和/或,S3与d2的比值为12~30。
在一些实施例中,所述阀芯组件包括阀内壳,所述阀内壳上具有中心孔,所述阀芯包括柱形段和止挡段,所述柱形段穿设于所述中心孔,所述止挡段位于所述阀内壳内且与所述柱形段的内端相连,以限制所述柱形段的内端从所述中心孔脱出,所述排气孔为多个且沿所述柱形段的周向分布在所述阀内壳上。
在一些实施例中,所述排气孔与所述阀外壳之间最近距离为d3,其中,S1与d3的比值为8~25,和/或,d2与d3的比值为0.7~1.5。
在一些实施例中,所述阀芯组件限定出内腔,所述阀芯组件上还具有进气孔,所述进气孔和所述排气孔均与所述内腔连通,所述阀芯用于控制所述进气孔的开关,所述进气孔的过流面积为S4,所述排气孔为至少一个,且全部所述排气孔的总过流面积为S3,其中,S4与S3的比值为0.8~2。
在一些实施例中,所述阀芯组件包括阀内壳和阀座,所述阀内壳与所述阀座之间限定出所述内腔,所述进气孔形成在所述阀座上,所述排气孔形成在所述阀内壳上,所述阀芯穿设于所述阀内壳,以朝向远离和靠近所述进气孔的方向往复运动。
在一些实施例中,所述阀外壳与所述阀座配合,以与所述阀座之间限定出容纳腔,所述阀内壳设于所述容纳腔内。
在一些实施例中,S1为85mm 2-105mm 2,d2为5.5mm-6.5mm,S2为230mm 2-250mm 2
根据本申请第二方面实施例的压缩机,包括:机壳组件、驱动组件、泵体组件和排气单向阀,所述驱动组件和所述泵体组件相连且均设于所述机壳组件内,所述排气单向阀设于所述机壳组件内且为根据本申请第一方面实施例的用于压缩机的排气单向阀,所述排气管穿设于所述机壳组件。
根据本申请实施例的压缩机,通过设置上述第一方面实施例的用于压缩机的排气单向 阀,从而降低了对压缩机的能效造成的不利影响。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的压缩机组件的示意图;
图2是图1中所示的排气单向阀处于关闭状态的剖视图;
图3是图2中所示的排气单向阀处于打开状态的剖视图;
图4是图3中所示的排气单向阀的局部放大图;
图5是图4中所示的阀内壳的示意图;
图6是图1中所示的压缩机的局部示意图。
附图标记:
压缩机1000;
排气单向阀100;
阀壳组件1;阀外壳11;出气口111;容纳腔112;
排气管12;进气端121;出气端122;
阀芯组件2;阀芯21;柱形段211;自由端2110;止挡段212;
阀内壳22;排气孔221;中心孔222;内腔223;
阀座23;进气孔231;弹性元件24;阀片25;螺钉26;
排气通道3;
机壳组件200;驱动组件300;泵体组件400;工艺管500;吸气管600;储液器2000。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本 申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参照附图,描述根据本申请第一方面实施例的用于压缩机1000的排气单向阀100。
如图1所示,压缩机1000适于通过排气单向阀100从内向外单向排气。也就是说,当排气单向阀100处于打开状态时,压缩机1000内的高压气体可以通过排气单向阀100向压缩机1000外排气,而当排气单向阀100处于关闭状态时,压缩机1000外的流体不能通过排气单向阀100向压缩机1000内倒流,从而可以有效提高压缩机1000的工作可靠性。值得说明的是,本文所述的排气单向阀100并不是集成在压缩机1000的泵体组件400内控制气缸单向排气的的单向阀,而是位于泵体组件400外,且用于实现压缩机1000向外排气的单向阀。
例如在一些实施例中,在压缩机1000工作时,压缩机1000内产生的高压气体的压力足够时,可以顶开排气单向阀100,以使排气单向阀100切换为打开状态,从而高压气体可以通过排气单向阀100单向排出到压缩机1000外(即压缩机1000适于通过后文所述的排气管12的出气端122单向排气),而当压缩机1000停止工作后,压缩机1000内的气压不足以顶开排气单向阀100时,排气单向阀100可以切换回关闭状态,以防止压缩机1000外的流体通过排气单向阀100向压缩机1000内倒流。
结合图2和图3,排气单向阀100包括阀壳组件1,阀壳组件1包括阀外壳11和排气管12,阀外壳11上具有出气口111,排气管12具有进气端121和出气端122,进气端121插配于出气口111,以使排气管12与阀外壳11的内部连通,这样,进入阀外壳11内的气体可以在出气口111处,进入排气管12的进气端121,流经排气管12后,从排气管12的出气端122排出。
需要说明的是,“进气端121插配于出气口111”指的是,进气端121与出气口111的相对位置关系是进气端121伸入出气口111内,而并不是限定进气端121与出气口111的固定连接方式,例如在一些实施例中,可以采用焊接、或胀管连接等方式在进气端121与出气口111处连接阀外壳11和排气管12,这里不再赘述。
结合图2和图3,排气单向阀100还包括阀芯组件2,阀芯组件2内置于阀外壳11,也就是说,阀芯组件2的至少部分设于阀外壳11内,或者说,阀外壳11罩设于阀芯组件2的至少部分之外。阀芯组件2包括阀芯21,阀芯21在打开位置和关闭位置之间可运动,更为具体地说,阀芯21相对阀壳组件1在打开位置(例如图3所示位置)和关闭位置(例如图2所示位置)之间可运动。
其中,在阀芯21运动至打开位置时,排气单向阀100处于打开状态,压缩机1000可以 通过排气单向阀100向外排气,而在阀芯21运动至关闭位置时,排气单向阀100处于关闭状态,压缩机1000外的流体不能通过排气单向阀100向压缩机1000内倒流。
如图2所示,阀芯组件2上具排气孔221,阀芯21与阀外壳11之间形成有连通在排气孔221与出气口111之间的排气通道3,结合图3,在阀芯21运动至打开位置时,阀芯组件2内的气体可从排气孔221进入排气通道3并流向排气管12的进气端121,以达到在排气单向阀100处于打开状态下,通过排气管12向外排气的效果。
如图3所示,在一些实施例中,在阀芯21运动至打开位置时,阀芯21与阀外壳11之间的最近距离为d2,S1与d2的比值为8~25,S1为排气管12的进气端121的横截面积(即排气管12的进气端121的过流面积)。也就是说,S1/d2的取值范围为8~25,例如,S1/d2可以为:8、10、12、14、16、18、20、22、25等等。
相关技术中的一些压缩机,为了实现压差启动功能,增加带弹簧的排气单向阀,但是由于开启阀需要克服弹簧力,以及保持稳定运行时阀片的压差力,从而会造成机械效率损失。而根据本申请实施例的排气单向阀100,在阀芯21运动至打开位置时,通过限制S1与d2的比值为8~25,实验表明,可以较为有效地降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。其中,压力损失指的是,排气单向阀100的排气压力相对进气压力的损失。
实际上,申请人在研发的过程中创造性地发现,排气单向阀100在排气位置附近的流通面积会对机械效率损失和压力损失造成较大影响,排气单向阀100在使用时,阀芯21的位置会发生改变,具体地,当阀芯21从关闭位置向打开位置运动时,阀芯21与阀外壳11之间形成的排气通道3的最小距离会逐渐减小,当阀芯21运动到打开位置时,会获得阀芯21与阀外壳11之间出现最小距离的极限值(即d2),这个尺寸的选择会影响排气单向阀100的排气量,进而会影响压缩机1000的能效,进一步地,申请人还创造性地发现,仅对d2的取值进行限定,仍无法有效改善压缩机1000的能效,对此,申请人创造性地偶然发现,如果将d2与排气管12的进气端121的过流面积S1进行联合设计,使得这两个值的比值满足一定的比值范围,从而可以意外地降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。
如图3所示,在一些实施例中,在阀芯21运动至打开位置时,排气通道3的最小过流面的面积为S2,S2与S1的比值为1.2~5,S1为排气管12的进气端121的横截面积(即排气管12的进气端121的过流面积)。也就是说,S2/S1的取值范围为1.2~5,例如,S2/S1可以为:1.2、1.7、2.2、2.7、3.2、3.7、4.2、4.7、5等等。
相关技术中的一些压缩机,为了实现压差启动功能,增加带弹簧的排气单向阀,但是由 于开启阀需要克服弹簧力,以及保持稳定运行时阀片的压差力,从而会造成机械效率损失。而根据本申请实施例的排气单向阀100,在阀芯21运动至打开位置时,通过限制S2与S1的比值为1.2~5,实验表明,可以较为有效地降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。其中,压力损失指的是,排气单向阀100的排气压力相对进气压力的损失。
实际上,申请人在研发的过程中创造性地发现,排气单向阀100在排气位置附近的流通面积会对机械效率损失和压力损失造成较大影响,排气单向阀100在使用时,阀芯21的位置会发生改变,具体地,当阀芯21从关闭位置向打开位置运动时,阀芯21与阀外壳11之间形成的排气通道3的最小过流面积会逐渐减小,当阀芯21运动到打开位置时,会获得阀芯21与阀外壳11之间出现最小过流面积的极限值(即S2),这个尺寸的选择会影响排气单向阀100的排气量,进而会影响压缩机1000的能效,进一步地,申请人还创造性地发现,仅对S2的取值进行限定,仍无法有效改善压缩机1000的能效,对此,申请人偶然发现,如果将S2与排气管12的进气端121的过流面积S1进行联合设计,使得这两个取值满足一定的比值范围,从而可以意外地降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。
如图3所示,在一些实施例中,在阀芯21运动至打开位置时,阀芯21与阀外壳11之间的最近距离为d2,排气通道3的最小过流面的面积为S2,其中,S1与d2的比值为8~25,同时,S2与S1的比值为1.2~5,S1为排气管12的进气端121的横截面积(即排气管12的进气端121的过流面积)。
相关技术中的一些压缩机,为了实现压差启动功能,增加带弹簧的排气单向阀,但是由于开启阀需要克服弹簧力,以及保持稳定运行时阀片的压差力,从而会造成机械效率损失。而根据本申请实施例的排气单向阀100,在阀芯21运动至打开位置时,通过限制S1与d2的比值为8~25,同时,S2与S1的比值为1.2~5,实验表明,可以较为有效地降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。其中,压力损失指的是,排气单向阀100的排气压力相对进气压力的损失。
实际上,申请人在研发的过程中创造性地发现,排气单向阀100在排气位置附近的流通面积会对机械效率损失和压力损失造成较大影响,排气单向阀100在使用时,阀芯21的位置会发生改变,具体地,当阀芯21从关闭位置向打开位置运动时,阀芯21与阀外壳11之间形成的排气通道3的最小距离和最小过流面积都会逐渐减小,当阀芯21运动到打开位置时,会获得阀芯21与阀外壳11之间出现最小距离的极限值(即d2)和最小过流面积的极限值(即S2),这两个尺寸的选择会影响排气单向阀100的排气量,进而会影响压缩机1000 的能效,进一步地,申请人还创造性地发现,仅对S2和d2的取值进行限定,仍无法有效改善压缩机1000的能效,申请人偶然发现,如果将d2、S2分别与排气管12的进气端121的过流面积S1进行联合设计,使得S2/S1、S1/d2的取值同时满足一定的比值范围,从而可以意外地降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。
综上所述,根据本申请实施例的排气单向阀100,可以较为有效地改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。
在本申请的一些实施例中,如图2和图3所示,阀芯21可以包括柱形段211,柱形段211与出气口111同轴设置,也就是说,柱形段211的中心线与出气口111的中心线重合。阀芯21沿柱形段211的轴向往复运动,具体地,阀芯21沿柱形段211的轴向朝向靠近出气口111的方向运动时(例如图3中所示的向上的方向运动),阀芯21可以运动到打开位置,使得排气单向阀100可以单向排气;而在阀芯21沿柱形段211的轴向朝向远离出气口111的方向运动时(例如图2中所示的向下的方向运动),阀芯21可以运动到关闭位置,使得排气单向阀100可以防止倒流。
如图3和图4所示,柱形段211的朝向出气口111的轴端为自由端2110,即柱形段211的轴向两端分别为靠近出气口111的一端和远离出气口111的一端,其中,柱形段211的靠近出气口111的一端为自由端2110,在阀芯21运动至打开位置时(即排气单向阀100处于打开状态时,阀芯21在最大行程处),自由端2110的边缘与阀外壳11的出气口111之间的最短连线的长度为最近距离d2(即在阀芯21运动至打开位置时,阀芯21与阀外壳11之间的最近距离)。
由此,通过如上设计,可以较为容易地设计出S1与d2的比值为第一设定值,而且装配时也更容易降低误差,进一步保证S1与d2的比值为第一设定值,同时通过如上设计还可以使得排气更加均匀,即从排气孔221进入阀外壳11内的气体可以更加均匀且迅速地通过排气通道3流向排气管12的进气端121,从而进一步降低能耗,提高压缩机1000的能效。
如图2-图3所示,当“在所述阀芯21运动至所述打开位置时,所述自由端2110的边缘与所述阀外壳11的出气口111之间的最短连线的长度为所述最近距离d2”时,在一些可选示例中,进气端121的横截面和柱形段211的横截面均可以为圆形,排气通道3的最小过流面构造为:以柱形段211的轴线为中心线,以最短连线为母线,以出气口111的横截面(即出气口111用于限定上述最短连线的位置处的横截面)为下底,以自由端2110的横截面为上底的圆台侧面,由此,容易计算排气通道3的最小过流面的面积S2。
例如参考图3,出气口111用于限定上述最短连线的位置处的横截面的面积为S5,该面积约等于阀外壳11在出气口111处管口外横截面,例如,阀外壳11在出气口111处的管口 外直径为d1,那么S5=π(d1/2) 2。从而,S2=πd2(d1/2+D2/2),其中D2为自由端2110的外直径。
由此,更加方便设计、加工和装配,保证S2与S1的比值可以为第二设定值,同时通过如上设计还可以使得排气更加均匀,即从排气孔221进入阀外壳11内的气体可以更加均匀且迅速地通过排气通道3流向排气管12的进气端121,从而进一步降低能耗,提高压缩机1000的能效。可以理解的是,在上述示例中,S2与S1的比值可以满足等式:S2/S1=πd2(d1/2+D2/2)/=π(D1/2) 2=2d2(d1+D2)/D12=a,a取值范围为1.2~5。
如图2-图3所示,当“所述阀芯21包括柱形段211,所述柱形段211与所述出气口111同轴设置,所述阀芯21沿所述柱形段211的轴向朝向靠近所述出气口111的方向运动可到达所述打开位置”时,在一些可选示例中,阀外壳11可以构造为以出气口111的中心线为回转轴线的回转体。由此,方便设计、加工和装配,较好地保证S1与d2的比值为第一设定值,同时较好地保证S2与S1的比值可以为第二设定值,同时通过如上设计还可以使得排气更加均匀,即从排气孔221进入阀外壳11内的气体可以更加均匀且迅速地通过排气通道3流向排气管12的进气端121,从而进一步降低能耗,提高压缩机1000的能效。
在本申请的一些实施例中,如图3和图5所示,排气孔221可以为至少一个,且全部排气孔221的总过流面积为S3,其中,S3与S2的比值为0.3~0.8(条件1),和/或,S3与S1的比值为1~2(条件2),和/或,S3与d2的比值为12~30(条件3)。也就是说,满足上述三个条件中的至少一个,即可以仅满足一个条件,也可以同时满足任意两个条件,还可以同时满足三个条件。由此,当满足其中任一个条件时,可以较为有效地改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。当满足其中任两个条件时,可以进一步改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。而当同时满足以上三个条件时,可以更加有效地改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。
其中,S3与S2的比值为0.3~0.8(条件1)指的是:S3/S2的取值范围为0.3~0.8,例如,S3/S2可以为:0.3、0.4、0.5、0.6、0.7、0.8等等。其中,S3与S1的比值为1~2(条件2)指的是:S3/S1的取值范围为1~2,例如,S3/S1可以为:1、1.2、1.4、1.6、1.8、2等等。其中,S3与d2的比值为12~30(条件3)指的是:S3/d2的取值范围为12~30,例如,S3/d2可以为:12、15、18、21、24、27、30等等。
实际上,申请人在研发的过程中创造性地发现,排气单向阀100在排气孔221处的流通面积S3对机械效率损失和压力损失也有一些影响,进而会影响压缩机1000的能效,进一步地,申请人还创造性地发现,仅对S3的取值进行限定,仍无法有效改善压缩机1000的能效,对此,申请人创造性地偶然发现,如果将S2/S1、S1/d2中的至少一个限定好,同时 再限定,S3/S2、S3/S1、S3/d2中的至少一个符合上述相应取值范围,从而可以意外地进一步降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。
在本申请的一些实施例中,如图4和图5所示,阀芯组件2包括阀内壳22,阀内壳22上具有中心孔222,阀芯21包括柱形段211和止挡段212,柱形段211穿设于中心孔222,止挡段212位于阀内壳22内且与柱形段211的内端相连,以限制柱形段211的内端从中心孔222脱出,排气孔221为多个且沿柱形段211的周向分布在阀内壳22上。由此,可以提高排气均匀性,提高排气效率,避免排气集中造成的相关技术问题,也能够避免由于排气孔221仅为一个且开口面积较大,导致阀内壳22局部结构强度不足的问题,从而可以在全部排气孔221的总过流面积S3满足上述要求的前提下,提高阀内壳22的结构可靠性和结构紧凑性,提高排气单向阀100的使用寿命,满足排气单向阀100的小型化发展要求。
值得说明的是,排气孔221的数量不限,例如可以为2个~8个,例如可以为2个、4个、6个、8个等等。当排气孔221为6个且均匀设置于阀内壳22,且当阀内壳22为回转体时,还满足排气孔221的中心对称设置要求,能够更好地兼顾总排气面积和阀内壳22的结构可靠性。
在本申请的一些实施例中,如图3所示,排气孔221与阀外壳11之间最近距离为d3,其中,S1与d3的比值为8~25,和/或,d2与d3的比值为0.7~1.5。也就是说,可以仅满足“S1与d3的比值为8~25”和“d2与d3的比值为0.7~1.5”中的一个,也可以同时满足“S1与d3的比值为8~25”和“d2与d3的比值为0.7~1.5”这两个。由此,当满足其中任一个时,可以较为有效地改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。而当满足其中任两个时,可以进一步改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。
其中,S1与d3的比值为8~25指的是:S1/d3的取值范围为8~25,例如,S1/d3可以为:8、10、12、14、16、18、20、22、25等等。其中,d2与d3的比值为0.7~1.5指的是:d2/d3的取值范围为0.7~1.5,例如,d2/d3可以为:0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5等等。
实际上,申请人在研发的过程中创造性地发现,排气孔221与阀外壳11之间最近距离为d3对机械效率损失和压力损失也有一些影响,进而会影响压缩机1000的能效,进一步地,申请人还创造性地发现,仅对d3的取值进行限定,仍无法有效改善压缩机1000的能效,对此,申请人创造性地偶然发现,如果将S2/S1、S1/d2中的至少一个限定好,同时再限定,S1/d3、d2/d3中的至少一个符合上述相应取值范围,从而可以意外地进一步降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。
在本申请的一些实施例中,如图2-图4所示,阀芯组件2限定出内腔223,阀芯组件2上还具有进气孔231,进气孔231和排气孔221均与内腔223连通,阀芯21用于控制进气孔231的开关。其中,当阀芯21运动至打开位置时,阀芯21释放进气孔231,以使进气孔231打开,高压气体可以通过进气孔231进入内腔223,然后通过常开状态的排气孔221流出到阀外壳11内,此时排气单向阀100处于打开状态,而当阀芯21运动至关闭位置时,阀芯21直接或间接封堵进气孔231,从而实现进气孔231的关闭,气体不能通过进气孔231倒流,排气单向阀100处于关闭状态。由此,排气单向阀100的结构简单,便于控制。当然,本申请不限于此,在本申请的其他实施例中,也可以将阀芯21设置为用于控制排气孔221的开关等等。
在一些示例中,如图3和图4所示,进气孔231的过流面积为S4,排气孔221为至少一个,且全部排气孔221的总过流面积为S3,其中,S4与S3的比值为0.8~2。也就是说,S4/S3的取值范围为0.8~2,例如,S4/S3可以为:0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2等等。由此,可以较为有效地改善或避免排气单向阀100对压缩机1000的能效造成的不利影响。
实际上,申请人在研发的过程中创造性地发现,进气孔231的过流面积为S4对机械效率损失和压力损失也有一些影响,进而会影响压缩机1000的能效,进一步地,申请人还创造性地发现,仅对S4的取值进行限定,仍无法有效改善压缩机1000的能效,对此,申请人创造性地偶然发现,如果将S2/S1、S1/d2中的至少一个限定好,同时再限定S4/S3为0.8~2,从而可以意外地进一步降低机械效率损失以及压力损失,避免压缩机1000的能效产生较大损失。
在本申请的一些实施例中,如图2-图4所示,阀芯组件2可以包括阀内壳22和阀座23,阀内壳22与阀座23之间限定出内腔223,进气孔231形成在阀座23上,排气孔221形成在阀内壳22上,阀芯21穿设于阀内壳22,以朝向远离和靠近进气孔231的方向往复运动,具体可以是,当阀芯21朝向靠近进气孔231的方向运动时,可以到达关闭位置,而当阀芯21朝向远离进气口的方向运动时,可以到达打开位置。由此,阀芯组件2的结构简单、紧凑,动作可靠性高,容易加工和装配,生产成本低。
可选地,如图3和图4所示,阀芯21可以包括柱形段211和止挡段212,阀内壳22上形成有中心孔222,柱形段211穿设于中心孔222,止挡段212位于阀内壳22内且与柱形段211的内端相连,以限制柱形段211的内端从中心孔222脱出,其中阀芯21的中心线为止挡段212的中心线,该中心线与进气孔231的中心线重合。阀芯组件2还包括弹性元件24,弹性元件24设于阀内壳22与止挡段212之间,以向止挡段212施加朝向进气孔231 方向的弹性复位力,从而驱动阀芯21朝向关闭位置运动。
例如在一些可选实施例中,如图3和图4所示,弹性元件24可以为柱形弹簧且套设于柱形段211外,从而方便弹性元件24的获取,并方便弹性元件24的安装,有效地降低了弹性元件24脱离阀芯21的问题。提高了弹性元件24的工作可靠性。当然,本申请不限于此,例如在本申请的其他实施例中,还可以采用其他形状的弹簧、或弹性气囊等代替柱形弹簧。
例如在一些可选实施例中,如图3和图4所示,阀芯组件2还可以包括阀片25,阀片25设于止挡段212的远离柱形段211的一侧,沿柱形段211的中心线作正投影,阀片25的投影面积大于止挡段212的投影面积,且阀片25的投影面积大于进气孔231的投影面积,从而阀芯21可以通过阀片25关闭进气孔231,由此,可以尽量减小阀芯21的止挡段212的尺寸,止挡段212仅需要满足限制阀芯21从中心孔222脱出即可,不需要能够遮挡关闭进气孔231,这样,即便进气孔231的流通面积较大,也无需增大止挡段212的横截面积,从而避免了由于止挡段212的横截面积受进气孔231影响需要开设较大的问题,进而避免了由于止挡段212的横截面积较大,占用阀内壳22内的空间较多,影响内腔223容气能力,以及影响排气孔221排气等问题,从而有效地提高了排气单向阀100的整体性能。
此外,可以理解的是,当阀芯21的整体轴向高度确定时,可以通过控制止挡段212的轴向高度,一方面控制柱形段211的运动范围,使得阀芯21与阀外壳11之间的最近距离d2以及排气通道3的最小过流面的面积S2能够符合设计要求,另一方面可以控制阀片25的厚度较薄,降低阀片25对阀内壳22内的空间的占用,以及对排气孔221的排气造成影响,从而提高了排气单向阀100的整体性能。
另外,阀片25与阀芯21的连接方式不限,例如在图3和图4所示的具体示例中,可以在阀片25上设置穿孔,同时在阀芯21上设置螺纹孔,可以采用从阀片25到阀芯21方向贯穿的螺钉26连接两者,从而简单且有效地实现阀片25与阀芯21的可靠连接。当然,本申请不限于此,例如在本申请的其他实施例中,还可以通过焊接、胀管连接等方式实现二者的连接,这里不作赘述。
进一步,如图2-图4所示,阀外壳11与阀座23配合,阀外壳11与阀座23之间限定出容纳腔112,阀内壳22设于容纳腔112内。由此,可以简化结构,节省零部件,提高排气单向阀100整体的结构紧凑性,并降低成本。当然,本申请不限于此,例如在本申请的其他实施例中,也可以采用底板与阀外壳11配合限定出容纳腔112,阀座23和阀内壳22均设于容纳腔112内,等等,这里不作赘述。
例如在本申请的一些可选实施例中,如图3所示,当排气管12为圆形管且阀外壳11的 出气口111为圆形口时,阀外壳11在出气口111处的管口外直径可以为d1,排气管12的进气端121的内直径为D1,通过限制d1和D1差值范围,可以保证排气管12的进气端121与阀外壳11的出气口111能够可靠连接。例如在一些可选示例中,d1-D1为4mm-10mm,例如,d1-D1可以为4mm、5mm、6mm、7mm、8mm、9mm、10mm。
综上所述,基于排气单向阀100造成的压缩机1000能效损失,本申请通过设置S2/S1、S1/d2中的至少一个设置为符合相应取值范围,同时设置S3/S2、S3/S1、S3/d2、S1/d3、d2/d3、S4/S3中的至少一个符合相应取值范围,从而可以意外地降低机械效率损失以及压力损失,避免排气单向阀100对压缩机1000的能效造成的较大损失。
例如在一些可选示例中,S1的取值范围为85mm 2-105mm 2,例如可以是85mm 2,90mm 2,95mm 2,100mm 2,105mm 2等等,d2的取值范围为5.5mm-6.5mm,例如可以是5.5mm,5.7mm,5.9mm,6.1mm,6.3mm,6.5mm,等等,S2的取值范围为230mm 2-250mm 2,例如可以是230mm 2,235mm 2,240mm 2,245mm 2,250mm 2,等等。由此,可以较好地满足上述S2/S1、S1/d2符合相应取值范围,从而可以意外地降低机械效率损失以及压力损失,避免排气单向阀100对压缩机1000的能效造成的较大损失。
例如在一些可选示例中,阀座23上的进气孔231为圆形孔且直径为D4,阀芯21的自由端2110为圆形截面且直径为D2,d1=16.4mm,D1=11mm,S2=240mm 2,S1=95mm 2,d2=6.1mm,S3=120mm 2,d3=5.8mm,S4=145mm 2,D2=9mm,D4=13.6mm。由此,可以较好地满足上述全部比值(S2/S1、S1/d2、S3/S2、S3/S1、S3/d2、S1/d3、d2/d3、S4/S3)均符合相应取值范围,从而可以意外地降低机械效率损失以及压力损失,避免排气单向阀100对压缩机1000的能效造成的较大损失。当然,上述各参数的具体取值仅为举例,可以具有一定的波动,只要满足对应参数的比值符合相应的取值范围即可,这里不作赘述。
下面,描述根据本申请第二方面实施例的压缩机1000。
具体而言,根据本申请实施例的压缩机1000,可以包括:机壳组件200、驱动组件300和泵体组件400,驱动组件300与泵体组件400均设于机壳组件200内,驱动组件300与泵体组件400相连,以驱动泵体组件400执行压缩工作。
需要说明的是,压缩机1000的具体类型不限,例如在一些实施例中,当压缩机1000为旋转式压缩机1000时,泵体组件400可以包括气缸,气缸内具有气缸腔,气缸腔内设有活塞。驱动组件300的具体构成不限,例如可以包括电机和驱动轴,电机可以为内转子式电机或外转子式电机,转子与驱动轴相连,以在电机工作时,通过转子带动驱动轴转动,驱动轴具有偏心部,活塞套设在偏心部上,以在驱动轴转动时,活塞可以沿气缸腔的腔壁滚动。此外,需要说明的是,泵体组件400的具体构成不限于此,例如在一些实施例中, 气缸组件还可以进一步包括设于气缸两侧的轴承等等,这里不作赘述。
根据本申请实施例的压缩机1000,还可以包括根据本申请第一方面实施例的排气单向阀100,排气单向阀100设于机壳组件200内,且排气管12穿设于机壳组件200。由此,可以通过设置排气单向阀100,可以改善对压缩机1000的能效造成的损失。
在一些实施例中,如图1和图4所示,排气单向阀100可以收纳设置在压缩机1000的机壳组件200内,并直接或间接安装在压缩机1000的机壳组件200上,排气管12可以贯穿压缩机1000的机壳组件200,从而可以将压缩机1000的内的高压气体通过排气管12单向排出到压缩机1000的机壳组件200外。由此,可以简化结构,使得压缩机1000的结构紧凑,有效保护排气单向阀100不受损坏,且便于安装,降低成本。值得说明的是,在本申请的实施例中,排气管12可以是一根完整的管,也可以是由若干管段拼接而成的组合管,这里不作限制。
基于上述描述,在本申请的一些实施例中,在压缩机1000工作时,压缩机1000的机壳组件200内的高压气体顶开阀片25,排气单向阀100处于打开状态,高压气体经进气孔231进入阀内壳22的内腔223,然后通过排气孔221进入阀外壳11的容纳腔112,之后通过排气管12排出到机壳组件200外,实现正常制冷循环。在压缩机1000停止工作时,阀片25在弹性元件24的作用下关闭进气孔231,排气单向阀100处于关闭状态,内腔223的气体不能通过进气孔231倒流至机壳组件200内(即机壳组件200内除排气单向阀100以外的空间中),利于压缩机1000快速地实现压力平衡,满足快速重启的要求。同时,可以避免压缩机1000内的冷媒发生沉积,从而可以避免压缩机1000底部油池溶解过多冷媒导致的润滑油粘度下降,进而可以在压缩机1000再次启动时,避免压缩机1000内部的润滑油粘度下降可能导致的异常磨损,提高了压缩机1000的可靠性。此外,还可以减小热量损失,提高运行效率。
另外,需要说明的是,根据本申请实施例的机壳组件200的具体构成不限,例如当压缩机1000为立式压缩机1000时,机壳可以包括主壳体和设于主壳体上下两端的上壳体和下壳体,此时,在一些实施例中,可以将排气单向阀100设置在上壳体上,同时将排气管12贯穿上壳体。但是本申请不限于此,当压缩机1000为卧式压缩机1000时,机壳可以包括主壳体和设于主壳体左右两端的左壳体和右壳体,此时,在一些实施例中,可以将排气单向阀100设置在主壳体的顶部,同时将排气管12贯穿主壳体,等等,这里不再举例。根据本申请的一些实施例,如图1所示,机壳组件200上还可以设置有工艺管500,在生产时,工艺管500可以用于封油、抽真空等生产工序。由此,有利于机壳组件200的加工。
根据本申请实施例的压缩机1000的其他构成例如吸气管600等等以及操作对于本领域 普通技术人员而言都是已知的,这里不再详细描述。另外,根据本申请实施例的压缩机1000,在一些实施例中,如图1所示,可以通过吸气管600与储液器2000相连以组成压缩机1000组件,压缩机1000组件可以应用于制冷设备,如冰箱、空调等,由于压缩机1000的性能有所提高,从而可以提高这些制冷设备的整体性能,这里不作赘述。根据本申请实施例的制冷设备的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点 可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种用于压缩机的排气单向阀,其中,所述排气单向阀包括:
    阀壳组件,所述阀壳组件包括阀外壳和排气管,所述阀外壳上具有出气口,所述排气管的进气端插配于所述出气口,所述进气端的横截面积为S1,所述压缩机适于通过所述排气管的出气端单向排气;
    阀芯组件,所述阀芯组件内置于所述阀外壳,且包括在打开位置和关闭位置之间可运动的阀芯,所述阀芯组件上具排气孔,所述阀芯与所述阀外壳之间形成有连通在所述排气孔与所述出气口之间的排气通道,在所述阀芯运动至所述打开位置时,所述阀芯组件内的气体可从所述排气孔进入所述排气通道并流向所述进气端,
    在所述阀芯运动至所述打开位置时,所述阀芯与所述阀外壳之间的最近距离为d2,所述排气通道的最小过流面的面积为S2,其中,S1与d2的比值为8~25,和/或,S2与S1的比值为1.2~5。
  2. 根据权利要求1所述的用于压缩机的排气单向阀,其中,所述阀芯包括柱形段,所述柱形段与所述出气口同轴设置,所述阀芯沿所述柱形段的轴向朝向靠近所述出气口的方向运动可到达所述打开位置,所述柱形段的朝向所述出气口的轴端为自由端,在所述阀芯运动至所述打开位置时,所述自由端的边缘与所述出气口之间的最短连线的长度为所述最近距离d2。
  3. 根据权利要求2所述的用于压缩机的排气单向阀,其中,所述进气端的横截面和所述柱形段的横截面均为圆形,所述排气通道的最小过流面构造为:以所述柱形段的轴线为中心线,以所述最短连线为母线,以所述出气口的横截面为下底,以所述自由端的横截面为上底的圆台侧面。
  4. 根据权利要求2或3所述的用于压缩机的排气单向阀,其中,所述阀外壳形成为以所述出气口的中心线为回转轴线的回转体。
  5. 根据权利要求1-4中任一项所述的用于压缩机的排气单向阀,其中,所述排气孔为至少一个,且全部所述排气孔的总过流面积为S3,其中,S3与S2的比值为0.3~0.8,和/或,S3与S1的比值为1~2,和/或,S3与d2的比值为12~30。
  6. 根据权利要求5所述的用于压缩机的排气单向阀,其中,所述阀芯组件包括阀内壳,所述阀内壳上具有中心孔,所述阀芯包括柱形段和止挡段,所述柱形段穿设于所述中心孔,所述止挡段位于所述阀内壳内且与所述柱形段的内端相连,以限制所述柱形段的内端从所述中心孔脱出,所述排气孔为多个且沿所述柱形段的周向分布在所述阀内壳上。
  7. 根据权利要求1-6中任一项所述的用于压缩机的排气单向阀,其中,所述排气孔与所述阀外壳之间最近距离为d3,其中,S1与d3的比值为8~25,和/或,d2与d3的比值为0.7~1.5。
  8. 根据权利要求1-7中任一项所述的用于压缩机的排气单向阀,其中,所述阀芯组件限定出内腔,所述阀芯组件上还具有进气孔,所述进气孔和所述排气孔均与所述内腔连通,所述阀芯用于控制所述进气孔的开关,所述进气孔的过流面积为S4,所述排气孔为至少一个,且全部所述排气孔的总过流面积为S3,其中,S4与S3的比值为0.8~2。
  9. 根据权利要求8所述的用于压缩机的排气单向阀,其中,所述阀芯组件包括阀内壳和阀座,所述阀内壳与所述阀座之间限定出所述内腔,所述进气孔形成在所述阀座上,所述排气孔形成在所述阀内壳上,所述阀芯穿设于所述阀内壳,以朝向远离和靠近所述进气孔的方向往复运动。
  10. 根据权利要求9所述的用于压缩机的排气单向阀,其中,所述阀外壳与所述阀座配合,以与所述阀座之间限定出容纳腔,所述阀内壳设于所述容纳腔内。
  11. 根据权利要求1-10中任一项所述的用于压缩机的排气单向阀,其中,S1为85mm 2-105mm 2,d2为5.5mm-6.5mm,S2为230mm 2-250mm 2
  12. 一种压缩机,其中,所述压缩机包括:机壳组件、驱动组件、泵体组件和排气单向阀,所述驱动组件和所述泵体组件相连且均设于所述机壳组件内,所述排气单向阀设于所述机壳组件内且为根据权利要求1-11中任一项所述的用于压缩机的排气单向阀,所述排气管穿设于所述机壳组件。
PCT/CN2022/080232 2021-12-14 2022-03-10 用于压缩机的排气单向阀和具有其的压缩机 WO2023108924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111531460.3A CN116263160A (zh) 2021-12-14 2021-12-14 用于压缩机的排气单向阀和具有其的压缩机
CN202111531460.3 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023108924A1 true WO2023108924A1 (zh) 2023-06-22

Family

ID=86723460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080232 WO2023108924A1 (zh) 2021-12-14 2022-03-10 用于压缩机的排气单向阀和具有其的压缩机

Country Status (2)

Country Link
CN (1) CN116263160A (zh)
WO (1) WO2023108924A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141420A (en) * 1990-06-18 1992-08-25 Copeland Corporation Scroll compressor discharge valve
JPH07103169A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
US20050238518A1 (en) * 2004-04-26 2005-10-27 Danfoss Maneurop S.A. Discharge check valve assembly for use with hermetic scroll compressor
CN201377430Y (zh) * 2009-04-03 2010-01-06 麦克维尔空调制冷(苏州)有限公司 单螺杆式制冷压缩机内置压力保护装置
CN111237193A (zh) * 2020-02-03 2020-06-05 广东美芝制冷设备有限公司 用于压缩机的排气管组件、壳体组件、压缩机和制冷装置
CN214743375U (zh) * 2021-05-31 2021-11-16 利欧集团浙江泵业有限公司 一种带排气结构的止回阀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141420A (en) * 1990-06-18 1992-08-25 Copeland Corporation Scroll compressor discharge valve
JPH07103169A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
US20050238518A1 (en) * 2004-04-26 2005-10-27 Danfoss Maneurop S.A. Discharge check valve assembly for use with hermetic scroll compressor
CN201377430Y (zh) * 2009-04-03 2010-01-06 麦克维尔空调制冷(苏州)有限公司 单螺杆式制冷压缩机内置压力保护装置
CN111237193A (zh) * 2020-02-03 2020-06-05 广东美芝制冷设备有限公司 用于压缩机的排气管组件、壳体组件、压缩机和制冷装置
CN214743375U (zh) * 2021-05-31 2021-11-16 利欧集团浙江泵业有限公司 一种带排气结构的止回阀

Also Published As

Publication number Publication date
CN116263160A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US7462021B2 (en) Rotary compressor, and car air conditioner and heat pump type water heater using the compressor
US20100221133A1 (en) Screw compressor
CN203272136U (zh) 单缸多级压缩机
CN101526084A (zh) 壳体低压式旋转压缩机
CN102878082B (zh) 一种壳体内低压力结构的旋转式压缩机
CN104806522A (zh) 旋转式压缩机及具有其的冷冻装置
JP2006152931A (ja) ロータリ式2段圧縮機
JP2003269356A (ja) 横型ロータリコンプレッサ
JP2006152839A (ja) ロータリ2段圧縮機及びその圧縮機を用いた空気調和機
JP6446542B2 (ja) 可変容量型圧縮機及びこれを備える冷凍装置
WO2023108924A1 (zh) 用于压缩机的排气单向阀和具有其的压缩机
JP2000249059A (ja) 圧縮機の吸入マフラ構造
JP6408698B2 (ja) 回転式圧縮機及びこれを備える冷凍サイクル装置
EP3636929B1 (en) Rotary compressor
CN112145428A (zh) 一种压缩机的上壳盖组件、压缩机及制冷设备
US20160208800A1 (en) Scroll compressor
JP3972548B2 (ja) ロータリ圧縮機
CN210686311U (zh) 一种压缩机的上壳盖组件、压缩机及制冷设备
CN112879291A (zh) 变容旋转式压缩机和制冷循环装置
CN109595171B (zh) 压缩机和具有其的制冷系统
CN104564675A (zh) 双缸旋转式压缩机及具有其的制冷装置
CN221033121U (zh) 泵体组件、压缩机及制冷设备
CN101397993B (zh) 涡旋压缩机
CN204627985U (zh) 旋转式压缩机及具有其的冷冻装置
CN111608913B (zh) 压缩机及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905695

Country of ref document: EP

Kind code of ref document: A1