WO2023108768A1 - mini LED 触控面板及其驱动方法和制备方法 - Google Patents

mini LED 触控面板及其驱动方法和制备方法 Download PDF

Info

Publication number
WO2023108768A1
WO2023108768A1 PCT/CN2021/140592 CN2021140592W WO2023108768A1 WO 2023108768 A1 WO2023108768 A1 WO 2023108768A1 CN 2021140592 W CN2021140592 W CN 2021140592W WO 2023108768 A1 WO2023108768 A1 WO 2023108768A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sub
layer
pixel
conductive layer
Prior art date
Application number
PCT/CN2021/140592
Other languages
English (en)
French (fr)
Inventor
查宝
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/623,312 priority Critical patent/US20240069666A1/en
Publication of WO2023108768A1 publication Critical patent/WO2023108768A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of display technology, in particular to a mini LED touch panel, a driving method and a preparation method thereof.
  • the self-capacitive touch panel adopts a driving method in which each touch electrode has a separate lead, but this driving method has too many leads, the structure is complicated, and the cost is increased.
  • AM touch active matrix touch
  • Each touch electrode is connected to the source of a switching TFT, and the gate of the switching TFT is drawn out by connecting the opening signal through the X axis (horizontal axis), and through the Y axis (vertical axis). ) is connected to the read signal to lead out the drain of the switch TFT, and then the touch electrodes are turned on row by row by the turn-on signal, and then the capacitance change of each touch electrode is read by the read signal, so as to determine the coordinates of the touch point.
  • the mini LED display panel is an emerging development direction in the future, but due to the insufficient production capacity of the mini LED display panel and the mini Each LED display partition is small, so there are fewer mini LED touch panels. Poor integration, resulting in insufficient touch interaction.
  • the embodiment of the present application applies the active matrix touch scanning technology to mini LED, and provides a mini LED touch panel and its driving method and preparation method, so as to realize LED embedded touch panel.
  • the embodiment of the present application provides a mini LED touch panel, including: a plurality of touch units arranged in an array, a plurality of touch addressing lines arranged along the first direction, and a plurality of touch addressing lines arranged along the second direction A plurality of touch reading lines, the first direction and the second direction are perpendicular to each other;
  • Each of the touch control units includes a switch transistor and a touch conductive layer, and the touch conductive layer is distributed in the gaps between the corresponding multiple sub-pixels and extends into the corresponding multiple sub-pixels; wherein, the switch transistor The gate is connected to the corresponding touch addressing line, the source of the switching transistor is connected to the touch conductive layer, and the drain of the switching transistor is connected to the corresponding touch reading line;
  • Each of the sub-pixels includes a driving transistor and a mini LED lamp bead connected to each other, and the driving transistor of the sub-pixel communicates with the mini LED through the touch conductive layer. LED lamp bead connection.
  • the mini LED touch panel further includes a plurality of scan lines arranged along the first direction, and a plurality of data lines arranged along the second direction; the gate of the driving transistor is connected to the The scan line, the source of the driving transistor is connected to the data line, and the drain of the driving transistor is connected to the mini LED lamp beads.
  • the touch conductive layer is a self-capacitance conductive layer, and the touch conductive layer is grounded.
  • the mini LED touch panel further includes a touch point coordinate acquisition unit connected to the touch reading line, and the touch point coordinate acquisition unit is used to zoom in And read the charge accumulated in the touch conductive layer, and determine the coordinates of the touch point according to the change amount of the charge.
  • an embodiment of the present application provides a driving method for a mini LED touch panel, which is used for the mini LED touch panel described above.
  • the driving method includes the following steps:
  • the switch transistor of each touch unit is turned on through the touch addressing line, and the charges accumulated in the touch conductive layer are transmitted through the touch readout line.
  • the driving method after transmitting the charges accumulated in the touch conductive layer through the touch readout line, the driving method further includes:
  • the touch point coordinate acquisition unit amplifies and reads the charges accumulated in the touch conductive layer, and determines the touch point coordinates according to the change amount of the charges.
  • the stage of displaying images and the stage of touch scanning are performed in time division.
  • the touch conductive layer is a self-capacitance conductive layer, and the touch conductive layer is grounded.
  • the embodiment of the present application also provides a method for preparing a mini LED touch panel, which is used for the above-mentioned mini LED touch panel, the preparation method comprises the following steps:
  • step S1 specifically includes:
  • step S2 specifically includes:
  • a black matrix layer in the touch unit is prepared on the touch conductive layer in the touch unit, and a black matrix layer in the sub-pixel is simultaneously prepared on the touch conductive layer in the sub-pixel.
  • step S3 specifically includes:
  • a mini LED lamp bead is arranged on the touch conductive layer in each sub-pixel, and the mini The LED lamp bead is connected with the touch conductive layer in the sub-pixel.
  • the touch conductive layer is a self-capacitance conductive layer, and the touch conductive layer is grounded.
  • the touch conductive layer is disposed on the same layer as the pixel definition layer or wiring layer of the sub-pixel.
  • the touch conductive layer extending into the sub-pixel serves as a pixel definition layer or a wiring layer of the sub-pixel.
  • each touch unit corresponds to sensing capacitance changes within a range of multiple sub-pixels, specifically, the touch conductive layer of the touch unit is distributed on Corresponding to the gap between the sensed multiple pixels and extending to the corresponding multiple sub-pixels, each sub-pixel includes interconnected drive transistors and mini For the LED lamp bead, the drive transistor is connected to the mini LED lamp bead through the touch conductive layer.
  • the source of the switching transistor 101 of the touch control unit is connected to the touch conductive layer 102, the gate is connected to the corresponding touch addressing line Gate, and the drain is connected to the corresponding touch reading line Read.
  • the switching transistor Under the control of the touch addressing line, the switching transistor leads the charge accumulated in the touch conductive layer to the touch reading line, so that the active and active addressing scanning method is adopted, and according to the sub-pixels corresponding to each touch unit The capacitance change within the range determines the coordinates of the touch point.
  • the switching transistor of the touch unit and the driving transistor of the sub-pixel are manufactured by the same process, and no new process is required. Therefore, the touch unit is embedded in the mini with the least process.
  • an embedded touch panel based on mini LED is formed, which improves the integration and integrity of the mini LED touch panel.
  • FIG. 1 is a schematic diagram of the overall structure of the mini LED touch panel provided by the embodiment of the present application.
  • Fig. 2 is a specific structural schematic diagram of the mini LED touch panel provided by the embodiment of the present application.
  • FIG. 3 is a detailed schematic diagram of the touch unit of the mini LED touch panel provided by the embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of the touch unit of the mini LED touch panel provided by the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a mini LED touch panel provided in an embodiment of the present application.
  • Figure 1 is a schematic diagram of the overall structure of the mini LED touch panel provided by the embodiment of the application
  • Figure 2 is a schematic diagram of the specific structure of the mini LED touch panel provided by the embodiment of the application
  • Figure 3 is a schematic diagram of the mini LED touch panel provided by the embodiment of the application 3 is a schematic structural view of any one of the touch units 10 in FIG. 1 or FIG. 2 .
  • the embodiment of the present application provides a mini LED touch panel, including: a plurality of touch units 10 distributed in an array, and a plurality of touch sensors arranged along the first direction X. Address lines, and a plurality of touch reading lines arranged along the second direction Y, the first direction X and the second direction Y are perpendicular to each other, for example, the first direction X is a row, and the second direction Y is a column; each touch The unit 10 is used to correspondingly sense capacitance changes within the range of a plurality of sub-pixels 20 distributed in an array, and each row of sub-pixels 20 or each column of sub-pixels 20 is distributed periodically, such as red sub-pixels 20, blue sub-pixels 20 and green sub-pixels 20 cycle arrangement.
  • each touch control unit 10 includes a switch transistor 101 and a touch conductive layer 102 (generally made of indium tin oxide ITO material), and the touch conductive layer 102 is distributed in the gaps between the corresponding plurality of sub-pixels 20 and extends to Among the corresponding plurality of sub-pixels 20; the source of the switching transistor 101 is connected to the touch conductive layer 102, the gate of the switching transistor 101 is connected to the corresponding touch addressing line Gate, and the drain of the switching transistor 101 is connected to the corresponding touch control layer.
  • a switch transistor 101 and a touch conductive layer 102 (generally made of indium tin oxide ITO material)
  • the touch conductive layer 102 is distributed in the gaps between the corresponding plurality of sub-pixels 20 and extends to Among the corresponding plurality of sub-pixels 20; the source of the switching transistor 101 is connected to the touch conductive layer 102, the gate of the switching transistor 101 is connected to the corresponding touch addressing line Gate, and the drain of the switching transistor 101 is
  • each sub-pixel 20 includes a driving transistor 201 and a mini LED lamp bead 202 connected to each other, and the driving transistor is connected to the mini LED lamp bead 202 through the touch conductive layer 102 .
  • the self-capacitive touch panel includes a plurality of touch units 10 distributed in an array, and each touch unit 10 has a gap between a plurality of sub-pixels 20 distributed in an array used for corresponding sensing. Extending to the corresponding sub-pixel 20, a touch conductive layer 102 is distributed, and by setting a switch transistor 101 connected to the touch conductive layer 102 and connected to the touch addressing line Gate and the touch reading line Read, the touch control The unit 10 is connected to the outside world, wherein the touch addressing line Gate is connected to the gate of the switching transistor 101, the touch conductive layer 102 is connected to the source of the switching transistor 101, and the touch reading line Read is connected to the drain of the switching transistor 101.
  • the variation senses the capacitance change within the range of the corresponding multiple sub-pixels 20 , and then determines whether the touch point is in the touch unit 10 according to the capacitance change within the range of the multiple sub-pixels 20 corresponding to each touch unit 10 .
  • each sub-pixel 20 includes a driving transistor 201 and a mini LED light bead 202 connected to each other, the driving transistor 201 and the mini LED light bead 202 are connected through the touch conductive layer 102, and the driving transistor 201 is used to drive the mini LED light bead 202 to be light up.
  • each touch unit 10 corresponds to sensing capacitance changes within the range of a plurality of sub-pixels 20.
  • the gap between each pixel extends to a plurality of corresponding sub-pixels 20
  • each sub-pixel 20 includes a driving transistor 201 and a mini LED light bead connected to each other, and the driving transistor 201 is connected to the mini LED light bead through the touch conductive layer 102 .
  • the source of the switching transistor 101 of the touch unit 10 is connected to the touch conductive layer 102, the gate is connected to the corresponding touch addressing line Gate, and the drain is connected to the corresponding touch reading line Read, thereby Through the switch crystal 101 under the control of the touch addressing line Gate, the charge accumulated in the touch conductive layer 102 is led out to the touch readout line Read, thereby adopting an active and active addressing scanning method, according to each touch unit 10 Corresponding to the capacitance change within the range of the sensed sub-pixel 20 to determine the coordinates of the touch point, that is, to embed the touch unit into the mini In the sub-pixels of the LED touch panel, an embedded touch panel based on mini LED is formed, which improves the integration and integrity of the mini LED touch panel.
  • a mutual capacitive touch panel requires at least two electrodes, a transmitting electrode and a receiving electrode, while a self-capacitive panel basically only needs a self-capacitive electrode.
  • the touch readout line collects capacitance change values within the range of the plurality of sub-pixels 20 corresponding to the touch unit 10 column by column.
  • the capacitance change value within the range of the multiple sub-pixels 20 causes the charge accumulated in the touch conductive layer 102 to change, so that it can be determined according to the amount of change in the charge accumulated in the touch conductive layer 102 that a touch operation occurs
  • the touch unit 10 and the coordinates of the touch points are the coordinates of the touch points.
  • each touch unit 10 In the above addressing process, the functions of each touch unit 10 are the same, and they are all used to sense the capacitance change within the range of the corresponding multiple sub-pixels 20. Therefore, the active and active addressing scanning method is generally used in the self-capacitance touch panel, that is, the mini The touch conductive layer 102 of the LED touch panel is a self-capacitance conductive layer, and the touch conductive layer 102 is grounded, and the touch operation of each corresponding touch unit 10 is determined according to the touch conductive layer 102 of each touch unit 10, Thereby determining the touch coordinate point. It can be understood that the active patrol scanning method has the advantages of no ghost point problem, multi-touch can be realized, and the in-plane lead (routing) is relatively simple.
  • the mini LED touch panel also includes a plurality of scan lines Scan arranged along the first direction X and a plurality of data lines Data arranged along the second direction Y, and the drive transistor 201 of the sub-pixel 20 is connected to the scan line Scan connection, the source of the sub-pixel 20 is connected to the data line Data, and the drain of the sub-pixel 20 is connected to the mini LED lamp bead 202 through the ITO electrode layer, so that the driving transistor 201 drives the mini LED according to the data signal under the control of the scanning line Scan
  • the lamp beads 202 are turned on to work.
  • the mini LED touch panel also includes a touch point coordinate acquisition unit (not shown in the figure), and the touch point coordinate acquisition unit uses an integrator to draw out the touch control of each touch unit 10 from the touch reading line.
  • the charges accumulated in the conductive layer 102 are amplified and read, so that the touch coordinate points can be prepared to be located.
  • the mini LED touch panel adopts a time-sharing driving method to control screen display and touch sensing, that is, within a frame time, part of the time is used for display driving, and the other part is used for touch control. Sensing.
  • the embodiment of the present application also provides a driving method for a mini LED touch panel, including:
  • the switch transistor 101 of each touch unit is turned on through the touch addressing line Gate, and the charges accumulated in the touch conductive layer 102 are transferred through the touch reading line Read.
  • the touch scanning also includes: amplifying and reading the charge accumulated in the touch conductive layer 102 by the touch point coordinate acquisition unit, and determining the touch control according to the change amount of the charge accumulated in the touch conductive layer 102 point coordinates.
  • each touch unit 10 extends to a plurality of sub-pixels 20 corresponding to the sensing, and the driving transistor 201 of the sub-pixel 20 can pass the extended touch conductive layer 102 and the mini LED light bead. 202, so as to drive the mini LED lamp bead 202 to be turned on to work.
  • the touch conductive layer 102 can be used as a pixel definition layer or a wiring layer of the sub-pixel 20, that is, the touch conductive layer 102 extending to the sub-pixel 20 can be a pixel definition layer or a wiring layer of the sub-pixel 20, that is,
  • the touch conductive layer 102 of the touch unit 10 can be set on the same layer as the pixel definition layer or wiring layer of the sub-pixel 20, so that the touch conductive layer 102 of the touch unit 10 and the pixel definition layer or wiring layer of the sub-pixel 20
  • the line layer can also be manufactured using the same manufacturing process, further reducing the manufacturing process, so that the touch unit 10 and the sub-pixel 20 can be further manufactured using basically the same manufacturing process.
  • the embodiment of the present application also provides a method for preparing a mini LED touch panel, including the following steps:
  • the switching transistor 101 of the touch unit 10 and the driving transistor 201 of the sub-pixel 20 are manufactured using the same manufacturing process, and no new manufacturing process is required, so the touch unit 10 is fabricated with the least manufacturing process. Embedded into the sub-pixels 20 of the mini LED touch panel, thereby forming an embedded touch panel based on mini LED, which improves the integration and integrity of the mini LED touch panel.
  • FIG. 5 is a schematic cross-sectional view of any touch unit 10 of the mini LED touch panel provided by the embodiment of the present application, that is, the AA' section in FIG. Pixels, actually one touch unit corresponds to sensing multiple sub-pixels.
  • the switching transistor 101 and the driving transistor 201 both adopting the top-gate structure as an example (actually, it can also be a bottom-gate structure, an etch-stop type ESL or a back-channel etch type BCE structure, etc.), combined with Fig. 3 and Fig. 5, the description The specific process of each step of the preparation method.
  • step S1 specifically includes:
  • step S2 specifically includes:
  • a black matrix layer in the touch unit is prepared on the touch conductive layer in the touch unit, and a black matrix layer in the sub-pixel is simultaneously prepared on the touch conductive layer in the sub-pixel.
  • step S3 specifically includes:
  • a mini LED lamp bead is arranged on the touch conductive layer in each sub-pixel, and the mini The LED lamp bead is connected with the touch conductive layer in the sub-pixel.
  • the source or drain of the switching transistor 101 and the driving transistor 201 is connected to the light-shielding layer LS, which can block free charges in the light-shielding layer LS, so as to prevent free charges from affecting the switching transistor 101.
  • the threshold voltage is affected, causing the threshold voltage of the switching transistor 101 to drift.
  • the pixel definition layer or wiring layer of the pixel 20 is set on the same layer, so that the touch unit 10 is embedded in the mini The sub-pixel 20 of the LED touch panel, thus forming a mini-based
  • the LED embedded touch panel improves the integration and integrity of the mini LED touch panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Position Input By Displaying (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种mini LED触控面板及其驱动方法和制备方法,通过触控单元(10)的开关晶体管(101)在触控寻址线(Gate)的控制下,将触控导电层(102)中积累的电荷引出到触控读取线(Read)来确定触控点坐标,由此将触控单元(10)嵌入到mini LED触控面板的子像素(20)中,形成基于mini LED的嵌入式触控面板。

Description

mini LED触控面板及其驱动方法和制备方法 技术领域
本发明涉及显示技术领域,尤其涉及一种mini LED触控面板及其驱动方法和制备方法。
背景技术
投射式电容触控显示屏分为自容式触控屏和互容式触控屏,其中自容式触控屏相比于互容式触控屏无论是在导电层规划、布线或算法方面,难度都要低很多,因此自容式触控屏仍具有自身的优势。为了防止鬼点,实现多点触控,自容式触控面板采用每个触控电极分别单独引线的驱动方式,但是这种驱动方式引线过多,结构复杂,增加成本。目前,已有研究将有源矩阵触控(AM touch)扫描技术应用于自容式触控面板,每个触控电极连接一个开关TFT的源极,通过X轴(水平轴)连接开启信号引出该开关TFT的栅极,通过Y轴(垂直轴)连接读取信号引出该开关TFT的漏极,然后由开启信号逐行逐个开启触控电极,然后由读取信号读取每个触控电极的电容变化,从而确定触控点坐标。
技术问题
mini LED显示面板是未来的新兴发展方向,但是由于mini LED显示面板的产能不足,且mini LED的每个显示分区较小,使得mini LED触控面板较少,即使有也一般采用的是外挂式连接方式,即将触控传感器设置在显示面板外部,使mini LED触控面板的集成性和整合性较差,导致触控交互性不够好。
技术解决方案
为了解决上述问题,本申请实施例将有源矩阵触控扫描技术应用于mini LED中,提供一种mini LED触控面板及其驱动方法和制备方法,以实现基于mini LED的嵌入式触控面板。
第一方面,本申请实施例提供一种mini LED触控面板,包括:多个呈阵列分布的触控单元,沿第一方向设置的多条触控寻址线,以及沿第二方向设置的多条触控读取线,所述第一方向和所述第二方向互相垂直;
每个所述触控单元包括开关晶体管和触控导电层,所述触控导电层分布于对应的多个子像素之间的空隙并延伸至对应的多个子像素中;其中,所述开关晶体管的栅极与对应的所述触控寻址线连接,所述开关晶体管的源极与所述触控导电层连接,所述开关晶体管的漏极与对应的所述触控读取线连接;
每个所述子像素包括互相连接的驱动晶体管和mini LED灯珠,所述子像素的驱动晶体管通过所述触控导电层与所述mini LED灯珠连接。
在一些实施例中,该mini LED触控面板还包括沿所述第一方向设置的多条扫描线,以及沿所述第二方向设置的多条数据线;所述驱动晶体管的栅极连接所述扫描线,所述驱动晶体管的源极连接所述数据线,所述驱动晶体管的漏极通过所述触控导电层连接所述mini LED灯珠。
在一些实施例中,所述触控导电层为自电容导电层,且所述触控导电层接地。
在一些实施例中,该mini LED触控面板还包括触控点坐标获取单元,所述触控点坐标获取单元与所述触控读取线连接,所述触控点坐标获取单元用于放大并读取所述触控导电层积累的电荷,并根据所述电荷的变化量确定触控点坐标。
第二方面,本申请实施例提供一种mini LED触控面板的驱动方法,用于如上所述的mini LED触控面板,该驱动方法包括以下步骤:
在显示图像时,通过扫描线打开每个子像素的驱动晶体管,并通过数据线向mini LED灯珠输入数据信号;
在触控扫描时,通过触控寻址线打开每个触控单元的开关晶体管,并通过所述触控读取线传输所述触控导电层积累的电荷。
在一些实施例中,在通过所述触控读取线传输所述触控导电层积累的电荷之后,所述驱动方法还包括:
通过触控点坐标获取单元放大并读取所述触控导电层积累的电荷,并根据所述电荷的变化量确定触控点坐标。
在一些实施例中,在每帧时间内,分时进行所述显示图像的阶段和所述触控扫描的阶段。
在一些实施例中,所述触控导电层为自电容导电层,且所述触控导电层接地。
第三方面,本申请实施例还提供一种mini LED触控面板的制备方法,用于如上所述的mini LED触控面板,该制备方法包括以下步骤:
S1、同步制备触控单元的开关晶体管和子像素的驱动晶体管;
S2、在每个所述触控单元对应感应的多个子像素之间以及每个子像素内,制备该触控单元的触控导电层。
S3、在延伸至每个子像素内的所述触控导电层上设置mini LED灯珠。
在一些实施例中,步骤S1具体包括:
在玻璃基板上同步制备所述触控单元内的遮光层和所述子像素内的遮光层;
在所述触控单元内的遮光层上制备所述触控单元内的第一钝化层,并同步在所述子像素内的遮光层上制备所述子像素内的第一钝化层;
在所述触控单元内的第一钝化层上制备所述触控单元内的有源层,并同步在所述子像素内的第一钝化层上制备所述子像素内的有源层;
在所述触控单元内的有源层上制备所述触控单元内的栅极绝缘层和第二钝化层,并同步在所述子像素内的有源层上制备所述子像素内的栅极绝缘层和第二钝化层;
在所述触控单元内的第二钝化层上蚀刻所述触控单元内的栅极层和源漏极层,并同步在所述子像素内的第二钝化层上蚀刻所述子像素内的栅极层和源漏极层。
在一些实施例中,步骤S2具体包括:
在所述触控单元内的第二钝化层和源漏极层上制备所述触控单元内的第三钝化层,并同步在所述子像素内的第二钝化层和源漏极层上制备所述子像素内的第三钝化层;
在所述触控单元内的第三钝化层上,以及在所述子像素内的第三钝化层上同步制备所述触控导电层;
在所述触控单元内的触控导电层上制备所述触控单元内的黑矩阵层,并同步在所述子像素内的触控导电层上制备所述子像素内的黑矩阵层。
在一些实施例中,步骤S3具体包括:
在每个所述子像素内的触控导电层上设置mini LED灯珠,并将mini LED灯珠与该子像素内的触控导电层连接。
在一些实施例中,所述触控导电层为自电容导电层,且所述触控导电层接地。
在一些实施例中,所述触控导电层与子像素的像素定义层或走线层同层设置。
在一些实施例中,延伸至子像素内的所述触控导电层作为该子像素的像素定义层或走线层。
有益效果
本申请实施例提供的mini LED触控面板及其驱动方法和制备方法中,每个触控单元对应感应多个子像素范围内的电容变化,具体地,将触控单元的触控导电层分布于对应感应的多个像素之间的空隙并延伸至对应的多个子像素中,每个子像素包括互相连接的驱动晶体管和mini LED灯珠,驱动晶体管通过触控导电层与mini LED灯珠连接。同时,将触控单元的开关晶体管101的源极与触控导电层102连接,栅极与对应的触控寻址线Gate连接,漏极与对应的触控读取线Read连接,由此通过开关晶体管在触控寻址线的控制下,将触控导电层中积累的电荷引出到触控读取线,从而采用有源主动寻址扫描方式,根据每个触控单元对应感应的子像素范围内的电容变化确定触控点坐标,其中,触控单元的开关晶体管和子像素的驱动晶体管采用同一制程制作,无需新增制程,由此采用最少的制程将触控单元嵌入到mini LED触控面板的子像素中,形成基于mini LED的嵌入式触控面板,提高了mini LED触控面板的集成性和整合性。
附图说明
图1为本申请实施例提供的mini LED触控面板的总体结构示意图;
图2为本申请实施例提供的mini LED触控面板的具体结构示意图;
图3为本申请实施例提供的mini LED触控面板的触控单元的细节示意图;
图4为本申请实施例提供的mini LED触控面板的触控单元的剖面示意图;
图5为本申请实施例提供的mini LED触控面板的制备方法的流程示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
图1为本申请实施例提供的mini LED触控面板的总体结构示意图,图2为本申请实施例提供的mini LED触控面板的具体结构示意图,图3为本申请实施例提供的mini LED触控面板的触控单元的细节示意图,其中,图3为图1或图2中任意一个触控单元10的结构示意图。
结合图1、图2和图3所示,本申请实施例提供一种mini LED触控面板,包括:多个呈阵列分布的触控单元10,沿第一方向X设置的多条触控寻址线,以及沿第二方向Y设置的多条触控读取线,第一方向X和第二方向Y互相垂直,例如第一方向X为行,第二方向Y为列;每个触控单元10用于对应感应多个呈阵列分布的子像素20范围内的电容变化,每行子像素20或每列子像素20按照周期分布,如红色子像素20、蓝色子像素20和绿色子像素20周期排列。
其中,每个触控单元10包括开关晶体管101和触控导电层102(一般由氧化铟锡ITO材料制成),触控导电层102分布于对应的多个子像素20之间的空隙并延伸至对应的多个子像素20中;开关晶体管101的源极与触控导电层102连接,开关晶体管101的栅极与对应的触控寻址线Gate连接,开关晶体管101的漏极与对应的触控读取线Read连接;可以理解的是,每个触控单元10的面积应当小于手指的面积,以便于手指触摸时,能准确通过触控单元10确定触控点坐标,例如,若每个触控点单元为方形,则每个触控单元10的长和宽一般小于7mm*7mm。其中,每个子像素20包括互相连接的驱动晶体管201和mini LED灯珠202,驱动晶体管通过触控导电层102与mini LED灯珠202连接。
具体地,该自容式触控面板包括多个呈阵列分布的触控单元10,且每个触控单元10在其用于对应感应的多个呈阵列分布的子像素20之间的空隙并延伸至对应的子像素20中分布有触控导电层102,并通过设置与触控导电层102连接且与触控寻址线Gate和触控读取线Read连接的开关晶体管101,使得触控单元10与外界连接,其中,触控寻址线Gate与开关晶体管101的栅极连接,触控导电层102与开关晶体管101的源极连接,触控读取线Read与开关晶体管101的漏极连接,从而基于开关晶体管101,在触控寻址线Gate的控制下,能通过触控读取线Read引出触控导电层102中积累的电荷,并根据触控导电层102中积累的电荷的变化量感应出对应的多个子像素20范围内的电容变化,进而根据每个触控单元10对应的多个子像素20范围内的电容变化,确定触控点是否在该触控单元10中。
进一步地,每个子像素20包括互相连接的驱动晶体管201和mini LED灯珠202,驱动晶体管201和mini LED灯珠202通过触控导电层102连接,驱动晶体管201用于驱动mini LED灯珠202被点亮。
本实施例提供的mini LED触控面板中,每个触控单元10对应感应多个子像素20范围内的电容变化,具体地,将触控单元10的触控导电层102分布于对应感应的多个像素之间的空隙并延伸至对应的多个子像素20中,每个子像素20包括互相连接的驱动晶体管201和mini LED灯珠,驱动晶体管201通过触控导电层102与mini LED灯珠连接。同时,将触控单元10的开关晶体管101的源极与触控导电层102连接,栅极与对应的触控寻址线Gate连接,漏极与对应的触控读取线Read连接,由此通过开关晶体101在触控寻址线Gate的控制下,将触控导电层102中积累的电荷引出到触控读取线Read,从而采用有源主动寻址扫描方式,根据每个触控单元10对应感应的子像素20范围内的电容变化确定触控点坐标,即将触控单元嵌入到mini LED触控面板的子像素中,形成基于mini LED的嵌入式触控面板,提高了mini LED触控面板的集成性和整合性。
需要说明的是,互容式触控面板至少需要发送电极和接收电极两种电极,而自容式面板基本只需要自容电极,有源主动寻址扫描方式在扫描触控单元10时,通过触控寻址线逐行打开触控单元10后,由触控读取线逐列采集触控单元10对应的多个子像素20范围内的电容变化值。当手指触摸到触控面板时,多个子像素20范围内的电容变化值使得触控导电层102积累的电荷产生变化,从而能根据触控导电层102积累的电荷的变化量确定发生触控操作的触控单元10以及触控点坐标。在上述寻址过程中,各触控单元10的作用相同,均用于感应对应的多个子像素20范围内的电容变化,因此有源主动寻址扫描方式一般使用于自容触控面板,即该mini LED触控面板的触控导电层102为自电容导电层,且触控导电层102接地,根据各触控单元10的触控导电层102确定各对应的触控单元10的触控操作情况,从而确定触控坐标点。可以理解的是,有源主动巡视扫描方式具有无鬼点问题,能实现多点触控,且面内引线(走线)较为简单的优点。
可以理解的是,该mini LED触控面板还包括沿第一方向X设置的多条扫描线Scan和沿第二方向Y设置的多条数据线Data,子像素20的驱动晶体管201与扫描线Scan连接,子像素20的源极与数据线Data连接,子像素20的漏极通过ITO电极层与mini LED灯珠202连接,使得驱动晶体管201在扫描线Scan的控制下,根据数据信号驱动mini LED灯珠202被点亮进行工作。
进一步地,该mini LED触控面板还包括触控点坐标获取单元(图中未示出),触控点坐标获取单元利用积分器将触控读取线引出的各触控单元10的触控导电层102积累的电荷放大并读取,从而可以准备定位出触控坐标点。
需要说明的是,该mini LED触控面板采用分时驱动方式来控制画面显示和触控感测,即,在一帧的时间内,一部分时间用于显示驱动,另一部分时间则用于触控感测。
基于此,本申请实施例还提供一种mini LED触控面板的驱动方法,包括:
在显示图像时,通过扫描线Scan打开每个子像素20的驱动晶体管201,并通过数据线Data向mini LED灯珠输入数据信号;
在触控扫描时,通过触控寻址线Gate打开每个触控单元的开关晶体管101,并通过触控读取线Read传输触控导电层102积累的电荷。
进一步地,在触控扫描时,还包括:通过触控点坐标获取单元放大并读取所述触控导电层102积累的电荷,并根据触控导电层102积累的电荷的变化量确定触控点坐标。
需要说明的是,每个触控单元10的触控导电层102延伸至对应感应的多个子像素20中,子像素20的驱动晶体管201可以通过延伸进来的触控导电层102与mini LED灯珠202,从而驱动mini LED灯珠202被点亮进行工作。其中,触控导电层102可以作为子像素20的像素定义层或走线层,即,延伸至子像素20的触控导电层102可以为子像素20的像素定义层或走线层,也就是说,触控单元10的触控导电层102可以与子像素20的像素定义层或走线层同层设置,这样,触控单元10的触控导电层102和子像素20的像素定义层或走线层也可以采用同一制程制作,进一步减少制程,使得触控单元10和子像素20能进一步采用基本相同的制程制作。
基于此,如图4所示,本申请实施例还提供了一种mini LED触控面板的制备方法,包括以下步骤:
S1、同步制备触控单元的开关晶体管和子像素的驱动晶体管;
S2、在每个所述触控单元对应感应的多个子像素之间以及每个子像素内,制备该触控单元的触控导电层;
S3、在延伸至每个子像素内的所述触控导电层上设置mini LED灯珠。
本实施例提供的mini LED触控面板的制备方法,触控单元10的开关晶体管101和子像素20的驱动晶体管201采用同一制程制作,无需新增制程,由此采用最少的制程将触控单元10嵌入到mini LED触控面板的子像素20中,从而形成基于mini LED的嵌入式触控面板,提高了mini LED触控面板的集成性和整合性。
基于上述实施例,图5为本申请实施例提供的mini LED触控面板的任意一个触控单元10的剖面示意图,即为图3中的A-A’剖面处,图5中仅示意一个子像素,实际一个触控单元对应感应多个子像素。以开关晶体管101和驱动晶体管201均采用顶栅结构为例(实际还可以为底栅结构、蚀刻阻挡型ESL或背沟道刻蚀型BCE结构等),结合图3和图5所示,说明该制备方法各个步骤的具体过程。
其中,步骤S1具体包括:
在玻璃基板上同步制备所述触控单元内的遮光层和所述子像素内的遮光层;
在所述触控单元内的遮光层上制备所述触控单元内的第一钝化层,并同步在所述子像素内的遮光层上制备所述子像素内的第一钝化层;
在所述触控单元内的第一钝化层上制备所述触控单元内的有源层,并同步在所述子像素内的第一钝化层上制备所述子像素内的有源层;
在所述触控单元内的有源层上制备所述触控单元内的栅极绝缘层和第二钝化层,并同步在所述子像素内的有源层上制备所述子像素内的栅极绝缘层和第二钝化层;
在所述触控单元内的第二钝化层上蚀刻所述触控单元内的栅极层和源漏极层,并同步在所述子像素内的第二钝化层上蚀刻所述子像素内的栅极层和源漏极层。
其中,步骤S2具体包括:
在所述触控单元内的第二钝化层和源漏极层上制备所述触控单元内的第三钝化层,并同步在所述子像素内的第二钝化层和源漏极层上制备所述子像素内的第三钝化层;
在所述触控单元内的第三钝化层上,以及在所述子像素内的第三钝化层上同步制备所述触控导电层;
在所述触控单元内的触控导电层上制备所述触控单元内的黑矩阵层,并同步在所述子像素内的触控导电层上制备所述子像素内的黑矩阵层。
其中,步骤S3具体包括:
在每个所述子像素内的触控导电层上设置mini LED灯珠,并将mini LED灯珠与该子像素内的触控导电层连接。
需要说明的是,触控单元10中,开关晶体管101和驱动晶体管201的源极或漏极与遮光层LS连接,可将自由电荷阻挡在遮光层LS中,以阻止自由电荷对开关晶体管101的阈值电压产生影响,导致开关晶体管101的阈值电压产生漂移。
经过上述具体的制备步骤,形成图5所示的膜层结构,使得触控单元10的开关晶体管101和子像素20的驱动晶体管201采用同一制程制作,触控单元10的触控导电层102与子像素20的像素定义层或走线层同层设置,由此采用最少的制程将触控单元10嵌入到mini LED触控面板的子像素20中,从而形成基于mini LED的嵌入式触控面板,提高了mini LED触控面板的集成性和整合性。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (15)

  1. 一种mini LED触控面板,其包括:多个呈阵列分布的触控单元,沿第一方向设置的多条触控寻址线,以及沿第二方向设置的多条触控读取线,所述第一方向和所述第二方向互相垂直;
    每个所述触控单元包括开关晶体管和触控导电层,所述触控导电层分布于对应的多个子像素之间的空隙并延伸至对应的多个子像素中;其中,所述开关晶体管的栅极与对应的所述触控寻址线连接,所述开关晶体管的源极与所述触控导电层连接,所述开关晶体管的漏极与对应的所述触控读取线连接;
    每个所述子像素包括互相连接的驱动晶体管和mini LED灯珠,所述子像素的驱动晶体管通过所述触控导电层与所述mini LED灯珠连接。
  2. 如权利要求1所述的mini LED触控面板,其还包括:沿所述第一方向设置的多条扫描线,以及沿所述第二方向设置的多条数据线;
    所述驱动晶体管的栅极连接所述扫描线,所述驱动晶体管的源极连接所述数据线,所述驱动晶体管的漏极通过所述触控导电层连接所述mini LED灯珠。
  3. 如权利要求1所述的mini LED触控面板,其中,所述触控导电层为自电容导电层,且所述触控导电层接地。
  4. 如权利要求1所述的mini LED触控面板,其还包括:触控点坐标获取单元,所述触控点坐标获取单元与所述触控读取线连接,所述触控点坐标获取单元用于放大并读取所述触控导电层积累的电荷,并根据所述电荷的变化量确定触控点坐标。
  5. 一种mini LED触控面板的驱动方法,用于权利要求1所述的mini LED触控面板,其中,所述驱动方法包括以下步骤:
    在显示图像时,通过扫描线打开每个子像素的驱动晶体管,并通过数据线向mini LED灯珠输入数据信号;
    在触控扫描时,通过触控寻址线打开每个触控单元的开关晶体管,并通过所述触控读取线传输所述触控导电层积累的电荷。
  6. 如权利要求5所述的mini LED触控面板的驱动方法,其中,所述通过所述触控读取线传输所述触控导电层积累的电荷之后,还包括:
    通过触控点坐标获取单元放大并读取所述触控导电层积累的电荷,并根据所述电荷的变化量确定触控点坐标。
  7. 如权利要求5所述的mini LED触控面板的驱动方法,其中,在每帧时间内,分时进行所述显示图像的阶段和所述触控扫描的阶段。
  8. 如权利要求5所述的mini LED触控面板的驱动方法,其中,所述触控导电层为自电容导电层,且所述触控导电层接地。
  9. 一种mini LED触控面板的制备方法,用于权利要求1所述的mini LED触控面板,其中,所述制备方法包括以下步骤:
    S1、同步制备触控单元的开关晶体管和子像素的驱动晶体管;
    S2、在每个所述触控单元对应感应的多个子像素之间以及每个子像素内,制备该触控单元的触控导电层;
    S3、在延伸至每个子像素内的所述触控导电层上设置mini LED灯珠。
  10. 如权利要求9所述的mini LED触控面板的制备方法,其中,步骤S1具体包括:
    在玻璃基板上同步制备所述触控单元内的遮光层和所述子像素内的遮光层;
    在所述触控单元内的遮光层上制备所述触控单元内的第一钝化层,并同步在所述子像素内的遮光层上制备所述子像素内的第一钝化层;
    在所述触控单元内的第一钝化层上制备所述触控单元内的有源层,并同步在所述子像素内的第一钝化层上制备所述子像素内的有源层;
    在所述触控单元内的有源层上制备所述触控单元内的栅极绝缘层和第二钝化层,并同步在所述子像素内的有源层上制备所述子像素内的栅极绝缘层和第二钝化层;
    在所述触控单元内的第二钝化层上蚀刻所述触控单元内的栅极层和源漏极层,并同步在所述子像素内的第二钝化层上蚀刻所述子像素内的栅极层和源漏极层。
  11. 如权利要求10所述的mini LED触控面板的制备方法,其中,步骤S2具体包括:
    在所述触控单元内的第二钝化层和源漏极层上制备所述触控单元内的第三钝化层,并同步在所述子像素内的第二钝化层和源漏极层上制备所述子像素内的第三钝化层;
    在所述触控单元内的第三钝化层上,以及在所述子像素内的第三钝化层上同步制备所述触控导电层;
    在所述触控单元内的触控导电层上制备所述触控单元内的黑矩阵层,并同步在所述子像素内的触控导电层上制备所述子像素内的黑矩阵层。
  12. 如权利要求9所述的mini LED触控面板的制备方法,其中,步骤S3具体包括:
    在每个所述子像素内的触控导电层上设置mini LED灯珠,并将mini LED灯珠与该子像素内的触控导电层连接。
  13. 如权利要求9所述的mini LED触控面板的制备方法,其中,所述触控导电层为自电容导电层,且所述触控导电层接地。
  14. 如权利要求9所述的mini LED触控面板的制备方法,其中,所述触控导电层与子像素的像素定义层或走线层同层设置。
  15. 如权利要求9所述的mini LED触控面板的制备方法,其中,延伸至子像素内的所述触控导电层作为该子像素的像素定义层或走线层。
PCT/CN2021/140592 2021-12-16 2021-12-22 mini LED 触控面板及其驱动方法和制备方法 WO2023108768A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/623,312 US20240069666A1 (en) 2021-12-16 2021-12-22 Mini led touch panel and its driving method and preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111545171.9A CN114415854B (zh) 2021-12-16 2021-12-16 mini LED触控面板及其驱动方法和制备方法
CN202111545171.9 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023108768A1 true WO2023108768A1 (zh) 2023-06-22

Family

ID=81268365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140592 WO2023108768A1 (zh) 2021-12-16 2021-12-22 mini LED 触控面板及其驱动方法和制备方法

Country Status (3)

Country Link
US (1) US20240069666A1 (zh)
CN (1) CN114415854B (zh)
WO (1) WO2023108768A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825788A (zh) * 2009-03-04 2010-09-08 北京京东方光电科技有限公司 触摸显示器、tft-lcd阵列基板及其制造方法
CN103676280A (zh) * 2013-12-17 2014-03-26 合肥京东方光电科技有限公司 阵列基板及其制造方法和触摸屏
JP2015210696A (ja) * 2014-04-28 2015-11-24 三菱電機株式会社 タッチパネル付き液晶表示装置
US20160282990A1 (en) * 2015-03-27 2016-09-29 Semiconductor Energy Laboratory Co., Ltd. Touch panel
CN106292022A (zh) * 2015-05-28 2017-01-04 鸿富锦精密工业(深圳)有限公司 内嵌式触控显示面板
CN108493154A (zh) * 2018-04-28 2018-09-04 深圳市华星光电技术有限公司 Micro LED显示面板的制作方法及Micro LED显示面板
CN109388273A (zh) * 2017-08-14 2019-02-26 京东方科技集团股份有限公司 触控显示面板及其驱动方法、电子装置
CN109491543A (zh) * 2018-11-06 2019-03-19 京东方科技集团股份有限公司 一种触控显示面板、制作方法及驱动方法
CN110162224A (zh) * 2018-05-31 2019-08-23 京东方科技集团股份有限公司 触控显示基板及其驱动方法、显示装置
CN112967619A (zh) * 2021-03-01 2021-06-15 深圳市志凌伟业光电有限公司 Led触控面板及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106068490B (zh) * 2014-02-12 2019-02-22 苹果公司 采用片式传感器和电容阵列的力确定
CN108446051B (zh) * 2018-03-16 2020-10-30 深圳市华星光电技术有限公司 阵列基板及触控显示装置
CN111857395A (zh) * 2019-04-30 2020-10-30 群创光电股份有限公司 触控显示设备
KR102646183B1 (ko) * 2019-12-26 2024-03-11 엘지디스플레이 주식회사 터치표시장치, 데이터구동회로 및 터치센싱방법
CN213751735U (zh) * 2020-12-18 2021-07-20 重庆康佳光电技术研究院有限公司 一种led显示单元以及显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825788A (zh) * 2009-03-04 2010-09-08 北京京东方光电科技有限公司 触摸显示器、tft-lcd阵列基板及其制造方法
CN103676280A (zh) * 2013-12-17 2014-03-26 合肥京东方光电科技有限公司 阵列基板及其制造方法和触摸屏
JP2015210696A (ja) * 2014-04-28 2015-11-24 三菱電機株式会社 タッチパネル付き液晶表示装置
US20160282990A1 (en) * 2015-03-27 2016-09-29 Semiconductor Energy Laboratory Co., Ltd. Touch panel
CN106292022A (zh) * 2015-05-28 2017-01-04 鸿富锦精密工业(深圳)有限公司 内嵌式触控显示面板
CN109388273A (zh) * 2017-08-14 2019-02-26 京东方科技集团股份有限公司 触控显示面板及其驱动方法、电子装置
CN108493154A (zh) * 2018-04-28 2018-09-04 深圳市华星光电技术有限公司 Micro LED显示面板的制作方法及Micro LED显示面板
CN110162224A (zh) * 2018-05-31 2019-08-23 京东方科技集团股份有限公司 触控显示基板及其驱动方法、显示装置
CN109491543A (zh) * 2018-11-06 2019-03-19 京东方科技集团股份有限公司 一种触控显示面板、制作方法及驱动方法
CN112967619A (zh) * 2021-03-01 2021-06-15 深圳市志凌伟业光电有限公司 Led触控面板及其制作方法

Also Published As

Publication number Publication date
US20240069666A1 (en) 2024-02-29
CN114415854A (zh) 2022-04-29
CN114415854B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
KR101971147B1 (ko) 터치 센서를 포함하는 표시 장치
CN107085487B (zh) 阵列基板、显示面板及显示装置
US9081223B2 (en) Capacitive in cell touch panel and display device
KR101160826B1 (ko) 감지 소자를 내장한 액정 표시 장치
TWI479384B (zh) 具有整合式觸控螢幕的顯示裝置及其驅動方法
US9851831B2 (en) Touch screen, driving method thereof and display device
US10031626B2 (en) Display device with integrated touch screen
US9690416B2 (en) Touch panel, touch display panel and touch detection and display method
JP6161782B2 (ja) 静電容量式インセル型タッチパネル及び表示装置
CN106896961B (zh) 触控显示面板和触控显示装置
KR101759928B1 (ko) 표시패널
KR101546049B1 (ko) 터치 디스플레이 패널 및 그 구동 방법
US20190042047A1 (en) Pixel array substrate
US20140247239A1 (en) Display integrated pressure sensor
JP5697939B2 (ja) タッチ表示パネル、タッチ表示装置及び平面表示パネル
CN106909249B (zh) 触控显示基板和触控显示装置
WO2015096213A1 (zh) 一种触摸液晶显示屏阵列基板及相应的触摸液晶显示屏
US20140062944A1 (en) Capacitive In-Cell Touch Screen Panel And Display Device
US20150268762A1 (en) In-cell touch panel and display device
US20150145812A1 (en) Array substrate, touch screen panel and display device
KR20100067480A (ko) 액정 표시 장치
JP2009157373A (ja) 位置センサディスプレイ
WO2015039382A1 (zh) 一种内嵌式触摸屏及显示装置
WO2018040478A1 (zh) 一种触控面板及其制作方法
WO2015096210A1 (zh) 一种触摸液晶显示屏阵列基板及相应的触摸液晶显示屏

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17623312

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967899

Country of ref document: EP

Kind code of ref document: A1