WO2023108764A1 - 高性能环氧树脂粘层材料及其制备方法 - Google Patents

高性能环氧树脂粘层材料及其制备方法 Download PDF

Info

Publication number
WO2023108764A1
WO2023108764A1 PCT/CN2021/140560 CN2021140560W WO2023108764A1 WO 2023108764 A1 WO2023108764 A1 WO 2023108764A1 CN 2021140560 W CN2021140560 W CN 2021140560W WO 2023108764 A1 WO2023108764 A1 WO 2023108764A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curing agent
adhesive layer
parts
layer material
Prior art date
Application number
PCT/CN2021/140560
Other languages
English (en)
French (fr)
Inventor
张志祥
李款
潘友强
陈李峰
莫剑臣
Original Assignee
中路交科科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中路交科科技股份有限公司 filed Critical 中路交科科技股份有限公司
Publication of WO2023108764A1 publication Critical patent/WO2023108764A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/5013Amines aliphatic containing more than seven carbon atoms, e.g. fatty amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols

Definitions

  • the invention belongs to the technical field of road and bridge materials, and relates to a high-performance epoxy resin adhesive layer material and a preparation method thereof.
  • the waterproof adhesive layer plays two major roles in waterproofing and bonding in the bridge deck pavement. It not only has a great influence on the bonding effect and synergistic force between the upper pavement and the base surface, but also has a great impact on the bridge base and substructure. Durability plays a key role.
  • Traditional bridge deck pavement waterproof bonding materials mainly include asphalt and epoxy.
  • Asphalt waterproof bonding materials are thermoplastic materials, which can only be used for concrete bridge decks that do not require high bonding and waterproofing; epoxy waterproof bonding materials are thermosetting materials, and their excellent bonding ability needs to be completely cured before being cured. However, this contradicts the construction work of the upper pavement.
  • the uncured reactive resin material is easily damaged by the wheel track of the construction vehicle, which not only affects its overall waterproofness, but also easily causes pollution of the paving construction surface.
  • the purpose of the present invention is to provide a high-performance epoxy resin adhesive layer material to solve the contradiction between "sticking wheels” and “bonding” of waterproof adhesive layer materials in road and bridge deck pavement.
  • a high-performance epoxy resin adhesive layer material provided by the present invention includes the following components: 70-100 parts of epoxy resin, 5-20 parts of reactive diluent, and 1-5 parts of epoxy silane , 60-90 parts of liquid curing agent and 10-40 parts of crystal curing agent; the crystal curing agent is dissolved in the liquid curing agent before curing; when curing at room temperature, the crystal curing agent precipitates from the liquid curing agent in the form of fibers; at high temperature When curing, the crystal curing agent melts and participates in the high-temperature curing reaction.
  • the present invention proposes a three-step reaction for the curing of the epoxy resin adhesive layer material.
  • the liquid curing agent reacts with the epoxy group to generate a low-crosslinking density cured product; secondly, when the thermal mixture is paved, the fibrous crystals melt and the crystals The active group in the curing agent reacts with the epoxy group at high temperature; again, the residual liquid curing agent and the crystal curing agent dissolved in the liquid curing agent continue to react with the epoxy group, resulting in a high cross-linking density cured product.
  • the melting point of the crystal curing agent is 100-170°C.
  • the melting point of the crystal curing agent is between 100 and 170°C, which can ensure that it does not melt when it is cured at room temperature and precipitates in the form of fibers; it can also melt when it is cured at high temperature and participate in the high temperature curing reaction.
  • the crystal curing agent is a mixture of one or more of phenol derivatives or naphthol derivatives with crystallization properties.
  • Phenol derivatives and naphthol derivatives are active substances, and the phenolic hydroxyl groups in their molecular structures react with epoxy groups under specific conditions such as high temperature, thereby ensuring the adhesion of epoxy bonding materials; and phenol derivatives and naphthalene Phenol derivatives have the characteristics of crystallization, and can react with the liquid curing agent at room temperature, continuously precipitate in the form of fibers, and then play a role in fixing, strengthening, and inhibiting the cross-linked cured product of the liquid curing agent and epoxy groups , to solve the contradiction between "adhesive wheel" and "bonding" of epoxy resin adhesive layer materials.
  • liquid curing agent is any one or a mixture of vinylamine, vinyl oxide or propylene oxide.
  • the amino groups of the liquid curing agent segment provide sufficient polarity to allow the crystal curing agent to dissolve in the liquid curing agent.
  • the liquid curing agent contains 8-18 carbon atoms.
  • the main chain structure of the liquid curing agent is a vinyl, oxyethylene or propylene oxide flexible chain segment with 8 to 18 carbon atoms.
  • the flexible main chain not only provides beneficial deformability for the epoxy resin adhesive layer material, but also makes it It can coordinate the deformation difference between the bridge deck and the pavement layer, and the flexible main chain also shields the activity of the amino group at the chain end to a certain extent, so that it has a moderate curing reaction rate at room temperature.
  • epoxy resin is bisphenol A type or bisphenol F type or a mixture of the two.
  • Epoxy resin is the main part of the adhesive layer. It reacts with liquid curing agent and crystal curing agent to cure the adhesive layer material from a viscous liquid to a solid material with a certain strength and deformation ability. Bonding of pavement.
  • the reactive diluent is one or more of butyl glycidyl ether, phenyl glycidyl ether, C12-C14 glycidyl ether or 1,4-butanediol glycidyl ether.
  • the reactive diluent can adjust the viscosity of the epoxy resin adhesive layer material and ensure the ease of construction; on the other hand, the reactive groups contained in the reactive diluent can participate in the curing reaction, further ensuring the mechanical properties of the epoxy adhesive layer material.
  • the epoxy silane is any one or a mixture of E87M, E87E, E86M or E86E.
  • the epoxy group can participate in the curing reaction of the epoxy resin, thereby improving the bonding ability between the epoxy adhesive layer material and the bridge deck and pavement.
  • the second object of the present invention is to provide a method for preparing a high-performance epoxy resin adhesive layer material, which has the same technical effect.
  • a preparation method for a high-performance epoxy resin bonding layer comprising the following steps:
  • step S3 Mixing component A and component B to obtain the high-performance epoxy resin adhesive layer material. Further, in step S3, the mass ratio of component A and component B is 100:(50-100).
  • a preparation method of a high-performance epoxy resin bonding layer is specifically:
  • the present invention has the following beneficial effects:
  • the liquid curing agent reacts with the epoxy group to form a low crosslinking density cured product. Because the liquid curing agent participates in the reaction, the crystal curing agent dissolved in the liquid curing agent is precipitated in the form of fibrous crystals, and the low crosslinking density The cured product plays a role of fixation and reinforcement, thereby inhibiting the further reaction between the residual liquid curing agent and the epoxy group in the cured product with low cross-linking density, so that the epoxy resin adhesive layer material is in a "non-stick wheel" state.
  • the reactivity of the liquid curing agent in the present invention is moderate, and the curing reaction with epoxy resin generates a product with low crosslinking density, which ensures that the adhesive layer material is in a "non-sticking wheel" state within the construction time, and the cured product has a certain deformation ability.
  • the liquid curing agent can serve as a medium for dissolving the crystal curing agent.
  • the core of the present invention is the proportioning of the crystal curing agent and the liquid curing agent, the crystal curing agent is about 10 to 70 wt% of the liquid curing agent, so that the crystal material in the thermoplastic cured product is in a non-interlaced state, and does not Significant sacrifice of toughness.
  • Fig. 1 is the polarized light micrograph of the high-performance epoxy resin adhesive layer material after room temperature curing and before high temperature curing;
  • Figure 2 is a polarized light micrograph of the high-performance epoxy resin adhesive layer material cured at high temperature.
  • Diluent butyl glycidyl ether, phenyl glycidyl ether, C12-C14 glycidyl ether, 1,4-butanediol glycidyl ether, Suzhou Senfeida Chemical Co., Ltd.
  • Epoxy silanes are E87M, E87E, E86M, E86E, Nanjing Nengde New Material Technology Co., Ltd.
  • Liquid curing agent polyetheramine 230, polyetheramine 403, Shandong Youso Chemical Technology Co., Ltd.; dodecylamine, octadecylamine, Shanghai Aladdin Biochemical Technology Co., Ltd.
  • Crystal curing agent Resorcinol (melting point, 110°C), m-aminophenol (melting point, 123°C), 7-methyl-1-naphthol (melting point, 111°C), 7-methyl-2-naphthol (melting point, 114°C), p-aminophenol (melting point, 188°C), 4-methyl-1-naphthol (melting point, 86°C), Sinopharm Chemical Reagent Co., Ltd.
  • Embodiment 1 A kind of high-performance epoxy resin adhesive layer material and preparation method thereof
  • the high-performance epoxy resin adhesive layer material provided in this embodiment calculated in parts by weight, includes 95 parts of epoxy resin 0164, 5 parts of butyl glycidyl ether, 1 part of epoxy silane E87M, 90 parts of polyetheramine 230 and 10 parts resorcinol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Embodiment 2 A kind of high-performance epoxy resin adhesive layer material and preparation method thereof
  • the high-performance epoxy resin adhesive layer material provided in the present embodiment calculates according to the parts by weight, comprises the epoxy resin 0174 of 80 parts, 20 parts of phenyl glycidyl ether, 5 parts of epoxy silane E87E, 70 parts of twelve Alkylamine and 30 parts m-aminophenol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Embodiment 3 A kind of high-performance epoxy resin adhesive layer material and preparation method thereof
  • the high-performance epoxy resin adhesive layer material provided in this embodiment includes 90 parts of epoxy resin 0164, 10 parts of C12-C14 alkyl glycidyl ether, 3 parts of epoxy siloxane E86M, 80 parts of octadecyl Amine and 20 parts of 7-methyl-1-naphthol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Embodiment 4 A kind of high-performance epoxy resin adhesive layer material and preparation method thereof
  • the high-performance epoxy resin adhesive layer material provided in this embodiment includes 95 parts of epoxy resin 0830, 5 parts of 1,4-butanediol glycidyl ether, and 5 parts of epoxy siloxane in parts by weight. E86E, 80 parts octadecylamine and 20 parts resorcinol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Embodiment 5 A kind of high-performance epoxy resin adhesive layer material and preparation method thereof
  • the high-performance epoxy resin adhesive layer material provided in this embodiment calculated in parts by weight, includes 70 parts of epoxy resin 0164, 30 parts of C12-C14 alkyl glycidyl ether, 3 parts of epoxy siloxane E87M, 67 230 parts polyetheramine and 33 parts resorcinol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Embodiment 6 A kind of high-performance epoxy resin adhesive layer material and preparation method thereof
  • the high-performance epoxy resin adhesive layer material provided in this embodiment includes 100 parts of epoxy resin 0830, 2 parts of epoxy siloxane E87M, 85 parts of polyetheramine 403 and 15 parts of 7-methanol in terms of parts by weight. Base-2-naphthol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • the epoxy resin adhesive layer material provided in this comparative example includes 95 parts of epoxy resin 0164, 5 parts of butyl glycidyl ether, 1 part of epoxy silane E87M and 90 parts of polyetheramine 230 in parts by weight.
  • Component B of epoxy resin adhesive layer material is polyetheramine 230;
  • Comparative Example 1 has no crystal curing agent. Due to the lack of crystal curing agent to fix and strengthen the low crosslink density cured product, the epoxy resin adhesive layer material after normal temperature curing has not reached the dry state. The critical temperature of the non-stick wheel is much lower than room temperature, and the strength of the epoxy resin adhesive layer material cured at high temperature is low, and the bonding strength to the steel plate and epoxy asphalt mixture is insufficient, which cannot meet the requirements of the road and bridge pavement for the waterproof adhesive layer. The actual use requirements of "non-stick wheels" and "bonding”.
  • the high-performance epoxy resin adhesive layer material provided in this comparative example comprises 80 parts of epoxy resin 0174, 20 parts of phenyl glycidyl ether, 5 parts of epoxy silane E87E, 70 parts of The 4-methyl-1-naphthol of dodecylamine, 30 parts, the preparation process of epoxy resin adhesive layer material is as follows:
  • Comparative Example 2 uses a crystal curing agent with a melting point of only 86°C. Since the crystal curing agent has a low melting point, its fixation and strengthening effect on low-crosslinking density cured products is insufficient, and the crystal curing agent after curing at room temperature
  • the non-stick wheel critical temperature of the epoxy resin adhesive layer material is only 50°C. Under high temperature conditions in summer, the road surface temperature can easily exceed 50°C, resulting in the failure of its non-stick wheel effect, which cannot meet the needs of roads and bridges under high temperature conditions in summer.
  • the high-performance epoxy resin adhesive layer material provided in this comparative example includes 90 parts of epoxy resin 0164, 10 parts of C12-C14 alkyl glycidyl ether, 3 parts of epoxy siloxane E86M, 80 parts in parts by weight. Parts of octadecylamine and 20 parts of p-aminophenol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Comparative Example 3 uses a crystal solidifying agent with a melting point as high as 188° C. Since the melting point of the crystal solidifying agent is too high, the high-temperature solidification process cannot melt the crystalline substance produced by solidification at room temperature, and the unmelted crystalline substance inhibits It participates in the epoxy curing reaction process, so that the cured product after high temperature curing is still in a thermoplastic state, and its bonding strength to epoxy asphalt concrete is only 1.1MPa, which cannot meet the requirements of road and bridge pavement for waterproof bonding layer. Adhesion" actual use requirements.
  • the high-performance epoxy resin adhesive layer material provided in this comparative example includes 95 parts of epoxy resin 0830, 5 parts of 1,4-butanediol glycidyl ether, 5 parts of epoxy siloxane E86E, 50 parts of octadecane base amine and 50 parts resorcinol.
  • the preparation process of epoxy resin adhesive layer material is as follows:
  • Example 4 Compared with Example 4, the ratio of crystal curing agent and liquid curing agent in Comparative Example 4 reaches 100wt%, exceeding the optimum range of 10 to 70wt%, which will lead to mass production of crystal curing agent after curing at room temperature, and a large amount of interweaving distribution
  • the needle-like crystal material caused a great loss to the toughness of the cured product.
  • the elongation at break after curing at room temperature was only 132%, and it was reduced to 77% after curing at high temperature. This also cannot meet the requirements of road and bridge paving for waterproof bonding The actual use requirements of layer toughness.
  • the reactivity of the liquid curing agent in the present invention is moderate, and it reacts with the epoxy resin to form a product with low crosslinking density, ensuring that the adhesive layer material is in a "non-sticking wheel" state within the construction time, and the cured product Has a certain deformation ability.
  • the liquid curing agent can be used as a medium for dissolving the crystal curing agent; in the present invention, the crystal curing agent is about 10 to 70 wt% of the liquid curing agent, so that the crystal material in the thermoplastic cured product is in a non-interlaced state, as shown in Figure 1 and Figure 2
  • the crystal curing agent precipitates in the form of fibers, and plays the role of strengthening and fixing. After curing at high temperature, the fibrous crystals melt and participate in the curing reaction, and the number and size of fibrous crystals are greatly reduced. Therefore, in Reinforced while maintaining toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

一种用于路桥材料的环氧树脂粘层材料及其制备方法,按照重量份数计算,包括如下组分:环氧树脂70~100份、活性稀释剂5~20份、环氧基硅烷1~5份、液体固化剂60~90份和晶体固化剂10~40份;晶体固化剂在固化前溶解在液体固化剂中;在常温固化时,晶体固化剂以纤维状从液体固化剂中析出;在高温固化时晶体固化剂融化,参与高温固化反应。通过环氧树脂粘层材料固化三步反应,常温固化后晶体固化剂以纤维状析出,起到增强、固定的作用,高温固化后,纤维状晶体融化并参与固化反应,纤维状晶体的数量及尺寸均大幅度降低,在增强的同时维持了韧性。

Description

[根据细则37.2由ISA制定的发明名称] 高性能环氧树脂粘层材料及其制备方法 技术领域
本发明属于路桥材料技术领域,涉及一种高性能环氧树脂粘层材料及其制备方法。
背景技术
防水粘结层在桥面铺装中起到防水和粘结两大作用,其不仅对上层铺装与基面间的粘结效果及协同受力影响巨大,而且也对桥梁基层及下部结构的耐久性起到关键作用。传统桥面铺装防水粘结材料主要包括沥青类和环氧类。沥青类防水粘结材料属热塑性材料,仅可用于对粘结及防水要求不高的混凝土桥面;环氧类防水粘结材料属热固性材料,其优异的粘结能力需在未固化前方可完全发挥,但这与上层铺装的施工作业相矛盾,未固化的反应型树脂材料易被施工车辆车轮履带损伤,这不仅影响了其整体防水性,且易造成摊铺施工作业面污染。
发明内容
本发明的目的是提供一种高性能环氧树脂粘层材料,解决路桥面铺装中防水粘结层材料的“粘轮”与“粘结”之间的矛盾。
本发明的上述技术目的是通过以下技术方案得以实现的:
本发明提供的一种高性能环氧树脂粘层材料,按照重量份数计算,包括如下组分:环氧树脂70~100份、活性稀释剂5~20份、环氧基硅烷1~5份、液体固化剂60~90份和晶体固化剂10~40份;晶体固化剂在固化前溶解在液体固化剂中;在常温固化时,晶体固化剂以纤维状从液体固化剂中析出;在高温固化时晶体固化剂融化,参与高温固化反应。本发明提出了环氧树脂粘层材料的固化三步反应,首先,液体固化剂与环氧基团反应生成低交联密度固化产物;其次,热混合料摊铺时,纤维状晶体融化,晶 体固化剂中的活性基团与环氧基团发生高温固化反应;再次,残余的液体固化剂及溶解在液体固化剂中的晶体固化剂继续与环氧基团发生反应,最终生成高交联密度的固化产物。
进一步的,晶体固化剂的熔点是100~170℃。晶体固化剂的熔点在100~170℃之间,能够保证在常温固化时不融化,以纤维状析出;且能够在高温固化时融化,参与到高温固化反应中。
进一步的,晶体固化剂是具有结晶特性的苯酚衍生物或萘酚衍生物中的一种或多种的混合物。苯酚衍生物和萘酚衍生物属于活性物质,其分子结构中的酚羟基在高温等特定条件与环氧基团反应,进而保证了环氧粘结材料的粘结力;且苯酚衍生物和萘酚衍生物具有结晶的特性,能在常温下随着液体固化剂反应,不断以纤维状析出,进而起到对液体固化剂与环氧基团交联固化物的固定、增强、抑活等作用,解决环氧树脂粘层材料“粘轮”与“粘结”之间的矛盾。
进一步的,液体固化剂是乙烯基胺、氧化乙烯基胺或氧化丙烯基胺中的任意一种或多种的混合物。液体固化剂链段的氨基基团提供了足够的极性,使晶体固化剂能够溶解于液体固化剂中。
进一步的,液体固化剂含有8~18个碳原子。液体固化剂的主链结构为8~18个碳原子的乙烯基、氧化乙烯基或氧化丙烯基柔性链段,该柔性主链不仅为环氧树脂粘层材料提供了有益的变形能力,使其能够协调桥面板及铺装层间的形变差,而且柔性主链也在一定程度上屏蔽了链端氨基基团的活性,使其在常温下具备适中的固化反应速率。
进一步的,环氧树脂是双酚A型或双酚F型或两种的混合物。环氧树脂为粘层的主体部分,其与液体固化剂、晶体固化剂发生交联反应,将粘层材料由粘稠状液体固 化为具有一定强度、变形能力的固体材料,实现对桥面板及铺装层的粘结。
进一步的,活性稀释剂为丁基缩水甘油醚、苯基缩水甘油醚、C12-C14缩水甘油醚或1,4-丁二醇缩水甘油醚中的一种或多种。活性稀释剂一方面可以调节环氧树脂粘层材料的粘度、保障施工和易性;另一方面活性稀释剂中含有的活性基团可参与固化反应,进一步保证环氧粘层材料的力学性能。
进一步的,环氧基硅烷为E87M、E87E、E86M或E86E中的任意一种或多种的混合物。环氧基硅烷中,环氧基团可以参与环氧树脂的固化反应,进而提升环氧粘层材料与桥面板及铺装间的粘结能力。
本发明的第二个目的是提供一种高性能环氧树脂粘层材料的制备方法,具有同样的技术效果。
本发明的上述技术目的是由以下技术方案实现的:
一种高性能环氧树脂粘结层的制备方法,包括如下操作步骤:
S1、将环氧树脂、活性稀释剂和环氧基硅烷在加热的条件下混合均匀得到A组分;
S2、加热液体固化剂至晶体固化剂熔点以下30~80℃,将晶体固化剂加入液体固化剂中,搅拌均匀得到B组分;
S3、将A组分和B组分混合得到所述高性能环氧树脂粘层材料。进一步的,步骤S3中,A组分和B组分的质量比为100:(50~100)。
进一步的,一种高性能环氧树脂粘结层的制备方法具体为:
S1、加热环氧树脂至60℃,加入活性稀释剂、环氧基硅烷,100~200rpm下搅拌1~2h,得到A组分;
S2、加热液体固化剂至晶体固化剂熔点以下30~80℃。液体固化剂的预热温度的选择一方面是能耗经济性与生产效率性间平衡的结果,另一方面,较低的温度也在一定 程度上延缓了溶解在液体固化剂中的晶体固化剂的氧化、分解。将晶体固化剂加入液体固化剂中,200~300rpm下搅拌5~10h,得到B组分;
S3、将A组分与B组分按100:50~100的质量比混合,300~500rpm下搅拌1~2min,得到高性能环氧树脂粘层材料。
综上所述,本发明具有以下有益效果:
(1)液体固化剂与环氧基团反应生成低交联密度固化产物,因液体固化剂参与反应,溶解在液体固化剂中的晶体固化剂以纤维状晶体形式析出,并对低交联密度固化产物起到固定、增强作用,从而抑制低交联密度固化物中残余的液体固化剂与环氧基团进一步反应,使得环氧树脂粘层材料处于“不粘轮”状态。
(2)热混合料摊铺时,纤维状晶体融化,晶体固化剂中的活性基团与环氧基团发生高温固化反应,固化物的交联密度进一步增加,粘结等力学性能进一步提升。
(3)纤维状晶体因融化并参与固化反应,其对低交联密度固化产物的固定、抑制作用消失,残余的液体固化剂及溶解在液体固化剂中的晶体固化剂继续与环氧基团发生反应,最终生成高交联密度的固化产物,实现对基面与铺装间的牢固粘接。
(4)本发明中液体固化剂的反应活性适中,与环氧树脂固化反应生成低交联密度的产物,保证粘层材料在可施工时间内呈“不粘轮”状态,且固化产物具有一定的变形能力。此外,液体固化剂可以作为溶解晶体固化剂的介质。
(5)本发明的核心在于晶体固化剂与液体固化剂的配比,晶体固化剂约为液体固化剂的10~70wt%,使得热塑性固化产物中晶体物质处于非交织状态,在增强的同时不显著牺牲韧性。
附图说明
图1为高性能环氧树脂粘层材料常温固化后高温固化前的偏光显微照片;
图2为高性能环氧树脂粘层材料高温固化后的偏光显微照片。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,对依据本发明提出的一种高性能环氧树脂粘层材料及其制备方法,其具体实施方式、特征及其功效,详细说明如后。
实施例中所用原料来源:
环氧树脂:0164(双酚A型,EEW=183~190)、0174(双酚A型,EEW=210~230)、0830(双酚F型,EEW=165~180),南通星辰合成材料有限公司。
稀释剂:丁基缩水甘油醚、苯基缩水甘油醚、C12-C14缩水甘油醚、1,4-丁二醇缩水甘油醚,苏州森菲达化工有限公司。
环氧基硅烷为E87M、E87E、E86M、E86E,南京能德新材料技术有限公司。
液体固化剂:多醚胺230、多醚胺403,山东优索化工科技有限公司;十二烷基胺、十八烷基胺,上海阿拉丁生化科技股份有限公司。
晶体固化剂:间苯二酚(熔点,110℃)、间氨基苯酚(熔点,123℃)、7-甲基-1-萘酚(熔点,111℃)、7-甲基-2-萘酚(熔点,114℃)、对氨基苯酚(熔点,188度)、4-甲基-1-萘酚(熔点,86℃),国药集团化学试剂有限公司。
实施例1:一种高性能环氧树脂粘层材料及其制备方法
本实施例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括95份环氧树脂0164、5份丁基缩水甘油醚、1份环氧基硅烷E87M、90份多醚胺230和10份间苯二酚。
环氧树脂粘层材料的制备过程如下:
S1、加热95份的环氧树脂0164至60℃,加入5份丁基缩水甘油醚和1份环氧基 硅烷E87M,100~200rpm下搅拌1.0h,得到A组分;
S2、加热90份的多醚胺230至80℃(间苯二酚熔点以下30℃),将10份间苯二酚加入多醚胺230中,200~300rpm下搅拌10.0h,得到B组分;
S3、将A组分与B组分按100:100质量比混合,300~500rpm下搅拌1.0min,得到高性能环氧树脂粘层材料。
性能测试:
表1.实施例1中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000001
实施例2:一种高性能环氧树脂粘层材料及其制备方法
本实施例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括80份的环氧树脂0174、20份苯基缩水甘油醚、5份环氧基硅烷E87E、70份十二烷基胺和30份间氨基苯酚。
环氧树脂粘层材料的制备过程如下:
S1、加热80份的环氧树脂0174至60℃,加入20份苯基缩水甘油醚、5份环氧基硅烷E87ME,100~200rpm下搅拌2.0h,得到A组分;
S2、加热70份的十二烷基胺至73℃(间氨基苯酚熔点以下50℃),将30份间氨基苯酚加入十二烷基胺中,200~300rpm下搅拌5.0h,得到B组分;
S3、将A组分与B组分按100:80质量比混合,300~500rpm下搅拌2.0min,得到高性能环氧树脂粘层材料。
性能测试:
表2.实施例2中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000002
实施例3:一种高性能环氧树脂粘层材料及其制备方法
本实施例中提供的高性能环氧树脂粘层材料,包括90份的环氧树脂0164、10份C12-C14烷基缩水甘油醚、3份环氧硅氧烷E86M、80份十八烷基胺和20份7-甲基-1-萘酚。
环氧树脂粘层材料的制备过程如下:
S1、加热90份的环氧树脂0164至60℃,加入10份C12-C14烷基缩水甘油醚、3份的环氧硅氧烷E86M,100~200rpm下搅拌1.5h,得到A组分;
S2、加热80份的十八烷基胺至31℃(7-甲基-1-萘酚熔点以下80℃),将20份7-甲基-1-萘酚加入十八烷基胺中,200~300rpm下搅拌6.0h,得到B组分;
S3、将A组分与B组分按100:50质量比混合,300~500rpm下搅拌2min,得到高性能环氧树脂粘层材料。
性能测试:
表3.实施例3中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000003
实施例4:一种高性能环氧树脂粘层材料及其制备方法
本实施例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括95份的环氧树脂0830、5份1,4-丁二醇缩水甘油醚、5份环氧硅氧烷E86E、80份十八烷基胺和20份间苯二酚。
环氧树脂粘层材料的制备过程如下:
S1、加热95份的环氧树脂0830至60℃,加入5份的1,4-丁二醇缩水甘油醚、5份的环氧硅氧烷E86E,100~200rpm下搅拌1.8h,得到A组分;
S2、加热60份的十八烷基胺至60℃(间苯二酚熔点以下50℃),将40份的间苯二酚加入十八烷基胺中,200~300rpm下搅拌7.0h,得到B组分;
S3、将A组分与B组分按100:100质量比混合,300~500rpm下搅拌1.5min,得到高性能环氧树脂粘层材料。
性能测试:
表4.实施例4中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000004
实施例5:一种高性能环氧树脂粘层材料及其制备方法
本实施例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括70份环氧树脂0164、30份C12-C14烷基缩水甘油醚、3份环氧硅氧烷E87M、67份多醚胺230和33份间苯二酚。
环氧树脂粘层材料的制备过程如下:
S1、加热70份的环氧树脂0164至60℃,加入30份C12-C14烷基缩水甘油醚、3份环氧硅氧烷E87M,100~200rpm下搅拌1.2h,得到A组分;
S2、加热67份的多醚胺230至50℃(间苯二酚熔点以下60℃),将33份间苯二酚加入多醚胺230中,200~300rpm下搅拌5.0h,得到B组分;
S3、将A组分与B组分按100:80质量比混合,300~500rpm下搅拌2.0min,得到高性能环氧树脂粘层材料。
性能测试:
表5.实施例5中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000005
实施例6:一种高性能环氧树脂粘层材料及其制备方法
本实施例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括100份环氧树脂0830、2份环氧硅氧烷E87M、85份多醚胺403和15份7-甲基-2-萘酚。
环氧树脂粘层材料的制备过程如下:
S1、加热100份的环氧树脂0830至60℃,加入5份环氧硅氧烷E87M,100~200rpm下搅拌1.5h,得到A组分;
S2、加热85份的多醚胺403至64℃(7-甲基-2-萘酚熔点以下50℃),将15份7-甲基-2-萘酚加入多醚胺403中,200~300rpm下搅拌8.0h,得到B组分;
S3、将A组分与B组分按100:67质量比混合,300~500rpm下搅拌1.0min,得到高性能环氧树脂粘层材料。
性能测试:
表6.实施例6中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000006
Figure PCTCN2021140560-appb-000007
对比实施例1
本对比例中提供的环氧树脂粘层材料,按照重量份数计算,包括95份环氧树脂0164、5份丁基缩水甘油醚、1份环氧基硅烷E87M和90份多醚胺230。
S1、环氧树脂粘层材料A组分制备过程同实施例1;
S2、环氧树脂粘层材料B组分为多醚胺230;
S3、将A组分与B组分按100:100质量比混合,300~500rpm下搅拌1.0min,得到高性能环氧树脂粘层材料。
性能测试:
表7.对比实施例1中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000008
与实施例1相比,对比实施例1无晶体固化剂,由于缺乏晶体固化剂对低交联密 度固化物的固定、增强作用,常温固化后的环氧树脂粘层材料未达到指干状态、不粘轮临界温度远低于室温,且高温固化后的环氧树脂粘层材料强度较低、对钢板及环氧沥青混合料的粘结强度不足,无法满足路桥铺装对防水粘结层“不粘轮”、“粘结”的实际使用需求。
对比实施例2:
本对比例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括80份环氧树脂0174、20份的苯基缩水甘油醚、5份的环氧基硅烷E87E、70份的十二烷基胺、30份的4-甲基-1-萘酚,环氧树脂粘层材料的制备过程如下:
S1、环氧树脂粘层材料A组分制备过程同实施例2;
S2、加热70份十二烷基胺至36℃(4-甲基-1-萘酚熔点以下50℃),将30份4-甲基-1-萘酚加入十二烷基胺中,200~300rpm下搅拌5.0h,得到B组分;
S3、将A组分与B组分按100:80的质量比混合,300~500rpm下搅拌2.0min,得到高性能环氧树脂粘层材料。
性能测试:
表8.对比例2中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000009
与实施例2相比,对比实施例2采用熔点仅为86℃的晶体固化剂,由于该晶体固化剂熔点较低,其对低交联密度固化物的固定、增强作用不足,常温固化后的环氧树脂粘层材料的不粘轮临界温度仅为50℃,在夏季高温条件下,路表温度极易超过50℃,从而导致其不粘轮效果失效,这也无法满足夏季高温条件下路桥铺装对防水粘结层“不粘轮”的实际使用需求。
对比实施例3:
本对比例中提供的高性能环氧树脂粘层材料,按照重量份数计算,包括90份环氧树脂0164、10份C12-C14烷基缩水甘油醚、3份环氧硅氧烷E86M、80份十八烷基胺和20份对氨基苯酚。
环氧树脂粘层材料的制备过程如下:
S1、环氧树脂粘层材料A组分制备过程同实施例3;
S2、加热80份的十八烷基胺至108℃(对氨基苯酚熔点以下80℃),将20份的对氨基苯酚加入十八烷基胺中,200~300rpm下搅拌6.0h,得到B组分;
S3、将A组分与B组分按质量比100:50混合,300~500rpm下搅拌2.0min,得到高性能环氧树脂粘层材料。
性能测试:
表9.对比例3中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000010
Figure PCTCN2021140560-appb-000011
与实施例3相比,对比实施例3采用熔点高达188℃的晶体固化剂,由于该晶体固化剂熔点过高,高温固化过程并不能使常温固化产生的晶体物质熔化,未融化的晶体物质抑制其参与环氧固化反应过程,致使高温固化后的固化物仍处于热塑性状态,且其对环氧沥青混凝土的粘结强度也仅为1.1MPa,这也无法满足路桥铺装对防水粘结层“粘结”的实际使用需求。
对比实施例4:
本对比例中提供的高性能环氧树脂粘层材料,包括95份环氧树脂0830、5份1,4-丁二醇缩水甘油醚、5份环氧硅氧烷E86E、50份十八烷基胺和50份间苯二酚。
环氧树脂粘层材料的制备过程如下:
S1、环氧树脂粘层材料A组分制备过程同实施例4;
S2、加热50份的十八烷基胺至60℃(间苯二酚熔点以下50℃),将50份的间苯二酚加入十八烷基胺中,200~300rpm下搅拌7.0h,得到B组分;
S3、将A组分与B组分按100:100质量比混合,300~500rpm下搅拌1.5min,得到高性能环氧树脂粘层材料。
表10.对比实施例4中高性能环氧树脂粘层材料的检测结果
Figure PCTCN2021140560-appb-000012
Figure PCTCN2021140560-appb-000013
与实施例4相比,对比实施例4中晶体固化剂与液体固化剂的比例达100wt%,超过10~70wt%的最佳范围,这将导致常温固化后晶体固化剂大量生产,大量交织分布的针状晶体物质对固化物的韧性造成极大的损失,常温固化后的断裂伸长率仅为132%、高温固化后更是降低至77%,这也无法满足路桥铺装对防水粘结层韧性的实际使用需求。
通过上述对比可知,本发明中液体固化剂的反应活性适中,与环氧树脂固化反应生成低交联密度的产物,保证粘层材料在可施工时间内呈“不粘轮”状态,且固化产物具有一定的变形能力。此外,液体固化剂可以作为溶解晶体固化剂的介质;本发明中,晶体固化剂约为液体固化剂的10~70wt%,使得热塑性固化产物中晶体物质处于非交织状态,如图1和图2所示,常温固化后晶体固化剂以纤维状析出,并起到增强、固定的作用,高温固化后,纤维状晶体融化并参与固化反应,纤维状晶体的数量及尺寸均大幅度降低,因此在增强的同时维持了韧性。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例展示如上,但并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种高性能环氧树脂粘层材料,其特征在于,按照重量份数计算,包括如下组分:环氧树脂70~100份、活性稀释剂5~20份、环氧基硅烷1~5份、液体固化剂60~90份和晶体固化剂10~40份;所述晶体固化剂在固化前溶解在所述液体固化剂中。
  2. 根据权利要求1所述的一种高性能环氧树脂粘层材料,其特征在于,所述晶体固化剂的熔点是100~170℃。
  3. 根据权利要求1或2所述的一种高性能环氧树脂粘层材料,其特征在于,所述晶体固化剂是具有结晶特性的苯酚衍生物或萘酚衍生物中的一种或多种的混合物。
  4. 根据权利要求3所述的一种高性能环氧树脂粘层材料,其特征在于,所述液体固化剂是乙烯基胺、氧化乙烯基胺或氧化丙烯基胺中的任意一种或多种的混合物。
  5. 根据权利要求4所述的一种高性能环氧树脂粘层材料,其特征在于,所述液体固化剂含有8~18个碳原子。
  6. 根据权利要求1所述的一种高性能环氧树脂粘层材料,其特征在于,所述环氧树脂是双酚A型或双酚F型或两种的混合物。
  7. 根据权利要求1所述的一种高性能环氧树脂粘层材料,其特征在于,所述活性稀释剂为丁基缩水甘油醚、苯基缩水甘油醚、C12-C14缩水甘油醚或1,4-丁二醇缩水甘油醚中的一种或多种。
  8. 根据权利要求1所述的一种高性能环氧树脂粘层材料,其特征在于,所述环氧基硅烷为E87M、E87E、E86M或E86E中的任意一种或多种的混 合物。
  9. 一种如权利要求1~8任意一项所述的高性能环氧树脂粘结层的制备方法,其特征在于,包括如下操作步骤:
    S1、将环氧树脂、活性稀释剂和环氧基硅烷在加热的条件下混合均匀得到A组分;
    S2将液体固化剂加热到晶体固化剂的熔点以下30~80℃,将晶体固化剂加入到液体固化剂中,搅拌均匀得到B组分;
    S3、将A组分和B组分混合得到所述高性能环氧树脂粘层材料。
  10. 根据权利要求9所述的高性能环氧树脂粘结层的制备方法,其特征在于,所述步骤S3中,所述A组分和B组分的质量比为100:(50~100)。
PCT/CN2021/140560 2021-12-14 2021-12-22 高性能环氧树脂粘层材料及其制备方法 WO2023108764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111531663.2A CN113969128B (zh) 2021-12-14 2021-12-14 一种高性能环氧树脂粘层材料及其制备方法
CN202111531663.2 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023108764A1 true WO2023108764A1 (zh) 2023-06-22

Family

ID=79590595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140560 WO2023108764A1 (zh) 2021-12-14 2021-12-22 高性能环氧树脂粘层材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113969128B (zh)
WO (1) WO2023108764A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874736B (zh) * 2022-05-30 2023-07-21 中路交科科技股份有限公司 一种增强型环氧沥青粘结料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083881A (zh) * 2008-03-03 2011-06-01 新日铁化学株式会社 改性环氧树脂、环氧树脂组合物及固化物
CN103160234A (zh) * 2013-04-09 2013-06-19 南京大学 一种路桥用高性能热固性环氧树脂粘结剂及其制法
CN112341975A (zh) * 2020-11-25 2021-02-09 中路交科科技股份有限公司 一种二阶环氧粘层油、制备方法及其应用方法
CN112391136A (zh) * 2020-04-17 2021-02-23 潼灏(上海)材料科技有限公司 一种用于钢桥面铺装粘结层的环氧树脂组合物及其制备方法
US20210253842A1 (en) * 2019-05-06 2021-08-19 Jiangsu Sinoroad Transportation Science And Technology Co., Ltd Anti-fatigue cold mixed epoxy resin material, preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826110A (zh) * 2020-07-22 2020-10-27 江苏创为交通科技发展有限公司 一种二阶热拌环氧粘层油及用途
CN113698841A (zh) * 2021-07-20 2021-11-26 东南大学 一种钢桥面铺装专用二阶热拌环氧粘层油及其制备方法和应用
CN113549418B (zh) * 2021-07-20 2022-11-15 东南大学 一种钢桥面铺装用热拌环氧粘层油制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083881A (zh) * 2008-03-03 2011-06-01 新日铁化学株式会社 改性环氧树脂、环氧树脂组合物及固化物
CN103160234A (zh) * 2013-04-09 2013-06-19 南京大学 一种路桥用高性能热固性环氧树脂粘结剂及其制法
US20210253842A1 (en) * 2019-05-06 2021-08-19 Jiangsu Sinoroad Transportation Science And Technology Co., Ltd Anti-fatigue cold mixed epoxy resin material, preparation method and application thereof
CN112391136A (zh) * 2020-04-17 2021-02-23 潼灏(上海)材料科技有限公司 一种用于钢桥面铺装粘结层的环氧树脂组合物及其制备方法
CN112341975A (zh) * 2020-11-25 2021-02-09 中路交科科技股份有限公司 一种二阶环氧粘层油、制备方法及其应用方法

Also Published As

Publication number Publication date
CN113969128A (zh) 2022-01-25
CN113969128B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN109401519A (zh) 一种沥青路面修复材料
CN100569691C (zh) 环氧沥青浇注式混凝土材料及制备方法
WO2015100926A1 (zh) 一种沥青混合料热固性改性添加剂、其制备方法及沥青混合料
CN109852085A (zh) 一种高粘改性沥青及其制备方法
CN103834186A (zh) 一种温拌快速固化环氧沥青材料及其制备方法
CN102010607B (zh) 热固性乳化环氧树脂改性乳化沥青
CN103964751B (zh) 一种环氧砂浆桥面薄层铺装材料及其施工方法
CN112300742B (zh) 一种环氧树脂防水粘结材料、制备方法及应用
CN110373143A (zh) 一种路桥用常温固化柔韧性环氧树脂防水粘结剂及其制备方法
WO2023108764A1 (zh) 高性能环氧树脂粘层材料及其制备方法
CN101003688A (zh) 高性能环氧沥青路面材料及其制备方法和应用
CN109517343B (zh) 一种建筑填缝用环氧树脂胶泥及其制备方法
KR102194390B1 (ko) 개질유황 및 해조류 분말 함유 초속경 시멘트 콘크리트 조성물 및 이를 이용한 도로포장 보수·보강 공법
CN113072913B (zh) 一种氧化石墨烯增韧的热固性sbs改性沥青粘结剂及其应用
CN101585957A (zh) 钢桥面铺装修复用树脂填缝材料及其制备方法
CN105541182A (zh) 一种超粘纤维树脂沥青磨耗层混合料及其制备方法
CN113416422A (zh) 一种环氧沥青嵌缝材料及其制备方法与应用
WO2022110549A1 (zh) 一种二阶环氧粘层油、制备方法及其应用方法
CN107879668A (zh) 一种用于伸缩缝快速修补的抗开裂环氧砂浆及其制备方法
CN114836156B (zh) 一种可带水施工的环氧胶黏剂及其应用
CN102322009A (zh) 常温式环氧树脂改性乳化沥青应力吸收层
CN103981813A (zh) 环氧沥青混凝土桥面的施工方法
CN109320979B (zh) 一种提高酸性石料与沥青粘附性的树脂沥青乳液的制备方法及其应用
CN114873953A (zh) 水性环氧树脂乳化沥青冷拌钢渣混合料及其制备方法
CN112500029B (zh) 一种沥青基发泡灌缝胶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967895

Country of ref document: EP

Kind code of ref document: A1