WO2023108368A1 - 一种激光扫描模组、激光雷达、车辆及机器人 - Google Patents

一种激光扫描模组、激光雷达、车辆及机器人 Download PDF

Info

Publication number
WO2023108368A1
WO2023108368A1 PCT/CN2021/137564 CN2021137564W WO2023108368A1 WO 2023108368 A1 WO2023108368 A1 WO 2023108368A1 CN 2021137564 W CN2021137564 W CN 2021137564W WO 2023108368 A1 WO2023108368 A1 WO 2023108368A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
scanning module
laser beam
module according
light source
Prior art date
Application number
PCT/CN2021/137564
Other languages
English (en)
French (fr)
Inventor
胡小波
白芳
Original Assignee
深圳市镭神智能系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市镭神智能系统有限公司 filed Critical 深圳市镭神智能系统有限公司
Priority to CN202180004293.9A priority Critical patent/CN114365014A/zh
Priority to PCT/CN2021/137564 priority patent/WO2023108368A1/zh
Publication of WO2023108368A1 publication Critical patent/WO2023108368A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means

Definitions

  • the present disclosure relates to the technical fields of optical detection and navigation, and in particular, to a laser scanning module, a laser radar, a vehicle and a robot.
  • Laser scanning is a new type of optical measurement method, which uses laser as a light source to scan and detect targets. Compared with ordinary light sources, laser itself has the advantages of high brightness, good directionality, good monochromaticity and good coherence. , so that laser scanning has better scanning effect and detection accuracy, laser scanning technology is more and more widely used in the fields of measurement, transportation, intelligent assisted driving and mobile robots.
  • Lidar is a radar system that detects the position, speed and other characteristic quantities of the target by emitting and receiving laser beams. After the reflected laser signal is compared and processed with the emitted laser signal, the parameter information such as the distance, azimuth, height, speed, attitude, and shape of the target is obtained. Moreover, through the capture and analysis of the target's continuous distance, orientation, attitude and other parameter information, it can identify and track the moving target, so as to carry out in-depth applications in intelligent assisted driving and intelligent robots in various fields.
  • the purpose of the present disclosure is to provide a laser scanning module, a laser radar, a vehicle, and a robot, which can improve the compactness of the laser scanning module and enable the laser scanning module to provide a large number of dense laser beams to irradiate the target And receive the echo signal carrying the optical information of the target to improve the detection accuracy of the laser scanning module when it is used in the laser radar.
  • a laser scanning module including a transmitting component, a scanning mirror and a receiving component arranged in sequence along the direction of the laser light path.
  • the transmitting component includes a light source for emitting a laser beam, and the laser beam emitted by the light source passes through the The laser split beam formed by the scanning mirror is emitted toward the target area along with the scanning movement of the scanning mirror along the first linear direction, and the receiving component receives the echo laser beam reflected by the target area;
  • the light source includes multiple laser beams arranged in sequence along the second linear direction
  • the receiving component includes a plurality of receivers corresponding to the plurality of lasers, and each laser sub-beam emitted after passing through the scanning mirror is received by at least two receivers.
  • the first straight line direction is perpendicular to the second straight line direction.
  • Another aspect of the embodiments of the present disclosure provides a laser radar, including any one of the aforementioned laser scanning modules.
  • An embodiment of the present disclosure also provides a laser scanning module, which includes a transmitting component and a receiving component arranged in sequence along the direction of the laser light path.
  • the transmitting component includes a light source for emitting a laser beam. Scanning and emitting in the line direction, the receiving component receives the echo laser beam reflected by the target area;
  • the light source includes a plurality of lasers arranged in sequence along the second linear direction, and the receiving component includes a plurality of receivers corresponding to the plurality of lasers, each laser The beams are each received by at least two receivers; wherein the first linear direction is perpendicular to the second linear direction.
  • a vehicle including a vehicle body, and at least one laser radar according to any one of the foregoing, the laser radar is arranged on the roof of the vehicle body, at both ends of the front and/or at the rear of the vehicle. ends.
  • Another aspect of the embodiments of the present disclosure provides a robot, including a robot body, and at least one laser radar according to any one of the foregoing items.
  • the beneficial effects of the embodiments of the present disclosure include: the embodiments of the present disclosure provide a laser scanning module, a laser radar, a vehicle, and a robot.
  • the laser scanning module includes a transmitting assembly, a scanning mirror, and a receiving assembly sequentially arranged along the direction of the laser light path.
  • the emission component includes a light source for emitting a laser beam.
  • the laser beam emitted by the light source passes through the laser beam split formed by the scanning mirror and is emitted toward the target area along with the scanning motion of the scanning mirror along the first linear direction.
  • the scanning motion of the scanning mirror can make the laser beam
  • the beam splitting scans along the first straight line to the target area, and the light source can emit more and more densely distributed laser beams after beam splitting and scanning.
  • the reflection reflected by the target area received by the receiving component The number of wave laser beams is significantly increased. Since the echo laser beams will carry the optical information of the target object in the target area, when the laser scanning module of the embodiment of the present disclosure is applied to the laser radar, the point cloud structure of the laser radar is used to construct The picture information is more comprehensive and delicate, so that the lidar can have a better detection effect; wherein, the light source includes a plurality of lasers arranged in sequence along the second straight line direction, the first straight line direction is perpendicular to the second straight line direction, and the receiving component It includes multiple receivers corresponding to multiple lasers. The laser beam emitted by one laser is split by a scanning mirror to form one or more laser beams.
  • Each laser beam is correspondingly received by at least two receivers.
  • the arrangement of the light source and the receiving component can make full use of the laser beam emitted by the light source, so that more laser beams can be formed without adding additional lasers, and the receiving component can receive more echoes carrying the optical information of the target object in the target area Laser beam, so as to obtain more detailed and detailed information of the target, in order to improve the working efficiency and detection accuracy of the laser radar.
  • the laser radar of the embodiment of the present disclosure includes the aforementioned laser scanning module, and the image information constructed by the point cloud of the laser radar is more comprehensive and delicate, thereby enabling the laser radar to have better detection capabilities and better detection accuracy. sex.
  • the laser radar of the embodiments of the present disclosure is applied to vehicles or various types of robots, which can assist the vehicles or robots to achieve better automation performance, accurately and efficiently eliminate various obstacles and risks, and improve service life and working ability.
  • FIG. 1 is one of the schematic diagrams of the optical path of the laser scanning module provided by the embodiment of the present disclosure
  • Fig. 2 is the second schematic diagram of the optical path of the laser scanning module provided by the embodiment of the present disclosure
  • FIG. 3 is one of the structural schematic diagrams of the scanning mirror in the laser scanning module provided by the embodiment of the present disclosure
  • FIG. 4 is the second structural schematic diagram of the scanning mirror in the laser scanning module provided by the embodiment of the present disclosure.
  • FIG. 5 is one of the structural schematic diagrams of the lidar provided by the embodiment of the present disclosure.
  • FIG. 6 is the second structural schematic diagram of the laser radar provided by the embodiment of the present disclosure.
  • Fig. 8 is the second schematic diagram of the optical path of the laser scanning module provided by another embodiment of the present disclosure.
  • FIG. 9 is one of the structural schematic diagrams of a laser radar provided by another embodiment of the present disclosure.
  • FIG. 10 is a second structural schematic diagram of a lidar provided by another embodiment of the present disclosure.
  • Icons 10, 40-transmitting component; 11, 41-light source; 111, 411-laser; 20-scanning mirror; 30, 50-receiving component; 31, 51-receiver; AA-target area; a-first straight line direction; b - the second line direction.
  • FIG. 1 is a top view optical path diagram of a laser scanning module provided by an embodiment of the present disclosure.
  • the laser scanning module includes: an emitting assembly 10, an emitting assembly 10 includes a light source 11 for emitting a laser beam.
  • a scanning mirror 20 is arranged in the light emitting direction of the light source 11.
  • the laser beam emitted by the light source 11 forms at least one laser split beam through the scanning mirror 20.
  • the scanning mirror 20 is along the first linear direction a Scanning movement, so that the laser split beam passes through the scanning mirror 20 and then emits to the target area AA in a time-division and linear manner.
  • the laser scanning module of the embodiment of the present disclosure also includes a receiving component 30, which is used to receive the reflection reflected by the target area AA. echo laser.
  • the light source 11 includes a plurality of lasers 111 arranged in sequence along the second linear direction b, corresponding to the plurality of lasers 111
  • the receiving component 30 includes a plurality of receivers 31, and the laser beam emitted by one laser 111 is received At least two receivers 31 in the assembly 30 receive.
  • the correspondence between the plurality of receivers 31 in the receiving assembly 30 and the plurality of lasers 111 refers to the relationship between the reception of the echo laser beam by the receiver 31 and the laser beam emitted by the laser 111.
  • the laser beam emitted by the laser 111 will also undergo beam splitting, scanning emission, etc., and the laser beam splitting will enter the target surface in the target area AA to form an echo laser beam carrying the optical information of the target Received by the receiver 31 , therefore, does not necessarily refer to a quantitative correspondence between the laser 111 and the receiver 31 .
  • the first linear direction a and the second linear direction b are perpendicular to each other, that is, the laser beams emitted by the plurality of lasers 111 sequentially arranged in the light source 11 along the second linear direction b enter the scanning mirror 20, wherein the laser beams emitted by the lasers 111
  • the beam passes through multiple different directions and angles of the scanning mirror 20 to form multiple laser beam splits.
  • the scanning mirror 20 scans along the first linear direction a. During the scanning motion, it will be arranged along the preset direction and spacing.
  • the multiple laser split beams are scanned along the first linear direction a, so that a laser beam array can be formed in the target area AA.
  • each beam in the laser beam array After each beam in the laser beam array is reflected by the target object, it carries the corresponding optical information of the corresponding position of the target object, so that the echo laser beam array received by the receiving component 30 is dense and carries abundant optical information at each position of the target object .
  • FIG. 2 is a front view optical path diagram of a laser scanning module provided by an embodiment of the present disclosure.
  • the light source 11 includes three lasers 111, and the three lasers 111 are arranged in sequence along the second linear direction b , corresponding to the plurality of lasers 111
  • the receiving assembly 30 includes twelve receivers 31, and the light-emitting side of the scanning mirror 20 has a plurality of surfaces with different directions and angles, wherein the laser beam emitted by one laser 111 passes through the scanning mirror After 20, two laser beam splits are formed. Similarly, the laser beams emitted by the other two lasers 111 also pass through the scanning mirror 20 to form four laser beam splits.
  • the laser beams of the three lasers 111 pass through the scanning mirror 20 to form
  • the six laser beams are scanned and emitted along with the scanning motion of the scanning mirror 20, and the laser beams emitted by each beam are respectively received by at least two receivers 31 corresponding in the receiving component 30, and the six laser beams are scanned and emitted
  • the echo laser beams reflected by the target object are received by twelve receivers 31 .
  • Fig. 2 what is shown in Fig. 2 is the solution that twelve receivers 31 are also arranged in sequence along the second linear direction b, but in the solution of the present disclosure, the arrangement of receivers 31 is not limited to this, for example, twelve
  • the receivers 31 can also be arranged in a matrix of 3*4 to respectively receive and scan the emitted laser beams formed after the three lasers 111 emit, and arrange multiple receivers 31 in a matrix, compared to multiple
  • the linear arrangement of the receivers 31 can make more efficient use of the module space and improve the flexible application capability of the module in the laser radar that requires miniaturization and portability.
  • FIG. 2 is a schematic diagram of an optical path of a laser scanning module in an embodiment of the present disclosure. It can be seen from FIG. 1 that the laser split beams after beam split scanning by the scanning mirror 20 exit toward the target area. And it is received by the receiver 31 only through the reflection of the target in the target area AA. In order to simplify and clarify the relationship of the optical path in FIG. 2, the reflection of the target and the turning of the optical path are not shown. Those skilled in the art should know that The schematic diagram of the optical path in FIG. 2 is used to illustrate the arrangement quantity relationship and mutual cooperation relationship between the light source 11 and the receiving component 30 in the laser scanning module.
  • a laser scanning module provided by an embodiment of the present disclosure includes a transmitting assembly 10, a scanning mirror 20, and a receiving assembly 30 arranged in sequence along the direction of the laser light path.
  • the emitting assembly 10 includes a light source 11 for emitting a laser beam.
  • the laser beam split formed by the laser beam passing through the scanning mirror 20 is emitted toward the target area AA along with the scanning motion of the scanning mirror 20 along the first linear direction a, and the scanning motion of the scanning mirror 20 can make the laser beam splitting along the first linear direction a Scanning and emitting to the target area AA, the light source 11 can emit more and more densely distributed laser beams after beam splitting and scanning, and the number of echo laser beams received by the receiving component 30 reflected by the target area AA is significantly increased, Since the echo laser beam will carry the optical information of the target in the target area AA, when the laser scanning module of the embodiment of the present disclosure is applied to the lidar, the picture information constructed by the point cloud of the lidar is more comprehensive and delicate , so that the laser radar
  • the number of lasers 111 in the light source 11 is M, and M is a positive integer greater than 1, and the number of receivers 31 in the receiving component 30 is N, and N is a positive integer greater than 2, wherein M
  • the laser 111 is divided into M*L laser beams after beam splitting by the scanning mirror 20, and each laser beam is received by at least two receivers 31, and the M*L laser beams correspond to at least 2*M* L receivers 31 receive, L is a positive integer.
  • the laser beams emitted by the M lasers 111 are divided into M*L laser beams after being split by the scanning mirror 20, and the M*L laser beams are divided into M*L laser beams with the scanning mirror 20.
  • the rotating scan is emitted to the target object in the target area AA, and the corresponding echo signals are received by at least 2*M*L receivers 31 .
  • the scanning mirror 20 does not split the M laser beams emitted by the M lasers 111 , and the M laser beams arranged along the second linear direction b are scanned and emitted to the target object.
  • L the M laser beams arranged along the second linear direction b
  • each laser beam is first divided into L laser beams and then scanned and emitted, increasing the number of laser beams scanned and emitted , which increases the density of target information collection, and the echo laser beam received by the receiver 31 contains more detailed and rich optical information of the target.
  • the scanning mirror 20 shown in FIG. 2 is only a schematic shape of a direction diagram, and the scanning mirror 20 in the embodiment of the present disclosure is not limited to the form shown in FIG. 2 .
  • the scanning mirror 20 In the embodiment of the present disclosure, it is used to split and scan the incident laser beam.
  • the scanning mirror 20 can be in various forms such as a prism and a special-shaped mirror, as long as it can split the incident laser beam, and It is sufficient to scan and emit the split beams in a state of being driven to move, which is not specifically limited in the embodiments of the present disclosure.
  • the scanning movement mode of the scanning mirror 20 along the first linear direction a there is no specific limitation on the scanning movement mode of the scanning mirror 20 along the first linear direction a.
  • the scanning mirror 20 is driven by a driver to rotate horizontally, and the scanning motion along the first linear direction a is achieved by means of rotation. Scan out.
  • a galvanometer for example, a galvanometer.
  • the laser 111 constituting the light source 11 is not specifically limited, and may be various laser devices that can be stimulated to emit laser light.
  • the wavelength of the laser emitted by the laser 111 can be set to 905nm. It has been verified that the 905nm laser has better detection capability and accuracy of detection data when applied to vehicle-mounted detection.
  • the wavelength of the emitted laser light of the laser 111 can also be set to 1550nm.
  • the laser beam of 1550nm is a wavelength band that has been verified by scientific experiments at the present stage to cause less damage to the human eye, and the laser with a wavelength of 1550nm has little effect on the crystal. It has better working stability when using radar.
  • each laser 111 passes through the scanning mirror 20 and emits laser beam splitting within the target area AA.
  • the laser beam splitting scanning range emitted by different lasers 111 after beam splitting by the scanning mirror 20 can be designed to be adjacent to each other according to the range of the target area AA and the shape of the target object, or it can also be There may be a certain overlapping area between each other, but in order to avoid the waste of resources caused by repeated detection in the target area AA, the laser beam scanning ranges emitted by different lasers 111 after beam splitting by the scanning mirror 20 are as tangent as possible and reduced overlapping areas.
  • the scanning mirror 20 includes a top surface 21, a bottom surface 22, and a plurality of sequentially connected side surfaces 23 between the top surface 21 and the bottom surface 22, which are sequentially connected
  • the side surface 23 is used to emit the incident laser beams separately, so as to form laser beam splits emitted at different angles.
  • the scanning mirror 20 includes a top surface 21, a bottom surface 22, and five sequentially connected side surfaces 23 between the top surface 21 and the bottom surface 22, and the laser beam emitted by the laser device 111 is provided by one of them.
  • the side 23 enters the scanning mirror 20, and after the turning of the optical path in the scanning mirror 20, it exits from the other side 23.
  • the scanning mirror 20 is driven to rotate, the directions of the incident side 23 and the exiting side 23 of the laser beam also change accordingly.
  • the scanning mirror 23 can scan the laser beam to the target area AA.
  • the distances between the plurality of lateral tracks formed by the scanning mirror 20 can be made to be equal, so that the target object in the target area AA
  • the scanning beams are equally spaced, so that the detection of the target is comprehensive and the detection accuracy is improved.
  • one side 23 of the scanning mirror 20 is divided into a plurality of sub-sides 231 along the second linear direction b.
  • the side 23 of the scanning mirror 20 is divided into three sub-sides 231 that form an included angle with each other.
  • the laser beam emitted by a laser 111 passes through the scanning mirror 20
  • the laser beam emitted by the side 23 will be split into beams. It is three laser beam splits that are respectively emitted by the sub-sides 231, wherein, in FIG.
  • the included angle between the top surfaces 21 is an arithmetic progression along the second straight line direction b.
  • the laser radar of the laser scanning module of the embodiment of the present disclosure it is usually necessary to focus and accurately pay attention to the road ahead.
  • the target object, and the trees on both sides can be relatively roughly identified. Based on this, when the laser radar projects the laser beam to the target area AA for detection, the location of the key areas such as the road ahead is more densely divided.
  • the laser beam is split, so that the laser split beam projected towards the trees on both sides is relatively sparse.
  • the scanning mirror 20 takes the prism in FIG. .
  • the relationship between the sub-surfaces 231 on both sides thereof is more symmetrical, so that the scanning mirror 20 can maintain a better stability of the center of gravity during the driven rotation process, and the scanning mirror 20 is rotating.
  • the center of gravity is stable during the process, which is beneficial to the beam splitting and scanning output of the scanning mirror 20 to the target area AA with better directionality and stability.
  • the light source 11 is three lasers 111 arranged sequentially along the second linear direction b as shown in the example in FIG. 2
  • the three lasers 111 are integrated and packaged as an integral light source
  • the integral light source is integrated into the emitting assembly 10 .
  • the semiconductor laser bar in the prior art is a form of embodiment of the light source 11 that can realize the aforementioned functions and requirements.
  • the integrated integration is provided in the receiving assembly 30 .
  • the scanning mirror 20 is still taken as an example of a prism.
  • the multiple sides 23 of the prism those skilled in the art can also set up and down the sides 23 of the prism according to the needs of the actual light pattern.
  • the surface of the laser beam such as the prism presented in Figure 3, includes five side faces 23, and one or more of the side faces 23 can be set to not be used as the light-emitting surface.
  • the specific form of expression can include that the light-emitting surface is provided with a light-absorbing layer, or Through the surface design, less light is emitted from this side, etc.
  • the included angles between the multiple side surfaces 231 and the bottom surface 22 are different.
  • multiple split sides 231 are required to divide the laser beam into multiple laser split beams and emit them in a certain range in one direction. If the deviation between the split sides 231 is too large, it may cause the split laser beams to be emitted. The range is too large. Therefore, limiting the maximum value of the angle between the side surface 231 and the bottom surface 22 minus the minimum value of the angle is less than 3°, which can effectively make the split laser beam exit within a controllable range.
  • an adjusting mirror group can be set on the light exit side of the light source 11
  • a mirror or a mirror group for collimating and/or focusing the laser beam emitted by the light source 11 is arranged between the light source 11 and the scanning mirror 20 .
  • a corresponding adjustment mirror group can also be set on the optical path of the echo laser beam, so that the The echo laser beam is received by the receiving component 30 after corresponding adjustment processing (such as collimation, focusing, etc.).
  • the laser beam emitted by the light source 11 and the echo laser beam can be close to each other and parallel to each other through the design of the optical path , or can also be set on the same main optical axis. In this way, only one set of adjusting mirror groups can be set in the optical path, which can bidirectionally adjust the laser beam and the echo beam emitted by the light source 11 accordingly.
  • the laser scanning module of the embodiment of the present disclosure can also be provided with a filter to filter the ambient light to avoid interference and influence on the echo laser beam after the ambient light enters the laser scanning module, or, An anti-reflection coating layer can also be provided on the corresponding optical elements in the optical path, so as to improve the light utilization rate of the laser scanning module and reduce light loss.
  • Another aspect of the embodiments of the present disclosure provides a laser radar, which can adopt the optical path structure of any one of the foregoing laser scanning modules.
  • the laser radar includes a transmitting assembly 10, a receiving assembly 30 and a scanning mirror 20.
  • the light source 11 in the laser scanning module is arranged in the emitting assembly 10, the scanning mirror 20 is arranged on the driver, and the scanning mirror 20 is driven to rotate by the driver, and the receiver 31 is set in the receiving unit 30.
  • the component 30 and the emitting component 10 are arranged coaxially along the optical axis, and the design of the direction of the optical path avoids mutual interference between the two during light propagation.
  • the laser beam emitted by the transmitting component 10 is split by the scanning mirror 20 and the scanned detection signal is emitted to the target area AA, and the optical signal reflected by the target in the target area AA and carrying the corresponding information of the target is sent by the receiving component 30 take over.
  • This laser radar has a compact structure and a small overall volume, making it easy to install and use.
  • the receiving assembly 30 and the transmitting assembly 10 are located on the opposite side of the scanning mirror 20. This arrangement can compress the vertical height of the laser radar as much as possible, which is convenient Set use in car, robot and other related structures.
  • the receiving component 30 includes a photoelectric conversion unit, an amplifying unit and a sampling unit, the amplifying unit is electrically connected to the photoelectric conversion unit and the sampling unit respectively, and the photoelectric conversion unit is used to convert the information received by the receiver 31 to carry the corresponding information of the target object.
  • the echo optical signal is converted into an electrical signal, the amplifying unit processes and amplifies the electrical signal, and then the sampling unit samples the amplified electrical signal to generate a sampling signal. Effective and accurate detection information of the target can be obtained by reading the sampling signal by the computer.
  • the photoelectric conversion unit may adopt an avalanche photodiode
  • the amplifying unit includes a transimpedance amplifier and a secondary amplifier connected in sequence, and the electrical signal converted by the photoelectric conversion unit is sequentially amplified by the transimpedance amplifier and the secondary amplifier, The amplified electrical signal is transmitted to the sampling unit through the secondary amplifier.
  • the amplifying unit further includes a transimpedance amplifier for amplifying the signal and converting the current signal into a voltage signal.
  • the laser radar further includes a casing and a hood, and the transmitting assembly 10, the receiving assembly 30, and the scanning mirror 20 are all arranged in the casing, and a through hole is arranged on the casing , used for emitting and receiving the laser beam, the hood is connected and arranged on the housing, and the hood has a closed state that can cover the through hole and an open state that exposes the through hole. In the closed state of the hood, the hood covers The through hole makes the housing form a closed space.
  • the light shield can be set as a multi-faceted structure with a certain hardness, and the multiple faces of the light shield respectively correspond to the direction of the outgoing laser beam and the direction of the echo beam, so that in some states, the covering can accurately block the outgoing laser beam beam and echo laser beam.
  • each surface of the light shield can be set as an arc surface, and the light shield forms a multi-face structure composed of a plurality of arc surfaces spliced with each other. It can be understood that, in the special case where the radians of multiple arc surfaces are the same, the light shield may have a complete arc structure.
  • the laser radars can be installed on the top of the vehicle body, at the front window of the cab, or on both sides of the front of the vehicle , and both sides of the rear of the car are set separately, and these laser radars are connected to the vehicle control system, through the detection of the target area AA by the laser radars at various positions, the automatic driving, active obstacle avoidance, and distance detection of the vehicle are guided and feedback controlled and other functions.
  • the laser radars installed on both sides of the front of the car can be integrated into the lampshade of the car lights.
  • the lampshade can also physically protect the laser radar to avoid damage to the laser radar due to small scratches during vehicle operation. , the lighting of the car lights and the setting of the lampshade will not cause obvious adverse effects on the laser beams emitted and received by the lidar, and will not affect the accuracy of the lidar detection.
  • a robot is provided.
  • the laser radar of any one of the foregoing is integrated in the robot body.
  • the laser radar can detect the target area AA, for example, it is installed on the robot.
  • the front side is used to detect whether there is an obstacle in the forward direction of the robot, so that through the connection with the robot's control system, the control system can control the robot to avoid or stop in time according to the detection information.
  • the robot in the embodiment of the present disclosure refers to a mechanical device that can automatically perform corresponding work according to the preset program of the controller. It can not only accept the command of real-time control signals, but also run the pre-programmed program to realize the predetermined action or predetermined function. , can also learn and act according to the principle program formulated with artificial intelligence technology. Robots can be used indoors or outdoors, in industry or at home, can be used to replace security patrols, replace people to clean the ground, and can also be used for family companionship and office assistance. For example, navigation robots, inspection robots, cleaning robots, manipulators, and robots used in specific fields for special work.
  • the automatic guided transport vehicle (English name: Automated Guided Vehicle; abbreviation: AGV), which is widely used in the industrial automation industry, refers to the equipment equipped with automatic guidance devices such as electromagnetic or optical, which can follow the prescribed guidance Road driving, transport vehicles with safety protection and various transfer functions, AGV belongs to the category of wheeled mobile robots (English name: Wheeled Mobile Robot; abbreviation: WMR).
  • a truck that does not require a driver in industrial applications uses a rechargeable battery as its power source.
  • the traveling route and trajectory can be controlled through the control terminal.
  • the automatic guided transport vehicle is a kind of robot in the embodiment of the present disclosure.
  • the laser radar installed on the automatic guided transport vehicle can detect obstacles on the running route during operation, and then feed back to the controller, and the controller controls the avoidance , Improve the intelligence of automatic guided transport vehicles.
  • the embodiment of the present disclosure includes a laser scanning module.
  • FIG. 7 is a top view optical path diagram of a laser scanning module provided by the embodiment of the present disclosure.
  • the laser scanning module includes The emitting assembly 40 and the receiving assembly 50, the emitting assembly 40 includes a light source 41 for emitting the laser beam, the light source 41 rotates to scan the output along the first linear direction a toward the target area AA, and the receiving assembly 50 receives the laser beam reflected by the target area AA Echo laser beam; the light source 41 includes a plurality of lasers 411 arranged in sequence along the second linear direction b, the receiving assembly 50 includes a plurality of receivers 51 corresponding to the plurality of lasers 411, and each laser beam is received by at least two Receiver 51; wherein, the first linear direction a is perpendicular to the second linear direction b.
  • Scanning mirror 20 is not arranged in the laser scanning module of this scheme, and in the laser scanning module of this scheme, the light source 41 itself is designed with the movable connection structure (not shown in Fig. 7) of rotatable angle, for example, light source 41 is set On the rotating seat driven by the rotating motor, the rotating motor can control the light source 41 to rotate and scan along the first linear direction a, and the light source 41 can be reciprocated along the first linear direction a within a certain angle range to realize along the first linear direction a.
  • the laser beams emitted by the multiple lasers 411 sequentially arranged in the two linear directions b are scanned along the first linear direction a.
  • FIG. 8 is a front-view optical path diagram of a laser scanning module provided by an embodiment of the present disclosure.
  • the receiving component 50 includes multiple receivers 51 , and the laser beam emitted by one laser 411 is received by at least two receivers 51 in the receiving component 50 .
  • the correspondence between the plurality of receivers 51 and the plurality of lasers 411 in the receiving assembly 50 refers to the relationship between the reception of the echo laser beam by the receiver 51 and the laser beam emitted by the laser 411
  • the laser beam emitted by the laser 411 will also undergo scanning emission processing, and the laser beam will form an echo laser beam carrying the optical information of the object after it is incident on the target surface in the target area AA, and will be received by the receiver 51 , therefore, does not necessarily refer to the quantitative correspondence between the laser 411 and the receiver 51 .
  • the first linear direction a and the second linear direction b are perpendicular to each other, that is, the laser beams emitted by the plurality of lasers 411 arranged in sequence along the second linear direction b in the light source 41 are respectively emitted along the first linear direction as the light source 41 rotates.
  • a scanning movement during the scanning movement, a plurality of laser beams are scanned along the first linear direction a, so that a laser beam array can be formed in the target area AA.
  • each beam in the laser beam array is reflected by the target object, it carries the corresponding optical information of the corresponding position of the target object, so that the echo laser beam array received by the receiving component 50 is dense and carries rich optical information at each position of the target object .
  • the light source 41 includes three lasers 411, and the three lasers 411 are arranged in sequence along the second linear direction b.
  • the receiving component 50 includes twelve receivers 51 , the laser beams emitted by the laser 411 are scanned and emitted along the first linear direction a along with the rotation and scanning motion of the light source 41, and each laser beam emitted by scanning is received by the corresponding four receivers 51 in the receiving component 50, three The laser beams emitted by the lasers 411 scan the target object in the target area AA, and the echo laser beams reflected by the target object are received by the twelve receivers 51 .
  • Fig. 8 shown in Fig. 8 is the solution that twelve receivers 51 are also arranged in sequence along the second linear direction b, but in the solution of the present disclosure, the arrangement of receivers 51 is not limited to this, for example, twelve
  • the receivers 51 can also be arranged in a matrix of 3*4 to respectively receive the laser beams scanned by the three lasers 411, and the multiple receivers 51 are arranged in a matrix, compared to arranging the multiple receivers 51 in a line
  • the type arrangement can make more efficient use of the module space and improve the flexible application ability of the module in the laser radar that requires miniaturization and portability.
  • FIG. 8 is a schematic diagram of an optical path of a laser scanning module in an embodiment of the present disclosure. It can be seen from FIGS. 7 and 8 that the laser beam emitted by the light source 41 is emitted towards the target area, and Only the reflection of the target in the target area AA is received by the receiver 51. In order to simplify and clarify the relationship of the optical path in FIG. 8, the reflection of the target and the turning of the optical path are not shown. Those skilled in the art should know that FIG. The schematic diagram of the optical path in is used as an example to show the arrangement quantity relationship and mutual cooperation relationship between the light source 41 and the receiving component 50 in the laser scanning module.
  • the receiver 51 since the rotation of the light source 41 realizes the scanning emission of the laser beam emitted by the laser 411, the receiver 51 usually also adopts a rotatable structure such as a rotatable base to realize the reception of the echo laser beam, specifically Those skilled in the art can make specific selection and design of the rotating structure according to needs, which is not specifically limited in the embodiments of the present disclosure.
  • a laser scanning module provided by an embodiment of the present disclosure includes a transmitting component 40 and a receiving component 50 arranged in sequence along the direction of the laser light path.
  • the transmitting component 40 includes a light source 41 for emitting a laser beam.
  • the laser beam emitted by the light source 41 is along the A straight line direction a scans and emits toward the target area AA, and the light source 41 can emit laser beams with a denser distribution after scanning.
  • the number of echo laser beams reflected by the target area AA received by the receiving component 50 is significantly Addition, since the echo laser beam will carry the optical information of the target object in the target area AA, when the laser scanning module of the embodiment of the present disclosure is applied to the lidar, the picture information constructed by the point cloud of the lidar is more comprehensive more delicate, so that the laser radar can have a better detection effect; wherein, the light source 41 includes a plurality of lasers 411 arranged in sequence along the second linear direction b, the first linear direction a is perpendicular to the second linear direction b, and the receiving component 50 includes a plurality of receivers 51 corresponding to a plurality of lasers 411, and the laser beam emitted by one laser 411 is correspondingly received by at least two receivers 51, and the receiving component 50 receives more laser beams carrying target optical information in the target area AA
  • the laser beam is echoed to obtain more detailed information of the target, so as to improve the working efficiency and detection accuracy of the laser radar.
  • the number of lasers 411 in the light source 41 is M, and M is a positive integer greater than 1, and the number of receivers 51 in the receiving component 50 is N, and N is a positive integer greater than 2, wherein the lasers 411 The outgoing laser beams are correspondingly received by at least 2*M receivers 51 .
  • the laser beams emitted by the M lasers 411 are emitted to the target object in the target area AA along with the rotation of the light source 41, and the corresponding echo signals are generated by at least 2*M receivers. 51 received.
  • the rotational scanning mode of the light source 41 along the first linear direction a there is no specific limitation on the rotational scanning mode of the light source 41 along the first linear direction a.
  • the driver drives the light source 41 to rotate horizontally, and the scanning and emission along the first linear direction a is realized by means of rotation.
  • the laser 411 constituting the light source 41 is not specifically limited, and may be various laser devices capable of emitting laser light upon stimulation.
  • the wavelength of the laser emitted by the laser 411 can be set to 905nm. It has been verified that the 905nm laser has better detection capability and detection data accuracy when applied to vehicle-mounted detection.
  • the output laser wavelength of the laser 411 it is also possible to set the output laser wavelength of the laser 411 to be 1550nm.
  • the laser beam of 1550nm is a wavelength band that has been verified by scientific experiments at the present stage to cause less damage to the human eye, and the laser with a wavelength of 1550nm has little effect on the crystal. It has better working stability when using radar.
  • the scanning range of the laser beam emitted by each laser 411 is within the target area AA.
  • different The laser beam scanning ranges emitted by the laser 411 can be designed to be adjacent to each other according to the range of the target area AA and the shape of the target, or can have a certain overlapping area between each other, but in order to avoid For the waste of resources caused by repeated detection in the target area AA, the scanning ranges of the laser beams emitted by different lasers 411 are as tangent as possible and the overlapping areas are reduced.
  • the light source 41 is three lasers 411 arranged sequentially along the second linear direction b as shown in the example in FIG. 8
  • the three lasers 411 are integrated and packaged as an integral light source
  • the integral light source is integrated into the emitting assembly 40 .
  • the semiconductor laser bar in the prior art is an embodiment of the light source 41 that can realize the aforementioned functions and requirements.
  • the integrated integration is provided in the receiving assembly 50 .
  • an adjusting mirror group can be set on the light exit side of the light source 41
  • a lens or a lens group for collimating and/or focusing the laser beam emitted by the light source 41 is provided between the light source 41 and the target area AA.
  • a corresponding adjustment mirror group can also be set on the optical path of the echo laser beam, so that the The echo laser beam is received by the receiving component 50 after corresponding adjustment processing (such as collimation, focusing, etc.).
  • the laser beam emitted by the light source 41 and the echo laser beam can be close to each other and parallel to each other through the design of the optical path , or can also be set on the same main optical axis. In this way, only one set of adjusting mirror groups can be set in the optical path, which can bidirectionally adjust the laser beam and the echo beam emitted by the light source 41 accordingly.
  • the laser scanning module of the embodiment of the present disclosure can also be provided with a filter to filter the ambient light to avoid interference and influence on the echo laser beam after the ambient light enters the laser scanning module, or, An anti-reflection coating layer can also be provided on the corresponding optical elements in the optical path, so as to improve the light utilization rate of the laser scanning module and reduce light loss.
  • Another aspect of the embodiments of the present disclosure provides a laser radar, which can adopt the optical path structure of any one of the aforementioned laser scanning modules in this embodiment.
  • the laser radar includes a transmitting component 40 and a receiving component 50.
  • the light source 41 in the laser scanning module is arranged in the transmitting component 40, and the light source 41 is also connected to the driver for transmission.
  • the driver drives the light source 41 to rotate, and the receiver 51 is arranged in the receiving component 50. .
  • the receiving component 50 and the transmitting component 40 are located on the same side, and the receiving component 50 and the transmitting component 40 are arranged coaxially along the optical axis, and at the same time, the design of the direction of the optical path Avoid mutual interference in the process of light propagation between the two.
  • the laser beam emitted by the transmitting component 40 is scanned and the detection signal is transmitted to the target area AA, and the optical signal carrying the corresponding information of the target reflected by the target in the target area AA is received by the receiving component 50 .
  • This laser radar has a compact structure and a small overall volume, making it easy to install and use.
  • the receiving assembly 50 and the transmitting assembly 40 are located on opposite sides. This arrangement can compress the longitudinal height of the laser radar as much as possible, which is convenient for use in automobiles, robots, etc. and other related structures are set and used.
  • the receiving component 50 includes a photoelectric conversion unit, an amplifying unit and a sampling unit, the amplifying unit is electrically connected to the photoelectric conversion unit and the sampling unit respectively, and the photoelectric conversion unit is used to convert the information received by the receiver 51 carrying the corresponding information of the target
  • the echo optical signal is converted into an electrical signal
  • the amplifying unit processes and amplifies the electrical signal
  • the sampling unit samples the amplified electrical signal to generate a sampling signal. Effective and accurate detection information of the target can be obtained by reading the sampling signal by the computer.
  • the photoelectric conversion unit may adopt an avalanche photodiode
  • the amplifying unit includes a transimpedance amplifier and a secondary amplifier connected in sequence, and the electrical signal converted by the photoelectric conversion unit is sequentially amplified by the transimpedance amplifier and the secondary amplifier, The amplified electrical signal is transmitted to the sampling unit through the secondary amplifier.
  • the amplifying unit further includes a transimpedance amplifier for amplifying the signal and converting the current signal into a voltage signal.
  • the laser radar further includes a casing and a hood, and the transmitting assembly 40 and the receiving assembly 50 are both arranged in the casing, and a through hole is provided on the casing for the laser beam.
  • the shading cover is connected and arranged on the housing, and the shading cover has a covered state capable of covering the through hole and an open state exposing the through hole. In the closed state of the shading cover, the shading cover covers the through hole to make the housing form a closed space.
  • the light shield can be set as a multi-faceted structure with a certain hardness, and the multiple faces of the light shield respectively correspond to the direction of the outgoing laser beam and the direction of the echo beam, so that in some states, the covering can accurately block the outgoing laser beam beam and echo laser beam.
  • each surface of the light shield can be set as an arc surface, and the light shield forms a multi-face structure composed of a plurality of arc surfaces spliced with each other. It can be understood that, in the special case where the radians of multiple arc surfaces are the same, the light shield may have a complete arc structure.
  • the laser radars can be installed on the top of the vehicle body, at the front window of the cab, or on both sides of the front of the vehicle , and both sides of the rear of the car are set separately, and these laser radars are connected to the vehicle control system, through the detection of the target area AA by the laser radars at various positions, the automatic driving, active obstacle avoidance, and distance detection of the vehicle are guided and feedback controlled and other functions.
  • the laser radars installed on both sides of the front of the car can be integrated into the lampshade of the car lights.
  • the lampshade can also physically protect the laser radar to avoid damage to the laser radar due to small scratches during vehicle operation. , the lighting of the headlights and the setting of the lampshade will not cause obvious adverse effects on the laser beams emitted and received by the lidar, and will not affect the accuracy of the lidar detection.
  • a robot is provided.
  • the laser radar of any one of the foregoing is integrated in the robot body.
  • the laser radar can detect the target area AA, for example, it is installed on the robot.
  • the front side is used to detect whether there is an obstacle in the forward direction of the robot, so that through the connection with the robot's control system, the control system can control the robot to avoid or stop in time according to the detection information.
  • the present disclosure provides a laser scanning module, a laser radar, a vehicle, and a robot, which emit more dense laser beams, and the number of echo laser beams received by the target area is significantly increased, thereby obtaining The richer corresponding information of the target object improves work efficiency and detection accuracy.
  • the lidar of the embodiment of the present disclosure includes the aforementioned laser scanning module, so that the picture information constructed by the point cloud of the lidar is more comprehensive, so that the lidar can obtain a more delicate picture, and then the lidar can have better detection ability and better detection accuracy.
  • the lidar of the embodiments of the disclosure can be applied to vehicles, various types of robots, or other various automation equipment. When the lidar of the embodiments of the disclosure is applied to vehicles or robots, it can assist the vehicles or robots to achieve better automation performance , and accurately and efficiently eliminate various obstacles and risks, improve service life and working ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光扫描模组、激光雷达、车辆及机器人,激光扫描模组的光源(11)经过分束扫描后落在目标区域(AA)内的光斑能够较为密集,从而通过接收携带有目标物对应位置信息的回波激光束,得到目标区域(AA)内的更丰富的目标物相应信息,提高工作效率和探测准确性。激光雷达包括该激光扫描模组,能够具有较佳的探测能力,较宽且易于适应性调节的探测范围,以及较好的探测准确性。该激光雷达应用于车辆或者各类型的机器人中,能够辅助车辆或者机器人实现更优异的自动化性能,并准确高效地排除各种障碍和风险,提高使用寿命和工作能力。

Description

一种激光扫描模组、激光雷达、车辆及机器人 技术领域
本公开涉及光学检测、导航技术领域,具体而言,涉及一种激光扫描模组、激光雷达、车辆及机器人。
背景技术
激光扫描是一种新型的光学测量方法,利用激光作为光源进行目标的扫描和检测,由于激光本身相对于普通光源来说,具有亮度高、方向性好、单色性好以及相干性好等优点,使得激光扫描具有较好的扫描效果和检测准确性,激光扫描技术越来越广泛地应用于测量、交通、智能辅助驾驶和移动机器人等领域。
激光雷达是一种通过发射和接收激光束来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测用激光束,然后接收由目标反射回的激光信号,并将反射的激光信号与发射的激光信号进行比较和处理后,得到目标的距离、方位、高度、速度、姿态、以及形状等参数信息。而且,通过对目标持续的距离、方位、姿态等参数信息的捕捉和分析,能够对移动目标进行识别和跟踪,从而在智能辅助驾驶和各领域的智能机器人方面进行深入的应用。
通常采用激光雷达进行目标的扫描和检测时,需要对目标物的扫描光束更多更密集,才能够尽可能多的获取目标物的更为细致和精准的信息,而若设置发射端和接收端相对应的多个发射器和多个接收器,将多个发射器和多个接收器分别对应的按照一定方向进行排列设置来增加扫描光束,会导致整个模组的功耗较大,散热不良,以及导致结构尺寸过大,影响模组在车辆、机器人等应用结构中的配合安装和使用。
发明内容
本公开的目的在于提供一种激光扫描模组、激光雷达、车辆及机器人,能够提高激光扫描模组的结构紧凑性,并使得激光扫描模组能够提供数量多且密集的激光束照射至目标物并接收携带目标物光学信息的回波信号,提高激光扫描模组用于激光雷达时的探测准确性。
本公开的实施例是这样实现的:
本公开实施例的一方面,提供一种激光扫描模组,包括沿激光光路方向依次设置的发射组件、扫描镜和接收组件,发射组件包括用于出射激光束的光源,光源出射的激光束通过扫描镜形成的激光分束随着扫描镜沿第一直线方向的扫描运动朝向目标区域出射,接收组件接收由目标区域反射的回波激光束;光源包括沿第二直线方向依次排列的多个激光器,接收组件包括与多个激光器相对应的多个接收器,经扫描镜后出射的每一个激光分束均由 至少两个接收器接收。其中,第一直线方向与第二直线方向垂直。
本公开实施例的另一方面,提供一种激光雷达,包括前述任意一项的激光扫描模组。
本公开实施例还提供一种激光扫描模组,包括沿激光光路方向依次设置的发射组件和接收组件,发射组件包括用于出射激光束的光源,光源出射的激光束朝向目标区域沿第一直线方向扫描出射,接收组件接收由目标区域反射的回波激光束;光源包括沿第二直线方向依次排列的多个激光器,接收组件包括与多个激光器相对应的多个接收器,每一个激光束均由至少两个接收器接收;其中,第一直线方向与第二直线方向垂直。
本公开实施例的又一方面,提供一种车辆,包括车辆本体,还包括至少一个前述任意一项的激光雷达,激光雷达设置在车辆本体的车顶、车头的两端和/或车尾的两端。
本公开实施例的再一方面,提供一种机器人,包括机器人本体,还包括至少一个前述任意一项的激光雷达。
本公开实施例的有益效果包括:本公开实施例提供了一种激光扫描模组、激光雷达、车辆及机器人,激光扫描模组包括沿激光光路方向依次设置的发射组件、扫描镜和接收组件,发射组件包括用于出射激光束的光源,光源出射的激光束通过扫描镜形成的激光分束随着扫描镜沿第一直线方向的扫描运动朝向目标区域出射,扫描镜的扫描运动能够使得激光分束沿第一直线方向扫描出射至目标区域,光源经过分束和扫描后能够出射数量更多且分布更为密集的激光束,这样一来,接收组件接收到的由目标区域反射的回波激光束的数量显著增加,由于回波激光束会携带目标区域的目标物的光信息,从而当本公开实施例的激光扫描模组应用于激光雷达时,由激光雷达的点云构设出的画面信息更全面更细腻,进而使得激光雷达能够具有较佳的探测效果;其中,光源包括沿第二直线方向依次排列的多个激光器,第一直线方向与第二直线方向垂直,接收组件包括与多个激光器相对应的多个接收器,一个激光器出射的激光束经扫描镜分束,可以形成一至多个激光分束,每一个激光分束对应由至少两个接收器接收,这样的光源和接收组件的设置方式,能够充分利用光源出射的激光束,使得在不额外增加激光器的前提下形成更多激光分束,接收组件接收目标区域内较多的携带目标物光信息的回波激光束,从而得到目标物更详细细致的信息,以便提高激光雷达的工作效率和探测准确性。本公开实施例的激光雷达,包括前述的激光扫描模组,激光雷达的点云构设出的画面信息更全面更细腻,进而使得激光雷达能够具有较佳的探测能力,以及较好的探测准确性。本公开实施例的激光雷达应用于车辆或者各类型的机器人中,能够辅助车辆或者机器人实现更优异的自动化性能,并准确高效的排除各种障碍和风险,提高使用寿命和工作能力。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例提供的激光扫描模组的光路示意图之一;
图2为本公开实施例提供的激光扫描模组的光路示意图之二;
图3为本公开实施例提供的激光扫描模组中扫描镜的结构示意图之一;
图4为本公开实施例提供的激光扫描模组中扫描镜的结构示意图之二;
图5为本公开实施例提供的激光雷达的结构示意图之一;
图6为本公开实施例提供的激光雷达的结构示意图之二;
图7为本公开另一实施例提供的激光扫描模组的光路示意图之一;
图8为本公开另一实施例提供的激光扫描模组的光路示意图之二;
图9为本公开另一实施例提供的激光雷达的结构示意图之一;
图10为本公开另一实施例提供的激光雷达的结构示意图之二。
图标:10、40-发射组件;11、41-光源;111、411-激光器;20-扫描镜;30、50-接收组件;31、51-接收器;AA-目标区域;a-第一直线方向;b-第二直线方向。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等,其所指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,如出现术语“第一”、“第二”、“第三”仅配置成描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
现结合附图,对本公开的较佳实施例作详细说明。
实施例一
本公开实施例提供一种激光扫描模组,图1为本公开实施例提供的一种激光扫描模组的俯视光路图,如图1所示,激光扫描模组包括:发射组件10,发射组件10包括用于出射激光束的光源11,在光源11的出光方向设置有扫描镜20,光源11出射的激光束经扫描镜20形成至少一个激光分束,扫描镜20沿第一直线方向a扫描运动,以使得激光分束经过扫描镜20后分时以线型出射至目标区域AA,本公开实施例的激光扫描模组还包括接收组件30,接收组件30用于接收由目标区域AA反射的回波激光。
其中,光源11包括沿第二直线方向b依次排列设置的多个激光器111,与多个激光器111相对应的,接收组件30包括有多个接收器31,由一个激光器111出射的激光束被接收组件30中的至少两个接收器31接收。本领域技术人员应当知晓,接收组件30中的多个接收器31与多个激光器111的相对应,指的是,接收器31对回波激光束的接收,与激光器111发射的激光束之间对应形成发射和接收的关系,由于激光器111出射的激光束还会经过分束、扫描出射等处理,并且激光分束入射目标区域AA的目标物表面后形成携带目标物光信息的回波激光束由接收器31接收,因此,并不必然指代激光器111与接收器31之间的数量对应关系。
第一直线方向a与第二直线方向b相互垂直,即,光源11中沿第二直线方向b依次排列的多个激光器111分别出射的激光束入射扫描镜20,其中,激光器111出射的激光束经过扫描镜20的多个不同方向和角度的面出射形成多个激光分束,扫描镜20沿第一直线方向a扫描运动,在扫描运动过程中,将沿预设的方向和间距排列的多个激光分束沿第一直线方向a扫描出射,从而能够在目标区域AA形成激光束阵列。激光束阵列中的每一束经目标物反射后,都携带目标物对应位置的相应光信息从而使得由接收组件30接收的回波激光束阵列密集且携带丰富的目标物各个位置处的光信息。
示例地,图2为本公开实施例提供的一种激光扫描模组的主视光路图,如图2所示,光源11包括三个激光器111,三个激光器111沿第二直线方向b依次设置,与多个激光器111相对应的,接收组件30包括有十二个接收器31,扫描镜20的出光侧具有多个不同方向和角度的面,其中,一个激光器111出射的激光束经过扫描镜20后形成两束激光分束, 同样的,其他的两个激光器111出射的激光束也经过扫描镜20后形成四束激光分束,则三个激光器111的激光束经过扫描镜20后即形成六个激光分束,随着扫描镜20的扫描运动扫描出射,每一束扫描出射的激光分束分别由接收组件30中对应的至少两个接收器31接收,则六个激光分束扫描出射于目标区域AA的目标物,经目标物反射的回波激光束由十二个接收器31接收。
其中,图2中示出的是十二个接收器31也沿第二直线方向b依次设置的方案,但本公开的方案中,接收器31的设置方式并不限于此,例如,十二个接收器31还可以以3*4的矩阵形式设置,以分别接收三个激光器111出射后形成并扫描出射的激光分束,将多个接收器31呈矩阵形式排列设置,相较于将多个接收器31呈线型排列更能够高效的利用模组空间,提高模组在小型化和便携化要求的激光雷达中的灵活应用能力。
需要说明的是,图2中所示的是本公开实施例中,激光扫描模组的一种光路示意图,由图1可知,经过扫描镜20分束扫描后的激光分束朝向目标区域出射,并且是在目标区域AA内经过目标物的反射才由接收器31接收,在图2中为了简化和明确光路的关系,未示出目标物的反射以及光路的转折,本领域技术人员应当知晓,图2中的光路示意图用于示例展示激光扫描模组中光源11和接收组件30之间的设置数量关系和相互配合关系。
本公开实施例提供的一种激光扫描模组,包括沿激光光路方向依次设置的发射组件10、扫描镜20和接收组件30,发射组件10包括用于出射激光束的光源11,光源11出射的激光束通过扫描镜20形成的激光分束随着扫描镜20沿第一直线方向a的扫描运动朝向目标区域AA出射,扫描镜20的扫描运动能够使得激光分束沿第一直线方向a扫描出射至目标区域AA,光源11经过分束和扫描后能够出射数量更多且分布更为密集的激光束,接收组件30接收到的由目标区域AA反射的回波激光束的数量显著增加,由于回波激光束会携带目标区域AA的目标物的光信息,从而当本公开实施例的激光扫描模组应用于激光雷达时,由激光雷达的点云构设出的画面信息更全面更细腻,进而使得激光雷达能够具有较佳的探测效果;其中,光源11包括沿第二直线方向b依次排列的多个激光器111,第一直线方向a与第二直线方向b垂直,接收组件30包括与多个激光器111相对应的多个接收器31,一个激光器111出射的激光束经扫描镜20分束,可以形成一至多个激光分束,每一个激光分束对应由至少两个接收器31接收,这样的光源11和接收组件30的设置方式,能够充分利用光源11出射的激光束,使得在不额外增加激光器111的前提下形成更多的激光分束,接收组件30接收目标区域AA内较多的携带目标物光信息的回波激光束,从而得到目标物更详细的信息,以便提高激光雷达的工作效率和探测准确性。
根据上述的表述和举例可知,光源11中激光器111的数量为M,M为大于1的正整数,接收组件30中接收器31的数量为N,N为大于2的正整数,其中,M个激光器111经过 扫描镜20的分束后划分为M*L束激光分束,每一个激光分束至少由两个接收器31接收,M*L束激光分束则对应的由至少2*M*L个接收器31接收,L为正整数。
因此,当激光器111的数量为M个时,M个激光器111出射的激光束经扫描镜20的分束后划分为M*L个激光分束,M*L个激光分束随扫描镜20的转动扫描向目标区域AA的目标物出射,回波信号对应的由至少2*M*L个接收器31接收。
其中,当L=1时,扫描镜20未对M个激光器111出射的M束激光束分束,沿第二直线方向b排列的M束激光束经扫描出射至目标物。当L≥2时,沿第二直线方向b排列的M束激光束中,每一束激光束都先划分为L个激光分束后在再扫描出射,增加了扫描出射的激光分束的数量,也就提高了对目标物信息采集的密度,接收器31接收的回波激光束中包含更细致丰富的目标物的光信息。
还需要说明的是,图2中示出的扫描镜20仅为一个方向示图的示意性的形状,本公开实施例中的扫描镜20并不限于图2中所示的形式,扫描镜20在本公开实施例中用于对入射的激光束进行分束和扫描,示例地,扫描镜20可以为棱镜、异形镜等各种形式,只要能够实现对入射其中的激光束进行分束,并在受驱运动的状态下对分束光束进行扫描出射即可,本公开实施例中对此不做具体限定。
此外,本公开实施例中对于扫描镜20沿第一直线方向a的扫描运动方式不做具体限定,通常由驱动器驱动扫描镜20水平旋转,采用旋转的方式实现沿第一直线方向a的扫描出射。但是不限于此,例如,振镜。
本公开实施例的激光扫描模组中,对组成光源11的激光器111不做具体限定,可以是各种能够受激发射激光的激光器件,当本公开实施例的激光扫描模组应用于激光雷达时,通常可以设置激光器111出射的激光波长为905nm,905nm的激光经验证在应用于车载探测中具有较佳的探测能力和探测数据准确性。或者,还可以设置激光器111的出射激光波长为1550nm,1550nm的激光束是现阶段得到科学试验验证的对人眼伤害较小的波段,而且1550nm波长的激光对晶体的影响不大,应用于激光雷达时具有较好的工作稳定性。
如图2所示,当光源11包括有沿第二直线方向b依次排列设置的多个激光器111时,每个激光器111经过扫描镜20分束后出射的激光分束扫描范围均在目标区域AA内,示例的,不同的激光器111经过扫描镜20分束后出射的激光分束扫描范围之间可以根据目标区域AA的范围以及目标物的形状等,设计为两两之间相互邻接,或者也可以相互之间具有一定的重叠区域,但是为了避免在目标区域AA内重复探测造成的资源浪费,不同的激光器111经过扫描镜20分束后出射的激光束扫描范围之间尽可能相切并减少交叠区域。
在本公开的一种可行的实施例中,扫描镜20包括相对设置的顶面21、底面22,以及在顶面21和底面22之间的多个依次连接的侧面23,这多个依次连接的侧面23用于对入 射的激光束分别出射,以形成各个不同角度出射的激光分束。
示例地,如图3所示,扫描镜20包括相对设置的顶面21、底面22和在顶面21和底面22之间的5个依次连接的侧面23,激光器111出射的激光束由其中一个侧面23入射扫描镜20,在扫描镜20中经过光路的转折后由其他侧面23出射,扫描镜20受驱转动的过程中,激光束入射的侧面23和出射的侧面23的方向也随之变化,根据对扫描镜20的各个侧面23之间夹角关系的设置,能够使得扫描镜23将激光束扫描出射向目标区域AA。若设置多个侧面23,分别与顶面21之间的夹角的角度呈等差数列,则能够使得扫描镜20扫描形成的多个横向轨迹之间的距离相等,使得目标区域AA内目标物的扫描光束等间距,从而使得对目标物的探测全面无遗漏,提高探测的准确性。
在本公开的一种可行的实施例中,扫描镜20的一个侧面23沿第二直线方向b划分有多个分侧面231。示例地,如图4所示,扫描镜20的侧面23划分有三个互成夹角的分侧面231,一个激光器111出射的激光束经过扫描镜20后,由侧面23出射的激光束会分束为三个分别由分侧面231出射的激光分束,其中,在图4中,一个侧面23的多个分侧面231分别与顶面21之间的夹角不相同,且多个分侧面231与顶面21之间的夹角沿第二直线方向b呈等差数列,应用本公开实施例的激光扫描模组的激光雷达在自动驾驶汽车上的实际应用中,通常需要重点准确的关注前方道路的目标物,而对于两侧的树木等物则可以相对粗略识别,基于此,可以使得激光雷达在向目标区域AA投射激光束进行探测时,对于前方道路等重点关注的区域位置划分较为密集的激光分束,而使得朝向两侧树木等物投射的激光分束较为稀疏。
示例地,扫描镜20以如图4中的棱镜为例,通常驱动扫描镜20沿第一直线方向a转动的驱动机构设置在棱镜的底部,驱动机构的旋转轴垂直于棱镜的中心轴旋转。具体的,在一种实施方式中,定义任意一个分侧面231与底面22之间的夹角为δ,与该分侧面231相邻的两个分侧面231分别与底面22之间的夹角为ε和ζ,则δ>ε且δ>ζ,或者δ<ε且δ<ζ。
因此,以任意一个分侧面231作为基准,其两侧的分侧面231与其的关系较为对称,从而能够使得扫描镜20在受驱旋转的过程中保持较好的重心稳定性,扫描镜20在旋转过程中重心稳定,有利于经过扫描镜20分束和扫描出射的激光分束出射至目标区域AA方向性和稳定性较佳。
在本公开的一种可行的实施例中,当光源11为如图2中示例所示的沿第二直线方向b依次设置的三个激光器111时,三个激光器111集成封装为一个整体光源,并且,该整体光源一体化的集成与发射组件10中。当然,本领域技术人员应当知晓,上述的集成封装以及一体化设置并不仅限于实例中的三个激光器111,此处举例的说明不应视为对本公开中方案范围的限定。例如,在现有技术中的半导体激光巴条即为一种能够实现前述功能和要求 的光源11的体现形式。
同样的,当接收器31沿第二直线方向b依次与激光器111相对应的设置有多个时,例如图2中示出的十二个,十二个接收器31也可预先集成封装为一个整体后,一体化的集成设置于接收组件30中。
还需要说明的是,在本公开实施例中,仍然以扫描镜20为棱镜为例,棱镜的多个侧面23中,本领域技术人员也可以根据实际出光图案的需要,设置包括有不用于出射激光束的表面,如图3中所呈现的棱镜包括有五个侧面23,可以设置其中一个或多个侧面23不作为出光面,具体的表现形式可以包括,不出光的面设置吸光层,或者通过面型设计使得该侧面出光较少等。
如图4所示,多个分侧面231与底面22之间的夹角各不相同,在本公开的一种可行的实施例中,当激光扫描模组用于激光雷达一类的设备中时,通常需要多个分侧面231将激光束分为多个激光分束并朝向一个方向的一定范围内出射,若分侧面231之间的偏向过大,可能导致分束出射的激光分束覆盖的范围过大,因此,限定分侧面231与底面22之间的夹角角度的最大值减去夹角角度的最小值小于3°,能够有效的使得激光分束出射在一个可控的范围内。
在本公开的一种可行的实施例中,还可以根据本公开实施例的激光扫描模组在实际光学探测的具体应用中对出射激光束的参数要求,在光源11的出光侧设置调节镜组,例如,在光源11与扫描镜20之间设置用于对光源11出射的激光束进行准直和/或聚焦调节的镜片或镜组。同样的,若是本公开实施例的激光扫描模组在实际光学探测的具体应用中对于回波激光束有相应的参数要求,也可以在回波激光束的光路上设置相应调节镜组,从而将回波激光束进行相应的调节处理(如准直、聚焦等)后再由接收组件30接收。
示例的,为了实现对激光扫描模组中各个光学元件的充分利用,以及对激光扫描模组进一步进行紧凑设计,可以通过光路设计使得光源11出射的激光束与回波激光束相互靠近且相互平行,或者也可以同一主光轴设置,这样一来,也可以在光路中仅设置一组调节镜组,既能够双向的对光源11出射的激光束以及回波光束均进行相应的调节处理。
在此基础上,本公开实施例的激光扫描模组中还可以设置滤光镜,用于过滤环境光,避免环境光入射激光扫描模组后对回波激光束造成的干扰和影响,或者,还可以在光路中相应的光学元件上设置增透膜层,从而提高激光扫描模组的光利用率,降低光损失。
本公开实施例的另一方面,提供一种激光雷达,可以采用前述任意一项的激光扫描模组的光路结构。
激光雷达包括发射组件10、接收组件30和扫描镜20,激光扫描模组中的光源11设置于发射组件10内,扫描镜20设置在驱动器上,通过驱动器驱动扫描镜20旋转,接收器 31设置于接收组件30内。
在本公开的一种可行的实施方式中,如图5所示,接收组件30和发射组件10位于扫描镜20的同侧,接收组件30和发射组件10在扫描镜20的同一侧,且接收组件30和发射组件10沿光轴同轴设置,同时通过光路走向的设计避免二者之间发生光传播过程中的相互干涉。由发射组件10出射的激光束经扫描镜20的分束和扫描后的探测信号出射至目标区域AA,由目标区域AA的目标物反射回的携带有目标物对应信息的光信号由接收组件30接收。这种激光雷达的结构紧凑,整体的体积较小,便于安装使用。
在本公开的另一种可行的实施方式中,如图6所示,接收组件30和发射组件10位于扫描镜20的对侧,这种设置方式,能够尽可能压缩激光雷达的纵向高度,便于在汽车、机器人等相关结构中设置使用。
示例地,接收组件30中包括光电转换单元、放大单元和采样单元,放大单元分别与光电转换单元和采样单元电连接,光电转换单元用于将接收器31接收到的携带目标物的相应信息的回波光信号转换为电信号,放大单元对该电信号进行处理放大,然后通过采样单元对放大处理后的电信号进行采样,以生成采样信号。计算机读取该采样信号即可得到对目标物有效且准确的探测信息。
其中,光电转换单元可以采用雪崩光电二极管,放大单元包括依次连接的跨阻放大器和二级放大器,经过光电转换单元转换后的电信号依次经过跨阻放大器和二级放大器进行信号的二级放大,放大后的电信号通过二级放大器传输至采样单元。在一些实施例中,放大单元中还包括互阻放大器,用于进行信号放大并将电流信号转化为电压信号。
在本公开的另一种可行的实施方式中,激光雷达还包括壳体和遮光罩,发射组件10、接收组件30和扫描镜20均设置在所述壳体内,在壳体上设置有通孔,用于激光束的出射接收,遮光罩连接设置在壳体上,并且遮光罩具有能够覆盖通孔的盖合状态和露出通孔的打开状态,在遮光罩的盖合状态下,遮光罩遮盖通孔以使壳体形成封闭空间。
示例地,可以将遮光罩设置为具有一定硬度的多面结构,遮光罩的多个面分别对应出射激光束的方向和回波光束的方向,从而在一些状态下,盖合以精准的遮挡出射激光束和回波激光束。其中,遮光罩的每一个面均可设置为弧面,遮光罩形成由多个弧面相互拼接的多面结构。可以理解的,当多个弧面的弧度均相同的特殊情况下,所述遮光罩可以呈一个完整的弧面结构。
本公开实施例的又一方面,提供一种车辆,在车辆内集成设置前述任意一项的激光雷达,激光雷达可以在车辆的车体顶部、驾驶室前窗位置设置,或者,在车头两侧、车尾两侧分别设置,并且使得这些激光雷达均与车辆的控制系统相连接,通过各个位置的激光雷达对目标区域AA的探测,指导和反馈控制车辆的自动驾驶、主动避障、距离探测等功能。
示例的,在车头两侧设置的激光雷达,可以集成设置于车灯的灯罩内,一方面通过灯罩也能够对激光雷达进行物理保护,避免车辆运行中的小擦碰损坏激光雷达,另一方面,车灯的灯光以及灯罩的设置都不会对激光雷达发射和接收的激光束造成明显的不良影响,不会影响到激光雷达探测的准确性。
本公开实施例的再一方面,提供一种机器人,在机器人本体内集成设置前述任意一项的激光雷达,在机器人的运动工作中,激光雷达能够对目标区域AA进行探测,例如设置在机器人的前侧,用来探测机器人的前进方向是否有障碍,从而通过与机器人的控制系统的连接,使得控制系统能够及时根据探测信息控制机器人避让或者停下。
本公开实施例中的机器人,指的是能够根据控制器的预设程序自动执行相应工作的机械装置,它既可以接受实时控制信号的指挥,又可以运行预先编排的程序实现既定动作或既定功能,也可以根据以人工智能技术制定的原则纲领学习和行动。机器人可用在室内或室外,可用于工业或家庭,可用于取代保安巡视、取代人们清洁地面,还可用于家庭陪伴、辅助办公等。例如,导航机器人,巡检机器人,清洁机器人,机械手,以及应用于特定领域进行特殊工作的机器人。
示例地,在工业自动化行业中应用较为广泛的自动导引运输车,(英文名称:Automated Guided Vehicle;简称:AGV),是指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,AGV属于轮式移动机器人(英文名称:Wheeled Mobile Robot;简称:WMR)的范畴。工业应用中不需驾驶员的搬运车,以可充电之蓄电池为其动力来源。一般可透过控制端来控制其行进路线以及轨迹。自动导引运输车作为本公开实施例的机器人的一种,在自动导引运输车上设置的激光雷达能够探测运行过程中运行路线上的障碍物,从而反馈至控制器,通过控制器控制避让,提高自动导引运输车的智能化。
实施例二
本公开实施例包括一种激光扫描模组,图7为本公开实施例提供的一种激光扫描模组的俯视光路图,请参照图7所示,激光扫描模组包括沿激光光路方向依次设置的发射组件40和接收组件50,发射组件40包括用于出射激光束的光源41,光源41转动以朝向目标区域AA沿第一直线方向a扫描出射,接收组件50接收由目标区域AA反射的回波激光束;光源41包括沿第二直线方向b依次排列的多个激光器411,接收组件50包括与多个激光器411相对应的多个接收器51,每一个激光束均由至少两个接收器51接收;其中,第一直线方向a与第二直线方向b垂直。
本方案的激光扫描模组中未设置扫描镜20,在本方案的激光扫描模组中,光源41自身设计有可转动角度的活动连接结构(图7中未示出),例如将光源41设置在由旋 转电机带动的旋转座上,通过旋转电机即可控制光源41沿第一直线方向a的转动扫描出射,通过光源41沿第一直线方向a在一定角度范围内往复转动实现沿第二直线方向b依次排列的多个激光器411出射的激光束沿第一直线方向a扫描出射。
图8为本公开实施例提供的一种激光扫描模组的主视光路图,请参照图8所示,光源41包括沿第二直线方向b依次排列设置的多个激光器411,与多个激光器411相对应的,接收组件50包括有多个接收器51,由一个激光器411出射的激光束被接收组件50中的至少两个接收器51接收。本领域技术人员应当知晓,接收组件50中的多个接收器51与多个激光器411的相对应,指的是,接收器51对回波激光束的接收,与激光器411发射的激光束之间对应形成发射和接收的关系,由于激光器411出射的激光束还会经过扫描出射处理,并且激光束入射目标区域AA的目标物表面后形成携带目标物光信息的回波激光束由接收器51接收,因此,并不必然指代激光器411与接收器51之间的数量对应关系。
第一直线方向a与第二直线方向b相互垂直,即,光源41中沿第二直线方向b依次排列的多个激光器411分别出射的激光束随着光源41的转动沿第一直线方向a扫描运动,在扫描运动过程中,多个激光束沿第一直线方向a扫描出射,从而能够在目标区域AA形成激光束阵列。激光束阵列中的每一束经目标物反射后,都携带目标物对应位置的相应光信息从而使得由接收组件50接收的回波激光束阵列密集且携带丰富的目标物各个位置处的光信息。
示例地,如图8所示,光源41包括三个激光器411,三个激光器411沿第二直线方向b依次设置,与多个激光器411相对应的,接收组件50包括有十二个接收器51,激光器411出射的激光束随着光源41的转动扫描运动均沿第一直线方向a扫描出射,每一束扫描出射的激光束分别由接收组件50中对应的四个接收器51接收,三个激光器411出射的激光束扫描出射于目标区域AA的目标物,经目标物反射的回波激光束由十二个接收器51接收。
其中,图8中示出的是十二个接收器51也沿第二直线方向b依次设置的方案,但本公开的方案中,接收器51的设置方式并不限于此,例如,十二个接收器51还可以以3*4的矩阵形式设置,以分别接收三个激光器411扫描出射的激光束,将多个接收器51呈矩阵形式排列设置,相较于将多个接收器51呈线型排列更能够高效的利用模组空间,提高模组在小型化和便携化要求的激光雷达中的灵活应用能力。
需要说明的是,图8中所示的是本公开实施例中,激光扫描模组的一种光路示意图,由图7和图8可知,光源41扫描出射的激光束朝向目标区域出射,并且是在目标区域AA内经过目标物的反射才由接收器51接收,在图8中为了简化和明确光路的关系,未示出目标物的反射以及光路的转折,本领域技术人员应当知晓,图8中的光路示意图用于示例展 示激光扫描模组中光源41和接收组件50之间的设置数量关系和相互配合关系。
还需要说明的是,由于光源41的转动实现激光器411出射的激光束的扫描出射,因此,接收器51通常也采用可转动的结构例如可转动的底座来实现对回波激光束的接收,具体的转动结构本领域技术人员可根据需要进行具体的选择和设计,本公开实施例中不做具体限定。
本公开实施例提供的一种激光扫描模组,包括沿激光光路方向依次设置的发射组件40和接收组件50,发射组件40包括用于出射激光束的光源41,光源41出射的激光束沿第一直线方向a朝向目标区域AA扫描出射,光源41经过扫描后能够出射分布更为密集的激光束,这样一来,接收组件50接收到的由目标区域AA反射的回波激光束的数量显著增加,由于回波激光束会携带目标区域AA的目标物的光信息,从而当本公开实施例的激光扫描模组应用于激光雷达时,由激光雷达的点云构设出的画面信息更全面更细腻,进而使得激光雷达能够具有较佳的探测效果;其中,光源41包括沿第二直线方向b依次排列的多个激光器411,第一直线方向a与第二直线方向b垂直,接收组件50包括与多个激光器411相对应的多个接收器51,一个激光器411出射的激光束对应由至少两个接收器51接收,接收组件50接收目标区域AA内较多的携带目标物光信息的回波激光束,从而得到目标物更详细的信息,以便提高激光雷达的工作效率和探测准确性。
根据上述的表述和举例可知,光源41中激光器411的数量为M,M为大于1的正整数,接收组件50中接收器51的数量为N,N为大于2的正整数,其中,激光器411出射的激光束对应的由至少2*M个接收器51接收。
这样一来,当激光器411的数量为M个时,M个激光器411出射的激光束随光源41的转动扫描向目标区域AA的目标物出射,回波信号对应的由至少2*M个接收器51接收。
此外,本公开实施例中对于光源41沿第一直线方向a的转动扫描方式不做具体限定,通常由驱动器驱动光源41水平旋转,采用旋转的方式实现沿第一直线方向a的扫描出射。但是不限于此,例如,其他能够实现是光源41在一定范围内水平往复运动的机械结构均可应用。
本公开实施例的激光扫描模组中,对组成光源41的激光器411不做具体限定,可以是各种能够受激发射激光的激光器件,当本公开实施例的激光扫描模组应用于激光雷达时,通常可以设置激光器411出射的激光波长为905nm,905nm的激光经验证在应用于车载探测中具有较佳的探测能力和探测数据准确性。或者,还可以设置激光器411的出射激光波长为1550nm,1550nm的激光束是现阶段得到科学试验验证的对人眼伤害较小的波段,而且1550nm波长的激光对晶体的影响不大,应用于激光雷达时具有较好的工作稳定性。
如图8所示,当光源41包括有沿第二直线方向b依次排列设置的多个激光器411时, 每个激光器411扫描出射的激光束的扫描范围均在目标区域AA内,示例的,不同的激光器411出射的激光束扫描范围之间可以根据目标区域AA的范围以及目标物的形状等,设计为两两之间相互邻接,或者也可以相互之间具有一定的重叠区域,但是为了避免在目标区域AA内重复探测造成的资源浪费,不同的激光器411扫描出射的激光束扫描范围之间尽可能相切并减少交叠区域。
在本公开的一种可行的实施例中,当光源41为如图8中示例所示的沿第二直线方向b依次设置的三个激光器411时,三个激光器411集成封装为一个整体光源,并且,该整体光源一体化的集成与发射组件40中。当然,本领域技术人员应当知晓,上述的集成封装以及一体化设置并不仅限于实例中的三个激光器411,此处举例的说明不应视为对本公开中方案范围的限定。例如,在现有技术中的半导体激光巴条即为一种能够实现前述功能和要求的光源41的体现形式。
同样的,当接收器51沿第二直线方向b依次与激光器411相对应的设置有多个时,例如图8中示出的十二个,十二个接收器51也可预先集成封装为一个整体后,一体化的集成设置于接收组件50中。
在本公开的一种可行的实施例中,还可以根据本公开实施例的激光扫描模组在实际光学探测的具体应用中对出射激光束的参数要求,在光源41的出光侧设置调节镜组,例如,在光源41与目标区域AA之间设置用于对光源41出射的激光束进行准直和/或聚焦调节的镜片或镜组。同样的,若是本公开实施例的激光扫描模组在实际光学探测的具体应用中对于回波激光束有相应的参数要求,也可以在回波激光束的光路上设置相应调节镜组,从而将回波激光束进行相应的调节处理(如准直、聚焦等)后再由接收组件50接收。
示例的,为了实现对激光扫描模组中各个光学元件的充分利用,以及对激光扫描模组进一步进行紧凑设计,可以通过光路设计使得光源41出射的激光束与回波激光束相互靠近且相互平行,或者也可以同一主光轴设置,这样一来,也可以在光路中仅设置一组调节镜组,既能够双向的对光源41出射的激光束以及回波光束均进行相应的调节处理。
在此基础上,本公开实施例的激光扫描模组中还可以设置滤光镜,用于过滤环境光,避免环境光入射激光扫描模组后对回波激光束造成的干扰和影响,或者,还可以在光路中相应的光学元件上设置增透膜层,从而提高激光扫描模组的光利用率,降低光损失。
本公开实施例的另一方面,提供一种激光雷达,可以采用本实施例中前述任意一项的激光扫描模组的光路结构。
激光雷达包括发射组件40和接收组件50,激光扫描模组中的光源41设置于发射组件40内,光源41还与驱动器传动连接,通过驱动器驱动光源41转动,接收器51设置于接收组件50内。
在本公开的一种可行的实施方式中,如图9所示,接收组件50和发射组件40位于同侧,且接收组件50和发射组件40沿光轴同轴设置,同时通过光路走向的设计避免二者之间发生光传播过程中的相互干涉。由发射组件40出射的激光束经扫描出射后的探测信号出射至目标区域AA,由目标区域AA的目标物反射回的携带有目标物对应信息的光信号由接收组件50接收。这种激光雷达的结构紧凑,整体的体积较小,便于安装使用。
在本公开的另一种可行的实施方式中,如图10所示,接收组件50和发射组件40位于对侧,这种设置方式,能够尽可能压缩激光雷达的纵向高度,便于在汽车、机器人等相关结构中设置使用。
示例地,接收组件50中包括光电转换单元、放大单元和采样单元,放大单元分别与光电转换单元和采样单元电连接,光电转换单元用于将接收器51接收到的携带目标物的相应信息的回波光信号转换为电信号,放大单元对该电信号进行处理放大,然后通过采样单元对放大处理后的电信号进行采样,以生成采样信号。计算机读取该采样信号即可得到对目标物有效且准确的探测信息。
其中,光电转换单元可以采用雪崩光电二极管,放大单元包括依次连接的跨阻放大器和二级放大器,经过光电转换单元转换后的电信号依次经过跨阻放大器和二级放大器进行信号的二级放大,放大后的电信号通过二级放大器传输至采样单元。在一些实施例中,放大单元中还包括互阻放大器,用于进行信号放大并将电流信号转化为电压信号。
在本公开的另一种可行的实施方式中,激光雷达还包括壳体和遮光罩,发射组件40和接收组件50均设置在壳体内,在壳体上设置有通孔,用于激光束的出射接收,遮光罩连接设置在壳体上,并且遮光罩具有能够覆盖通孔的盖合状态和露出通孔的打开状态,在遮光罩的盖合状态下,遮光罩遮盖通孔以使壳体形成封闭空间。
示例地,可以将遮光罩设置为具有一定硬度的多面结构,遮光罩的多个面分别对应出射激光束的方向和回波光束的方向,从而在一些状态下,盖合以精准的遮挡出射激光束和回波激光束。其中,遮光罩的每一个面均可设置为弧面,遮光罩形成由多个弧面相互拼接的多面结构。可以理解的,当多个弧面的弧度均相同的特殊情况下,所述遮光罩可以呈一个完整的弧面结构。
本公开实施例的又一方面,提供一种车辆,在车辆内集成设置前述任意一项的激光雷达,激光雷达可以在车辆的车体顶部、驾驶室前窗位置设置,或者,在车头两侧、车尾两侧分别设置,并且使得这些激光雷达均与车辆的控制系统相连接,通过各个位置的激光雷达对目标区域AA的探测,指导和反馈控制车辆的自动驾驶、主动避障、距离探测等功能。
示例的,在车头两侧设置的激光雷达,可以集成设置于车灯的灯罩内,一方面通过灯罩也能够对激光雷达进行物理保护,避免车辆运行中的小擦碰损坏激光雷达,另一方面, 车灯的灯光以及灯罩的设置都不会对激光雷达发射和接收的激光束造成明显的不良影响,不会影响到激光雷达探测的准确性。
本公开实施例的再一方面,提供一种机器人,在机器人本体内集成设置前述任意一项的激光雷达,在机器人的运动工作中,激光雷达能够对目标区域AA进行探测,例如设置在机器人的前侧,用来探测机器人的前进方向是否有障碍,从而通过与机器人的控制系统的连接,使得控制系统能够及时根据探测信息控制机器人避让或者停下。以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
综上所述,本公开提供了一种激光扫描模组、激光雷达、车辆及机器人,出射更为密集的激光束,接收到的由目标区域反射的回波激光束的数量显著增加,从而获取目标物更为丰富的相应信息,提高工作效率和探测准确性。本公开实施例的激光雷达,包括前述的激光扫描模组,使得激光雷达的点云构设出的画面信息更全面,使得激光雷达能够得到更为细腻的画面,进而使得激光雷达能够具有较佳的探测能力以及较好的探测准确性。本公开实施例的激光雷达可应用于车辆、各类型的机器人或其他各种自动化设备中,本公开实施例的激光雷达应用于车辆或机器人中时,能够辅助车辆或者机器人实现更优异的自动化性能,并准确高效的排除各种障碍和风险,提高使用寿命和工作能力。

Claims (49)

  1. 一种激光扫描模组,其特征在于,包括沿激光光路方向依次设置的发射组件、扫描镜和接收组件,所述发射组件包括用于出射激光束的光源,所述光源出射的激光束通过所述扫描镜形成的激光分束随着所述扫描镜沿第一直线方向的扫描运动朝向目标区域出射,所述接收组件接收由所述目标区域反射的回波激光束;所述光源包括沿第二直线方向依次排列的多个激光器,所述接收组件包括与所述多个激光器相对应的多个接收器,经所述扫描镜后出射的每一个所述激光分束均由至少两个所述接收器接收;其中,所述第一直线方向与所述第二直线方向垂直。
  2. 根据权利要求1所述的激光扫描模组,其特征在于,所述激光器的设置数量为M,M为大于1的正整数,所述接收器的数量为N,N为大于2的正整数,所述激光器出射的激光束经所述扫描镜分束后划分为M*L个激光分束对应的由至少2*M*L个所述接收器接收,L为正整数。
  3. 根据权利要求1或2所述的激光扫描模组,其特征在于,多个所述激光器出射的激光束投射在所述目标区域内的光斑相互邻接或者相互交叠。
  4. 根据权利要求1-3任意一项所述的激光扫描模组,其特征在于,所述扫描镜受驱沿水平方向转动以将入射的激光束沿第一直线方向扫描出射。
  5. 根据权利要求4所述的激光扫描模组,其特征在于,所述扫描镜包括相对设置的顶面和底面,在所述顶面和所述底面之间包括多个依次连接的侧面,所述侧面用于对入射的激光束分别转折出射。
  6. 根据权利要求5所述的激光扫描模组,其特征在于,至少一个所述侧面沿第二直线方向划分有多个分侧面,相邻的两个所述分侧面之间具有夹角,多个所述分侧面与所述顶面的夹角不相同。
  7. 根据权利要求6所述的激光扫描模组,其特征在于,相邻两个所述分侧面之间的夹角相等。
  8. 根据权利要求6所述的激光扫描模组,其特征在于,沿第二直线方向排列的多个所述分侧面与所述顶面的夹角呈等差数列。
  9. 根据权利要求6所述的激光扫描模组,其特征在于,定义任意一个所述分侧面与所述底面之间的夹角为δ,所述分侧面与该分侧面相邻的两个所述分侧面分别与所述底面之间的夹角为ε和ζ;夹角关系满足:
    δ>ε且δ>ζ,或者δ<ε且δ<ζ。
  10. 根据权利要求1-9任意一项所述的激光扫描模组,其特征在于,所述多个激光器一体集成封装为所述光源。
  11. 根据权利要求1-10任意一项所述的激光扫描模组,其特征在于,所述多个接收器一体集成封装为所述接收组件。
  12. 根据权利要求6-9任意一项所述的激光扫描模组,其特征在于,每个所述分侧面分别与所述底面之间具有夹角,所述分侧面与所述底面之间夹角角度的最大值减去所述分侧面与所述底面之间夹角角度的最小值小于3°。
  13. 根据权利要求1-12任意一项所述的激光扫描模组,其特征在于,所述光源出射的所述激光束的波长是905nm或者1550nm。
  14. 根据权利要求1-13任意一项所述的激光扫描模组,其特征在于,在所述发射组件与所述扫描镜之间,和/或在所述扫描镜与所述接收组件之间设置有调节镜组。
  15. 根据权利要求1-14任意一项所述的激光扫描模组,其特征在于,在所述发射组件与所述接收组件之间还设置有滤光镜。
  16. 一种激光雷达,其特征在于,包括权利要求1-15任意一项的激光扫描模组。
  17. 根据权利要求16所述的激光雷达,其特征在于,还包括驱动器,所述驱动器与扫描镜驱动连接,用于驱动所述扫描镜水平转动。
  18. 根据权利要求16或17所述的激光雷达,其特征在于,发射组件和接收组件位于所述扫描镜的同侧,且所述发射组件和所述接收组件同轴设置。
  19. 根据权利要求16或17所述的激光雷达,其特征在于,发射组件和接收组件位于所述扫描镜的对侧,所述发射组件、所述扫描镜和所述接收组件沿第一直线方向设置。
  20. 根据权利要求16-19任意一项所述的激光雷达,其特征在于,所述接收组件还包括与所述接收器电连接的激光接收单元,所述激光接收单元包括光电转换单元、放大单元和采样单元;
    所述放大单元分别与所述光电转换单元和所述采样单元电连接;
    所述光电转换单元设置为将接收到的回波激光束转换为电信号,所述放大单元设置为放大所述电信号,所述采样单元设置为对经所述放大单元放大后的电信号进行采样,以生成采样信号。
  21. 根据权利要求20所述的激光雷达,其特征在于,所述光电转换单元包括雪崩光电二极管。
  22. 根据权利要求20或21所述的激光雷达,其特征在于,所述放大单元包括跨阻放大器和二级放大器,所述跨阻放大器分别与所述光电转换单元和所述二级放大器电连接,所述二级放大器与所述采样单元电连接。
  23. 根据权利要求20至22任意一项所述的激光雷达,其特征在于,所述激光接收 单元还包括互阻放大器,所述互阻放大器用于将采样信号进行放大,并将所述采样信号由电流信号转换为电压信号。
  24. 根据权利要求16至23任意一项所述的激光雷达,其特征在于,还包括壳体,所述壳体上设置有通孔,发射组件、扫描镜和接收组件设置于所述壳体内,所述发射组件出射的激光束由所述通孔发出,在所述壳体上还连接设置有遮光罩,所述遮光罩具有能够覆盖所述通孔的盖合状态和露出所述通孔的打开状态,当所述遮光罩处于盖合状态,所述壳体内形成封闭空间。
  25. 根据权利要求24所述的激光雷达,其特征在于,所述遮光罩呈多面拼接的硬质结构,所述遮光罩的多个拼接表面用于在盖合状态下分别与出射激光束和/或回波激光束对应。
  26. 根据权利要求25所述的激光雷达,其特征在于,所述遮光罩的拼接表面为平面或者弧面。
  27. 一种激光扫描模组,其特征在于,包括沿激光光路方向依次设置的发射组件和接收组件,所述发射组件包括用于出射激光束的光源,所述光源出射的激光束朝向目标区域沿第一直线方向扫描出射,所述接收组件接收由所述目标区域反射的回波激光束;所述光源包括沿第二直线方向依次排列的多个激光器,所述接收组件包括与所述多个激光器相对应的多个接收器,每一个所述激光束均由至少两个所述接收器接收;其中,所述第一直线方向与所述第二直线方向垂直。
  28. 根据权利要求27所述的激光扫描模组,其特征在于,所述激光器的设置数量为M,M为大于1的正整数,所述接收器的数量为N,N为大于2的正整数,所述激光器出射的激光束对应的由至少2*M个所述接收器接收。
  29. 根据权利要求27或28所述的激光扫描模组,其特征在于,多个所述激光器出射的激光束投射在所述目标区域内的光斑相互邻接或者相互交叠。
  30. 根据权利要求27-29任意一项所述的激光扫描模组,其特征在于,所述激光器沿第一直线方向转动扫描出射激光束。
  31. 根据权利要求27-30任意一项所述的激光扫描模组,其特征在于,所述多个激光器一体集成封装为所述光源。
  32. 根据权利要求27-30任意一项所述的激光扫描模组,其特征在于,所述多个接收器一体集成封装为所述接收组件。
  33. 根据权利要求27-32任意一项所述的激光扫描模组,其特征在于,所述光源出射的所述激光束的波长是905nm或者1550nm。
  34. 根据权利要求27-33任意一项所述的激光扫描模组,其特征在于,在所述发射 组件与所述接收组件之间设置有调节镜组。
  35. 根据权利要求27-34任意一项所述的激光扫描模组,其特征在于,在所述发射组件与所述接收组件之间还设置有滤光镜。
  36. 一种激光雷达,其特征在于,包括权利要求27-35任意一项的激光扫描模组。
  37. 根据权利要求27-36任意一项所述的激光雷达,其特征在于,所述接收组件还包括与所述接收器电连接的激光接收单元,所述激光接收单元包括光电转换单元、放大单元和采样单元;
    所述放大单元分别与所述光电转换单元和所述采样单元电连接;
    所述光电转换单元设置为将接收到的回波激光束转换为电信号,所述放大单元设置为放大所述电信号,所述采样单元设置为对经所述放大单元放大后的电信号进行采样,以生成采样信号。
  38. 根据权利要求37所述的激光雷达,其特征在于,所述光电转换单元包括雪崩光电二极管。
  39. 根据权利要求37或38所述的激光雷达,其特征在于,所述放大单元包括跨阻放大器和二级放大器,所述跨阻放大器分别与所述光电转换单元和所述二级放大器电连接,所述二级放大器与所述采样单元电连接。
  40. 根据权利要求37至39任意一项所述的激光雷达,其特征在于,所述激光接收单元还包括互阻放大器,所述互阻放大器用于将采样信号进行放大,并将所述采样信号由电流信号转换为电压信号。
  41. 根据权利要求27至40任意一项所述的激光雷达,其特征在于,还包括壳体,所述壳体上设置有通孔,发射组件和接收组件设置于所述壳体内,所述发射组件出射的激光束由所述通孔发出,在所述壳体上还连接设置有遮光罩,所述遮光罩具有能够覆盖所述通孔的盖合状态和露出所述通孔的打开状态,当所述遮光罩处于盖合状态,所述壳体内形成封闭空间。
  42. 根据权利要求41所述的激光雷达,其特征在于,所述遮光罩呈多面拼接的硬质结构,所述遮光罩的多个拼接表面用于在盖合状态下分别与出射激光束和/或回波激光束对应。
  43. 根据权利要求42所述的激光雷达,其特征在于,所述遮光罩的拼接表面为平面或者弧面。
  44. 一种车辆,其特征在于,包括车辆本体,还包括至少一个如权利要求16-26任意一项所述的激光雷达,所述激光雷达设置在所述车辆本体的车顶、车头的两端和/或车尾的两端。
  45. 根据权利要求44所述的车辆,其特征在于,所述车头的两端和/或车尾的两端的激光雷达,设置于所述车头和/或所述车尾处车灯的灯罩内,与所述车灯集成设置。
  46. 一种车辆,其特征在于,包括车辆本体,还包括至少一个如权利要求36-43任意一项所述的激光雷达,所述激光雷达设置在所述车辆本体的车顶、车头的两端和/或车尾的两端。
  47. 根据权利要求46所述的车辆,其特征在于,所述车头的两端和/或车尾的两端的激光雷达,设置于所述车头和/或所述车尾处车灯的灯罩内,与所述车灯集成设置。
  48. 一种机器人,其特征在于,包括机器人本体,还包括至少一个如权利要求16-26任意一项所述的激光雷达。
  49. 一种机器人,其特征在于,包括机器人本体,还包括至少一个如权利要求36-43任意一项所述的激光雷达。
PCT/CN2021/137564 2021-12-13 2021-12-13 一种激光扫描模组、激光雷达、车辆及机器人 WO2023108368A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004293.9A CN114365014A (zh) 2021-12-13 2021-12-13 一种激光扫描模组、激光雷达、车辆及机器人
PCT/CN2021/137564 WO2023108368A1 (zh) 2021-12-13 2021-12-13 一种激光扫描模组、激光雷达、车辆及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137564 WO2023108368A1 (zh) 2021-12-13 2021-12-13 一种激光扫描模组、激光雷达、车辆及机器人

Publications (1)

Publication Number Publication Date
WO2023108368A1 true WO2023108368A1 (zh) 2023-06-22

Family

ID=81105251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137564 WO2023108368A1 (zh) 2021-12-13 2021-12-13 一种激光扫描模组、激光雷达、车辆及机器人

Country Status (2)

Country Link
CN (1) CN114365014A (zh)
WO (1) WO2023108368A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677050A (zh) * 2004-03-31 2005-10-05 株式会社电装 车辆的目标探测器
US20150124238A1 (en) * 2013-11-05 2015-05-07 Kohji Sakai Object detecting apparatus
CN207817196U (zh) * 2017-10-31 2018-09-04 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
WO2019163210A1 (ja) * 2018-02-22 2019-08-29 コニカミノルタ株式会社 走査型光学系、およびライダー
CN110927698A (zh) * 2019-10-26 2020-03-27 深圳奥锐达科技有限公司 一种激光扫描装置以及扫描方法
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN112859045A (zh) * 2020-12-30 2021-05-28 北京北科天绘科技有限公司 一种激光扫描装置及其激光雷达、无人机或智能车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677050A (zh) * 2004-03-31 2005-10-05 株式会社电装 车辆的目标探测器
US20150124238A1 (en) * 2013-11-05 2015-05-07 Kohji Sakai Object detecting apparatus
CN207817196U (zh) * 2017-10-31 2018-09-04 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
WO2019163210A1 (ja) * 2018-02-22 2019-08-29 コニカミノルタ株式会社 走査型光学系、およびライダー
CN110927698A (zh) * 2019-10-26 2020-03-27 深圳奥锐达科技有限公司 一种激光扫描装置以及扫描方法
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN112859045A (zh) * 2020-12-30 2021-05-28 北京北科天绘科技有限公司 一种激光扫描装置及其激光雷达、无人机或智能车

Also Published As

Publication number Publication date
CN114365014A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021175141A1 (zh) 一种棱镜及多线激光雷达
CN109782299B (zh) 一种固态激光雷达装置
CN109752704A (zh) 一种棱镜及多线激光雷达系统
CN113156401B (zh) 一种收发分置激光雷达光学系统
CN211718520U (zh) 一种多线激光雷达
CN113589317A (zh) 一种激光雷达和二维扫描方法
CN111077910B (zh) 一种基于紫外光引导无人机蜂群防碰撞方法
WO2023108368A1 (zh) 一种激光扫描模组、激光雷达、车辆及机器人
CN115166769A (zh) 探测方法、激光雷达、车辆及计算机可读存储介质
WO2022110210A1 (zh) 一种激光雷达及移动平台
KR20230028289A (ko) 광학 스캐너를 위한 이중 샤프트 축방향 플럭스 모터
WO2021057809A1 (zh) 激光雷达及其控制方法和具有激光雷达的设备
WO2022042078A1 (zh) 激光光源、光发射单元和激光雷达
CN109917351B (zh) 激光雷达的发射系统及其控制方法、激光雷达
JP2021071471A (ja) 距離画像の作成装置
CN111766588A (zh) 全景激光雷达
CN211061696U (zh) 一种旋转反射式激光雷达系统
CN110687517B (zh) 一种基于高峰值功率vcsel激光器的扫描测距装置
CN212275968U (zh) 一种激光雷达系统
CN113820721A (zh) 一种收发分离的激光雷达系统
CN220141574U (zh) 一种雷达组件及机器人
WO2020142946A1 (zh) 转发器以及测距系统
US20240053444A1 (en) Laser radar
WO2021184381A1 (zh) 测距系统和车辆
WO2023040788A1 (zh) 激光雷达、探测设备和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967510

Country of ref document: EP

Kind code of ref document: A1