WO2023106288A1 - Dust suppression treatment method - Google Patents

Dust suppression treatment method Download PDF

Info

Publication number
WO2023106288A1
WO2023106288A1 PCT/JP2022/044903 JP2022044903W WO2023106288A1 WO 2023106288 A1 WO2023106288 A1 WO 2023106288A1 JP 2022044903 W JP2022044903 W JP 2022044903W WO 2023106288 A1 WO2023106288 A1 WO 2023106288A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust
mass
melt
aqueous dispersion
flowable
Prior art date
Application number
PCT/JP2022/044903
Other languages
French (fr)
Japanese (ja)
Inventor
拓治 西村
宏介 森
厳 江頭
一雄 小鍋
正輝 麦沢
喜文 乙女
Original Assignee
株式会社Nippo
村樫石灰工業株式会社
三井・ケマーズ フロロプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nippo, 村樫石灰工業株式会社, 三井・ケマーズ フロロプロダクツ株式会社 filed Critical 株式会社Nippo
Priority to JP2023529124A priority Critical patent/JPWO2023106288A1/ja
Publication of WO2023106288A1 publication Critical patent/WO2023106288A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/22Materials not provided for elsewhere for dust-laying or dust-absorbing

Definitions

  • the present invention relates to a dust suppression treatment method using a dust suppression treatment agent composition that has excellent performance in suppressing dust from dust-generating substances and is also excellent in redispersibility.
  • Dust composed of a fluoroethylene (hereinafter referred to as TFE) copolymer aqueous dispersion, the redispersion sedimentation rate of the TFE copolymer being 60% or less, and the content of perfluorooctanoic acid and its salts being less than 10 ppb.
  • TFE fluoroethylene
  • the present invention relates to a method for dust suppression treatment of dust-generating substances using a dust suppression treatment agent composition.
  • Patent Document 1 PTFE (TFE polymer) is mixed with a powdery substance, and the mixture is subjected to a compression-shearing action at a temperature of about 20 to 200 ° C. to make TFE heavy. Methods have been proposed for suppressing dusting of powdery substances by fibrillating coalescence.
  • TFE polymer described in Patent Document 1 below is a homopolymer of TFE as a composition, Teflon (registered trademark) 6 or Teflon (registered trademark) 30 as a fine powder or emulsion as a composition, and TFE as a composition. It is a modified polymer of Teflon (registered trademark) 6C, which is a fine powder.
  • Patent Document 2 a dust suppression method using a stable aqueous emulsion containing 1.0% by mass or more of a hydrocarbon-based anionic surfactant with respect to a homopolymer of TFE (TFE polymer) is used. has been proposed and shown to have a dust-suppressing effect on powdery substances.
  • particles of the TFE polymer are prepared by the emulsion polymerization method disclosed in Patent Documents 3 and 4 below, that is, an anionic interface using TFE as a water-soluble polymerization initiator and a fluoroalkyl group as a hydrophobic group.
  • aqueous emulsion It is produced in the form of an aqueous emulsion by injecting an active agent (hereinafter referred to as a fluorine-containing emulsifier) into an aqueous medium containing an emulsifier and polymerizing it, and an emulsion stabilizer is added to increase the stability.
  • an active agent hereinafter referred to as a fluorine-containing emulsifier
  • Patent Document 5 discloses that the use of a dust-suppressing treatment agent composition comprising an aqueous dispersion of a fluoropolymer having a fluorine-containing emulsifier content of 50 ppm or less has a dust-suppressing effect and is environmentally friendly. A method is described that can suppress dust without worrying about its effects.
  • the TFE polymer aqueous dispersion used as the dust-suppressing treatment agent composition in these methods tends to settle when left standing for a long period of time, and once the TFE polymer settles, it solidifies and is difficult to redisperse.
  • the TFE polymer concentration in the TFE polymer aqueous dispersion may be lowered, and the dust-suppressing effect originally provided by the TFE polymer may not be fully exhibited. rice field.
  • the present invention has an excellent dust suppressing effect and is also excellent in redispersibility of the non-melt-flowable TFE copolymer, which is a solid content in the dust suppressing treatment agent composition after standing for a long period of time. Further, it is an object of the present invention to provide a dust suppression treatment method using a dust suppression treatment agent composition which is excellent in environmental performance.
  • the present invention comprises a non-melt-flowable TFE copolymer aqueous dispersion, the copolymer represented by the following formula (1) has a redispersion sedimentation rate of 60% or less, and the perfluoropolymer in the aqueous dispersion
  • a dust suppressing treatment agent composition containing less than 10 ppb of octanoic acid and its salts
  • the dust suppressing treatment agent composition is mixed with a dust-generating substance, and the mixture is heated at a temperature of 20 to 200°C.
  • a method for suppressing dust from a dust-generating substance comprising fibrillating a TFE copolymer by subjecting it to compression-shearing action to suppress generation of dust from the dust-generating substance.
  • Redispersion sedimentation rate (%) X 3 /X 2 ⁇ 100 (1)
  • X 2 15 g of a TFE polymer aqueous dispersion having the same concentration as the copolymer was heated to 2
  • X 3 15 g of the aqueous copolymer dispersion was heated to 20°C and rotated at 3000 After centrifuging with a centrifuge for 30 minutes at rpm, when re-dispersed, the solid content sedimentation ratio after re-dispersion indicated by the following formula (2) (%)
  • Solid sedimentation ratio after redispersion (%) (Amount of sedimentation of solid content after redispersion) / (Amount of solid content before centrifugation) x 100 ...
  • the content of the perfluorooctanoic acid and its salt in the aqueous dispersion is less than 5 ppb.
  • the non-melt-flowable TFE copolymer is a non-melt-flowable copolymer of TFE and at least one comonomer selected from (perfluoroalkyl)ethylene, perfluoro(alkyl vinyl ether), and hexafluoropropylene. Being polymeric is a preferred aspect of the present invention.
  • the (perfluoroalkyl)ethylene is at least one selected from (perfluoroethyl)ethylene, (perfluorobutyl)ethylene, (perfluorohexyl)ethylene, and (perfluorooctyl)ethylene. This is a preferred embodiment of the invention.
  • the perfluoroalkyl group in the perfluoro(alkyl vinyl ether) is a perfluoroalkyl group having 1 to 10 carbon atoms.
  • the perfluoro(alkyl vinyl ether) is at least one selected from perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether), and perfluoro(propyl vinyl ether). .
  • the comonomer is contained in an amount of 0.01 to 1.00% by mass with respect to TFE.
  • the comonomer is contained in an amount of 0.01 to 0.50% by mass with respect to TFE.
  • the specific gravity (SSG) of the copolymer is 2.27 or less.
  • the present invention also provides a dust-inhibiting treatment method for a dust-generating substance using a dust-inhibiting treatment agent powder obtained by granulating and then drying the dust-inhibiting treatment agent composition.
  • the dust suppression treatment method of the present invention can be suitably used for a dust-generating powdery substance as the dust-generating substance.
  • non-melt-flowable TFE copolymer particles that are excellent in the performance of suppressing dust from dust-generating substances and are a solid content in the dust-suppressing treatment agent composition even after being left standing for a long period of time.
  • a method for dust control treatment of dust-generating substances using a dust control agent composition having excellent redispersibility and environmental performance is provided.
  • FIG. 1 is a diagram showing the results of centrifugal sedimentation tests and centrifugal sedimentation redispersion tests of Examples 1 to 3 and Comparative Example 1.
  • FIG. 1 is a diagram showing the results of static sedimentation tests and static sedimentation redispersion tests of Examples 1 and 2 and Comparative Example 1.
  • FIG. 2 is a photograph of Example 2 and Comparative Example 1 after standing for 90 days.
  • the dust suppression treatment method for dust-generating substances of the present invention comprises a non-melt-flowable TFE copolymer aqueous dispersion, and the redispersion sedimentation rate of the copolymer represented by the above formula (1) is 60% or less. and the content of perfluorooctanoic acid and its salt in the aqueous dispersion is less than 10 ppb, and the dust suppressing treatment composition and the dust-generating substance are mixed, It is important in the present invention to fibrillate the non-melt-flowable TFE copolymer by subjecting the mixture to a compression-shearing action at a temperature of about 20 to 200° C. to suppress the generation of dust from dust-generating substances. It is a feature.
  • the TFE polymer particles which are the solid content in the dust-controlling agent composition, tend to settle.
  • the sedimented TFE polymer particles solidify and are difficult to redisperse by stirring or the like.
  • a dust suppressing treatment composition having a redispersion sedimentation rate of 60% or less, the sedimented non-melt-flowable TFE copolymer particles are suppressed from firmly solidifying, and the redispersibility is remarkably improved. It becomes possible to As a result, in the dust suppressing treatment method of the present invention, a small amount of the dust suppressing agent composition can be uniformly mixed with the dust-generating substance, so that the generation of dust from the dust-generating substance can be efficiently suppressed. becomes possible. Furthermore, since the content of persistent perfluorooctanoic acid and its salts is less than 10 ppb, it is also excellent in environmental performance.
  • the dust suppressing treatment agent composition used in the present invention has excellent redispersibility in addition to dust suppressing performance is confirmed by the centrifugal sedimentation test, the centrifugal redispersion test, and the stationary sedimentation test of Examples described later. , static sedimentation redispersion test, and falling dust generation test.
  • the redispersion sedimentation rate of the non-melt-flowable TFE copolymer aqueous dispersion used in the present invention is 60% or less.
  • Certain dust control treatment compositions have a reduced amount of sedimentation compared to aqueous TFE polymer dispersions with a redispersion sedimentation rate of greater than 60%.
  • the dust suppression treatment method of the present invention is represented by the above formula (1) of the non-melt-flowable TFE copolymer aqueous dispersion in the dust suppression treatment agent composition to be used.
  • the non-melt-flowable TFE copolymer in the dust-suppressing treatment agent composition used in the present invention has excellent sedimentation stability because it contains few rod-like particles that easily sediment.
  • the redispersion sedimentation rate shown by the above formula (1) exceeds 60%, the sedimented non-melt-flowable TFE copolymer particles solidify and become difficult to redisperse.
  • the amount of the non-melt-flowable TFE copolymer particles dispersed in the dust suppressing treatment agent composition is reduced, and is equivalent to that before sedimentation.
  • more non-melt-flowable TFE copolymer aqueous dispersion is required.
  • the strongly solidified non-melt-flowable TFE copolymer cannot be used as a dust control agent and must be discarded. It is not preferable from an economical point of view because it wastes a large amount and generates a disposal cost.
  • the non-melt-flowable TFE copolymer of the present invention is a non-melt-flowable TFE copolymer of tetrafluoroethylene and at least one comonomer selected from perfluoro(alkylvinyl ether), (perfluoroalkyl)ethylene, and hexafluoropropylene.
  • a fluid copolymer is preferred.
  • the perfluoroalkyl group in (perfluoroalkyl)ethylene is preferably a perfluoroalkyl group having 1 to 10 carbon atoms, more preferably (perfluoroethyl)ethylene, ( It is at least one selected from perfluorobutyl)ethylene, (perfluorohexyl)ethylene, and (perfluorooctyl)ethylene. More preferred is (perfluorobutyl)ethylene.
  • the perfluoroalkyl group in the perfluoro(alkyl vinyl ether) is preferably a perfluoroalkyl group having 1 to 10 carbon atoms, more preferably perfluoro(methyl vinyl ether), It is at least one selected from perfluoro(ethyl vinyl ether) and perfluoro(propyl vinyl ether).
  • the amount of the comonomer in the non-melt-flowable TFE copolymer used in the present invention is 0.01 to 1.00% by mass, preferably 0.01 to 0.50% by mass, more preferably 0.01 to 0.50% by mass, based on TFE. It is contained in an amount of 01 to 0.30% by mass.
  • the content of the comonomer is 0.01 to 1.00% by mass, the stability of the aqueous dispersion is improved because there are few rod-shaped particles that tend to settle in the solid content.
  • the content of the comonomer exceeds 1.00% by mass, fibrillation becomes difficult and thermal stability decreases, which is not preferable.
  • the content of the comonomer is less than 0.01% by mass, the effect of the comonomer cannot be expected, and the redispersion sedimentation rate is inferior, which is not preferable.
  • the melting point of the non-melt-flowable TFE copolymer used in the present invention is 320-350°C, preferably 334-342°C. If the melting point is lower than 320° C., the comonomer content in the non-melt fluidity increases and fibrillation becomes difficult, which is not preferred.
  • the non-melt-flowable TFE copolymer used in the present invention is a copolymer that does not exhibit melt-moldability at temperatures above the melting point, and conforms to ASTM D1238 (372 ° C., load 5 kg) and is a temperature higher than the melting point. It is preferable that it is a copolymer whose MFR cannot be measured at .
  • Such a non-melt-flowable TFE copolymer is a copolymer different from the TFE copolymer that has melt-flowability and can be melt-molded.
  • the specific gravity (SSG) of the non-melt-flowable TFE copolymer is desirably 2.27 or less, preferably 2.22 or less, and more preferably 2.20 or less.
  • SSG value the lower the molecular weight, and the lower the SSG value, the higher the molecular weight. A high dust suppression effect can be obtained.
  • the non-melt-flowable TFE copolymer aqueous dispersion of the present invention is an aqueous dispersion in which fine particles (colloidal particles) of a high-molecular-weight non-melt-flowable TFE copolymer are dispersed.
  • the non-melt-flowable TFE copolymer fine particles in the aqueous dispersion have a particle size (d84) of 250 nm or less, preferably 50 to 250 nm, more preferably 50 to 225 nm when the cumulative volume percentage is 84%. is desirable.
  • d84 is less than 50 nm, the effect of dust-generating substances in suppressing dust may be lower than when d84 is within the above range.
  • the particle size (d84) is 250 nm or less, unlike the case where the particle size (d50) is 250 nm or less, it means that there are no extremely large primary particles, and the sedimentation stability of the aqueous dispersion is excellent. means that
  • the concentration of perfluorooctanoic acid and its salt in the non-melt-flowable TFE copolymer aqueous dispersion was measured by placing 10 ml of the non-melt-flowable TFE copolymer aqueous dispersion in a polyethylene container in a freezer at -20°C. After freezing to agglomerate the non-melt-flowable TFE copolymer and separating it from water, the contents of the polyethylene container were all transferred to a Soxhlet extractor, extracted with about 80 ml of methanol for 7 hours, and diluted to a volume.
  • the concentration of perfluorooctanoic acid and its salts in the non-melt-flowable TFE copolymer aqueous dispersion can be calculated by measuring the sample liquid with a liquid chromatograph.
  • the method for preparing the non-melt-flowable TFE copolymer aqueous dispersion containing less than 10 ppb of perfluorooctanoic acid and its salt is not particularly limited, but the following method can be exemplified.
  • hydrocarbon-based anionic surfactants include higher fatty acid salts, higher alcohol sulfate salts, liquid fatty oil sulfate salts, fatty alcohol phosphate salts, dibasic fatty acid ester sulfonates, alkylaryl There are sulfonates and the like, especially polyoxyethylene alkylphenyl ether ethylene sulfonic acid (n of polyoxyethylene is 1 to 6, alkyl has 8 to 11 carbon atoms), alkylbenzene sulfonic acid (alkyl has 10 to 10 carbon atoms), 12) Na, K, Li and NH4 salts such as dialkyl sulfosuccinates (alkyl has 8-10 carbon atoms) impart high mechanical stability to non-melt-flowable TFE copolymer aqueous dispersions. is possible, and the non-melt-flowable TFE copolymer particles are prevented from aggregating due to high-speed agitation or the like, so it can be
  • the dust control agent composition is mixed with a dust-generating substance, the mixture is subjected to compression-shearing action at a temperature of 20 to 200° C., preferably 50 to 150° C., and the composition is By fibrillating the non-melt-flowable TFE copolymer in the product, it is possible to suppress the generation of dust from dust-generating substances. That is, when the specific non-melt-flowable TFE copolymer used in the present invention is subjected to compression-shearing action under appropriate conditions as described above, it fibrillates in a spider web-like manner and becomes ultrafine fibers. In the dust-suppressing treated material treated using the dust-suppressing treatment method, it is considered that the dust-generating substances are captured and aggregated by the spider web-like fine fibers to suppress dust.
  • Dust-producing substances that can be particularly preferably treated include, for example, cements such as Portland cement and alumina cement, slaked lime, quicklime powder, mineral powders such as calcium carbonate, dolomite, magnesite, talc, silica, and fluorite, Clay mineral powder such as kaolin and bentonite, metals such as iron and steel, slag powder by-produced in the manufacturing process of non-ferrous metals, coal, combustion ash powder such as garbage, gypsum powder, powdered metals, carbon black, activated carbon powder, metals
  • Ceramic powder such as oxides, pigments, and the like, that is, all dust-generating substances that generate dust when solid particulate matter scatters and floats in the air.
  • the amount of the dust suppressing treatment agent composition used in the present invention to be added to the dust-generating substance depends on the type of the dust-generating substance, particle size distribution, specific gravity (true specific gravity, apparent specific gravity), dust suppressing treatment temperature, compression-shearing action to be applied. It can be appropriately set depending on the degree of dust suppression, the degree of dust suppression of the obtained dust-suppressed product, and the like.
  • the dust suppressing treatment composition is preferably 0.001 to 1.0% by mass in terms of the non-melt-flowable TFE copolymer resin solid content with respect to the dust-generating substance. is added in the range of 0.005 to 0.50% by mass, it is possible to suppress dust generated from dust-generating substances.
  • Absorbance ratio X (C - B) / (A - B) (3)
  • C 875 cm -1 peak height (absorbance)
  • a calibration curve is created from the PFBE content (mass%) of two samples whose PFBE content (mass%) is known and the absorbance ratio X, and the PFBE content (mass%) of the sample is calculated from the absorbance ratio X of the sample. asked.
  • Solid content mass% Weigh less than 6 g of the non-melt-flowable TFE copolymer aqueous dispersion or the TFE polymer aqueous dispersion into a tared aluminum dish, and add the non-melt-flowable TFE copolymer aqueous dispersion, or The mass of the TFE polymer aqueous dispersion (mass before drying) was weighed (measured to four decimal places). After that, leave it for 2 hours in a dryer at 105 ° C. to remove moisture, bake at a constant temperature of 380 ° C. for 20 minutes and cool to room temperature, then weigh the mass (mass after drying) and use the following formula (8 ) to calculate the solid content mass %.
  • Solid content mass% [(mass after drying - tare mass of aluminum pan) / mass before drying] x 100 (8)
  • Redispersion sedimentation rate X 7 /X 6 ⁇ 100 (13)
  • X 6 15 g of the TFE polymer aqueous dispersion shown in Comparative Example 1 was allowed to stand at room temperature for 30 days, 60 days, and 90 days after closing the mouth of the centrifuge tube, and then sedimented. After removing non-solid content (liquid portion: supernatant and unsettled solid content), leaving the centrifuge tube upside down for 30 minutes to further remove the liquid portion, and re-dispersing, the following formula ( 14) is the solid sedimentation ratio (%).
  • Drop dust generation test 200 g of the sample (dust-suppressed product) is allowed to fall naturally from the top inlet of a cylindrical container with an inner diameter of 39 cm and a height of 59 cm, and the amount of floating dust in the container at a height of 45 cm from the bottom (relative concentration (CPM: Counts per Minute) ) was measured with a scattered light digital dust meter. The amount of floating dust was measured five times continuously for one minute after the sample was added, and the geometric mean value of the values obtained by subtracting the measured value (dark count) before the sample was added. x (CPM) was taken as the “falling dust generation amount” of the sample, and the geometric mean value x was obtained by the following formula (15).
  • TFE tetrafluoroethylene
  • Example 5 and 6 Comparative Examples 3 and 4
  • the non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion prepared in Example 2 or Comparative Example 1 was added in an amount shown in Table 3 (solid content mass% relative to the dust-generating substance). Weigh the mass, dilute with water so that the total amount of water and water contained in the non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion is 100 g, and prepare the composition.
  • a mixture of dust-inhibiting treated quicklime and slaked lime was obtained in the same manner as in Example 4, except that a dispersed dispersion was used.
  • a drop dust generation test was conducted on the obtained dust-suppressing treated material. Table 3 shows the results.
  • Examples 16-20, 22, 25-28, 31 The dust-generating substances shown below and the non-melt-flowable TFE copolymer aqueous dispersions prepared in Examples 7 to 13 were added in the amounts shown in Table 5 or Table 6 (mass% of solid content relative to the dust-generating substance). Weigh a mass equivalent to , and use a dispersion diluted with water so that the total amount of water and water contained in the non-melt-flowable TFE copolymer aqueous dispersion is 35 g. A dust-suppressing treatment was obtained. A drop dust generation test was conducted on the obtained dust-suppressing treated material. The results are shown in Table 5 or Table 6.
  • 500 g of heated anhydride gypsum was weighed into a container of a mortar mixer, and the dispersion diluted with water (the mass of the non-melt-flowable TFE copolymer corresponding to the addition amount shown in Table 5 or Table 6 + 35 g of water ) is put into a mortar mixer and stirred at a low speed for 1 minute, 500 g of anhydride gypsum heated to 105 ° C. is added and stirred for 3 minutes, spread evenly on an enamel tray, and heated at 105 ° C. for 1 hour. A mixture was obtained. About 1 kg of the mixture was placed in a mortar and stirred with a pestle for 9 minutes to obtain a dust-suppressing treatment.
  • Ground granulated blast furnace slag (2.0 mm standard mesh sieve through, 1.0 mm standard mesh sieve through, 600 ⁇ m standard mesh sieve residue 0.02%, 300 ⁇ m standard mesh sieve residue 0 0.06%, granulated blast furnace slag with a 150 ⁇ m standard mesh sieve residue of 0.31% and a 150 ⁇ m standard mesh sieve passage of 99.61%)
  • Dust-proof treatment of ground granulated blast furnace slag (Examples 18 and 27): A dust-suppressing treated product was obtained in the same manner as the dust-proofing treatment of anhydrous gypsum, except that granulated granulated blast furnace slag was used.
  • Dolomite (2.0 mm standard mesh sieve through, 1.0 mm standard mesh sieve residue 0.06%, 600 ⁇ m standard mesh sieve residue 0.50%, 300 ⁇ m standard mesh sieve residue 3.44 %, Dolomite with 150 ⁇ m standard mesh sieve residue 8.20%, 150 ⁇ m standard mesh sieve passage 87.79%) Dustproof treatment of dolomite (Examples 19 and 28): 500 g ⁇ 2 of dolomite was weighed, spread evenly on an enamel tray, and heated at 105° C. for one day and night.
  • 500 g of heated dolomite was weighed into a container of a mortar mixer, and the dispersion diluted with the above water (the mass of the non-melt-flowable TFE copolymer corresponding to the addition amount shown in Table 5 or Table 6 + 35 g of water). is put into a mortar mixer and stirred at a low speed for 1 minute, 500 g of dolomite heated to 105 ° C. is added and stirred for 3 minutes, spread evenly on an enamel tray, heated at 105 ° C. for 1 hour to make the mixture Obtained. About 1 kg of the mixture was placed in a mortar mixer and stirred for 3 minutes to obtain a dust-suppressing product.
  • lignite powder was added in 3 portions of 1/4 each and mixed, then spread evenly on an enamel tray and heated at 105° C. for 1 hour to obtain a mixture.
  • About 500 g of the mixture was placed in a mortar and mixed with a pestle until the non-melt-flowable TFE copolymer was sufficiently fibrillated to obtain a dust-suppressing treatment.
  • the dust suppression treatment method of the present invention is used in the fields of building materials, soil stabilizers, solidifying materials, fertilizers, landfill disposal of incineration ash or hazardous substances, explosion-proof fields, cosmetics fields, fillers for various plastics, etc. , it is suitably used for obtaining a dust-suppressing treated product of the dust-generating substance by subjecting the dust-generating substance to dust-suppressing treatment.

Abstract

The present invention relates to a dust suppression treatment method for suppressing dust from a dust-producing substance, characterized in that a dust suppression treatment agent composition composed of a non-melt-flowable tetrafluoroethylene copolymer aqueous dispersion is used, the redispersion sedimentation rate of the copolymer being 60% or less, and the amount of perfluorooctanoic acid and salts thereof being less than 10 ppb relative to the mass of the aqueous dispersion, the dust suppression treatment agent composition is mixed with a dust-producing substance, and the mixture is subjected to compression-shear action at a temperature of 20-200°C, whereby the tetrafluoroethylene copolymer is fibrillated to suppress the generation of dust by the dust-producing substance. The dust suppression treatment method has an exceptional dust suppression effect, exhibits exceptional redispersibility of the non-melt-flowable tetrafluoroethylene copolymer particles, which are the solids fraction in the dust suppression treatment agent composition, after said composition is allowed to stand for a long period of time, and additionally exhibits exceptional environmental performance.

Description

塵埃抑制処理方法Dust suppression treatment method
 本発明は、発塵性物質の塵埃を抑制する性能に優れ、再分散性にも優れた塵埃抑制処理剤組成物を用いた塵埃抑制処理方法に関し、より詳細には、非溶融流動性のテトラフルオロエチレン(以下、TFEという)共重合体水性分散液から成り、該TFE共重合体の再分散沈降率が60%以下であり、パーフルオロオクタン酸及びその塩の含有量が10ppb未満である塵埃抑制処理剤組成物を用いた発塵性物質の塵埃抑制処理方法に関する。 TECHNICAL FIELD The present invention relates to a dust suppression treatment method using a dust suppression treatment agent composition that has excellent performance in suppressing dust from dust-generating substances and is also excellent in redispersibility. Dust composed of a fluoroethylene (hereinafter referred to as TFE) copolymer aqueous dispersion, the redispersion sedimentation rate of the TFE copolymer being 60% or less, and the content of perfluorooctanoic acid and its salts being less than 10 ppb. The present invention relates to a method for dust suppression treatment of dust-generating substances using a dust suppression treatment agent composition.
 塵埃を出す物質の塵埃を抑制する技術は、健康上、安全上、環境上その他の要請から、生活のためにまた産業のために重要な技術である。
 このような塵埃抑制技術としては、下記特許文献1において、PTFE(TFE重合体)を粉末状物質と混合し、該混合物に約20~200℃の温度で圧縮-剪断作用を施すことによりTFE重合体をフィブリル化して粉末状物質の塵埃発生を抑制する方法が提案されている。
Technology for controlling dust in dust-producing materials is an important technology for human life and industry for health, safety, environmental and other requirements.
As such a dust suppression technology, in Patent Document 1 below, PTFE (TFE polymer) is mixed with a powdery substance, and the mixture is subjected to a compression-shearing action at a temperature of about 20 to 200 ° C. to make TFE heavy. Methods have been proposed for suppressing dusting of powdery substances by fibrillating coalescence.
 下記特許文献1に記載されているTFE重合体は、組成としてはTFEのホモポリマーで形態としてはファインパウダー又はエマルジョンであるテフロン(登録商標)6又はテフロン(登録商標)30、並びに組成としてはTFEの変性ポリマーで形態としてはファインパウダーであるテフロン(登録商標)6Cなどである。 The TFE polymer described in Patent Document 1 below is a homopolymer of TFE as a composition, Teflon (registered trademark) 6 or Teflon (registered trademark) 30 as a fine powder or emulsion as a composition, and TFE as a composition. It is a modified polymer of Teflon (registered trademark) 6C, which is a fine powder.
 また、下記特許文献2には、TFEのホモポリマー(TFE重合体)に対して1.0質量%以上の炭化水素系アニオン界面活性剤を含有する安定性のよい水性エマルジョンを使用する塵埃抑制方法が提案されており、粉末状物質について塵埃抑制効果があることが示されている。この特許文献2によれば、TFE重合体の粒子は、下記特許文献3及び4に開示されている乳化重合法、即ちTFEを水溶性重合開始剤及びフルオロアルキル基を疎水基とするアニオン系界面活性剤(以下、含フッ素乳化剤という)を乳化剤として含む水性媒体中に圧入、重合させることにより、水性エマルジョンの形態で製造されるが、安定性を増すためにさらに乳化安定剤が添加されている。 Further, in the following Patent Document 2, a dust suppression method using a stable aqueous emulsion containing 1.0% by mass or more of a hydrocarbon-based anionic surfactant with respect to a homopolymer of TFE (TFE polymer) is used. has been proposed and shown to have a dust-suppressing effect on powdery substances. According to Patent Document 2, particles of the TFE polymer are prepared by the emulsion polymerization method disclosed in Patent Documents 3 and 4 below, that is, an anionic interface using TFE as a water-soluble polymerization initiator and a fluoroalkyl group as a hydrophobic group. It is produced in the form of an aqueous emulsion by injecting an active agent (hereinafter referred to as a fluorine-containing emulsifier) into an aqueous medium containing an emulsifier and polymerizing it, and an emulsion stabilizer is added to increase the stability. .
 更に、下記特許文献5には、含フッ素乳化剤の含有率が50ppm以下である含フッ素重合体水性分散液からなる塵埃抑制処理剤組成物を用いることにより、塵埃抑制効果があって、環境への影響を懸念することなく塵埃を抑制できる方法が記載されている。 Furthermore, Patent Document 5 below discloses that the use of a dust-suppressing treatment agent composition comprising an aqueous dispersion of a fluoropolymer having a fluorine-containing emulsifier content of 50 ppm or less has a dust-suppressing effect and is environmentally friendly. A method is described that can suppress dust without worrying about its effects.
 しかしながら、これらの方法に塵埃抑制処理剤組成物として用いられるTFE重合体水性分散液は、長期間静置された場合には沈降し易く、一度沈降したTFE重合体は強固に固まり再分散し難いという問題があることに加え、TFE重合体水性分散液中のTFE重合体濃度の低下を引き起こすなど、使用条件によっては本来TFE重合体が備えている塵埃抑制効果を十分に発揮できなくなるおそれがあった。 However, the TFE polymer aqueous dispersion used as the dust-suppressing treatment agent composition in these methods tends to settle when left standing for a long period of time, and once the TFE polymer settles, it solidifies and is difficult to redisperse. In addition to this problem, depending on the conditions of use, the TFE polymer concentration in the TFE polymer aqueous dispersion may be lowered, and the dust-suppressing effect originally provided by the TFE polymer may not be fully exhibited. rice field.
特公昭52-32877号公報Japanese Patent Publication No. 52-32877 特開平8-20767号公報JP-A-8-20767 特表2010―509441号公報Japanese Patent Publication No. 2010-509441 特表2010-509442号公報Japanese Patent Publication No. 2010-509442 国際公開WO2007/000812号公報International publication WO2007/000812
 すなわち本発明は、優れた塵埃抑制効果を有すると共に、長期間静置された後の塵埃抑制処理剤組成物中の固形分である非溶融流動性のTFE共重合体の再分散性にも優れ、且つ、環境性能にも優れた塵埃抑制処理剤組成物を用いた塵埃抑制処理方法を提供することを目的とする。 That is, the present invention has an excellent dust suppressing effect and is also excellent in redispersibility of the non-melt-flowable TFE copolymer, which is a solid content in the dust suppressing treatment agent composition after standing for a long period of time. Further, it is an object of the present invention to provide a dust suppression treatment method using a dust suppression treatment agent composition which is excellent in environmental performance.
 本発明は、非溶融流動性のTFE共重合体水性分散液から成り、下記式(1)で示される共重合体の再分散沈降率が60%以下であり、前記水性分散液中のパーフルオロオクタン酸及びその塩の含有量が10ppb未満である塵埃抑制処理剤組成物を用い、該塵埃抑制処理剤組成物を発塵性物質と混合し、該混合物に20~200℃の温度条件下で圧縮-剪断作用を施すことにより、TFE共重合体をフィブリル化して発塵性物質の塵埃の発生を抑制することを特徴とする発塵性物質の塵埃抑制処理方法を提供する。 The present invention comprises a non-melt-flowable TFE copolymer aqueous dispersion, the copolymer represented by the following formula (1) has a redispersion sedimentation rate of 60% or less, and the perfluoropolymer in the aqueous dispersion Using a dust suppressing treatment agent composition containing less than 10 ppb of octanoic acid and its salts, the dust suppressing treatment agent composition is mixed with a dust-generating substance, and the mixture is heated at a temperature of 20 to 200°C. Provided is a method for suppressing dust from a dust-generating substance, comprising fibrillating a TFE copolymer by subjecting it to compression-shearing action to suppress generation of dust from the dust-generating substance.
再分散沈降率(%)=X/X ×100・・・(1)
 式中、
 X:前記共重合体と同濃度のTFE重合体水性分散液15gを、温度2
    0℃、回転速度3000rpmにて30分間、遠心分離機により遠
    心分離した後、再分散させた際の、下記式(2)にて示される再分
    散後の固形分沈降割合(%)
 X:前記共重合体水性分散液15gを、温度20℃、回転速度3000
    rpmにて30分間、遠心分離機により遠心分離した後、再分散さ
    せた際の、下記式(2)にて示される再分散後の固形分沈降割合
    (%)
再分散後の固形分沈降割合(%)
=(再分散後の固形分沈降量)/(遠心分離前の固形分量) ×100
・・・(2)
Redispersion sedimentation rate (%) = X 3 /X 2 × 100 (1)
During the ceremony,
X 2 : 15 g of a TFE polymer aqueous dispersion having the same concentration as the copolymer was heated to 2
Solid content sedimentation ratio (%) after redispersion shown by the following formula (2) when redispersed after centrifugation with a centrifuge at 0°C and a rotation speed of 3000 rpm for 30 minutes
X 3 : 15 g of the aqueous copolymer dispersion was heated to 20°C and rotated at 3000
After centrifuging with a centrifuge for 30 minutes at rpm, when re-dispersed, the solid content sedimentation ratio after re-dispersion indicated by the following formula (2) (%)
Solid sedimentation ratio after redispersion (%)
= (Amount of sedimentation of solid content after redispersion) / (Amount of solid content before centrifugation) x 100
... (2)
 前記パーフルオロオクタン酸及びその塩の前記水性分散液中の含有量が、5ppb未満であることは、本発明の好適な態様である。 It is a preferred aspect of the present invention that the content of the perfluorooctanoic acid and its salt in the aqueous dispersion is less than 5 ppb.
 前記共重合体の累積体積百分率が84%の時の粒径(d84)が250nm以下であることは、本発明の好適な態様である。 It is a preferred embodiment of the present invention that the particle size (d84) is 250 nm or less when the cumulative volume percentage of the copolymer is 84%.
 前記非溶融流動性のTFE共重合体が、TFEと、(パーフルオロアルキル)エチレン、パーフルオロ(アルキルビニルエーテル)、及びヘキサフルオロプロピレンから選択される少なくとも1種のコモノマーとの非溶融流動性の共重合体であることは、本発明の好適な態様である。 The non-melt-flowable TFE copolymer is a non-melt-flowable copolymer of TFE and at least one comonomer selected from (perfluoroalkyl)ethylene, perfluoro(alkyl vinyl ether), and hexafluoropropylene. Being polymeric is a preferred aspect of the present invention.
 前記(パーフルオロアルキル)エチレン中のパーフルオロアルキル基が、炭素数1~10のパーフルオロアルキル基であることは、本発明の好適な態様である。 It is a preferred embodiment of the present invention that the perfluoroalkyl group in the (perfluoroalkyl)ethylene is a perfluoroalkyl group having 1 to 10 carbon atoms.
 前記(パーフルオロアルキル)エチレンが、(パーフルオロエチル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロヘキシル)エチレン、及び(パーフルオロオクチル)エチレンから選択される少なくとも1種であることは、本発明の好適な態様である。 The (perfluoroalkyl)ethylene is at least one selected from (perfluoroethyl)ethylene, (perfluorobutyl)ethylene, (perfluorohexyl)ethylene, and (perfluorooctyl)ethylene. This is a preferred embodiment of the invention.
 前記パーフルオロ(アルキルビニルエーテル)中のパーフルオロアルキル基が炭素数1~10のパーフルオロアルキル基であることは、本発明の好適な態様である。 It is a preferred embodiment of the present invention that the perfluoroalkyl group in the perfluoro(alkyl vinyl ether) is a perfluoroalkyl group having 1 to 10 carbon atoms.
 前記パーフルオロ(アルキルビニルエーテル)が、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、及びパーフルオロ(プロピルビニルエーテル)から選択される少なくとも1種であることは、本発明の好適な態様である。 It is a preferred embodiment of the present invention that the perfluoro(alkyl vinyl ether) is at least one selected from perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether), and perfluoro(propyl vinyl ether). .
 前記コモノマーが、TFEに対して0.01~1.00質量%の量で含有されていることは、本発明の好適な態様である。 It is a preferred embodiment of the present invention that the comonomer is contained in an amount of 0.01 to 1.00% by mass with respect to TFE.
 前記コモノマーが、TFEに対して0.01~0.50質量%の量で含有されていることは、本発明の好適な態様である。 It is a preferred aspect of the present invention that the comonomer is contained in an amount of 0.01 to 0.50% by mass with respect to TFE.
 前記共重合体が、塵埃抑制処理剤組成物に対し10~80質量%の濃度で含有されていることは、本発明の好適な態様である。 It is a preferred embodiment of the present invention that the copolymer is contained at a concentration of 10 to 80% by mass with respect to the dust suppressing treatment agent composition.
 前記共重合体の比重(SSG)が2.27以下であることは、本発明の好適な態様である。 It is a preferred aspect of the present invention that the specific gravity (SSG) of the copolymer is 2.27 or less.
 本発明はまた、前記塵埃抑制処理剤組成物を造粒後、乾燥して得られる粉末からなる塵埃抑制処理剤粉末を用いた発塵性物質の塵埃抑制処理方法を提供する。 The present invention also provides a dust-inhibiting treatment method for a dust-generating substance using a dust-inhibiting treatment agent powder obtained by granulating and then drying the dust-inhibiting treatment agent composition.
 本発明の塵埃抑制処理方法は、前記発塵性物質として発塵性粉末状物質に好適に使用することができる。 The dust suppression treatment method of the present invention can be suitably used for a dust-generating powdery substance as the dust-generating substance.
 本発明により、発塵性物質の塵埃を抑制する性能に優れ、長期間静置させた後であっても塵埃抑制処理剤組成物中の固形分である非溶融流動性のTFE共重合体粒子の再分散性に優れると共に、環境性能に優れた塵埃抑制処理剤組成物を用いた発塵性物質の塵埃抑制処理方法が提供される。 According to the present invention, non-melt-flowable TFE copolymer particles that are excellent in the performance of suppressing dust from dust-generating substances and are a solid content in the dust-suppressing treatment agent composition even after being left standing for a long period of time. Provided is a method for dust control treatment of dust-generating substances using a dust control agent composition having excellent redispersibility and environmental performance.
実施例1~3及び比較例1の遠心分離沈降試験及び遠心分離沈降再分散試験の結果を示す図である。1 is a diagram showing the results of centrifugal sedimentation tests and centrifugal sedimentation redispersion tests of Examples 1 to 3 and Comparative Example 1. FIG. 実施例1~2、及び比較例1の静置沈降試験及び静置沈降再分散試験の結果を示す図である。1 is a diagram showing the results of static sedimentation tests and static sedimentation redispersion tests of Examples 1 and 2 and Comparative Example 1. FIG. 実施例2及び比較例1の静置90日後の写真である。2 is a photograph of Example 2 and Comparative Example 1 after standing for 90 days.
 本発明の発塵性物質の塵埃抑制処理方法は、非溶融流動性のTFE共重合体水性分散液から成り、上記式(1)にて示される共重合体の再分散沈降率が60%以下であり、水性分散液中のパーフルオロオクタン酸及びその塩の含有量が10ppb未満である塵埃抑制処理剤組成物を用い、該塵埃抑制処理剤組成物と発塵性物質とを混合し、該混合物に約20~200℃の温度で圧縮-剪断作用を施すことにより、非溶融流動性のTFE共重合体をフィブリル化して発塵性物質の塵埃の発生を抑制することが本発明の重要な特徴である。
 前述した通り、塵埃抑制処理剤組成物中の固形分であるTFE重合体粒子は沈降し易いため、TFE重合体水性分散液が長期間静置された場合には、TFE重合体粒子が沈降し、沈降したTFE重合体粒子が強固に固まり攪拌等で再分散させることが困難であるが、本発明に用いる塵埃抑制処理剤組成物においては、上記非溶融流動性のTFE共重合体水性分散液の再分散沈降率が60%以下である塵埃抑制処理剤組成物を用いることにより、沈降した非溶融流動性のTFE共重合体粒子が強固に固まることを抑制し、再分散性を顕著に向上することが可能となる。その結果、本発明の塵埃抑制処理方法においては、少量の塵埃抑制処理剤組成物を均一に発塵性物質と混合することができるため、発塵性物質の塵埃の発生を効率よく抑制することが可能となる。更に難分解性のパーフルオロオクタン酸及びその塩の含有量が10ppb未満であることから、環境性能にも優れている。
The dust suppression treatment method for dust-generating substances of the present invention comprises a non-melt-flowable TFE copolymer aqueous dispersion, and the redispersion sedimentation rate of the copolymer represented by the above formula (1) is 60% or less. and the content of perfluorooctanoic acid and its salt in the aqueous dispersion is less than 10 ppb, and the dust suppressing treatment composition and the dust-generating substance are mixed, It is important in the present invention to fibrillate the non-melt-flowable TFE copolymer by subjecting the mixture to a compression-shearing action at a temperature of about 20 to 200° C. to suppress the generation of dust from dust-generating substances. It is a feature.
As described above, the TFE polymer particles, which are the solid content in the dust-controlling agent composition, tend to settle. The sedimented TFE polymer particles solidify and are difficult to redisperse by stirring or the like. By using a dust suppressing treatment composition having a redispersion sedimentation rate of 60% or less, the sedimented non-melt-flowable TFE copolymer particles are suppressed from firmly solidifying, and the redispersibility is remarkably improved. It becomes possible to As a result, in the dust suppressing treatment method of the present invention, a small amount of the dust suppressing agent composition can be uniformly mixed with the dust-generating substance, so that the generation of dust from the dust-generating substance can be efficiently suppressed. becomes possible. Furthermore, since the content of persistent perfluorooctanoic acid and its salts is less than 10 ppb, it is also excellent in environmental performance.
 本発明で用いる塵埃抑制処理剤組成物が、塵埃を抑制する性能に加え、再分散性に優れていることは、後述する実施例の遠心分離沈降試験、遠心分離再分散試験、静置沈降試験、静置沈降再分散試験、及び落下発塵試験の結果からも明らかである。 The fact that the dust suppressing treatment agent composition used in the present invention has excellent redispersibility in addition to dust suppressing performance is confirmed by the centrifugal sedimentation test, the centrifugal redispersion test, and the stationary sedimentation test of Examples described later. , static sedimentation redispersion test, and falling dust generation test.
(再分散沈降率)
 遠心分離沈降試験及び遠心分離沈降再分散試験の結果を表す図1からも明らかなように、本発明に用いる非溶融流動性のTFE共重合体水性分散液の再分散沈降率が60%以下である塵埃抑制処理剤組成物は、再分散沈降率が60%を超えるTFE重合体水性分散液に比して沈降量が低減されている。
 また後述する実施例1~3に示すように、本発明の塵埃抑制処理方法は、用いる塵埃抑制処理剤組成物における非溶融流動性のTFE共重合体水性分散液の上記式(1)で示す再分散沈降率が60%以下、好ましくは50%以下、好適には30%以下であることにより、良好に再分散できることが明らかである。更に、本発明に用いる塵埃抑制処理剤組成物中の非溶融流動性のTFE共重合体は、沈降し易い棒状粒子が少ないため、沈降安定性に優れると考えられる。
(Redispersion sedimentation rate)
As is clear from FIG. 1 showing the results of the centrifugal sedimentation test and the centrifugal sedimentation redispersion test, the redispersion sedimentation rate of the non-melt-flowable TFE copolymer aqueous dispersion used in the present invention is 60% or less. Certain dust control treatment compositions have a reduced amount of sedimentation compared to aqueous TFE polymer dispersions with a redispersion sedimentation rate of greater than 60%.
Further, as shown in Examples 1 to 3 described later, the dust suppression treatment method of the present invention is represented by the above formula (1) of the non-melt-flowable TFE copolymer aqueous dispersion in the dust suppression treatment agent composition to be used. It is clear that good redispersion can be achieved when the redispersion sedimentation rate is 60% or less, preferably 50% or less, preferably 30% or less. Furthermore, it is believed that the non-melt-flowable TFE copolymer in the dust-suppressing treatment agent composition used in the present invention has excellent sedimentation stability because it contains few rod-like particles that easily sediment.
 上記式(1)で示される再分散沈降率が60%を超える場合には、沈降した非溶融流動性のTFE共重合体粒子が強固に固まり、再分散が困難になる。また固形分である非溶融流動性のTFE共重合体粒子が沈降した結果、塵埃抑制処理剤組成物中に分散している非溶融流動性のTFE共重合体粒子が減少し、沈降前と同等の発塵性物質の塵埃を抑制する性能を維持するためには、より多くの非溶融流動性のTFE共重合体水性分散液が必要となる。更に、強固に固まった非溶融流動性のTFE共重合体は、塵埃抑制処理剤として利用することができないため廃棄しなければならず、有用な資源である非溶融流動性のTFE共重合体の多くを無駄にしてしまうと共に、廃棄コストが発生する等、経済性の点からも好ましくない。 If the redispersion sedimentation rate shown by the above formula (1) exceeds 60%, the sedimented non-melt-flowable TFE copolymer particles solidify and become difficult to redisperse. In addition, as a result of the sedimentation of the non-melt-flowable TFE copolymer particles that are the solid content, the amount of the non-melt-flowable TFE copolymer particles dispersed in the dust suppressing treatment agent composition is reduced, and is equivalent to that before sedimentation. To maintain the dust-suppressing performance of the dust-producing material, more non-melt-flowable TFE copolymer aqueous dispersion is required. In addition, the strongly solidified non-melt-flowable TFE copolymer cannot be used as a dust control agent and must be discarded. It is not preferable from an economical point of view because it wastes a large amount and generates a disposal cost.
(非溶融流動性のTFE共重合体)
 本発明の非溶融流動性のTFE共重合体は、テトラフルオロエチレンと、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン、及びヘキサフルオロプロピレンから選択される少なくとも1種のコモノマーとの非溶融流動性の共重合体であることが好ましい。
(Non-melt-flowable TFE copolymer)
The non-melt-flowable TFE copolymer of the present invention is a non-melt-flowable TFE copolymer of tetrafluoroethylene and at least one comonomer selected from perfluoro(alkylvinyl ether), (perfluoroalkyl)ethylene, and hexafluoropropylene. A fluid copolymer is preferred.
 前記(パーフルオロアルキル)エチレンは、(パーフルオロアルキル)エチレン中のパーフルオロアルキル基が、炭素数1~10のパーフルオロアルキル基であることが好ましく、より好ましくは(パーフルオロエチル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロヘキシル)エチレン、(パーフルオロオクチル)エチレンから選択される少なくとも1種である。更に好ましくは(パーフルオロブチル)エチレンである。 In the (perfluoroalkyl)ethylene, the perfluoroalkyl group in (perfluoroalkyl)ethylene is preferably a perfluoroalkyl group having 1 to 10 carbon atoms, more preferably (perfluoroethyl)ethylene, ( It is at least one selected from perfluorobutyl)ethylene, (perfluorohexyl)ethylene, and (perfluorooctyl)ethylene. More preferred is (perfluorobutyl)ethylene.
 前記パーフルオロ(アルキルビニルエーテル)は、パーフルオロ(アルキルビニルエーテル)中のパーフルオロアルキル基が、炭素数1~10のパーフルオロアルキル基であることが好ましく、より好ましくは、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)から選択される少なくとも1種である。 In the perfluoro(alkyl vinyl ether), the perfluoroalkyl group in the perfluoro(alkyl vinyl ether) is preferably a perfluoroalkyl group having 1 to 10 carbon atoms, more preferably perfluoro(methyl vinyl ether), It is at least one selected from perfluoro(ethyl vinyl ether) and perfluoro(propyl vinyl ether).
 本発明に用いる非溶融流動性のTFE共重合体中の前記コモノマーは、TFEに対して0.01~1.00質量%、好ましくは0.01~0.50質量%、より好ましくは0.01~0.30質量%の量で含有されている。前記コモノマーの含有量が0.01~1.00質量%の場合には、固形分中に沈降し易い棒状粒子が少ないため水性分散液の安定性が向上する。一方、前記コモノマーの含有量が1.00質量%を超える場合には、フィブリル化し難くなること及び熱安定性が低下することから好ましくない。また、前記コモノマーの含有量が0.01質量%未満の場合には、前記コモノマーの効果が期待できず、再分散沈降率に劣るため好ましくない。 The amount of the comonomer in the non-melt-flowable TFE copolymer used in the present invention is 0.01 to 1.00% by mass, preferably 0.01 to 0.50% by mass, more preferably 0.01 to 0.50% by mass, based on TFE. It is contained in an amount of 01 to 0.30% by mass. When the content of the comonomer is 0.01 to 1.00% by mass, the stability of the aqueous dispersion is improved because there are few rod-shaped particles that tend to settle in the solid content. On the other hand, if the content of the comonomer exceeds 1.00% by mass, fibrillation becomes difficult and thermal stability decreases, which is not preferable. Moreover, when the content of the comonomer is less than 0.01% by mass, the effect of the comonomer cannot be expected, and the redispersion sedimentation rate is inferior, which is not preferable.
 本発明に用いる非溶融流動性TFE共重合体の融点は320~350℃であり、好ましくは334~342℃である。融点が、320℃未満の場合には、非溶融流動性中のコモノマー含有量が多くなりフィブリル化し難くなるため、好ましくない。
 本発明に用いる非溶融流動性TFE共重合体は、融点以上の温度において溶融成形性を示さない共重合体であって、ASTM D1238(372℃、荷重5kg)に準拠して、融点より高い温度でMFRを測定できない共重合体であることが好ましい。この様な非溶融流動性のTFE共重合体は、溶融流動性を有し溶融成形が可能なTFE共重合体とは異なる共重合体である。
The melting point of the non-melt-flowable TFE copolymer used in the present invention is 320-350°C, preferably 334-342°C. If the melting point is lower than 320° C., the comonomer content in the non-melt fluidity increases and fibrillation becomes difficult, which is not preferred.
The non-melt-flowable TFE copolymer used in the present invention is a copolymer that does not exhibit melt-moldability at temperatures above the melting point, and conforms to ASTM D1238 (372 ° C., load 5 kg) and is a temperature higher than the melting point. It is preferable that it is a copolymer whose MFR cannot be measured at . Such a non-melt-flowable TFE copolymer is a copolymer different from the TFE copolymer that has melt-flowability and can be melt-molded.
 また、非溶融流動性のTFE共重合体の比重(SSG)は2.27以下、好ましくは2.22以下、より好ましくは2.20以下であることが望ましい。SSGはその値が大きいほど分子量が小さく、小さいほど分子量は大きくなるため、SSGの値が小さい、すなわち、高分子量になるほど小さな剪断力でフィブリル化し易く、発塵性物質と混合すると容易にフィブリルを発生し高い塵埃抑制効果を得ることが出来る。一方、SSGの値が大きく(2.27を超える)、すなわち、分子量が小さくなるほどフィブリル化し難くなり、発塵性物質の塵埃を抑制する効果が劣り好ましくない。 Also, the specific gravity (SSG) of the non-melt-flowable TFE copolymer is desirably 2.27 or less, preferably 2.22 or less, and more preferably 2.20 or less. The higher the SSG value, the lower the molecular weight, and the lower the SSG value, the higher the molecular weight. A high dust suppression effect can be obtained. On the other hand, the larger the SSG value (exceeding 2.27), that is, the smaller the molecular weight, the more difficult it becomes to fibrillate, and the dust suppressing effect of the dust-generating substance is inferior, which is not preferable.
 本発明の非溶融流動性のTFE共重合体水性分散液は、高分子量の非溶融流動性のTFE共重合体の微粒子(コロイド粒子)が分散した水性分散液である。
 上記水性分散液中の非溶融流動性のTFE共重合体微粒子は、累積体積百分率が84%の時の粒径(d84)が250nm以下、好ましくは50~250nm、より好ましくは50~225nmの微粒子であることが望ましい。d84が50nmより小さい場合には、上記範囲にある場合に比して、発塵性物質の塵埃を抑制する効果が低くなるおそれがあり、一方、d84が250nmを超える場合には、沈降安定性(分散安定性)が低くなるため、好ましくない。
 粒径(d84)が250nm以下であることは、粒径(d50)が250nm以下の場合とは異なり、一次粒子に極端に大きなものが無いことを意味し、水性分散液の沈降安定性に優れることを意味している。
The non-melt-flowable TFE copolymer aqueous dispersion of the present invention is an aqueous dispersion in which fine particles (colloidal particles) of a high-molecular-weight non-melt-flowable TFE copolymer are dispersed.
The non-melt-flowable TFE copolymer fine particles in the aqueous dispersion have a particle size (d84) of 250 nm or less, preferably 50 to 250 nm, more preferably 50 to 225 nm when the cumulative volume percentage is 84%. is desirable. When d84 is less than 50 nm, the effect of dust-generating substances in suppressing dust may be lower than when d84 is within the above range. (dispersion stability) is lowered, which is not preferable.
When the particle size (d84) is 250 nm or less, unlike the case where the particle size (d50) is 250 nm or less, it means that there are no extremely large primary particles, and the sedimentation stability of the aqueous dispersion is excellent. means that
 本発明において、非溶融流動性のTFE共重合体水性分散液中の非溶融流動性のTFE共重合体の濃度は特に限定されないが、10~80質量%、好ましくは15~80質量%、より好ましくは20~80質量%の範囲にある。
 発塵性物質への非溶融流動性のTFE共重合体の分散効果を高めるためには、非溶融流動性のTFE共重合体濃度は低いほど好ましく、非溶融流動性のTFE共重合体濃度が高いと沈降安定性(分散安定性)が損なわれるおそれがあるため好ましくない。その一方、非溶融流動性のTFE共重合体水性分散液を輸送する際には、その濃度が高いほど輸送コストが節約できる。従って、本発明に用いる塵埃抑制処理剤組成物中の非溶融流動性のTFE共重合体濃度は、10質量%以上、特に20~80質量%の範囲であることが好ましい。
 また、発塵性物質へ混合する際には、本発明に用いる塵埃抑制処理剤組成物中の非溶融流動性のTFE共重合体の分散効果を高めるため、非溶融流動性のTFE共重合体濃度が5質量%以下となるように上記塵埃抑制処理剤組成物を水で希釈して使用することも可能である。
In the present invention, the concentration of the non-melt-flowable TFE copolymer in the non-melt-flowable TFE copolymer aqueous dispersion is not particularly limited, but is 10 to 80% by mass, preferably 15 to 80% by mass, or more. It is preferably in the range of 20 to 80% by mass.
In order to enhance the effect of dispersing the non-melt-flowable TFE copolymer in the dust-generating substance, the lower the concentration of the non-melt-flowable TFE copolymer, the better. If it is too high, the sedimentation stability (dispersion stability) may be impaired, which is not preferable. On the other hand, when transporting the non-melt-flowable TFE copolymer aqueous dispersion, the higher the concentration, the more the transport cost can be saved. Therefore, the concentration of the non-melt-flowable TFE copolymer in the dust-suppressing treatment agent composition used in the present invention is preferably 10% by mass or more, particularly in the range of 20 to 80% by mass.
In addition, when mixing with the dust-generating substance, in order to enhance the dispersion effect of the non-melt-flowable TFE copolymer in the dust suppressing treatment agent composition used in the present invention, the non-melt-flowable TFE copolymer It is also possible to dilute the dust suppressing treatment composition with water so that the concentration is 5% by mass or less.
 本発明に用いる非溶融流動性のTFE共重合体水性分散液中のパーフルオロオクタン酸及びその塩の含有量は、水性分散液の質量に対し10ppb未満、好ましくは5ppb未満、より好ましくは0ppbであることが望ましい。パーフルオロオクタン酸及びその塩は、難分解性で環境への影響が懸念されるため、その含有率は可及的に低いことが望まれている。
 非溶融流動性のTFE共重合体水性分散液中のパーフルオロオクタン酸及びその塩の濃度は、ポリエチレン容器に入れた非溶融流動性のTFE共重合体水性分散液10mlを-20℃の冷凍庫に入れて凍らせ、非溶融流動性のTFE共重合体を凝集させて水と分離した後、ポリエチレン容器の中身を全てソックスレーの抽出器に移し、約80mlのメタノールで7時間抽出し、メスアップしたサンプル液を液体クロマトグラフで測定して非溶融流動性のTFE共重合体水性分散液中のパーフルオロオクタン酸及びその塩濃度を算出することが出来る。
The content of perfluorooctanoic acid and its salt in the non-melt-flowable TFE copolymer aqueous dispersion used in the present invention is less than 10 ppb, preferably less than 5 ppb, more preferably 0 ppb based on the mass of the aqueous dispersion. It is desirable to have Since perfluorooctanoic acid and its salts are difficult to decompose and have environmental impact, it is desired that their content be as low as possible.
The concentration of perfluorooctanoic acid and its salt in the non-melt-flowable TFE copolymer aqueous dispersion was measured by placing 10 ml of the non-melt-flowable TFE copolymer aqueous dispersion in a polyethylene container in a freezer at -20°C. After freezing to agglomerate the non-melt-flowable TFE copolymer and separating it from water, the contents of the polyethylene container were all transferred to a Soxhlet extractor, extracted with about 80 ml of methanol for 7 hours, and diluted to a volume. The concentration of perfluorooctanoic acid and its salts in the non-melt-flowable TFE copolymer aqueous dispersion can be calculated by measuring the sample liquid with a liquid chromatograph.
 パーフルオロオクタン酸及びその塩の含有率が10ppb未満である非溶融流動性のTFE共重合体水性分散液を調製する方法は特に制限がないが、以下の方法を例示できる。
 例えば、前述した特許文献3及び特許文献4に開示されているように、重合時に重合剤としてパーフルオロオクタン酸及びその塩を使用せず、フルオロモノエーテル酸(C-O-CF(CF)COOH)のアンモニウム塩及びフルオロポリエーテル酸(C-O-[CF(CF)CF]n-CF(CF)COOH)のアンモニウム塩を用いてTFE共重合体を重合する方法が挙げられる。
The method for preparing the non-melt-flowable TFE copolymer aqueous dispersion containing less than 10 ppb of perfluorooctanoic acid and its salt is not particularly limited, but the following method can be exemplified.
For example, as disclosed in Patent Documents 3 and 4 mentioned above, perfluorooctanoic acid and its salts are not used as polymerization agents during polymerization, and fluoromonoether acids (C 3 F 7 -O-CF ( The ammonium salt of CF 3 )COOH) and the ammonium salt of fluoropolyether acid (C 3 F 7 -O-[CF(CF 3 )CF 2 ]n-CF(CF 3 )COOH) were used to prepare the TFE copolymer. A method of polymerization can be mentioned.
 本発明に用いる塵埃抑制処理剤組成物中の非溶融流動性のTFE共重合体は、TFEと前記コモノマーとの非溶融流動性のTFE共重合体であって、再分散沈降率が60%以下であることにより、非溶融流動性のTFE重合体と同様にフィブリル化し塵埃抑制効果を得ることが可能となることに加え、優れた再分散沈降率を得ることが可能になる。また非溶融流動性のTFE共重合体水性分散液中のパーフルオロオクタン酸及びその塩の含有量が10ppb未満であることにより、優れた環境性能をも有している。 The non-melt-flowable TFE copolymer in the dust suppressing treatment agent composition used in the present invention is a non-melt-flowable TFE copolymer of TFE and the above-mentioned comonomer, and has a redispersion sedimentation rate of 60% or less. As a result, it becomes possible to obtain an excellent redispersion sedimentation rate in addition to being able to fibrillate similarly to the non-melt-flowable TFE polymer and to obtain a dust suppressing effect. In addition, since the content of perfluorooctanoic acid and its salt in the non-melt-flowable TFE copolymer aqueous dispersion is less than 10 ppb, it also has excellent environmental performance.
 更に、本発明に用いる非溶融流動性のTFE共重合体水性分散液である塵埃抑制処理剤組成物は、非溶融流動性のTFE共重合体水性分散液の安定性を高めるため乳化安定剤を含んでいてもよい。乳化安定剤としては、炭化水素系アニオン系界面活性剤が好ましい。この界面活性剤は本質的に土中成分であるカルシウム、アルミニウム及び鉄分と水に不溶性又は難溶性の塩を形成するため、界面活性剤に起因する河川、湖沼及び地下水の汚染を回避することが出来る。 Furthermore, the dust-controlling agent composition, which is a non-melt-flowable TFE copolymer aqueous dispersion used in the present invention, contains an emulsion stabilizer in order to increase the stability of the non-melt-flowable TFE copolymer aqueous dispersion. may contain. Hydrocarbon anionic surfactants are preferred as emulsion stabilizers. Since this surfactant essentially forms an insoluble or sparingly soluble salt in water with calcium, aluminum and iron, which are components in the soil, it is possible to avoid pollution of rivers, lakes and groundwater caused by surfactants. I can.
 このような炭化水素系アニオン系界面活性剤としては、高級脂肪酸塩類、高級アルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩類、脂肪族アルコールリン酸エステル塩類、二塩基性脂肪酸エステルスルホン酸塩類、アルキルアリルスルホン酸塩類などがあるが、特にポリオキシエチレンアルキルフェニルエーテルエチレンスルホン酸(ポリオキシエチレンのnは1~6、アルキルの炭素数は8~11)、アルキルベンゼンスルホン酸(アルキルの炭素数は10~12)、ジアルキルスルホコハク酸エステル(アルキルの炭素数は8~10)などのNa,K,Li及びNH 塩は、非溶融流動性のTFE共重合体水性分散液に高い機械的安定性の付与が可能であり、高速攪拌等により非溶融流動性のTFE共重合体粒子が凝集すること等が防止されるため、好ましいものとして例示することができる。 Examples of such hydrocarbon-based anionic surfactants include higher fatty acid salts, higher alcohol sulfate salts, liquid fatty oil sulfate salts, fatty alcohol phosphate salts, dibasic fatty acid ester sulfonates, alkylaryl There are sulfonates and the like, especially polyoxyethylene alkylphenyl ether ethylene sulfonic acid (n of polyoxyethylene is 1 to 6, alkyl has 8 to 11 carbon atoms), alkylbenzene sulfonic acid (alkyl has 10 to 10 carbon atoms), 12) Na, K, Li and NH4 salts such as dialkyl sulfosuccinates (alkyl has 8-10 carbon atoms) impart high mechanical stability to non-melt-flowable TFE copolymer aqueous dispersions. is possible, and the non-melt-flowable TFE copolymer particles are prevented from aggregating due to high-speed agitation or the like, so it can be exemplified as a preferable one.
(塵埃抑制処理方法)
 本発明の塵埃抑制処理方法は、上記塵埃抑制処理剤組成物を発塵性物質と混合し、該混合物に20~200℃、好ましくは50~150℃の温度で圧縮-剪断作用を施し該組成物中の非溶融流動性のTFE共重合体をフィブリル化することにより、発塵性物質の塵埃の発生を抑制することができる。
 すなわち、本発明に用いる特定の非溶融流動性のTFE共重合体は、上記したような適度な条件下で圧縮-剪断作用を施すとクモの巣状にフィブリル化し超微細繊維化するため、本発明の塵埃抑制処理方法を用いて処理された塵埃抑制処理物は、発塵性物質がクモの巣状の微細繊維に捕捉凝集されて塵埃抑制されていると考えられる。
(Dust suppression treatment method)
In the dust control treatment method of the present invention, the dust control agent composition is mixed with a dust-generating substance, the mixture is subjected to compression-shearing action at a temperature of 20 to 200° C., preferably 50 to 150° C., and the composition is By fibrillating the non-melt-flowable TFE copolymer in the product, it is possible to suppress the generation of dust from dust-generating substances.
That is, when the specific non-melt-flowable TFE copolymer used in the present invention is subjected to compression-shearing action under appropriate conditions as described above, it fibrillates in a spider web-like manner and becomes ultrafine fibers. In the dust-suppressing treated material treated using the dust-suppressing treatment method, it is considered that the dust-generating substances are captured and aggregated by the spider web-like fine fibers to suppress dust.
 本発明の塵埃抑制処理方法により塵埃抑制処理される発塵性物質は、無機及び/または有機の発塵性物質であって、物質、形状などには特に限定はない。本発明は、発塵性物質として発塵性粉末状物質にも効果的に適用できる。特に好適に処理可能な発塵性物質としては、例えば、ポルトランドセメント、アルミナセメントなどのセメント類、消石灰、生石灰粉末、炭酸カルシウム、ドロマイト、マグネサイト、タルク、珪石、蛍石などの鉱産物粉末、カオリン、ベントナイト等の粘土鉱物粉、鉄鋼等の金属、非鉄金属の製造工程で副生されるスラグ粉末、石炭、ゴミ等の燃焼灰粉末、石膏粉末、粉末状金属、カーボンブラック、活性炭粉、金属酸化物等のセラミックス粉、顔料等が挙げられ、すなわち固体粒子状物質が空気中に飛散し浮遊し、塵埃を発生する全ての発塵性物質が挙げられる。 The dust-generating substance to be dust-reduced by the dust-reducing treatment method of the present invention is an inorganic and/or organic dust-generating substance, and there are no particular restrictions on the substance, shape, and the like. The present invention can also be effectively applied to dust-generating powdery substances as dust-generating substances. Dust-producing substances that can be particularly preferably treated include, for example, cements such as Portland cement and alumina cement, slaked lime, quicklime powder, mineral powders such as calcium carbonate, dolomite, magnesite, talc, silica, and fluorite, Clay mineral powder such as kaolin and bentonite, metals such as iron and steel, slag powder by-produced in the manufacturing process of non-ferrous metals, coal, combustion ash powder such as garbage, gypsum powder, powdered metals, carbon black, activated carbon powder, metals Examples include ceramic powder such as oxides, pigments, and the like, that is, all dust-generating substances that generate dust when solid particulate matter scatters and floats in the air.
 本発明に用いる塵埃抑制処理剤組成物の発塵性物質への添加量は、発塵性物質の種類、粒度分布、比重(真比重、見掛け比重)、塵埃抑制処理温度、施す圧縮-剪断作用の度合い、得られる塵埃抑制処理物の塵埃抑制の程度等によって適宜設定することができる。
 なお、添加量の目安としては、例えば、発塵性物質に対して塵埃抑制処理剤組成物を非溶融流動性のTFE共重合体樹脂固形分換算で0.001~1.0質量%、好ましくは0.005~0.50質量%の範囲で添加することにより、発塵性物質から発生する塵埃を抑制することができる。
The amount of the dust suppressing treatment agent composition used in the present invention to be added to the dust-generating substance depends on the type of the dust-generating substance, particle size distribution, specific gravity (true specific gravity, apparent specific gravity), dust suppressing treatment temperature, compression-shearing action to be applied. It can be appropriately set depending on the degree of dust suppression, the degree of dust suppression of the obtained dust-suppressed product, and the like.
As a guideline for the amount to be added, for example, the dust suppressing treatment composition is preferably 0.001 to 1.0% by mass in terms of the non-melt-flowable TFE copolymer resin solid content with respect to the dust-generating substance. is added in the range of 0.005 to 0.50% by mass, it is possible to suppress dust generated from dust-generating substances.
 更に、本発明に用いる発塵性物質の塵埃抑制処理剤組成物は、長期間の静置後であっても、非溶融流動性のTFE共重合体が強固に固まることが無い、すなわち、再分散性に優れている(再分散沈降率が低い)ため、廃棄コストの削減が可能になる等、経済性の点からも好ましい。 Furthermore, in the dust-suppressing treatment agent composition of the dust-generating substance used in the present invention, the non-melt-flowable TFE copolymer does not harden firmly even after standing still for a long period of time. Since it has excellent dispersibility (low redispersion sedimentation rate), it is possible to reduce the disposal cost, and it is also preferable from an economic point of view.
 更に、本発明の発塵性物質の塵埃抑制処理剤組成物を造粒後、乾燥して得られる粉末からなる発塵性物質の塵埃抑制処理剤粉末を用いることにより、吸湿性または潮解性等を有する水分を嫌う発塵性物質に対して防塵処理することも出来る。尚、粉末を用いた防塵処理方法については、例えば、特公昭52-32877号公報を参酌することが出来る。 Furthermore, by using the dust suppressing treatment agent powder of dust-generating substances obtained by granulating and drying the dust suppressing treatment agent composition of the present invention, hygroscopicity or deliquescence can be improved. Dust-proofing treatment can also be applied to dust-generating substances that dislike moisture. As for the dustproofing method using powder, for example, Japanese Patent Publication No. 52-32877 can be referred to.
 以下に本発明を、実施例および比較例を挙げてさらに具体的に説明するが、この説明が本発明を限定するものではない。
 本発明において各物性の測定は、下記の方法によって行った。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the description does not limit the present invention.
In the present invention, each physical property was measured by the following methods.
[1]累積体積百分率84%における粒径(d84)
 非溶融流動性のTFE共重合体粒子、またはTFE重合体粒子の粒径(d84)は、マイクロトラックUPA150 Model No.9340(日機装社製)を用いて測定した。
[1] Particle size (d84) at a cumulative volume percentage of 84%
The particle size (d84) of the non-melt-flowable TFE copolymer particles or TFE polymer particles is determined by Microtrac UPA150 Model No. 9340 (manufactured by Nikkiso Co., Ltd.) was used for the measurement.
[2]標準比重(SSG)
 ASTM D-4894により測定した。
 乳化重合により得られる非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液を、純水を用いて15質量%濃度に調整した。その後ポリエチレン容器(500ml容量)に上記濃度に調整された非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液を約750ml入れ、手で激しく振蕩して固形分を凝集させ分離した。分離した固形分を150℃で2時間乾燥した。乾燥した固形分(樹脂粉末)12.0gを直径2.85cmの円筒形型中に入れてならし、30秒後に最終圧力が350kg/cmとなるよう圧力を次第に増加し、350kg/cmの最終圧力で2分間保持した。このようにして得られた予備成形体(1サンプルに対して2個作成)を空気炉中で290℃から2℃/minで380℃まで昇温して380℃にて30分間保持、1℃/minで294℃まで降温、294℃で1分間保持した後、空気炉中から取り出し室温(23±1℃)で冷却して標準試料とした。室温(23±1℃)における同体積の水の質量に対する標準試料の質量比を標準比重とした。この場合、2個の試料の標準比重の平均値を求めて標準比重とした。
 この標準比重は平均分子量の目安となり、一般に標準比重が低い程分子量は大きい。
[2] Standard specific gravity (SSG)
Measured according to ASTM D-4894.
A non-melt-flowable TFE copolymer aqueous dispersion obtained by emulsion polymerization or a TFE polymer aqueous dispersion was adjusted to a concentration of 15% by mass using pure water. After that, about 750 ml of the non-melt-flowable TFE copolymer aqueous dispersion or the TFE polymer aqueous dispersion adjusted to the above concentration is placed in a polyethylene container (500 ml volume), and vigorously shaken by hand to agglomerate the solid content. separated. The separated solid was dried at 150° C. for 2 hours. 12.0 g of the dried solid content (resin powder) was placed in a cylindrical mold with a diameter of 2.85 cm and leveled, and after 30 seconds the pressure was gradually increased so that the final pressure reached 350 kg/cm 2 . was held for 2 minutes at a final pressure of The preforms thus obtained (two pieces per sample) were heated in an air oven from 290°C to 380°C at a rate of 2°C/min, and held at 380°C for 30 minutes. After the temperature was lowered to 294°C at a rate of 1/min and held at 294°C for 1 minute, the sample was removed from the air furnace and cooled to room temperature (23±1°C) to obtain a standard sample. The mass ratio of the standard sample to the mass of the same volume of water at room temperature (23±1° C.) was taken as the standard specific gravity. In this case, the average value of the standard specific gravities of the two samples was obtained and used as the standard specific gravity.
This standard specific gravity serves as a measure of the average molecular weight, and generally, the lower the standard specific gravity, the larger the molecular weight.
[3―1]コモノマー含有量((パーフルオロブチル)エチレン(PFBE)の含有量)
 上記[2]と同一の方法にて、非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液から得られた乾燥した固形分(樹脂粉末)0.8±0.050gを直径2.85cmの円筒形型中に入れアルミ箔の間でならし、30秒後に最終圧力が496kg/cmになるように圧力を次第に増加し、この最終圧力をかけたまま2分間保ち、測定用の試料を得た。同様にPFBE含有量(質量%)が既知の樹脂粉末(PFBE含有量が0質量%と0.03質量%の2点)についても測定試料を作成した。これらの試料の赤外線スペクトルを測定し、以下の式(3)により吸光度比Xを求めた。
吸光度比X=(C-B)/(A-B)・・・(3)
  A:936cm-1ピーク高さ(吸光度)
  B:887cm-1ピーク高さ(吸光度)
  C:875cm-1ピーク高さ(吸光度)
 PFBE含有量(質量%)が既知の試料2点のPFBE含有量(質量%)と吸光度比Xから検量線を作成し、当該試料の吸光度比Xから当該試料のPFBE含有量(質量%)を求めた。
[3-1] Comonomer content ((perfluorobutyl)ethylene (PFBE) content)
0.8±0.050 g of dry solid content (resin powder) obtained from a non-melt-flowable TFE copolymer aqueous dispersion or a TFE polymer aqueous dispersion in the same manner as in [2] above was placed in a cylindrical mold with a diameter of 2.85 cm, smoothed between aluminum foils, and after 30 seconds, the pressure was gradually increased so that the final pressure was 496 kg/cm 2 , and this final pressure was maintained for 2 minutes. , to obtain a sample for measurement. Similarly, measurement samples were also prepared for resin powders with known PFBE contents (% by mass) (two points with PFBE contents of 0% by mass and 0.03% by mass). The infrared spectra of these samples were measured, and the absorbance ratio X was determined by the following formula (3).
Absorbance ratio X = (C - B) / (A - B) (3)
A: 936 cm -1 peak height (absorbance)
B: 887 cm -1 peak height (absorbance)
C: 875 cm -1 peak height (absorbance)
A calibration curve is created from the PFBE content (mass%) of two samples whose PFBE content (mass%) is known and the absorbance ratio X, and the PFBE content (mass%) of the sample is calculated from the absorbance ratio X of the sample. asked.
[3―2]コモノマー含有量(パーフルオロプロピルビニルエーテル(PPVE)の含有量)
 上記[2]と同一の方法にて、非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液から得られた乾燥した固形分(樹脂粉末)1.75±0.005gを直径2.85cmの円筒形型中に入れアルミ箔の間でならし、30秒間圧力をかけて次第に増加させて最後の圧力が1470kg/cmになるようにし、この最終圧力をかけたまま2分間保ち、測定用の試料1を得た。同様にPPVE含有量(質量%)が既知の樹脂粉末(PPVE含有量が0質量%と0.75質量%の2点)についても測定試料を作成した。これらの試料の赤外線スペクトルを測定し、以下の式(4),(5)により吸光度比および吸光度比Xを求めた。
吸光度比X=(試料1の吸光度比/既知の樹脂粉末の吸光度比)×
0.75・・・(4)
吸光度比=B/A・・・(5)
  A:936cm-1ピーク高さ(吸光度)
  B:994cm-1ピーク高さ(吸光度)
 PPVE含有量(質量%)が既知の試料2点のPPVE含有量(質量%)と吸光度比Xから検量線を作成し、当該試料の吸光度比Xから当該試料のPPVE含有量(質量%)を求めた。
[3-2] Comonomer content (perfluoropropyl vinyl ether (PPVE) content)
1.75±0.005 g of dry solid content (resin powder) obtained from a non-melt-flowable TFE copolymer aqueous dispersion or a TFE polymer aqueous dispersion in the same manner as in [2] above was placed in a cylindrical mold with a diameter of 2.85 cm and smoothed between aluminum foil, and pressure was applied for 30 seconds, gradually increasing to a final pressure of 1470 kg/cm 2 , and this final pressure was maintained. After holding for 2 minutes, a sample 1 for measurement was obtained. Similarly, measurement samples were prepared for resin powders with known PPVE contents (% by mass) (two points with PPVE contents of 0% by mass and 0.75% by mass). The infrared spectra of these samples were measured, and the absorbance ratio and the absorbance ratio X1 were determined by the following equations (4) and (5).
Absorbance ratio X 1 = (absorbance ratio of sample 1/absorbance ratio of known resin powder) ×
0.75 (4)
Absorbance ratio = B 1 /A 1 (5)
A 1 : 936 cm −1 peak height (absorbance)
B 1 : 994 cm −1 peak height (absorbance)
A calibration curve is created from the PPVE content (mass%) of two samples whose PPVE content (mass%) is known and the absorbance ratio X 1, and the PPVE content (mass%) of the sample is calculated from the absorbance ratio X 1 of the sample. ).
[3―3]コモノマー含有量(ヘキサフルオロプロピレン(HFP)の含有量)
 上記[2]と同一の方法にて、非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液から得られた乾燥した固形分(樹脂粉末)のサンプル1.75±0.005gを直径2.85cmの円筒形型中に入れアルミ箔の間でならし、30秒間圧力をかけて次第に増加させて最後の圧力が1470kg/cmになるようにし、この最終圧力をかけたまま2分間保ち、測定用の試料を得た。同様にHFP含有量(質量%)が既知の樹脂粉末(HFP含有量が0.06質量%、0.08質量%、0.12質量%の3点)についても測定試料を作成する。これらの試料の赤外線スペクトルを測定し、以下の式(6)、(7)により吸光度比および吸光度比Xを求めた。
吸光度比X=(試料の吸光度比/既知試料の吸光度比)×0.42
・・・(6)
吸光度比=B/A・・・(7)
  A:936cm-1ピーク高さ(吸光度)
  B:983cm-1ピーク高さ(吸光度)
 HFP含有量(質量%)が既知の試料3点のHFP含有量(質量%)と吸光度比Xから検量線を作成し、当該試料の吸光度比Xから当該試料のHFP含有量(質量%)を求めた。
[3-3] Comonomer content (hexafluoropropylene (HFP) content)
Sample 1.75 ± 0 of dry solid content (resin powder) obtained from non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion by the same method as in [2] above. 0.005 g was placed in a cylindrical mold of 2.85 cm diameter and smoothed between aluminum foil, pressure was applied for 30 seconds, increasing gradually to a final pressure of 1470 kg/cm 2 , and this final pressure was applied. This was maintained for 2 minutes to obtain a sample for measurement. Similarly, measurement samples are prepared for resin powders with known HFP contents (% by mass) (three points with HFP contents of 0.06% by mass, 0.08% by mass, and 0.12% by mass). Infrared spectra of these samples were measured, and the absorbance ratio and absorbance ratio X2 were determined by the following equations (6) and (7).
Absorbance ratio X 2 = (absorbance ratio of sample/absorbance ratio of known sample) x 0.42
... (6)
Absorbance ratio = B 2 /A 2 (7)
A 2 : 936 cm −1 peak height (absorbance)
B 2 : 983 cm −1 peak height (absorbance)
A calibration curve is created from the HFP content (mass%) and the absorbance ratio X 2 of three samples whose HFP content (mass%) is known, and the HFP content (mass%) of the sample is calculated from the absorbance ratio X 2 of the sample . ).
[4]固形分質量%
 6g未満の非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液を、風袋質量計量済みのアルミ皿に計り取り、非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液の質量(乾燥前質量)を計量(小数点以下4桁まで計量)した。その後、105℃の乾燥機中で2時間静置し水分を除去し、380℃の恒温オープンで20分間焼成し室温まで冷却した後、その質量(乾燥後質量)を計量し、下記式(8)にて固形分質量%を算出した。
固形分質量%=[(乾燥後質量-アルミ皿の風袋質量)/乾燥前質量]×
100・・・(8)
[4] Solid content mass%
Weigh less than 6 g of the non-melt-flowable TFE copolymer aqueous dispersion or the TFE polymer aqueous dispersion into a tared aluminum dish, and add the non-melt-flowable TFE copolymer aqueous dispersion, or The mass of the TFE polymer aqueous dispersion (mass before drying) was weighed (measured to four decimal places). After that, leave it for 2 hours in a dryer at 105 ° C. to remove moisture, bake at a constant temperature of 380 ° C. for 20 minutes and cool to room temperature, then weigh the mass (mass after drying) and use the following formula (8 ) to calculate the solid content mass %.
Solid content mass% = [(mass after drying - tare mass of aluminum pan) / mass before drying] x
100 (8)
[5]融点
 上記[2]と同一の方法にて、非溶融流動性のTFE共重合体水性分散液、またはTFE重合体水性分散液から得られた乾燥した固形分(樹脂粉末)を、測定用スーパークリーンアルミニウム製サンプルパン(株式会社パーキンエルマージャパン製)に10.0±0.3mg入れた後カバーを乗せ、標準クリンパープレスを用いて密閉し測定用サンプルを作成した。その測定用サンプルを入力補償型示差走査熱量測定装置Diamond DSC(株式会社パーキンエルマージャパン製)を用い、空のスーパークリーンアルミニウム製サンプルパンを基準物質とし200℃から370℃まで10℃毎分で昇温しながら熱量を測定した。測定の結果、観測された吸熱ピークが最大となる点の温度を、測定用サンプル(樹脂粉末)の融点とした。
[5] Melting point In the same manner as in [2] above, the non-melt-flowable TFE copolymer aqueous dispersion or the dried solid content (resin powder) obtained from the TFE polymer aqueous dispersion is measured. After putting 10.0±0.3 mg in a super clean aluminum sample pan (manufactured by PerkinElmer Japan Co., Ltd.), a cover was put on it, and a standard crimper press was used to seal it to prepare a sample for measurement. The measurement sample was measured using an input-compensated differential scanning calorimeter Diamond DSC (manufactured by PerkinElmer Japan Co., Ltd.), and an empty super clean aluminum sample pan was used as a reference material. The calorific value was measured while warming. As a result of the measurement, the temperature at which the observed endothermic peak was maximum was taken as the melting point of the measurement sample (resin powder).
[6]遠心分離沈降試験
 表1に示す組成の非溶融流動性のTFE共重合体水性分散液またはTFE重合体水性分散液15gを、遠沈管(コーニング株式会社製、15ml遠沈管)に入れ、遠心分離機(クボタ株式会社製、テーブルトップ冷却遠心機5500、アングルローター RA508)を用い、温度20℃、回転数3000rpmにて30分間遠心分離を行った。遠心分離後の遠沈管から遠沈管の底に沈降した固形分以外(液部分:上澄み及び沈降していない固形分)を除去し、遠沈管を逆さの状態で30分間静置し液部分を更に除去して、その質量(遠沈管の質量と遠沈管の底に沈降した固形分質量の合計)を測定し、そこから遠沈管の質量を減じた質量を固形分沈降量として、下記式(10)から固形分沈降割合、及び下記式(9)から沈降率を算出した。
[6] Centrifugal sedimentation test 15 g of a non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion having the composition shown in Table 1 is placed in a centrifuge tube (manufactured by Corning, 15 ml centrifuge tube). Centrifugation was performed for 30 minutes at a temperature of 20° C. and a rotation speed of 3000 rpm using a centrifuge (manufactured by Kubota Corporation, table top cooling centrifuge 5500, angle rotor RA508). From the centrifuge tube after centrifugation, remove the solid content other than the solid content that has settled at the bottom of the centrifuge tube (liquid portion: supernatant and unsettled solid content), leave the centrifuge tube upside down for 30 minutes, and further remove the liquid portion. Removed and measured the mass (the total of the mass of the centrifuge tube and the mass of the solid content that has settled at the bottom of the centrifuge tube), and the mass obtained by subtracting the mass of the centrifuge tube from there is defined as the solid content sedimentation amount, and the following formula (10 ), and the sedimentation rate was calculated from the following formula (9).
沈降率=X/X ×100・・・(9)
 式中、
 X:比較例1に示すTFE重合体水性分散液15gを、温度20℃、回
    転速度3000rpmにて30分間、遠心分離機により遠心分離し
    た後、遠沈管の底に沈降した固形分以外(液部分:上澄み及び沈降
    していない固形分)を除去した際の下記式(10)で示される固形
    分沈降割合(%)である。
 X:実施例に示す非溶融流動性のTFE共重合体水性分散液15gを、
    温度20℃、回転速度3000rpmにて30分間、遠心分離機に
    より遠心分離した後、遠沈管の底に沈降した固形分以外(液部分:
    上澄み及び沈降していない固形分)を除去した際の下記式(10)
    で示される固形分沈降割合(%)である
固形分沈降割合(%)
=(固形分沈降量)/(遠心分離前の固形分質量)×100・・・(10)
Sedimentation rate=X 1 /X 0 ×100 (9)
During the ceremony,
X 0 : 15 g of the TFE polymer aqueous dispersion shown in Comparative Example 1 was centrifuged with a centrifuge at a temperature of 20°C and a rotation speed of 3000 rpm for 30 minutes, and then solid content other than the solid content that had settled to the bottom of the centrifuge tube. It is the sedimentation ratio (%) of solids indicated by the following formula (10) when (liquid portion: supernatant and unsettled solids) is removed.
X 1 : 15 g of the non-melt-flowable TFE copolymer aqueous dispersion shown in Examples,
After centrifuging with a centrifuge at a temperature of 20°C and a rotation speed of 3000 rpm for 30 minutes, the solid content other than the solid content that settled at the bottom of the centrifuge tube (liquid portion:
The following formula (10) when removing the supernatant and unsettled solids)
Solid content sedimentation ratio (%) which is the solid content sedimentation ratio (%) indicated by
= (solid content sedimentation amount) / (solid content mass before centrifugation) x 100 (10)
[7]遠心分離再分散試験
 上記[6]において液部分を除去した遠沈管の質量を測定し、該遠沈管に10gの純水を加え、遠沈管の底に沈降した固形分を、38kHzにて1分間超音波分散した後、遠沈管の底に沈降した固形分以外(液部分及び再分散した固形分)を除去し、遠沈管を逆さの状態で30分間静置し液部分を更に除去して、その質量(遠沈管の質量と遠沈管の底に沈降した固形分質量の合計)を測定し、そこから遠沈管の質量を減じた質量を再分散後の固形分沈降量として、下記式(2’)から再分散後の固形分沈降割合、及び下記式(1’)から再分散沈降率を算出した。
[7] Centrifugation redispersion test The mass of the centrifuge tube from which the liquid portion was removed in [6] above was measured, 10 g of pure water was added to the centrifuge tube, and the solid content that settled at the bottom of the centrifuge tube was adjusted to 38 kHz. After ultrasonic dispersion for 1 minute, remove the solid content other than the solid content (liquid portion and re-dispersed solid content) that has settled at the bottom of the centrifuge tube, and leave the centrifuge tube upside down for 30 minutes to further remove the liquid portion. Then, measure the mass (the total of the mass of the centrifuge tube and the mass of the solid content that has settled at the bottom of the centrifuge tube), and subtract the mass of the centrifuge tube from it as the solid content sedimentation amount after redispersion. The solid sedimentation ratio after redispersion was calculated from the formula (2′), and the redispersion sedimentation ratio was calculated from the following formula (1′).
再分散沈降率(%)=X/X ×100・・・(1’)
 式中、
 X:比較例1に示すTFE重合体水性分散液15gを、温度20℃、
    回転速度3000rpmにて30分間、遠心分離機により遠心分離
    した後、再分散させた際の下記式(2’)で示される固形分沈降割
    合(%)である。
 X:実施例に示す非溶融流動性のTFE共重合体水性分散液15gを、
    温度20℃、回転速度3000rpmにて30分間、遠心分離機に
    より遠心分離した後、再分散させた際の下記式(2’)で示される
    固形分沈降割合(%)である。
再分散後の固形分沈降割合(%)
=(再分散後の固形分沈降量)/(遠心分離前の固形分質量)×100
・・・(2’)
Redispersion sedimentation rate (%) = X 3 /X 2 × 100 (1')
During the ceremony,
X 2 : 15 g of the TFE polymer aqueous dispersion shown in Comparative Example 1 was heated to 20°C,
It is the solid content sedimentation ratio (%) shown by the following formula (2') when re-dispersed after centrifuging with a centrifuge at a rotation speed of 3000 rpm for 30 minutes.
X 3 : 15 g of the non-melt-flowable TFE copolymer aqueous dispersion shown in Examples,
It is the sedimentation ratio (%) of solid content represented by the following formula (2′) when re-dispersed after centrifuging with a centrifuge at a temperature of 20° C. and a rotation speed of 3000 rpm for 30 minutes.
Solid sedimentation ratio after redispersion (%)
= (Solid sedimentation amount after redispersion) / (Solid content mass before centrifugation) x 100
... (2')
[8]静置沈降試験
 表2に示すように、15gの非溶融流動性のTFE共重合体水性分散液またはTFE重合体水性分散液を遠沈管に入れ、遠沈管の口を閉じた後に、30日間及び60日間、90日間、各々室温にて静置した。30日間または60日間、90日間静置後、遠沈管の口を開け、沈降している固形分以外(液部分:上澄み及び沈降していない固形分)を除去し、遠沈管を逆さの状態で30分間静置し液部分を更に除去して、その質量(遠沈管の質量と遠沈管の底に沈降した固形分質量の合計)を測定し、そこから遠沈管の質量を減じた質量を静置後の固形分沈降量として、下記式(12)から固形分沈降割合、及び下記式(11)から沈降率を算出した。
[8] Static sedimentation test As shown in Table 2, 15 g of a non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion was placed in a centrifuge tube, and after closing the mouth of the centrifuge tube, It was allowed to stand at room temperature for 30 days, 60 days, and 90 days. After standing still for 30 days, 60 days, or 90 days, open the mouth of the centrifuge tube, remove the solid content other than the settled solid content (liquid portion: supernatant and unsettled solid content), and turn the centrifuge tube upside down. Allow to stand for 30 minutes, remove the liquid portion, measure its mass (the total mass of the centrifuge tube and the mass of the solid content that has settled at the bottom of the centrifuge tube), and subtract the mass of the centrifuge tube from it. As the solid content sedimentation amount after placing, the solid content sedimentation ratio was calculated from the following formula (12), and the sedimentation rate was calculated from the following formula (11).
沈降率=X/X ×100・・・(11)
 式中、
 X:比較例1に示すTFE重合体水性分散液15gを、遠沈管の口を閉
    じた後に、30日間及び60日間、90日間、各々室温にて静置し
    た後、沈降している固形分以外(液部分:上澄み及び沈降していな
    い固形分)を除去し、遠沈管を逆さの状態で30分間静置し液部分
    を更に除去した際の下記式(12)で示される固形分沈降割合(%
    )である。
 X:実施例に示す非溶融流動性のTFE共重合体水性分散液15gを、
    遠沈管の口を閉じた後に、30日間及び60日間、90日間、各々
    室温にて静置した後、沈降している固形分以外(液部分:上澄み及
    び沈降していない固形分)を除去し、遠沈管を逆さの状態で30分
    間静置し液部分を更に除去した後、静置後の固形分沈降量(質量)
    を測定し、下記式(12)で示される固形分沈降割合(%)である
    。
固形分沈降割合(%)
=(静置後の固形分沈降量)/(静置前の固形分質量)×100
・・・(12)
Sedimentation rate=X 5 /X 4 ×100 (11)
During the ceremony,
X 4 : 15 g of the TFE polymer aqueous dispersion shown in Comparative Example 1 was allowed to stand at room temperature for 30 days, 60 days, and 90 days after closing the mouth of the centrifuge tube, and then sedimented. Remove solids other than solids (liquid part: supernatant and unsettled solids), leave the centrifuge tube upside down for 30 minutes, and remove the liquid part. Minute sedimentation ratio (%)
).
X 5 : 15 g of the non-melt-flowable TFE copolymer aqueous dispersion shown in Examples,
After closing the mouth of the centrifuge tube, leave it at room temperature for 30 days, 60 days, and 90 days. Then, leave the centrifuge tube upside down for 30 minutes to further remove the liquid portion, and then measure the sedimentation amount (mass) of the solid content after standing.
is measured, and is the solid content sedimentation ratio (%) shown by the following formula (12).
Solid content sedimentation ratio (%)
= (Solid content sedimentation amount after standing) / (Solid content mass before standing) x 100
(12)
[9]静置沈降再分散試験
 上記[8]において静置した試験管の質量を測定し、該遠沈管に10gの純水を加え、遠沈管の底に沈降した固形分を、38kHzにて1分間超音波分散した後、遠沈管の底に沈降した固形分以外(液部分及び再分散した固形分)を除去し、遠沈管を逆さの状態で30分間静置し液部分を更に除去して、その質量(遠沈管の質量と遠沈管の底に沈降した固形分質量の合計)を測定し、そこから遠沈管の質量を減じた質量を再分散後の固形分沈降量として、下記式(14)から再分散固形分沈降割合、及び下記式(13)から再分散沈降率を算出した。
[9] Static sedimentation redispersion test The mass of the test tube left still in the above [8] is measured, 10 g of pure water is added to the centrifuge tube, and the solid content that has settled at the bottom of the centrifuge tube is measured at 38 kHz. After ultrasonically dispersing for 1 minute, remove the solid content other than the solid content (liquid portion and redispersed solid content) at the bottom of the centrifuge tube, and leave the centrifuge tube upside down for 30 minutes to further remove the liquid portion. Then, measure the mass (the total of the mass of the centrifuge tube and the mass of the solid content that has settled at the bottom of the centrifuge tube), and subtract the mass of the centrifuge tube from that mass as the solid content sedimentation amount after redispersion, using the following formula The sedimentation rate of redispersed solids was calculated from (14), and the sedimentation rate of redispersed solids was calculated from the following formula (13).
再分散沈降率=X/X ×100・・・(13)
 式中、
 X:比較例1に示すTFE重合体水性分散液15gを、遠沈管の口を閉
    じた後に、30日間及び60日間、90日間、各々室温にて静置し
    た後、沈降している固形分以外(液部分:上澄み及び沈降していな
    い固形分)を除去し、遠沈管を逆さの状態で30分間静置し液部分
    を更に除去した後、再分散させた際の下記式(14)で示される固
    形分沈降割合(%)である。
 X:実施例に示す非溶融流動性のTFE共重合体水性分散液15gを、
    遠沈管の口を閉じた後に、30日間及び60日間、90日間、各々
    室温にて静置した後、沈降している固形分以外(液部分:上澄み及
    び沈降していない固形分)を除去し、遠沈管を逆さの状態で30分
    間静置し液部分を更に除去した後、再分散させた際の下記式(14
    )で示される固形分沈降割合(%)である。
再分散後の固形分沈降割合(%)
=(再分散後の固形分沈降量)/(遠心分離前の固形分質量)×100
・・・(14)
Redispersion sedimentation rate=X 7 /X 6 ×100 (13)
During the ceremony,
X 6 : 15 g of the TFE polymer aqueous dispersion shown in Comparative Example 1 was allowed to stand at room temperature for 30 days, 60 days, and 90 days after closing the mouth of the centrifuge tube, and then sedimented. After removing non-solid content (liquid portion: supernatant and unsettled solid content), leaving the centrifuge tube upside down for 30 minutes to further remove the liquid portion, and re-dispersing, the following formula ( 14) is the solid sedimentation ratio (%).
X 7 : 15 g of the non-melt-flowable TFE copolymer aqueous dispersion shown in Examples,
After closing the mouth of the centrifuge tube, leave it at room temperature for 30 days, 60 days, and 90 days. Then, the centrifuge tube is left upside down for 30 minutes to further remove the liquid portion, and then redispersed according to the following formula (14
) is the solid sedimentation ratio (%).
Solid sedimentation ratio after redispersion (%)
= (Solid sedimentation amount after redispersion) / (Solid content mass before centrifugation) x 100
(14)
[10]落下発塵試験(落下発塵量)
 内径39cm、高さ59cmの円筒容器の頂部投入口より試料(塵埃抑制処理物)200gを自然落下させ、底面より高さ45cmの位置の容器内の浮遊粉塵量(相対濃度(CPM:Count per Minute)を散乱光式デジタル粉塵計により測定した。浮遊粉塵量の測定は、試料投入後1分間の計測を連続5回行い、試料投入前の測定値(ダークカウント)を差し引いた値の幾何平均値x(CPM)を当該試料の「落下発塵量」とした。幾何平均値xは下記式(15)により求めた。
Log x=(1/5)×Σlog(xi‐d)・・・(15)
 式中、xi:個々の浮遊粉塵量、d:ダークカウントである。
 この落下発塵量(CPM)が50以下である場合には、防塵性能がより優れているため更に好ましい。
[10] Drop dust generation test (drop dust generation amount)
200 g of the sample (dust-suppressed product) is allowed to fall naturally from the top inlet of a cylindrical container with an inner diameter of 39 cm and a height of 59 cm, and the amount of floating dust in the container at a height of 45 cm from the bottom (relative concentration (CPM: Counts per Minute) ) was measured with a scattered light digital dust meter.The amount of floating dust was measured five times continuously for one minute after the sample was added, and the geometric mean value of the values obtained by subtracting the measured value (dark count) before the sample was added. x (CPM) was taken as the “falling dust generation amount” of the sample, and the geometric mean value x was obtained by the following formula (15).
Log x=(1/5)×Σlog(xi−d) (15)
In the formula, xi: individual airborne dust amount, d: dark count.
If the falling dust generation amount (CPM) is 50 or less, the dustproof performance is more excellent, which is more preferable.
(実施例1)
(非溶融流動性のTFE共重合体の重合)
 攪拌翼及び温度調節用ジャケットを備えた、内容量が4リットルのステンレス鋼(SUS316)製オートクレーブに、パラフィンワックスを60g、脱イオン水を2087 ml、フルオロモノエーテル酸(式C-0-CF(CF)COOH)のアンモニウム塩を12.03g、フルオロポリエーテル酸(C-O-[CF(CF)CF]n-CF(CF)COOH)のアンモニウム塩を1.0g、及びポリオキシエチレンアルキルフェニルエーテルを0.01g仕込み、80℃に加温しながら窒素ガスで3回系内を置換し酸素を除いた後、真空引きを行った。その後、PFBEを4.4g、フルオロモノエーテル酸のアンモニウム塩を0.2g、及び脱イオン水を199.8ml仕込んだ後、テトラフルオロエチレン(TFE)を供給して、内圧を1.90-1.98MPaにし、110rpmで攪拌しながら、内温を80℃に保った。
(Example 1)
(Polymerization of non-melt-flowable TFE copolymer)
60 g of paraffin wax, 2087 ml of deionized water, fluoromonoether acid (formula C 3 F 7 -0 12.03 g of ammonium salt of fluoropolyether acid ( C 3 F 7 -O-[CF(CF 3 )CF 2 ]n-CF(CF 3 )COOH). 1.0 g and 0.01 g of polyoxyethylene alkylphenyl ether were charged, and while heating to 80° C., the inside of the system was purged with nitrogen gas three times to remove oxygen, and then evacuated. After that, 4.4 g of PFBE, 0.2 g of ammonium salt of fluoromonoether acid, and 199.8 ml of deionized water were charged, and then tetrafluoroethylene (TFE) was supplied to increase the internal pressure to 1.90-1. The internal temperature was kept at 80° C. while stirring at 110 rpm at 98 MPa.
 次に、400mlの水に0.12gの過硫酸アンモニウムを溶かした水溶液から、水溶液100mlをポンプで注入した。過硫酸アンモニウム水溶液の注入が終了した後、内圧を2.0MPaに保つように引き続きTFEを供給した。TFEの消費が1106.79gになった時点で、攪拌を停止した。オートクレーブ内のガスを常圧まで放出し、真空引きを行い、窒素ガスで常圧に戻した後で内容物を取り出し反応を終了し、非溶融流動性のTFE共重合体水性分散液を得た。 Next, 100 ml of an aqueous solution of 0.12 g of ammonium persulfate dissolved in 400 ml of water was pumped. After the injection of the ammonium persulfate aqueous solution was completed, TFE was continuously supplied so as to keep the internal pressure at 2.0 MPa. Stirring was stopped when TFE consumption reached 1106.79 g. The gas in the autoclave was released to normal pressure, the pressure was evacuated, and the pressure was returned to normal pressure with nitrogen gas, and then the contents were taken out and the reaction was terminated to obtain a non-melt-flowable TFE copolymer aqueous dispersion. .
 得られた非溶融流動性のTFE共重合体水性分散液について、累積体積百分率84%における粒径(d84)、SSG、PFBE含有量、固形分質量、融点、並びにパーフルオロオクタン酸及びその塩の含有量を測定した。また、遠心分離沈降試験、遠心分離沈降再分散試験を行った。結果を表1及び図1に示す。 For the resulting non-melt-flowable TFE copolymer aqueous dispersion, particle size (d84) at cumulative volume percentage of 84%, SSG, PFBE content, solid content mass, melting point, and perfluorooctanoic acid and its salts Content was measured. In addition, a centrifugal sedimentation test and a centrifugal sedimentation redispersion test were conducted. The results are shown in Table 1 and FIG.
(実施例2及び3)
 PFBE含有量を表1に示す量とした以外は実施例1と同様にして、非溶融流動性のTFE共重合体水性分散液を得た。得られた非溶融流動性のTFE共重合体水性分散液について、累積体積百分率84%における粒径(d84)、SSG、PFBE含有量、固形分質量、融点、並びにパーフルオロオクタン酸及びその塩の含有量を測定した。また、遠心分離沈降試験、遠心分離沈降再分散試験を行った。結果を表1及び図1に示す。
(Examples 2 and 3)
A non-melt-flowable TFE copolymer aqueous dispersion was obtained in the same manner as in Example 1, except that the PFBE content was changed to the amount shown in Table 1. For the resulting non-melt-flowable TFE copolymer aqueous dispersion, particle size (d84) at cumulative volume percentage of 84%, SSG, PFBE content, solid content mass, melting point, and perfluorooctanoic acid and its salts Content was measured. In addition, a centrifugal sedimentation test and a centrifugal sedimentation redispersion test were conducted. The results are shown in Table 1 and FIG.
(比較例1)
 TFE重合体水性分散液(テフロン(登録商標)PTFEディスパージョン 312-JR、三井・ケマーズ フロロプロダクツ株式会社製)について、累積体積百分率84%における粒径(d84)、SSG、PFBE含有量、固形分質量、並びにパーフルオロオクタン酸及びその塩の含有量を測定した。また、遠心分離沈降試験、遠心分離沈降再分散試験を行った。また、実施例1と同様にして物性分析した。結果を表1及び図1に示す。
(Comparative example 1)
Regarding the TFE polymer aqueous dispersion (Teflon (registered trademark) PTFE dispersion 312-JR, manufactured by Mitsui Chemours Fluoro Products Co., Ltd.), the particle size (d84) at a cumulative volume percentage of 84%, SSG, PFBE content, solid content The mass and the content of perfluorooctanoic acid and its salts were measured. In addition, a centrifugal sedimentation test and a centrifugal sedimentation redispersion test were conducted. In addition, physical properties were analyzed in the same manner as in Example 1. The results are shown in Table 1 and FIG.
 さらに、実施例1及び2、並びに比較例1について、静置沈降試験、静置沈降再分散試験を行った。結果を表2及び図2に示す。併せて、実施例2及び比較例1について静置90日後の写真を図3に示す。 Furthermore, static sedimentation tests and static sedimentation redispersion tests were conducted for Examples 1 and 2 and Comparative Example 1. The results are shown in Table 2 and FIG. In addition, photographs of Example 2 and Comparative Example 1 after standing for 90 days are shown in FIG.
(落下発塵試験)
(実施例4、比較例2)
 CaOを95.7%及びMgOを1.6%含有する粉末生石灰(2.0mmの標準網フルイを全通、1.0mmの標準網フルイ残分17.3%、600μmの標準網フルイ残分18.9%、300μmの標準網フルイ残分18.1%、150μmの標準網フルイ残分14.1%、150μmの標準網フルイ通過分31.6%の粉末生石灰)1,000gを容積5リットルの小型ソイルミキサーに投入し、回転数140rpmで攪拌しながら、実施例2または比較例1で調製した非溶融流動性のTFE共重合体水性分散液またはTFE重合体水性分散液を固形分質量換算で0.05g(生石灰に対し非溶融流動性のTFE共重合体またはTFE重合体の固形分質量で0.005質量%)に相当する質量を秤量し、非溶融流動性TFE共重合体水性分散液またはTFE重合体水性分散液に含まれる水分と水との合計が100gになるように水で希釈して、該組成物を分散させた分散液を徐々に投入した。
 投入開始より約1分後には生石灰の水和反応熱による水蒸気を発生し始め、その後約2分で水分のすべてが生石灰の水和による消石灰の生成のため使用され尽くし、水蒸気の発生が無くなった。攪拌開始より3分後にミキサーの攪拌を止めた。このときの温度を温度計で計測すると107℃であった。この塵埃抑制処理された生石灰は、水和反応により新たに生成した消石灰約30%を含む生石灰と消石灰の混合物であった。得られた塵埃抑制
処理物について落下発塵試験を行った。結果を表3に示す。
(Drop dust generation test)
(Example 4, Comparative Example 2)
Powdered quicklime containing 95.7% CaO and 1.6% MgO (through a 2.0 mm standard mesh sieve, 1.0 mm standard mesh sieve residue 17.3%, 600 μm standard mesh sieve residue 18.9%, 300 μm standard mesh sieve residue 18.1%, 150 μm standard mesh sieve residue 14.1%, 150 μm standard mesh sieve passage 31.6% powdered quicklime) 1,000 g in volume 5 liter small soil mixer, and while stirring at a rotation speed of 140 rpm, the non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion prepared in Example 2 or Comparative Example 1 was added to the solid content mass. A mass equivalent to 0.05 g in terms of conversion (0.005% by mass in solid content mass of the non-melt-flowable TFE copolymer or TFE polymer with respect to quicklime) was weighed, and the non-melt-flowable TFE copolymer aqueous The dispersion or TFE polymer aqueous dispersion was diluted with water so that the total amount of water and water contained in the dispersion was 100 g, and the dispersion in which the composition was dispersed was gradually added.
About 1 minute after the start of charging, steam started to be generated due to the heat of hydration reaction of quicklime, and in about 2 minutes after that, all of the water was used up for the production of slaked lime by hydration of quicklime, and the generation of steam stopped. . Stirring of the mixer was stopped 3 minutes after the start of stirring. When the temperature at this time was measured with a thermometer, it was 107°C. This dust-suppressing quicklime was a mixture of quicklime and slaked lime containing about 30% of slaked lime newly formed by hydration reaction. A falling dust generation test was conducted on the obtained dust-suppressing treated material. Table 3 shows the results.
(実施例5及び6、比較例3及び4)
 実施例2または比較例1で調製した非溶融流動性のTFE共重合体水性分散液またはTFE重合体水性分散液を、表3に示す添加量(発塵性物質に対する固形分質量%)に相当する質量を秤量し、非溶融流動性のTFE共重合体水性分散液またはTFE重合体水性分散液に含まれる水分と水との合計が100gになるように水で希釈して、該組成物を分散させた分散液を使用した以外は、実施例4と同様にして塵埃抑制処理された生石灰と消石灰の混合物を得た。得られた塵埃抑制処理物の落下発塵試験を行った。結果を表3に示す。
(Examples 5 and 6, Comparative Examples 3 and 4)
The non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion prepared in Example 2 or Comparative Example 1 was added in an amount shown in Table 3 (solid content mass% relative to the dust-generating substance). Weigh the mass, dilute with water so that the total amount of water and water contained in the non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion is 100 g, and prepare the composition. A mixture of dust-inhibiting treated quicklime and slaked lime was obtained in the same manner as in Example 4, except that a dispersed dispersion was used. A drop dust generation test was conducted on the obtained dust-suppressing treated material. Table 3 shows the results.
(比較例5)
 非溶融流動性のTFE共重合体水性分散液またはTFE重合体水性分散液を使用せず、水100gを用いた以外は、実施例4と同様にして得られた生石灰と消石灰の混合物の落下発塵試験を行った。結果を表3に示す。
(Comparative Example 5)
A mixture of quicklime and slaked lime obtained in the same manner as in Example 4 except that 100 g of water was used without using a non-melt-flowable TFE copolymer aqueous dispersion or TFE polymer aqueous dispersion. A dust test was performed. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例7~13)
(非溶融流動性のTFE共重合体の重合)
 攪拌翼及び温度調節用ジャケットを備えた、内容量が4リットルのステンレス鋼(SUS316)製オートクレーブに、パラフィンワックスを60g、脱イオン水を2087 ml、フルオロモノエーテル酸(式C-0-CF(CF)COOH)のアンモニウム塩を12.03g、フルオロポリエーテル酸(C-O-[CF(CF)CF]n-CF(CF)COOH)のアンモニウム塩を1.0g、及びポリオキシエチレンアルキルフェニルエーテルを0.01g仕込み、80℃に加温しながら窒素ガスで3回系内を置換し酸素を除いた後、真空引きを行った。その後、コモノマー(HFPまたはPPVE)を、表4に記載する量ポンプで注入した。その後、テトラフルオロエチレン(TFE)を供給して、内圧を1.90-1.98MPaにし、110rpmで攪拌しながら、内温を80℃に保った。
(Examples 7-13)
(Polymerization of non-melt-flowable TFE copolymer)
60 g of paraffin wax, 2087 ml of deionized water, fluoromonoether acid (formula C 3 F 7 -0 12.03 g of ammonium salt of fluoropolyether acid ( C 3 F 7 -O-[CF(CF 3 )CF 2 ]n-CF(CF 3 )COOH). 1.0 g and 0.01 g of polyoxyethylene alkylphenyl ether were charged, and while heating to 80° C., the inside of the system was purged with nitrogen gas three times to remove oxygen, and then evacuated. The comonomer (HFP or PPVE) was then pumped in the amounts listed in Table 4. Thereafter, tetrafluoroethylene (TFE) was supplied to adjust the internal pressure to 1.90-1.98 MPa, and the internal temperature was kept at 80° C. while stirring at 110 rpm.
 次に、400mlの水に0.12gの過硫酸アンモニウムを溶かした水溶液から、水溶液100mlをポンプで注入した。過硫酸アンモニウム水溶液の注入が終了した後、内圧を2.0MPaに保つように引き続きTFEを供給した。TFEの消費が1106.79gになった時点で、攪拌を停止した。オートクレーブ内のガスを常圧まで放出し、真空引きを行い、窒素ガスで常圧に戻した後で内容物を取り出し反応を終了し、非溶融流動性のTFE共重合体水性分散液を得た。 Next, 100 ml of an aqueous solution of 0.12 g of ammonium persulfate dissolved in 400 ml of water was pumped. After the injection of the ammonium persulfate aqueous solution was completed, TFE was continuously supplied so as to keep the internal pressure at 2.0 MPa. Stirring was stopped when TFE consumption reached 1106.79 g. The gas in the autoclave was released to normal pressure, the pressure was evacuated, and the pressure was returned to normal pressure with nitrogen gas, and then the contents were taken out and the reaction was terminated to obtain a non-melt-flowable TFE copolymer aqueous dispersion. .
 得られた非溶融流動性のTFE共重合体水性分散液について、累積体積百分率84%における粒径(d84)、SSG、PFBE含有量、固形分質量、融点、並びにパーフルオロオクタン酸及びその塩の量を測定した。また、遠心分離沈降試験、遠心分離沈降再分散試験を行った。結果を表4に示す。 For the resulting non-melt-flowable TFE copolymer aqueous dispersion, particle size (d84) at cumulative volume percentage of 84%, SSG, PFBE content, solid content mass, melting point, and perfluorooctanoic acid and its salts amount was measured. In addition, a centrifugal sedimentation test and a centrifugal sedimentation redispersion test were conducted. Table 4 shows the results.
(実施例14、15、21、23、24、29、30、32~35)
 下記に示す発塵性物質、及び実施例7~13で調製した非溶融流動性のTFE共重合体水性分散液を表5又は表6に示す添加量(発塵性物質に対する固形分質量%)に相当する質量を秤量し、非溶融流動性のTFE共重合体水性分散液に含まれる水分と水との合計が100gになるように水で希釈した分散液を使用し、下記の方法にて塵埃抑制処理物を得た。得られた塵埃抑制処理物の落下発塵試験を行った。結果を表5又は表6に示す。
(Examples 14, 15, 21, 23, 24, 29, 30, 32-35)
The dust-generating substances shown below and the non-melt-flowable TFE copolymer aqueous dispersions prepared in Examples 7 to 13 were added in the amounts shown in Table 5 or Table 6 (mass% of solid content relative to the dust-generating substance). Weigh a mass equivalent to , and use a dispersion diluted with water so that the total amount of water and water contained in the non-melt-flowable TFE copolymer aqueous dispersion is 100 g. A dust-suppressing treatment was obtained. A drop dust generation test was conducted on the obtained dust-suppressing treated material. The results are shown in Table 5 or Table 6.
(実施例16~20、22、25~28、31)
 下記に示す発塵性物質、及び実施例7~13で調製した非溶融流動性のTFE共重合体水性分散液を表5又は表6に示す添加量(発塵性物質に対する固形分質量%)に相当する質量を秤量し、非溶融流動性のTFE共重合体水性分散液に含まれる水分と水との合計が35gになるように水で希釈した分散液を使用し、下記の方法にて塵埃抑制処理物を得た。得られた塵埃抑制処理物の落下発塵試験を行った。結果を表5又は表6に示す。
(Examples 16-20, 22, 25-28, 31)
The dust-generating substances shown below and the non-melt-flowable TFE copolymer aqueous dispersions prepared in Examples 7 to 13 were added in the amounts shown in Table 5 or Table 6 (mass% of solid content relative to the dust-generating substance). Weigh a mass equivalent to , and use a dispersion diluted with water so that the total amount of water and water contained in the non-melt-flowable TFE copolymer aqueous dispersion is 35 g. A dust-suppressing treatment was obtained. A drop dust generation test was conducted on the obtained dust-suppressing treated material. The results are shown in Table 5 or Table 6.
<発塵性物質>
・粉末生石灰(CaOを96.0%及びMgOを0.9%含有)
(2.0mmの標準網フルイを全通、1.0mmの標準網フルイ残分0.18%、600μmの標準網フルイ残分2.48%、300μmの標準網フルイ残分20.44%、150μmの標準網フルイ残分20.58%、150μmの標準網フルイ通過分56.32%の粉末生石灰)
 粉末生石灰の防塵処理(実施例14、15、21、23、24、29、30、32~35):
 粉末生石灰1000gをモルタルミキサの容器に秤量し、容器をモルタルミキサにセットして低速で攪拌し、上記の水で希釈した分散液(表5又は表6に示す添加量に相当する非溶融流動性のTFE共重合体の質量+水100g)をモルタルミキサ内に投入し、攪拌開始より3分後にミキサーの攪拌を止めた。その後、モルタルミキサ内の生石灰をホーロートレイに移し、約5分間放冷して塵埃抑制処理物を得た。
<Dust-generating substances>
・Powder quicklime (containing 96.0% CaO and 0.9% MgO)
(Through 2.0 mm standard mesh sieve, 1.0 mm standard mesh sieve residue 0.18%, 600 μm standard mesh sieve residue 2.48%, 300 μm standard mesh sieve residue 20.44%, 150 μm standard mesh sieve residue 20.58%, 150 μm standard mesh sieve passage 56.32% powder quicklime)
Dustproof treatment of powdered quicklime (Examples 14, 15, 21, 23, 24, 29, 30, 32-35):
Weigh 1000 g of powdered quicklime in a mortar mixer container, set the container in the mortar mixer, stir at a low speed, and add the dispersion diluted with water (non-melt fluidity corresponding to the addition amount shown in Table 5 or Table 6) (mass of TFE copolymer + 100 g of water) was put into a mortar mixer, and stirring of the mixer was stopped after 3 minutes from the start of stirring. After that, the quicklime in the mortar mixer was transferred to an enamel tray and left to cool for about 5 minutes to obtain a dust-suppressed product.
・普通ポルトランドセメント、(CaOを64.3%及びMgOを1.1%、SiOを20.5%、Alを5.1%、Feを3.1%及びSOを2.0%含有)
(2.0mmの標準網フルイを全通、1.0mmの標準網フルイを全通、600μmの標準網フルイを全通、300μmの標準網フルイを全通、150μmの標準網フルイ残分0.22%、150μmの標準網フルイ通過分99.78%の普通ポルトランドセメント)
 普通ポルトランドセメント(以下、セメントという)と前記粉末生石灰の9:1混合物の防塵処理(実施例16、22、25、31):
 セメントを450g×2秤量し、ホーロー製トレイに敷均して、105℃で1昼夜加温した。粉末生石灰100gをモルタルミキサの容器に秤量し、上記の水で希釈した分散液(表5又は表6に示す添加量に相当する非溶融流動性のTFE共重合体の質量+水35g)をモルタルミキサ内に投入し、低速で1分間攪拌し材料Aを得た。得られた材料Aに、105℃に加温したセメント450gを加え、更に1分間攪拌して材料Bを得た。得られた材料Bに105℃に加温したセメント450gを加え、モルタルミキサで3分間攪拌して塵埃抑制処理物を得た。
Ordinary Portland cement, (64.3% CaO and 1.1% MgO , 20.5% SiO2, 5.1% Al2O3 , 3.1 % Fe2O3 and SO3 containing 2.0%)
(2.0 mm standard mesh sieve, 1.0 mm standard mesh sieve, 600 μm standard mesh sieve, 300 μm standard mesh sieve, 150 μm standard mesh sieve residue 0.00 22%, 99.78% ordinary Portland cement passing through a standard mesh sieve of 150 μm)
Dustproof treatment of a 9:1 mixture of ordinary Portland cement (hereinafter referred to as cement) and the powdered quicklime (Examples 16, 22, 25, 31):
450 g×2 of cement was weighed, spread evenly on an enamel tray, and heated at 105° C. for one day and night. 100 g of powdered quicklime was weighed into a container of a mortar mixer, and the dispersion diluted with water (the mass of the non-melt-flowable TFE copolymer corresponding to the addition amount shown in Table 5 or Table 6 + 35 g of water) was added to the mortar. The mixture was put into a mixer and stirred at a low speed for 1 minute to obtain a material A. 450 g of cement heated to 105° C. was added to the obtained material A, and the mixture was further stirred for 1 minute to obtain material B. 450 g of cement heated to 105° C. was added to the obtained material B, and the mixture was stirred with a mortar mixer for 3 minutes to obtain a dust-suppressing product.
・無水石膏
(2.0mmの標準網フルイを全通、1.0mmの標準網フルイを全通、600μmの標準網フルイ残分0.13%、300μmの標準網フルイ残分0.22%、150μmの標準網フルイ残分11.33%、150μmの標準網フルイ通過分88.31%の無水石膏)
無水石膏の防塵処理(実施例17,26):
 無水石膏を500g×2秤量し、ホーロー製トレイに敷均して、105℃で1昼夜加温した。加温した無水石膏500gをモルタルミキサの容器に秤量し、上記の水で希釈した分散液(表5又は表6に示す添加量に相当する非溶融流動性のTFE共重合体の質量+水35g)をモルタルミキサ内に投入し低速で1分間攪拌し、更に105℃に加温した無水石膏500gを加え3分間攪拌した後、ホーロー製トレイに敷き均し、105℃で1時間加温して混合物を得た。該混合物約1kgを乳鉢に入れ乳棒で9分間攪拌して塵埃抑制処理物を得た。
Anhydrous gypsum (2.0 mm standard mesh sieve all through, 1.0 mm standard mesh sieve all through, 600 μm standard mesh sieve residue 0.13%, 300 μm standard mesh sieve residue 0.22%, Anhydrous gypsum with a 150 μm standard mesh sieve residue of 11.33% and a 150 μm standard mesh sieve passage of 88.31%)
Dustproof treatment of anhydrite (Examples 17 and 26):
500 g×2 of anhydrous gypsum were weighed, spread evenly on an enamel tray, and heated at 105° C. for one day. 500 g of heated anhydride gypsum was weighed into a container of a mortar mixer, and the dispersion diluted with water (the mass of the non-melt-flowable TFE copolymer corresponding to the addition amount shown in Table 5 or Table 6 + 35 g of water ) is put into a mortar mixer and stirred at a low speed for 1 minute, 500 g of anhydride gypsum heated to 105 ° C. is added and stirred for 3 minutes, spread evenly on an enamel tray, and heated at 105 ° C. for 1 hour. A mixture was obtained. About 1 kg of the mixture was placed in a mortar and stirred with a pestle for 9 minutes to obtain a dust-suppressing treatment.
・高炉水砕スラグ微粉末
(2.0mmの標準網フルイを全通、1.0mmの標準網フルイを全通、600μmの標準網フルイ残分0.02%、300μmの標準網フルイ残分0.06%、150μmの標準網フルイ残分0.31%、150μmの標準網フルイ通過分99.61%の高炉水砕スラグ)
高炉水砕スラグ微粉末の防塵処理(実施例18,27):
 高炉水砕スラグ微粉末スラグを用いた以外は前記無水石膏の防塵処理と同様にして、塵埃抑制処理物を得た。
・ Ground granulated blast furnace slag (2.0 mm standard mesh sieve through, 1.0 mm standard mesh sieve through, 600 μm standard mesh sieve residue 0.02%, 300 μm standard mesh sieve residue 0 0.06%, granulated blast furnace slag with a 150 μm standard mesh sieve residue of 0.31% and a 150 μm standard mesh sieve passage of 99.61%)
Dust-proof treatment of ground granulated blast furnace slag (Examples 18 and 27):
A dust-suppressing treated product was obtained in the same manner as the dust-proofing treatment of anhydrous gypsum, except that granulated granulated blast furnace slag was used.
・ドロマイト
(2.0mmの標準網フルイを全通、1.0mmの標準網フルイ残分0.06%、600μmの標準網フルイ残分0.50%、300μmの標準網フルイ残分3.44%、150μmの標準網フルイ残分8.20%、150μmの標準網フルイ通過分87.79%のドロマイト)
ドロマイトの防塵処理(実施例19,28):
 ドロマイトを500g×2秤量し、ホーロー製トレイに敷均して、105℃で1昼夜加温した。加温したドロマイト500gをモルタルミキサの容器に秤量し、上記の水で希釈した分散液(表5又は表6に示す添加量に相当する非溶融流動性のTFE共重合体の質量+水35g)をモルタルミキサ内に投入し低速で1分間攪拌し、更に105℃に加温したドロマイト500gを加え3分間攪拌した後、ホーロー製トレイに敷き均し、105℃で1時間加温して混合物を得た。該混合物約1kgをモルタルミキサに入れ3分間攪拌して塵埃抑制処理物を得た。
Dolomite (2.0 mm standard mesh sieve through, 1.0 mm standard mesh sieve residue 0.06%, 600 μm standard mesh sieve residue 0.50%, 300 μm standard mesh sieve residue 3.44 %, Dolomite with 150 μm standard mesh sieve residue 8.20%, 150 μm standard mesh sieve passage 87.79%)
Dustproof treatment of dolomite (Examples 19 and 28):
500 g×2 of dolomite was weighed, spread evenly on an enamel tray, and heated at 105° C. for one day and night. 500 g of heated dolomite was weighed into a container of a mortar mixer, and the dispersion diluted with the above water (the mass of the non-melt-flowable TFE copolymer corresponding to the addition amount shown in Table 5 or Table 6 + 35 g of water). is put into a mortar mixer and stirred at a low speed for 1 minute, 500 g of dolomite heated to 105 ° C. is added and stirred for 3 minutes, spread evenly on an enamel tray, heated at 105 ° C. for 1 hour to make the mixture Obtained. About 1 kg of the mixture was placed in a mortar mixer and stirred for 3 minutes to obtain a dust-suppressing product.
・亜炭粉末
(2.0mmの標準網フルイを全通、1.0mmの標準網フルイを全通、600μmの標準網フルイを全通、300μmの標準網フルイ残分0.02%、150μmの標準網フルイ残分33.03%、150μmの標準網フルイ通過分66.95%の亜炭粉末)
亜炭粉末の防塵処理(実施例20):
 亜炭粉末(吸湿性を有する発塵性粉体)を500g秤量し、ホーロー製トレイに敷均して、105℃で1昼夜加温した。実施例7の水性分散液の固形分が15%になるよう純水を添加し、攪拌機をセットした造粒槽に投入した後、600~700rpmにて粉末が析出するまで攪拌し、析出後更に3~5分間攪拌を継続し、析出した粉末をメッシュで回収し水分と分離した後、150℃のオーブンにて2~15時間水分が無くなるまで乾燥し室温まで放冷して、実施例7の水性分散液からなる粉末を得た。得られた該粉末5gと加温した亜炭粉末の約1/4を、乳鉢に入れた後、乳棒でゆっくりと混合した。更に亜炭粉末を1/4ずつ3回に分けて加えながら混合した後、ホーロー製トレイに敷き均し、105℃で1時間加温して混合物を得た。該混合物約500gを乳鉢に入れ、非溶融流動性のTFE共重合体が十分にフィブリル化するまで乳棒で混合し、塵埃抑制処理物を得た。
・ Lignite powder (2.0 mm standard mesh sieve, 1.0 mm standard mesh sieve, 600 μm standard mesh sieve, 300 μm standard mesh sieve residue 0.02%, 150 μm standard Lignite powder with a mesh sieve residue of 33.03% and a standard mesh sieve passage of 66.95% of 150 μm)
Dustproof treatment of lignite powder (Example 20):
500 g of lignite powder (hygroscopic dust-generating powder) was weighed, spread evenly on an enamel tray, and heated at 105° C. for one day and night. Pure water is added so that the solid content of the aqueous dispersion of Example 7 becomes 15%, and the mixture is put into a granulation tank equipped with a stirrer, and then stirred at 600 to 700 rpm until the powder precipitates. Stirring was continued for 3 to 5 minutes, the precipitated powder was collected with a mesh and separated from water, dried in an oven at 150 ° C. for 2 to 15 hours until the water was gone, and allowed to cool to room temperature. A powder consisting of an aqueous dispersion was obtained. 5 g of the obtained powder and about 1/4 of the heated lignite powder were placed in a mortar and then slowly mixed with a pestle. Further, lignite powder was added in 3 portions of 1/4 each and mixed, then spread evenly on an enamel tray and heated at 105° C. for 1 hour to obtain a mixture. About 500 g of the mixture was placed in a mortar and mixed with a pestle until the non-melt-flowable TFE copolymer was sufficiently fibrillated to obtain a dust-suppressing treatment.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の塵埃抑制処理方法は、建材分野、土壌安定材分野、固化材分野、肥料分野、焼却灰又は有害物質の埋立処分分野、防爆分野、化粧品分野、各種プラスチックス類への充填材分野等において、発塵性物質を塵埃抑制処理して発塵性物質の塵埃抑制処理物を得るのに好適に用いる。 The dust suppression treatment method of the present invention is used in the fields of building materials, soil stabilizers, solidifying materials, fertilizers, landfill disposal of incineration ash or hazardous substances, explosion-proof fields, cosmetics fields, fillers for various plastics, etc. , it is suitably used for obtaining a dust-suppressing treated product of the dust-generating substance by subjecting the dust-generating substance to dust-suppressing treatment.

Claims (14)

  1.  非溶融流動性のテトラフルオロエチレン共重合体水性分散液から成り、前記共重合体の下記式で表す再分散沈降率が60%以下であり、前記水性分散液中のパーフルオロオクタン酸及びその塩の含有量が10ppb未満である塵埃抑制処理剤組成物を用い、該塵埃抑制処理剤組成物を発塵性物質と混合し、該混合物に20~200℃の温度条件下で圧縮-剪断作用を施すことにより、テトラフルオロエチレン共重合体をフィブリル化して発塵性物質の塵埃の発生を抑制することを特徴とする発塵性物質の塵埃抑制処理方法。
    再分散沈降率(%)=X/X ×100
     式中、
     X:水性分散液の質量に対しパーフルオロオクタン酸及びその塩
        が10ppb未満であって、前記共重合体と同濃度のテトラ
        フルオロエチレン重合体を含有する水性分散液15gを、温
        度20℃、回転速度3000rpmにて30分間、遠心分離
        機により遠心分離した後、再分散させた際の、下記式にて示
        される再分散後の固形分沈降割合(%)
     X:前記共重合体水性分散液15gを、温度20℃、回転速度3
        000rpmにて30分間、遠心分離機により遠心分離した
        後、再分散させた際の、下記式にて示される再分散後の固形
        分沈降割合(%)
    再分散後の固形分沈降割合(%)
    =(再分散後の固形分沈降量)/(遠心分離前の固形分質量)
    ×100
    Perfluorooctanoic acid and a salt thereof in the aqueous dispersion comprising an aqueous dispersion of a non-melt-flowable tetrafluoroethylene copolymer, wherein the copolymer has a redispersion sedimentation rate represented by the following formula of 60% or less. content is less than 10 ppb, the dust suppressing treatment composition is mixed with a dust-generating substance, and the mixture is subjected to compression-shearing action at a temperature of 20 to 200 ° C. A dust suppression treatment method for a dust-generating substance, characterized in that the tetrafluoroethylene copolymer is fibrillated to suppress the generation of dust by the dust-generating substance.
    Redispersion sedimentation rate (%) = X 3 /X 2 × 100
    During the ceremony,
    X2 : 15 g of an aqueous dispersion containing less than 10 ppb of perfluorooctanoic acid and its salt relative to the mass of the aqueous dispersion and containing a tetrafluoroethylene polymer having the same concentration as the copolymer was heated to 20°C. , Centrifuge for 30 minutes at a rotation speed of 3000 rpm, and then re-dispersed, solid sedimentation ratio (%) after re-dispersion shown by the following formula
    X 3 : 15 g of the aqueous copolymer dispersion was heated to 20°C and rotated at 3
    After centrifuging with a centrifuge at 000 rpm for 30 minutes and then re-dispersing, the solid sedimentation ratio (%) after re-dispersion is shown by the following formula.
    Solid sedimentation ratio after redispersion (%)
    = (Solid sedimentation amount after redispersion) / (Solid content mass before centrifugation)
    ×100
  2.  前記パーフルオロオクタン酸及びその塩の前記水性分散液中の含有量が、5ppb未満である請求項1に記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for dust-generating substances according to claim 1, wherein the content of the perfluorooctanoic acid and its salt in the aqueous dispersion is less than 5 ppb.
  3.  前記共重合体の累積体積百分率84%における粒径(d84)が250nm以下である請求項1または2に記載の発塵性物質の塵埃抑制処理方法。 3. The dust suppression treatment method for dust-generating substances according to claim 1 or 2, wherein the particle size (d84) at a cumulative volume percentage of 84% of the copolymer is 250 nm or less.
  4.  前記非溶融流動性のテトラフルオロエチレン共重合体が、テトラフルオロエチレンと、(パーフルオロアルキル)エチレン、パーフルオロ(アルキルビニルエーテル)、及びヘキサフルオロプロピレンから選択される少なくとも1種のコモノマーとの非溶融流動性の共重合体である請求項1に記載の発塵性物質の塵埃抑制処理方法。 The non-melt-flowable tetrafluoroethylene copolymer is a non-melt of tetrafluoroethylene and at least one comonomer selected from (perfluoroalkyl)ethylene, perfluoro(alkyl vinyl ether), and hexafluoropropylene. 2. The method for suppressing dust of a dust-generating substance according to claim 1, wherein the dust-generating substance is a fluid copolymer.
  5.  前記(パーフルオロアルキル)エチレン中のパーフルオロアルキル基が、炭素数1~10のパーフルオロアルキル基である請求項4記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for dust-generating substances according to claim 4, wherein the perfluoroalkyl group in the (perfluoroalkyl)ethylene is a perfluoroalkyl group having 1 to 10 carbon atoms.
  6.  前記(パーフルオロアルキル)エチレンが、(パーフルオロエチル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロヘキシル)エチレン、及び(パーフルオロオクチル)エチレンから選択される少なくとも1種である請求項4又は5記載の発塵性物質の塵埃抑制処理方法。 The (perfluoroalkyl)ethylene is at least one selected from (perfluoroethyl)ethylene, (perfluorobutyl)ethylene, (perfluorohexyl)ethylene, and (perfluorooctyl)ethylene, or 6. The dust suppression treatment method for the dust-generating substance according to 5 above.
  7.  前記パーフルオロ(アルキルビニルエーテル)中のパーフルオロアルキル基が炭素数1~10のパーフルオロアルキル基である請求項4に記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for dust-generating substances according to claim 4, wherein the perfluoroalkyl group in the perfluoro(alkyl vinyl ether) is a perfluoroalkyl group having 1 to 10 carbon atoms.
  8.  前記パーフルオロ(アルキルビニルエーテル)が、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、及びパーフルオロ(プロピルビニルエーテル)から選択される少なくとも1種である請求項7に記載の発塵性物質の塵埃抑制処理方法。 8. The dust-generating substance according to claim 7, wherein the perfluoro(alkyl vinyl ether) is at least one selected from perfluoro(methyl vinyl ether), perfluoro(ethyl vinyl ether), and perfluoro(propyl vinyl ether). Dust suppression treatment method.
  9.  前記コモノマーが、テトラフルオロエチレンに対し0.01~1.00質量%の量で含有されている請求項4に記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for dust-generating substances according to claim 4, wherein the comonomer is contained in an amount of 0.01 to 1.00% by mass with respect to tetrafluoroethylene.
  10.  前記コモノマーが、テトラフルオロエチレンに対し0.01~0.50質量%の量で含有されている請求項4に記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for dust-generating substances according to claim 4, wherein the comonomer is contained in an amount of 0.01 to 0.50% by mass with respect to tetrafluoroethylene.
  11.  前記共重合体が、塵埃抑制処理剤組成物中に10~80質量%の量で含有されている請求項1または2に記載の発塵性物質の塵埃抑制処理方法。 The method for controlling dust of dust-generating substances according to claim 1 or 2, wherein the copolymer is contained in the dust controlling agent composition in an amount of 10 to 80% by mass.
  12.  前記共重合体の比重(SSG)が、2.27以下である請求項1または2に記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for dust-generating substances according to claim 1 or 2, wherein the specific gravity (SSG) of the copolymer is 2.27 or less.
  13.  前記発塵性物質が、発塵性粉末状物質である請求項1または2に記載の発塵性物質の塵埃抑制処理方法。 The dust suppression treatment method for a dust-generating substance according to claim 1 or 2, wherein the dust-generating substance is a dust-generating powdery substance.
  14.  前記塵埃抑制処理剤組成物を造粒後、乾燥して得られる粉末からなる塵埃抑制処理剤粉末を用いた請求項1又は2記載の発塵性物質の塵埃抑制処理方法。 The method for controlling dust of dust-generating substances according to claim 1 or 2, wherein the dust controlling agent powder is obtained by granulating and then drying the dust controlling agent composition.
PCT/JP2022/044903 2021-12-06 2022-12-06 Dust suppression treatment method WO2023106288A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023529124A JPWO2023106288A1 (en) 2021-12-06 2022-12-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197885 2021-12-06
JP2021-197885 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023106288A1 true WO2023106288A1 (en) 2023-06-15

Family

ID=86730375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044903 WO2023106288A1 (en) 2021-12-06 2022-12-06 Dust suppression treatment method

Country Status (2)

Country Link
JP (1) JPWO2023106288A1 (en)
WO (1) WO2023106288A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017382A1 (en) * 1995-11-09 1997-05-15 Daikin Industries, Ltd. Fine polytetrafluoroethylene powder and production and uses thereof
JP2010037365A (en) * 2008-07-31 2010-02-18 Daikin Ind Ltd Preparation method of fluorine-containing polymer
JP2011236436A (en) * 2011-08-16 2011-11-24 Nippo Corp Method for suppression-treating dust
JP2012077312A (en) * 2012-01-11 2012-04-19 Du Pont Mitsui Fluorochem Co Ltd Dust treatment agent composition
WO2015020100A1 (en) * 2013-08-09 2015-02-12 ダイキン工業株式会社 Method for analysis of article containing a fluorine-containing surface treatment agent
JP2020189795A (en) * 2019-05-21 2020-11-26 ダイキン工業株式会社 Production method of fluoroalkylcarboxylic acid or salt of the same
JP2021042175A (en) * 2019-09-12 2021-03-18 株式会社ニッペコ Antibacterial/antifungal treatment agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017382A1 (en) * 1995-11-09 1997-05-15 Daikin Industries, Ltd. Fine polytetrafluoroethylene powder and production and uses thereof
JP2010037365A (en) * 2008-07-31 2010-02-18 Daikin Ind Ltd Preparation method of fluorine-containing polymer
JP2011236436A (en) * 2011-08-16 2011-11-24 Nippo Corp Method for suppression-treating dust
JP2012077312A (en) * 2012-01-11 2012-04-19 Du Pont Mitsui Fluorochem Co Ltd Dust treatment agent composition
WO2015020100A1 (en) * 2013-08-09 2015-02-12 ダイキン工業株式会社 Method for analysis of article containing a fluorine-containing surface treatment agent
JP2020189795A (en) * 2019-05-21 2020-11-26 ダイキン工業株式会社 Production method of fluoroalkylcarboxylic acid or salt of the same
JP2021042175A (en) * 2019-09-12 2021-03-18 株式会社ニッペコ Antibacterial/antifungal treatment agent

Also Published As

Publication number Publication date
JPWO2023106288A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
TWI394824B (en) Dust treatment agent composition
KR100982711B1 (en) Method of dust suppression disposal
WO2023106288A1 (en) Dust suppression treatment method
WO2023106287A1 (en) Dust suppression processing agent composition
JP2022168910A (en) Dust suppression treatment method of dust emission material
JP7386610B2 (en) PTFE aqueous dispersion and dust suppression treatment agent composition comprising the aqueous dispersion
JP2012077312A (en) Dust treatment agent composition
JP2022168909A (en) Dust-emission suppressing composition
JP7317307B2 (en) Dust suppression treatment method
JP5421331B2 (en) Dust suppression processing method
RU2371463C1 (en) Dust binding method of processing dust-forming materials
JP5415496B2 (en) Dust suppression processing method
JP3036065B2 (en) Process for producing filled polytetrafluoroethylene granulated powder
JPH09241387A (en) Process for granulating particulate polytetrafluoroethylene powder
RU2391375C2 (en) Processing dust binding composition
KR20230069175A (en) Compression Molding Compositions, Methods for Their Preparation, and Molded Articles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023529124

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904216

Country of ref document: EP

Kind code of ref document: A1