WO2023106238A1 - 複合共振器および電波屈折板 - Google Patents

複合共振器および電波屈折板 Download PDF

Info

Publication number
WO2023106238A1
WO2023106238A1 PCT/JP2022/044589 JP2022044589W WO2023106238A1 WO 2023106238 A1 WO2023106238 A1 WO 2023106238A1 JP 2022044589 W JP2022044589 W JP 2022044589W WO 2023106238 A1 WO2023106238 A1 WO 2023106238A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
unit structure
unit
radio wave
refracting plate
Prior art date
Application number
PCT/JP2022/044589
Other languages
English (en)
French (fr)
Inventor
博道 吉川
信樹 平松
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023106238A1 publication Critical patent/WO2023106238A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism

Definitions

  • the present disclosure relates to composite resonators and wave refracting plates.
  • Patent Literature 1 describes a technique of refracting radio waves by changing the parameters of each element in a structure in which resonator elements are arranged.
  • a composite resonator includes: a first conductor extending in a first plane direction; a second conductor separated from the first conductor in the first direction and extending in the first plane direction; a third conductor separated from the two conductors in the first direction and extending in the first surface direction; and a fourth conductor separated from the third conductor in the first direction and extending in the first surface direction.
  • a plurality of connection conductors parallel to the first direction provided along the periphery of the conductor, the first conductor, the second conductor, the third conductor, and the fourth conductor; , wherein the plurality of connection conductors are configured to electromagnetically connect the first conductor, the second conductor, the third conductor, and the fourth conductor.
  • a composite resonator includes: a first conductor extending in a first plane direction; a second conductor separated from the first conductor in the first direction and extending in the first plane direction; one conductor; and a plurality of connection conductors parallel to the first direction provided along the periphery of the second conductor, wherein the plurality of connection conductors comprise the first conductor and the second conductor. It is configured to electromagnetically connect two conductors.
  • a radio wave refracting plate according to the present disclosure includes a plurality of composite resonators according to the present disclosure, and the plurality of composite resonators are arranged in the first plane direction.
  • FIG. 1 is a diagram for explaining an outline of a radio wave refracting plate.
  • FIG. 2 is a diagram showing a configuration example of a unit structure according to the first embodiment.
  • FIG. 3 is a top view of a configuration example of a unit structure according to the first embodiment.
  • FIG. 4 is a side view of a configuration example of the unit structure according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration example of a unit structure according to a first example of a modification of the first embodiment.
  • FIG. 6 is a diagram showing a configuration example of a unit structure according to a second example of a modification of the first embodiment.
  • FIG. 7 is a diagram showing a configuration example of the radio wave refracting plate according to the first embodiment.
  • FIG. 1 is a diagram for explaining an outline of a radio wave refracting plate.
  • FIG. 2 is a diagram showing a configuration example of a unit structure according to the first embodiment.
  • FIG. 3 is a top view
  • FIG. 8 is a diagram for explaining the phase change amount of the unit structure according to the first embodiment.
  • FIG. 9 is a diagram showing a configuration example of a radio wave refracting plate according to the second embodiment.
  • FIG. 10 is a top view showing a configuration example of a radio wave refracting plate according to the third embodiment.
  • FIG. 11 is a cross-sectional view showing the configuration of the radio wave refracting plate according to the third embodiment.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be explained with reference to this XYZ orthogonal coordinate system.
  • the direction parallel to the X-axis in the horizontal plane is the X-axis direction
  • the direction parallel to the Y-axis in the horizontal plane orthogonal to the X-axis is the Y-axis direction
  • the direction parallel to the Z-axis orthogonal to the horizontal plane is the Z-axis direction. do.
  • a plane including the X-axis and the Y-axis is arbitrarily referred to as an XY plane
  • a plane including the X-axis and the Z-axis is arbitrarily referred to as an XZ plane
  • a plane including the Y-axis and Z-axis is arbitrarily referred to as a YZ plane.
  • the XY plane is parallel to the horizontal plane.
  • the XY plane, the XZ plane, and the YZ plane are orthogonal.
  • FIG. 1 is a diagram for explaining an outline of a radio wave refracting plate.
  • the radio wave refracting plate 1 includes a plurality of unit structures 10 and a substrate 12.
  • the plurality of unit features 10 are arranged in the XY plane direction, and the XY plane direction can also be called the first plane direction. That is, the plurality of unit structures 10 are arranged two-dimensionally. In this embodiment, each of the plurality of unit structures 10 has a resonant structure. The structure of the unit structure 10 will be described later.
  • the substrate 12 may be, for example, a dielectric substrate made of a dielectric. That is, in this embodiment, the radio wave refracting plate 1 is constructed by two-dimensionally arranging a plurality of unit structures 10 having a resonance structure on a substrate 12 made of a dielectric material.
  • FIG. 2 is a diagram showing a configuration example of a unit structure according to the first embodiment.
  • FIG. 3 is a top view of a configuration example of a unit structure according to the first embodiment.
  • FIG. 4 is a side view of a configuration example of the unit structure according to the first embodiment.
  • the unit structure 10 includes a first conductor 14 , a second conductor 16 , a third conductor 18 , a fourth conductor 20 and a plurality of connection conductors 22 .
  • the unit structure 10 is a kind of composite resonator.
  • the first conductors 14 can be arranged on the substrate 12 so as to lie flat on the XY plane.
  • the first conductor 14 may be, for example, a rectangular conductor formed in a frame shape. In the example shown in FIG. 2, the first conductor 14 is shown as a rectangular conductor formed in a frame shape, but the present disclosure is not limited to this.
  • the shape of the first conductor 14 may be, for example, a polygon other than a frame-shaped circle and a frame-shaped rectangle. The shape of the first conductor 14 can be arbitrarily changed according to the design.
  • the second conductor 16 can be arranged on the substrate 12 so as to extend in the XY plane at a position separated from the first conductor 14 in the Z-axis direction.
  • the second conductor 16 may be, for example, a rectangular conductor.
  • the second conductor 16 may be the reference conductor (eg, ground conductor) of the unit structure 10 .
  • the second conductor 16 has a coupling hole 16a for connecting the first conductor 14 and the second conductor 16 magnetically or capacitively. As shown in FIG. 3, the coupling hole 16a is formed in the central portion of the second conductor 16, for example.
  • the coupling hole 16 a is smaller than the inner frame of the first conductor 14 .
  • coupling hole 16a is formed in a rectangular shape, the present disclosure is not limited to this.
  • the second conductors 16 are shown as rectangular conductors, but the present disclosure is not so limited.
  • the shape of the second conductor 16 may be, for example, circular and polygonal other than rectangular.
  • the shape of the second conductor 16 can be arbitrarily changed according to the design.
  • the third conductor 18 can be arranged on the substrate 12 so as to spread over the XY plane at a position separated from the second conductor 16 in the Z-axis direction.
  • the third conductor 18 may be, for example, a rectangular conductor.
  • the third conductor 18 may be the reference conductor (eg, ground conductor) of the unit structure 10 .
  • the third conductor 18 magnetically or capacitively connects the second conductor 16 and the third conductor 18, and magnetically or capacitively connects the third conductor 18 and the fourth conductor 20. It has a coupling hole 18a connected to the .
  • the coupling hole 18a is formed in the central portion of the third conductor 18, for example.
  • the coupling hole 18a has the same shape as the coupling hole 16a. In the example shown in FIG.
  • third conductor 18 is shown as a rectangular conductor, but the present disclosure is not so limited.
  • the shape of the third conductor 18 may be, for example, circular and polygonal other than rectangular.
  • the shape of the third conductor 18 can be arbitrarily changed according to the design.
  • the third conductor 18 may be formed in the same shape as the second conductor 16 .
  • the fourth conductor 20 can be arranged on the substrate 12 so as to extend in the XY plane at a position separated from the fourth conductor 20 in the Z-axis direction.
  • the fourth conductor 20 may be, for example, a rectangular conductor formed like a frame. In the example illustrated in FIG. 2 , the fourth conductor 20 is illustrated as a rectangular conductor formed in a frame shape, but the present disclosure is not limited to this.
  • the shape of the fourth conductor 20 may be, for example, a polygon other than a frame-shaped circle and a frame-shaped rectangle. The shape of the fourth conductor 20 can be arbitrarily changed according to the design.
  • the fourth conductor 20 may be formed in the same shape as the first conductor 14 .
  • the first conductor 14, the second conductor 16, the third conductor 18, and the fourth conductor 20 have the same external dimensions.
  • connection conductor 22 electromagnetically connects the first conductor 14 , the second conductor 16 , the third conductor 18 and the fourth conductor 20 .
  • the connection conductor 22 has one end electromagnetically connected to the first conductor 14 and the other end electromagnetically connected to the fourth conductor 20 .
  • the connection conductor 22 can be, for example, a via parallel to the Z-axis direction formed from the first conductor 14 to the fourth conductor 20 .
  • a plurality of connection conductors 22 are provided along the periphery of the first conductor 14 , the second conductor 16 , the third conductor 18 , and the fourth conductor 20 .
  • connection conductors 22 are provided, for example, at regular intervals along the periphery of the first conductor 14 , the second conductor 16 , the third conductor 18 and the fourth conductor 20 .
  • the interval L between the connecting conductors 22 adjacent to each other can be, for example, equal to or less than the wavelength of radio waves received by the unit structure 10 from a base station or the like.
  • the interval L is, for example, preferably less than half the wavelength of radio waves received by the unit structure 10 from a base station or the like.
  • the first conductor 14 and the second conductor 16 are connected magnetically or capacitively.
  • the first conductor 14 and the second conductor 16 constitute one resonator.
  • the second conductor 16 and the third conductor 18 are magnetically or capacitively connected.
  • the second conductor 16 and the third conductor 18 constitute one resonator.
  • the third conductor 18 and the fourth conductor 20 are magnetically or capacitively connected.
  • the third conductor 18 and the fourth conductor 20 constitute one resonator.
  • the unit structure 10 has three resonators decoded by the first conductor 14 to the fourth conductor 20 .
  • the unit structure 10 can perform any one or more functions of a phase shift, a bandpass filter, a highpass filter, and a lowpass filter depending on the propagation characteristics of the three resonators.
  • the unit structure 10 shown in FIG. 2 has a structure in which the connection conductor 22 passes through the second conductor 16 and the third conductor 18. Not limited.
  • FIG. 5 is a diagram showing a configuration example of a unit structure according to a first example of a modified example of the first embodiment. Like the unit structure 10a shown in FIG. It may be arranged outside the portion of the connection conductor 22 arranged in the .
  • FIG. 6 is a diagram showing a configuration example of a unit structure according to a second modification of the first embodiment.
  • the unit structure 10b shown in FIG. 6 contrary to the unit structure 10a shown in FIG. It may be arranged inside a portion of the connection conductor 22 arranged between the conductor 14 and the second conductor 16 .
  • the wavelength of the electromagnetic wave corresponding to the region surrounded by the connecting conductor 22 of the second conductor 16 and the third conductor can be shortened.
  • FIG. 7 is a diagram showing a configuration example of the radio wave refracting plate according to the first embodiment.
  • the wave refracting plate 1A includes a plurality of unit structures 10A, a plurality of unit structures 10B, a plurality of unit structures 10C, and a plurality of unit structures 10D.
  • the unit structure 10A, the unit structure 10B, the unit structure 10C, and the unit structure 10D are two-dimensionally arranged on the XY plane.
  • the unit structure 10A, the unit structure 10B, the unit structure 10C, and the unit structure D are arranged in a grid on the XY plane.
  • the unit structure 10A, the unit structure 10B, the unit structure 10C, and the unit structure 10D are configured to change the phase of incident electromagnetic waves and emit them.
  • the radio wave refracting plate 1A in the radio wave refracting plate 1B, two adjacent unit structures in the X direction or the Y direction, which are the in-plane directions of the XY plane, are arranged so that the phase difference that shifts the phase of the incident electromagnetic wave is different. It is configured.
  • a plurality of unit structures 10A are arranged in the first row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10B are arranged in the second row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10C are arranged in the third row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10D are arranged in the fourth row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10A are arranged in the fifth row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10B are arranged in the sixth row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10C are arranged in the seventh row along the X direction of the radio wave refracting plate 1A.
  • a plurality of unit structures 10D are arranged in the eighth row along the X direction of the radio wave refracting plate 1A.
  • the second conductor 16A of the unit structure 10A has a coupling hole 16Aa.
  • the second conductor 16B of the unit structure 10B has a coupling hole 16Ba.
  • the second conductor 16C of the unit structure 10C has a coupling hole 16Ca.
  • a second conductor 16D of the unit structure 10D has a coupling hole 16Da.
  • the unit structures 10A to 10D differ in the outer diameter of each conductor.
  • the outer diameter dimension of each conductor is configured to decrease in the order of unit structure 10A, unit structure 10B, unit structure 10C, and unit structure 10D.
  • the coupling hole 16Aa, the coupling hole 16Ba, the coupling hole 16Ca, and the coupling hole 16Da are configured to become smaller in this order.
  • the unit structures 10A to 10D are configured to have different resonance frequencies. That is, in the radio wave refracting plate 1A, the amount of phase change is changed by changing the resonance frequency according to the position where each unit structure is arranged.
  • the four unit structures of the unit structure 10A, the unit structure 10B, the unit structure 10C, and the unit structure 10D shift the phase of the electromagnetic wave incident on the radio wave refracting plate 1A to 360 degrees. ° configured to change.
  • FIG. 8 is a diagram for explaining the phase change amount of the unit structure.
  • FIG. 8 shows the amount of phase change in the Y-axis direction. Specifically, FIG. 8 shows an example in which a plane wave arriving at the radio wave refracting plate 1A is refracted and emitted as it is. Point P1 indicates the phase of the incident electromagnetic wave, and the phase change amount is 0°. A point P2 indicates the amount of change in the phase of the first unit structure 10A in the Y-axis direction, and the amount of phase change is 90°.
  • a point P3 indicates the amount of phase change of the first unit structure 10B in the Y-axis direction, and the amount of phase change is 180°.
  • a point P4 indicates the phase change amount of the first unit structure 10C in the Y-axis direction, and the phase change amount is 270°.
  • a point P5 indicates the phase change amount of the first unit structure 10D in the Y-axis direction, and the phase change amount is 360°.
  • Point P6, point P7, point P8, and point P9 indicate phase change amounts of the second unit structure 10A, unit structure 10B, unit structure 10C, and unit structure 10D, respectively.
  • the phase change amounts of the second unit structure 10A, unit structure 10B, unit structure 10C, and unit structure 10D are 450°, 540°, 630°, and 720°, respectively. That is, in this embodiment, the four unit structures of the unit structure 10A, the unit structure 10B, the unit structure 10C, and the unit structure 10D are configured to change the phase of the electromagnetic wave arriving at the radio wave refracting plate 1A by 360°. It is
  • the unit structure 10 can be called a unit cell.
  • each of unit features 10A, 10B, 10C, and 10D may be referred to as a unit cell.
  • a repeating unit in which a plurality of unit cells with different structures are arranged can be called a supercell.
  • a row of unit structures 10A, 10B, 10C, and 10D can be called a supercell.
  • a supercell can have features such as a phase change from 0° to 360°.
  • the radio wave refracting plate 1 can have a large area by forming a super cell as one unit. Note that the unit of phase change that can be a supercell is not limited to 0° to 360°, and one unit can be from 0° to 360° ⁇ n times (where n is a natural number).
  • the phase difference with respect to the reference unit structure increases in the Y direction or the ⁇ Y direction.
  • the phase difference is advanced or retarded by a first phase difference (for example, 90°) each time the Y-direction or ⁇ Y-direction advances. is configured to
  • d is the interval between adjacent unit structures
  • is the difference between adjacent phase change amounts
  • is the angle at which an electromagnetic wave arriving at the radio wave refracting plate 1A is refracted
  • the gradient of the phase change amount is described as being in the Y-axis direction, but the present disclosure is not limited to this.
  • the direction of refraction can be arbitrarily designed by setting the gradient of the phase change amount in an arbitrary direction. Also, in the example shown in FIG.
  • the phase change amount is linearly changed, but the present disclosure is not limited to this.
  • the plane wave arriving at the radio wave refracting plate 1A can be converged or diffused at an arbitrary location by forming a curve for the gradient of the phase change amount.
  • phase difference between the electromagnetic waves emitted by two unit structures adjacent in the X-axis direction is 90°, but the present disclosure is not limited to this.
  • a phase difference between electromagnetic waves emitted by two adjacent unit structures may be, for example, 30°, 45°, 60°, or the like. That is, the phase difference between electromagnetic waves emitted by two adjacent unit structures may be arbitrary.
  • phase difference between the electromagnetic waves emitted by the unit structures 10A and 10B, the phase difference between the electromagnetic waves emitted by the unit structures 10B and 10C, and the unit structures 10C and 10D are different.
  • the phase difference of the emitted electromagnetic waves and the phase difference of the electromagnetic waves emitted from the unit structures 10D and 10A are the same at 90 degrees, but the present disclosure is not limited to this.
  • the phase difference between the electromagnetic waves emitted by 10D and unit structure 10A may be different.
  • the phase difference between the electromagnetic waves emitted by 10D and unit structure 10A may be set according to the design and intended use.
  • a plurality of unit structures having different outer diameters of the first conductor 14 to the fourth conductor 20 are two-dimensionally arranged so as to change the phase of the incoming electromagnetic wave by 360°. do.
  • the area of the radio wave refracting plate 1A can be increased by repeating the set of arrangements so as to change the phase of the incoming electromagnetic wave by 360°.
  • FIG. 9 is a diagram showing a configuration example of a radio wave refracting plate according to the second embodiment.
  • a radio wave refracting plate 1B includes a plurality of unit structures 10A, a plurality of unit structures 10B, a plurality of unit structures 10C, and a plurality of unit structures 10D.
  • the unit structures 10A to 10D are different from the radio wave refracting plate 1A shown in FIG. 7 in that they are arranged radially on the XY plane.
  • the first row along the Y direction of the radio wave refracting plate 1B includes the unit structure 10B, the unit structure 10A, the unit structure 10B, the unit structure 10C, the unit structure 10C, the unit structure 10B, and the unit structure 10A. , and the unit structure 10B are arranged in order.
  • the unit structure 10C, the unit structure 10B, the unit structure 10C, the unit structure 10D, the unit structure 10D, the unit structure 10C, and the unit structure 10B , and the unit structure 10C are arranged in order.
  • the unit structure 10C, the unit structure 10B, the unit structure 10C, the unit structure 10D, the unit structure 10D, the unit structure 10C, and the unit structure 10B , and the unit structure 10C are arranged in order.
  • the unit structure 10B, the unit structure 10A, the unit structure 10B, the unit structure 10C, the unit structure 10C, the unit structure 10B, and the unit structure 10A , and the unit structure 10B are arranged in order.
  • the unit structures 10A to 10D among the unit structures 10A to 10D, four unit structures 10E having the smallest outer diameter dimension of the first conductor 14 to the fourth conductor 20 are arranged. .
  • the unit structures 10A, the unit structures 10B, and the unit structures 10C are radially arranged around the four unit structures 10D.
  • the four unit structures 10A to 10D are configured to change the phase of the electromagnetic wave incident on the radio wave refracting plate 1B by 360°.
  • the unit structure for example, unit It is configured to be large relative to structure 10D.
  • the radio wave refracting plate 1B has a plurality of unit structures arranged in the first radiation direction on the XY plane, and the phase difference (for example, 90°) increases as the phase difference advances in the direction from the center to the outside or the direction from the outside to the center. Configured to go forward or slow down.
  • a plurality of unit structures having different outer diameters of the first conductor 14 to the fourth conductor 20 are two-dimensionally arranged radially so as to change the phase of an incoming electromagnetic wave by 360°. array to Thus, in the first embodiment, the area of the radio wave refracting plate 1B can be increased by repeating the set of arrangements so as to change the phase of the incoming electromagnetic wave by 360°.
  • the radio wave refracting plate 1A is described as arranging a plurality of unit structures such as the unit structures 10A to 10D in which the outer diameter dimensions of the first conductors 14 to the fourth conductors 20 are different.
  • the present disclosure is not so limited.
  • the unit structures may be arranged with the height thereof changed along the Y-axis direction.
  • FIG. 10 is a top view showing a configuration example of a radio wave refracting plate according to the third embodiment.
  • FIG. 11 is a cross-sectional view showing the configuration of the radio wave refracting plate according to the third embodiment.
  • the radio wave refracting plate 1B includes a unit structure 10E, a unit structure 10F, a unit structure 10G, and a unit structure 10H.
  • the unit structure 10E, the unit structure 10F, the unit structure 10G, and the unit structure 10H may be configured so that the height decreases in this order.
  • FIG. 11 shows a cross-sectional view along line AA in FIG.
  • the unit structure 10E includes a first conductor 14E, a second conductor 16E, a third conductor 18E, and a fourth conductor 20E.
  • the first conductor 14E to the fourth conductor 20E are electromagnetically connected by a connection conductor (not shown).
  • the second conductor 16E and the third conductor 18E are each composed of one sheet of conductor.
  • the second conductor 16E has a coupling hole 16Ea.
  • the third conductor 18E has a coupling hole 18Ea.
  • the coupling hole 16Ea and the coupling hole 18Ea may have the same shape and size.
  • the unit structure 10F includes a first conductor 14F, a second conductor 16F, a third conductor 18F, and a fourth conductor 20F.
  • the first conductor 14F to the fourth conductor 20F are electromagnetically connected by a connection conductor (not shown).
  • the first conductor 14F and the fourth conductor 20F have the same shape as the first conductor 14E and the fourth conductor 20E of the unit structure 10E, respectively.
  • the second conductor 16F and the third conductor 18F each have a two-layer structure in which two conductors face each other.
  • the second conductor 16F has a coupling hole 16Fa.
  • the third conductor 18F has a coupling hole 18Fa.
  • the coupling hole 16Fa and the coupling hole 18Fa may have the same shape and size.
  • the heights of the second conductor 16F and the third conductor 18F are respectively higher than the heights of the second conductor 16E and the third conductor 18E of the unit structure 10E.
  • the size of the joint hole 16Fa and the joint hole 18Fa is smaller than the joint hole 16Ea and the joint hole 18Ea of the unit structure 10E, respectively.
  • the unit structure 10G includes a first conductor 14G, a second conductor 16G, a third conductor 18G, and a fourth conductor 20G.
  • the first conductor 14G to the fourth conductor 20G are electromagnetically connected by a connection conductor (not shown).
  • the first conductor 14G and the fourth conductor 20G have the same shape as the first conductor 14E and the fourth conductor 20E of the unit structure 10E, respectively.
  • the second conductor 16G and the third conductor 18G each have a two-layer structure in which two conductors face each other.
  • the second conductor 16G has a coupling hole 16Ga.
  • the third conductor 18G has a coupling hole 18Ga.
  • the coupling hole 16Ga and the coupling hole 18Ga may have the same shape and size.
  • the heights of the second conductor 16G and the third conductor 18G are respectively higher than the heights of the second conductor 16F and the third conductor 18F of the unit structure 10F.
  • the sizes of the coupling holes 16Ga and 18Ga are respectively smaller than the coupling holes 16Fa and 18Fa of the unit structure 10F.
  • the unit structure 10H includes a first conductor 14H, a second conductor 16H, a third conductor 18H, and a fourth conductor 20H.
  • the first conductor 14H to the fourth conductor 20H are electromagnetically connected by a connection conductor (not shown).
  • the first conductor 14H and the fourth conductor 20H have the same shape as the first conductor 14E and the fourth conductor 20E of the unit structure 10E, respectively.
  • the second conductor 16H and the third conductor 18H each have a two-layer structure in which two conductors face each other.
  • the second conductor 16H has a coupling hole 16Ha.
  • the third conductor 18H has a coupling hole 18Ha.
  • the coupling hole 16Ha and the coupling hole 18Ha may have the same shape and size.
  • the heights of the second conductor 16H and the third conductor 18H are respectively higher than the heights of the second conductor 16G and the third conductor 18G of the unit structure 10G.
  • the sizes of the coupling holes 16Ha and 18Ha are smaller than the coupling holes 16Ga and 18Ga, respectively.
  • the height dimensions of the unit structures 10E to 10H are changed. are made identical.
  • the unit structures 10E to 10H can be arranged two-dimensionally.
  • the unit structures 10E to 10H can be arranged in a lattice or radially like the unit structures 10A to 10D shown in FIGS. 7 and 9, for example.
  • a plurality of unit structures with different height dimensions are two-dimensionally arranged so as to change the phase of the incoming electromagnetic wave by 360°.
  • the area of the radio wave refracting plate can be increased by repeating the set of arrangements so as to change the phase of the incoming electromagnetic wave by 360°.
  • the elements of the embodiments function as spatial filters. As a result, it can be easily designed by controlling the phase with the frequency shift of the spatial filter. Further, it is no longer necessary for the elements of the transmission plate to have similar shapes, and the elements of various embodiments can be mixed to function as a transmission plate.
  • the phase as a normalized filter is also determined. That is, the initial phase of the filter can be changed depending on whether the inter-resonator coupling is inductive or capacitive.
  • design can be facilitated by making the low phase side of the elements of the transmission plate capacitive and the high phase side inductive.
  • design can be facilitated by making the low phase side of the elements of the transmission plate inductive and the high phase side capacitive.
  • the boundary between the low-phase side and the high-phase side is not limited to 180°, and various angles such as 120°, 135°, 150°, 210°, 225°, and 240° can be adopted. If the phase range in one supercell of the spatial filter is 0° to 360° ⁇ n, it may contain multiple phase boundaries. The multiple phase boundaries are not limited to a single angle, but can be independent.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

複合共振器は、第1面方向に広がる第1導電体と、第1導電体と第1方向に離れており、第1面方向に広がる第2導電体と、第2導電体と前記第1方向に離れており、前記第1面方向に広がる第3導電体と、第3導電体と第1方向に離れており、第1面方向に広がる第4導電体と、第1導電体と、第2導電体と、第3導電体と、第4導電体との周囲に沿って複数設けられた第1方向と平行な接続導体と、を含む。複数の接続導体は、第1導電体と、第2導電体と、第3導電体と、第4導電体とを電磁気的に接続するように構成されている。

Description

複合共振器および電波屈折板
 本開示は、複合共振器および電波屈折板に関する。
 誘電体レンズを用いずに、電磁波を制御する技術が知られている。例えば、特許文献1には、共振器素子を配列した構造において、各素子のパラメータを変化させることで、電波を屈折させる技術が記載されている。
特開2015-231182号公報
 本開示に係る複合共振器は、第1面方向に広がる第1導電体と、前記第1導電体と第1方向に離れており、前記第1面方向に広がる第2導電体と、前記第2導電体と前記第1方向に離れており、前記第1面方向に広がる第3導電体と、前記第3導電体と前記第1方向に離れており、前記第1面方向に広がる第4導電体と、前記第1導電体と、前記第2導電体と、前記第3導電体と、前記第4導電体との周囲に沿って複数設けられた前記第1方向と平行な接続導体と、を含み、複数の前記接続導体は、前記第1導電体と、前記第2導電体と、前記第3導電体と、前記第4導電体とを電磁気的に接続するように構成されている。
 本開示に係る複合共振器は、第1面方向に広がる第1導電体と、前記第1導電体と第1方向に離れており、前記第1面方向に広がる第2導電体と、前記第1導電体と、前記第2導電体との周囲に沿って複数設けられた前記第1方向と平行な接続導体と、を含み、複数の前記接続導体は、前記第1導電体と、前記第2導電体とを電磁気的に接続するように構成されている。
 本開示に係る電波屈折板は、本開示の複合共振器を複数含み、複数の前記複合共振器は前記第1面方向に並んでいる。
図1は、電波屈折板の概要を説明するための図である。 図2は、第1実施形態に係る単位構造の構成例を示す図である。 図3は、第1実施形態に係る単位構造の構成例の上面図である。 図4は、第1実施形態に係る単位構造の構成例の側面図である。 図5は、第1実施形態の変形例の第1の例に係る単位構造の構成例を示す図である。 図6は、第1実施形態の変形例の第2の例に係る単位構造の構成例を示す図である。 図7は、第1実施形態に係る電波屈折板の構成例を示す図である。 図8は、第1実施形態に係る単位構造の位相変化量を説明するための図である。 図9は、第2実施形態に係る電波屈折板の構成例を示す図である。 図10は、第3実施形態に係る電波屈折板の構成例を示す上面図である。 図11は、第3実施形態に係る電波屈折板の構成を示す断面図である。
 以下に、本開示の実施形態を図面に基づいて詳細に説明する。以下に説明する実施形態により本開示が限定されるものではない。
 以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。水平面内のX軸と平行な方向をX軸方向とし、X軸と直交する水平面内のY軸と平行な方向をY軸方向とし、水平面と直交するZ軸と平行な方向をZ軸方向とする。また、X軸およびY軸を含む平面を適宜XY平面と称し、X軸およびZ軸を含む平面を適宜XZ平面と称し、Y軸およびZ軸を含む平面を適宜YZ平面と称する。XY平面は、水平面と平行である。XY平面とXZ平面とYZ平面とは直交する。
 [概要]
 (電波屈折板)
 図1を用いて、電波屈折板の概要について説明する。図1は、電波屈折板の概要を説明するための図である。
 図1に示すように、電波屈折板1は、複数の単位構造10と、基板12と、を含む。
 複数の単位構造10は、XY面方向に並んでいる、XY面方向は、第1面方向とも呼ばれ得る。すなわち、複数の単位構造10は、2次元的に並んでいる。本実施形態では、複数の単位構造10は、それぞれ、共振構造を有する。単位構造10の構造については、後述する。基板12は、例えば、誘電体で形成された誘電体基板であり得る。すなわち、本実施形態では、電波屈折板1は、共振構造を有する複数の単位構造10を誘電体から構成された基板12に、単位構造10を2次元的に並ぶことで構成されている。
 [第1実施形態]
 図2と、図3と、図4とを用いて、第1実施形態に係る単位構造の構成例について説明する。図2は、第1実施形態に係る単位構造の構成例を示す図である。図3は、第1実施形態に係る単位構造の構成例の上面図である。図4は、第1実施形態に係る単位構造の構成例の側面図である。
 図2に示すように、単位構造10は、第1導電体14と、第2導電体16と、第3導電体18と、第4導電体20と、複数の接続導体22と、を含む。単位構造10は、複合共振器の一種である。
 第1導電体14は、基板12において、XY平面に平がるように並び得る。第1導電体14は、例えば、枠状に形成された矩形の導体であり得る。図2に示す例では、第1導電体14は、枠状に形成された矩形の導電体として示しているが、本開示はこれに限定されない。第1導電体14の形状は、例えば、枠状に形成された円形、および枠状に形成された矩形を除く多角形であってもよい。第1導電体14の形状は、設計に応じて、任意に変更し得る。
 第2導電体16は、基板12において、第1導電体14からZ軸方向の離れた位置で、XY平面に広がるように並び得る。第2導電体16は、例えば、矩形に形成された導電体であり得る。第2導電体16は、単位構造10の基準導体(例えば、グラウンド導体)であり得る。第2導電体16は、第1導電体14と、第2導電体16とを磁気的または容量的に接続するための結合孔16aを有する。図3に示すように、結合孔16aは、例えば、第2導電体16の中央部に形成されている。結合孔16aは、第1導電体14の内枠よりも小さい。結合孔16aは、矩形に形成されているが、本開示はこれに限定されない。図2に示す例では、第2導電体16は、矩形の導電体として示しているが、本開示はこれに限定されない。第2導電体16の形状は、例えば、円形、および矩形を除く多角形であってもよい。第2導電体16の形状は、設計に応じて、任意に変更し得る。
 第3導電体18は、基板12において、第2導電体16からZ軸方向の離れた位置で、XY平面に広がるように並び得る。第3導電体18は、例えば、矩形に形成された導電体であり得る。第3導電体18は、単位構造10の基準導体(例えば、グラウンド導体)であり得る。第3導電体18は、第2導電体16と、第3導電体18とを磁気的または容量的に接続し、かつ第3導電体18と、第4導電体20とを磁気的または容量的に接続する結合孔18aを有する。結合孔18aは、例えば、第3導電体18の中央部に形成されている。結合孔18aは、結合孔16aと同一の形状を有している。図2に示す例では、第3導電体18は、矩形の導電体として示しているが、本開示はこれに限定されない。第3導電体18の形状は、例えば、円形、および矩形を除く多角形であってもよい。第3導電体18の形状は、設計に応じて、任意に変更し得る。第3導電体18は、第2導電体16と同一の形状に形成され得る。
 第4導電体20は、基板12において、第4導電体20からZ軸方向の離れた位置で、XY平面に広がるように並び得る。第4導電体20は、例えば、枠状に形成された矩形の導体であり得る。図2に示す例では、第4導電体20は、枠状に形成された矩形の導電体として示しているが、本開示はこれに限定されない。第4導電体20の形状は、例えば、枠状に形成された円形、および枠状に形成された矩形を除く多角形であってもよい。第4導電体20の形状は、設計に応じて、任意に変更し得る。第4導電体20は、第1導電体14と同一の形状に形成され得る。
 第1導電体14と、第2導電体16と、第3導電体18と、第4導電体20とは、同一の外形寸法を有している。
 接続導体22は、第1導電体14と、第2導電体16と、第3導電体18と、第4導電体20とを電磁気的に接続する。接続導体22は、一端が第1導電体14に電磁気的に接続され、他端が第4導電体20に電磁気的に接続されている。接続導体22は、例えば、第1導電体14から第4導電体20にわたって形成されたZ軸方向に平行なビアであり得る。接続導体22は、第1導電体14と、第2導電体16と、第3導電体18と、第4導電体20との周囲に沿って複数設けられている。接続導体22は、例えば、第1導電体14と、第2導電体16と、第3導電体18と、第4導電体20との周囲に沿って等間隔で設けられている。図4に示すように、互いに隣接する接続導体22間の間隔Lは、例えば、単位構造10が基地局などから受ける電波の波長以下であり得る。間隔Lは、例えば、単位構造10が基地局などから受ける電波の半波長以下であることが好ましい。
 単位構造10において、第1導電体14と、第2導電体16とは、磁気的または容量的に接続されている。第1導電体14と、第2導電体16とは、1つの共振器を構成している。
 単位構造10において、第2導電体16と、第3導電体18とは、磁気的または容量的に接続されている。第2導電体16と、第3導電体18とは、1つの共振器を構成している。
 単位構造10において、第3導電体18と、第4導電体20とは、磁気的または容量的に接続されている。第3導電体18と、第4導電体20とは、1つの共振器を構成している。
 単位構造10は、第1導電体14から第4導電体20により3つの共振器が復号化されている。単位構造10は、3つの共振器の伝搬特性によって位相シフト、バンドパスフィルタ、ハイパスフィルタ、およびロウパスフィルタのいずれか1つ、または複数の機能を奏しうる。
 [第1実施形態の変形例]
 次に、第1実施形態の変形例について説明する。たとえば、図2に示した単位構造10は、接続導体22が、第2導電体16と第3導電体18とを貫通しているような構造となっているが、第1実施形態はこれに限られない。
 図5は、第1実施形態の変形例の第1の例に係る単位構造の構成例を示す図である。図5に示す単位構造10aのように、第2導電体16と第3導電体18との間に配される接続導体22の一部分は、第1導電体14と第2導電体16との間に配される接続導体22の一部分よりも、外側に配されるようにしてもよい。
 このように配されることで、第2導電体16と第3導電体の接続導体22で囲まれる領域が広がる。その結果、対応する電磁波の波長を長くすることができる。
 図6は、第1実施形態の変形例の第2の例に係る単位構造の構成例を示す図である。図6に示す単位構造10bのように、図5に示す単位構造10aとは逆に、第2導電体16と第3導電体18との間に配される接続導体22の一部分が、第1導電体14と第2導電体16との間に配される接続導体22の一部分よりも、内側に配されるようにしてもよい。その結果、第2導電体16と第3導電体の接続導体22で囲まれる領域の対応する電磁波の波長を逆に短くすることができる。
 [電波屈折板]
 図7を用いて、第1実施形態に係る電波屈折板の構成例について説明する。図7は、第1実施形態に係る電波屈折板の構成例を示す図である。
 図7に示すように、電波屈折板1Aは、複数の単位構造10Aと、複数の単位構造10Bと、複数の単位構造10Cと、複数の単位構造10Dと、を含む。単位構造10Aと、単位構造10Bと、単位構造10Cと、単位構造10Dとは、XY平面に2次元的に並んでいる。単位構造10Aと、単位構造10Bと、単位構造10Cと、単位構造Dとは、XY平面において、格子状に並んでいる。単位構造10Aと、単位構造10Bと、単位構造10Cと、単位構造10Dとは、入射してきた電磁波の位相を変化させて出射するように構成されている。電波屈折板1Aにおいて、電波屈折板1Bにおいて、XY平面の面内方向であるX方向またはY方向における、隣接する2つの単位構造は、入射してきた電磁波の位相をシフトさせる位相差が異なるように構成されている。
 図7に示す例では、電波屈折板1AのX方向に沿った1列目には、複数の単位構造10Aが並んでいる。電波屈折板1AのX方向に沿った2列目には、複数の単位構造10Bが並んでいる。電波屈折板1AのX方向に沿った3列目には、複数の単位構造10Cが並んでいる。電波屈折板1AのX方向に沿った4列目には、複数の単位構造10Dが並んでいる。電波屈折板1AのX方向に沿った5列目には、複数の単位構造10Aが並んでいる。電波屈折板1AのX方向に沿った6列目には、複数の単位構造10Bが並んでいる。電波屈折板1AのX方向に沿った7列目には、複数の単位構造10Cが並んでいる。電波屈折板1AのX方向に沿った8列目には、複数の単位構造10Dが並んでいる。
 単位構造10Aの第2導電体16Aは、結合孔16Aaを有する。単位構造10Bの第2導電体16Bは、結合孔16Baを有する。単位構造10Cの第2導電体16Cは、結合孔16Caを有する。単位構造10Dの第2導電体16Dは、結合孔16Daを有する。
 単位構造10Aから単位構造10Dは、それぞれ、各導電体の外径寸法が異なる。単位構造10A、単位構造10B、単位構造10C、単位構造10Dの順に各導電体の外径寸法が小さくなるように構成されている。また、結合孔16Aa、結合孔16Ba、結合孔16Ca、結合孔16Daの順に小さくなるように構成されている。
 すなわち、単位構造10Aから単位構造10Dは、それぞれ、共振周波数が異なるように構成されている。すなわち、電波屈折板1Aにおいて、各単位構造を並べる位置に応じて共振周波数を変化させることで、位相変化量を変化させている。
 本実施形態において、図7に示す例では、単位構造10Aと、単位構造10Bと、単位構造10Cと、単位構造10Dとの4つの単位構造により、電波屈折板1Aに入射した電磁波の位相を360°変化するように構成されている。
 図8を用いて、第1実施形態に係る単位構造の位相変化量について説明する。図8は、単位構造の位相変化量を説明するための図である。
 本実施形態において、図7に示す例では、単位構造10Aと、単位構造10Bと、単位構造10Cと、単位構造10Dとの4つの単位構造により、電波屈折板1Aに入射した電磁波の位相を360°変化するように構成されている。図8は、Y軸方向の位相の変化量を示す。具体的には、図8は、電波屈折板1Aに到来した平面波を平面波のまま方向を屈折させて出射する例を示している。ポイントP1は、入射する電磁波の位相を示し、位相変化量は0°である。ポイントP2は、Y軸方向の1個目の単位構造10Aの位相の変化量を示し、位相変化量は90°である。ポイントP3は、Y軸方向の1個目の単位構造10Bの位相変化量を示し、位相変化量は180°である。ポイントP4は、Y軸方向の1個目の単位構造10Cの位相変化量を示し、位相変化量は270°である。ポイントP5は、Y軸方向の1個目の単位構造10Dの位相変化量を示し、位相変化量は360°である。ポイントP6、ポイントP7、ポイントP8、およびポイントP9は、それぞれ、2個目の単位構造10A、単位構造10B、単位構造10C、および単位構造10Dの位相変化量を示している。2個目の単位構造10A、単位構造10B、単位構造10C、および単位構造10Dの位相変化量は、それぞれ、450°、540°、630°、および720°である。すなわち、本実施形態では、単位構造10Aと、単位構造10Bと、単位構造10Cと、単位構造10Dの4つの単位構造で、電波屈折板1Aに到来した電磁波の位相を360°変化させるように構成されている。
 単位構造10は、単位セルと呼ばれうる。例えば、単位構造10A,10B,10C,10Dの各々は単位セルと呼ばれうる。構造の異なる複数の単位セルが並ぶ繰り返し単位は、スーパーセルと呼ばれうる。例えば、単位構造10A,10B,10C,10Dの並びをスーパーセルと呼びうる。スーパーセルは、0°から360°の位相変化が生じる等の機能を有しうる。電波屈折板1は、スーパーセルを一つのユニットとしてセル化することで大面積化されうる。なお、スーパーセルとなりうる位相変化の単位は、0°から360°に限られず、0°から360°×n倍(ここでnは自然数である。)までのものを1つの単位としうる。
 すなわち、図7に示す例では、Y軸方向に並ぶ複数の単位構造において、Y方向又は-Y方向に進むにつれて、基準となる単位構造(例えば、単位構造10A)に対して位相差が大きくなるように構成されている。図7に示す例では、Y軸方向に並ぶ複数の単位構造において、位相差は、Y方向又は-Y方向進むごとに第1位相差(例えば、90°)で位相が進む、または遅くなるように構成されている。
 電波屈折板1Aにおいて、隣り合う単位構造の間隔をd、隣り合う位相変化量の差をΔΦ、電波屈折板1Aに到来した電磁波を屈折させる角度をθ、電波屈折板1Aに到来した電磁波の波数をkとすると、「ΔΦ=kdsinθ」とPいう関係が成り立つ。図8に示す例では、位相変化量の勾配をY軸方向として説明したが、本開示はこれに限定されない。本開示では、位相変化量の勾配を任意の方向にとることによって、屈折させる方向を任意に設計することができる。また、図8に示す例では、位相変化量は線形に変化させるものとして説明したが、本開示はこれに限定されない。本開示では、例えば、位相変化量の勾配を曲線にすることによって、電波屈折板1Aに到来した平面波を任意の場所に収束させたり、拡散させたりすることができる。
 なお、図8に示す例において、X軸方向で隣接する2つの単位構造が出射する電磁波の位相差は90°であるものとして説明したが、本開示はこれに限定されない。隣接する2つの単位構造が出射する電磁波の位相差は、例えば、30°、45°、60°などであってもよい。すなわち、隣接する2つの単位構造が出射する電磁波の位相差は、任意であってもよい。
 また、図8に示す例において、単位構造10Aと単位構造10Bとが出射する電磁波の位相差、単位構造10Bと単位構造10Cとが出射する電磁波の位相差、単位構造10Cと単位構造10Dとが出射する電磁波の位相差、単位構造10Dと単位構造10Aとが出射する電磁波の位相差は、それぞれ、90°で同じであるが、本開示はこれに限定されない。単位構造10Aと単位構造10Bとが出射する電磁波の位相差、単位構造10Bと単位構造10Cとが出射する電磁波の位相差、単位構造10Cと単位構造10Dとが出射する電磁波の位相差、単位構造10Dと単位構造10Aとが出射する電磁波の位相差は、それぞれ、異なっていてもよい。単位構造10Aと単位構造10Bとが出射する電磁波の位相差、単位構造10Bと単位構造10Cとが出射する電磁波の位相差、単位構造10Cと単位構造10Dとが出射する電磁波の位相差、単位構造10Dと単位構造10Aとが出射する電磁波の位相差は、設計や使用用途などに応じて設定すればよい。
 上述のとおり、第1実施形態は、到来した電磁波の位相を360°変化させるように、第1導電体14から第4導電体20の外径寸法が異なる複数の単位構造を2次元的に配列する。これにより、第1実施形態は、到来した電磁波の位相を360°変化させるよう配列のセットを繰り返すことで、電波屈折板1Aの面積を大きくすることができる。
 [第2実施形態]
 図9を用いて、第2実施形態に係る電波屈折板の構成例について説明する。図9は、第2実施形態に係る電波屈折板の構成例を示す図である。
 図9に示すように、第2実施形態に係る電波屈折板1Bは、複数の単位構造10Aと、複数の単位構造10Bと、複数の単位構造10Cと、複数の単位構造10Dと、を含む。単位構造10Aから単位構造10Dは、XY平面において、放射状に並んでいる点で、図7に示す電波屈折板1Aとは異なる。
 図9に示す例では、電波屈折板1BのY方向に沿った1行目には、単位構造10B、単位構造10A、単位構造10B、単位構造10C、単位構造10C、単位構造10B、単位構造10A、および単位構造10Bが順に並んでいる。
 図9に示す例では、電波屈折板1BのY方向に沿った2行目には、単位構造10C、単位構造10B、単位構造10C、単位構造10D、単位構造10D、単位構造10C、単位構造10B、および単位構造10Cが順に並んでいる。
 図9に示す例では、電波屈折板1BのY方向に沿った3行目には、単位構造10C、単位構造10B、単位構造10C、単位構造10D、単位構造10D、単位構造10C、単位構造10B、および単位構造10Cが順に並んでいる。
 図9に示す例では、電波屈折板1BのY方向に沿った4行目には、単位構造10B、単位構造10A、単位構造10B、単位構造10C、単位構造10C、単位構造10B、単位構造10A、および単位構造10Bが順に並んでいる。
 すなわち、電波屈折板1Bの中心の領域には、単位構造10Aから単位構造10Dのうち、第1導電体14から第4導電体20の外径寸法が最も小さい単位構造10Eが4個並んでいる。そして、電波屈折板1Bにおいては、4個の単位構造10Dを中心にして、単位構造10Aと、単位構造10B、単位構造10Cとが放射状に並んでいる。
 図9に示す例では、単位構造10Aから単位構造10Dの4つの単位構造により、電波屈折板1Bに入射した電磁波の位相を360°変化するように構成されている。電波屈折板1Bは、XY平面の第1放射方向に並ぶ複数の単位構造において、位相差が中心から外側に向かう方向又は外側から中心に向かう方向に進むにつれて、基準となる単位構造(例えば、単位構造10D)に対して大きくなるように構成されている。電波屈折板1Bは、XY平面の第1放射方向に並ぶ複数の単位構造において、位相差が中心から外側に向かう方向又は外側から中心に向かう方向に進むごとに位相差(例えば、90°)で進む又は遅くなるように構成されている。
 上述のとおり、第2実施形態は、到来した電磁波の位相を360°変化させるように、第1導電体14から第4導電体20の外径寸法が異なる複数の単位構造を2次元的に放射状に配列する。これにより、第1実施形態は、到来した電磁波の位相を360°変化させるよう配列のセットを繰り返すことで、電波屈折板1Bの面積を大きくすることができる。
 [第3実施形態]
 次に、第3実施形態について説明する。
 第1実施形態では、電波屈折板1Aにおいて、単位構造10Aから単位構造10Dのように、第1導電体14から第4導電体20の外径寸法が異なる複数の単位構造を配列するものとして説明したが、本開示はこれに限定されない。本開示においては、例えば、電波屈折板1Aにおいて、Y軸方向に沿って単位構造の高さを変化させて配列するようにしてもよい。
 図10と、図11とを用いて、第3実施形態に係る電波屈折板の構成例について説明する。図10は、第3実施形態に係る電波屈折板の構成例を示す上面図である。図11は、第3実施形態に係る電波屈折板の構成を示す断面図である。
 図10に示すように、電波屈折板1Bは、単位構造10Eと、単位構造10F、単位構造10Gと、単位構造10Hと、を含む。例えば、単位構造10E、単位構造10F、単位構造10G、単位構造10Hの順に高さが低くなるように構成され得る。
 図11は、図10におけるA-A断面図を示す。図11に示すように、単位構造10Eは、第1導電体14Eと、第2導電体16Eと、第3導電体18Eと、第4導電体20Eと、を含む。第1導電体14Eから第4導電体20Eは、図示しない接続導体により電磁気的に接続されている。
 第2導電体16Eと、第3導電体18Eとは、それぞれ、1枚の導電体により構成されている。第2導電体16Eは、結合孔16Eaを有する。第3導電体18Eは、結合孔18Eaを有する。結合孔16Eaと、結合孔18Eaとの形状と、大きさとは同じであり得る。
 図11に示すように、単位構造10Fは、第1導電体14Fと、第2導電体16Fと、第3導電体18Fと、第4導電体20Fと、を含む。第1導電体14Fから第4導電体20Fは、図示しない接続導体により電磁気的に接続されている。
 第1導電体14Fおよび第4導電体20Fは、それぞれ、単位構造10Eの第1導電体14Eおよび第4導電体20Eと同一の形状を有する。
 第2導電体16Fと、第3導電体18Fとは、それぞれ、2枚の導電体が対向する2層構造を有する。第2導電体16Fは、結合孔16Faを有する。第3導電体18Fは、結合孔18Faを有する。結合孔16Faと、結合孔18Faとの形状と、大きさは同じであり得る。
 第2導電体16Fおよび第3導電体18Fの高さは、それぞれ、単位構造10Eの第2導電体16Eおよび第3導電体18Eの高さよりも高い。結合孔16Faおよび結合孔18Faの大きさは、それぞれ、単位構造10Eの結合孔16Eaおよび結合孔18Eaよりも小さい。
 図11に示すように、単位構造10Gは、第1導電体14Gと、第2導電体16Gと、第3導電体18Gと、第4導電体20Gと、を含む。第1導電体14Gから第4導電体20Gは、図示しない接続導体により電磁気的に接続されている。
 第1導電体14Gおよび第4導電体20Gは、それぞれ、単位構造10Eの第1導電体14Eと、第4導電体20Eと、同一の形状を有する。
 第2導電体16Gと、第3導電体18Gとは、それぞれ、2枚の導電体が対向する2層構造を有する。第2導電体16Gは、結合孔16Gaを有する。第3導電体18Gは、結合孔18Gaを有する。結合孔16Gaと、結合孔18Gaとの形状と、大きさは同じであり得る。
 第2導電体16Gおよび第3導電体18Gの高さは、それぞれ、単位構造10Fの第2導電体16Fおよび第3導電体18Fの高さよりも高い。結合孔16Gaおよび結合孔18Gaの大きさは、それぞれ、単位構造10Fの結合孔16Faおよび結合孔18Faよりも小さい。
 図11に示すように、単位構造10Hは、第1導電体14Hと、第2導電体16Hと、第3導電体18Hと、第4導電体20Hと、を含む。第1導電体14Hから第4導電体20Hは、図示しない接続導体により電磁気的に接続されている。
 第1導電体14Hと、第4導電体20Hとは、それぞれ、単位構造10Eの第1導電体14Eと、第4導電体20Eと、同一の形状を有する。
 第2導電体16Hと、第3導電体18Hとは、それぞれ、2枚の導電体が対向する2層構造を有する。第2導電体16Hは、結合孔16Haを有する。第3導電体18Hは、結合孔18Haを有する。結合孔16Haと、結合孔18Haとの形状と、大きさは同じであり得る。
 第2導電体16Hおよび第3導電体18Hの高さは、それぞれ、単位構造10Gの第2導電体16Gおよび第3導電体18Gの高さよりも高い。結合孔16Haおよび結合孔18Haの大きさは、それぞれ、結合孔16Gaおよび結合孔18Gaよりも小さい。
 第3実施形態では、第2導電体16Eから第2導電体16H、および第3導電体18Eから第3導電体18Hの高さを変えることで、単位構造10Eから単位構造10Hの高さ寸法を同一にしている。
 第3実施形態においては、単位構造10Eから単位構造10Hを2次元的に配列し得る。単位構造10Eから単位構造10Hは、例えば、図7および図9に示す単位構造10Aから単位構造10Dのように格子状または放射状に配置し得る。
 上述のとおり、第3実施形態は、到来した電磁波の位相を360°変化させるように、高さ寸法が異なる複数の単位構造を2次元的に配列する。これにより、第1実施形態は、到来した電磁波の位相を360°変化させるよう配列のセットを繰り返すことで、電波屈折板の面積を大きくすることができる。
 以上、本開示の実施形態を説明したが、実施形態の素子は、空間フィルタとしての機能を有している。この結果、空間フィルタの周波数シフトで位相を制御することで容易に設計可能である。また、透過板の素子として相似形を取る必要はなくなり、各種実施形態の素子を混在させても透過板として機能できる。この際、一般的なフィルタとしての性質として、段数と素子間の結合を決めると規格化フィルタとしての位相も決定される。つまり、共振器間結合をインダクタ性にするか容量性にするかよってフィルタの初期位相を変えることができる。例えば、空間フィルタにおいて、透過板の素子の低位相側を容量性にし、高位相側をインダクタ性にすることで設計を容易にし得る。例えば、空間フィルタにおいて、透過板の素子の低位相側をインダクタ性にし、高位相側を容量性にすることで設計を容易にし得る。低位相側と高位相側との境としては、180°に限られず、120°、135°、150°、210°、225°、240°といった種々の角度を採用しうる。空間フィルタの1つのスーパーセルにおける位相範囲が0°から360°×nとなる場合、複数の位相の境を含みうる。この複数の位相の境は、単一角度に限られず、個々に独立しうる。
 以上、本開示の実施形態を説明したが、これら実施形態の内容により本開示が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 1 電波屈折板
 10 単位構造
 12 基板
 14 第1導電体
 16 第2導電体
 16a,18a 結合孔
 18 第3導電体
 20 第4導電体
 22 接続導体

Claims (8)

  1.  第1面方向に広がる第1導電体と、
     前記第1導電体と第1方向に離れており、前記第1面方向に広がる第2導電体と、
     前記第2導電体と前記第1方向に離れており、前記第1面方向に広がる第3導電体と、
     前記第3導電体と前記第1方向に離れており、前記第1面方向に広がる第4導電体と、
     前記第1導電体と、前記第2導電体と、前記第3導電体と、前記第4導電体との周囲に沿って複数設けられた前記第1方向と平行な接続導体と、を含み、
     複数の前記接続導体は、前記第1導電体と、前記第2導電体と、前記第3導電体と、前記第4導電体とを電磁気的に接続するように構成されている、
     複合共振器。
  2.  前記第1導電体と、前記第2導電体とは、磁気的または容量的に接続され、
     前記第2導電体と、前記第3導電体とは、磁気的または容量的に接続され、
     前記第3導電体と、前記第4導電体とは、磁気的または容量的に接続されている、
     請求項1に記載の複合共振器。
  3.  互いに隣接する前記接続導体間の間隔は、受信電波の波長以下である、
     請求項1または2に記載の複合共振器。
  4.  互いに隣接する前記接続導体間の間隔は、前記受信電波の半波長以下である、
     請求項3に記載の複合共振器。
  5.  前記第2導電体と、前記第3導電体とは、前記第1導電体と、前記第4導電体とを磁気的または容量的に接続する結合孔を有する、
     請求項1から4のいずれか1項に記載の複合共振器。
  6.  前記第1導電体と、前記第4導電体とは、枠状に構成されている、
     請求項1から5のいずれか1項に記載の複合共振器。
  7.  第1面方向に広がる第1導電体と、
     前記第1導電体と第1方向に離れており、前記第1面方向に広がる第2導電体と、
     前記第1導電体と、前記第2導電体との周囲に沿って複数設けられた前記第1方向と平行な接続導体と、を含み、
     複数の前記接続導体は、前記第1導電体と、前記第2導電体とを電磁気的に接続するように構成されている、
     複合共振器。
  8.  請求項1から7のいずれか1項に記載の複合共振器を複数含み、
     複数の前記複合共振器は前記第1面方向に並んでいる、
     電波屈折板。
PCT/JP2022/044589 2021-12-07 2022-12-02 複合共振器および電波屈折板 WO2023106238A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-198812 2021-12-07
JP2021198812 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023106238A1 true WO2023106238A1 (ja) 2023-06-15

Family

ID=86730467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044589 WO2023106238A1 (ja) 2021-12-07 2022-12-02 複合共振器および電波屈折板

Country Status (1)

Country Link
WO (1) WO2023106238A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212705A1 (en) * 2004-03-23 2005-09-29 Alcatel Phase shifter module whose linear polarization and resonant lenght are varied by means of MEMS switches
JP2013062802A (ja) * 2011-09-14 2013-04-04 Thales 相補的なスロット及びマイクロストリップ共振に基づいた再構成可能な放射位相シフトセル
JP2015231182A (ja) * 2014-06-06 2015-12-21 日本電信電話株式会社 メタマテリアル受動素子
JP2022165403A (ja) * 2021-04-19 2022-10-31 京セラ株式会社 電波屈折板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212705A1 (en) * 2004-03-23 2005-09-29 Alcatel Phase shifter module whose linear polarization and resonant lenght are varied by means of MEMS switches
JP2013062802A (ja) * 2011-09-14 2013-04-04 Thales 相補的なスロット及びマイクロストリップ共振に基づいた再構成可能な放射位相シフトセル
JP2015231182A (ja) * 2014-06-06 2015-12-21 日本電信電話株式会社 メタマテリアル受動素子
JP2022165403A (ja) * 2021-04-19 2022-10-31 京セラ株式会社 電波屈折板

Similar Documents

Publication Publication Date Title
KR102027714B1 (ko) 다중 빔 안테나 어레이 어셈블리를 위한 메타물질 기반 트랜스밋어레이
US10062494B2 (en) Apparatus with 3D inductors
WO2022002257A1 (zh) 多频段共口径天线和通信设备
KR20100039264A (ko) 반사기 어레이 및 이러한 반사기 어레이를 포함하는 안테나
US20230327334A1 (en) Radio wave refracting plate
US9537221B2 (en) Reflectarray
US11189933B2 (en) Phase control device, antenna system, and method of controlling phase of electromagnetic wave
JP2008252293A (ja) 3次元左手系メタマテリアル
JP2010154530A (ja) 二重偏波平面状放射素子およびそのような放射素子を備えるアレイアンテナ
WO2020090838A1 (ja) アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器
JP7328070B2 (ja) アンテナ、アレイアンテナ、無線通信モジュール、および無線通信機器
TWI714410B (zh) 天線結構及單一雙極化天線陣列
WO2023106238A1 (ja) 複合共振器および電波屈折板
JPH06105847B2 (ja) シャープな特性を有する周波数選択スクリーン
CN212810537U (zh) 空气微带线天线单元及天线系统
KR101014972B1 (ko) 메타머티리얼 안테나 및 이를 이용한 통신 장치
JP2020036221A (ja) アンテナ
JP6255605B2 (ja) 人工誘電体共振器及びそれを用いた人工誘電体フィルタ
CN219643120U (zh) 一种应急通信的滤波天线阵列
JP2014072818A (ja) リフレクトアレー
JP2014150463A (ja) リフレクトアレー及び素子
WO2023199870A1 (ja) 電波屈折板
WO2022224493A1 (ja) 複合共振器および集合体
JP2019036767A (ja) 電磁界バンドストップフィルタ
WO2024043073A1 (ja) 電波反射板および複合共振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904167

Country of ref document: EP

Kind code of ref document: A1