WO2023105997A1 - 分取液体クロマトグラフおよびその制御方法 - Google Patents

分取液体クロマトグラフおよびその制御方法 Download PDF

Info

Publication number
WO2023105997A1
WO2023105997A1 PCT/JP2022/040722 JP2022040722W WO2023105997A1 WO 2023105997 A1 WO2023105997 A1 WO 2023105997A1 JP 2022040722 W JP2022040722 W JP 2022040722W WO 2023105997 A1 WO2023105997 A1 WO 2023105997A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
needle
detector
sampler
liquid chromatograph
Prior art date
Application number
PCT/JP2022/040722
Other languages
English (en)
French (fr)
Inventor
康介 中嶋
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2023566163A priority Critical patent/JPWO2023105997A1/ja
Publication of WO2023105997A1 publication Critical patent/WO2023105997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors

Definitions

  • the present disclosure relates to a liquid chromatography analysis system that fractionates components of a sample introduced into a detector and a control method thereof.
  • Some liquid chromatographs include liquid feed pumps, sample injection devices, separation columns, and detectors.
  • a loop injection method (partial injection method) is available as a sample injection method using a sample injection device.
  • a sample injection device that follows the loop injection method for example, Autorunpla SIL-10AF manufactured by Shimadzu Corporation (https://www.shimadzu.eu/autosampler (Non-Patent Document 1)) was weighed through a sampling needle. A portion of the sample is injected into the analysis channel after filling the sample loop.
  • a preparative liquid chromatograph further includes, in addition to the configuration of the liquid chromatograph described above, an automatic preparative device that separates each component separated by the separation column.
  • the automatic sorting device divides and collects the eluate containing the components separated in the separation column into a plurality of collection containers.
  • a preparative liquid chromatograph includes a liquid-sending pump, a sampler connected to the liquid-sending pump, a separation column connected to the sampler, and a detection device connected to the separation column and the sampler.
  • the sampler includes a needle for aspirating or discharging a sample, a channel switching valve connected to the needle, and a reservoir for storing the sample, and the state of the channel switching valve between a first state and a second state, wherein in the first state, the needle moves through the flow path switching valve to the reservoir connected, and in the second state, the needle is connected to the detector via the channel switching valve.
  • a preparative liquid chromatograph control method is a preparative liquid chromatograph control method, wherein the preparative liquid chromatograph includes a liquid-sending pump and a sampler connected to the liquid-sending pump. a separation column connected to the sampler; and a detector connected to the separation column and the sampler, wherein the sampler includes a needle for aspirating or discharging a sample, and a channel connected to the needle It includes a switching valve and a reservoir for storing the sample.
  • the control method comprises the step of setting the state of the channel switching valve to a first state for sending a sample to the separation column, wherein in the first state the needle moves through the channel switching valve. connected to the reservoir.
  • the control method includes the step of setting the state of the flow path switching valve to a second state in order to fractionate the eluate from the detector, and in the second state, the needle moves to the flow path It is connected to the detector through a switching valve.
  • FIG. 1 is a diagram showing the configuration of a preparative liquid chromatograph 1;
  • FIG. 3 is a diagram showing the configuration of a sampler 300;
  • FIG. It is a figure which shows the structure of 3 way valve
  • FIG. 3 illustrates the states of sampler 300 for sampling operations;
  • FIG. 10 is a diagram showing the state of the first unit 310 of the sampler 300 for sorting operation;
  • FIG. 10 is a diagram showing the state of the first unit 310 of the sampler 300 for sorting operation;
  • FIG. 10 is a diagram showing the state of the first unit 310 of the sampler 300 for sorting operation;
  • FIG. 10 is a diagram showing the state of the first unit 310 of the sampler 300 for sorting operation;
  • FIG. 10 is a diagram showing the state of the first unit 310 of the sampler 300 for sorting operation;
  • FIG. 10 is a diagram showing the state of the first unit 310 of the sampler 300 for sorting operation;
  • FIG. 10
  • FIG. 10 is a diagram for explaining the cleaning operation of the needle 313; A make-up operation in sampler 300 will be described. It is a figure for demonstrating the modification of sorting operation
  • FIG. FIG. 10 is a flowchart of a subroutine of processing for causing the sampler 300 to perform an operation for sorting in step S400; FIG.
  • FIG. 1 is a diagram showing the configuration of a preparative liquid chromatograph 1.
  • the preparative liquid chromatograph 1 includes a controller 100, a liquid transfer pump 200, a sampler 300, a separation column 400, and a detector 500.
  • three points A to C are shown in the flow path connecting the elements.
  • a point A represents a position between the liquid transfer pump 200 and the sampler 300 .
  • Point B represents a position between sampler 300 and separation column 400 .
  • Point C represents a position between detector 500 and sampler 300 .
  • the controller 100 controls the operation of the preparative liquid chromatograph 1.
  • Controller 100 includes processor 101 , storage device 102 and interface 103 .
  • controller 100 controls the operation of preparative liquid chromatograph 1 by processor 101 executing programs stored in storage device 102 .
  • the processor 101 may execute programs stored in a recording medium removable from the controller 100 .
  • the interface 103 is implemented by a communication interface (for example, network card).
  • the processor 101 communicates with other elements in the preparative liquid chromatograph 1 (such as the sampler 300 ) and with devices outside the preparative liquid chromatograph 1 via the interface 103 .
  • the liquid-sending pump 200 supplies the solution used as the mobile phase toward the separation column 400 .
  • the sampler 300 supplies a sample for analysis toward the separation column 400 .
  • the sampler 300 also supplies the eluate from the detector 500 to a collection container.
  • the separation column 400 separates the target component contained in the sample by being supplied with the sample together with the mobile phase.
  • the separation column 400 is housed in a column oven (not shown) and maintained at the temperature set in the analysis method by the column oven.
  • the detector 500 analyzes the sample supplied from the separation column 400.
  • Detector 500 is implemented by, for example, a UV-Visible spectrophotometer, a diode array detector, and/or a differential refractive index detector.
  • FIG. 2 is a diagram showing the configuration of the sampler 300. As shown in FIG. FIG. 2 shows the sampler 300 divided into a first unit 310 and a second unit 350 . Each configuration will be described below.
  • a first unit 310 includes a syringe 311 , a needle 313 , a channel switching valve 320 and a sample loop 336 .
  • the channel switching valve 320 includes six ports 321-326. Syringe 311 is connected to port 322 via channel 335 . A sample loop 336 is provided on the channel 335 . Syringe 311 is configured to eject and aspirate liquid or gas to channel 335 . Sample loop 336 may store sample aspirated through needle 313 . In this sense, sample loop 336 is an example of a reservoir.
  • a 3-way valve 312 is provided on the channel 335 .
  • Syringes 311 are connected via three-way valves 312 to channels 335 and containers containing various liquids.
  • FIG. 3 and 4 are diagrams showing the configuration in the vicinity of the 3-way valve 312.
  • FIG. As described below with reference to FIGS. 3 and 4, the 3-way valve 312 can switch the connection partner of the syringe 311 .
  • the 3-way valve 312 connects the syringe 311 to the container 340 via the channel 342 .
  • Container 340 contains liquid 341 .
  • the syringe 311 is capable of aspirating liquid 341 and causing it to accumulate therein.
  • the 3-way valve 312 connects the syringe 311 to the flow path 335.
  • the syringe 311 can dispense the liquid 341 stored within the syringe 311 toward the channel 335 in the state shown in FIG.
  • needle 313 is connected to port 323 via channel 334 . As will be described later with reference to FIGS. 5 to 8 and the like, the needle 313 can be used for injecting a sample and dispensing the effluent from the detector 500.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the port 326 is connected to the drain via the channel 333. Port 325 is closed. Port 321 is connected to channel 332 and port 324 is connected to channel 331 .
  • the channels 331 and 332 are connected to the channel 330 by a three-way joint 314 .
  • Point C is located on channel 330 . That is, the first unit 310 is supplied with the eluate from the detector 500 via the channel 330 to the channels 331 and 332 .
  • Arrow D3 represents the direction in which the effluent flows from detector 500 to channel 330.
  • FIG. Channel 331 is an example of a first line.
  • Channel 332 is an example of a second line.
  • the second unit 350 includes an injection port 351 , a channel switching valve 360 and a sample loop 374 .
  • the channel switching valve 360 includes six ports 361-366. Injection port 351 is connected to port 361 via channel 372 .
  • Port 362 is connected to port 365 via channel 373 .
  • a sample loop 374 is provided on the channel 373 .
  • Port 366 is connected to the drain.
  • the port 363 is connected to the flow path 371.
  • Point B is located on channel 371 .
  • Port 364 is connected to flow path 370 .
  • Point A is located on channel 370 . That is, the second unit 350 is supplied with the mobile phase from the liquid transfer pump 200 via the channel 370 and supplies the liquid to the separation column 400 via the channel 371 .
  • FIG. 5 is a diagram showing the states of sampler 300 for a sampling operation.
  • the channel switching valve 320 of the first unit 310 connects the port 361 with the port 362, connects the port 363 with the port 364, and connects the port 365 with the port 366.
  • the state of the sampler 300 when the first unit 310 is controlled to the state shown in FIG. 5 is also called “first state”. Further, the state shown in FIG. 5 is also referred to as the “first state” of the channel switching valve 320 or the first unit 310 .
  • the channel switching valve 360 of the second unit 350 connects the port 361 with the port 362, connects the port 363 with the port 364, and connects the port 365 with the port 366.
  • the needle 313 In sampling, when the first unit is in the first state, the needle 313 is moved into a container (not shown) containing the sample. Syringe 311 aspirates the sample through needle 313 . The aspirated sample is stored in sample loop 336 .
  • the needle 313 is then moved to connect with the injection port 351, as shown in FIG. Syringe 311 ejects the sample in sample loop 336 to injection port 351 via needle 313 .
  • the sample is thereby stored in the sample loop 374 of the second unit 350 .
  • connection state of the port in the channel switching valve 360 of the second unit 350 is changed.
  • port 361 is connected to port 366
  • port 363 is connected to port 362
  • port 365 is connected to port 364.
  • the mobile phase from point A flows to point B through channel 370, port 364, port 365, channel 373, port 362, port 363, and channel 371 in sequence.
  • the mobile phase then flows from point B to separation column 400 .
  • the sample stored in sample loop 374 also flows to separation column 400 .
  • the channel switching valve 320 is controlled to the first state.
  • the detector 500 in a first state the detector 500 is connected to the drain via channels 330,332. This introduces the effluent from the detector 500 into the drain. Therefore, erroneous introduction of the eluate from the detector 500 into the separation column 400 as a sample is reliably avoided.
  • FIGS. 6-8 are diagram showing the state of the first unit 310 of the sampler 300 for sorting operations.
  • Each of FIGS. 6-8 shows two containers V11 and V12 for collecting the effluent from the detector 500.
  • Each of the containers V11 and V12 is an example of a fractionation container.
  • the first unit 310 is first controlled to a standby state, as shown in FIG.
  • the channel switching valve 320 is controlled to the same state (first state) as shown in FIG. This allows the effluent from detector 500 to be sent to the drain via channel 330, three-way joint 314, channel 332, port 321, port 326, and channel 333, as indicated by arrow D4. be done.
  • the eluate in channels 330, 332, and 333 is indicated by hatching.
  • the channel switching valve 320 is controlled so as to assume the state shown in FIG.
  • the state of the sampler 300 when the channel switching valve 320 is controlled to the state shown in FIG. 7 is also referred to herein as the "second state”. Further, the state shown in FIG. 7 is also referred to as the “second state” of the channel switching valve 320 or the first unit 310 .
  • port 321 is connected to port 322, port 323 is connected to port 324, and port 325 is connected to port 326.
  • the eluate from the detector 500 flows through the channel 330, the three-way joint 314, the channel 331, the port 324, the port 323, and the channel 334 to the needle 313 as indicated by arrow D5.
  • Sent. In FIG. 7, the eluate in channels 330, 331, and 334 is indicated by hatching.
  • needle 313 is positioned above container V11. Therefore, the effluent from detector 500 is supplied to container V11.
  • the channel switching valve 320 In fractionation, when the container to which the eluate is supplied is switched, the channel switching valve 320 is temporarily controlled to the state shown in FIG.
  • the state of the channel switching valve 320 shown in FIG. 8 is the same as the state shown in FIG.
  • FIG. 8 elution from detector 500, as indicated by arrow D6, while needle 313 moves from above container V11 to above container V12, as indicated by arrow D7. Fluid is delivered to the drain via channel 330, three-way joint 314, channel 332, port 321, port 326, and channel 333.
  • FIG. 9A and 9B are diagrams for explaining the cleaning operation of the needle 313.
  • FIG. 9 In the state shown in FIG. 9, the channel switching valve 320 is controlled to the state (first state) shown in FIG.
  • the state of the 3-way valve 312 is controlled to the state shown in FIG.
  • a washing liquid (which may be a mobile phase) is employed as the liquid 341 in the container 340 .
  • Syringe 311 aspirates liquid 341 .
  • the liquid 341 is stored in the syringe 311 .
  • the state of the 3-way valve 312 is then controlled to the state shown in FIG. Syringe 311 ejects liquid 341 toward sample loop 336 and needle 313 .
  • This causes liquid 341 to be discharged into container V21 via sample loop 336 and needle 313, as indicated by arrow D9 in FIG.
  • This causes channel 335 , sample loop 336 and channel 334 to be washed with liquid 341 .
  • the wash liquid passing through channel 335, sample loop 336, and channel 334 is indicated by hatching.
  • FIG. 10 explains the make-up operation in the sampler 300.
  • the make-up operation of the present embodiment includes mixing the eluate from the detector 500 with a solvent on the downstream side of the detector 500 and fractionating it.
  • the make-up solvent may be a liquid used as a mobile phase.
  • the make-up solvent is stored in the sample loop 336 . More specifically, in the state shown in FIG. 3, syringe 311 aspirates liquid 341 . A make-up solvent is employed as the liquid 341 . Syringe 311 then dispenses liquid 341 into sample loop 336 in the state shown in FIG. As a result, the make-up solvent is stored in the sample loop 336 as the liquid 341 .
  • the state of the channel switching valve 320 is controlled to the state (second state) shown in FIG.
  • syringe 311 sends makeup solvent stored in sample loop 336 to three-way joint 314 as indicated by arrow D11.
  • the effluent from the detector 500 is mixed with the make-up solvent at the three-way joint 314 .
  • the eluate mixed with the make-up solvent is sent to needle 313 as indicated by arrow D10.
  • the eluate in channel 330, the make-up solvent in channel 332, and the mixture in channel 334 are indicated by different types of hatching.
  • the sampler 300 is controlled to the state shown in FIG. 11 instead of the state shown in FIG.
  • the state of the channel switching valve 320 has not been changed from the state shown in FIG.
  • the syringe 311 sucks air in the flow path 335 as indicated by arrow D13.
  • Channel 335 is connected to channel 332 via port 322 and port 321 .
  • the eluate from the detector 500 flows into the channel 332 as indicated by an arrow D12. Therefore, the eluate from the detector 500 is suppressed from flowing toward the needle 313 via the channel 331 and the like.
  • the eluate flowing from channel 330 to channels 332 and 335 is indicated by hatching.
  • the needle 313 is moved from above the container V11 to above the container V12 as indicated by an arrow D7.
  • the syringe 311 discharges air toward the sample loop 336 as indicated by arrow D16 in FIG.
  • the eluate introduced into channel 332 is sent to three-way joint 314 as indicated by arrow D15, and then sent toward needle 313 as indicated by arrow D14.
  • the eluate in channels 330, 332, 335, 331, and 334 is indicated by hatching.
  • the effluent from the detector 500 is channeled through the flow path 332 while the reservoir supplying the effluent from the detector 500 is switched. stored in Therefore, it is avoided that the effluent sent from the detector 500 during that period is wasted by being sent to the drain.
  • FIG. 14 is a diagram showing the block configuration of the sampler 300. As shown in FIG. As shown in FIG. 14, the sampler 300 further includes a syringe motor 311A and an arm motor 390 in addition to the channel switching valve 320, the channel switching valve 360, and the 3-way valve 312. As shown in FIG.
  • FIG. 14 also shows the block configuration of the controller 100.
  • the channel switching valve 320 , the channel switching valve 360 , the 3-way valve 312 , the syringe motor 311 A, and the arm motor 390 are connected to the interface 103 of the controller 100 .
  • the controller 100 controls the operation of each element within the sampler 300 via the interface 103 .
  • controller 100 switches the connection state between the ports 321 to 326 in the channel switching valve 320 between the first state and the second state.
  • the controller 100 switches the connection state between the ports 361 to 363 in the channel switching valve 360 .
  • Controller 100 switches the state of three-way valve 312 between the state shown in FIG. 3 and the state shown in FIG.
  • the syringe motor 311A is driven to cause the syringe 311 to suck and discharge air or liquid.
  • the controller 100 controls suction and ejection by the syringe 311 by controlling the driving of the syringe motor 311A.
  • the arm motor 390 is driven to move the needle 313.
  • the controller 100 controls the position of the needle 313 by controlling the driving of the arm motor 390 .
  • FIG. 15 is a flow chart of processing for preparative liquid chromatograph 1 to control sampler 300 for sample analysis and fractionation of eluate from detector 500 .
  • the preparative liquid chromatograph 1 implements the process of FIG. 15 by causing the processor 101 to execute a given program.
  • the preparative liquid chromatograph 1 determines whether or not the timing for executing sample analysis has arrived. In one implementation, when an operator inputs an instruction to start analysis into the input device, the preparative liquid chromatograph 1 acquires this instruction via the interface 103 . Then, according to the acquisition of this instruction, the preparative liquid chromatograph 1 determines that the timing for executing the analysis has come.
  • step S100 When preparative liquid chromatograph 1 determines that the timing for executing analysis has arrived (YES in step S100), control proceeds to step S200, otherwise (NO in step S100), control proceeds to step S300. proceed.
  • step S200 the preparative liquid chromatograph 1 causes the sampler 300 to perform the operation for sampling as described with reference to FIG. Control then continues to step S300.
  • the preparative liquid chromatograph 1 determines whether or not the timing for executing fractionation of the eluate from the detector 500 has arrived. In one implementation, when an operator inputs an instruction to start preparative separation into the input device, preparative liquid chromatograph 1 acquires this instruction via interface 103 . Then, according to the acquisition of this instruction, the preparative liquid chromatograph 1 determines that the timing for executing preparative separation has come.
  • step S300 When the preparative liquid chromatograph 1 determines that the timing for performing preparative separation has arrived (YES at step S300), the control proceeds to step S400, otherwise (NO at step S300), the process proceeds to step S100. return control.
  • the preparative liquid chromatograph 1 causes the sampler 300 to perform an operation for fractionating the eluate. After that, the preparative liquid chromatograph 1 returns control to step S100.
  • FIG. 16 is a flowchart of a subroutine of processing for causing the sampler 300 to perform the operation for sorting in step S400.
  • step S402 preparative liquid chromatograph 1 sets the value of variable N used in the processing of FIG. 16 to 1, which is the initial value.
  • the value of the variable N is referenced in steps S404 and S422, which will be described later, and updated in step S418, which will be described later.
  • the preparative liquid chromatograph 1 moves the needle 313 to the Nth position.
  • N preparative containers are set.
  • the “Nth position” is the position where the needle 313 provides the eluate from the detector 500 to the container set as the Nth collection container.
  • the preparative liquid chromatograph 1 determines whether or not the timing for canceling the standby state (FIG. 6) has arrived.
  • the operator inputs an instruction to cancel the standby state to the input device at the timing when it is determined that the eluate from the detector 500 can be stored in the preparative collection container.
  • the preparative liquid chromatograph 1 acquires this instruction via the interface 103 . Then, according to the acquisition of this instruction, the preparative liquid chromatograph 1 determines that the timing for canceling the standby state has arrived.
  • the preparative liquid chromatograph 1 is operated when the analytical result of the sample supplied from the separation column 400 obtained at the detector 500 satisfies a given condition (for example, within a given range When the absorbance of the wavelength exceeds a given threshold), it may be determined that the timing for canceling the standby state has arrived.
  • the preparative liquid chromatograph 1 repeats the control of step S406 until it determines that the timing for canceling the standby state has arrived (NO in step S406), and when it determines that the timing for canceling the standby state has come, step Control proceeds to S408 (YES in step S406).
  • the preparative liquid chromatograph 1 switches the state of the sampler 300 from the first state to the second state (FIG. 7, etc.). Thereby, the eluate from the detector 500 is supplied to the Nth collection container.
  • the preparative liquid chromatograph 1 determines whether or not an instruction to perform makeup has been acquired.
  • the operator when the operator determines that the eluate from the detector 500 is to be mixed with a solvent for makeup and stored in a preparative container, the operator inputs an instruction to perform makeup to the input device. .
  • the preparative liquid chromatograph 1 acquires this instruction via the interface 103 as an instruction to perform makeup.
  • step S410 determines that an instruction to perform makeup has been acquired (YES in step S410)
  • control proceeds to step S412.
  • step S412 determines that an instruction to perform makeup has not been acquired (NO in step S410)
  • control proceeds to step S414.
  • the preparative liquid chromatograph 1 causes the syringe 311 to supply the make-up solvent, as described with reference to FIG. As a result, the eluate from the detector 500 is mixed with the make-up solvent and supplied to the Nth collection container.
  • the preparative liquid chromatograph 1 determines whether or not an instruction to end fractionation of the eluate from the detector 500 has been obtained.
  • the operator when the operator determines that the timing to end fractionation of the eluate from the detector 500 has arrived, the operator inputs an instruction to end fractionation into the input device.
  • the preparative liquid chromatograph 1 acquires this instruction via the interface 103.
  • step S416 When the preparative liquid chromatograph 1 determines that it has received an instruction to end fractionation of the eluate from the detector 500 (YES in step S414), it advances control to step S426. When preparative liquid chromatograph 1 determines that it has not received an instruction to end fractionation of the eluate from detector 500 (NO in step S414), control proceeds to step S416.
  • the preparative liquid chromatograph 1 determines whether or not the timing for switching the preparative container has arrived.
  • the operator inputs a switching instruction when determining that the time has come to switch the preparative collection container to which the eluate is supplied.
  • the preparative liquid chromatograph 1 acquires this instruction via the interface 103, it determines that it is time to switch the preparative container.
  • the preparative liquid chromatograph 1 may determine that the time has come to switch the preparative collection container in response to supplying a certain amount of eluate to a certain preparative collection container.
  • the supply amount of the eluate to the preparative collection container may be derived using the elapsed time from the start of the supply of the eluate to the preparatory container.
  • the preparative liquid chromatograph 1 may determine that the time to switch the preparative container has arrived based on the sample detection results obtained by the detector 500 . For example, in a situation where the detector 500 is continuously supplied with samples from the separation column 400 in time, the preparative liquid chromatograph 1 detects the wavelength of the absorbance peak of the sample detected by the detector 500. It may be determined that the time to switch the preparative collection container has come according to the change of a given value or more. This allows different components separated in the separation column 400 to be stored in different preparative containers.
  • step S416 determines that the timing for switching the preparative collection container has arrived (YES in step S416)
  • control proceeds to step S418.
  • the control returns to step S414.
  • step S4108 the preparative liquid chromatograph 1 updates the value of the variable N by adding one.
  • step S420 the preparative liquid chromatograph 1 causes the syringe 311 to start sucking air in the channel 335 as described with reference to FIG.
  • step S422 the preparative liquid chromatograph 1 moves the needle 313 to the Nth position (the position for supplying the eluate to the Nth preparative container) as described with reference to FIG. move to
  • the preparative liquid chromatograph 1 causes the syringe 311 to stop the suction started at step S420. This causes the effluent from detector 500 to begin to be provided to the Nth (the value of N is updated in step S418) collection container. After that, the preparative liquid chromatograph 1 returns control to step S410.
  • step S426 the preparative liquid chromatograph 1 cleans the needle 313 as described with reference to FIG.
  • the preparative liquid chromatograph 1 returns the position of the needle 313 to the initial position. After that, the preparative liquid chromatograph 1 returns control to FIG.
  • the sampler 300 functions as a sampler in sample analysis in step S200, and functions as a sorting device in step S400.
  • step S200 the sampler 300 is controlled to the first state (FIG. 5, etc.).
  • the needle 313 is then connected to a sample loop 336 for storing the sample and used for sampling. That is, the sampler 300 functions as a sampler.
  • step S400 the sampler 300 is controlled to the second state (FIG. 7, etc.). Needle 313 is used to fractionate the eluate from detector 500 . That is, the sampler functions as a sorting device.
  • the preparative liquid chromatograph 1 does not need to further include a fractionating device if the sampler 300 is included. Therefore, it becomes possible to reduce the number of components of the preparative liquid chromatograph 1 .
  • both the sample and the eluate from the detector 500 are retained by the sampler 300.
  • the sampler 300 needs to be provided with a cooling device. That is, since no sorting device is required, the cooling device conventionally provided in the sorting device is also not required. This makes it possible to further reduce the number of components of the preparative liquid chromatograph 1 .
  • the eluate from the detector 500 is introduced into the sampler 300. This eliminates the need to move the eluate from the outside of the sampler 300 to the sampler 300 when the eluate from the detector 500 is used as a sample in a new analysis. This reduces the burden on the operator.
  • a preparative liquid chromatograph comprises a liquid-sending pump, a sampler connected to the liquid-sending pump, a separation column connected to the sampler, and connected to the separation column and the sampler.
  • the sampler includes a needle for aspirating or discharging a sample, a channel switching valve connected to the needle, and a reservoir for storing the sample, and the channel Further comprising a controller for controlling the flow path switching valve to switch the state of the switching valve between a first state and a second state, wherein in the first state, the needle moves through the flow path switching valve Connected to the reservoir, in the second state, the needle may be connected to the detector via the channel switching valve.
  • the sampler can also be used as a preparative device. This can reduce the number of components of the preparative liquid chromatograph.
  • the detector may be connected to a drain in the first state.
  • the eluate from the detector is introduced from the second line to the drain and does not leak from the first line. This reliably prevents the effluent from the detector from being erroneously introduced into the separation column as a sample in the first state. Also, in the second state, the effluent from the detector is introduced into the preparative container via the first line and the needle. Thereby, in the second state, leakage from the syringe through the second line is suppressed.
  • the syringe In the preparative liquid chromatograph according to Item 3, in the first state, the syringe causes the needle to suck the make-up solvent, stores it in the storage unit, In the above, the syringe may mix the make-up solvent stored in the storage part with the eluate from the detector through the second line.
  • the eluate from the detector is mixed with the make-up solvent and introduced into the preparative container through the needle. be done. This improves the recovery rate of components contained in the eluate from the detector.
  • the eluate from the detector is introduced into the second line by sucking the second line while the needle is moving. This suppresses the eluate from the detector from leaking out of the needle during movement of the needle, thereby reducing the loss of the eluate.
  • the preparative liquid chromatograph includes a liquid feed pump, a sampler connected to the liquid feed pump, and a separation liquid chromatograph connected to the sampler.
  • the control method comprises the step of setting the state of the channel switching valve to a first state for sending a sample to the separation column, wherein in the first state the needle moves through the channel switching valve.
  • the control method includes the step of setting the state of the flow path switching valve to a second state in order to fractionate the eluate from the detector, and in the second state, the needle moves to the flow path It may be connected to the detector via a switching valve.
  • the sampler can also be used as a sorting device. This can reduce the number of components of the preparative liquid chromatograph.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

分取液体クロマトグラフ(1)は、送液ポンプ(200)と、前記送液ポンプ(200)に接続されるサンプラ(300)と、前記サンプラ(300)に接続される分離カラム(400)と、前記分離カラム(400)および前記サンプラに接続される検出器(500)と、を含む。前記サンプラ(300)は、サンプルを吸引または吐出するニードルと、前記ニードルに接続される流路切替バルブと、を含む。分取液体クロマトグラフ(1)は、前記流路切替バルブの状態を、前記ニードルがサンプルを貯留するための貯留部が接続される第1状態、および、前記ニードルが前記検出器に接続される第2状態にセットする、コントローラ(100)をさらに含む。

Description

分取液体クロマトグラフおよびその制御方法
 本開示は、検出器に導入された試料の成分を分取する液体クロマトグラフィ分析システムおよびその制御方法に関する。
 液体クロマトグラフには、送液ポンプ、試料注入装置、分離カラム、および検出器を含むものがある。試料注入装置による試料の注入方式として、ループ注入方式(部分注入方式)がある。ループ注入方式に従う試料注入装置(たとえば、株式会社島津製作所社製オートランプラSIL-10AF(https://www.shimadzu.eu/autosampler(非特許文献1)))は、サンプリングニードルを介して計量した試料の一部を、サンプルループに充填した後、分析流路に注入する。
"Autosampler",[online],令和2年,Shimadzu Europe GmbH,[令和3年9月6日検索],インターネット
 分取液体クロマトグラフは、上述された液体クロマトグラフの構成に加えて、分離カラムによって分離された各成分を分取する自動分取装置をさらに含む。自動分取装置は、分離カラムにおいて分離された成分を含む溶出液を複数の回収容器に分けて回収する。
 このような分取液体クロマトグラフにおいて、従来より、装置の構成部品を減らすことによるコストの低減が求められている。
 本開示のある局面に従う分取液体クロマトグラフは、送液ポンプと、前記送液ポンプに接続されるサンプラと、前記サンプラに接続される分離カラムと、前記分離カラムおよび前記サンプラに接続される検出器と、を備え、前記サンプラは、サンプルを吸引または吐出するニードルと、前記ニードルに接続される流路切替バルブと、サンプルを貯留するための貯留部とを含み、前記流路切替バルブの状態を第1状態および第2状態の間で切り替えるように前記流路切替バルブを制御するコントローラをさらに備え、前記第1状態では、前記ニードルは、前記流路切替バルブを介して、前記貯留部に接続され、前記第2状態では、前記ニードルは、前記流路切替バルブを介して、前記検出器に接続される。
 本開示のある局面に従う分取液体クロマトグラフの制御方法は、分取液体クロマトグラフの制御方法であって、前記分取液体クロマトグラフは、送液ポンプと、前記送液ポンプに接続されるサンプラと、前記サンプラに接続される分離カラムと、前記分離カラムおよび前記サンプラに接続される検出器と、を含み、前記サンプラは、サンプルを吸引または吐出するニードルと、前記ニードルに接続される流路切替バルブと、サンプルを貯留するための貯留部と、を含む。前記制御方法は、サンプルを前記分離カラムに送るために、前記流路切替バルブの状態を第1状態にセットするステップを備え、前記第1状態では、前記ニードルは、前記流路切替バルブを介して前記貯留部に接続される。前記制御方法は、前記検出器からの溶出液を分取するために、前記流路切替バルブの状態を第2状態にセットするステップを備え、前記第2状態では、前記ニードルは、前記流路切替バルブを介して前記検出器に接続される。
分取液体クロマトグラフ1の構成を示す図である。 サンプラ300の構成を示す図である。 3ウェイバルブ312近傍の構成を示す図である。 3ウェイバルブ312近傍の構成を示す図である。 サンプリング動作のためのサンプラ300の状態を示す図である。 分取動作のためのサンプラ300の第1ユニット310の状態を示す図である。 分取動作のためのサンプラ300の第1ユニット310の状態を示す図である。 分取動作のためのサンプラ300の第1ユニット310の状態を示す図である。 ニードル313の洗浄動作を説明するための図である。 サンプラ300におけるメイクアップ動作を説明する。 分取動作の変形例を説明するための図である。 分取動作の変形例を説明するための図である。 分取動作の変形例を説明するための図である。 サンプラ300のブロック構成を示す図である。 分取液体クロマトグラフ1が、サンプルの分析および検出器500からの溶出液の分取のために、サンプラ300を制御するための処理のフローチャートである。 ステップS400における、サンプラ300に分取のための動作を実施させるための処理のサブルーチンのフローチャートである。
 以下、本開示の実施の形態に従う分取液体クロマトグラフについて、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [分取液体クロマトグラフの構成]
 図1は、分取液体クロマトグラフ1の構成を示す図である。図1に示すように、分取液体クロマトグラフ1は、コントローラ100、送液ポンプ200、サンプラ300、分離カラム400、および、検出器500を含む。図1では、要素間を連結する流路において、3つの地点A~Cが示されている。地点Aは、送液ポンプ200とサンプラ300との間の位置を表す。地点Bは、サンプラ300と分離カラム400との間の位置を表す。地点Cは、検出器500とサンプラ300との間の位置を表す。
 コントローラ100は、分取液体クロマトグラフ1の動作を制御する。コントローラ100は、プロセッサ101と、記憶装置102と、インターフェース103とを含む。一実現例では、プロセッサ101が記憶装置102に格納されたプログラムを実行することによって、コントローラ100は分取液体クロマトグラフ1の動作を制御する。プロセッサ101は、コントローラ100から着脱可能な記録媒体に格納されたプログラムを実行してもよい。インターフェース103は、通信用のインターフェース(たとえば、ネットワークカード)によって実現される。プロセッサ101は、インターフェース103を介して、分取液体クロマトグラフ1内の他の要素(サンプラ300等)と通信し、また、分取液体クロマトグラフ1外の装置と通信する。
 送液ポンプ200は、移動相として利用される溶液を分離カラム400に向けて供給する。
 サンプラ300は、分析用のサンプルを分離カラム400に向けて供給する。サンプラ300は、さらに、検出器500からの溶出液を分取用容器へ供給する。
 分離カラム400は、移動相とともにサンプルを供給されることにより、サンプルに含まれる目的成分を分離する。分離カラム400は、図示しないカラムオーブンに収容され、当該カラムオーブンによって分析メソッドにおいて設定された温度に維持される。
 検出器500は、分離カラム400から供給されるサンプルを分析する。検出器500は、たとえば、紫外可視分光光度計、ダイオードアレイ検出器、および/または示差屈折率検出器によって実現される。
 [サンプラの構成]
 図2は、サンプラ300の構成を示す図である。図2には、サンプラ300が、第1ユニット310と第2ユニット350とに分けられて示されている。以下、それぞれの構成を説明する。
 (第1ユニット310)
 第1ユニット310は、シリンジ311、ニードル313、流路切替バルブ320、およびサンプルループ336を含む。
 流路切替バルブ320は、6個のポート321~326を含む。
 シリンジ311は、流路335を介して、ポート322と接続される。流路335上には、サンプルループ336が設けられている。シリンジ311は、流路335に対して、液体または気体を、吐出し、また、吸引するように構成されている。サンプルループ336には、ニードル313を介して吸引されたサンプルが貯留され得る。この意味において、サンプルループ336は貯留部の一例である。
 流路335上には、3ウェイバルブ312が設けられている。シリンジ311は、3ウェイバルブ312を介して、流路335および種々の液体を収容する容器に接続される。
 図3および図4は、3ウェイバルブ312近傍の構成を示す図である。図3および図4を参照して以下に説明されるように、3ウェイバルブ312は、シリンジ311の接続相手を切り替えることができる。
 図3に示された状態では、3ウェイバルブ312は、シリンジ311を、流路342を介して容器340に接続させる。容器340は、液体341を収容する。図3に示された状態では、シリンジ311は、液体341を、吸引して、シリンジ311内に貯留させることができる。
 一方、図4に示された状態では、3ウェイバルブ312は、シリンジ311を、流路335に接続させる。一実現例では、シリンジ311は、当該シリンジ311内に貯留された液体341を、図4に示された状態において、流路335に向けて吐出することができる。
 図2に戻って、ニードル313は、流路334を介して、ポート323に接続される。図5~図8等を参照して後述されるように、ニードル313は、サンプルの注入および検出器500からの溶出液の分取に利用され得る。
 流路切替バルブ320では、ポート326は、流路333を介してドレインに接続されている。ポート325は閉じられている。ポート321は流路332に接続され、ポート324は流路331に接続されている。
 流路331と流路332は、三方継ぎ手314によって、流路330と連結されている。地点Cは、流路330上に位置する。すなわち、第1ユニット310には、流路330を介して、流路331および流路332に、検出器500からの溶出液が供給される。矢印D3は、検出器500から流路330へ溶出液が流れる方向を表す。流路331は、第1ラインの一例である。流路332は、第2ラインの一例である。
 (第2ユニット350)
 第2ユニット350は、インジェクションポート351と、流路切替バルブ360と、サンプルループ374とを含む。
 流路切替バルブ360は、6個のポート361~366を含む。インジェクションポート351は、流路372を介して、ポート361に接続される。
 ポート362は、流路373を介して、ポート365に接続されている。サンプルループ374は、流路373上に設けられている。ポート366は、ドレインに接続されている。
 ポート363は、流路371に接続される。地点Bは、流路371上に位置する。ポート364は、流路370に接続される。地点Aは、流路370上に位置する。すなわち、第2ユニット350は、流路370を介して送液ポンプ200からの移動相を供給され、流路371を介して分離カラム400へ液体を供給する。
 [サンプリング動作]
 図5は、サンプリング動作のためのサンプラ300の状態を示す図である。
 第1状態において、第1ユニット310の流路切替バルブ320は、ポート361をポート362と接続させ、ポート363をポート364と接続させ、ポート365をポート366と接続させている。本明細書では、第1ユニット310が図5に示された状態に制御されたときのサンプラ300の状態を「第1状態」とも称する。また、図5に示された状態を流路切替バルブ320または第1ユニット310の「第1状態」とも称する。
 第1状態において、第2ユニット350の流路切替バルブ360は、ポート361をポート362と接続させ、ポート363をポート364と接続させ、ポート365をポート366と接続させている。
 サンプリングでは、第1ユニットが第1状態にあるときに、ニードル313は、サンプルを収容する容器(図示略)内に移動される。シリンジ311は、ニードル313を介してサンプルを吸引する。吸引されたサンプルは、サンプルループ336に貯留される。
 その後、ニードル313は、図5に示されるように、インジェクションポート351に接続するように、移動される。シリンジ311は、サンプルループ336内のサンプルを、ニードル313を介して、インジェクションポート351へ吐出する。これにより、サンプルが、第2ユニット350のサンプルループ374に貯留される。
 その後、第2ユニット350の流路切替バルブ360におけるポートの接続状態が変更される。変更後、ポート361がポート366に接続され、ポート363がポート362と接続され、ポート365がポート364に接続される。この接続状態では、地点Aからの移動相は、流路370、ポート364、ポート365、流路373、ポート362、ポート363、および流路371を順に通過して、地点Bへと流れる。そして、移動相は、地点Bから分離カラム400へと流れる。この流れに沿って、サンプルループ374に貯留されているサンプルも、分離カラム400へと流れる。
 サンプリング動作では、流路切替バルブ320は第1状態に制御される。図5に示されるように、第1状態において、検出器500は、流路330,332を介してドレインに接続される。これにより、検出器500からの溶出液がドレインに導入される。したがって、検出器500からの溶出液が誤ってサンプルとして分離カラム400に導入されることが確実に回避される。
 [分取動作]
 図6~図8のそれぞれは、分取動作のためのサンプラ300の第1ユニット310の状態を示す図である。図6~図8のそれぞれには、検出器500からの溶出液を分取するための2個の容器V11,V12が示されている。容器V11,V12のそれぞれは、分取用容器の一例である。
 検出器500からの溶出液の分取では、第1ユニット310は、まず図6に示されるように、待機状態に制御される。待機状態(図6)では、流路切替バルブ320は、図5に示されたのと同じ状態(第1状態)に制御される。これにより、検出器500からの溶出液は、矢印D4で示されるように、流路330、三方継ぎ手314、流路332、ポート321、ポート326、および流路333を介して、ドレインへと送られる。図6では、流路330,332,333内の溶出液がハッチングとして示されている。
 その後、流路切替バルブ320は、図7に示された状態を取るように制御される。流路切替バルブ320が図7に示された状態に制御されたときのサンプラ300の状態を、本明細書では「第2状態」とも称する。また、図7に示された状態を流路切替バルブ320または第1ユニット310の「第2状態」とも称する。
 図7に示された状態では、ポート321がポート322に接続され、ポート323がポート324と接続され、ポート325がポート326に接続される。これにより、検出器500からの溶出液は、矢印D5で示されるように、流路330、三方継ぎ手314、流路331、ポート324、ポート323、および流路334を介して、ニードル313へと送られる。図7では、流路330,331,334内の溶出液がハッチングとして示されている。図7に示された状態では、ニードル313は容器V11上に位置している。したがって、検出器500からの溶出液は、容器V11に供給される。
 なお、図7に示された状態では、流路332、流路335およびシリンジ311を含む空間は密閉されている。したがって、検出器500からの溶出液は、流路332には流れ込まない。
 分取において、溶出液を供給される容器が切り替えられるとき、流路切替バルブ320は、一時的に、図8に示す状態に制御される。図8に示された流路切替バルブ320の状態は、図6に示された状態と同じである。
 図8に示された状態では、矢印D7で示されるようにニードル313が容器V11の上から容器V12の容器の上へと移動する間、矢印D6で示されるように、検出器500からの溶出液は、流路330、三方継ぎ手314、流路332、ポート321、ポート326、および流路333を介して、ドレインへと送られる。図8では、流路330,332,333内の溶出液がハッチングとして示されている。
 その後、流路切替バルブ320の状態は、図7に示された状態に戻される。これにより、ニードル313を介して容器V12に、検出器500からの溶出液が供給される。
 [洗浄動作]
 図9は、ニードル313の洗浄動作を説明するための図である。図9に示された状態では、流路切替バルブ320は、図5に示された状態(第1状態)に制御されている。
 この状態で、まず、3ウェイバルブ312の状態が、図3に示される状態へと制御される。容器340内の液体341として洗浄用の液体(移動相であってもよい)が採用される。シリンジ311は、液体341を吸引する。これにより、シリンジ311に液体341が貯留される。
 その後、3ウェイバルブ312の状態が、図4に示される状態へと制御される。シリンジ311は、サンプルループ336およびニードル313に向けて、液体341を吐出する。これにより、図9において矢印D9で示されるように、液体341が、サンプルループ336およびニードル313を介して、容器V21へと吐出される。これにより、流路335、サンプルループ336、および流路334が、液体341によって洗浄される。図9では、流路335、サンプルループ336、および流路334を通過する洗浄用の液体がハッチングで示されている。
 [メイクアップ動作]
 図10は、サンプラ300におけるメイクアップ動作を説明する。本実施の形態のメイクアップ動作とは、検出器500からの溶出液を、検出器500よりも下流側で、溶媒と混合して分取することを含む。メイクアップ用の溶媒は、移動相として利用される液体であってもよい。
 メイクアップ用の溶媒は、サンプルループ336に貯留されている。より具体的には、図3に示された状態で、シリンジ311は、液体341を吸引する。液体341として、メイクアップ用の溶媒が採用される。その後、図4に示された状態で、シリンジ311は、液体341をサンプルループ336へと吐出する。これにより、液体341として、メイクアップ用の溶媒がサンプルループ336に貯留される。
 図10に示されるように、メイクアップ動作では、流路切替バルブ320の状態は、図7に示された状態(第2状態)に制御される。この状態で、矢印D11で示されるように、シリンジ311が、サンプルループ336に貯留されたメイクアップ用の溶媒を、三方継ぎ手314へ送る。これにより、三方継ぎ手314において、検出器500からの溶出液がメイクアップ用の溶媒と混合される。そして、メイクアップ用の溶媒と混合された溶出液は、矢印D10で示されるように、ニードル313へと送られる。図10では、流路330内の溶出液、流路332内のメイクアップ用の溶媒、および流路334内の混合液が、互いに異なる種類のハッチングで示されている。
 [分取動作(変形例)]
 図11~図13は、分取動作の変形例を説明するための図である。以下に、図6~図7および図11~図13を参照して、分取動作の変形例について説明する。
 分取では、図6に示された待機状態の後、図7に示されるように、サンプラ300では、検出器500からの溶出液が容器V11に供給される。
 この変形例では、溶出液を供給される容器が切り替えられるとき、サンプラ300は、図8に示された状態ではなく図11に示された状態へと制御される。
 図11に示された状態では、流路切替バルブ320の状態は、図7に示された状態から変更されていない。図11に示された状態では、矢印D13で示されるように、シリンジ311が、流路335内の空気を吸引する。流路335は、ポート322およびポート321を介して、流路332と接続されている。これにより、検出器500からの溶出液は、矢印D12で示されるように、流路332は流れ込む。したがって、検出器500からの溶出液が流路331等を介してニードル313に向けて流れ込むことが抑制される。図11では、流路330から流路332,335に流れ込む溶出液がハッチングで示されている。
 その後、図12において、ニードル313が、矢印D7で示されるように、容器V11の上から、容器V12の上へと移動される。
 ニードル313の移動が完了すると、図13において矢印D16で示されるように、シリンジ311は、サンプルループ336に向けて空気を吐出する。これにより、矢印D15で示されるように、流路332に導入された溶出液が三方継ぎ手314へと送られ、その後、矢印D14で示されるように、ニードル313に向けて送られる。図11では、流路330,332,335,331,334内の溶出液がハッチングで示されている。
 図6~図7および図11~図13を参照して説明された分取動作の変形例によれば、検出器500からの溶出液を供給する容器が切り替えられる間、溶出液は流路332で貯留される。したがって、その期間に検出器500から送られる溶出液が、ドレインへと送られることによって廃棄される、という事態が回避される。
 [サンプラ300のブロック構成]
 図14は、サンプラ300のブロック構成を示す図である。図14に示されるように、サンプラ300は、流路切替バルブ320、流路切替バルブ360、および3ウェイバルブ312に加えて、シリンジ用モータ311Aおよびアーム用モータ390をさらに含む。
 図14には、コントローラ100のブロック構成が併記されている。流路切替バルブ320、流路切替バルブ360、3ウェイバルブ312、シリンジ用モータ311A、およびアーム用モータ390は、コントローラ100のインターフェース103に接続されている。これにより、コントローラ100は、インターフェース103を介して、サンプラ300内の各要素の動作を制御する。
 より具体的には、コントローラ100は、流路切替バルブ320におけるポート321~326の間の接続状態を第1状態と第2状態との間で切り替える。コントローラ100は、流路切替バルブ360におけるポート361~363の間の接続状態を切り替える。コントローラ100は、3ウェイバルブ312の状態を、図3に示された状態と図4に示された状態との間で切り替える。
 シリンジ用モータ311Aは、シリンジ311に空気または液体を吸引および吐出させるために駆動する。コントローラ100は、シリンジ用モータ311Aの駆動を制御することにより、シリンジ311による吸引および吐出を制御する。
 アーム用モータ390は、ニードル313を移動させるために駆動する。コントローラ100は、アーム用モータ390の駆動を制御することにより、ニードル313の位置を制御する。
 [処理の流れ]
 図15は、分取液体クロマトグラフ1が、サンプルの分析および検出器500からの溶出液の分取のために、サンプラ300を制御するための処理のフローチャートである。一実現例では、分取液体クロマトグラフ1では、プロセッサ101が所与のプログラムを実行することによって、図15の処理が実施される。
 図15を参照して、ステップS100にて、分取液体クロマトグラフ1は、サンプルの分析の実行のタイミングが到来したか否かを判断する。一実現例では、作業者が入力装置に分析の開始の指示を入力すると、分取液体クロマトグラフ1は、この指示をインターフェース103を介して取得する。そして、この指示の取得に応じて、分取液体クロマトグラフ1は、分析の実行のタイミングが到来したと判断する。
 分取液体クロマトグラフ1は、分析の実行のタイミングが到来したと判断すると(ステップS100にてYES)、ステップS200へ制御を進め、そうでなければ(ステップS100にてNO)、ステップS300へ制御を進める。
 ステップS200にて、分取液体クロマトグラフ1は、図5を参照して説明されたうようなサンプリングのための動作を、サンプラ300に実施させる。その後、制御はステップS300へ進められる。
 ステップS300にて、分取液体クロマトグラフ1は、検出器500からの溶出液の分取の実行のタイミングが到来したか否かを判断する。一実現例では、作業者が入力装置に分取の開始の指示を入力すると、分取液体クロマトグラフ1は、この指示をインターフェース103を介して取得する。そして、この指示の取得に応じて、分取液体クロマトグラフ1は、分取の実行のタイミングが到来したと判断する。
 分取液体クロマトグラフ1は、分取の実行のタイミングが到来したと判断すると(ステップS300にてYES)、ステップS400へ制御を進め、そうでなければ(ステップS300にてNO)、ステップS100へ制御を戻す。
 ステップS400にて、分取液体クロマトグラフ1は、サンプラ300に、溶出液の分取のための動作を実施させる。その後、分取液体クロマトグラフ1は、制御をステップS100へ戻す。
 図16は、ステップS400における、サンプラ300に分取のための動作を実施させるための処理のサブルーチンのフローチャートである。
 図16を参照して、ステップS402にて、分取液体クロマトグラフ1は、図16の処理において利用される変数Nの値を初期値である1にセットする。変数Nの値は、後述するステップS404,422において参照され、後述するステップS418において更新される。
 ステップS404にて、分取液体クロマトグラフ1は、N番目の位置にニードル313を移動させる。分取液体クロマトグラフ1では、N個の分取用容器がセットされている。「N番目の位置」とは、ニードル313が、検出器500からの溶出液を、N個目の分取用容器としてセットされている容器に提供するための位置である。
 ステップS406にて、分取液体クロマトグラフ1は、待機状態(図6)が解除されるタイミングが到来したか否かを判断する。
 一実現例では、作業者は、検出器500からの溶出液を分取用容器に貯留してもよいと判断したタイミングで、入力装置に待機状態の解除の指示を入力する。分取液体クロマトグラフ1は、この指示をインターフェース103を介して取得する。そして、この指示の取得に応じて、分取液体クロマトグラフ1は、待機状態が解除されるタイミングが到来したと判断する。
 他の実現例では、分取液体クロマトグラフ1は、検出器500において取得された、分離カラム400から供給されたサンプルの分析結果が所与の条件を満たしたとき(たとえば、所与の範囲の波長の吸光度が所与の閾値を超えたとき)に、待機状態が解除されるタイミングが到来したと判断してもよい。
 分取液体クロマトグラフ1は、待機状態が解除されるタイミングが到来したと判断するまでステップS406の制御を繰り返し(ステップS406にてNO)、待機状態が解除されるタイミングが到来したと判断するとステップS408へ制御を進める(ステップS406にてYES)。
 ステップS408にて、分取液体クロマトグラフ1は、サンプラ300の状態を、第1状態から第2状態(図7等)へ切り替える。これにより、検出器500からの溶出液がN番目の分取用容器に供給される。
 ステップS410にて、分取液体クロマトグラフ1は、メイクアップの実行の指示を取得したか否かを判断する。
 一実現例では、作業者は、検出器500からの溶出液をメイクアップ用の溶媒と混合して分取用容器に貯留すると判断した場合に、入力装置にメイクアップの実行の指示を入力する。分取液体クロマトグラフ1は、この指示を、メイクアップの実行の指示として、インターフェース103を介して取得する。
 分取液体クロマトグラフ1は、メイクアップの実行の指示を取得したと判断すると(ステップS410にてYES)、ステップS412へ制御を進める。分取液体クロマトグラフ1は、メイクアップの実行の指示を取得していないと判断すると(ステップS410にてNO)、ステップS414へ制御を進める。
 ステップS412にて、分取液体クロマトグラフ1は、図10を参照して説明されたように、シリンジ311に、メイクアップ用の溶媒を供給させる。これにより、検出器500からの溶出液は、メイクアップ用の溶媒と混合されて、N番目の分取用容器に供給される。
 ステップS414にて、分取液体クロマトグラフ1は、検出器500からの溶出液の分取を終了する指示を取得したか否かを判断する。
 一実現例では、作業者は、検出器500からの溶出液の分取を終了するタイミングが到来したと判断した場合に、入力装置に分取の終了の指示を入力する。分取液体クロマトグラフ1は、この指示を、インターフェース103を介して取得する。
 分取液体クロマトグラフ1は、検出器500からの溶出液の分取を終了する指示を取得したと判断すると(ステップS414にてYES)、ステップS426へ制御を進める。分取液体クロマトグラフ1は、検出器500からの溶出液の分取を終了する指示を取得していないと判断すると(ステップS414にてNO)、ステップS416へ制御を進める。
 ステップS416にて、分取液体クロマトグラフ1は、分取用容器を切り替えるタイミングが到来したか否かを判断する。
 一実現例では、作業者は、溶出液を供給される分取用容器を切り替えるタイミングが到来したと判断した場合に、切替の指示を入力する。分取液体クロマトグラフ1は、インターフェース103を介してこの指示を取得すると、分取用容器を切り替えるタイミングが到来したと判断する。
 他の実現例では、分取液体クロマトグラフ1は、ある分取用容器に一定量の溶出液を供給したことに応じて、分取用容器を切り替えるタイミングが到来したと判断してもよい。分取用容器への溶出液の供給量は、当該分取用容器への溶出液の供給開始からの経過時間を用いて導出されてもよい。
 さらに他の実現例では、分取液体クロマトグラフ1は、検出器500において取得されたサンプルの検出結果に基づいて、分取用容器を切り替えるタイミングが到来したと判断してもよい。たとえば、検出器500は、分離カラム400から時間的に連続してサンプルを供給されている状況において、分取液体クロマトグラフ1は、検出器500において検出されたサンプルの吸光度のピークの波長が所与の値以上変化したことに応じて、分取用容器を切り替えるタイミングが到来したと判断してもよい。これにより、分離カラム400において分離された異なる成分が、異なる分取用容器に貯留され得る。
 分取液体クロマトグラフ1は、分取用容器を切り替えるタイミングが到来したと判断すると(ステップS416にてYES)、ステップS418へ制御を進める。分取液体クロマトグラフ1は、分取用容器を切り替えるタイミングが到来していないと判断すると(ステップS416にてNO)、ステップS414へ制御を戻す。
 ステップS418にて、分取液体クロマトグラフ1は、変数Nの値を1加算更新する。
 ステップS420にて、分取液体クロマトグラフ1は、図11を参照して説明されたように、シリンジ311に、流路335内の空気の吸引を開始させる。
 ステップS422にて、分取液体クロマトグラフ1は、図12を参照して説明されたように、ニードル313をN番目の位置(N番目の分取用容器に溶出液を供給するための位置)へと移動させる。
 ステップS424にて、分取液体クロマトグラフ1は、シリンジ311に、ステップS420にて開始させた吸引を停止させる。これにより、検出器500からの溶出液は、N番目(Nの値は、ステップS418にて更新されている)の分取用容器へ提供され始める。その後、分取液体クロマトグラフ1は、ステップS410へ制御を戻す。
 一方、ステップS426にて、分取液体クロマトグラフ1は、図9を参照して説明されたように、ニードル313の洗浄を実施する。
 ステップS428にて、分取液体クロマトグラフ1は、ニードル313の位置を初期位置へ戻す。その後、分取液体クロマトグラフ1は、制御を図15へリターンさせる。
 以上、図15および図16を参照して説明された処理によれば、サンプラ300は、ステップS200において、サンプルの分析におけるサンプラとして機能し、また、ステップS400において、分取装置として機能する。
 より具体的には、ステップS200では、サンプラ300は第1状態(図5等)に制御される。そして、ニードル313は、サンプルを貯留するためのサンプルループ336に接続され、サンプリングに利用される。すなわち、サンプラ300がサンプラとして機能する。
 一方、ステップS400では、サンプラ300は第2状態(図7等)に制御される。そして、ニードル313は、検出器500からの溶出液の分取に利用される。すなわち、サンプラが、分取装置として機能する。
 サンプラ300がサンプラとしてだけでなく分取装置としても機能することから、分取液体クロマトグラフ1は、サンプラ300を含んでいれば、分取装置をさらに含む必要がない。したがって、分取液体クロマトグラフ1の構成部品を減らすことが可能になる。
 分取液体クロマトグラフ1では、サンプルおよび検出器500からの溶出液の双方が、サンプラ300で保持される。これにより、サンプルおよび溶出液の双方が冷却を必要とする場合であっても、冷却装置は、サンプラ300にだけ設けられれば良い。すなわち、分取装置が必要とされないので、従来は分取装置に設けられていた冷却装置も必要とされない。これにより、分取液体クロマトグラフ1の構成部品をさらに減らすことが可能になる。
 分取液体クロマトグラフ1では、検出器500からの溶出液がサンプラ300に導入される。これにより、検出器500からの溶出液が、新たな分析においてサンプルとして利用される場合に、溶出液をサンプラ300の外からサンプラ300へと移動させる必要がない。これにより、作業者の負担が軽減される。
 [態様]
 上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項) 一態様に係る分取液体クロマトグラフは、送液ポンプと、前記送液ポンプに接続されるサンプラと、前記サンプラに接続される分離カラムと、前記分離カラムおよび前記サンプラに接続される検出器と、を備え、前記サンプラは、サンプルを吸引または吐出するニードルと、前記ニードルに接続される流路切替バルブと、サンプルを貯留するための貯留部と、を含み、前記流路切替バルブの状態を、第1状態および第2状態の間に切り替えるように前記流路切替バルブを制御するコントローラをさらに備え、前記第1状態では、前記ニードルは、前記流路切替バルブを介して前記貯留部に接続され、前記第2状態では、前記ニードルは、前記流路切替バルブを介して前記検出器に接続されてもよい。
 第1項に記載の分取液体クロマトグラフによれば、サンプラが、分取装置としても利用され得る。これにより、分取液体クロマトグラフの構成部品を減らすことができる。
 (第2項) 第1項に記載の分取液体クロマトグラフにおいて、前記第1状態において、前記検出器はドレインに接続されてもよい。
 第2項に記載の分取液体クロマトグラフによれば、第1状態において、検出器からの溶出液が誤ってサンプルとして分離カラムに導入されることが確実に回避される。
 (第3項) 第2項に記載の分取液体クロマトグラフにおいて、前記検出器に接続される第1ラインおよび第2ラインと、前記第1状態において、前記貯留部を介して前記ニードルに接続されるシリンジと、をさらに備え、前記シリンジは、前記ニードルに前記貯留部に貯留されたサンプルを前記分離カラムに向けて吐出させ、前記第1状態において、前記第1ラインは閉じられ、前記検出器は、前記第2ラインを介してドレインに接続され、前記第2状態において、前記検出器は、前記第1ラインを介して前記ニードルに接続され、前記第2ラインは前記シリンジに接続されてもよい。
 第3項に記載の分取液体クロマトグラフによれば、第1状態では、検出器からの溶出液は、第2ラインからはドレインへ導入され、第1ラインからは漏れ出さない。これにより、第1状態において、検出器からの溶出液が誤ってサンプルとして分離カラムに導入されることが確実に回避される。また、第2状態では、検出器からの溶出液は、第1ラインおよびニードルを介して、分取用の容器へと導入される。これにより、第2状態において、シリンジから第2ラインを介して漏れ出すことが抑制される。
 (第4項) 第3項に記載の分取液体クロマトグラフにおいて、前記第1状態において、前記シリンジは、前記ニードルにメイクアップ溶媒を吸引させて、前記貯留部に貯留させ、前記第2状態において、前記シリンジは、前記第2ラインを介して、前記貯留部に貯留されたメイクアップ溶媒を、前記検出器からの溶出液に混合させてもよい。
 第4項に記載の分取液体クロマトグラフによれば、第2状態では、検出器からの溶出液がメイクアップ溶媒と混合された状態で、ニードルを介して、分取用の容器へと導入される。これにより、検出器からの溶出液に含まれる成分の回収率が向上する。
 (第5項) 第3項に記載の分取液体クロマトグラフにおいて、前記コントローラは、前記第2状態において、前記ニードルを、第1の分取用容器から第2の分取用容器へ移動させ、前記シリンジに、前記ニードルの移動中は、前記第2ラインを吸引させてもよい。
 第5項に記載の分取液体クロマトグラフによれば、第2状態において、ニードルの移動中、第2ラインが吸引されることにより、検出器からの溶出液が第2ラインに導入される。これにより、ニードルの移動中に検出器からの溶出液がニードルから漏れることが抑制され、溶出液の損失が低減される。
 (第6項) 第1項~第5項のいずれか1項に記載の分取液体クロマトグラフにおいて、前記コントローラは、前記第1状態において、前記シリンジに、前記貯留部および前記ニードルに向けて洗浄用の液体を吐出させてもよい。
 第6項に記載の分取液体クロマトグラフによれば、第1状態において、貯留部およびニードルの洗浄が可能になる。
 (第7項) 一態様に係る分取液体クロマトグラフの制御方法において、前記分取液体クロマトグラフは、送液ポンプと、前記送液ポンプに接続されるサンプラと、前記サンプラに接続される分離カラムと、前記分離カラムおよび前記サンプラに接続される検出器と、を含み、前記サンプラは、サンプルを吸引または吐出するニードルと、前記ニードルに接続される流路切替バルブと、サンプルを貯留するための貯留部と、を含んでいてもよい。前記制御方法は、サンプルを前記分離カラムに送るために、前記流路切替バルブの状態を第1状態にセットするステップを備え、前記第1状態では、前記ニードルは、前記流路切替バルブを介して前記貯留部に接続されてもよい。前記制御方法は、前記検出器からの溶出液を分取するために、前記流路切替バルブの状態を第2状態にセットするステップを備え、前記第2状態では、前記ニードルは、前記流路切替バルブを介して前記検出器に接続されてもよい。
 第7項に記載の制御方法によれば、サンプラが、分取装置としても利用され得る。これにより、分取液体クロマトグラフの構成部品を減らすことができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 分取液体クロマトグラフ、100 コントローラ、200 送液ポンプ、300 サンプラ、400 分離カラム、500 検出器。

Claims (7)

  1.  送液ポンプと、
     前記送液ポンプに接続されるサンプラと、
     前記サンプラに接続される分離カラムと、
     前記分離カラムおよび前記サンプラに接続される検出器と、を備え、
     前記サンプラは、
      サンプルを吸引または吐出するニードルと、
      前記ニードルに接続される流路切替バルブと、
      サンプルを貯留するための貯留部と、を含み、
     前記流路切替バルブの状態を第1状態および第2状態の間で切り替えるように、前記流路切替バルブを制御するコントローラをさらに備え、前記第1状態では、前記ニードルは、前記流路切替バルブを介して前記貯留部に接続され、前記第2状態では、前記ニードルは、前記流路切替バルブを介して前記検出器に接続される、分取液体クロマトグラフ。
  2.  前記第1状態において、前記検出器はドレインに接続される、請求項1に記載の分取液体クロマトグラフ。
  3.  前記検出器に接続される第1ラインおよび第2ラインと、
     前記第1状態において、前記貯留部を介して前記ニードルに接続されるシリンジと、をさらに備え、
     前記シリンジは、前記ニードルに前記貯留部に貯留されたサンプルを前記分離カラムに向けて吐出させ、
     前記第1状態において、
      前記第1ラインは閉じられ、
      前記検出器は、前記第2ラインを介してドレインに接続され、
     前記第2状態において、
      前記検出器は、前記第1ラインを介して前記ニードルに接続され、
      前記第2ラインは前記シリンジに接続される、請求項2に記載の分取液体クロマトグラフ。
  4.  前記第1状態において、前記シリンジは、前記ニードルにメイクアップ溶媒を吸引させて、前記貯留部に貯留させ、
     前記第2状態において、前記シリンジは、前記第2ラインを介して、前記貯留部に貯留されたメイクアップ溶媒を、前記検出器からの溶出液に混合させる、請求項3に記載の分取液体クロマトグラフ。
  5.  前記コントローラは、前記第2状態において、
      前記ニードルを、第1の分取用容器から第2の分取用容器へ移動させ、
      前記シリンジに、前記ニードルの移動中は、前記第2ラインを吸引させる、請求項3に記載の分取液体クロマトグラフ。
  6.  前記コントローラは、前記第1状態において、前記シリンジに、前記貯留部および前記ニードルに向けて洗浄用の液体を吐出させる、請求項3に記載の分取液体クロマトグラフ。
  7.  分取液体クロマトグラフの制御方法であって、
     前記分取液体クロマトグラフは、送液ポンプと、前記送液ポンプに接続されるサンプラと、前記サンプラに接続される分離カラムと、前記分離カラムおよび前記サンプラに接続される検出器と、を含み、
     前記サンプラは、サンプルを吸引または吐出するニードルと、前記ニードルに接続される流路切替バルブと、サンプルを貯留するための貯留部と、を含み、
     前記制御方法は、
      サンプルを前記分離カラムに送るために、前記流路切替バルブの状態を第1状態にセットするステップを備え、前記第1状態では、前記ニードルは、前記流路切替バルブを介して前記貯留部に接続され、
     前記制御方法は、
      前記検出器からの溶出液を分取するために、前記流路切替バルブの状態を第2状態にセットするステップを備え、前記第2状態では、前記ニードルは、前記流路切替バルブを介して前記検出器に接続される、分取液体クロマトグラフの制御方法。
PCT/JP2022/040722 2021-12-10 2022-10-31 分取液体クロマトグラフおよびその制御方法 WO2023105997A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023566163A JPWO2023105997A1 (ja) 2021-12-10 2022-10-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG10202113769U 2021-12-10
SG10202113769U 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023105997A1 true WO2023105997A1 (ja) 2023-06-15

Family

ID=86730199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040722 WO2023105997A1 (ja) 2021-12-10 2022-10-31 分取液体クロマトグラフおよびその制御方法

Country Status (2)

Country Link
JP (1) JPWO2023105997A1 (ja)
WO (1) WO2023105997A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332660A (ja) * 1998-06-04 1998-12-18 Hitachi Ltd 液体クロマトグラフおよびそれを用いる方法
WO2010021008A1 (ja) * 2008-08-19 2010-02-25 株式会社島津製作所 分取液体クロマトグラフ装置
JP2011033556A (ja) * 2009-08-05 2011-02-17 Shimadzu Corp 液体クロマトグラフ装置
CN110455970A (zh) * 2019-08-20 2019-11-15 大连依利特分析仪器有限公司 进样馏分收集装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332660A (ja) * 1998-06-04 1998-12-18 Hitachi Ltd 液体クロマトグラフおよびそれを用いる方法
WO2010021008A1 (ja) * 2008-08-19 2010-02-25 株式会社島津製作所 分取液体クロマトグラフ装置
JP2011033556A (ja) * 2009-08-05 2011-02-17 Shimadzu Corp 液体クロマトグラフ装置
CN110455970A (zh) * 2019-08-20 2019-11-15 大连依利特分析仪器有限公司 进样馏分收集装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Thermo Scientific Dionex UltiMate 3000 Well Plate Autosampler", THERMO FISHER SCIENTIFIC INC. PS70157_E09/16S, 13 October 2016 (2016-10-13), XP093072034, Retrieved from the Internet <URL:https://assets.thermofisher.com/TFS-Assets/CMD/Specification-Sheets/PS-70157-LC-UltiMate-3000-Well-Plate-Autosampler-PS70157-EN.pdf> [retrieved on 20230809] *

Also Published As

Publication number Publication date
JPWO2023105997A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6052390B2 (ja) オートサンプラ
CN107709985B (zh) 自动进样器以及液相色谱仪
US20130333452A1 (en) Liquid chromatograph, sample introduction device for liquid chromatograph, and method for cleaning sample introduction device for liquid chromatograph
US6129840A (en) Liquid chromatograph
JP5471846B2 (ja) 液体試料導入装置及び液体試料導入方法
WO2011052445A1 (ja) 液体試料分析装置及び液体試料導入装置
JP4228502B2 (ja) 液体クロマトグラフ及び流路切替バルブ
JP2845909B2 (ja) 液体クロマトグラフおよびそれを用いる方法
WO2019229819A1 (ja) 自動試料導入装置、クロマトグラフ、自動試料導入方法および分析方法
CN110869760A (zh) 自动取样器以及液相色谱仪
EP3847454A1 (en) Interface module for two-dimensional liquid chromatography
WO2023105997A1 (ja) 分取液体クロマトグラフおよびその制御方法
JP2001242181A (ja) オートインジェクタ
WO2014112527A1 (ja) サンプル濃縮装置
CN113848266A (zh) 流体系统、操作流体系统的方法及计算机程序产品
CN118401835A (en) Preparation liquid chromatograph and control method thereof
CN112881723A (zh) 一种血液检测装置以及血液检测方法
JP4324735B2 (ja) オートサンプラ
JP3404205B2 (ja) 液体クロマトグラフ/質量分析装置
JP7517477B2 (ja) 分取液体クロマトグラフ
US11185794B2 (en) Method of fraction collection for a liquid chromatography system
US11821879B2 (en) Autosampler for chromatograph
CN113848265A (zh) 流体系统及用于操作流体系统的方法
JP3341716B2 (ja) 液体クロマトグラフ
JP4659987B2 (ja) 分画分取する際の液体損失を低減するための装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566163

Country of ref document: JP

Kind code of ref document: A