WO2023105914A1 - Device for generating bubble-containing liquid - Google Patents

Device for generating bubble-containing liquid Download PDF

Info

Publication number
WO2023105914A1
WO2023105914A1 PCT/JP2022/037988 JP2022037988W WO2023105914A1 WO 2023105914 A1 WO2023105914 A1 WO 2023105914A1 JP 2022037988 W JP2022037988 W JP 2022037988W WO 2023105914 A1 WO2023105914 A1 WO 2023105914A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pressurized container
bubble
pressurized
internal pressure
Prior art date
Application number
PCT/JP2022/037988
Other languages
French (fr)
Japanese (ja)
Inventor
俊治 橋本
歩 鈴木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023105914A1 publication Critical patent/WO2023105914A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device

Definitions

  • the present disclosure relates to a bubble-containing liquid generating device that generates bubble-containing liquid.
  • Patent Literature 1 describes a conventional bubble-containing liquid manufacturing apparatus.
  • the bubble-containing liquid manufacturing apparatus described in Patent Document 1 includes a pressurized dissolution tank, a bubble generating section, and a shearing mechanism section.
  • the pressurized dissolving tank receives the liquid from the liquid supply line and pressurizes the gas from the gas inlet to generate the pressurized liquid in which the gas is dissolved.
  • the air bubble generator decompresses the pressurized liquid supplied from the pressurized dissolution tank.
  • the shearing mechanism imparts a shearing force to the liquid containing bubbles.
  • the bubble-containing liquid manufacturing apparatus described in Patent Document 1 has a complicated structure because two supply units, a liquid supply line and a gas supply unit, are connected to the pressurized dissolution tank. Contained liquid manufacturing equipment is enlarged. In addition, since the gas is pressurized and fed from the gas feed section into the pressurized dissolution tank, a large air pump is required for the gas feed section.
  • the present disclosure has been made in view of the above points, and aims to provide a bubble-containing liquid generating device having a simple configuration.
  • a bubble-containing liquid generating device includes a pressurized container, a liquid supply section, an outflow path, and a discharge control section.
  • the pressurized container pressurizes and dissolves the gas in the liquid to produce a pressurized liquid.
  • the liquid supply unit supplies liquid to the pressurized container.
  • An outflow path connects the pressurized container and the nozzle.
  • the nozzle has a decompression mechanism.
  • the ejection control unit ejects the bubble-containing liquid from the nozzle.
  • the liquid supply unit supplies the liquid to the pressurized container based on the pressure information indicating the internal pressure of the pressurized container, and controls the internal pressure of the pressurized container to be equal to or higher than the reference internal pressure.
  • the discharge control section has a function of controlling the outflow of the pressurized liquid from the pressurized container to the nozzle.
  • the ejection control unit causes the pressurized liquid to flow from the pressurized container to the nozzle, and ejects the bubble-containing liquid from the nozzle.
  • the bubble-containing liquid generation device According to the bubble-containing liquid generation device according to one aspect of the present disclosure, it is possible to realize a bubble-containing liquid generation device with a simple configuration.
  • FIG. 1 is a schematic configuration diagram of a bubble-containing liquid generating apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a functional block diagram of a control circuit in the bubble-containing liquid generating apparatus of the same.
  • FIG. 3 is a functional block diagram of a control circuit in the bubble-containing liquid generating device according to the modified example of the first embodiment.
  • FIG. 4 is a schematic configuration diagram of a bubble-containing liquid generating apparatus according to Embodiment 2.
  • FIG. FIG. 5 is a schematic configuration diagram of a bubble-containing liquid generating apparatus according to Modification 1. As shown in FIG.
  • FIG. 1 is a schematic configuration diagram showing the configuration of a bubble-containing liquid generating device 1 according to the first embodiment.
  • the bubble-containing liquid generating device 1 is a device that generates bubble-containing liquid.
  • a bubble-containing liquid is a liquid containing bubbles. Bubbles contained in a liquid have different names depending on their size. For example, bubbles with a diameter of 100 ⁇ m or less are called fine bubbles. Among fine bubbles, bubbles with a diameter of less than 1 ⁇ m are called ultra-fine bubbles, and bubbles with a diameter of 1 ⁇ m or more are called microbubbles.
  • the bubble-containing liquid generating device 1 generates, for example, ultra-fine bubble water in which ultra-fine bubbles are contained in the liquid.
  • the ultra-fine bubble water generated by the bubble-containing liquid generator 1 is, for example, water as the liquid and air as the gas forming the bubbles.
  • the bubble-containing liquid generating apparatus 1 includes a nozzle 2, a housing 3, a pressurized container 4, a pressure detection section 41, a liquid supply section 5, an outflow path 6, and a discharge control section. 7 and
  • the housing 3 is a case that accommodates the pressurized container 4, the pressure detection unit 41, the liquid supply unit 5, part of the outflow path 6, and part of the ejection control unit 7. Further, the housing 3 is formed with an injection port 511 that is a through hole that communicates with the liquid container 51 of the liquid supply section 5 . A lid 31 is detachably attached to the inlet 511 . Further, the housing 3 has a through hole 32 for exposing the discharge switch 71 of the discharge control unit 7 to the outside of the housing 3 and a through hole 32 for exposing a part of the outflow path 6 to the outside of the housing 3. A hole 33 is provided.
  • the housing 3 is made of resin, for example.
  • the pressurized container 4 is a container that generates the pressurized liquid L2 in which the gas G1 is pressurized and dissolved in the liquid L1.
  • Pressurized dissolution refers to dissolving the gas G1 in the liquid L1 by bringing the gas G1 into contact with the liquid L1 in a pressure environment higher than the atmospheric pressure (1 atm).
  • the pressurized liquid L2 is water in which air is pressurized and dissolved.
  • a liquid supply unit 5 , a pressure detection unit 41 , and an outflow path 6 are connected to the pressurized container 4 .
  • the pressurized container 4 is hermetically sealed except for the connecting portions of the liquid supply portion 5 , the pressure detection portion 41 and the outflow path 6 .
  • the pressurized container 4 is made of metal or resin, for example.
  • the pressure detection unit 41 is a pressure sensor that detects the internal pressure inside the pressurized container 4 .
  • the pressurized container 4 has a pressure detection hole, which is a through hole, and the pressure detection part 41 is connected to the pressure detection hole.
  • the pressure detector 41 may be installed inside the pressurized container 4 .
  • the pressure detector 41 is, for example, a diffusion pressure sensor.
  • As the pressure detection unit 41 for example, another pressure sensor or pressure gauge such as a capacitive pressure sensor may be used.
  • the liquid supply unit 5 supplies the liquid L1 to the pressurized container 4 .
  • the liquid supply section 5 includes a liquid container 51 , a supply path 52 , a liquid pump 53 and an inflow path 54 .
  • the liquid container 51 is a container that stores the liquid L1.
  • the liquid container 51 is made of metal or resin, for example.
  • the liquid container 51 communicates with the outside of the housing 3 through an inlet 511 and is configured to be replenished with the liquid L1 through the inlet 511 .
  • the injection port 511 is preferably provided at a position away from an opening in the liquid container 51 of the replenishment path 52, which will be described later.
  • the injection port 511 is provided, for example, in the upper portion of the liquid container 51 . Further, in a state where the cover 31 is attached to the inlet 511, the inflow and outflow of the liquid L1 between the liquid container 51 and the outside through the inlet 511 is suppressed. Also, the liquid container 51 is connected to a replenishment path 52 .
  • the replenishment path 52 is a liquid flow path that allows the liquid L1 to flow from the liquid container 51 to the liquid pump 53 .
  • the supply path 52 is a conduit that connects the inside of the liquid container 51 and the suction port 531 of the liquid pump 53 .
  • the supply path 52 is made of metal, resin, or rubber, for example.
  • the end of the supply path 52 on the liquid container 51 side is positioned at the bottom of the liquid container 51 .
  • the replenishment path 52 is, for example, a flexible tube having a higher specific gravity than the liquid L1 and has a length that reaches the bottom of the liquid container 51 .
  • the liquid pump 53 is a pump that pressurizes and injects the liquid L1 in the liquid container 51 into the pressure container 4 .
  • Pressurized injection means to flow the liquid L1 into the pressurized container 4 by applying a pressure higher than the atmospheric pressure.
  • the liquid pump 53 is a pump capable of pressurizing and discharging at a pressure equal to or higher than the internal pressure of the pressurizing container 4, and is, for example, a gear pump or a vane pump. Further, the liquid pump 53 has a motor as power that operates and stops according to instructions from the control circuit 10, which will be described later.
  • the inflow path 54 is a liquid path that allows the liquid L1 to flow from the liquid pump 53 into the pressurized container 4 .
  • the inflow path 54 is a conduit that connects the discharge port 532 of the liquid pump 53 and the inside of the pressurized container 4 .
  • the inflow path 54 is made of metal, resin, or rubber, for example.
  • the inflow path 54 passes through the liquid supply hole 42 of the pressurized container 4 and opens inside the pressurized container 4 .
  • the inflow path 54 may be connected to the liquid supply hole 42 provided in the pressurized container 4 .
  • the outflow path 6 is a liquid flow path for discharging the pressurized liquid L2 from the pressurized container 4 to the nozzle 2 .
  • the outflow path 6 includes a first outflow path 61 and a second outflow path 62 .
  • the first outflow path 61 is a pipeline that connects the inside of the pressurized container 4 and the inflow port 72 of the discharge control section 7 .
  • the first outflow path 61 is made of metal, resin, or rubber, for example.
  • the first outflow path 61 is, for example, entirely provided inside the housing 3 .
  • the first outflow path 61 is, for example, inserted into the pressurized container 4 through a liquid discharge hole 43 provided in the pressurized container 4 and opened inside the pressurized container 4 .
  • An opening of the first outflow path 61 on the side of the pressurized container 4 exists in the pressurized liquid L2.
  • the first outflow path 61 is inserted to the bottom of the pressurized container 4, for example. As a result, the pressurized liquid L2 is pushed out to the discharge control section 7 via the first outflow path 61 by the internal pressure of the pressurized container 4 .
  • the second outflow path 62 is a conduit that connects the ejection port 73 of the ejection control section 7 and the nozzle 2 .
  • the second outflow path 62 is made of resin or rubber, for example.
  • the second outflow path 62 penetrates through the through hole 33 provided in the housing 3 , and at least a connection portion with the nozzle 2 is located outside the housing 3 . It should be noted that the second outflow path 62 may be located outside the housing 3 except for the connecting portion with the ejection port 73 of the ejection control section 7 .
  • the discharge control unit 7 is provided in the middle of the outflow path 6, that is, between the first outflow path 61 and the second outflow path 62, and is a mechanism for controlling the discharge of the pressurized liquid L2 from the pressurized container 4 to the nozzle 2. is.
  • the discharge controller 7 has an inlet 72 , a discharge port 73 , a movable block 74 and a discharge switch 71 .
  • a movable block 74 is provided on a channel 75 connecting the inlet 72 and the ejection port 73 .
  • the movable block 74 is supported by, for example, an elastic body, and configured to change its position depending on whether or not the ejection switch 71 is pressed.
  • the discharge switch 71 is positioned outside the housing 3 through the through hole 32 of the housing 3 .
  • the movable block 74 closes the channel 75 when the discharge switch 71 is not pressed. Therefore, when the ejection switch 71 is not pressed, the ejection control section 7 is in a closed state in which the pressurized liquid L2 cannot flow out from the inlet 72 to the ejection port 73 .
  • the movable block 74 is pressed by the ejection switch 71, and the movable block 74 moves to connect the flow path 75. As shown in FIG. Therefore, when the ejection switch 71 is pressed, the ejection control section 7 is in an open state in which the pressurized liquid L2 can flow out from the inlet 72 to the ejection port 73 .
  • the nozzle 2 has a decompression mechanism for the pressurized liquid L2, and sprays and discharges the bubble-containing liquid L3.
  • the nozzle 2 is connected with the second outflow path 62 of the outflow path 6 .
  • the nozzle 2 has a decompression mechanism composed of, for example, an orifice and a venturi tube.
  • a venturi tube has a narrowed portion, and the cross-sectional area is smaller the closer to the narrowed portion and the larger the cross-sectional area farther from the narrowed portion.
  • the nozzle 2 When the ejection control unit 7 is in the open state, the nozzle 2 decompresses the pressurized liquid L2 that has flowed in from the second outflow path 62 by the decompression mechanism, causes bubbles to separate out, generates the bubble-containing liquid L3, and sprays and ejects the liquid L3. .
  • the nozzle 2 may have a turbulence generating mechanism.
  • the turbulence generating mechanism is, for example, a shearing mechanism.
  • the bubble-containing liquid generating device 1 includes a control circuit 10 as shown in FIG.
  • the control circuit 10 includes a pressure measurement section 81 , an instruction section 82 and a storage section 83 .
  • the control circuit 10 has one or more processors and memory.
  • the pressure measurement unit 81 is a circuit that measures the internal pressure of the pressurized container 4 .
  • the pressure measurement unit 81 acquires a signal indicating the internal pressure of the pressurized container 4 (see FIG. 1) from the pressure detector 41 and outputs the internal pressure value of the pressurized container 4 .
  • the instruction unit 82 is a circuit for instructing pressurized supply of the liquid L1 to the pressurized container 4 .
  • the instruction unit 82 controls, for example, the voltage applied to the motor of the liquid pump 53 to operate the liquid pump 53 or stop the liquid pump 53 .
  • the instruction unit 82 acquires the internal pressure value of the pressurized container 4 from the pressure measurement unit 81 and compares the internal pressure of the pressurized container 4 with the reference internal pressure. When the internal pressure of the pressurized container 4 is less than the reference internal pressure, the instruction unit 82 operates the liquid pump 53 to pressurize and inject the liquid L1 from the liquid container 51 into the pressurized container 4 .
  • the reference internal pressure is, for example, 0.5 MPa (5 atmospheres).
  • the reference internal pressure is not limited to 0.5 MPa (5 atmospheres), and may be in the range of 0.2 MPa (2 atmospheres) to 1 MPa (10 atmospheres).
  • the reference internal pressure is stored in advance in the storage unit 83, for example.
  • the instruction unit 82 stops the liquid pump 53 when the internal pressure of the pressurized container 4 obtained from the pressure measurement unit 81 reaches the reference internal pressure or higher. That is, when the internal pressure of the pressurized container 4 is equal to or higher than the reference internal pressure, the instructing section 82 does not operate the liquid pump.
  • the pressurized container 4 is in a state where the internal pressure of the pressurized container 4 is equal to the external pressure (atmospheric pressure, approximately 0.1 MPa) and only the gas G1 is present in the pressurized container 4. . That is, the pressurized container 4 does not contain the pressurized liquid L2.
  • the instruction unit 82 of the control circuit 10 operates the liquid pump 53 because the internal pressure of the pressurized container 4 is less than the reference internal pressure. As a result, the liquid pump 53 pressurizes and injects the liquid L1 from the liquid container 51 into the pressure container 4 .
  • the liquid pump 53 pressurizes and injects the liquid L1 from the liquid container 51 into the pressurized container 4, the volume of the gas G1 in the pressurized container 4 decreases and the internal pressure of the pressurized container 4 increases. Then, when the internal pressure of the pressurized container 4 rises to the reference internal pressure, the instruction section 82 of the control circuit 10 stops the liquid pump 53 . As a result, the internal pressure of the pressurized container 4 rises to the reference internal pressure. Further, the liquid L1 in the pressurized container 4 dissolves the gas G1 in an amount corresponding to the internal pressure of the pressurized container 4 and changes into the pressurized liquid L2. Therefore, the user can use the bubble-containing liquid L3.
  • the user uses the bubble-containing liquid L3, the user presses the ejection switch 71 of the ejection control unit 7 .
  • the outflow path 6 from the pressurized container 4 to the nozzle 2 is opened, so the pressurized liquid L2 in the pressurized container 4 is pushed out to the outflow path 6 by the internal pressure of the pressurized container 4 and flows into the nozzle 2. do.
  • the pressurized liquid L2 that has flowed into the nozzle 2 is decompressed by the decompression mechanism of the nozzle 2, and bubbles are deposited in the pressurized liquid L2. That is, fine bubbles are generated in the pressure-reduced pressurized liquid L2, and the bubble-containing liquid L3 is generated. Therefore, the bubble-containing liquid L3 is discharged from the nozzle 2 .
  • the gas G1 in the pressurized container 4 expands and pressurizes.
  • the internal pressure of container 4 decreases.
  • the instruction section 82 of the control circuit 10 causes the liquid pump 53 to pressurize and inject the liquid L1 from the liquid container 51 into the pressurized container 4 .
  • the instruction section 82 of the control circuit 10 stops the liquid pump 53 .
  • the internal pressure of the pressurized container 4 rises above the reference internal pressure, and the pressurized liquid L2 is generated. That is, the pressurized container 4 is replenished with the pressurized liquid L2, and the user can use the bubble-containing liquid L3 again.
  • the bubble-containing liquid L3 is, for example, fine bubble water, and specifically, microbubble water or ultra-fine bubble water, as described above.
  • fine bubble water since the surface of the bubbles is negatively charged, it has an action of adsorbing positively charged substances such as organic matter and a surfactant action.
  • microbubble water for example, by containing highly oxidizing ozone as bubbles, it is possible to exert a bactericidal action.
  • ultra-fine bubble water can be easily taken in by plants, for example, by containing oxygen and air as bubbles, it is possible to promote plant metabolism and promote growth.
  • the bubble-containing liquid L3 is discharged from the nozzle 2 . Therefore, the user can use the bubble-containing liquid L3.
  • the liquid L1 is injected into the pressurized container 4 so that the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. Therefore, the bubble-containing liquid generating apparatus 1 can be realized using only the liquid pump 53 without using an air pump. Therefore, since an air pump that tends to be large is not used, the size of the bubble-containing liquid generating apparatus 1 can be reduced.
  • the bubble-containing liquid generating device 1 according to the modified example of the first embodiment does not include the pressure detection section 41, and the configuration of the control circuit 10a is different from that of the control circuit 10 according to the first embodiment.
  • FIG. 3 is a functional block diagram of the control circuit 10a of the bubble-containing liquid generating device 1 according to the modification of the first embodiment.
  • the control circuit 10a includes a pressure measuring section 81a in place of the pressure measuring section 81. As shown in FIG. Also, the pressure measuring section 81 a is connected to the liquid pump 53 .
  • the pressure measurement unit 81 a measures the voltage applied to the liquid pump 53 and the current flowing through the liquid pump 53 to measure the power consumption of the liquid pump 53 .
  • the pressure measurement unit 81 a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53 .
  • the discharge port 532 (see FIG. 1) of the liquid pump 53 is connected to the pressurized container 4 (see FIG. 1) via the inflow path 54 (see FIG. 1). That is, the pressure of the pressurized liquid L2 in the inflow path 54 is applied to the discharge port 532 of the liquid pump 53 . Therefore, when the liquid pump 53 pressurizes and injects the liquid L1 into the pressurized container 4, the higher the internal pressure of the pressurized container 4, the higher the discharge pressure of the liquid pump 53 needs to be. That is, when the liquid pump 53 attempts to inject the same amount of liquid L1 into the pressurized container 4, the higher the internal pressure of the pressurized container 4, the greater the load on the motor, which is the power source of the liquid pump 53.
  • the pressure measurement unit 81a estimates the internal pressure of the pressurized container 4 using information indicating the relationship between the power consumption of the liquid pump 53 and the internal pressure of the pressurized container 4, which is stored in advance in the storage unit 83.
  • the information indicating the relationship between the power consumption of the liquid pump 53 and the internal pressure of the pressurized container 4 is, for example, a conversion table showing the internal pressure of the pressurized container 4 corresponding to the power consumption of the liquid pump 53 .
  • the correspondence relationship between the power consumption of the liquid pump 53 and the internal pressure of the pressurized container 4 is such that the power consumption of the liquid pump 53 changes to the internal pressure of the pressurized container 4 corresponding to the power consumption of the liquid pump 53. or the value of the coefficient of the formula.
  • the instruction section 82 first operates the liquid pump 53 .
  • the pressure measuring unit 81 a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53 .
  • the instruction section 82 operates the liquid pump 53 until the internal pressure of the pressurized container 4 becomes equal to or higher than the reference pressure.
  • the instruction section 82 stops the liquid pump 53 .
  • the instruction unit 82 operates the liquid pump 53 at predetermined time intervals, for example, and the pressure measurement unit 81 a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53 .
  • the time interval is, for example, every 30 minutes.
  • the instruction unit 82 intermittently operates the liquid pump 53 and the pressure measurement unit 81 a obtains information regarding the power consumption of the liquid pump 53 .
  • the bubble-containing liquid generating device 1 according to the modification of the first embodiment also has the same effects as the bubble-containing liquid generating device 1 according to the first embodiment.
  • the bubble-containing liquid generating apparatus 1b according to Embodiment 2 further has a gas path 11 having a gas intake valve 12, and the liquid pump 53b has a reverse flow function. This is different from the bubble-containing liquid generating device 1 (see FIG. 1).
  • FIG. 4 is a schematic configuration diagram showing the configuration of a bubble-containing liquid generating device 1b according to the second embodiment.
  • the same reference numerals are assigned to the same configurations as those of the bubble-containing liquid generating apparatus 1 according to the first embodiment, and the description thereof is omitted.
  • the pressurized container 4 is connected to a liquid supply portion 5b, a pressure detection portion 41, an outflow path 6, and a gas path 11.
  • the gas path 11 is an inflow path for gas supplied to the pressurized container 4 from the outside.
  • the gas supplied from the gas path 11 is air, for example.
  • the gas path 11 is a conduit connecting the intake port 34 , which is a through hole provided in the housing 3 , and the gas supply hole 44 , which is a through hole provided in the pressurized container 4 .
  • the gas path 11 is made of metal or resin, for example.
  • a gas intake valve 12 is provided on the gas path 11 .
  • the gas path 11 may be provided with an air filter between the gas intake valve 12 and the intake port 34 of the housing 3 to prevent inhalation of dust, powder, and the like.
  • the gas intake valve 12 is a non-return valve that restricts the passage of gas in the gas path 11 to one direction.
  • the gas intake valve 12 allows air to flow from the intake port 34 of the housing 3 to the gas supply hole 44 of the pressurized container 4 .
  • the gas intake valve 12 blocks backflow of the gas G1 and the pressurized liquid L2 from the gas supply hole 44 of the pressurized container 4 to the intake port 34 of the housing 3 .
  • the gas intake valve 12 is, for example, a check valve that utilizes the pressure difference between the pressurized container 4 and the outside.
  • the gas intake valve 12 opens when the internal pressure of the pressurized container 4 is less than the external pressure, and closes when the internal pressure of the pressurized container 4 is greater than or equal to the external pressure.
  • the liquid supply section 5b includes a liquid container 51b, a supply path 52b, a liquid pump 53b, and an inflow path 54b.
  • the liquid pump 53b has a function of pressurizing and injecting the liquid L1 from the liquid container 51b into the pressurized container 4 and a function of backflowing the pressurized liquid L2 from the pressurized container 4 to the liquid container 51b.
  • the liquid pump 53b has an inlet 531 and an outlet 532 and conveys liquid from the inlet 531 to the outlet 532 in forward operation (also referred to simply as "operation") and from the outlet 532 in reverse operation. It conveys the liquid to the suction port 531 .
  • Liquid pump 53b is, for example, a gear pump or a vane pump.
  • the liquid pump 53b has a motor as power, and the forward rotation of the motor causes the liquid pump 53b to operate forward.
  • the liquid pump 53b operates in the reverse direction. Also, when the motor stops, the liquid pump 53b stops operating. When the liquid pump 53b stops operating, movement of the liquid L1 and the pressurized liquid L2 between the liquid container 51b and the pressurized container 4 is suppressed.
  • the liquid container 51b has a function of storing the liquid L1 to be pressurized and injected into the pressurized container 4, and a function of storing the pressurized liquid L2 backflowing from the liquid pump 53b.
  • the supply path 52b is a conduit that connects the liquid container 51b and the suction port 531 of the liquid pump 53b.
  • the supply path 52b functions as a liquid path for supplying the liquid L1 from the liquid container 51b to the liquid pump 53b when the liquid pump 53b operates in the forward direction.
  • the supply path 52b functions as a liquid path for discharging the pressurized liquid L2 from the liquid pump 53b to the liquid container 51b when the liquid pump 53b operates in the reverse direction.
  • the inflow path 54b is a conduit that connects the discharge port 532 of the liquid pump 53b and the pressurized container 4 .
  • the inflow path 54b functions as a liquid path for discharging the liquid L1 from the liquid pump 53b to the pressurized container 4 when the liquid pump 53b operates in the forward direction.
  • the inflow path 54b functions as a liquid path for sucking up the pressurized liquid L2 from the pressurized container 4 to the liquid pump 53b when the liquid pump 53b operates in the reverse direction. Therefore, since the inflow path 54b sucks up the pressurized liquid L2, it is preferable that the end of the inflow path 54b on the pressurized container 4 side opens at the bottom of the pressurized container 4 .
  • the control circuit 10 of the bubble-containing liquid generating apparatus 1b has only the function of instructing supply by connecting the instruction section 82 to the liquid pump 53b instead of the liquid pump 53. However, it differs from the control circuit 10 of the first embodiment in that it further has a function of instructing backflow.
  • the instruction unit 82 of the control circuit 10 operates the liquid pump 53b in the forward direction when the internal pressure of the pressurized container 4 obtained from the pressure measurement unit 81 is less than the reference internal pressure.
  • the liquid pump 53b pressurizes and injects the liquid L1 from the liquid container 51b into the pressurized container 4 .
  • the instructing unit 82 acquires the internal pressure of the pressurized container 4 from the pressure measuring unit 81 while the liquid pump 53b is operating in the forward direction, and calculates the internal pressure change rate.
  • the internal pressure change rate is the increase value of the internal pressure of the pressurized container 4 per unit time.
  • the instructing unit 82 causes the liquid pump 53b to continue forward operation when the internal pressure change rate is less than the reference change rate.
  • the instructing unit 82 stops the liquid pump 53b when the internal pressure of the pressurized container 4 obtained from the pressure measuring unit 81 reaches or exceeds the reference internal pressure.
  • the instruction unit 82 causes the liquid pump 53b to operate in the reverse direction for a predetermined reverse flow time.
  • the liquid pump 53b reversely injects the pressurized liquid L2 from the pressurized container 4 into the liquid container 51b.
  • the instructing unit 82 causes the liquid pump 53b to operate in the forward direction again.
  • the instructing unit 82 stops the liquid pump 53b when the internal pressure of the pressurized container 4 obtained from the pressure measuring unit 81 reaches or exceeds the reference internal pressure.
  • the pressurized container 4 is in a state where only the gas G1 having the same pressure as the outside air pressure exists in the pressurized container 4 . That is, the pressurized container 4 does not contain the pressurized liquid L2. Since the internal pressure of the pressurized container 4 is less than the reference internal pressure, the instruction section 82 of the control circuit 10 operates the liquid pump 53b. As a result, the liquid pump 53b pressurizes and injects the liquid L1 from the liquid container 51b into the pressurized container 4 .
  • the liquid pump 53b pressurizes and injects the liquid L1 from the liquid container 51b into the pressurized container 4, the volume of the gas G1 in the pressurized container 4 decreases and the internal pressure of the pressurized container 4 increases.
  • the pressurized liquid L2 is generated in the pressurized container 4 and the liquid pump 53b stops operating. As a result, the user can use the bubble-containing liquid L3.
  • the pressurized liquid L2 in the pressurized container 4 flows through the outflow path 6 into the nozzle 2 .
  • the pressurized liquid L2 that has flowed into the nozzle 2 is decompressed by the decompression mechanism of the nozzle 2, and bubbles are deposited in the pressurized liquid L2. Therefore, the bubble-containing liquid L3 is discharged from the nozzle 2 .
  • the gas G1 in the pressurized container 4 expands and pressurizes.
  • the internal pressure of container 4 decreases.
  • the instructing unit 82 operates the liquid pump 53b in the forward direction to pressurize and inject the liquid L1 from the liquid container 51b into the pressurized container 4 .
  • the volume occupied by the gas G1 in the pressurized container 4 is larger than when the gas G1 in the pressurized container 4 is small. Therefore, when the same amount of liquid L1 is pressurized and injected into the pressurized container 4, the case where the gas G1 remains sufficiently in the pressurized container 4 is compared to the case where the gas G1 in the pressurized container 4 is small. Therefore, the amount of increase in the internal pressure of the pressurized container 4 is small. That is, when the internal pressure change rate is smaller than the reference rate of change, it can be estimated that the amount of gas G1 in the pressurized container 4 is greater than the reference amount corresponding to the reference rate of change.
  • the instructing unit 82 causes the liquid pump 53b to continue the forward operation, causing the liquid pump 53b to pump the liquid L1 from the liquid container 51b to the pressurized container 4 until the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. is injected under pressure.
  • the pressurized liquid L2 is replenished in the pressurized container 4, and the user can use the bubble-containing liquid L3 again.
  • the volume occupied by the gas G1 in the pressurized container 4 is smaller than when the gas G1 in the pressurized container 4 remains sufficiently. Therefore, when the same amount of liquid L1 is pressurized and injected into the pressurized container 4, when the gas G1 in the pressurized container 4 is small, compared with the case where the gas G1 remains sufficiently in the pressurized container 4. Therefore, the amount of increase in the internal pressure of the pressurized container 4 is large. That is, when the internal pressure change rate is greater than or equal to the reference rate of change, it can be estimated that the amount of gas G1 in the pressurized container 4 is less than or equal to the reference amount corresponding to the reference rate of change.
  • the instruction unit 82 causes the liquid pump 53b to operate in the reverse direction for the reverse flow time.
  • the liquid pump 53b causes the pressurized liquid L2 to flow back from the pressurized container 4 to the liquid container 51b.
  • part of the pressurized liquid L2 in the pressurized container 4 is discharged to the liquid container 51b, so that the gas G1 expands and the internal pressure in the pressurized container 4 decreases.
  • the gas intake valve 12 is opened and the gas G1 is replenished from the gas path 11 until the internal pressure of the pressurized container 4 becomes equal to the external pressure.
  • the gas G1 is replenished by the external air pressure so that the internal pressure in the pressurized container 4 becomes equal to the external air pressure.
  • the instruction unit 82 rotates the liquid pump 53b in the forward direction. Then, the gas G1 in the pressurized container is compressed by the liquid L1 pressurized and injected into the pressurized container 4, and the internal pressure of the pressurized container 4 rises. Moreover, the gas intake valve 12 is closed by the internal pressure of the pressurized container 4 rising, and the pressurized container 4 returns to a sealed state. By this operation, the internal pressure in the pressurized container 4 becomes equal to or higher than the external pressure. Thereafter, the liquid pump 53b pressurizes and injects the liquid L1 into the pressurized container 4 until the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. Therefore, the pressurized container 4 is replenished with the pressurized liquid L2, and the user can use the bubble-containing liquid L3 again.
  • the bubble-containing liquid L3 is discharged from the nozzle 2 as in the bubble-containing liquid generating device 1 according to the first embodiment. Therefore, the user can use the bubble-containing liquid L3.
  • the liquid L1 is supplied to the pressurized container 4 so that the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. is injected. Therefore, it is possible to increase the internal pressure of the pressurized container 4 and generate the bubble-containing liquid L3 using only the liquid pump without using an air pump.
  • the gas path 11 having the gas intake valve 12 is connected to the pressurized container 4 . Therefore, gas can be taken into the pressurized container 4 by utilizing the difference between the external pressure and the internal pressure of the pressurized container 4 . Therefore, the pressurized container 4 can be replenished with gas without using an air pump.
  • the liquid pump 53b has a reverse flow function of causing the pressurized liquid L2 to flow back from the pressurized container 4 to the liquid container 51b. Therefore, it is easy to reduce the internal pressure of the pressurized container 4 to the external pressure using the reverse flow function of the liquid pump 53b. Due to the reverse flow function of the liquid pump 53b, gas can be more efficiently replenished to the pressurized container 4 through the gas path 11 having the gas intake valve 12. FIG.
  • the inflow path 54 penetrates the liquid supply hole 42 of the pressurized container 4 and opens inside the pressurized container 4 .
  • the liquid supply unit 5c of the bubble-containing liquid generating device 1c discharges the liquid L1 as fine mist particles into the opening of the inflow path 54c in the pressurized container 4. of fine nozzles 55c.
  • the atomization nozzle 55c is attached to the upper side inside the pressurized container 4, for example. With such a configuration, the atomized fine particles of the liquid L1 absorb the gas G1 or entrain the gas G1 when mixed with the pressurized liquid L2. Therefore, it becomes easy to dissolve the gas G1 in the pressurized liquid L2.
  • the atomization nozzle may be attached to the liquid supply hole 42, for example.
  • Embodiments 1 and 2 and the modified example of Embodiment 1 the bubble-containing liquid generating devices 1 and 1b are provided with the nozzle 2 from which the bubble-containing liquid L3 is discharged.
  • the bubble-containing liquid generating devices 1 and 1b may not include the nozzle 2, and the bubble-containing liquid L3 may be discharged from the nozzle 2 by connecting the bubble-containing liquid generating devices 1 and 1b and the nozzle 2.
  • Such a configuration facilitates replacement of the nozzle 2, for example. Therefore, for example, various types of nozzles 2 with different ejection directions and ejection amounts of the bubble-containing liquid L3 can be used according to the application of the bubble-containing liquid L3.
  • the bubble-containing liquid generating device 1 includes the liquid container 51 .
  • the bubble-containing liquid generating device 1 may not include the liquid container 51 and may receive the liquid L1 from the outside of the housing 3 .
  • the supply path 52 may connect the suction port 531 of the liquid pump 53 and a liquid source that exists outside the housing 3 .
  • the liquid source existing outside the housing 3 may be, for example, a liquid tank separate from the bubble-containing liquid generating device 1, and may be, for example, a bottle or a PET bottle.
  • the liquid source existing outside the housing 3 may be a liquid supply channel such as a water pipe.
  • the bubble-containing liquid generating apparatus 1 does not include the liquid container 51b, and the supply path 52b is connected to the suction port 531 of the liquid pump 53b and the liquid source existing outside the housing 3. may be connected.
  • the pressurized liquid L2 may flow back to the liquid source when the liquid pump 53b operates in the reverse direction.
  • the supply path 52b of the bubble-containing liquid generating apparatus 1b includes a first path, which is a flow path of the liquid L1 in one direction from the liquid source to the suction port 531 of the liquid pump 53b, and the suction port 531 of the liquid pump 53b.
  • the outlet of the second path may be connected to, for example, a container that stores the liquid L1, or may be connected to a processing path capable of appropriately processing the liquid L1.
  • the liquid pump 53b operates in the reverse direction to lower the internal pressure of the pressurized container 4 and replenish the pressurized container 4 with the gas G1.
  • the instruction unit 82 operates the liquid pumps 53 and 53b when the internal pressure of the pressurized container 4 is less than the reference internal pressure, and the internal pressure of the pressurized container 4 reaches the reference internal pressure. When it becomes above, the liquid pumps 53 and 53b are stopped.
  • the reference internal pressure that serves as a reference for determining whether to start the operation of the liquid pumps 53 and 53b may be different from the reference internal pressure that serves as a reference for determining whether to stop the liquid pumps 53 and 53b.
  • a first reference internal pressure and a second reference internal pressure which are different from each other, are predetermined.
  • the liquid pumps 53 and 53b are stopped.
  • the second reference internal pressure is higher than the first reference internal pressure.
  • the liquid pump 53 has two operating states, namely, the operation of pressurizing and injecting the liquid L1 from the liquid container 51 into the pressurized container 4, and the operation stop.
  • the liquid pump 53 may have a plurality of operation states with different injection speeds of the liquid L1 when pressurizing the liquid L1 from the liquid container 51 to the pressurized container 4 .
  • the liquid pump 53 has a high-speed injection mode and a low-speed injection mode in which the liquid L1 is injected at a slower speed than the high-speed injection mode.
  • the liquid pump 53 operates in the high-speed injection mode when the internal pressure of the pressurized container 4 is less than the third reference internal pressure, and operates in the low-speed injection mode when the internal pressure of the pressurized container 4 is equal to or higher than the third reference internal pressure. to operate.
  • the third reference internal pressure is a value smaller than the reference internal pressure.
  • the third reference internal pressure is, for example, one atmosphere lower than the reference internal pressure.
  • the liquid pump 53 operates in the high-speed injection mode, and if the power source that supplies power to the liquid pump 53 is a battery, the liquid pump 53 may operate in slow mode. With such a configuration, it is possible to limit the maximum power consumption of the liquid pump 53 when the power source for supplying power to the liquid pump 53 is a battery.
  • the liquid pump 53b according to the second embodiment may have a plurality of operating states with different injection speeds of the liquid L1 in the forward operation. Also, the liquid pump 53b may have a plurality of operating states in which the reverse flow rate of the pressurized liquid L2 differs even in the reverse direction operation.
  • the instruction unit 82 operates the liquid pump 53 at predetermined time intervals, and the pressure measurement unit 81a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53.
  • the intermittent operation of the liquid pump 53 for measuring the internal pressure of the pressurized container 4 may not be performed at time intervals.
  • the control circuit 10a is provided with a sensor for measuring the number of times the discharge switch 71 of the discharge control section 7 is pressed or the time during which the discharge switch 71 is pressed. may operate the liquid pump 53 .
  • the internal pressure of the pressurized container 4 can be measured based on the number of times or the duration of the ejection operation of the bubble-containing liquid L3, which is the factor that causes the internal pressure of the pressurized container 4 to decrease.
  • the instructing unit 82 when the rate of change in the internal pressure of the pressurized container 4 during forward operation of the liquid pump 53b is equal to or greater than the reference rate of change, the instructing unit 82 causes the liquid pump 53b to operate in the reverse direction for a predetermined reverse flow time. make it work.
  • the reverse operation of the liquid pump 53b is not limited to performing only the reverse flow time.
  • the instructing unit 82 when the internal pressure change rate during operation of the liquid pump 53b is equal to or higher than the reference change rate, the instructing unit 82 reverses the liquid pump 53b until the internal pressure of the pressurized container 4 becomes 0.1 MPa (1 atm) or less. Directional operation may be performed. By doing so, the pressurized container 4 can be reliably replenished with the gas.
  • the pressure measurement unit 81 of the second embodiment is not limited to measuring the internal pressure of the pressurized container 4 by the pressure detection unit 41.
  • the internal pressure of the pressurized container 4 can be may be measured.
  • the inflow path 54b also serves as a liquid path for causing the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid pump 53b.
  • the inflow path 54b includes a liquid path that causes the liquid L1 from the liquid pump 53b to flow into the pressurized container 4, and a liquid path that causes the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid pump 53b. It's okay.
  • the inflow path 54b includes a forward path that connects the discharge port 532 of the liquid pump 53b and the inside of the pressurized container 4, and a reverse flow path that connects the discharge port 532 of the liquid pump 53b and the inside of the pressurized container 4.
  • the forward path is provided with a check valve that allows passage of the liquid L1 in one direction from the discharge port 532 of the liquid pump 53b to the pressurized container 4 and blocks passage of the pressurized liquid L2 in the opposite direction.
  • the backflow path is provided with a backflow prevention valve that allows passage of the pressurized liquid L2 in one direction from the pressurized container 4 to the discharge port 532 of the liquid pump 53b and blocks passage of the liquid L1 in the opposite direction.
  • the opening in the pressurized container 4 in the forward flow path can be made different from the opening in the pressurized container 4 in the reverse flow path.
  • a miniaturization nozzle 55c can be provided at the opening in the pressurized container 4 on the forward path to promote dissolution of the gas G1 into the pressurized liquid L2.
  • the liquid pump 53b has a reverse flow function that causes the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid container 51b.
  • the backflow function may be realized by using the liquid pump 53 without the backflow function and an electromagnetic valve or the like capable of controlling the opening and closing of the flow path.
  • the liquid supply section 5b includes a liquid container 51b, a liquid pump 53, first to fourth electromagnetic valves, and first to fourth flow paths.
  • the first flow path connects between the liquid container 51b and the suction port 531 of the liquid pump 53, and the first electromagnetic valve is provided on the first flow path.
  • the second flow path connects between the liquid container 51b and the discharge port 532 of the liquid pump 53, and the second electromagnetic valve is provided on the second flow path.
  • the third flow path connects between the pressurized container 4 and the discharge port 532 of the liquid pump 53, and the third electromagnetic valve is provided on the third flow path.
  • a fourth path connects between the pressurized container 4 and the suction port 531 of the liquid pump 53, and a fourth electromagnetic valve is provided on the fourth path.
  • the second and fourth solenoid valves are opened, and the first and third solenoid valves are closed.
  • the second flow path functions as a reverse flow path of the replenishment path 52
  • the fourth flow path functions as a reverse flow path of the inflow path 54 .
  • the liquid pump 53 does not have to have a reverse flow function for causing the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid container 51b. Therefore, the liquid pump 53 may be a pump that does not have a backflow function, such as a diaphragm pump, as long as it can pressurize and inject the liquid L1 into the pressurized container 4 . Further, as described above, when the liquid pump 53 having no backflow function and a solenoid valve or the like are used to realize the backflow function, the liquid pump 53 may be, for example, a diaphragm pump.
  • a bubble-containing liquid generating device (1; 1b; 1c) includes a pressurized container (4), a liquid supply section (5; 5b; 5c), an outflow path (6), and a discharge control section. (7) and
  • the pressurized container (4) pressurizes and dissolves the gas (G1) in the liquid (L1) to generate the pressurized liquid (L2).
  • a liquid supply section (5; 5b; 5c) supplies a liquid (L1) to the pressurized container (4).
  • An outflow path (6) connects the pressurized vessel (4) and the nozzle (2).
  • the nozzle (2) has a decompression mechanism.
  • a discharge control section (7) discharges the bubble-containing liquid (L3) from the nozzle (2).
  • the liquid supply unit (5; 5b; 5c) supplies the liquid (L1) to the pressurized container (4) based on the pressure information indicating the internal pressure of the pressurized container (4), thereby increasing the internal pressure of the pressurized container (4). is controlled above the reference internal pressure.
  • the discharge control section (7) has a function of controlling the outflow of the pressurized liquid (L2) from the pressurized container (4) to the nozzle (2).
  • a discharge control section (7) causes the pressurized liquid (L2) to flow out from the pressurized container (4) to the nozzle (2), and discharges the bubble-containing liquid (L3) from the nozzle (2).
  • the internal pressure of the pressurized container (4) is controlled to be equal to or higher than the reference internal pressure by the operation of the liquid supply section (5; 5b; 5c), and the pressurized liquid is (L2) can be generated. Therefore, it is not necessary to pressurize and inject gas, which is the raw material of bubbles, into the pressurized container (4), and the bubble-containing liquid generating device (1; 1b; 1c) can be realized with a simple configuration.
  • the bubble-containing liquid generating device (1; 1b; 1c) further includes a pressure detection section (41).
  • a pressure detector (41) detects the internal pressure of the pressurized container (4).
  • the liquid supply section (5; 5b; 5c) uses the detection result of the pressure detection section (41) as pressure information, and supplies the liquid (L1) to the pressurized container (4) based on the detection result.
  • the liquid supply part (5; 5b; 5c) can easily control the internal pressure of the pressurized container (4) to be equal to or higher than the reference internal pressure.
  • the liquid supply section (5; 5c) includes a liquid pump (53).
  • a liquid pump (53) pressurizes and supplies the liquid (L1) to the pressurized container (4).
  • the liquid supply section (5; 5c) detects the internal pressure of the pressurized container (4) based on the power consumption of the liquid pump (53).
  • the liquid supply unit (5; 5c) uses the detected internal pressure of the pressurized container (4) as pressure information, and supplies the liquid (L1) to the pressurized container (4) based on the detected internal pressure of the pressurized container (4). supply.
  • the liquid pump (53) is used to detect the internal pressure of the pressurized container (4). Therefore, there is no need to use the pressure detection section (41), and the bubble-containing liquid generating device (1) can be realized with a simpler configuration.
  • a bubble-containing liquid generating device (1b) in any one of the first to third aspects, further includes a gas path (11) and a gas intake valve (12).
  • a gas line (11) supplies gas to the pressurized vessel (4).
  • a gas intake valve (12) is provided on the gas path (11). The gas intake valve (12) opens when the internal pressure of the pressurized container (4) is less than the external pressure, and closes when the internal pressure of the pressurized container (4) is greater than or equal to the external pressure.
  • gas can be supplied to the pressurized container (4) by controlling the internal pressure of the pressurized container (4) to be less than the external pressure. Therefore, an air pump and an air tank for pressurizing and injecting gas into the pressurized container (4) are not required. Therefore, the bubble-containing liquid generating device (1b) can be realized with a simple configuration.
  • the liquid supply section (5b) supplies the pressurized liquid (L2) from the pressurized container (4). It has the function of backflow.
  • the pressurized liquid (L2) in the pressurized container (4) is caused to flow back to the liquid container (51b) of the liquid supply section (5b), whereby the pressurized container (4)
  • the internal pressure can be reduced. Therefore, the liquid supply part (5b) can control the internal pressure of the pressurized container (4) with high accuracy.
  • the bubble-containing liquid generating device (1b) in any one of the first to third aspects, further comprises a gas path (11) and a gas intake valve (12).
  • a gas line (11) supplies gas to the pressurized vessel (4).
  • a gas intake valve (12) is provided on the gas path (11). The gas intake valve (12) opens when the internal pressure of the pressurized container (4) is less than the external pressure, and closes when the internal pressure of the pressurized container (4) is greater than or equal to the external pressure.
  • the liquid supply part (5b) has a function of backflowing the pressurized liquid (L2) from the pressurized container (4).
  • a liquid supply unit (5b) estimates the amount of gas (G1) in the pressurized container (4), and if the amount of gas (G1) in the pressurized container (4) is equal to or less than the reference amount, the pressurized container
  • the pressurized liquid (L2) is reversed from (4) to depressurize the pressurized container (4).
  • the pressurized liquid (L2) in the pressurized container (4) can be supplied to the pressurized container (4) by causing the to flow back to the outside of the pressurized container (4). Therefore, the pressurized container (4) can be replenished with both liquid (L1) and gas by operation of the liquid supply (5b). Therefore, the bubble-containing liquid generating device (1b) can be realized with a simple configuration.
  • the bubble-containing liquid generating device (1; 1b; 1c) according to the seventh aspect further comprises a nozzle (2) in any one of the first to sixth aspects.
  • the nozzle (2) is connected to an outflow channel (6).
  • the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, there is no need to separately prepare the nozzle (2), and the bubble-containing liquid generating device (1; 1b; 1c) alone can ) can be used.
  • the nozzle (2) has a decompression mechanism or a turbulence generating mechanism.
  • the nozzle (2) can efficiently generate the bubble-containing liquid (L3) from the pressurized liquid (L2).
  • the ejection control section (7) has an operation section (71), and the operation section While (71) is pressed, the bubble-containing liquid (L3) is discharged from the nozzle (2).
  • the user presses the operation unit (71) to discharge the amount of bubble-containing liquid (L3) required by the user. Therefore, the bubble-containing liquid generator (1; 1b; 1c) can discharge the bubble-containing liquid (L3) in a required amount, and the liquid (L1) and the gas (G1) are efficiently used.
  • the liquid supply section (5c) supplies the liquid (L1) to the pressurized container (4) in a mist form. It further has a miniaturization nozzle (55c) that feeds into.
  • the liquid (L1) is water.
  • the bubble-containing liquid (L3) is ultra-fine bubble water.
  • the bubble-containing liquid generating device (1; 1b; 1c) can generate ultra-fine bubble water as the bubble-containing liquid (L3).
  • ultra-fine bubble water since the surface of the bubbles is negatively charged, it has an action of adsorbing positively charged substances such as organic matter and a surfactant action.
  • ultra-fine bubble water has small bubbles and high permeability. Furthermore, ultra-fine bubble water can be easily taken up by plants. Therefore, the ultra-fine bubble water generated by the bubble-containing liquid generator (1; 1b; 1c) can be used for various purposes such as plant cultivation and cleaning.
  • the liquid supply section (5; 5b; 5c) includes a liquid pump (53; 53b).
  • a liquid pump (53; 53b) pressurizes and supplies the liquid (L1) to the pressurized container (4).
  • the liquid (L1) can be easily pressurized and supplied to the pressurized container (4) using the liquid pump (53; 53b).
  • the liquid pump (53b) has functions of forward operation, reverse operation, and operation stop.
  • forward operation the pressurized container (4) is pressurized with liquid (L1).
  • Reverse operation reverses the flow of pressurized liquid (L2) from the pressurized container (4).
  • deactivation the liquid pump (53b) does not operate.
  • the liquid pump (53b) performs one of forward operation, reverse operation, and stop operation.
  • each operation of the liquid pump (53b) supplies both the liquid (L1) and the gas (G1) to the pressurized container (4). can be done.
  • the liquid pump (53; 53b) has a function of adjusting the operating speed.
  • the internal pressure of the pressurized container (4) can be controlled in detail by adjusting the operating speed of the liquid pump (53; 53b), or , the power consumption of the liquid pump (53; 53b) can be reduced.
  • the liquid pump (53; 53b) is a gear pump.
  • the liquid supply section (5; 5b; 5c) can be easily realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Nozzles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

A device (1) for generating a bubble-containing liquid comprises a pressurized container (4), a liquid feed unit (5), an outflow pathway (6), and a discharge control unit (7). The pressurized container (4) generates a pressurized liquid (L2) by dissolving a gas (G1) in a liquid (L1) to increase the pressure of same. The liquid feed unit (5) feeds the liquid (L1) to the pressurized container (4). The outflow pathway (6) connects the pressurized container (4) and a nozzle (2). The nozzle (2) is equipped with a decompression mechanism. The discharge control unit (7) causes a bubble-containing liquid (L3) to be discharged from the nozzle (2). The liquid feed unit (5) performs control so as to keep the internal pressure of the pressurized container (4) equal to or higher than a reference internal pressure by feeding the liquid (L1) to the pressurized container (4) on the basis of pressure information indicative of the internal pressure of the pressurized container (4). The discharge control unit (7) has a function of controlling the outflow of the pressurized liquid (L2) from the pressurized container (4) to the nozzle (2). The discharge control unit (7) causes the bubble-containing liquid (L3) to be discharged from the nozzle (2) by causing the pressurized liquid (L2) to flow out from the pressurized container (4) to the nozzle (2).

Description

気泡含有液体生成装置Bubble-containing liquid generator
 本開示は、気泡含有液体を生成する気泡含有液体生成装置に関する。 The present disclosure relates to a bubble-containing liquid generating device that generates bubble-containing liquid.
 近年、液体に微小な気泡を含有させた気泡含有液体の普及が進んでいる。特許文献1には、従来の気泡含有液体製造装置が記載されている。 In recent years, the spread of bubble-containing liquids, in which microscopic bubbles are contained in the liquid, is progressing. Patent Literature 1 describes a conventional bubble-containing liquid manufacturing apparatus.
 特許文献1に記載の気泡含有液体製造装置は、加圧溶解タンクと、気泡発生部と、せん断機構部とを備えている。加圧溶解タンクは、液体供給ラインから液体が導入され、気体送入部から気体が加圧送入されて、気体が溶解した加圧液体を生成する。また、気泡発生部は、加圧溶解タンクから供給された加圧液体の減圧を行う。せん断機構部は、気泡を含有する液体にせん断力を付与する。 The bubble-containing liquid manufacturing apparatus described in Patent Document 1 includes a pressurized dissolution tank, a bubble generating section, and a shearing mechanism section. The pressurized dissolving tank receives the liquid from the liquid supply line and pressurizes the gas from the gas inlet to generate the pressurized liquid in which the gas is dissolved. Also, the air bubble generator decompresses the pressurized liquid supplied from the pressurized dissolution tank. The shearing mechanism imparts a shearing force to the liquid containing bubbles.
特開2021-23910号公報Japanese Patent Application Laid-Open No. 2021-23910
 しかしながら、特許文献1に記載の気泡含有液体製造装置は、加圧溶解タンクに液体供給ラインと気体送入部との2つの供給部が接続されているため、構造が複雑になり、かつ、気泡含有液体製造装置が大型化する。また、加圧溶解タンクに気体送入部から気体を加圧送入するため、気体送入部に大型のエアポンプが必要となる。 However, the bubble-containing liquid manufacturing apparatus described in Patent Document 1 has a complicated structure because two supply units, a liquid supply line and a gas supply unit, are connected to the pressurized dissolution tank. Contained liquid manufacturing equipment is enlarged. In addition, since the gas is pressurized and fed from the gas feed section into the pressurized dissolution tank, a large air pump is required for the gas feed section.
 本開示は上記の点に鑑みてなされたものであり、簡易な構成を有する気泡含有液体生成装置を提供することを目的とする。 The present disclosure has been made in view of the above points, and aims to provide a bubble-containing liquid generating device having a simple configuration.
 本開示の一態様に係る気泡含有液体生成装置は、加圧容器と、液体供給部と、流出経路と、吐出制御部と、を備える。加圧容器は、液体に気体を加圧溶解させて加圧液体を生成する。液体供給部は、加圧容器に液体を供給する。流出経路は、加圧容器とノズルとを接続する。ノズルは、減圧機構を有する。吐出制御部は、ノズルから気泡含有液体を吐出させる。液体供給部は、加圧容器の内圧を示す圧力情報に基づき、加圧容器に液体を供給して加圧容器の内圧を基準内圧以上に制御する。吐出制御部は、加圧容器からノズルへの加圧液体の流出を制御する機能を有する。吐出制御部は、加圧液体を加圧容器からノズルに流出させて、ノズルから気泡含有液体を吐出させる。 A bubble-containing liquid generating device according to one aspect of the present disclosure includes a pressurized container, a liquid supply section, an outflow path, and a discharge control section. The pressurized container pressurizes and dissolves the gas in the liquid to produce a pressurized liquid. The liquid supply unit supplies liquid to the pressurized container. An outflow path connects the pressurized container and the nozzle. The nozzle has a decompression mechanism. The ejection control unit ejects the bubble-containing liquid from the nozzle. The liquid supply unit supplies the liquid to the pressurized container based on the pressure information indicating the internal pressure of the pressurized container, and controls the internal pressure of the pressurized container to be equal to or higher than the reference internal pressure. The discharge control section has a function of controlling the outflow of the pressurized liquid from the pressurized container to the nozzle. The ejection control unit causes the pressurized liquid to flow from the pressurized container to the nozzle, and ejects the bubble-containing liquid from the nozzle.
 本開示の一態様に係る気泡含有液体生成装置によれば、簡易な構成の気泡含有液体生成装置を実現できる。 According to the bubble-containing liquid generation device according to one aspect of the present disclosure, it is possible to realize a bubble-containing liquid generation device with a simple configuration.
図1は、実施形態1に係る気泡含有液体生成装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a bubble-containing liquid generating apparatus according to Embodiment 1. FIG. 図2は、同上の気泡含有液体生成装置における制御回路の機能ブロック図である。FIG. 2 is a functional block diagram of a control circuit in the bubble-containing liquid generating apparatus of the same. 図3は、実施形態1の変形例に係る気泡含有液体生成装置における制御回路の機能ブロック図である。FIG. 3 is a functional block diagram of a control circuit in the bubble-containing liquid generating device according to the modified example of the first embodiment. 図4は、実施形態2に係る気泡含有液体生成装置の概略構成図である。FIG. 4 is a schematic configuration diagram of a bubble-containing liquid generating apparatus according to Embodiment 2. FIG. 図5は、他の変形例1に係る気泡含有液体生成装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a bubble-containing liquid generating apparatus according to Modification 1. As shown in FIG.
 以下、本開示の実施形態に係る気泡含有液体生成装置について図面を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさ及び厚さのそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例に過ぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。 Hereinafter, a bubble-containing liquid generating device according to an embodiment of the present disclosure will be described in detail with reference to the drawings. However, each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio. Note that the configuration described in the following embodiment is merely an example of the present disclosure. The present disclosure is not limited to the following embodiments, and various modifications can be made according to design and the like as long as the effects of the present disclosure can be achieved.
 (実施形態1)
 (1)気泡含有液体生成装置の構成
 図1は、実施形態1に係る気泡含有液体生成装置1の構成を示す概略構成図である。
(Embodiment 1)
(1) Configuration of Bubble-Containing Liquid Generating Device FIG. 1 is a schematic configuration diagram showing the configuration of a bubble-containing liquid generating device 1 according to the first embodiment.
 気泡含有液体生成装置1は、気泡含有液体を生成する装置である。気泡含有液体とは、気泡が含まれている液体をいう。液体に含まれている気泡は、その大きさによって呼び方が異なる。例えば、直径100μm以下の気泡はファインバブルと呼ばれる。また、ファインバブルのうち、直径1μm未満の気泡はウルトラファインバブルと呼ばれ、直径1μm以上の気泡はマイクロバブルと呼ばれる。気泡含有液体生成装置1は、例えば、ウルトラファインバブルが液体に含まれているウルトラファインバブル水を生成する。気泡含有液体生成装置1が生成するウルトラファインバブル水は、例えば、液体を水とし、気泡を形成する気体を空気とする。 The bubble-containing liquid generating device 1 is a device that generates bubble-containing liquid. A bubble-containing liquid is a liquid containing bubbles. Bubbles contained in a liquid have different names depending on their size. For example, bubbles with a diameter of 100 μm or less are called fine bubbles. Among fine bubbles, bubbles with a diameter of less than 1 μm are called ultra-fine bubbles, and bubbles with a diameter of 1 μm or more are called microbubbles. The bubble-containing liquid generating device 1 generates, for example, ultra-fine bubble water in which ultra-fine bubbles are contained in the liquid. The ultra-fine bubble water generated by the bubble-containing liquid generator 1 is, for example, water as the liquid and air as the gas forming the bubbles.
 図1に示すように、気泡含有液体生成装置1は、ノズル2と、筐体3と、加圧容器4と、圧力検出部41と、液体供給部5と、流出経路6と、吐出制御部7と、を含む。 As shown in FIG. 1, the bubble-containing liquid generating apparatus 1 includes a nozzle 2, a housing 3, a pressurized container 4, a pressure detection section 41, a liquid supply section 5, an outflow path 6, and a discharge control section. 7 and
 筐体3は、加圧容器4と、圧力検出部41と、液体供給部5と、流出経路6の一部と、吐出制御部7の一部と、を収容するケースである。また、筐体3には、液体供給部5の液体容器51と連通する貫通孔である注入口511が形成されている。注入口511には蓋31が着脱可能に取り付けられる。また、筐体3には、吐出制御部7の吐出スイッチ71を筐体3の外部に露出させるための貫通孔32と、流出経路6の一部を筐体3の外部に露出するための貫通孔33とが設けられている。筐体3は、例えば、樹脂で構成されている。 The housing 3 is a case that accommodates the pressurized container 4, the pressure detection unit 41, the liquid supply unit 5, part of the outflow path 6, and part of the ejection control unit 7. Further, the housing 3 is formed with an injection port 511 that is a through hole that communicates with the liquid container 51 of the liquid supply section 5 . A lid 31 is detachably attached to the inlet 511 . Further, the housing 3 has a through hole 32 for exposing the discharge switch 71 of the discharge control unit 7 to the outside of the housing 3 and a through hole 32 for exposing a part of the outflow path 6 to the outside of the housing 3. A hole 33 is provided. The housing 3 is made of resin, for example.
 加圧容器4は、液体L1に気体G1が加圧溶解された加圧液体L2を生成する容器である。加圧溶解とは、大気圧(1気圧)より高い圧力環境で、気体G1を液体L1に接触させて、液体L1に気体G1を溶解させることを言う。例えば、液体L1を水とし、気体G1を空気とする場合、加圧液体L2は、空気が加圧溶解された水である。加圧容器4には、液体供給部5と、圧力検出部41と、流出経路6とが接続されている。加圧容器4は、液体供給部5と、圧力検出部41と、流出経路6との接続部分以外は、密閉状態に構成されている。加圧容器4は、例えば、金属又は樹脂で構成されている。 The pressurized container 4 is a container that generates the pressurized liquid L2 in which the gas G1 is pressurized and dissolved in the liquid L1. Pressurized dissolution refers to dissolving the gas G1 in the liquid L1 by bringing the gas G1 into contact with the liquid L1 in a pressure environment higher than the atmospheric pressure (1 atm). For example, when the liquid L1 is water and the gas G1 is air, the pressurized liquid L2 is water in which air is pressurized and dissolved. A liquid supply unit 5 , a pressure detection unit 41 , and an outflow path 6 are connected to the pressurized container 4 . The pressurized container 4 is hermetically sealed except for the connecting portions of the liquid supply portion 5 , the pressure detection portion 41 and the outflow path 6 . The pressurized container 4 is made of metal or resin, for example.
 圧力検出部41は、加圧容器4内の内圧を検出する圧力センサである。例えば、加圧容器4は貫通孔である圧力検出孔を有し、圧力検出部41は圧力検出孔に接続されている。又は、例えば、圧力検出部41は、加圧容器4の内部に設置されていてもよい。圧力検出部41は、例えば、拡散式圧力センサである。なお、圧力検出部41として、例えば、静電容量式圧力センサ等、他の圧力センサ又は圧力計を用いてもよい。 The pressure detection unit 41 is a pressure sensor that detects the internal pressure inside the pressurized container 4 . For example, the pressurized container 4 has a pressure detection hole, which is a through hole, and the pressure detection part 41 is connected to the pressure detection hole. Alternatively, for example, the pressure detector 41 may be installed inside the pressurized container 4 . The pressure detector 41 is, for example, a diffusion pressure sensor. As the pressure detection unit 41, for example, another pressure sensor or pressure gauge such as a capacitive pressure sensor may be used.
 液体供給部5は、加圧容器4に液体L1を供給する。液体供給部5は、液体容器51と、補給経路52と、液体ポンプ53と、流入経路54とを含む。 The liquid supply unit 5 supplies the liquid L1 to the pressurized container 4 . The liquid supply section 5 includes a liquid container 51 , a supply path 52 , a liquid pump 53 and an inflow path 54 .
 液体容器51は、液体L1を貯留する容器である。液体容器51は、例えば、金属又は樹脂で構成されている。液体容器51は注入口511によって筐体3の外部と連通しており、注入口511より液体L1を補充することが可能な構成である。注入口511は、後述する補給経路52の液体容器51内の開口から離れた位置に設けられることが好ましい。注入口511は、例えば、液体容器51の上部に設けられる。また、注入口511に蓋31が取り付けられている状態では、注入口511を介しての液体容器51と外部との間での液体L1の流入出が抑止される。また、液体容器51は、補給経路52と接続されている。 The liquid container 51 is a container that stores the liquid L1. The liquid container 51 is made of metal or resin, for example. The liquid container 51 communicates with the outside of the housing 3 through an inlet 511 and is configured to be replenished with the liquid L1 through the inlet 511 . The injection port 511 is preferably provided at a position away from an opening in the liquid container 51 of the replenishment path 52, which will be described later. The injection port 511 is provided, for example, in the upper portion of the liquid container 51 . Further, in a state where the cover 31 is attached to the inlet 511, the inflow and outflow of the liquid L1 between the liquid container 51 and the outside through the inlet 511 is suppressed. Also, the liquid container 51 is connected to a replenishment path 52 .
 補給経路52は、液体L1を液体容器51から液体ポンプ53に流入させる液体流路である。補給経路52は、液体容器51の内部と、液体ポンプ53の吸込口531とを接続する管路である。補給経路52は、例えば、金属、樹脂、又はゴムで構成されている。補給経路52の液体容器51側の端は、液体容器51の底部に位置している。又は、補給経路52は、例えば、液体L1より比重の大きい可撓性の管であり、液体容器51の底部まで届く長さを有する。 The replenishment path 52 is a liquid flow path that allows the liquid L1 to flow from the liquid container 51 to the liquid pump 53 . The supply path 52 is a conduit that connects the inside of the liquid container 51 and the suction port 531 of the liquid pump 53 . The supply path 52 is made of metal, resin, or rubber, for example. The end of the supply path 52 on the liquid container 51 side is positioned at the bottom of the liquid container 51 . Alternatively, the replenishment path 52 is, for example, a flexible tube having a higher specific gravity than the liquid L1 and has a length that reaches the bottom of the liquid container 51 .
 液体ポンプ53は、液体容器51内の液体L1を加圧容器4に加圧注入するポンプである。加圧注入とは、大気圧以上の圧力を印加して液体L1を加圧容器4に流入することをいう。液体ポンプ53は、加圧容器4の内圧以上の圧力で加圧吐出が可能なポンプであり、例えば、ギヤポンプ、ベーンポンプ等である。また、液体ポンプ53は、動力として、後述する制御回路10の指示により動作し停止するモータを有する。 The liquid pump 53 is a pump that pressurizes and injects the liquid L1 in the liquid container 51 into the pressure container 4 . Pressurized injection means to flow the liquid L1 into the pressurized container 4 by applying a pressure higher than the atmospheric pressure. The liquid pump 53 is a pump capable of pressurizing and discharging at a pressure equal to or higher than the internal pressure of the pressurizing container 4, and is, for example, a gear pump or a vane pump. Further, the liquid pump 53 has a motor as power that operates and stops according to instructions from the control circuit 10, which will be described later.
 流入経路54は、液体L1を液体ポンプ53から加圧容器4に流入させる液体経路である。流入経路54は、液体ポンプ53の吐出口532と、加圧容器4の内部とを接続する管路である。流入経路54は、例えば、金属、樹脂又はゴムで構成されている。流入経路54は、例えば、加圧容器4の液体供給孔42を貫通して加圧容器4内で開口している。又は、例えば、流入経路54は、加圧容器4に設けられた液体供給孔42に接続されていてもよい。 The inflow path 54 is a liquid path that allows the liquid L1 to flow from the liquid pump 53 into the pressurized container 4 . The inflow path 54 is a conduit that connects the discharge port 532 of the liquid pump 53 and the inside of the pressurized container 4 . The inflow path 54 is made of metal, resin, or rubber, for example. The inflow path 54 , for example, passes through the liquid supply hole 42 of the pressurized container 4 and opens inside the pressurized container 4 . Alternatively, for example, the inflow path 54 may be connected to the liquid supply hole 42 provided in the pressurized container 4 .
 流出経路6は、加圧液体L2を加圧容器4からノズル2に吐出させる液体流路である。流出経路6は、第1流出経路61と、第2流出経路62とを含む。 The outflow path 6 is a liquid flow path for discharging the pressurized liquid L2 from the pressurized container 4 to the nozzle 2 . The outflow path 6 includes a first outflow path 61 and a second outflow path 62 .
 第1流出経路61は、加圧容器4の内部と、吐出制御部7の流入口72とを接続する管路である。第1流出経路61は、例えば、金属、樹脂又はゴムで構成されている。第1流出経路61は、例えば、その全部が筐体3内部に設けられている。第1流出経路61は、例えば、加圧容器4に設けられた液体吐出孔43を貫通して加圧容器4内に挿し込まれ、加圧容器4内で開口する。第1流出経路61の加圧容器4側の開口部は、加圧液体L2内に存在する。第1流出経路61は、例えば、加圧容器4の底部まで挿入される。これにより、加圧容器4の内圧によって加圧液体L2が第1流出経路61を介して吐出制御部7に押し出される。 The first outflow path 61 is a pipeline that connects the inside of the pressurized container 4 and the inflow port 72 of the discharge control section 7 . The first outflow path 61 is made of metal, resin, or rubber, for example. The first outflow path 61 is, for example, entirely provided inside the housing 3 . The first outflow path 61 is, for example, inserted into the pressurized container 4 through a liquid discharge hole 43 provided in the pressurized container 4 and opened inside the pressurized container 4 . An opening of the first outflow path 61 on the side of the pressurized container 4 exists in the pressurized liquid L2. The first outflow path 61 is inserted to the bottom of the pressurized container 4, for example. As a result, the pressurized liquid L2 is pushed out to the discharge control section 7 via the first outflow path 61 by the internal pressure of the pressurized container 4 .
 第2流出経路62は、吐出制御部7の吐出口73と、ノズル2とを接続する管路である。第2流出経路62は、例えば、樹脂又はゴムで構成されている。第2流出経路62は、筐体3に設けられた貫通孔33を貫通し、少なくともノズル2との接続部分が筐体3の外部に位置している。なお、第2流出経路62は、吐出制御部7の吐出口73との接続部分以外が筐体3の外部に位置していてもよい。 The second outflow path 62 is a conduit that connects the ejection port 73 of the ejection control section 7 and the nozzle 2 . The second outflow path 62 is made of resin or rubber, for example. The second outflow path 62 penetrates through the through hole 33 provided in the housing 3 , and at least a connection portion with the nozzle 2 is located outside the housing 3 . It should be noted that the second outflow path 62 may be located outside the housing 3 except for the connecting portion with the ejection port 73 of the ejection control section 7 .
 吐出制御部7は、流出経路6の途上、すなわち、第1流出経路61と第2流出経路62の間に設けられ、加圧容器4からノズル2への加圧液体L2の吐出を制御する機構である。吐出制御部7は、流入口72と、吐出口73と、可動ブロック74と、吐出スイッチ71とを有する。吐出制御部7では、例えば、流入口72と吐出口73とを繋ぐ流路75上に、可動ブロック74が設けられている。可動ブロック74は、例えば、弾性体によって支持され、吐出スイッチ71が押圧されているか否かで位置が異なるように構成されている。吐出スイッチ71は、筐体3の貫通孔32を通じて筐体3の外部に位置している。吐出スイッチ71が押圧されていない状態では、可動ブロック74が流路75を塞ぐ。したがって、吐出スイッチ71が押圧されていない状態では、吐出制御部7は、加圧液体L2が流入口72から吐出口73へ流出できない閉鎖状態となる。一方、吐出スイッチ71が押圧されている状態では、可動ブロック74が吐出スイッチ71によって押圧され、可動ブロック74が移動して流路75が繋がる。したがって、吐出スイッチ71が押圧されている状態では、吐出制御部7は、加圧液体L2が流入口72から吐出口73へ流出できる開放状態となる。 The discharge control unit 7 is provided in the middle of the outflow path 6, that is, between the first outflow path 61 and the second outflow path 62, and is a mechanism for controlling the discharge of the pressurized liquid L2 from the pressurized container 4 to the nozzle 2. is. The discharge controller 7 has an inlet 72 , a discharge port 73 , a movable block 74 and a discharge switch 71 . In the ejection control unit 7 , for example, a movable block 74 is provided on a channel 75 connecting the inlet 72 and the ejection port 73 . The movable block 74 is supported by, for example, an elastic body, and configured to change its position depending on whether or not the ejection switch 71 is pressed. The discharge switch 71 is positioned outside the housing 3 through the through hole 32 of the housing 3 . The movable block 74 closes the channel 75 when the discharge switch 71 is not pressed. Therefore, when the ejection switch 71 is not pressed, the ejection control section 7 is in a closed state in which the pressurized liquid L2 cannot flow out from the inlet 72 to the ejection port 73 . On the other hand, when the ejection switch 71 is pressed, the movable block 74 is pressed by the ejection switch 71, and the movable block 74 moves to connect the flow path 75. As shown in FIG. Therefore, when the ejection switch 71 is pressed, the ejection control section 7 is in an open state in which the pressurized liquid L2 can flow out from the inlet 72 to the ejection port 73 .
 ノズル2は、加圧液体L2の減圧機構を有し、気泡含有液体L3を噴霧吐出する。ノズル2は、流出経路6の第2流出経路62と接続される。ノズル2は、例えば、オリフィスやベンチュリ管から構成されている減圧機構を有する。ベンチュリ管は、狭窄部を有し、狭窄部に近いほど断面積が小さく、狭窄部から遠いほど断面積が大きい。ノズル2は、吐出制御部7が開放状態であるとき、第2流出経路62から流入した加圧液体L2を減圧機構によって減圧させ、気泡を析出させて気泡含有液体L3を生成して噴霧吐出する。なお、ノズル2は、乱流発生機構を有してもよい。乱流発生機構は、例えば、せん断機構である。 The nozzle 2 has a decompression mechanism for the pressurized liquid L2, and sprays and discharges the bubble-containing liquid L3. The nozzle 2 is connected with the second outflow path 62 of the outflow path 6 . The nozzle 2 has a decompression mechanism composed of, for example, an orifice and a venturi tube. A venturi tube has a narrowed portion, and the cross-sectional area is smaller the closer to the narrowed portion and the larger the cross-sectional area farther from the narrowed portion. When the ejection control unit 7 is in the open state, the nozzle 2 decompresses the pressurized liquid L2 that has flowed in from the second outflow path 62 by the decompression mechanism, causes bubbles to separate out, generates the bubble-containing liquid L3, and sprays and ejects the liquid L3. . In addition, the nozzle 2 may have a turbulence generating mechanism. The turbulence generating mechanism is, for example, a shearing mechanism.
 (2)気泡含有液体生成装置の機能
 気泡含有液体生成装置1は、図2に示すような制御回路10を備える。制御回路10は、圧力測定部81と、指示部82と、記憶部83とを含む。制御回路10は、1以上のプロセッサ及びメモリを有する。
(2) Functions of Bubble-Containing Liquid Generating Device The bubble-containing liquid generating device 1 includes a control circuit 10 as shown in FIG. The control circuit 10 includes a pressure measurement section 81 , an instruction section 82 and a storage section 83 . The control circuit 10 has one or more processors and memory.
 圧力測定部81は、加圧容器4の内圧を測定する回路である。圧力測定部81は、圧力検出部41から加圧容器4(図1参照)の内圧を示す信号を取得し、加圧容器4の内圧値を出力する。 The pressure measurement unit 81 is a circuit that measures the internal pressure of the pressurized container 4 . The pressure measurement unit 81 acquires a signal indicating the internal pressure of the pressurized container 4 (see FIG. 1) from the pressure detector 41 and outputs the internal pressure value of the pressurized container 4 .
 指示部82は、加圧容器4への液体L1の加圧供給を指示する回路である。指示部82は、例えば、液体ポンプ53のモータへの印加電圧を制御し、液体ポンプ53を動作させ、又は、液体ポンプ53を停止させる。指示部82は、圧力測定部81から加圧容器4の内圧値を取得し、加圧容器4の内圧と基準内圧とを比較する。加圧容器4の内圧が基準内圧未満である場合には、指示部82は、液体ポンプ53を動作させ、液体容器51から加圧容器4に液体L1を加圧注入させる。基準内圧は、例えば、0.5MPa(5気圧)である。なお、基準内圧は、0.5MPa(5気圧)に限らず、0.2MPa(2気圧)以上1MPa(10気圧)以下の範囲であればよい。基準内圧は、例えば、記憶部83にあらかじめ記憶されている。指示部82は、圧力測定部81から取得した加圧容器4の内圧が基準内圧以上に達すると、液体ポンプ53を停止させる。つまり、加圧容器4の内圧が基準内圧以上である場合、指示部82は、液体ポンプを動作させない。 The instruction unit 82 is a circuit for instructing pressurized supply of the liquid L1 to the pressurized container 4 . The instruction unit 82 controls, for example, the voltage applied to the motor of the liquid pump 53 to operate the liquid pump 53 or stop the liquid pump 53 . The instruction unit 82 acquires the internal pressure value of the pressurized container 4 from the pressure measurement unit 81 and compares the internal pressure of the pressurized container 4 with the reference internal pressure. When the internal pressure of the pressurized container 4 is less than the reference internal pressure, the instruction unit 82 operates the liquid pump 53 to pressurize and inject the liquid L1 from the liquid container 51 into the pressurized container 4 . The reference internal pressure is, for example, 0.5 MPa (5 atmospheres). The reference internal pressure is not limited to 0.5 MPa (5 atmospheres), and may be in the range of 0.2 MPa (2 atmospheres) to 1 MPa (10 atmospheres). The reference internal pressure is stored in advance in the storage unit 83, for example. The instruction unit 82 stops the liquid pump 53 when the internal pressure of the pressurized container 4 obtained from the pressure measurement unit 81 reaches the reference internal pressure or higher. That is, when the internal pressure of the pressurized container 4 is equal to or higher than the reference internal pressure, the instructing section 82 does not operate the liquid pump.
 (3)動作
 以下、気泡含有液体生成装置1の動作について説明する。
(3) Operation The operation of the bubble-containing liquid generating device 1 will be described below.
 最初に、加圧容器4の状態が、加圧容器4の内圧が外気圧(大気圧、約0.1MPa)と等しく、かつ、加圧容器4に気体G1のみが存在する状態であるとする。つまり、加圧容器4には加圧液体L2が存在していない。制御回路10の指示部82は、加圧容器4の内圧が基準内圧未満であるから、液体ポンプ53を動作させる。これにより、液体ポンプ53は、液体容器51から加圧容器4に液体L1を加圧注入する。 First, it is assumed that the pressurized container 4 is in a state where the internal pressure of the pressurized container 4 is equal to the external pressure (atmospheric pressure, approximately 0.1 MPa) and only the gas G1 is present in the pressurized container 4. . That is, the pressurized container 4 does not contain the pressurized liquid L2. The instruction unit 82 of the control circuit 10 operates the liquid pump 53 because the internal pressure of the pressurized container 4 is less than the reference internal pressure. As a result, the liquid pump 53 pressurizes and injects the liquid L1 from the liquid container 51 into the pressure container 4 .
 液体ポンプ53が液体容器51から加圧容器4に液体L1を加圧注入すると、加圧容器4内の気体G1の体積が小さくなり、加圧容器4の内圧が上昇する。そして、加圧容器4の内圧が基準内圧まで上昇すると、制御回路10の指示部82は、液体ポンプ53を停止させる。これにより、加圧容器4の内圧が基準内圧まで上昇する。また、加圧容器4内の液体L1は加圧容器4の内圧に応じた量の気体G1が溶け込み、加圧液体L2に変化する。したがって、ユーザが気泡含有液体L3を利用できる状態となる。 When the liquid pump 53 pressurizes and injects the liquid L1 from the liquid container 51 into the pressurized container 4, the volume of the gas G1 in the pressurized container 4 decreases and the internal pressure of the pressurized container 4 increases. Then, when the internal pressure of the pressurized container 4 rises to the reference internal pressure, the instruction section 82 of the control circuit 10 stops the liquid pump 53 . As a result, the internal pressure of the pressurized container 4 rises to the reference internal pressure. Further, the liquid L1 in the pressurized container 4 dissolves the gas G1 in an amount corresponding to the internal pressure of the pressurized container 4 and changes into the pressurized liquid L2. Therefore, the user can use the bubble-containing liquid L3.
 ユーザが気泡含有液体L3を利用する際には、吐出制御部7の吐出スイッチ71がユーザによって押圧される。これにより、加圧容器4からノズル2まで流出経路6が開放状態になるので、加圧容器4内の加圧液体L2が加圧容器4の内圧によって流出経路6に押し出されてノズル2に流入する。ノズル2に流入した加圧液体L2は、ノズル2の減圧機構によって減圧され、加圧液体L2内に気泡が析出する。すなわち、減圧された加圧液体L2内に微細な気泡が生じ、気泡含有液体L3が生成される。したがって、ノズル2から、気泡含有液体L3が吐出される。 When the user uses the bubble-containing liquid L3, the user presses the ejection switch 71 of the ejection control unit 7 . As a result, the outflow path 6 from the pressurized container 4 to the nozzle 2 is opened, so the pressurized liquid L2 in the pressurized container 4 is pushed out to the outflow path 6 by the internal pressure of the pressurized container 4 and flows into the nozzle 2. do. The pressurized liquid L2 that has flowed into the nozzle 2 is decompressed by the decompression mechanism of the nozzle 2, and bubbles are deposited in the pressurized liquid L2. That is, fine bubbles are generated in the pressure-reduced pressurized liquid L2, and the bubble-containing liquid L3 is generated. Therefore, the bubble-containing liquid L3 is discharged from the nozzle 2 .
 ユーザの気泡含有液体L3の利用つまりノズル2からの気泡含有液体L3の吐出によって加圧容器4内の加圧液体L2の体積が減少すると、加圧容器4内の気体G1が膨張し、加圧容器4の内圧が低下する。そして、加圧容器4の内圧が基準内圧未満まで低下すると、制御回路10の指示部82は、液体ポンプ53に、液体容器51から加圧容器4に液体L1を加圧注入させる。そして、加圧容器4の内圧が基準内圧まで上昇すると、制御回路10の指示部82は、液体ポンプ53を停止させる。この動作により、加圧容器4の内圧が基準内圧以上に上昇し、加圧液体L2が生成される。すなわち、加圧容器4内に加圧液体L2が補充され、ユーザが気泡含有液体L3を利用できる状態に戻る。 When the volume of the pressurized liquid L2 in the pressurized container 4 decreases due to the use of the bubble-containing liquid L3 by the user, that is, the discharge of the bubble-containing liquid L3 from the nozzle 2, the gas G1 in the pressurized container 4 expands and pressurizes. The internal pressure of container 4 decreases. Then, when the internal pressure of the pressurized container 4 falls below the reference internal pressure, the instruction section 82 of the control circuit 10 causes the liquid pump 53 to pressurize and inject the liquid L1 from the liquid container 51 into the pressurized container 4 . Then, when the internal pressure of the pressurized container 4 rises to the reference internal pressure, the instruction section 82 of the control circuit 10 stops the liquid pump 53 . By this operation, the internal pressure of the pressurized container 4 rises above the reference internal pressure, and the pressurized liquid L2 is generated. That is, the pressurized container 4 is replenished with the pressurized liquid L2, and the user can use the bubble-containing liquid L3 again.
 (4)気泡含有液体の利用
 以下、気泡含有液体生成装置1で生成された気泡含有液体L3の利用について説明する。
(4) Utilization of Bubble-Containing Liquid Hereinafter, utilization of the bubble-containing liquid L3 generated by the bubble-containing liquid generating apparatus 1 will be described.
 気泡含有液体L3は、上述したように、例えば、ファインバブル水であり、具体的には、マイクロバブル水、又は、ウルトラファインバブル水である。ファインバブル水では、気泡表面が負電荷に帯電しているため、正電荷に帯電している物質、例えば、有機物を吸着する作用や、界面活性作用がある。 The bubble-containing liquid L3 is, for example, fine bubble water, and specifically, microbubble water or ultra-fine bubble water, as described above. In fine bubble water, since the surface of the bubbles is negatively charged, it has an action of adsorbing positively charged substances such as organic matter and a surfactant action.
 また、マイクロバブル水では、例えば、酸化性の高いオゾンを気泡として含有させることで、殺菌作用を発揮させることができる。 In addition, in microbubble water, for example, by containing highly oxidizing ozone as bubbles, it is possible to exert a bactericidal action.
 また、ウルトラファインバブル水は植物が容易に取り込めるため、例えば、酸素や空気を気泡として含有させることで、植物の代謝を促進して成長を促進することができる。 In addition, since ultra-fine bubble water can be easily taken in by plants, for example, by containing oxygen and air as bubbles, it is possible to promote plant metabolism and promote growth.
 (5)効果
 実施形態1に係る気泡含有液体生成装置1では、ノズル2から気泡含有液体L3が吐出される。したがって、気泡含有液体L3をユーザが利用できる。
(5) Effect In the bubble-containing liquid generating device 1 according to the first embodiment, the bubble-containing liquid L3 is discharged from the nozzle 2 . Therefore, the user can use the bubble-containing liquid L3.
 また、実施形態1に係る気泡含有液体生成装置1では、加圧容器4の内圧が基準内圧以上となるように加圧容器4に液体L1が注入される。したがって、エアポンプを用いることなく、液体ポンプ53のみを用いて気泡含有液体生成装置1を実現できる。したがって、大型になりやすいエアポンプを用いないため、気泡含有液体生成装置1を小型化することができる。 In addition, in the bubble-containing liquid generating device 1 according to Embodiment 1, the liquid L1 is injected into the pressurized container 4 so that the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. Therefore, the bubble-containing liquid generating apparatus 1 can be realized using only the liquid pump 53 without using an air pump. Therefore, since an air pump that tends to be large is not used, the size of the bubble-containing liquid generating apparatus 1 can be reduced.
 (変形例)
 実施形態1の変形例に係る気泡含有液体生成装置1は、図3に示すように、圧力検出部41を備えず、制御回路10aの構成が実施形態1に係る制御回路10と異なる。
(Modification)
As shown in FIG. 3, the bubble-containing liquid generating device 1 according to the modified example of the first embodiment does not include the pressure detection section 41, and the configuration of the control circuit 10a is different from that of the control circuit 10 according to the first embodiment.
 図3は、実施形態1の変形例に係る気泡含有液体生成装置1の制御回路10aの機能ブロック図である。制御回路10aは、圧力測定部81に替えて圧力測定部81aを備える。また、圧力測定部81aは、液体ポンプ53に接続されている。 FIG. 3 is a functional block diagram of the control circuit 10a of the bubble-containing liquid generating device 1 according to the modification of the first embodiment. The control circuit 10a includes a pressure measuring section 81a in place of the pressure measuring section 81. As shown in FIG. Also, the pressure measuring section 81 a is connected to the liquid pump 53 .
 圧力測定部81aは、液体ポンプ53への印加電圧と、液体ポンプ53に流れる電流とを測定し、液体ポンプ53の消費電力を測定する。圧力測定部81aは、液体ポンプ53の消費電力に基づいて、加圧容器4の内圧を測定する。 The pressure measurement unit 81 a measures the voltage applied to the liquid pump 53 and the current flowing through the liquid pump 53 to measure the power consumption of the liquid pump 53 . The pressure measurement unit 81 a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53 .
 上述したように、液体ポンプ53の吐出口532(図1参照)は流入経路54(図1参照)を介して加圧容器4(図1参照)に接続されている。つまり、液体ポンプ53の吐出口532には、流入経路54内の加圧液体L2の圧力が印加される。したがって、液体ポンプ53が液体L1を加圧容器4に加圧注入する際、加圧容器4の内圧が高いほど、液体ポンプ53の吐出圧を高くする必要がある。すなわち、液体ポンプ53で同量の液体L1を加圧容器4に注入しようとしたとき、加圧容器4の内圧が高いほど、液体ポンプ53の動力源であるモータへの負荷が大きくなる。したがって、圧力測定部81aは、予め記憶部83に記憶されている、液体ポンプ53の消費電力と加圧容器4の内圧との関係を示す情報を用いて、加圧容器4の内圧を推測する。液体ポンプ53の消費電力と加圧容器4の内圧との関係を示す情報は、例えば、液体ポンプ53の消費電力に対応する加圧容器4の内圧を示す換算表である。又は、例えば、液体ポンプ53の消費電力と加圧容器4の内圧との対応関係は、液体ポンプ53の消費電力を、液体ポンプ53の消費電力に対応する加圧容器4の内圧に変化するための数式、又は、数式の係数の値である。 As described above, the discharge port 532 (see FIG. 1) of the liquid pump 53 is connected to the pressurized container 4 (see FIG. 1) via the inflow path 54 (see FIG. 1). That is, the pressure of the pressurized liquid L2 in the inflow path 54 is applied to the discharge port 532 of the liquid pump 53 . Therefore, when the liquid pump 53 pressurizes and injects the liquid L1 into the pressurized container 4, the higher the internal pressure of the pressurized container 4, the higher the discharge pressure of the liquid pump 53 needs to be. That is, when the liquid pump 53 attempts to inject the same amount of liquid L1 into the pressurized container 4, the higher the internal pressure of the pressurized container 4, the greater the load on the motor, which is the power source of the liquid pump 53. Therefore, the pressure measurement unit 81a estimates the internal pressure of the pressurized container 4 using information indicating the relationship between the power consumption of the liquid pump 53 and the internal pressure of the pressurized container 4, which is stored in advance in the storage unit 83. . The information indicating the relationship between the power consumption of the liquid pump 53 and the internal pressure of the pressurized container 4 is, for example, a conversion table showing the internal pressure of the pressurized container 4 corresponding to the power consumption of the liquid pump 53 . Alternatively, for example, the correspondence relationship between the power consumption of the liquid pump 53 and the internal pressure of the pressurized container 4 is such that the power consumption of the liquid pump 53 changes to the internal pressure of the pressurized container 4 corresponding to the power consumption of the liquid pump 53. or the value of the coefficient of the formula.
 実施形態1の変形例に係る気泡含有液体生成装置1では、最初に、指示部82が液体ポンプ53を動作させる。そして、圧力測定部81aは、液体ポンプ53の消費電力に基づいて加圧容器4の内圧を測定する。加圧容器4の内圧が基準圧力未満である場合には、加圧容器4の内圧が基準圧力以上となるまで、指示部82が液体ポンプ53を動作させる。一方、加圧容器4の内圧が基準圧力以上である場合には、指示部82は液体ポンプ53を停止させる。 In the bubble-containing liquid generation device 1 according to the modification of Embodiment 1, the instruction section 82 first operates the liquid pump 53 . The pressure measuring unit 81 a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53 . When the internal pressure of the pressurized container 4 is less than the reference pressure, the instruction section 82 operates the liquid pump 53 until the internal pressure of the pressurized container 4 becomes equal to or higher than the reference pressure. On the other hand, when the internal pressure of the pressurized container 4 is equal to or higher than the reference pressure, the instruction section 82 stops the liquid pump 53 .
 また、指示部82は、例えば、予め定めた時間間隔で液体ポンプ53を動作させ、圧力測定部81aは、液体ポンプ53の消費電力に基づいて加圧容器4の内圧を測定する。時間間隔は、例えば、30分おきである。つまり、指示部82は、液体ポンプ53を間欠的に動作させ、圧力測定部81aは、液体ポンプ53の消費電力に関する情報を取得する。 Also, the instruction unit 82 operates the liquid pump 53 at predetermined time intervals, for example, and the pressure measurement unit 81 a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53 . The time interval is, for example, every 30 minutes. In other words, the instruction unit 82 intermittently operates the liquid pump 53 and the pressure measurement unit 81 a obtains information regarding the power consumption of the liquid pump 53 .
 実施形態1の変形例に係る気泡含有液体生成装置1によっても、実施形態1に係る気泡含有液体生成装置1と同様の効果を奏する。 The bubble-containing liquid generating device 1 according to the modification of the first embodiment also has the same effects as the bubble-containing liquid generating device 1 according to the first embodiment.
 (実施形態2)
 実施形態2に係る気泡含有液体生成装置1bは、図4に示すように、気体取入弁12を有する気体経路11を更に有し、液体ポンプ53bが逆流機能を有する点で、実施形態1に係る気泡含有液体生成装置1(図1参照)と異なる。
(Embodiment 2)
As shown in FIG. 4, the bubble-containing liquid generating apparatus 1b according to Embodiment 2 further has a gas path 11 having a gas intake valve 12, and the liquid pump 53b has a reverse flow function. This is different from the bubble-containing liquid generating device 1 (see FIG. 1).
 (1)気泡含有液体生成装置の構成
 図4は、実施形態2に係る気泡含有液体生成装置1bの構成を示す概略構成図である。なお、実施形態1に係る気泡含有液体生成装置1と同様の構成については同じ符号を付し、説明を省略する。
(1) Configuration of Bubble-Containing Liquid Generating Device FIG. 4 is a schematic configuration diagram showing the configuration of a bubble-containing liquid generating device 1b according to the second embodiment. In addition, the same reference numerals are assigned to the same configurations as those of the bubble-containing liquid generating apparatus 1 according to the first embodiment, and the description thereof is omitted.
 図4に示すように、加圧容器4には、液体供給部5bと、圧力検出部41と、流出経路6と、気体経路11とが接続されている。 As shown in FIG. 4, the pressurized container 4 is connected to a liquid supply portion 5b, a pressure detection portion 41, an outflow path 6, and a gas path 11.
 気体経路11は、外部から加圧容器4に供給される気体の流入経路である。気体経路11から供給される気体は、例えば空気である。気体経路11は、筐体3に設けられた貫通孔である吸気口34と、加圧容器4に設けられた貫通孔である気体供給孔44とを接続する管路である。気体経路11は、例えば、金属又は樹脂で構成されている。気体経路11の経路上には、気体取入弁12が設けられている。なお、気体経路11は、気体取入弁12と筐体3の吸気口34との間に、塵及び粉末等の吸入を防ぐエアフィルタを備えてもよい。 The gas path 11 is an inflow path for gas supplied to the pressurized container 4 from the outside. The gas supplied from the gas path 11 is air, for example. The gas path 11 is a conduit connecting the intake port 34 , which is a through hole provided in the housing 3 , and the gas supply hole 44 , which is a through hole provided in the pressurized container 4 . The gas path 11 is made of metal or resin, for example. A gas intake valve 12 is provided on the gas path 11 . The gas path 11 may be provided with an air filter between the gas intake valve 12 and the intake port 34 of the housing 3 to prevent inhalation of dust, powder, and the like.
 気体取入弁12は、気体経路11の気体の通過方向を一方向に制限する逆流防止弁である。気体取入弁12は、筐体3の吸気口34から加圧容器4の気体供給孔44への空気流入を許容する。一方、気体取入弁12は、加圧容器4の気体供給孔44から筐体3の吸気口34への気体G1及び加圧液体L2の逆流を遮断する。気体取入弁12は、例えば、加圧容器4と外部との間の圧力差を利用したチェックバルブである。気体取入弁12は、加圧容器4の内圧が外気圧未満である場合に開き、加圧容器4の内圧が外気圧以上である場合に閉じる。 The gas intake valve 12 is a non-return valve that restricts the passage of gas in the gas path 11 to one direction. The gas intake valve 12 allows air to flow from the intake port 34 of the housing 3 to the gas supply hole 44 of the pressurized container 4 . On the other hand, the gas intake valve 12 blocks backflow of the gas G1 and the pressurized liquid L2 from the gas supply hole 44 of the pressurized container 4 to the intake port 34 of the housing 3 . The gas intake valve 12 is, for example, a check valve that utilizes the pressure difference between the pressurized container 4 and the outside. The gas intake valve 12 opens when the internal pressure of the pressurized container 4 is less than the external pressure, and closes when the internal pressure of the pressurized container 4 is greater than or equal to the external pressure.
 液体供給部5bは、液体容器51bと、補給経路52bと、液体ポンプ53bと、流入経路54bとを含む。 The liquid supply section 5b includes a liquid container 51b, a supply path 52b, a liquid pump 53b, and an inflow path 54b.
 液体ポンプ53bは、液体容器51bから加圧容器4へ液体L1を加圧注入する機能と、加圧容器4から液体容器51bへ加圧液体L2を逆流させる機能とを有する。液体ポンプ53bは、吸込口531と吐出口532とを有し、順方向動作(単に「動作」とも呼ぶ)では吸込口531から吐出口532へ液体を運搬し、逆方向動作では吐出口532から吸込口531へ液体を運搬する。液体ポンプ53bは、例えば、ギヤポンプ又はベーンポンプである。液体ポンプ53bは動力としてモータを有し、モータが順方向回転することで液体ポンプ53bは順方向動作する。また、モータが逆方向回転すると、液体ポンプ53bは逆方向動作する。また、モータが停止すると、液体ポンプ53bは動作停止する。液体ポンプ53bが動作停止しているとき、液体容器51bと加圧容器4との間で、液体L1及び加圧液体L2の移動は抑止される。 The liquid pump 53b has a function of pressurizing and injecting the liquid L1 from the liquid container 51b into the pressurized container 4 and a function of backflowing the pressurized liquid L2 from the pressurized container 4 to the liquid container 51b. The liquid pump 53b has an inlet 531 and an outlet 532 and conveys liquid from the inlet 531 to the outlet 532 in forward operation (also referred to simply as "operation") and from the outlet 532 in reverse operation. It conveys the liquid to the suction port 531 . Liquid pump 53b is, for example, a gear pump or a vane pump. The liquid pump 53b has a motor as power, and the forward rotation of the motor causes the liquid pump 53b to operate forward. Also, when the motor rotates in the reverse direction, the liquid pump 53b operates in the reverse direction. Also, when the motor stops, the liquid pump 53b stops operating. When the liquid pump 53b stops operating, movement of the liquid L1 and the pressurized liquid L2 between the liquid container 51b and the pressurized container 4 is suppressed.
 液体容器51bは、加圧容器4へ加圧注入する液体L1を貯留する機能と、液体ポンプ53bから逆流した加圧液体L2を貯留する機能とを有する。 The liquid container 51b has a function of storing the liquid L1 to be pressurized and injected into the pressurized container 4, and a function of storing the pressurized liquid L2 backflowing from the liquid pump 53b.
 補給経路52bは、液体容器51bと液体ポンプ53bの吸込口531とを接続する管路である。補給経路52bは、液体ポンプ53bが順方向動作を行う場合には、液体容器51bから液体L1を液体ポンプ53bに供給するための液体経路として機能する。一方、補給経路52bは、液体ポンプ53bが逆方向動作を行う場合には、液体ポンプ53bから液体容器51bへ加圧液体L2を吐出するための液体経路として機能する。 The supply path 52b is a conduit that connects the liquid container 51b and the suction port 531 of the liquid pump 53b. The supply path 52b functions as a liquid path for supplying the liquid L1 from the liquid container 51b to the liquid pump 53b when the liquid pump 53b operates in the forward direction. On the other hand, the supply path 52b functions as a liquid path for discharging the pressurized liquid L2 from the liquid pump 53b to the liquid container 51b when the liquid pump 53b operates in the reverse direction.
 流入経路54bは、液体ポンプ53bの吐出口532と加圧容器4とを接続する管路である。流入経路54bは、液体ポンプ53bが順方向動作を行う場合には、液体ポンプ53bから液体L1を加圧容器4に吐出するための液体経路として機能する。一方、流入経路54bは、液体ポンプ53bが逆方向動作を行う場合には、加圧容器4から液体ポンプ53bへ加圧液体L2を吸い上げるための液体経路として機能する。したがって、流入経路54bは、加圧液体L2を吸い上げるため、流入経路54bの加圧容器4側の端が加圧容器4の底部で開口していることが好ましい。 The inflow path 54b is a conduit that connects the discharge port 532 of the liquid pump 53b and the pressurized container 4 . The inflow path 54b functions as a liquid path for discharging the liquid L1 from the liquid pump 53b to the pressurized container 4 when the liquid pump 53b operates in the forward direction. On the other hand, the inflow path 54b functions as a liquid path for sucking up the pressurized liquid L2 from the pressurized container 4 to the liquid pump 53b when the liquid pump 53b operates in the reverse direction. Therefore, since the inflow path 54b sucks up the pressurized liquid L2, it is preferable that the end of the inflow path 54b on the pressurized container 4 side opens at the bottom of the pressurized container 4 .
 (2)気泡含有液体生成装置の機能
 実施形態2に係る気泡含有液体生成装置1bの制御回路10は、指示部82が液体ポンプ53に代えて液体ポンプ53bと接続され、供給指示を行う機能だけでなく、逆流指示を行う機能を更に有する点で実施形態1の制御回路10と異なる。
(2) Functions of Bubble-Containing Liquid Generating Apparatus The control circuit 10 of the bubble-containing liquid generating apparatus 1b according to the second embodiment has only the function of instructing supply by connecting the instruction section 82 to the liquid pump 53b instead of the liquid pump 53. However, it differs from the control circuit 10 of the first embodiment in that it further has a function of instructing backflow.
 制御回路10の指示部82は、圧力測定部81から取得した加圧容器4の内圧が基準内圧未満である場合には、液体ポンプ53bを順方向動作させる。液体ポンプ53bは、液体容器51bから加圧容器4に液体L1を加圧注入する。指示部82は、液体ポンプ53bの順方向動作中に、圧力測定部81から加圧容器4の内圧を取得し、内圧変化率を算出する。内圧変化率は、単位時間当たりの加圧容器4の内圧の上昇値である。内圧変化率は、加圧容器4に同量の液体L1が注入された場合、加圧容器4内の気体G1が多いほど小さく、加圧容器4内の気体G1が少ないほど大きい(詳しくは後述する)。指示部82は、内圧変化率が基準変化率未満である場合、液体ポンプ53bに順方向動作を続行させる。指示部82は、圧力測定部81から取得した加圧容器4の内圧が基準内圧以上に達すると、液体ポンプ53bを停止させる。 The instruction unit 82 of the control circuit 10 operates the liquid pump 53b in the forward direction when the internal pressure of the pressurized container 4 obtained from the pressure measurement unit 81 is less than the reference internal pressure. The liquid pump 53b pressurizes and injects the liquid L1 from the liquid container 51b into the pressurized container 4 . The instructing unit 82 acquires the internal pressure of the pressurized container 4 from the pressure measuring unit 81 while the liquid pump 53b is operating in the forward direction, and calculates the internal pressure change rate. The internal pressure change rate is the increase value of the internal pressure of the pressurized container 4 per unit time. When the same amount of liquid L1 is injected into the pressurized container 4, the internal pressure change rate decreases as the gas G1 in the pressurized container 4 increases, and increases as the gas G1 in the pressurized container 4 decreases (details will be described later). do). The instructing unit 82 causes the liquid pump 53b to continue forward operation when the internal pressure change rate is less than the reference change rate. The instructing unit 82 stops the liquid pump 53b when the internal pressure of the pressurized container 4 obtained from the pressure measuring unit 81 reaches or exceeds the reference internal pressure.
 一方、液体ポンプ53bの順方向動作中の内圧変化率が基準変化率以上である場合、指示部82は、予め定められた逆流時間だけ、液体ポンプ53bを逆方向動作させる。液体ポンプ53bは、加圧容器4から液体容器51bに加圧液体L2を逆注入する。そして、指示部82は、逆流時間の経過後、再び液体ポンプ53bを順方向動作させる。指示部82は、圧力測定部81から取得した加圧容器4の内圧が基準内圧以上に達すると、液体ポンプ53bを停止させる。 On the other hand, when the internal pressure change rate during forward operation of the liquid pump 53b is greater than or equal to the reference change rate, the instruction unit 82 causes the liquid pump 53b to operate in the reverse direction for a predetermined reverse flow time. The liquid pump 53b reversely injects the pressurized liquid L2 from the pressurized container 4 into the liquid container 51b. Then, after the reverse flow time has elapsed, the instructing unit 82 causes the liquid pump 53b to operate in the forward direction again. The instructing unit 82 stops the liquid pump 53b when the internal pressure of the pressurized container 4 obtained from the pressure measuring unit 81 reaches or exceeds the reference internal pressure.
 (3)動作
 以下、気泡含有液体生成装置1bの動作について説明する。
(3) Operation The operation of the bubble-containing liquid generating device 1b will be described below.
 最初に、加圧容器4の状態が、加圧容器4に外気圧と同じ圧力の気体G1のみが存在する状態であるとする。つまり、加圧容器4には加圧液体L2が存在していない。制御回路10の指示部82は、加圧容器4の内圧が基準内圧未満であるから、液体ポンプ53bを動作させる。これにより、液体ポンプ53bは、液体容器51bから加圧容器4に液体L1を加圧注入する。 First, assume that the pressurized container 4 is in a state where only the gas G1 having the same pressure as the outside air pressure exists in the pressurized container 4 . That is, the pressurized container 4 does not contain the pressurized liquid L2. Since the internal pressure of the pressurized container 4 is less than the reference internal pressure, the instruction section 82 of the control circuit 10 operates the liquid pump 53b. As a result, the liquid pump 53b pressurizes and injects the liquid L1 from the liquid container 51b into the pressurized container 4 .
 液体ポンプ53bが液体容器51bから加圧容器4に液体L1を加圧注入すると、加圧容器4内の気体G1の体積が減少し、加圧容器4の内圧が上昇する。加圧容器4の内圧が基準内圧まで上昇すると、加圧容器4内に加圧液体L2が生成され、液体ポンプ53bは動作を停止する。これにより、ユーザが気泡含有液体L3を利用できる状態となる。 When the liquid pump 53b pressurizes and injects the liquid L1 from the liquid container 51b into the pressurized container 4, the volume of the gas G1 in the pressurized container 4 decreases and the internal pressure of the pressurized container 4 increases. When the internal pressure of the pressurized container 4 rises to the reference internal pressure, the pressurized liquid L2 is generated in the pressurized container 4 and the liquid pump 53b stops operating. As a result, the user can use the bubble-containing liquid L3.
 ユーザによって吐出制御部7の吐出スイッチ71が押圧されると、加圧容器4内の加圧液体L2が流出経路6を通ってノズル2に流入する。ノズル2に流入した加圧液体L2は、ノズル2の減圧機構によって減圧され、加圧液体L2内に気泡が析出する。したがって、ノズル2から、気泡含有液体L3が吐出される。 When the discharge switch 71 of the discharge control unit 7 is pressed by the user, the pressurized liquid L2 in the pressurized container 4 flows through the outflow path 6 into the nozzle 2 . The pressurized liquid L2 that has flowed into the nozzle 2 is decompressed by the decompression mechanism of the nozzle 2, and bubbles are deposited in the pressurized liquid L2. Therefore, the bubble-containing liquid L3 is discharged from the nozzle 2 .
 ユーザの気泡含有液体L3の利用つまりノズル2からの気泡含有液体L3の吐出によって加圧容器4内の加圧液体L2の体積が減少すると、加圧容器4内の気体G1が膨張し、加圧容器4の内圧が低下する。そして、加圧容器4の内圧が基準内圧未満まで低下すると、指示部82は、液体ポンプ53bを順方向動作させ、液体容器51bから加圧容器4に液体L1を加圧注入させる。このとき、加圧容器4内に気体G1が十分に残っている場合は、加圧容器4内の気体G1が少ない場合と比べて、加圧容器4内で気体G1の占める体積が大きい。したがって、加圧容器4に同量の液体L1を加圧注入した場合に、加圧容器4内に気体G1が十分に残っている場合は、加圧容器4内の気体G1が少ない場合と比べて、加圧容器4の内圧の上昇量が少ない。すなわち、内圧変化率が基準変化率より小さい場合は、加圧容器4内の気体G1の量が、基準変化率に対応する基準量より多いと推測できる。このような場合、指示部82は、液体ポンプ53bに順方向動作を続行させ、加圧容器4の内圧が基準内圧以上になるまで、液体ポンプ53bに液体容器51bから加圧容器4に液体L1を加圧注入させる。この動作により、加圧容器4内に加圧液体L2が補充され、ユーザが気泡含有液体L3を利用できる状態に戻る。 When the volume of the pressurized liquid L2 in the pressurized container 4 decreases due to the use of the bubble-containing liquid L3 by the user, that is, the discharge of the bubble-containing liquid L3 from the nozzle 2, the gas G1 in the pressurized container 4 expands and pressurizes. The internal pressure of container 4 decreases. Then, when the internal pressure of the pressurized container 4 drops below the reference internal pressure, the instructing unit 82 operates the liquid pump 53b in the forward direction to pressurize and inject the liquid L1 from the liquid container 51b into the pressurized container 4 . At this time, when the gas G1 remains sufficiently in the pressurized container 4, the volume occupied by the gas G1 in the pressurized container 4 is larger than when the gas G1 in the pressurized container 4 is small. Therefore, when the same amount of liquid L1 is pressurized and injected into the pressurized container 4, the case where the gas G1 remains sufficiently in the pressurized container 4 is compared to the case where the gas G1 in the pressurized container 4 is small. Therefore, the amount of increase in the internal pressure of the pressurized container 4 is small. That is, when the internal pressure change rate is smaller than the reference rate of change, it can be estimated that the amount of gas G1 in the pressurized container 4 is greater than the reference amount corresponding to the reference rate of change. In such a case, the instructing unit 82 causes the liquid pump 53b to continue the forward operation, causing the liquid pump 53b to pump the liquid L1 from the liquid container 51b to the pressurized container 4 until the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. is injected under pressure. By this operation, the pressurized liquid L2 is replenished in the pressurized container 4, and the user can use the bubble-containing liquid L3 again.
 一方、加圧容器4内の気体G1が少ない場合には、加圧容器4内の気体G1が十分に残っている場合と比べて、加圧容器4内で気体G1の占める体積が小さい。したがって、加圧容器4に同量の液体L1を加圧注入した場合に、加圧容器4内の気体G1が少ない場合は、加圧容器4内に気体G1が十分に残っている場合と比べて、加圧容器4の内圧の上昇量が大きい。すなわち、内圧変化率が基準変化率以上である場合は、加圧容器4内の気体G1の量が、基準変化率に対応する基準量以下であると推測できる。このような場合、指示部82は、逆流時間だけ、液体ポンプ53bを逆方向動作させる。液体ポンプ53bは、加圧液体L2を加圧容器4から液体容器51bに逆流させる。これにより、加圧容器4内の加圧液体L2の一部が液体容器51bに排出されるため、気体G1が膨張して加圧容器4内の内圧が低下する。このとき、加圧容器4の内圧が外気圧以下まで低下すると、気体取入弁12が開き、加圧容器4の内圧が外気圧と等しくなるまで気体G1が気体経路11から補充される。この動作により、加圧容器4内の内圧が外気圧と等しくなるように、外気圧によって気体G1が補充される。 On the other hand, when the gas G1 in the pressurized container 4 is small, the volume occupied by the gas G1 in the pressurized container 4 is smaller than when the gas G1 in the pressurized container 4 remains sufficiently. Therefore, when the same amount of liquid L1 is pressurized and injected into the pressurized container 4, when the gas G1 in the pressurized container 4 is small, compared with the case where the gas G1 remains sufficiently in the pressurized container 4. Therefore, the amount of increase in the internal pressure of the pressurized container 4 is large. That is, when the internal pressure change rate is greater than or equal to the reference rate of change, it can be estimated that the amount of gas G1 in the pressurized container 4 is less than or equal to the reference amount corresponding to the reference rate of change. In such a case, the instruction unit 82 causes the liquid pump 53b to operate in the reverse direction for the reverse flow time. The liquid pump 53b causes the pressurized liquid L2 to flow back from the pressurized container 4 to the liquid container 51b. As a result, part of the pressurized liquid L2 in the pressurized container 4 is discharged to the liquid container 51b, so that the gas G1 expands and the internal pressure in the pressurized container 4 decreases. At this time, when the internal pressure of the pressurized container 4 falls below the external pressure, the gas intake valve 12 is opened and the gas G1 is replenished from the gas path 11 until the internal pressure of the pressurized container 4 becomes equal to the external pressure. By this operation, the gas G1 is replenished by the external air pressure so that the internal pressure in the pressurized container 4 becomes equal to the external air pressure.
 その後、指示部82は、液体ポンプ53bを順方向回転させる。すると、加圧容器内の気体G1が加圧容器4内に加圧注入された液体L1によって圧縮され、加圧容器4の内圧が上昇する。また、加圧容器4の内圧が上昇することで、気体取入弁12が閉じられ、加圧容器4が密閉状態に戻る。この動作により、加圧容器4内の内圧が外気圧以上となる。その後、加圧容器4の内圧が基準内圧以上になるまで、液体ポンプ53bが加圧容器4に液体L1を加圧注入する。したがって、加圧容器4内に加圧液体L2が補充され、ユーザが気泡含有液体L3を利用できる状態に戻る。 After that, the instruction unit 82 rotates the liquid pump 53b in the forward direction. Then, the gas G1 in the pressurized container is compressed by the liquid L1 pressurized and injected into the pressurized container 4, and the internal pressure of the pressurized container 4 rises. Moreover, the gas intake valve 12 is closed by the internal pressure of the pressurized container 4 rising, and the pressurized container 4 returns to a sealed state. By this operation, the internal pressure in the pressurized container 4 becomes equal to or higher than the external pressure. Thereafter, the liquid pump 53b pressurizes and injects the liquid L1 into the pressurized container 4 until the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. Therefore, the pressurized container 4 is replenished with the pressurized liquid L2, and the user can use the bubble-containing liquid L3 again.
 (4)効果
 実施形態2に係る気泡含有液体生成装置1bでは、実施形態1に係る気泡含有液体生成装置1と同様、ノズル2から気泡含有液体L3が吐出される。したがって、気泡含有液体L3をユーザが利用できる。
(4) Effect In the bubble-containing liquid generating device 1b according to the second embodiment, the bubble-containing liquid L3 is discharged from the nozzle 2 as in the bubble-containing liquid generating device 1 according to the first embodiment. Therefore, the user can use the bubble-containing liquid L3.
 また、実施形態2に係る気泡含有液体生成装置1bでは、実施形態1に係る気泡含有液体生成装置1と同様、加圧容器4の内圧が基準内圧以上となるように加圧容器4に液体L1が注入される。したがって、エアポンプを用いることなく、液体ポンプのみを用いて加圧容器4の内圧を上昇させ、気泡含有液体L3を生成することができる。 Further, in the bubble-containing liquid generating apparatus 1b according to the second embodiment, similarly to the bubble-containing liquid generating apparatus 1 according to the first embodiment, the liquid L1 is supplied to the pressurized container 4 so that the internal pressure of the pressurized container 4 becomes equal to or higher than the reference internal pressure. is injected. Therefore, it is possible to increase the internal pressure of the pressurized container 4 and generate the bubble-containing liquid L3 using only the liquid pump without using an air pump.
 さらに、実施形態2に係る気泡含有液体生成装置1bでは、加圧容器4に気体取入弁12を有する気体経路11が接続されている。したがって、外気圧と加圧容器4の内圧との差を利用して加圧容器4に気体を取り入れることができる。そのため、エアポンプを用いずとも、加圧容器4に気体を補充することができる。 Furthermore, in the bubble-containing liquid generating apparatus 1b according to Embodiment 2, the gas path 11 having the gas intake valve 12 is connected to the pressurized container 4 . Therefore, gas can be taken into the pressurized container 4 by utilizing the difference between the external pressure and the internal pressure of the pressurized container 4 . Therefore, the pressurized container 4 can be replenished with gas without using an air pump.
 また、実施の形態2に係る気泡含有液体生成装置1bでは、液体ポンプ53bが加圧容器4から加圧液体L2を液体容器51bに逆流させる逆流機能を有する。したがって、液体ポンプ53bの逆流機能を用いて加圧容器4の内圧を外気圧まで低下させることが容易である。液体ポンプ53bの逆流機能により、気体取入弁12を有する気体経路11による加圧容器4への気体の補充を更に効率的に行うことができる。 In addition, in the bubble-containing liquid generating apparatus 1b according to Embodiment 2, the liquid pump 53b has a reverse flow function of causing the pressurized liquid L2 to flow back from the pressurized container 4 to the liquid container 51b. Therefore, it is easy to reduce the internal pressure of the pressurized container 4 to the external pressure using the reverse flow function of the liquid pump 53b. Due to the reverse flow function of the liquid pump 53b, gas can be more efficiently replenished to the pressurized container 4 through the gas path 11 having the gas intake valve 12. FIG.
 (実施形態に係る他の変形例)
 (他の変形例1)
 実施形態1では、流入経路54は、加圧容器4の液体供給孔42を貫通して加圧容器4内で開口している。しかしながら、例えば、図5に示すように、気泡含有液体生成装置1cの液体供給部5cは、流入経路54cの加圧容器4内の開口部に、液体L1を霧状の微細粒子として吐出するための微細化ノズル55cを有していてもよい。微細化ノズル55cは、例えば、加圧容器4内の上側に取り付けられる。このような構成により、液体L1からなる霧状の微細粒子が、気体G1を吸収し、又は、加圧液体L2と混じる際に気体G1を巻き込む。したがって、加圧液体L2に気体G1を溶解させることが容易となる。微細化ノズルは、例えば、液体供給孔42に取り付けられてもよい。
(Another modification according to the embodiment)
(Other modification 1)
In Embodiment 1, the inflow path 54 penetrates the liquid supply hole 42 of the pressurized container 4 and opens inside the pressurized container 4 . However, for example, as shown in FIG. 5, the liquid supply unit 5c of the bubble-containing liquid generating device 1c discharges the liquid L1 as fine mist particles into the opening of the inflow path 54c in the pressurized container 4. of fine nozzles 55c. The atomization nozzle 55c is attached to the upper side inside the pressurized container 4, for example. With such a configuration, the atomized fine particles of the liquid L1 absorb the gas G1 or entrain the gas G1 when mixed with the pressurized liquid L2. Therefore, it becomes easy to dissolve the gas G1 in the pressurized liquid L2. The atomization nozzle may be attached to the liquid supply hole 42, for example.
 (他の変形例2)
 実施形態1、2及び実施形態1の変形例では、気泡含有液体生成装置1、1bはノズル2を備え、ノズル2から気泡含有液体L3を吐出する。しかしながら、気泡含有液体生成装置1、1bはノズル2を含まず、気泡含有液体生成装置1、1bとノズル2とを接続することで、ノズル2から気泡含有液体L3を吐出する、としてもよい。このような構成によれば、例えば、ノズル2の交換が容易となる。したがって、例えば、気泡含有液体L3の用途に応じて、気泡含有液体L3の吐出方向や吐出量の異なる多種類のノズル2を使い分けることができる。また、例えば、減圧機構又は乱流発生機構の構造を変えることで、同一の加圧液体L2から、気泡の直径の異なる複数種類の気泡含有液体L3を生成することができる。したがって、例えば、ノズル2の交換により、気泡含有液体L3としてマイクロバブル水とウルトラファインバブル水とを個別に生成させることができる。
(Other modification 2)
In Embodiments 1 and 2 and the modified example of Embodiment 1, the bubble-containing liquid generating devices 1 and 1b are provided with the nozzle 2 from which the bubble-containing liquid L3 is discharged. However, the bubble-containing liquid generating devices 1 and 1b may not include the nozzle 2, and the bubble-containing liquid L3 may be discharged from the nozzle 2 by connecting the bubble-containing liquid generating devices 1 and 1b and the nozzle 2. Such a configuration facilitates replacement of the nozzle 2, for example. Therefore, for example, various types of nozzles 2 with different ejection directions and ejection amounts of the bubble-containing liquid L3 can be used according to the application of the bubble-containing liquid L3. Further, for example, by changing the structure of the decompression mechanism or the turbulence generating mechanism, it is possible to generate a plurality of types of bubble-containing liquid L3 having different bubble diameters from the same pressurized liquid L2. Therefore, for example, by exchanging the nozzle 2, microbubble water and ultra-fine bubble water can be separately generated as the bubble-containing liquid L3.
 (他の変形例3)
 実施形態1及び実施形態1の変形例では、気泡含有液体生成装置1は液体容器51を備える。しかしながら、例えば、気泡含有液体生成装置1は液体容器51を備えず、筐体3外部から液体L1の供給を受けるとしてもよい。例えば、補給経路52は、液体ポンプ53の吸込口531と、筐体3の外部に存在する液体源とを接続してもよい。筐体3の外部に存在する液体源は、例えば、気泡含有液体生成装置1とは別体の液体タンクであってよく、例えば、ビン又はペットボトルであってもよい。又は、例えば、筐体3の外部に存在する液体源は、水道管などの液体供給路であってもよい。
(Other modification 3)
In the first embodiment and the modified example of the first embodiment, the bubble-containing liquid generating device 1 includes the liquid container 51 . However, for example, the bubble-containing liquid generating device 1 may not include the liquid container 51 and may receive the liquid L1 from the outside of the housing 3 . For example, the supply path 52 may connect the suction port 531 of the liquid pump 53 and a liquid source that exists outside the housing 3 . The liquid source existing outside the housing 3 may be, for example, a liquid tank separate from the bubble-containing liquid generating device 1, and may be, for example, a bottle or a PET bottle. Alternatively, for example, the liquid source existing outside the housing 3 may be a liquid supply channel such as a water pipe.
 また、実施形態2においても、同様に、気泡含有液体生成装置1は液体容器51bを備えず、補給経路52bは、液体ポンプ53bの吸込口531と、筐体3の外部に存在する液体源とを接続してもよい。このような場合、実施形態2と同様、液体ポンプ53bの逆方向動作時に、加圧液体L2を液体源に逆流させる構成としてもよい。又は、例えば、気泡含有液体生成装置1bの補給経路52bは、液体源から液体ポンプ53bの吸込口531への一方向の液体L1の流路である第1経路と、液体ポンプ53bの吸込口531から排出口への一方向の加圧液体L2の流路である第2経路とを含むとしてもよい。第2経路の排出口は、例えば、液体L1を貯留する容器に接続されてもよいし、液体L1を適切に処理できる処理経路に接続されてもよい。これにより、液体ポンプ53bの逆方向動作により加圧容器4の内圧を低下させて気体G1を加圧容器4に補充することができる。 Also in Embodiment 2, similarly, the bubble-containing liquid generating apparatus 1 does not include the liquid container 51b, and the supply path 52b is connected to the suction port 531 of the liquid pump 53b and the liquid source existing outside the housing 3. may be connected. In such a case, as in the second embodiment, the pressurized liquid L2 may flow back to the liquid source when the liquid pump 53b operates in the reverse direction. Alternatively, for example, the supply path 52b of the bubble-containing liquid generating apparatus 1b includes a first path, which is a flow path of the liquid L1 in one direction from the liquid source to the suction port 531 of the liquid pump 53b, and the suction port 531 of the liquid pump 53b. and a second path, which is a unidirectional flow path for the pressurized liquid L2 from the to the outlet. The outlet of the second path may be connected to, for example, a container that stores the liquid L1, or may be connected to a processing path capable of appropriately processing the liquid L1. As a result, the liquid pump 53b operates in the reverse direction to lower the internal pressure of the pressurized container 4 and replenish the pressurized container 4 with the gas G1.
 (他の変形例4)
 実施形態1、2及び実施形態1の変形例では、指示部82は、加圧容器4の内圧が基準内圧未満であると液体ポンプ53、53bを動作させ、加圧容器4の内圧が基準内圧以上となると液体ポンプ53、53bを停止させる。液体ポンプ53、53bの動作を開始させるか否かの基準となる基準内圧と、液体ポンプ53、53bを停止させるか否かの基準となる基準内圧とは異なっていてもよい。例えば、互いに異なる第1基準内圧及び第2基準内圧が予め定められており、指示部82は、加圧容器4の内圧が第1基準内圧未満であると液体ポンプ53、53bを動作させ、加圧容器4の内圧が第2基準内圧以上となると液体ポンプ53、53bを停止させる。この場合、第2基準内圧は、第1基準内圧よりも高い。このような構成とすることで、液体ポンプ53、53bの動作頻度を低下させることができる。
(Other modification 4)
In the first and second embodiments and the modification of the first embodiment, the instruction unit 82 operates the liquid pumps 53 and 53b when the internal pressure of the pressurized container 4 is less than the reference internal pressure, and the internal pressure of the pressurized container 4 reaches the reference internal pressure. When it becomes above, the liquid pumps 53 and 53b are stopped. The reference internal pressure that serves as a reference for determining whether to start the operation of the liquid pumps 53 and 53b may be different from the reference internal pressure that serves as a reference for determining whether to stop the liquid pumps 53 and 53b. For example, a first reference internal pressure and a second reference internal pressure, which are different from each other, are predetermined. When the internal pressure of the pressure vessel 4 becomes equal to or higher than the second reference internal pressure, the liquid pumps 53 and 53b are stopped. In this case, the second reference internal pressure is higher than the first reference internal pressure. With such a configuration, the operating frequency of the liquid pumps 53 and 53b can be reduced.
 (他の変形例5)
 実施形態1及びその変形例では、液体ポンプ53は、液体容器51から加圧容器4へ液体L1を加圧注入する動作と、動作停止と、の2つの動作状態を有する。液体ポンプ53は、液体容器51から加圧容器4への液体L1の加圧注入において、液体L1の注入速度の異なる複数の動作状態を有してもよい。例えば、液体ポンプ53は、高速注入モードと、液体L1の注入速度が高速注入モードより遅い低速注入モードを有する。液体ポンプ53は、加圧容器4の内圧が第3基準内圧未満である場合は、高速注入モードで動作し、加圧容器4の内圧が第3基準内圧以上である場合には、低速注入モードで操作する。第3基準内圧は、基準内圧よりも小さい値である。第3基準内圧は、例えば、基準内圧より1気圧だけ小さい。このような構成とすることで、例えば、加圧容器4の内圧を詳細に制御しながら素早く上昇させることができる。また、加圧容器4の内圧が高いほど、加圧容器4へ液体L1を加圧注入するときの液体ポンプ53への負荷が大きくなる。したがって、加圧容器4の内圧が高いときにL1の注入速度を低下させることで、液体ポンプ53の負荷を小さくすることができる。なお、液体ポンプ53は、液体L1の注入速度の異なる3以上の動作状態を有してもよい。
(Other modification 5)
In Embodiment 1 and its modified example, the liquid pump 53 has two operating states, namely, the operation of pressurizing and injecting the liquid L1 from the liquid container 51 into the pressurized container 4, and the operation stop. The liquid pump 53 may have a plurality of operation states with different injection speeds of the liquid L1 when pressurizing the liquid L1 from the liquid container 51 to the pressurized container 4 . For example, the liquid pump 53 has a high-speed injection mode and a low-speed injection mode in which the liquid L1 is injected at a slower speed than the high-speed injection mode. The liquid pump 53 operates in the high-speed injection mode when the internal pressure of the pressurized container 4 is less than the third reference internal pressure, and operates in the low-speed injection mode when the internal pressure of the pressurized container 4 is equal to or higher than the third reference internal pressure. to operate. The third reference internal pressure is a value smaller than the reference internal pressure. The third reference internal pressure is, for example, one atmosphere lower than the reference internal pressure. With such a configuration, for example, the internal pressure of the pressurized container 4 can be quickly increased while being controlled in detail. Further, the higher the internal pressure of the pressurized container 4, the greater the load on the liquid pump 53 when pressurizing and injecting the liquid L1 into the pressurized container 4. FIG. Therefore, by reducing the injection speed of L1 when the internal pressure of the pressurized container 4 is high, the load on the liquid pump 53 can be reduced. Note that the liquid pump 53 may have three or more operation states with different injection speeds of the liquid L1.
 また、例えば、液体ポンプ53に電力を供給する電力源が商用電源である場合、液体ポンプ53は高速注入モードで動作し、液体ポンプ53に電力を供給する電力源がバッテリである場合、液体ポンプ53は低速モードで動作するとしてもよい。このような構成とすることで、液体ポンプ53に電力を供給する電力源がバッテリである場合に、液体ポンプ53の最大消費電力を制限することができる。 Further, for example, if the power source that supplies power to the liquid pump 53 is a commercial power supply, the liquid pump 53 operates in the high-speed injection mode, and if the power source that supplies power to the liquid pump 53 is a battery, the liquid pump 53 may operate in slow mode. With such a configuration, it is possible to limit the maximum power consumption of the liquid pump 53 when the power source for supplying power to the liquid pump 53 is a battery.
 また、実施形態2に係る液体ポンプ53bも同様に、順方向動作において、液体L1の注入速度の異なる複数の動作状態を有してもよい。また、液体ポンプ53bは、逆方向動作においても、加圧液体L2の逆流速度の異なる複数の動作状態を有してもよい。 Similarly, the liquid pump 53b according to the second embodiment may have a plurality of operating states with different injection speeds of the liquid L1 in the forward operation. Also, the liquid pump 53b may have a plurality of operating states in which the reverse flow rate of the pressurized liquid L2 differs even in the reverse direction operation.
 (他の変形例6)
 実施形態1の変形例では、指示部82は、予め定めた時間間隔で液体ポンプ53を動作させ、圧力測定部81aは、液体ポンプ53の消費電力に基づいて加圧容器4の内圧を測定する。しかしながら、加圧容器4の内圧を測定するための液体ポンプ53の間欠動作は、時間間隔で行うものでなくてもよい。例えば、制御回路10aは、吐出制御部7の吐出スイッチ71の押圧回数又は押圧時間を測定するセンサを備え、吐出スイッチ71の押圧回数又は押圧時間が基準回数又は基準時間を超えると、指示部82が液体ポンプ53を動作させるとしてもよい。このような構成とすることで、加圧容器4の内圧が低下する要因である、気泡含有液体L3の吐出動作の回数又は時間に基づいて、加圧容器4の内圧を測定することができる。
(Other modification 6)
In the modification of Embodiment 1, the instruction unit 82 operates the liquid pump 53 at predetermined time intervals, and the pressure measurement unit 81a measures the internal pressure of the pressurized container 4 based on the power consumption of the liquid pump 53. . However, the intermittent operation of the liquid pump 53 for measuring the internal pressure of the pressurized container 4 may not be performed at time intervals. For example, the control circuit 10a is provided with a sensor for measuring the number of times the discharge switch 71 of the discharge control section 7 is pressed or the time during which the discharge switch 71 is pressed. may operate the liquid pump 53 . By adopting such a configuration, the internal pressure of the pressurized container 4 can be measured based on the number of times or the duration of the ejection operation of the bubble-containing liquid L3, which is the factor that causes the internal pressure of the pressurized container 4 to decrease.
 (他の変形例7)
 実施形態2では、液体ポンプ53bの順方向動作中における加圧容器4の内圧変化率が基準変化率以上である場合、指示部82は、予め定められた逆流時間だけ、液体ポンプ53bを逆方向動作させる。しかしながら、液体ポンプ53bの逆方向動作は逆流時間だけの実施に限られない。例えば、指示部82は、液体ポンプ53bの動作中の内圧変化率が基準変化率以上である場合、加圧容器4の内圧が0.1MPa(1気圧)以下となるまで、液体ポンプ53bを逆方向動作させてもよい。このようにすることで、加圧容器4に確実に気体を補充することができる。
(Other modification 7)
In the second embodiment, when the rate of change in the internal pressure of the pressurized container 4 during forward operation of the liquid pump 53b is equal to or greater than the reference rate of change, the instructing unit 82 causes the liquid pump 53b to operate in the reverse direction for a predetermined reverse flow time. make it work. However, the reverse operation of the liquid pump 53b is not limited to performing only the reverse flow time. For example, when the internal pressure change rate during operation of the liquid pump 53b is equal to or higher than the reference change rate, the instructing unit 82 reverses the liquid pump 53b until the internal pressure of the pressurized container 4 becomes 0.1 MPa (1 atm) or less. Directional operation may be performed. By doing so, the pressurized container 4 can be reliably replenished with the gas.
 (他の変形例8)
 実施形態2の圧力測定部81は、圧力検出部41によって加圧容器4の内圧を測定することに限定されず、例えば、実施形態1の変形例と同様の手段により、加圧容器4の内圧を測定してもよい。
(Other modification 8)
The pressure measurement unit 81 of the second embodiment is not limited to measuring the internal pressure of the pressurized container 4 by the pressure detection unit 41. For example, the internal pressure of the pressurized container 4 can be may be measured.
 (他の変形例9)
 実施形態2では、流入経路54bが加圧容器4内の加圧液体L2を液体ポンプ53bに逆流させる液体経路を兼ねる。しかしながら、例えば、流入経路54bは、液体ポンプ53bからの液体L1を加圧容器4に流入させる液体経路と、加圧容器4内の加圧液体L2を液体ポンプ53bに逆流させる液体経路とを含んでもよい。例えば、流入経路54bは、液体ポンプ53bの吐出口532と加圧容器4内部とを接続する順方向経路と、液体ポンプ53bの吐出口532と加圧容器4内部とを接続する逆流経路とを含む。順方向経路には、液体ポンプ53bの吐出口532から加圧容器4への一方向の液体L1の通過を許容し、逆方向の加圧液体L2の通過を遮断する逆流防止弁が設けられる。逆流経路には、加圧容器4から液体ポンプ53bの吐出口532への一方向の加圧液体L2の通過を許容し、逆方向の液体L1の通過を遮断する逆流防止弁が設けられる。このような構成とすることで、順方向経路の加圧容器4内の開口部と、逆流経路の加圧容器4内の開口部とを異ならせることができる。また、例えば、他の変形例1と同様に順方向経路の加圧容器4内の開口部に微細化ノズル55cを設け、加圧液体L2への気体G1の溶解を促進することができる。
(Other modification 9)
In the second embodiment, the inflow path 54b also serves as a liquid path for causing the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid pump 53b. However, for example, the inflow path 54b includes a liquid path that causes the liquid L1 from the liquid pump 53b to flow into the pressurized container 4, and a liquid path that causes the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid pump 53b. It's okay. For example, the inflow path 54b includes a forward path that connects the discharge port 532 of the liquid pump 53b and the inside of the pressurized container 4, and a reverse flow path that connects the discharge port 532 of the liquid pump 53b and the inside of the pressurized container 4. include. The forward path is provided with a check valve that allows passage of the liquid L1 in one direction from the discharge port 532 of the liquid pump 53b to the pressurized container 4 and blocks passage of the pressurized liquid L2 in the opposite direction. The backflow path is provided with a backflow prevention valve that allows passage of the pressurized liquid L2 in one direction from the pressurized container 4 to the discharge port 532 of the liquid pump 53b and blocks passage of the liquid L1 in the opposite direction. With such a configuration, the opening in the pressurized container 4 in the forward flow path can be made different from the opening in the pressurized container 4 in the reverse flow path. Further, for example, as in the case of Modification 1, a miniaturization nozzle 55c can be provided at the opening in the pressurized container 4 on the forward path to promote dissolution of the gas G1 into the pressurized liquid L2.
 (他の変形例10)
 実施形態2では、液体ポンプ53bは、加圧容器4内の加圧液体L2を液体容器51bに逆流させる逆流機能を有する。しかしながら、例えば、逆流機能のない液体ポンプ53と、流路の開閉を制御できる電磁弁等とを用いて逆流機能を実現してもよい。例えば、液体供給部5bは、液体容器51bと、液体ポンプ53と、第1~第4電磁弁と、第1~第4流路とを備える。第1流路は、液体容器51bと液体ポンプ53の吸込口531との間を接続し、第1電磁弁は、第1流路上に設けられる。第2流路は、液体容器51bと液体ポンプ53の吐出口532との間を接続し、第2電磁弁は、第2流路上に設けられる。第3流路は、加圧容器4と液体ポンプ53の吐出口532との間を接続し、第3電磁弁は、第3流路上に設けられる。第4経路は、加圧容器4と液体ポンプ53の吸込口531との間を接続し、第4電磁弁は、第4流路上に設けられる。液体容器51bから加圧容器4に液体L1を加圧注入する場合には、第1電磁弁と第3電磁弁とを開放し、第2電磁弁と第4電磁弁とを閉じる。これにより、第1流路が補給経路52として機能し、第3流路が流入経路54として機能する。加圧容器4から液体容器51bに加圧液体L2を逆流させる場合には、第2電磁弁と第4電磁弁とを開放し、第1電磁弁と第3電磁弁とを閉鎖する。これにより、第2流路が補給経路52の逆流路として機能し、第4流路が流入経路54の逆流路として機能する。このような構成によっても、加圧容器4内の加圧液体L2を液体容器51bに逆流させる逆流機能を実現できる。
(Other modification 10)
In Embodiment 2, the liquid pump 53b has a reverse flow function that causes the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid container 51b. However, for example, the backflow function may be realized by using the liquid pump 53 without the backflow function and an electromagnetic valve or the like capable of controlling the opening and closing of the flow path. For example, the liquid supply section 5b includes a liquid container 51b, a liquid pump 53, first to fourth electromagnetic valves, and first to fourth flow paths. The first flow path connects between the liquid container 51b and the suction port 531 of the liquid pump 53, and the first electromagnetic valve is provided on the first flow path. The second flow path connects between the liquid container 51b and the discharge port 532 of the liquid pump 53, and the second electromagnetic valve is provided on the second flow path. The third flow path connects between the pressurized container 4 and the discharge port 532 of the liquid pump 53, and the third electromagnetic valve is provided on the third flow path. A fourth path connects between the pressurized container 4 and the suction port 531 of the liquid pump 53, and a fourth electromagnetic valve is provided on the fourth path. When pressurizing and injecting the liquid L1 from the liquid container 51b into the pressurized container 4, the first and third solenoid valves are opened, and the second and fourth solenoid valves are closed. Thereby, the first channel functions as the replenishment channel 52 and the third channel functions as the inflow channel 54 . When the pressurized liquid L2 is to flow back from the pressurized container 4 to the liquid container 51b, the second and fourth solenoid valves are opened, and the first and third solenoid valves are closed. Thereby, the second flow path functions as a reverse flow path of the replenishment path 52 and the fourth flow path functions as a reverse flow path of the inflow path 54 . With such a configuration as well, it is possible to achieve a reverse flow function for causing the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid container 51b.
 (他の変形例11)
 実施形態1では、液体ポンプ53は、加圧容器4内の加圧液体L2を液体容器51bに逆流させる逆流機能を有していなくてもよい。したがって、液体ポンプ53は、加圧容器4に液体L1を加圧注入できるポンプであれば、例えば、ダイヤフラムポンプ等の逆流機能を有さないポンプであってもよい。また、上述したように、逆流機能のない液体ポンプ53と電磁弁等とを用いて逆流機能を実現する場合に、液体ポンプ53として、例えば、ダイヤフラムポンプ等を用いることができる。
(Other modification 11)
In Embodiment 1, the liquid pump 53 does not have to have a reverse flow function for causing the pressurized liquid L2 in the pressurized container 4 to flow back to the liquid container 51b. Therefore, the liquid pump 53 may be a pump that does not have a backflow function, such as a diaphragm pump, as long as it can pressurize and inject the liquid L1 into the pressurized container 4 . Further, as described above, when the liquid pump 53 having no backflow function and a solenoid valve or the like are used to realize the backflow function, the liquid pump 53 may be, for example, a diaphragm pump.
 (まとめ)
 第1の態様に係る気泡含有液体生成装置(1;1b;1c)は、加圧容器(4)と、液体供給部(5;5b;5c)と、流出経路(6)と、吐出制御部(7)と、を備える。加圧容器(4)は、液体(L1)に気体(G1)を加圧溶解させて加圧液体(L2)を生成する。液体供給部(5;5b;5c)は、加圧容器(4)に液体(L1)を供給する。流出経路(6)は、加圧容器(4)とノズル(2)とを接続する。ノズル(2)は減圧機構を有する。吐出制御部(7)は、ノズル(2)から気泡含有液体(L3)を吐出させる。液体供給部(5;5b;5c)は、加圧容器(4)の内圧を示す圧力情報に基づき、加圧容器(4)に液体(L1)を供給して加圧容器(4)の内圧を基準内圧以上に制御する。吐出制御部(7)は、加圧容器(4)からノズル(2)への加圧液体(L2)の流出を制御する機能を有する。吐出制御部(7)は、加圧液体(L2)を加圧容器(4)からノズル(2)に流出させて、ノズル(2)から気泡含有液体(L3)を吐出させる。
(summary)
A bubble-containing liquid generating device (1; 1b; 1c) according to a first aspect includes a pressurized container (4), a liquid supply section (5; 5b; 5c), an outflow path (6), and a discharge control section. (7) and The pressurized container (4) pressurizes and dissolves the gas (G1) in the liquid (L1) to generate the pressurized liquid (L2). A liquid supply section (5; 5b; 5c) supplies a liquid (L1) to the pressurized container (4). An outflow path (6) connects the pressurized vessel (4) and the nozzle (2). The nozzle (2) has a decompression mechanism. A discharge control section (7) discharges the bubble-containing liquid (L3) from the nozzle (2). The liquid supply unit (5; 5b; 5c) supplies the liquid (L1) to the pressurized container (4) based on the pressure information indicating the internal pressure of the pressurized container (4), thereby increasing the internal pressure of the pressurized container (4). is controlled above the reference internal pressure. The discharge control section (7) has a function of controlling the outflow of the pressurized liquid (L2) from the pressurized container (4) to the nozzle (2). A discharge control section (7) causes the pressurized liquid (L2) to flow out from the pressurized container (4) to the nozzle (2), and discharges the bubble-containing liquid (L3) from the nozzle (2).
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、液体供給部(5;5b;5c)の動作によって加圧容器(4)の内圧を基準内圧以上に制御し、加圧液体(L2)を生成できる。したがって、気泡の原料となる気体を加圧容器(4)に加圧注入する必要がなく、気泡含有液体生成装置(1;1b;1c)を簡易な構成で実現できる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, the internal pressure of the pressurized container (4) is controlled to be equal to or higher than the reference internal pressure by the operation of the liquid supply section (5; 5b; 5c), and the pressurized liquid is (L2) can be generated. Therefore, it is not necessary to pressurize and inject gas, which is the raw material of bubbles, into the pressurized container (4), and the bubble-containing liquid generating device (1; 1b; 1c) can be realized with a simple configuration.
 第2の態様に係る気泡含有液体生成装置(1;1b;1c)は、第1の態様において、圧力検出部(41)を更に備える。圧力検出部(41)は、加圧容器(4)の内圧を検出する。液体供給部(5;5b;5c)は、圧力検出部(41)による検出結果を圧力情報とし、検出結果に基づいて加圧容器(4)に液体(L1)を供給する。 In the first aspect, the bubble-containing liquid generating device (1; 1b; 1c) according to the second aspect further includes a pressure detection section (41). A pressure detector (41) detects the internal pressure of the pressurized container (4). The liquid supply section (5; 5b; 5c) uses the detection result of the pressure detection section (41) as pressure information, and supplies the liquid (L1) to the pressurized container (4) based on the detection result.
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、圧力検出部(41)により加圧容器(4)内の圧力情報を高精度に取得できる。したがって、液体供給部(5;5b;5c)が容易に加圧容器(4)の内圧を基準内圧以上に制御できる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, pressure information in the pressurized container (4) can be obtained with high accuracy by the pressure detection section (41). Therefore, the liquid supply part (5; 5b; 5c) can easily control the internal pressure of the pressurized container (4) to be equal to or higher than the reference internal pressure.
 第3の態様に係る気泡含有液体生成装置(1;1c)では、第1の態様において、液体供給部(5;5c)は、液体ポンプ(53)を含む。液体ポンプ(53)は、加圧容器(4)に液体(L1)を加圧供給する。液体供給部(5;5c)は、液体ポンプ(53)の消費電力に基づいて加圧容器(4)の内圧を検出する。液体供給部(5;5c)は、検出した加圧容器(4)の内圧を圧力情報とし、検出した加圧容器(4)の内圧に基づいて、加圧容器(4)に液体(L1)を供給する。 In the bubble-containing liquid generating device (1; 1c) according to the third aspect, in the first aspect, the liquid supply section (5; 5c) includes a liquid pump (53). A liquid pump (53) pressurizes and supplies the liquid (L1) to the pressurized container (4). The liquid supply section (5; 5c) detects the internal pressure of the pressurized container (4) based on the power consumption of the liquid pump (53). The liquid supply unit (5; 5c) uses the detected internal pressure of the pressurized container (4) as pressure information, and supplies the liquid (L1) to the pressurized container (4) based on the detected internal pressure of the pressurized container (4). supply.
 上記態様に係る気泡含有液体生成装置(1;1c)では、液体ポンプ(53)を用いて加圧容器(4)の内圧を検出する。したがって、圧力検出部(41)を用いる必要がなく、気泡含有液体生成装置(1)を更に簡易な構成で実現できる。 In the bubble-containing liquid generating device (1; 1c) according to the above aspect, the liquid pump (53) is used to detect the internal pressure of the pressurized container (4). Therefore, there is no need to use the pressure detection section (41), and the bubble-containing liquid generating device (1) can be realized with a simpler configuration.
 第4の態様に係る気泡含有液体生成装置(1b)は、第1から第3の態様のいずれかにおいて、気体経路(11)と、気体取入弁(12)と、を更に備える。気体経路(11)は、加圧容器(4)に気体を供給する。気体取入弁(12)は、気体経路(11)上に設けられている。気体取入弁(12)は、加圧容器(4)の内圧が外気圧未満である場合に開き、加圧容器(4)の内圧が外気圧以上である場合に閉じる。 A bubble-containing liquid generating device (1b) according to a fourth aspect, in any one of the first to third aspects, further includes a gas path (11) and a gas intake valve (12). A gas line (11) supplies gas to the pressurized vessel (4). A gas intake valve (12) is provided on the gas path (11). The gas intake valve (12) opens when the internal pressure of the pressurized container (4) is less than the external pressure, and closes when the internal pressure of the pressurized container (4) is greater than or equal to the external pressure.
 上記態様に係る気泡含有液体生成装置(1b)では、加圧容器(4)の内圧が外気圧未満となるように制御することで、加圧容器(4)に気体を供給できる。そのため、加圧容器(4)に気体を加圧注入するためのエアポンプ及びエアタンクが必要ない。したがって、気泡含有液体生成装置(1b)を簡易な構成で実現できる。 In the bubble-containing liquid generating apparatus (1b) according to the above aspect, gas can be supplied to the pressurized container (4) by controlling the internal pressure of the pressurized container (4) to be less than the external pressure. Therefore, an air pump and an air tank for pressurizing and injecting gas into the pressurized container (4) are not required. Therefore, the bubble-containing liquid generating device (1b) can be realized with a simple configuration.
 第5の態様に係る気泡含有液体生成装置(1b)では、第1から第4の態様のいずれかにおいて、液体供給部(5b)は、加圧容器(4)から加圧液体(L2)を逆流させる機能を有する。 In the bubble-containing liquid generating apparatus (1b) according to the fifth aspect, in any one of the first to fourth aspects, the liquid supply section (5b) supplies the pressurized liquid (L2) from the pressurized container (4). It has the function of backflow.
 上記態様に係る気泡含有液体生成装置(1b)では、加圧容器(4)内の加圧液体(L2)を液体供給部(5b)の液体容器(51b)に逆流させることで、加圧容器(4)の内圧を低下させることができる。したがって、液体供給部(5b)が加圧容器(4)の内圧を高精度に制御することができる。 In the bubble-containing liquid generating apparatus (1b) according to the above aspect, the pressurized liquid (L2) in the pressurized container (4) is caused to flow back to the liquid container (51b) of the liquid supply section (5b), whereby the pressurized container (4) The internal pressure can be reduced. Therefore, the liquid supply part (5b) can control the internal pressure of the pressurized container (4) with high accuracy.
 第6の態様に係る気泡含有液体生成装置(1b)は、第1から第3の態様のいずれかにおいて、気体経路(11)と、気体取入弁(12)と、を更に備える。気体経路(11)は、加圧容器(4)に気体を供給する。気体取入弁(12)は、気体経路(11)上に設けられている。気体取入弁(12)は、加圧容器(4)の内圧が外気圧未満である場合に開き、加圧容器(4)の内圧が外気圧以上である場合に閉じる。液体供給部(5b)は、加圧容器(4)から加圧液体(L2)を逆流させる機能を有する。液体供給部(5b)は、加圧容器(4)内の気体(G1)量を推定し、加圧容器(4)内の気体(G1)量が基準量以下である場合に、加圧容器(4)から加圧液体(L2)を逆流させて加圧容器(4)を減圧させる。 The bubble-containing liquid generating device (1b) according to the sixth aspect, in any one of the first to third aspects, further comprises a gas path (11) and a gas intake valve (12). A gas line (11) supplies gas to the pressurized vessel (4). A gas intake valve (12) is provided on the gas path (11). The gas intake valve (12) opens when the internal pressure of the pressurized container (4) is less than the external pressure, and closes when the internal pressure of the pressurized container (4) is greater than or equal to the external pressure. The liquid supply part (5b) has a function of backflowing the pressurized liquid (L2) from the pressurized container (4). A liquid supply unit (5b) estimates the amount of gas (G1) in the pressurized container (4), and if the amount of gas (G1) in the pressurized container (4) is equal to or less than the reference amount, the pressurized container The pressurized liquid (L2) is reversed from (4) to depressurize the pressurized container (4).
 上記態様に係る気泡含有液体生成装置(1b)では、加圧容器(4)内の気体(G1)量が基準量以下である場合に、加圧容器(4)内の加圧液体(L2)を加圧容器(4)外に逆流させることで、加圧容器(4)に気体を供給できる。したがって、液体供給部(5b)の動作によって、加圧容器(4)に液体(L1)と気体の両方を補充することができる。したがって、気泡含有液体生成装置(1b)を簡易な構成で実現できる。 In the bubble-containing liquid generating apparatus (1b) according to the above aspect, when the amount of gas (G1) in the pressurized container (4) is equal to or less than the reference amount, the pressurized liquid (L2) in the pressurized container (4) can be supplied to the pressurized container (4) by causing the to flow back to the outside of the pressurized container (4). Therefore, the pressurized container (4) can be replenished with both liquid (L1) and gas by operation of the liquid supply (5b). Therefore, the bubble-containing liquid generating device (1b) can be realized with a simple configuration.
 第7の態様に係る気泡含有液体生成装置(1;1b;1c)は、第1から第6の態様のいずれかにおいて、ノズル(2)を更に備える。ノズル(2)は、流出経路(6)に接続される。 The bubble-containing liquid generating device (1; 1b; 1c) according to the seventh aspect further comprises a nozzle (2) in any one of the first to sixth aspects. The nozzle (2) is connected to an outflow channel (6).
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、ノズル(2)を別途準備する必要がなく、気泡含有液体生成装置(1;1b;1c)単体で、気泡含有液体(L3)を利用することができる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, there is no need to separately prepare the nozzle (2), and the bubble-containing liquid generating device (1; 1b; 1c) alone can ) can be used.
 第8の態様に係る気泡含有液体生成装置(1;1b;1c)では、第7の態様において、ノズル(2)は、減圧機構又は乱流発生機構を有する。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the eighth aspect, in the seventh aspect, the nozzle (2) has a decompression mechanism or a turbulence generating mechanism.
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、ノズル(2)により加圧液体(L2)から気泡含有液体(L3)を効率よく生成することができる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, the nozzle (2) can efficiently generate the bubble-containing liquid (L3) from the pressurized liquid (L2).
 第9の態様に係る気泡含有液体生成装置(1;1b;1c)では、第1から第8の態様のいずれかにおいて、吐出制御部(7)は操作部(71)を有し、操作部(71)が押圧されている間、ノズル(2)から気泡含有液体(L3)を吐出させる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the ninth aspect, in any one of the first to eighth aspects, the ejection control section (7) has an operation section (71), and the operation section While (71) is pressed, the bubble-containing liquid (L3) is discharged from the nozzle (2).
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、ユーザが操作部(71)を押圧することで、ユーザが必要とする量の気泡含有液体(L3)を吐出する。したがって、気泡含有液体生成装置(1;1b;1c)は、気泡含有液体(L3)を必要な量吐出すればよく、液体(L1)及び気体(G1)の利用効率が高い。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, the user presses the operation unit (71) to discharge the amount of bubble-containing liquid (L3) required by the user. Therefore, the bubble-containing liquid generator (1; 1b; 1c) can discharge the bubble-containing liquid (L3) in a required amount, and the liquid (L1) and the gas (G1) are efficiently used.
 第10の態様に係る気泡含有液体生成装置(1c)では、第1から第9の態様のいずれかにおいて、液体供給部(5c)は、加圧容器(4)に液体(L1)を霧状に供給する微細化ノズル(55c)を更に有する。 In the bubble-containing liquid generating apparatus (1c) according to the tenth aspect, in any one of the first to ninth aspects, the liquid supply section (5c) supplies the liquid (L1) to the pressurized container (4) in a mist form. It further has a miniaturization nozzle (55c) that feeds into.
 上記態様に係る気泡含有液体生成装置(1c)では、加圧容器(4)に液体(L1)を加圧注入する際に、気体(G1)を加圧液体(L2)に溶解させやすくなる。 In the bubble-containing liquid generating device (1c) according to the above aspect, when pressurizing and injecting the liquid (L1) into the pressurized container (4), the gas (G1) is easily dissolved in the pressurized liquid (L2).
 第11の態様に係る気泡含有液体生成装置(1;1b;1c)では、第1から第10の態様のいずれかにおいて、液体(L1)は水である。気泡含有液体(L3)はウルトラファインバブル水である。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the eleventh aspect, in any one of the first to tenth aspects, the liquid (L1) is water. The bubble-containing liquid (L3) is ultra-fine bubble water.
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、気泡含有液体(L3)としてウルトラファインバブル水を生成することができる。ウルトラファインバブル水では、気泡表面が負電荷に帯電しているため、正電荷に帯電している物質、例えば、有機物を吸着する作用や、界面活性作用がある。また、ウルトラファインバブル水では、気泡が小さく透過性が高い。さらに、ウルトラファインバブル水は植物が容易に取り込める。したがって、気泡含有液体生成装置(1;1b;1c)によって生成されたウルトラファインバブル水を、植物栽培、洗浄など、様々な用途で使用することができる。 The bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect can generate ultra-fine bubble water as the bubble-containing liquid (L3). In ultra-fine bubble water, since the surface of the bubbles is negatively charged, it has an action of adsorbing positively charged substances such as organic matter and a surfactant action. In addition, ultra-fine bubble water has small bubbles and high permeability. Furthermore, ultra-fine bubble water can be easily taken up by plants. Therefore, the ultra-fine bubble water generated by the bubble-containing liquid generator (1; 1b; 1c) can be used for various purposes such as plant cultivation and cleaning.
 第12の態様に係る気泡含有液体生成装置(1;1b;1c)では、第1の態様において、液体供給部(5;5b;5c)は、液体ポンプ(53;53b)を含む。液体ポンプ(53;53b)は、加圧容器(4)に液体(L1)を加圧供給する。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the twelfth aspect, in the first aspect, the liquid supply section (5; 5b; 5c) includes a liquid pump (53; 53b). A liquid pump (53; 53b) pressurizes and supplies the liquid (L1) to the pressurized container (4).
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、液体ポンプ(53;53b)を用いて加圧容器(4)に液体(L1)を容易に加圧供給できる。 In the bubble-containing liquid generator (1; 1b; 1c) according to the above aspect, the liquid (L1) can be easily pressurized and supplied to the pressurized container (4) using the liquid pump (53; 53b).
 第13の態様に係る気泡含有液体生成装置(1b)では、第12の態様において、液体ポンプ(53b)は、順方向動作と、逆方向動作と、動作停止と、の各々の機能を有する。順方向動作では、加圧容器(4)に液体(L1)を加圧供給する。逆方向動作では、加圧容器(4)から加圧液体(L2)を逆流させる。動作停止では、液体ポンプ(53b)が動作しない。液体ポンプ(53b)は、順方向動作と、逆方向動作と、動作停止と、のいずれか1つの動作を行う。 In the bubble-containing liquid generating device (1b) according to the thirteenth aspect, in the twelfth aspect, the liquid pump (53b) has functions of forward operation, reverse operation, and operation stop. In forward operation, the pressurized container (4) is pressurized with liquid (L1). Reverse operation reverses the flow of pressurized liquid (L2) from the pressurized container (4). In deactivation, the liquid pump (53b) does not operate. The liquid pump (53b) performs one of forward operation, reverse operation, and stop operation.
 上記態様に係る気泡含有液体生成装置(1b)では、液体ポンプ(53b)の各動作により、加圧容器(4)に液体(L1)の供給、気体(G1)の供給、のいずれも行うことができる。 In the bubble-containing liquid generating apparatus (1b) according to the above aspect, each operation of the liquid pump (53b) supplies both the liquid (L1) and the gas (G1) to the pressurized container (4). can be done.
 第14の態様に係る気泡含有液体生成装置(1;1b;1c)では、第12または第13の態様において、液体ポンプ(53;53b)は、動作速度を調整する機能を有する。 In the bubble-containing liquid generator (1; 1b; 1c) according to the 14th aspect, in the 12th or 13th aspect, the liquid pump (53; 53b) has a function of adjusting the operating speed.
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、液体ポンプ(53;53b)の動作速度の調整により、加圧容器(4)の内圧を詳細に制御することができ、又は、液体ポンプ(53;53b)の消費電力を低減させることができる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, the internal pressure of the pressurized container (4) can be controlled in detail by adjusting the operating speed of the liquid pump (53; 53b), or , the power consumption of the liquid pump (53; 53b) can be reduced.
 第15の態様に係る気泡含有液体生成装置(1;1b;1c)では、第12から第14の態様のいずれかにおいて、液体ポンプ(53;53b)は、ギヤポンプである。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the fifteenth aspect, in any one of the twelfth to fourteenth aspects, the liquid pump (53; 53b) is a gear pump.
 上記態様に係る気泡含有液体生成装置(1;1b;1c)では、液体供給部(5;5b;5c)を容易に実現できる。 In the bubble-containing liquid generating device (1; 1b; 1c) according to the above aspect, the liquid supply section (5; 5b; 5c) can be easily realized.
 1、1b、1c 気泡含有液体生成装置
 2 ノズル
 4 加圧容器
 41 圧力検出部
 5、5b、5c 液体供給部
 6 流出経路
 7 吐出制御部
 10 制御回路
 10a 制御回路
 11 気体経路
 12 気体取入弁
 31 蓋
 32 貫通孔
 33 貫通孔
 34 吸気口
 41 圧力検出部
 42 液体供給孔
 43 液体吐出孔
 44 気体供給孔
 51 液体容器
 51b 液体容器
 52 補給経路
 52b 補給経路
 53 液体ポンプ
 53b 液体ポンプ
 54 流入経路
 54b 流入経路
 54c 流入経路
 55c 微細化ノズル
 61 第1流出経路
 62 第2流出経路
 71 吐出スイッチ(操作部)
 72 流入口
 73 吐出口
 74 可動ブロック
 75 流路
 81 圧力測定部
 81a 圧力測定部
 82 指示部
 83 記憶部
 G1 気体
 L1 液体
 L2 加圧液体
 L3 気泡含有液体
Reference Signs List 1, 1b, 1c bubble-containing liquid generating device 2 nozzle 4 pressurized container 41 pressure detection section 5, 5b, 5c liquid supply section 6 outflow path 7 discharge control section 10 control circuit 10a control circuit 11 gas path 12 gas intake valve 31 Lid 32 through hole 33 through hole 34 intake port 41 pressure detector 42 liquid supply hole 43 liquid discharge hole 44 gas supply hole 51 liquid container 51b liquid container 52 replenishment path 52b replenishment path 53 liquid pump 53b liquid pump 54 inflow path 54b inflow path 54c Inflow path 55c Miniaturized nozzle 61 First outflow path 62 Second outflow path 71 Discharge switch (operation unit)
72 inlet 73 outlet 74 movable block 75 channel 81 pressure measuring section 81a pressure measuring section 82 indicating section 83 storage section G1 gas L1 liquid L2 pressurized liquid L3 bubble-containing liquid

Claims (15)

  1.  液体に気体を加圧溶解させて加圧液体を生成する加圧容器と、
     前記加圧容器に液体を供給する液体供給部と、
     前記加圧容器と減圧機構を有するノズルとを接続する流出経路と、
     前記ノズルから気泡含有液体を吐出させる吐出制御部と、
     を備え、
     前記液体供給部は、前記加圧容器の内圧を示す圧力情報に基づき、前記加圧容器に前記液体を供給して前記加圧容器の内圧を基準内圧以上に制御し、
     前記吐出制御部は、前記加圧容器から前記ノズルへの前記加圧液体の流出を制御する機能を有し、前記加圧液体を前記加圧容器から前記ノズルに流出させて、前記ノズルから前記気泡含有液体を吐出させる、
     気泡含有液体生成装置。
    a pressurized container for pressurizing and dissolving a gas in a liquid to generate a pressurized liquid;
    a liquid supply unit that supplies liquid to the pressurized container;
    an outflow path connecting the pressurized container and a nozzle having a decompression mechanism;
    a discharge control unit for discharging a bubble-containing liquid from the nozzle;
    with
    The liquid supply unit controls the internal pressure of the pressurized container to be equal to or higher than a reference internal pressure by supplying the liquid to the pressurized container based on pressure information indicating the internal pressure of the pressurized container;
    The discharge control unit has a function of controlling the outflow of the pressurized liquid from the pressurized container to the nozzle, and causes the pressurized liquid to flow out from the pressurized container to the nozzle, thereby ejecting a bubble-containing liquid;
    Bubble-containing liquid generator.
  2.  前記加圧容器の内圧を検出する圧力検出部を更に備え、
     前記液体供給部は、前記圧力検出部による検出結果を前記圧力情報とし、前記検出結果に基づいて、前記加圧容器に前記液体を供給する、
     請求項1に記載の気泡含有液体生成装置。
    Further comprising a pressure detection unit that detects the internal pressure of the pressurized container,
    The liquid supply unit uses the detection result of the pressure detection unit as the pressure information, and supplies the liquid to the pressurized container based on the detection result.
    The bubble-containing liquid generating device according to claim 1.
  3.  前記液体供給部は、
      前記加圧容器に前記液体を加圧供給する液体ポンプを含み、
      前記液体ポンプの消費電力に基づいて前記加圧容器の内圧を検出し、
      検出した前記加圧容器の内圧を前記圧力情報とし、前記検出した前記加圧容器の内圧に基づいて、前記加圧容器に前記液体を供給する、
     請求項1に記載の気泡含有液体生成装置。
    The liquid supply unit
    including a liquid pump that pressurizes and supplies the liquid to the pressurized container;
    detecting the internal pressure of the pressurized container based on the power consumption of the liquid pump;
    using the detected internal pressure of the pressurized container as the pressure information, and supplying the liquid to the pressurized container based on the detected internal pressure of the pressurized container;
    The bubble-containing liquid generating device according to claim 1.
  4.  前記加圧容器に気体を供給するための気体経路と、
     前記気体経路上に設けられている気体取入弁と、を更に備え、
     前記気体取入弁は、前記加圧容器の内圧が外気圧未満である場合に開き、前記加圧容器の内圧が外気圧以上である場合に閉じる、
     請求項1から3のいずれか1項に記載の気泡含有液体生成装置。
    a gas path for supplying gas to the pressurized container;
    a gas intake valve provided on the gas path,
    The gas intake valve opens when the internal pressure of the pressurized container is less than the external pressure, and closes when the internal pressure of the pressurized container is greater than or equal to the external pressure.
    The bubble-containing liquid generating device according to any one of claims 1 to 3.
  5.  前記液体供給部は、
      前記加圧容器から前記加圧液体を逆流させる機能を有する、
     請求項1から4のいずれか1項に記載の気泡含有液体生成装置。
    The liquid supply unit
    having a function of backflowing the pressurized liquid from the pressurized container,
    The bubble-containing liquid generating device according to any one of claims 1 to 4.
  6.  前記加圧容器に気体を供給するための気体経路と、
     前記気体経路上に設けられている気体取入弁と、を更に備え、
     前記気体取入弁は、前記加圧容器の内圧が外気圧未満である場合に開き、前記加圧容器の内圧が外気圧以上である場合に閉じ、
     前記液体供給部は、
      前記加圧容器から前記加圧液体を逆流させる機能を有し、
      前記加圧容器内の気体量を推定し、前記加圧容器内の気体量が基準量以下である場合に、前記加圧容器から前記加圧液体を逆流させて前記加圧容器を減圧させる、
     請求項1から3のいずれか1項に記載の気泡含有液体生成装置。
    a gas path for supplying gas to the pressurized container;
    a gas intake valve provided on the gas path,
    The gas intake valve opens when the internal pressure of the pressurized container is less than the external pressure and closes when the internal pressure of the pressurized container is equal to or higher than the external pressure;
    The liquid supply unit
    having a function of backflowing the pressurized liquid from the pressurized container,
    estimating the amount of gas in the pressurized container, and when the amount of gas in the pressurized container is equal to or less than a reference amount, causing the pressurized liquid to flow back from the pressurized container to depressurize the pressurized container;
    The bubble-containing liquid generating device according to any one of claims 1 to 3.
  7.  前記流出経路に接続される前記ノズルを更に備える、
     請求項1から6のいずれか1項に記載の気泡含有液体生成装置。
    Further comprising the nozzle connected to the outflow path,
    The bubble-containing liquid generating device according to any one of claims 1 to 6.
  8.  前記ノズルは、減圧機構又は乱流発生機構を有する、
     請求項7に記載の気泡含有液体生成装置。
    The nozzle has a decompression mechanism or a turbulence generation mechanism,
    The bubble-containing liquid generating device according to claim 7.
  9.  前記吐出制御部は、
      操作部を有し、
      前記操作部が押圧されている間、前記ノズルから前記気泡含有液体を吐出させる、
     請求項1から8のいずれか1項に記載の気泡含有液体生成装置。
    The ejection control unit
    having an operation unit,
    discharging the bubble-containing liquid from the nozzle while the operation unit is being pressed;
    The bubble-containing liquid generating device according to any one of claims 1 to 8.
  10.  前記液体供給部は、
      前記加圧容器に前記液体を霧状に供給する微細化ノズルを更に有する、
     請求項1から9のいずれか1項に記載の気泡含有液体生成装置。
    The liquid supply unit
    further comprising an atomization nozzle that supplies the liquid to the pressurized container in the form of a mist;
    The bubble-containing liquid generating device according to any one of claims 1 to 9.
  11.  前記液体は水であり、
     前記気泡含有液体はウルトラファインバブル水である、
     請求項1から10のいずれか1項に記載の気泡含有液体生成装置。
    the liquid is water;
    The bubble-containing liquid is ultra-fine bubble water,
    The bubble-containing liquid generating device according to any one of claims 1 to 10.
  12.  前記液体供給部は、
      前記加圧容器に前記液体を加圧供給する液体ポンプを含む、
     請求項1に記載の気泡含有液体生成装置。
    The liquid supply unit
    including a liquid pump that pressurizes and supplies the liquid to the pressurized container;
    The bubble-containing liquid generating device according to claim 1.
  13.  前記液体ポンプは、
      前記加圧容器に前記液体を加圧供給する順方向動作と、
      前記加圧容器から前記加圧液体を逆流させる逆方向動作と、
      前記液体ポンプが動作しない動作停止と、の各々の機能を有し、
      前記順方向動作と、前記逆方向動作と、前記動作停止と、のいずれか1つの動作を行う、
     請求項12に記載の気泡含有液体生成装置。
    The liquid pump is
    a forward motion of pressurizing the liquid into the pressurized container;
    reverse action to flow back the pressurized liquid from the pressurized vessel;
    and stopping the liquid pump from operating,
    performing any one of the forward operation, the reverse operation, and the stop operation;
    The bubble-containing liquid generating device according to claim 12.
  14.  前記液体ポンプは、動作速度を調整する機能を有する、
     請求項12又は13に記載の気泡含有液体生成装置。
    The liquid pump has the function of adjusting the operating speed,
    14. The bubble-containing liquid generating device according to claim 12 or 13.
  15.  前記液体ポンプは、ギヤポンプである、
     請求項12から14のいずれか1項に記載の気泡含有液体生成装置。
    wherein the liquid pump is a gear pump;
    The bubble-containing liquid generating device according to any one of claims 12 to 14.
PCT/JP2022/037988 2021-12-08 2022-10-12 Device for generating bubble-containing liquid WO2023105914A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199448 2021-12-08
JP2021199448A JP2023085007A (en) 2021-12-08 2021-12-08 Air bubble containing liquid generator

Publications (1)

Publication Number Publication Date
WO2023105914A1 true WO2023105914A1 (en) 2023-06-15

Family

ID=86730181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037988 WO2023105914A1 (en) 2021-12-08 2022-10-12 Device for generating bubble-containing liquid

Country Status (2)

Country Link
JP (1) JP2023085007A (en)
WO (1) WO2023105914A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190466A (en) * 2006-01-17 2007-08-02 Toshio Miyashita Microbubble generating apparatus and gas-liquid mixing tank
JP2007289903A (en) * 2006-04-27 2007-11-08 Fukushima Mitsuo Micro-bubble generating device and bath system
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath
JP2017094300A (en) * 2015-11-26 2017-06-01 三菱重工交通機器エンジニアリング株式会社 Microbubble generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190466A (en) * 2006-01-17 2007-08-02 Toshio Miyashita Microbubble generating apparatus and gas-liquid mixing tank
JP2007289903A (en) * 2006-04-27 2007-11-08 Fukushima Mitsuo Micro-bubble generating device and bath system
JP2007301281A (en) * 2006-05-15 2007-11-22 Toho Gas Co Ltd Fine bubble generator and hot-water supply apparatus for bath
JP2017094300A (en) * 2015-11-26 2017-06-01 三菱重工交通機器エンジニアリング株式会社 Microbubble generation system

Also Published As

Publication number Publication date
JP2023085007A (en) 2023-06-20

Similar Documents

Publication Publication Date Title
US7758024B2 (en) Microbubble generating device and hair washing device utilizing the same
US7766253B2 (en) Nebulizer device and method with overpressurization of a liquid to be nebulized
JP4895032B2 (en) Microbubble generator
JP4815032B2 (en) Microbubble generator and gas-liquid mixing tank
US9144351B2 (en) Vacuum prime foam pumps, refill units and dispensers
WO1998018543A1 (en) Method and apparatus for dissolving/mixing gas in liquid
CN110344212A (en) Washing machine
JP4470936B2 (en) Chemical-mixed water discharge device and flush toilet device
JP5342156B2 (en) Hydrogen water and hydrogen water generator
WO2023105914A1 (en) Device for generating bubble-containing liquid
JP2001347145A (en) Fine bubble generator
JP4895033B2 (en) Microbubble generator
JP6869945B2 (en) Foam cartridge, refill unit, foam dispenser, and foam dispenser system
JP3138205U (en) Shower equipment
JP2008168293A (en) Microbubble generator
JP5508235B2 (en) Microbubble generator
WO2023105915A1 (en) Device for generating bubble-including liquid, and nozzle
WO2017217157A1 (en) Gas dissolving apparatus
JP2015530126A (en) Powder and foam dispenser
JP4356558B2 (en) Bubble generator
JP3738440B2 (en) Bubble generator
JP5134336B2 (en) Foam detergent dispenser
JP2015009046A (en) Oral cavity washing device
JP2021171669A (en) Hydrogen fine bubble generation apparatus and hydrogen fine bubble generation unit
JP2009202061A (en) Foam detergent discharging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903848

Country of ref document: EP

Kind code of ref document: A1