WO2023105156A1 - Glass panel comprising a sun protection stack and a protective coating comprising yttrium oxide and at least one element selected from hafnium and/or titanium - Google Patents

Glass panel comprising a sun protection stack and a protective coating comprising yttrium oxide and at least one element selected from hafnium and/or titanium Download PDF

Info

Publication number
WO2023105156A1
WO2023105156A1 PCT/FR2022/052258 FR2022052258W WO2023105156A1 WO 2023105156 A1 WO2023105156 A1 WO 2023105156A1 FR 2022052258 W FR2022052258 W FR 2022052258W WO 2023105156 A1 WO2023105156 A1 WO 2023105156A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
titanium
yttrium
hafnium
article according
Prior art date
Application number
PCT/FR2022/052258
Other languages
French (fr)
Inventor
Lorenzo MANCINI
Sacha ABADIE
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2023105156A1 publication Critical patent/WO2023105156A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3441Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising carbon, a carbide or oxycarbide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant

Definitions

  • TITLE Glazing comprising a solar protection stack and a protective coating comprising an oxide of yttrium and at least one element chosen from hafnium and/or titanium.
  • the present invention relates to an article with sunscreen properties comprising a stack of layers giving it sunscreen properties and a protective coating to provide it with mechanical strength, in particular scratch resistance and chemical resistance, in particular hydrolytic resistance. and in particular in acidic environments.
  • the invention relates to so-called sunscreen insulating glazing, provided with stacks of thin layers of which at least one layer is said to be functional, that is to say that it acts on solar radiation essentially by reflection and/or absorption of at least a part of the solar radiation.
  • the application more particularly aimed at by the invention is firstly the field of building, as solar glazing.
  • this glazing can also be used as vehicle glazing, such as side glasses, car roofs, rear windows.
  • “Functional” or even “active” layer is therefore understood, within the meaning of the present application, to mean the layers of the stack which give the stack most of its thermal insulation properties. Most often, the stacks of thin layers fitted to the glazing give it substantially improved insulation properties very essentially, or even exclusively, thanks to the intrinsic properties of said active layers. Said layers act on the flow of radiation, in particular infrared, passing through said glazing, as opposed to the other layers, generally made of material dielectric and most often mainly having the function of chemical or mechanical protection of said functional layers.
  • such glazing provided with stacks incorporating thin functional layers act on the incident solar radiation either by the absorption of part of the said incident radiation by the functional layer or layers, or by reflection by these same layers, the reflection which may relate to a portion of the solar spectrum, for example in the infrared range and/or in the visible range. Most often said layers act on the incident solar radiation both by reflection and by absorption.
  • anti-sun is thus meant within the meaning of the present invention the ability of the glazing to limit the energy flow, in particular, but not only, the solar infrared radiation (1RS), crossing it from the outside towards the inside of the dwelling.
  • the glazing In another application such as the automobile, it may also be desired to limit the quantity of heat entering the passenger compartment of the vehicle, that is to say to limit the energy transmission of solar radiation through the glazing, the latter which can be a roof, rear window or side windows.
  • the coatings are conventionally deposited by deposition techniques of the magnetic field-assisted vacuum sputtering type of a cathode of the material or of a precursor of the material to be deposited, often referred to as a magnetron sputtering technique in the field.
  • a magnetron sputtering technique in the field.
  • Such a technique is now conventionally used in particular when the coating to be deposited consists of a more complex stack of successive layers with thicknesses of a few nanometers to a few tens of nanometers.
  • the most efficient stacks currently marketed to solve the above problems and deposited by magnetron sputtering techniques incorporate a silver-based metal layer operating essentially in the mode of reflection of a major part of the IR radiation ( infrared) incident.
  • stacks are thus mainly used as glazing of the low-emissivity (or low-e) type for the thermal insulation of buildings. They can also be used as sunscreen for their ability to reflect the infrared part of solar radiation. These layers are however very sensitive to humidity and are therefore exclusively used in double glazing, facing 2 or 3 thereof, to be protected from humidity.
  • the stacks according to the invention do not include such layers based on silver, gold, platinum or even copper or even nickel. More generally, the articles according to the invention do not contain such metals, or else in very negligible quantities, in particular in the form of unavoidable impurities.
  • stacks have also been proposed whose functional layer is based on titanium nitride. Reference may for example be made in this case to applications WO2018/129135 or even W02019/002737.
  • the functional layers based on niobium, niobium nitride or even titanium nitride mentioned above make it possible both to reflect and absorb a significant portion of infrared radiation from solar radiation without however making the glazing opaque, when their thickness is limited to values below 50 nm, in particular below 40 nm or even below 30 nm. Such a property gives the stack in which it is included solar protection properties, as well as the glazing coated with such a stack.
  • the functional layer is a layer comprising titanium oxide.
  • Such embodiments are in particular described in the publications EP1919838, EP3122694 or even W02020/002845.
  • the functional layer is a layer comprising an alloy of chromium and nickel, the alloy optionally being nitrided.
  • the alloy optionally being nitrided.
  • the present invention relates to such stacks and glass articles.
  • Improving the scratch resistance of functionalized glazing is generally treated by applying a layer of protective coating.
  • This protective layer also called “overcoat”
  • This protective layer is generally thick from a few nanometers to a few tens of nanometers. It can be dropped onto the functional stack using conventional thin-layer deposition processes, such as the cathodic sputtering process already mentioned, in particular reinforced by a magnetic field, called in this case “magnetron” process.
  • DLC diamond like carbon
  • overcoats for example, have already been described as increasing the scratch resistance of glazing.
  • the main disadvantage of DLCs is their intrinsic thermal instability. For this reason, DLC coatings are not suitable per se for applications requiring exposure to high temperatures such as annealing, quenching or even bending. Additional sacrificial layers must be provided to protect the DLC coating during heat treatments (WO 2005/021454, WO 2019/020485), which makes their use tedious.
  • Publication WO2021/063921 describes an external yttrium oxide protective layer of 5 nm is deposited above the stack. This layer has very good mechanical resistance but its hydrolytic resistance can still be improved.
  • Patent application EP2314451 describes an external YZrOx protective layer. It is therefore always necessary to have a protective coating capable of improving the resistance to wear and corrosion to a level substantially equivalent or approaching that of DLC coatings while being capable of withstanding heat treatments.
  • the applicant has observed that the protective dielectric layers based on a compound comprising yttrium, and in particular based on yttrium oxide and another element chosen from titanium or hafnium, in addition to meet these requirements, also offer good transparency, which is particularly advantageous for the protection of stacks of layers of glazing.
  • the present invention relates to an article with solar protection properties comprising: a glass substrate, a stack of layers deposited on said substrate, said stack comprising at least one functional layer absorbing and/or reflecting part of the solar radiation and a layer of coating of said stack, in which said coating layer is an oxide layer comprising yttrium, and at least one element chosen from hafnium and titanium.
  • the coating layer therefore consists of a layer of dielectric oxide comprising yttrium Y and at least one element chosen from titanium Ti or hafnium Hf.
  • said elements Y and Hf and/or Ti
  • the expression “dielectric layer” designates for example a layer which does not have a metallic character.
  • Such materials, in their massive form and devoid of impurities thus have a high resistivity, in particular a resistivity greater than 10 10 ohms. meters (Qm) at 25°C.
  • - Said coating layer comprising at least 10 atomic % of yttrium, on the basis of all the yttrium, titanium and hafnium atoms present in said layer, preferably between 20 and 55 atomic % of yttrium or even between 33% and 49% yttrium based on all the yttrium, titanium and hafnium atoms present in said layer.
  • the coating layer comprises at least 25 atomic % of at least one element chosen from hafnium and titanium, on the basis of all the yttrium, titanium and hafnium atoms present in said layer, of preferably more than 50 atomic % of at least one element chosen from hafnium and titanium, in particular between 51 and 90 atomic % of at least one element chosen from hafnium and titanium, on the basis of the whole yttrium, titanium and hafnium atoms present in said layer.
  • the atomic ratio (Hf+Ti)/Y in said coating layer is greater than 1.
  • the functional layer comprises a material chosen from metallic niobium, niobium nitride, titanium nitride or titanium oxide, ITO (indium tin oxide), a layer comprising chromium, in particular an alloy of nickel and chromium optionally nitrided (often called NiCr or NiCrN in the technical field) or a layer consisting essentially of chromium.
  • the coating layer comprises less than 5 atomic % of zirconium, preferably less than 1 atomic % of zirconium, on the basis of all the atoms of yttrium, titanium, zirconium and hafnium present in said layer , and more preferably is free of zirconium.
  • the coating layer is an oxide of yttrium and titanium (except for the inevitable impurities).
  • the coating layer is an oxide of yttrium and hafnium (except for inevitable impurities).
  • the coating layer is an oxide of yttrium, titanium and hafnium (except for inevitable impurities).
  • the coating layer has a thickness between 1 and 100 nm, preferably between 1 and 20 nm and very preferably between 2 and 10 nm, or even between 3 and 8 nm.
  • the coating layer constitutes the outermost layer of the succession of layers covering the glass surface.
  • the functional layer(s) present(s) (each) a physical thickness of between 2 and 50 nm, preferably between 5 and 30 nm.
  • the stack comprises, above and/or below the functional layer or layers, layers based on silicon nitride, preferably having a physical thickness of between 1 and 100 nm, more preferably between 5 and 50 n.
  • the stack consists solely of the functional layer(s) and of dielectric layers, said dielectric layers preferably being chosen from silicon, titanium, zirconium oxides or mixtures thereof, tin or silicon nitrides, aluminum or a mixture of silicon and aluminum.
  • the functional stack comprises or is constituted by the succession of at least the following layers, from the surface of the glass substrate:
  • an underlayer comprising silicon nitride, preferably with a thickness of between 1 nm and 100 nm,
  • a functional layer preferably with a physical thickness between 2 and 50 nm, preferably between 5 and 30 nm, the functional layer comprising a material chosen from metallic niobium, niobium nitride, titanium nitride or oxide titanium, an alloy of at least the elements Ni and Cr, optionally nitrided,
  • an overlayer comprising silicon nitride, preferably with a thickness between 1 nm and 100 nm,
  • a protective layer against scratches preferably chosen from Ti and/or Zr oxides, preferably with a thickness of between 1 nm and 10 nm.
  • the stack does not include layers based on silver, gold, platinum or copper.
  • the coating layer as previously described can, according to another embodiment, optionally comprise another minority element other than 0, Y, Hf and Ti, generally in a proportion of between 0.5 and 10% of all the elements present in the layer other than oxygen, for example in a quantity of between 1 and 5% of all the elements present in the layer other than oxygen.
  • the dopant can in particular be chosen from transition metals and lanthanides.
  • the coating layer is free of zirconium, or comprises a negligible amount of zirconium, such as less than 1 atomic % zirconium.
  • the oxygen preferably represents more than 50 atomic %, or even more than 60 atomic % of the atoms present in the coating layer.
  • the dielectric layer based on yttrium oxide typically has a refractive index, measured at 550 nm, of between 1.7 to 2.3, in particular from 1.8 to 2.2.
  • the functional layer(s) when the functional layer(s) comprise metallic niobium or niobium nitride, it(they) may comprise more than 50 atomic % of niobium on the basis of the elements present in said layer (other than nitrogen for niobium nitride), or even more than 75 atomic % of niobium and preferably more than 80%, even more than 90% of niobium, on the basis of the elements present in said layer (other than nitrogen for niobium nitride).
  • the layer(s) based on metallic niobium or based on niobium nitride only comprises the element niobium, apart from the inevitable impurities (other than nitrogen for the niobium nitride).
  • niobium can also be present in such layers, preferably in a minor quantity compared to niobium, for example in a proportion of between 1 and 30% niobium atoms present in the layer, or else in a proportion of between 5 and 20% of the niobium atoms present in the layer.
  • the layer(s) based on metallic niobium or based on niobium nitride are in principle free of oxygen, which can nevertheless be present in the form of unavoidable impurities in the layer, in particular following of quenching, but in a much lower proportion to the niobium and any nitrogen present.
  • the O/Nb atomic ratio in the functional layers according to the invention is less than 0.1, or even less than 0.05.
  • the functional layer(s) advantageously comprise(s) titanium nitride.
  • Layers based on titanium according to the invention comprise for example more than 50% by weight of titanium nitride, preferably more than 80% or even more than 90% by weight of titanium nitride. More preferably such consist essentially of titanium nitride.
  • the titanium nitride according to the invention is not necessarily stoichiometric (Ti/N atomic ratio of 1) but can be over- or under-stoichiometric. According to an advantageous mode, the N/Ti ratio is between 1 and 1.2, more preferably is greater than 1. Also, the titanium nitride according to the invention can comprise a minor quantity of oxygen, for example between 1 and 10% molar oxygen, in particular between 1 and 5% molar oxygen.
  • the titanium nitride layers according to the invention can for example correspond to the general formula TiN x O y , in which 1.00 ⁇ x ⁇ 1.20 and in which 0.01 ⁇ y ⁇ 0, 10.
  • the functional layer(s) advantageously comprise(s) oxide of titanium.
  • other elements preferably silicon or zirconium in particular, may also be present in such layers, but in a minor amount compared to titanium, for example in a proportion of between 1 and 30% of the titanium atoms present in the layer, or else in a proportion of between 5 and 20% of the titanium atoms present in the layer.
  • the functional layer(s) advantageously and preferably consist essentially of an alloy of at least nickel and chromium or of an alloy of nickel and chromium, said alloy possibly being nitrided, as described in the publications WO2012/096771, EP779255 or even EP747329.
  • the invention also relates to a method for manufacturing a coated article as defined above, said method comprising providing a glass substrate, depositing a stack of layers on said substrate; said stack comprising at least one functional layer as described above, and the deposition of a coating layer on top of said stack, in which the coating layer is as described above.
  • the invention relates to a monolithic glazing for a building, comprising an article as previously described.
  • the support is preferably according to the invention a sheet of glass. It is preferably transparent, colorless (it is then a clear or extra-clear glass) or colored, for example blue, green, gray or bronze.
  • the thickness of the support generally varies between 0.1 mm and 19 mm, preferably between 0.5 and 9 mm, in particular between 2 and 8 mm, and even between 4 and 6 mm.
  • the support can be flat or curved.
  • the glass is preferably of the silico-sodo-lime type but it can also be of the borosilicate or alumino-borosilicate type.
  • the glass substrate is preferably of the float glass type, that is to say likely to have been obtained by a process which consists in pouring the molten glass onto a bath of molten tin (“float” bath).
  • the glass substrate can also be obtained by rolling between two rollers, a technique which notably makes it possible to print patterns on the surface of the glass.
  • the glass substrate may be tempered glass.
  • clear glass is meant a silico-soda-lime glass obtained by the float process which, when it is not coated with layers, has a light transmission of the order of 90%, a light reflection of the about 8% and an energy transmission of about 87%, for a thickness of 4 mm.
  • the transmissions and reflections of light and energy are defined by standard NF EN 410.
  • Typical clear glasses are, for example, sold under the name SGG PlaniClear by Saint-Gobain Glass France or under the name Planibel Clair by AGC Flat Glass Europe. These substrates are traditionally used in the manufacture of low-emissivity glazing.
  • the terms “below” and “above”, associated with the position of two elements A and B do not exclude not the presence of other elements between said elements A and B.
  • an element A "in direct contact” with an element B means that no other element is positioned between them.
  • underlayer and “overlayer” refer to the relative position of one layer with respect to another in the stack, the surface of the glass substrate being taken as a reference.
  • the coating layer generally has a thickness comprised between 1 and 50 nm, preferably between 2 and 20 nm, and preferentially between 3 and 8 nm.
  • the functional stack is present between the substrate and the coating layer.
  • the coating layer is advantageously the outermost layer, that is to say the layer in direct contact with the atmosphere, as placed on the support.
  • the coating layer can be deposited on the substrate by cathode sputtering, in particular by the magnetic field-assisted cathode sputtering process (“magnetron” process). All the layers, including those of the functional stack and the layer of the protective coating are advantageously deposited by sputtering, in particular within the same deposition unit.
  • the coating layer according to the present invention can withstand heat treatment.
  • the method of the present invention can therefore include a heat treatment step after the deposition of the coating layer.
  • the heat treatment step can be a tempering step to reinforce the substrate, in particular in the case of a glass substrate.
  • the quenching step is generally carried out at temperatures of 550 to 750° C. for a few minutes, for example 3 to 30 minutes, followed by rapid cooling.
  • the present invention therefore also relates to a glazing comprising a coated article as described above.
  • the glazing may preferably be single glazing (monolithic), but also multiple glazing (in particular double or triple), that is to say consisting of several sheets of glass creating a space filled with gas, curved glazing and/or or laminated.
  • the glazing can also be tempered and/or reinforced.
  • the coating layer according to the present invention is generally positioned on the outer faces of the glazing (either towards the inside and/or towards the outside). It is not covered by other layers and is in contact with the outside atmosphere.
  • a first stack of reference layers is deposited on a Planiclear® glass substrate by magnetron sputtering according to well-known techniques, for example as described in the publications cited above.
  • a second stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm TiZrOx is deposited above the stack, in accordance with the teaching of application WO 2016/097557 .
  • a third stack of layers identical to the first is deposited on a Planiclear® glass substrate but an external protective layer in DLC of 10 nm is deposited above the stack, in accordance with the teaching of application WO 2005/021454.
  • a fourth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm yttrium oxide is deposited above the stack.
  • This layer is deposited by magnetron sputtering using a flat yttrium metal target of 210 mmx90 mm with a power of 500 W and under a pressure of 2 pbar in an atmosphere having an Ar/02 ratio of 10/4, with a flow rate of 28 sccm according to publication WO2021/063921.
  • a fifth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm YZrOx is deposited above the stack, in accordance with the teaching of application EP2314451.
  • a sixth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm YTiOx is deposited above the stack, in accordance with the teaching of the present invention.
  • This layer is deposited by magnetron co-sputtering using two flat metallic targets in the same compartment, one made of metallic yttrium and the other of metallic titanium, with a power of 500W on the two targets and under a pressure of 2 pbar in an atmosphere having an Ar/02 ratio of 10/4, with a flow rate of 28 sccm.
  • the coating layer therefore comprises 52 atomic % of titanium and 48 atomic % of yttrium, on the basis of all the yttrium and titanium atoms present in said layer.
  • a seventh stack of layers identical to the first is deposited on a Planiclear® glass substrate but a 5 nm YHfOx outer protective layer is deposited above the stack, in accordance with the teaching of the present invention.
  • This layer is deposited by magnetron co-sputtering using two flat metallic targets in the same compartment, one consisting of metallic yttrium and the other of metallic hafnium, with a power of 500 W for the two targets and under a pressure of 2 pbar in an atmosphere having an Ar/02 ratio of 10/4, with a flow rate of 28 sccm.
  • the coating layer therefore comprises 55 atomic % hafnium and 45 atomic % yttrium, on the basis of all the yttrium and hafnium atoms present in said layer.
  • An eighth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm YHfOx of a composition other than example 7 above is deposited above the stack, in accordance with the teaching of the present invention.
  • This layer is deposited by magnetron co-sputtering using two flat metallic targets in the same compartment, one made of metallic yttrium and the other of metallic Hafnium, with a power of 500 W on the Hafnium target and 200W on the Yttrium target, under a pressure of 2 pbar in an atmosphere with an Ar/02 ratio of 10/4, with a flow rate of 28 sccm.
  • the coating layer therefore comprises 74 atomic % hafnium and 26 atomic % yttrium, on the basis of all the yttrium and hafnium atoms present in said layer.
  • Table 1 shows the different constitutions and thicknesses of the layers constituting the stacks tested from the surface of the glass substrate. [Table 1]
  • the wear resistance of the stacks present on the glazings of Examples 1 to 7 is measured as follows: A stainless steel ball 1 mm in diameter is slid several times forwards and backwards over the surface of the sample according to examples 1 to 4 with a constant load of 10 N. 15 passages are carried out over a distance of approximately 10 mm. The average coefficient of friction (p) is recorded for each pass. For wear-resistant surfaces, the coefficient of friction is assumed to be low and constant.
  • the coating layers according to the invention have better scratch and wear resistance than the TiZrOx layers and, unlike the DLC layers, can undergo a treatment tempering, very important for this type of glazing whose stack is intended to be deposited on a monolithic glass substrate in order to manufacture a single glazing.
  • Such glazing is in fact most often tempered or to be tempered.
  • a chemical durability test is also carried out on the various glazings reported in Table 1. This test consists of immersion in a solution of HSC at a pH of 2.8 at ambient temperature, with stirring and for 30 minutes.
  • Table 3 below indicates the results of the immersion test for the glazings of Examples 1 to 7 and the level of corrosion resistance observed visually.
  • the sign (+) means that no trace of corrosion is visible on the surface of the glazing, the sign (-) that the surface is locally corroded and (--) that the surface is completely corroded.
  • the glazings of the stacks according to examples 6 to 8 according to the invention have the best combined performance in terms of mechanical and chemical resistance. These qualities appear essential, in particular with a view to its use as glazing for buildings and in particular as monolithic glazing, that is to say comprising a single glass substrate, said stack being in this case often in direct contact with the external environment. .
  • the stack is in fact arranged on face 2 of the glazing, that is to say on the face facing the interior of the building.

Abstract

The invention relates to an item with sun protection properties comprising a glass substrate, a stack of layers deposited on the substrate, the stack comprising at least one functional layer that absorbs and/or reflects a portion of the sun's radiation and a coating layer for coating the stack, wherein the coating layer is a dielectric oxide layer comprising yttrium and at least one element selected from hafnium and titanium.

Description

DESCRIPTION DESCRIPTION
TITRE : Vitrage comprenant un empilement antisolaire et un revêtement protecteur comprenant un oxyde d'yttrium et d'au moins un élément choisi parmi l'hafnium et/ou le titane. TITLE: Glazing comprising a solar protection stack and a protective coating comprising an oxide of yttrium and at least one element chosen from hafnium and/or titanium.
La présente invention se rapporte à un article à propriétés antisolaires comprenant un empilement de couches lui conférant des propriétés anti-solaires et un revêtement protecteur pour lui assurer une résistance mécanique, en particulier de résistance aux rayures et une résistance chimique, en particulier une résistance hydrolytique et en particulier aux milieux acides. The present invention relates to an article with sunscreen properties comprising a stack of layers giving it sunscreen properties and a protective coating to provide it with mechanical strength, in particular scratch resistance and chemical resistance, in particular hydrolytic resistance. and in particular in acidic environments.
L'invention concerne les vitrages isolants dits antisolaires, munis d'empilements de couches minces dont au moins une couche est dite fonctionnelle, c'est-à-dire qu'elle agit sur le rayonnement solaire essentiellement par réflexion et/ou absorption d'au moins une partie du rayonnement solaire. L'application plus particulièrement visée par l'invention est en premier lieu le domaine du bâtiment, en tant que vitrage antisolaire. Sans sortir du cadre de l'invention, le présent vitrage peut également être utilisé en tant que vitrage de véhicules, comme les verres latéraux, les toits-autos, les lunettes arrière. The invention relates to so-called sunscreen insulating glazing, provided with stacks of thin layers of which at least one layer is said to be functional, that is to say that it acts on solar radiation essentially by reflection and/or absorption of at least a part of the solar radiation. The application more particularly aimed at by the invention is firstly the field of building, as solar glazing. Without departing from the scope of the invention, this glazing can also be used as vehicle glazing, such as side glasses, car roofs, rear windows.
On entend donc par couche «fonctionnelle» ou encore «active», au sens de la présente demande, les couches de l'empilement qui confèrent à l'empilement l'essentiel de ses propriétés d'isolation thermique. Le plus souvent les empilements de couches minces équipant le vitrage lui confèrent des propriétés sensiblement améliorées d'isolation très essentiellement, voire exclusivement, grâce aux propriétés intrinsèques desdites couches actives. Lesdites couches agissent sur le flux de rayonnement, en particulier infrarouge, traversant ledit vitrage, par opposition aux autres couches, généralement en matériau diélectrique et ayant le plus souvent principalement pour fonction une protection chimique ou mécanique desdites couches fonctionnelles. “Functional” or even “active” layer is therefore understood, within the meaning of the present application, to mean the layers of the stack which give the stack most of its thermal insulation properties. Most often, the stacks of thin layers fitted to the glazing give it substantially improved insulation properties very essentially, or even exclusively, thanks to the intrinsic properties of said active layers. Said layers act on the flow of radiation, in particular infrared, passing through said glazing, as opposed to the other layers, generally made of material dielectric and most often mainly having the function of chemical or mechanical protection of said functional layers.
Comme indiqué précédemment, de tels vitrages munis d'empilements incorporant des couches minces fonctionnelles agissent sur le rayonnement solaire incident soit par l'absorption d'une partie dudit rayonnement incident par la ou les couches fonctionnelles, soit par réflexion par ces mêmes couches, la réflexion pouvant porter sur une portion du spectre solaire, par exemple dans le domaine de l'infrarouge et/ou dans le domaine du visible. Le plus souvent lesdites couches agissent sur le rayonnement solaire incident à la fois par réflexion et par absorption. As indicated previously, such glazing provided with stacks incorporating thin functional layers act on the incident solar radiation either by the absorption of part of the said incident radiation by the functional layer or layers, or by reflection by these same layers, the reflection which may relate to a portion of the solar spectrum, for example in the infrared range and/or in the visible range. Most often said layers act on the incident solar radiation both by reflection and by absorption.
Par antisolaire, on entend ainsi au sens de la présente invention la faculté du vitrage de limiter le flux énergétique, en particulier, mais pas seulement, le rayonnement Infrarouge solaire (1RS), le traversant depuis l'extérieur vers l'intérieur de l'habitation. Dans une autre application comme l'automobile, il peut être également recherché de limiter la quantité de chaleur entrant dans l'habitacle du véhicule, c'est-à-dire limiter la transmission énergétique du rayonnement solaire au travers du vitrage, celui-ci pouvant être un toit, une lunette arrière ou des vitres latérales. By anti-sun, is thus meant within the meaning of the present invention the ability of the glazing to limit the energy flow, in particular, but not only, the solar infrared radiation (1RS), crossing it from the outside towards the inside of the dwelling. In another application such as the automobile, it may also be desired to limit the quantity of heat entering the passenger compartment of the vehicle, that is to say to limit the energy transmission of solar radiation through the glazing, the latter which can be a roof, rear window or side windows.
Les revêtements sont de façon classique déposés par des techniques de dépôt du type pulvérisation sous vide assistée par champ magnétique d'une cathode du matériau ou d'un précurseur du matériau à déposer, souvent appelée technique de pulvérisation magnétron dans le domaine. Une telle technique est aujourd'hui classiquement utilisée notamment lorsque le revêtement à déposer est constitué d'un empilement plus complexe de couches successives d'épaisseurs de quelques nanomètres à quelques dizaines de nanomètres. Les empilements les plus performants commercialisés à l'heure actuelle pour résoudre les problèmes précédents et déposés par les techniques de pulvérisation magnétron incorporent une couche métallique à base d'argent fonctionnant essentiellement sur le mode de la réflexion d'une majeure partie du rayonnement IR (infrarouge) incident. Ces empilements sont ainsi utilisés principalement en tant que vitrages du type bas émissifs (ou low-e en anglais) pour l'isolation thermique des bâtiments. Ils peuvent également être utilisés en tant qu'antisolaire pour leur capacité à refléter la partie infrarouge du rayonnement solaire. Ces couches sont cependant très sensibles à l'humidité et sont donc exclusivement utilisées dans des doubles vitrages, en face 2 ou 3 de celui-ci, pour être protégées de l'humidité. Les empilements selon l'invention ne comprennent pas de telles couches à base d'argent, d'or, de platine ou encore de cuivre ou même de nickel. D'une manière plus générale, les articles selon l'invention ne contiennent pas de tels métaux, ou alors en quantités très négligeables, notamment sous formes d'impuretés inévitables. The coatings are conventionally deposited by deposition techniques of the magnetic field-assisted vacuum sputtering type of a cathode of the material or of a precursor of the material to be deposited, often referred to as a magnetron sputtering technique in the field. Such a technique is now conventionally used in particular when the coating to be deposited consists of a more complex stack of successive layers with thicknesses of a few nanometers to a few tens of nanometers. The most efficient stacks currently marketed to solve the above problems and deposited by magnetron sputtering techniques incorporate a silver-based metal layer operating essentially in the mode of reflection of a major part of the IR radiation ( infrared) incident. These stacks are thus mainly used as glazing of the low-emissivity (or low-e) type for the thermal insulation of buildings. They can also be used as sunscreen for their ability to reflect the infrared part of solar radiation. These layers are however very sensitive to humidity and are therefore exclusively used in double glazing, facing 2 or 3 thereof, to be protected from humidity. The stacks according to the invention do not include such layers based on silver, gold, platinum or even copper or even nickel. More generally, the articles according to the invention do not contain such metals, or else in very negligible quantities, in particular in the form of unavoidable impurities.
D'autres vitrages incorporant des empilements comprenant des couches à fonction antisolaire ont également été reportées dans le domaine, basées cette fois sur des couches fonctionnelles à base de niobium, éventuellement partiellement ou totalement nitrurées, tel que décrit par exemple dans les demandes W001/21540, WO2009/112759 ou encore W02009/150343, auxquels on se référera pour plus de détails. Other glazing incorporating stacks comprising layers with an antisolar function have also been reported in the field, based this time on functional layers based on niobium, optionally partially or totally nitrided, as described for example in applications W001/21540 , WO2009/112759 or even W02009/150343, to which reference should be made for more details.
Plus récemment on a également proposé des empilements dont la couche fonctionnelle est à base de nitrure de titane. On pourra par exemple se référer dans ce cas aux demandes WO2018/129135 ou encore W02019/002737. More recently, stacks have also been proposed whose functional layer is based on titanium nitride. Reference may for example be made in this case to applications WO2018/129135 or even W02019/002737.
Les couches fonctionnelles à base de niobium, de nitrure de niobium ou encore de nitrure de titane mentionnées précédemment permettent à la fois de réfléchir et d'absorber une portion sensible du rayonnement infrarouge issu du rayonnement solaire sans toutefois rendre le vitrage opaque, lorsque leur épaisseur est limitée à des valeurs inférieures à 50 nm, en particulier inférieures à 40 nm ou même inférieures à 30 nm. Une telle propriété confère à l'empilement dans lequel elle est comprise des propriétés de protection solaire, ainsi qu'au vitrage revêtu d'un tel empilement. The functional layers based on niobium, niobium nitride or even titanium nitride mentioned above make it possible both to reflect and absorb a significant portion of infrared radiation from solar radiation without however making the glazing opaque, when their thickness is limited to values below 50 nm, in particular below 40 nm or even below 30 nm. Such a property gives the stack in which it is included solar protection properties, as well as the glazing coated with such a stack.
Selon une autre réalisation connue, la couche fonctionnelle est une couche comprenant de l'oxyde de titane. De telles réalisations sont notamment décrites dans les publications EP1919838, EP3122694 ou encore W02020/002845. According to another known embodiment, the functional layer is a layer comprising titanium oxide. Such embodiments are in particular described in the publications EP1919838, EP3122694 or even W02020/002845.
Selon une autre réalisation connue, la couche fonctionnelle est une couche comprenant un alliage de chrome et de nickel, l'alliage étant éventuellement nitruré. De telles réalisations sont notamment décrites dans les publications WO2012/096771, EP779255 ou encore EP747329. According to another known embodiment, the functional layer is a layer comprising an alloy of chromium and nickel, the alloy optionally being nitrided. Such embodiments are in particular described in the publications WO2012/096771, EP779255 or even EP747329.
La présente invention se rapporte à de tels empilements et articles verriers.The present invention relates to such stacks and glass articles.
Dans de tels articles, la résistance aux rayures et à l'usure est une question d'importance. Le verre sodo-calcique non recouvert, par exemple, est bien connu pour ses faibles propriétés de résistance aux rayures. Les différents revêtements prévus sur les vitrages, par exemple ceux utilisés pour conférer des fonctionnalités spécifiques doivent également être protégés de la rayure et de l'usure. In such articles, scratch and wear resistance is a matter of importance. Uncoated soda-lime glass, for example, is well known for its poor scratch resistance properties. The various coatings provided on the glazing, for example those used to confer specific functionalities, must also be protected from scratching and wear.
L'amélioration de la résistance aux rayures des vitrages fonctionnalisés est généralement traitée par l'application d'une couche de revêtement de protection. Cette couche protectrice, aussi appelée "overcoat", est généralement épaisse de quelques nanomètres à quelques dizaines de nanomètres. Elle peut être déposée sur l'empilement fonctionnel à l'aide de procédés classiques de dépôt en couche mince, tels que le procédé de pulvérisation cathodique déjà évoqué, en particulier renforcé par un champ magnétique, appelé dans ce cas procédé "magnétron". Improving the scratch resistance of functionalized glazing is generally treated by applying a layer of protective coating. This protective layer, also called "overcoat", is generally thick from a few nanometers to a few tens of nanometers. It can be dropped onto the functional stack using conventional thin-layer deposition processes, such as the cathodic sputtering process already mentioned, in particular reinforced by a magnetic field, called in this case “magnetron” process.
Les surcouches DLC (Diamond like carbon) sont par exemple déjà décrites comme augmentant la résistance aux rayures des vitrages. Cependant, le principal inconvénient des DLC est leur instabilité thermique intrinsèque. Pour cette raison, les revêtements DLC ne conviennent pas en soi pour les applications nécessitant une exposition à des températures élevées telles que le recuit, la trempe ou encore le bombage. Des couches sacrificielles supplémentaires doivent être prévues pour protéger le revêtement DLC pendant les traitements thermiques (WO 2005/021454, WO 2019/020485), ce qui rend leur utilisation fastidieuse. DLC (Diamond like carbon) overcoats, for example, have already been described as increasing the scratch resistance of glazing. However, the main disadvantage of DLCs is their intrinsic thermal instability. For this reason, DLC coatings are not suitable per se for applications requiring exposure to high temperatures such as annealing, quenching or even bending. Additional sacrificial layers must be provided to protect the DLC coating during heat treatments (WO 2005/021454, WO 2019/020485), which makes their use tedious.
Des couches externes à base d'oxydes de métaux de transition, telles que les couches à base d'oxyde de zirconium ou les couches à base de titane et d'oxyde de zirconium, ont également été utilisées comme couches de protection (WO 2016/097557). Ces surcouches peuvent résister aux traitements thermiques et améliorer modérément la résistance aux rayures des systèmes de vitrage, mais elles n'atteignent généralement pas les performances anti-rayures des revêtements DLC. External layers based on transition metal oxides, such as layers based on zirconium oxide or layers based on titanium and zirconium oxide, have also been used as protective layers (WO 2016/ 097557). These overcoats can withstand heat treatments and moderately improve the scratch resistance of glazing systems, but they generally do not achieve the scratch resistance performance of DLC coatings.
La publication WO2021/063921 décrit une couche de protection externe oxyde d'yttrium de 5 nm est déposée au-dessus de l'empilement. Cette couche présente une très bonne résistance mécanique mais sa résistance hydrolytique peut encore être améliorée. Publication WO2021/063921 describes an external yttrium oxide protective layer of 5 nm is deposited above the stack. This layer has very good mechanical resistance but its hydrolytic resistance can still be improved.
La demande de brevet EP2314451 décrit une couche de protection externe en YZrOx. Il est donc toujours nécessaire de disposer d'un revêtement protecteur capable d'améliorer la résistance à l'usure et à la corrosion à un niveau sensiblement équivalent ou s'approchant de celui des revêtements DLC tout en étant capable de résister aux traitements thermiques. Le demandeur a constaté que les couches diélectriques de protection à base d'un composé comprenant de l'yttrium, et en particulier à base d'oxyde d'yttrium et d'un autre élément choisi parmi le titane ou l'hafnium, en plus de répondre à ces exigences, offrent également une bonne transparence, ce qui est particulièrement avantageux pour la protection d'empilement de couches de vitrage. Patent application EP2314451 describes an external YZrOx protective layer. It is therefore always necessary to have a protective coating capable of improving the resistance to wear and corrosion to a level substantially equivalent or approaching that of DLC coatings while being capable of withstanding heat treatments. The applicant has observed that the protective dielectric layers based on a compound comprising yttrium, and in particular based on yttrium oxide and another element chosen from titanium or hafnium, in addition to meet these requirements, also offer good transparency, which is particularly advantageous for the protection of stacks of layers of glazing.
En conséquence, la présente invention concerne un article à propriétés antisolaires comprenant : un substrat en verre, un empilement de couches déposé sur ledit substrat, ledit empilement comprenant au moins une couche fonctionnelle absorbant et/ou réfléchissant une partie du rayonnement solaire et une couche de revêtement dudit empilement, dans lequel ladite couche de revêtement est une couche d'oxyde comprenant de l'yttrium, et au moins un élément choisi parmi l'hafnium et le titane. Consequently, the present invention relates to an article with solar protection properties comprising: a glass substrate, a stack of layers deposited on said substrate, said stack comprising at least one functional layer absorbing and/or reflecting part of the solar radiation and a layer of coating of said stack, in which said coating layer is an oxide layer comprising yttrium, and at least one element chosen from hafnium and titanium.
La couche de revêtement est donc constituée d'une couche d'oxyde diélectrique comprenant de l'yttrium Y et au moins un élément choisi parmi le titane Ti ou l'Hafnium Hf. Au sens de la présente invention, lesdits éléments (Y et Hf et/ou Ti) sont donc présents dans la couche autrement que sous forme d'impuretés inévitables. Par opposition aux couches fonctionnelles également présentes dans les présents empilements, l'expression "couche diélectrique" désigne par exemple une couche qui ne présente pas un caractère métallique. Cette expression désigne notamment une couche constituée d'un matériau ayant un rapport n/k (n = indice de réfraction ; k = coefficient d'extinction) sur toute la plage visible (de 380 nm à 780 nm) qui est égal ou supérieur à 5. De tels matériaux, dans leur forme massive et dénuée d'impuretés présente ainsi une forte résistivité, notamment une résistivité supérieure à 1O10 ohms. mètres (Q.m) à 25°C. The coating layer therefore consists of a layer of dielectric oxide comprising yttrium Y and at least one element chosen from titanium Ti or hafnium Hf. Within the meaning of the present invention, said elements (Y and Hf and/or Ti) are therefore present in the layer other than in the form of unavoidable impurities. As opposed to the functional layers also present in the present stacks, the expression “dielectric layer” designates for example a layer which does not have a metallic character. This expression designates in particular a layer made up of a material having an n/k ratio (n = refractive index; k = extinction coefficient) over the entire visible range (from 380 nm to 780 nm) which is equal to or greater than 5. Such materials, in their massive form and devoid of impurities thus have a high resistivity, in particular a resistivity greater than 10 10 ohms. meters (Qm) at 25°C.
Selon d'autres modes encore de réalisations avantageux de la présente invention, qui peuvent le cas échéant être combinées entre eux : According to still other advantageous embodiments of the present invention, which can, if necessary, be combined with each other:
- Ladite couche de revêtement comprenant au moins 10 % atomique d'yttrium, sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche, de préférence entre 20 et 55% atomique d'yttrium ou même entre 33% et 49% d'yttrium sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche. - Said coating layer comprising at least 10 atomic % of yttrium, on the basis of all the yttrium, titanium and hafnium atoms present in said layer, preferably between 20 and 55 atomic % of yttrium or even between 33% and 49% yttrium based on all the yttrium, titanium and hafnium atoms present in said layer.
- La couche de revêtement comprend au 25% atomique d'au moins un élément choisi parmi l'hafnium et le titane, sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche, de préférence plus de 50% atomique d'au moins un élément choisi parmi l'hafnium et le titane, notamment entre 51 et 90% atomique d'au moins un élément choisi parmi l'hafnium et le titane, sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche.- The coating layer comprises at least 25 atomic % of at least one element chosen from hafnium and titanium, on the basis of all the yttrium, titanium and hafnium atoms present in said layer, of preferably more than 50 atomic % of at least one element chosen from hafnium and titanium, in particular between 51 and 90 atomic % of at least one element chosen from hafnium and titanium, on the basis of the whole yttrium, titanium and hafnium atoms present in said layer.
- Le ratio atomique (Hf+Ti)/Y dans ladite couche de revêtement est supérieur à 1. - The atomic ratio (Hf+Ti)/Y in said coating layer is greater than 1.
- La couche fonctionnelle comprend un matériau choisi parmi le niobium métallique, le nitrure de niobium, le nitrure de titane ou l'oxyde de titane, I' ITO (oxyde d'étain et d'indium), une couche comprenant du chrome, en particulier un alliage de nickel et de chrome éventuellement nitruré (souvent appelée NiCr ou NiCrN dans le domaine technique) ou une couche constituée essentiellement de chrome. - The functional layer comprises a material chosen from metallic niobium, niobium nitride, titanium nitride or titanium oxide, ITO (indium tin oxide), a layer comprising chromium, in particular an alloy of nickel and chromium optionally nitrided (often called NiCr or NiCrN in the technical field) or a layer consisting essentially of chromium.
- La couche de revêtement comprend moins de 5% atomique de zirconium, de préférence moins de 1% atomique de zirconium, sur la base de l'ensemble des atomes d'yttrium, de titane, de zirconium et d'hafnium présents dans ladite couche, et de préférence encore est exempte de zirconium. - The coating layer comprises less than 5 atomic % of zirconium, preferably less than 1 atomic % of zirconium, on the basis of all the atoms of yttrium, titanium, zirconium and hafnium present in said layer , and more preferably is free of zirconium.
- La couche de revêtement est un oxyde d'yttrium et de titane (aux impuretés inévitables près). - The coating layer is an oxide of yttrium and titanium (except for the inevitable impurities).
- La couche de revêtement est un oxyde d'yttrium et d'hafnium (aux impuretés inévitables près). - The coating layer is an oxide of yttrium and hafnium (except for inevitable impurities).
- La couche de revêtement est un oxyde d'yttrium, de titane et d'hafnium (aux impuretés inévitables près). - The coating layer is an oxide of yttrium, titanium and hafnium (except for inevitable impurities).
- La couche de revêtement a une épaisseur comprise entre 1 et 100 nm, de préférence comprise entre 1 et 20 nm et de manière très préférée comprise entre 2 et 10 nm, voire entre 3 et 8 nm. - The coating layer has a thickness between 1 and 100 nm, preferably between 1 and 20 nm and very preferably between 2 and 10 nm, or even between 3 and 8 nm.
- La couche de revêtement constitue la couche la plus externe de la succession de couches recouvrant la surface de verre. - The coating layer constitutes the outermost layer of the succession of layers covering the glass surface.
- la ou les couches fonctionnelle(s) présente(nt) (chacune) une épaisseur physique comprise entre 2 et 50 nm, de préférence entre 5 et 30 nm.- the functional layer(s) present(s) (each) a physical thickness of between 2 and 50 nm, preferably between 5 and 30 nm.
- L'empilement comprend, au-dessus et/ou en dessous de la couche ou des couches fonctionnelles des couches à base de nitrure de silicium, présentant de préférence une épaisseur physique comprise entre 1 et 100 nm, de préférence encore entre 5 et 50 nm. - L'empilement est constitué uniquement de la ou les couches fonctionnelles et de couches diélectriques, lesdits couches diélectriques étant de préférence choisies parmi les oxydes de silicium, de titane, de zirconium ou leurs mélanges, d'étain ou les nitrures de silicium, d'aluminium ou d'un mélange de silicium et d'aluminium. - The stack comprises, above and/or below the functional layer or layers, layers based on silicon nitride, preferably having a physical thickness of between 1 and 100 nm, more preferably between 5 and 50 n. - The stack consists solely of the functional layer(s) and of dielectric layers, said dielectric layers preferably being chosen from silicon, titanium, zirconium oxides or mixtures thereof, tin or silicon nitrides, aluminum or a mixture of silicon and aluminum.
- L'empilement fonctionnel comprend ou est constitué par la succession d'au moins les couches suivantes, à partir de la surface du substrat verrier : - The functional stack comprises or is constituted by the succession of at least the following layers, from the surface of the glass substrate:
- une sous-couche comprenant du nitrure de silicium, de préférence d'épaisseur comprise entre 1 nm et 100 nm, - an underlayer comprising silicon nitride, preferably with a thickness of between 1 nm and 100 nm,
- une couche fonctionnelle de préférence d'épaisseur physique comprise entre 2 et 50 nm, de préférence entre 5 et 30 nm, la couche fonctionnelle comprenant un matériau choisi parmi le niobium métallique, le nitrure de niobium, le nitrure de titane ou l'oxyde de titane, un alliage d'au moins les éléments Ni et Cr, éventuellement nitruré, - a functional layer preferably with a physical thickness between 2 and 50 nm, preferably between 5 and 30 nm, the functional layer comprising a material chosen from metallic niobium, niobium nitride, titanium nitride or oxide titanium, an alloy of at least the elements Ni and Cr, optionally nitrided,
- une surcouche comprenant du nitrure de silicium, de préférence d'épaisseur comprise entre 1 nm et 100 nm, - an overlayer comprising silicon nitride, preferably with a thickness between 1 nm and 100 nm,
- éventuellement une couche de protection contre les rayures, de préférence choisi parmi les oxyde de Ti et/ou Zr, de préférence d'épaisseur comprise entre 1 nm et 10 nm. - optionally a protective layer against scratches, preferably chosen from Ti and/or Zr oxides, preferably with a thickness of between 1 nm and 10 nm.
L'empilement ne comprend pas de couches à base d'argent, d'or, de platine ou de cuivre. The stack does not include layers based on silver, gold, platinum or copper.
- Ledit article est trempé. - Said article is soaked.
La couche de revêtement tel que précédemment décrite, peut, selon un autre mode de réalisation, comprendre éventuellement un autre élément minoritaire autre que 0, Y, Hf et Ti, généralement dans une proportion comprise entre 0,5 et 10 % de l'ensemble des éléments présents dans la couche autre que l'oxygène, par exemple en une quantité comprise entre 1 et 5% de l'ensemble des éléments présents dans la couche autre que l'oxygène. Le dopant peut notamment être choisi parmi les métaux de transition et les lanthanides. The coating layer as previously described, can, according to another embodiment, optionally comprise another minority element other than 0, Y, Hf and Ti, generally in a proportion of between 0.5 and 10% of all the elements present in the layer other than oxygen, for example in a quantity of between 1 and 5% of all the elements present in the layer other than oxygen. The dopant can in particular be chosen from transition metals and lanthanides.
Dans une réalisation particulière cependant, la couche de revêtement est exempte de zirconium, ou comprend une quantité négligeable de zirconium, telle que moins de 1% atomique de zirconium. In a particular embodiment, however, the coating layer is free of zirconium, or comprises a negligible amount of zirconium, such as less than 1 atomic % zirconium.
Selon l'invention, l'oxygène représente de préférence plus de 50% atomique, voire plus de 60% atomique des atomes présents dans la couche de revêtement.According to the invention, the oxygen preferably represents more than 50 atomic %, or even more than 60 atomic % of the atoms present in the coating layer.
La couche diélectrique à base d'oxyde d'yttrium a typiquement un indice de réfraction, mesuré à 550 nm, compris entre 1,7 à 2,3, notamment de 1,8 à 2,2.The dielectric layer based on yttrium oxide typically has a refractive index, measured at 550 nm, of between 1.7 to 2.3, in particular from 1.8 to 2.2.
Selon l'invention lorsque la ou les couche(s) fonctionnelles comprennent du niobium métallique ou du nitrure de niobium, elle(s) peut(vent) comprendre plus de 50% atomique de niobium sur la base des éléments présents dans ladite couche (autres que l'azote pour le nitrure de niobium), voire plus de 75% atomique de niobium et de préférence plus de 80%, voire plus de 90% de niobium, sur la base des éléments présents dans ladite couche (autres que l'azote pour le nitrure de niobium). Selon un mode de réalisation particulier de l'invention, la ou les couche(s) à base de niobium métallique ou à base de nitrure de niobium ne comprend que l'élément niobium, aux impuretés inévitables près (autres que l'azote pour le nitrure de niobium). According to the invention, when the functional layer(s) comprise metallic niobium or niobium nitride, it(they) may comprise more than 50 atomic % of niobium on the basis of the elements present in said layer (other than nitrogen for niobium nitride), or even more than 75 atomic % of niobium and preferably more than 80%, even more than 90% of niobium, on the basis of the elements present in said layer (other than nitrogen for niobium nitride). According to a particular embodiment of the invention, the layer(s) based on metallic niobium or based on niobium nitride only comprises the element niobium, apart from the inevitable impurities (other than nitrogen for the niobium nitride).
Sans sortir du cadre de l'invention néanmoins, d'autres éléments comme le zirconium notamment, peuvent également être présents dans de telles couches, de préférence dans une quantité minoritaire par rapport au niobium, par exemple selon une proportion comprise entre 1 et 30 % des atomes de niobium présents dans la couche, ou encore en une proportion comprise entre 5 et 20% des atomes de niobium présents dans la couche. Without departing from the scope of the invention, however, other elements such as zirconium in particular, can also be present in such layers, preferably in a minor quantity compared to niobium, for example in a proportion of between 1 and 30% niobium atoms present in the layer, or else in a proportion of between 5 and 20% of the niobium atoms present in the layer.
Selon l'invention la ou les couche(s) à base de niobium métallique ou à base de nitrure de niobium sont en principe exempte d'oxygène, qui peut néanmoins être présent sous forme d'impuretés inévitables dans la couche, notamment à la suite d'une trempe, mais dans une proportion très inférieure au niobium et à l'azote éventuellement présent. Par exemple le ratio atomique O/Nb dans les couches fonctionnelles selon l'invention est inférieur à 0,1, voire inférieur à 0,05. Selon un autre mode possible de réalisation de la présente invention, la (ou les) couche(s) fonctionnelle(s) comprenne(nt) avantageusement du nitrure de titane. According to the invention, the layer(s) based on metallic niobium or based on niobium nitride are in principle free of oxygen, which can nevertheless be present in the form of unavoidable impurities in the layer, in particular following of quenching, but in a much lower proportion to the niobium and any nitrogen present. For example, the O/Nb atomic ratio in the functional layers according to the invention is less than 0.1, or even less than 0.05. According to another possible embodiment of the present invention, the functional layer(s) advantageously comprise(s) titanium nitride.
Des couches à base de titane selon l'invention comprennent par exemple plus de 50% poids de nitrure de titane, de préférence plus de 80% ou même plus de 90% poids de nitrure de titane. De préférence encore de telles sont constituées essentiellement de nitrure de titane. Layers based on titanium according to the invention comprise for example more than 50% by weight of titanium nitride, preferably more than 80% or even more than 90% by weight of titanium nitride. More preferably such consist essentially of titanium nitride.
Le nitrure de titane selon l'invention n'est pas nécessairement stoechiométrique (ratio atomique Ti/N de 1) mais peut être sur- ou sous-stœchiométrique. Selon un mode avantageux, le ratio N/Ti est compris entre 1 et 1,2, de préférence encore est supérieur à 1. Egalement, le nitrure de titane selon l'invention peut comprendre une quantité mineure d'oxygène, par exemple entre 1 et 10% molaire d'oxygène, notamment entre 1 et 5% molaire d'oxygène. The titanium nitride according to the invention is not necessarily stoichiometric (Ti/N atomic ratio of 1) but can be over- or under-stoichiometric. According to an advantageous mode, the N/Ti ratio is between 1 and 1.2, more preferably is greater than 1. Also, the titanium nitride according to the invention can comprise a minor quantity of oxygen, for example between 1 and 10% molar oxygen, in particular between 1 and 5% molar oxygen.
Selon un mode possible, les couches en nitrure de titane selon l'invention peuvent par exemple répondre à la formule générale TiNxOy, dans laquelle 1,00 < x < 1,20 et dans laquelle 0,01 < y < 0,10. According to one possible mode, the titanium nitride layers according to the invention can for example correspond to the general formula TiN x O y , in which 1.00 <x <1.20 and in which 0.01 <y <0, 10.
Selon un autre mode possible de réalisation de la présente invention, la (ou les) couche(s) fonctionnelle(s) comprenne(nt) avantageusement de l'oxyde de titane. Sans sortir du cadre de l'invention néanmoins, d'autres éléments, de préférence le silicium ou le zirconium notamment, peuvent également être présents dans de telles couches, mais dans une quantité minoritaire par rapport au titane, par exemple selon une proportion comprise entre 1 et 30 % des atomes de titane présents dans la couche, ou encore en une proportion comprise entre 5 et 20% des atomes de titane présents dans la couche. According to another possible embodiment of the present invention, the functional layer(s) advantageously comprise(s) oxide of titanium. Without departing from the scope of the invention, however, other elements, preferably silicon or zirconium in particular, may also be present in such layers, but in a minor amount compared to titanium, for example in a proportion of between 1 and 30% of the titanium atoms present in the layer, or else in a proportion of between 5 and 20% of the titanium atoms present in the layer.
Selon un autre mode possible de réalisation de la présente invention, la (ou les) couche(s) fonctionnelle(s) comprenne(nt) avantageusement et de préférence sont constituées essentiellement d'un alliage d'au moins le nickel et le chrome ou d'un alliage de nickel et de chrome, ledit alliage pouvant être éventuellement être nitruré, comme décrit dans les publications WO2012/096771, EP779255 ou encore EP747329. According to another possible embodiment of the present invention, the functional layer(s) advantageously and preferably consist essentially of an alloy of at least nickel and chromium or of an alloy of nickel and chromium, said alloy possibly being nitrided, as described in the publications WO2012/096771, EP779255 or even EP747329.
L'invention porte également sur un procédé de fabrication d'un article revêtu tel que défini précédemment, ledit procédé comprenant la fourniture d'un substrat en verre, le dépôt d'un empilement de couches sur ledit substrat; ledit empilement comprenant au moins une couche fonctionnelle telle que décrite précédemment, et le dépôt d'une couche de revêtement au-dessus dudit empilement, dans lequel la couche de revêtement est telle que décrite précédemment. The invention also relates to a method for manufacturing a coated article as defined above, said method comprising providing a glass substrate, depositing a stack of layers on said substrate; said stack comprising at least one functional layer as described above, and the deposition of a coating layer on top of said stack, in which the coating layer is as described above.
Enfin l'invention porte sur un vitrage monolithique pour bâtiment, comprenant un article tel que précédemment décrit. Finally, the invention relates to a monolithic glazing for a building, comprising an article as previously described.
Le support est de préférence selon l'invention une feuille de verre. Il est de préférence transparent, incolore (c'est alors un verre clair ou extra-clair) ou coloré, par exemple bleu, vert, gris ou bronze. L'épaisseur du support varie généralement entre 0,1 mm et 19 mm, de préférence entre 0,5 et 9 mm, en particulier entre 2 et 8 mm, et même entre 4 et 6 mm. Le support peut être plat ou bombé. The support is preferably according to the invention a sheet of glass. It is preferably transparent, colorless (it is then a clear or extra-clear glass) or colored, for example blue, green, gray or bronze. The thickness of the support generally varies between 0.1 mm and 19 mm, preferably between 0.5 and 9 mm, in particular between 2 and 8 mm, and even between 4 and 6 mm. The support can be flat or curved.
Le verre est de préférence du type silico-sodo-calcique mais il peut aussi être du type borosilicate ou alumino-borosilicate. Le substrat en verre est de préférence du type verre flotté, c'est-à-dire susceptible d'avoir été obtenu par un procédé qui consiste à verser le verre fondu sur un bain d'étain fondu (bain "float"). Le substrat de verre peut également être obtenu par laminage entre deux rouleaux, une technique qui permet notamment d'imprimer des motifs à la surface du verre. Le substrat de verre peut être en verre trempé. The glass is preferably of the silico-sodo-lime type but it can also be of the borosilicate or alumino-borosilicate type. The glass substrate is preferably of the float glass type, that is to say likely to have been obtained by a process which consists in pouring the molten glass onto a bath of molten tin (“float” bath). The glass substrate can also be obtained by rolling between two rollers, a technique which notably makes it possible to print patterns on the surface of the glass. The glass substrate may be tempered glass.
Par "verre clair", on entend un verre silico-sodo-calcique obtenu par procédé float qui, lorsqu'il n'est pas revêtu de couches, présente une transmission lumineuse de l'ordre de 90%, une réflexion lumineuse de l'ordre de 8% et une transmission énergétique de l'ordre de 87%, pour une épaisseur de 4 mm. Les transmissions et réflexions de lumière et d'énergie sont définies par la norme NF EN 410. Les verres clairs typiques sont, par exemple, vendus sous le nom SGG PlaniClear par Saint-Gobain Glass France ou sous le nom Planibel Clair par AGC Flat Glass Europe. Ces substrats sont traditionnellement utilisés dans la fabrication de vitrages à faible émissivité. By "clear glass" is meant a silico-soda-lime glass obtained by the float process which, when it is not coated with layers, has a light transmission of the order of 90%, a light reflection of the about 8% and an energy transmission of about 87%, for a thickness of 4 mm. The transmissions and reflections of light and energy are defined by standard NF EN 410. Typical clear glasses are, for example, sold under the name SGG PlaniClear by Saint-Gobain Glass France or under the name Planibel Clair by AGC Flat Glass Europe. These substrates are traditionally used in the manufacture of low-emissivity glazing.
Dans le contexte de la présente invention, les termes "au-dessous", et "au- dessus", associés à la position de deux éléments A et B (par exemple une couche, mais aussi un revêtement ou un substrat) n'excluent pas la présence d'autres éléments entre lesdits éléments A et B. En particulier, lorsqu'ils sont liés à la position d'une couche par rapport à une autre, cela signifie que la première couche est plus proche du substrat que l'autre. Au contraire, un élément A "en contact direct" avec un élément B signifie qu'aucun autre élément n'est positionné entre ceux-ci. Il en va de même pour les expressions "directement sur" et "directement sous". Il est donc entendu que, sauf indication contraire, d'autres couches peuvent être insérées entre chacun d'eux. In the context of the present invention, the terms "below" and "above", associated with the position of two elements A and B (for example a layer, but also a coating or a substrate) do not exclude not the presence of other elements between said elements A and B. In particular, when related to the position of one layer relative to another, this means that the first layer is closer to the substrate than the other . On the contrary, an element A "in direct contact" with an element B means that no other element is positioned between them. The same goes for the expressions "directly on" and "directly under". It is therefore understood that, unless otherwise indicated, other layers can be inserted between each of them.
De même les termes « sous-couche » et « surcouche » font référence à la position relative d'une couche par rapport à une autre dans l'empilement, la surface du substrat de verre étant prise comme référence. Likewise, the terms “underlayer” and “overlayer” refer to the relative position of one layer with respect to another in the stack, the surface of the glass substrate being taken as a reference.
La couche de revêtement a généralement une épaisseur comprise entre 1 et 50 nm, de préférence entre 2 et 20 nm, et préférentiellement entre 3 et 8 nm. L'empilement fonctionnel est présent entre le substrat et la couche de revêtement. Dans tous les cas, la couche de revêtement est avantageusement la couche la plus extérieure, c'est-à-dire la couche en contact direct avec l'atmosphère, telle que disposée sur le support. The coating layer generally has a thickness comprised between 1 and 50 nm, preferably between 2 and 20 nm, and preferentially between 3 and 8 nm. The functional stack is present between the substrate and the coating layer. In all cases, the coating layer is advantageously the outermost layer, that is to say the layer in direct contact with the atmosphere, as placed on the support.
La couche de revêtement peut être déposée sur le substrat par pulvérisation cathodique, notamment par le procédé de pulvérisation cathodique assistée par champ magnétique (procédé "magnétron"). Toutes les couches, y compris celles de l'empilement fonctionnel et la couche du revêtement protecteur sont avantageusement déposées par pulvérisation cathodique, notamment au sein d'une même unité de dépôt. The coating layer can be deposited on the substrate by cathode sputtering, in particular by the magnetic field-assisted cathode sputtering process (“magnetron” process). All the layers, including those of the functional stack and the layer of the protective coating are advantageously deposited by sputtering, in particular within the same deposition unit.
La couche de revêtement selon la présente invention peut résister à un traitement thermique. Le procédé de la présente invention peut donc inclure une étape de traitement thermique après le dépôt de la couche de revêtement. L'étape du traitement thermique peut être une étape de trempe pour renforcer le substrat, en particulier dans le cas d'un substrat en verre. L'étape de trempe est généralement effectuée à des températures de 550 à 750°C pendant quelques minutes, par exemple de 3 à 30 minutes suivi d'un refroidissement rapide. La présente invention concerne donc également un vitrage comprenant un article revêtu tel que décrit ci-dessus. Le vitrage peut être de préférence un simple vitrage (monolithique), mais également un vitrage multiple (notamment double ou triple), c'est-à-dire constitué de plusieurs feuilles de verre créant un espace rempli de gaz, un vitrage bombé et/ou feuilleté. Le vitrage peut également être trempé et/ou renforcé. La couche de revêtement selon la présente invention est généralement positionnée sur les faces extérieures du vitrage (soit vers l'intérieur et/ou vers l'extérieur). Elle n'est pas recouverte par d'autres couches et est au contact de l'atmosphère extérieure. The coating layer according to the present invention can withstand heat treatment. The method of the present invention can therefore include a heat treatment step after the deposition of the coating layer. The heat treatment step can be a tempering step to reinforce the substrate, in particular in the case of a glass substrate. The quenching step is generally carried out at temperatures of 550 to 750° C. for a few minutes, for example 3 to 30 minutes, followed by rapid cooling. The present invention therefore also relates to a glazing comprising a coated article as described above. The glazing may preferably be single glazing (monolithic), but also multiple glazing (in particular double or triple), that is to say consisting of several sheets of glass creating a space filled with gas, curved glazing and/or or laminated. The glazing can also be tempered and/or reinforced. The coating layer according to the present invention is generally positioned on the outer faces of the glazing (either towards the inside and/or towards the outside). It is not covered by other layers and is in contact with the outside atmosphere.
La présente invention et ses avantages sont illustrés par les exemples non limitatifs suivants. The present invention and its advantages are illustrated by the following non-limiting examples.
Exemple 1 (comparatif) : Example 1 (comparative):
Un premier empilement de couches de référence dont la structure est donnée dans le tableau 1 qui suit est déposé sur un substrat en verre Planiclear® par pulvérisation magnétron selon les techniques bien connues, par exemple telles que décrites dans les publications précédemment citées. A first stack of reference layers, the structure of which is given in Table 1 below, is deposited on a Planiclear® glass substrate by magnetron sputtering according to well-known techniques, for example as described in the publications cited above.
Exemple 2 (comparatif) : Example 2 (comparative):
Un second empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe en TiZrOx de 5 nm est déposée au-dessus de l'empilement, conformément à l'enseignement de la demande WO 2016/097557. A second stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm TiZrOx is deposited above the stack, in accordance with the teaching of application WO 2016/097557 .
Exemple 3 (comparatif) : Example 3 (comparative):
Un troisième empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe en DLC de 10 nm est déposée au-dessus de l'empilement, conformément à l'enseignement de la demande WO 2005/021454. A third stack of layers identical to the first is deposited on a Planiclear® glass substrate but an external protective layer in DLC of 10 nm is deposited above the stack, in accordance with the teaching of application WO 2005/021454.
Exemple 4 (comparatif) : Example 4 (comparative):
Un quatrième empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe oxyde d'yttrium de 5 nm est déposée au-dessus de l'empilement. Cette couche est déposé par pulvérisation magnétron en utilisant une cible métallique plane en yttrium de 210 mmx90 mm avec une puissance de 500 W et sous une pression de 2 pbar dans une atmosphère présentant un rapport Ar/02 de 10/4, avec un débit de 28 sccm conformément à la publication WO2021/063921. A fourth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm yttrium oxide is deposited above the stack. This layer is deposited by magnetron sputtering using a flat yttrium metal target of 210 mmx90 mm with a power of 500 W and under a pressure of 2 pbar in an atmosphere having an Ar/02 ratio of 10/4, with a flow rate of 28 sccm according to publication WO2021/063921.
Exemple 5 (comparatif) : Example 5 (comparative):
Un cinquième empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe en YZrOx de 5 nm est déposée au-dessus de l'empilement, conformément à l'enseignement de la demande EP2314451. A fifth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm YZrOx is deposited above the stack, in accordance with the teaching of application EP2314451.
Exemple 6 (selon l'invention) : Example 6 (according to the invention):
Un sixième empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe en YTiOx de 5 nm est déposée au-dessus de l'empilement, conformément à l'enseignement de la présente invention. A sixth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm YTiOx is deposited above the stack, in accordance with the teaching of the present invention.
Cette couche est déposée par co-pulvérisation magnétron en utilisant dans un même compartiment deux cibles métalliques planes, l'une constituée d'yttrium métallique et l'autre de titane métallique, avec une puissance de 500W sur les deux cibles et sous une pression de 2 pbar dans une atmosphère présentant un rapport Ar/02 de 10/4, avec un débit de 28 sccm. This layer is deposited by magnetron co-sputtering using two flat metallic targets in the same compartment, one made of metallic yttrium and the other of metallic titanium, with a power of 500W on the two targets and under a pressure of 2 pbar in an atmosphere having an Ar/02 ratio of 10/4, with a flow rate of 28 sccm.
L'analyse par microsonde de Castaing (ou electron probe microanalyser EPMA) du matériau déposé par pulvérisation cathodique est donnée ci-après en pourcentage atomique : Analysis by Castaing microprobe (or EPMA electron probe microanalyzer) of the material deposited by sputtering is given below in atomic percentage:
Ti : 19%, Y : 17,5%, O : 63.5%. Ti: 19%, Y: 17.5%, O: 63.5%.
La couche de revêtement comprend donc 52% atomique de titane et 48% atomique d'yttrium, sur la base de l'ensemble des atomes d'yttrium et de titane présents dans ladite couche.
Figure imgf000018_0001
The coating layer therefore comprises 52 atomic % of titanium and 48 atomic % of yttrium, on the basis of all the yttrium and titanium atoms present in said layer.
Figure imgf000018_0001
Un septième empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe en YHfOx de 5 nm est déposée au-dessus de l'empilement, conformément à l'enseignement de la présente invention. A seventh stack of layers identical to the first is deposited on a Planiclear® glass substrate but a 5 nm YHfOx outer protective layer is deposited above the stack, in accordance with the teaching of the present invention.
Cette couche est déposée par co-pulvérisation magnétron en utilisant dans un même compartiment deux cibles métalliques planes, l'une constituée d'yttrium métallique et l'autre d'Hafnium métallique, avec une puissance de 500 W pour les deux cibles et sous une pression de 2 pbar dans une atmosphère présentant un rapport Ar/02 de 10/4, avec un débit de 28 sccm. This layer is deposited by magnetron co-sputtering using two flat metallic targets in the same compartment, one consisting of metallic yttrium and the other of metallic hafnium, with a power of 500 W for the two targets and under a pressure of 2 pbar in an atmosphere having an Ar/02 ratio of 10/4, with a flow rate of 28 sccm.
L'analyse du matériau par microsonde de Castaing déposé par pulvérisation cathodique est donnée ci-après : The analysis of the material by Castaing microprobe deposited by sputtering is given below:
Hf : 20%, Y : 16%, 0 : 64%. La couche de revêtement comprend donc 55% atomique d'hafnium et 45% atomique d'yttrium, sur la base de l'ensemble des atomes d'yttrium et d'hafnium présents dans ladite couche.
Figure imgf000019_0001
Off: 20%, Y: 16%, 0: 64%. The coating layer therefore comprises 55 atomic % hafnium and 45 atomic % yttrium, on the basis of all the yttrium and hafnium atoms present in said layer.
Figure imgf000019_0001
Un huitième empilement de couches identique au premier est déposé sur un substrat en verre Planiclear® mais une couche de protection externe en YHfOx de 5 nm d'une autre composition que l'exemple 7 qui précède est déposée au- dessus de l'empilement, conformément à l'enseignement de la présente invention. An eighth stack of layers identical to the first is deposited on a Planiclear® glass substrate but an outer protective layer of 5 nm YHfOx of a composition other than example 7 above is deposited above the stack, in accordance with the teaching of the present invention.
Cette couche est déposée par co-pulvérisation magnétron en utilisant dans un même compartiment deux cibles métalliques planes, l'une constituée d'yttrium métallique et l'autre d'Hafnium métallique, avec une puissance de 500W sur la cible d'Hafnium et de 200W sur la cible d'Yttrium, sous une pression de 2 pbar dans une atmosphère présentant un rapport Ar/02 de 10/4, avec un débit de 28 sccm. This layer is deposited by magnetron co-sputtering using two flat metallic targets in the same compartment, one made of metallic yttrium and the other of metallic Hafnium, with a power of 500 W on the Hafnium target and 200W on the Yttrium target, under a pressure of 2 pbar in an atmosphere with an Ar/02 ratio of 10/4, with a flow rate of 28 sccm.
L'analyse du matériau par microsonde de Castaing déposé par pulvérisation cathodique est donnée ci-après : The analysis of the material by Castaing microprobe deposited by sputtering is given below:
Hf : 28%, Y : 10%, O : 62%. Hf: 28%, Y: 10%, O: 62%.
La couche de revêtement comprend donc 74% atomique d'hafnium et 26% atomique d'yttrium, sur la base de l'ensemble des atomes d'yttrium et d'hafnium présents dans ladite couche. The coating layer therefore comprises 74 atomic % hafnium and 26 atomic % yttrium, on the basis of all the yttrium and hafnium atoms present in said layer.
Le tableau 1 ci-dessous reprend les différentes constitutions et épaisseurs des couches constituant les empilements testés à partir de la surface du substrat verrier. [Tableau 1]
Figure imgf000020_0001
Table 1 below shows the different constitutions and thicknesses of the layers constituting the stacks tested from the surface of the glass substrate. [Table 1]
Figure imgf000020_0001
La résistance à l'usure des empilements présents sur les vitrages des exemples 1 à 7 est mesurée de la façon suivante : Une bille d'acier inoxydable de 1 mm de diamètre est glissé plusieurs fois en avant et en arrière sur la surface de l'échantillon selon les exemples 1 à 4 avec une charge constante de 10 N. 15 passages sont effectués sur une distance de 10 mm environ. Le coefficient de frottement moyen (p) est enregistré pour chaque passage. Pour les surfaces résistantes à l'usure, le coefficient de frottement est censé être faible et constant. The wear resistance of the stacks present on the glazings of Examples 1 to 7 is measured as follows: A stainless steel ball 1 mm in diameter is slid several times forwards and backwards over the surface of the sample according to examples 1 to 4 with a constant load of 10 N. 15 passages are carried out over a distance of approximately 10 mm. The average coefficient of friction (p) is recorded for each pass. For wear-resistant surfaces, the coefficient of friction is assumed to be low and constant.
Les résultats des essais de résistance à l'usure sont présentés dans le tableau 2 qui suit, où sont reportées les valeurs du coefficient de frottement (p) en fonction du nombre d'allers-retours (n) : The results of the wear resistance tests are presented in table 2 below, where the values of the coefficient of friction (p) are reported as a function of the number of round trips (n):
[Tableau 2]
Figure imgf000020_0002
Figure imgf000021_0001
[Table 2]
Figure imgf000020_0002
Figure imgf000021_0001
Comme le montrent les tableaux qui précédent, les couches de revêtement selon l'invention (exemple 6 à 8) présentent une meilleure résistance aux rayures et à l'usure que les couches de TiZrOx et, au contraire des couches DLC, peuvent subir un traitement de trempe, très important pour ce type de vitrage dont l'empilement est destiné à être déposé sur un substrat de verre monolithique dans le but de fabriquer un simple vitrage. De tels vitrages sont en effet le plus souvent trempés ou à tremper. As shown in the preceding tables, the coating layers according to the invention (example 6 to 8) have better scratch and wear resistance than the TiZrOx layers and, unlike the DLC layers, can undergo a treatment tempering, very important for this type of glazing whose stack is intended to be deposited on a monolithic glass substrate in order to manufacture a single glazing. Such glazing is in fact most often tempered or to be tempered.
Un test de durabilité chimique est également effectué sur les différents vitrages reportés dans le tableau 1. Ce test consiste en une immersion une solution d'H SC à un pH de 2,8 à la température ambiant, sous agitation et pendant 30 minutes. A chemical durability test is also carried out on the various glazings reported in Table 1. This test consists of immersion in a solution of HSC at a pH of 2.8 at ambient temperature, with stirring and for 30 minutes.
Le tableau 3 ci-dessous indique les résultats du test d'immersion pour les vitrages des exemples 1 à 7 et le niveau de résistance à la corrosion observé visuellement. Le signe (+) signifie qu'aucune trace de corrosion n'est visible à la surface du vitrage, le signe (-) que la surface est localement corrodée et (--) que la surface est entièrement corrodée. Table 3 below indicates the results of the immersion test for the glazings of Examples 1 to 7 and the level of corrosion resistance observed visually. The sign (+) means that no trace of corrosion is visible on the surface of the glazing, the sign (-) that the surface is locally corroded and (--) that the surface is completely corroded.
[Tableau 3]
Figure imgf000021_0002
Figure imgf000022_0001
[Table 3]
Figure imgf000021_0002
Figure imgf000022_0001
On voit au final que les vitrages des empilements selon les exemples 6 à 8 selon l'invention présentent les meilleures performances combinées de résistance mécaniques et chimiques. Ces qualités apparaissent essentielles, notamment en vue de son utilisation en tant que vitrage pour bâtiment et en particulier comme vitrage monolithique, c'est-à-dire comprenant un seul substrat verrier, ledit empilement étant dans ce cas souvent au contact direct du milieu extérieur. Dans un tel vitrage, l'empilement est en effet disposé en face 2 du vitrage, c'est- à-dire sur la face tournée vers l'intérieur du bâtiment. In the end, it can be seen that the glazings of the stacks according to examples 6 to 8 according to the invention have the best combined performance in terms of mechanical and chemical resistance. These qualities appear essential, in particular with a view to its use as glazing for buildings and in particular as monolithic glazing, that is to say comprising a single glass substrate, said stack being in this case often in direct contact with the external environment. . In such glazing, the stack is in fact arranged on face 2 of the glazing, that is to say on the face facing the interior of the building.

Claims

22 22
REVENDICATIONS Article à propriétés antisolaires comprenant: CLAIMS Article with sunscreen properties comprising:
- un substrat en verre, - a glass substrate,
- un empilement de couches déposé sur ledit substrat, - a stack of layers deposited on said substrate,
- ledit empilement comprenant au moins une couche fonctionnelle absorbant et/ou réfléchissant une partie du rayonnement solaire et- said stack comprising at least one functional layer absorbing and/or reflecting part of the solar radiation and
- une couche de revêtement dudit empilement, dans lequel ladite couche de revêtement est une couche diélectrique d'oxyde comprenant de l'yttrium, et au moins un élément choisi parmi l'hafnium et le titane dans lequel ladite couche de revêtement comprend au moins 10 % atomique d'yttrium, sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche et dans lequel la couche de revêtement constitue la couche la plus externe de la succession de couches recouvrant la surface de verre. Article selon la revendication 1, dans lequel ladite couche de revêtement comprend entre 20 et 55% atomique d'yttrium ou même entre 33% et 49% d'yttrium, sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche. Article selon l'une des revendications précédentes, dans lequel la couche de revêtement comprend au 25% atomique d'au moins un élément choisi parmi l'hafnium et le titane, sur la base de l'ensemble des atomes d'yttrium, de titane et d'hafnium présents dans ladite couche, de préférence plus de 50% atomique d'au moins un élément choisi parmi l'hafnium et le titane. Article selon une des revendications précédentes, dans lequel le ratio atomique (Hf+Ti)/Y dans ladite couche de revêtement est supérieur à 1. Article l'une des revendications précédentes, dans lequel la couche fonctionnelle comprend un matériau choisi parmi le niobium métallique, le nitrure de niobium, le nitrure de titane ou l'oxyde de titane, ITO, une couche comprenant du chrome, en particulier un alliage de nickel et de chrome, éventuellement nitrurée, ou une couche constituée essentiellement de chrome. Article selon l'une quelconque des revendications précédentes, dans lequel la couche de revêtement comprend moins de 5% atomique de zirconium, de préférence moins de 1% atomique de zirconium, sur la base de l'ensemble des atomes d'yttrium, de titane, de zirconium et d'hafnium présents dans ladite couche, et de préférence encore est exempte de zirconium. Article selon l'une des revendications précédentes, dans lequel la couche de revêtement est un oxyde d'yttrium et de titane. Article selon l'une des revendications 1 à 6, dans lequel la couche de revêtement est un oxyde d'yttrium et d'hafnium. Article selon l'une des revendications 1 à 6, dans lequel la couche de revêtement est un oxyde d'yttrium, de titane et d'hafnium. Article selon l'une quelconque des revendications précédentes, dans lequel la couche de revêtement a une épaisseur comprise entre 1 et 100 nm, de préférence comprise entre 1 et 20 nm et de manière très préféré comprise entre 2 et 10 nm, voire entre 3 et 8 nm. Article selon l'une quelconque des revendications précédentes, dans lequel la ou les couches fonctionnelle(s) présente(nt) une épaisseur physique comprise entre 2 et 50 nm, de préférence entre 5 et 30 nm. Article selon l'une quelconque des revendications précédentes, dans lequel l'empilement comprend, au-dessus et/ou en dessous de la couche ou des couches fonctionnelles des couches à base de nitrure de silicium, présentant de préférence une épaisseur physique comprise entre 1 et 100 nm, de préférence encore entre 5 et 50 nm. Article selon l'une quelconque des revendications précédentes, dans lequel l'empilement fonctionnel comprend ou est constitué par la succession d'au moins les couches suivantes, à partir de la surface du substrat verrier : - a coating layer of said stack, in which said coating layer is an oxide dielectric layer comprising yttrium, and at least one element chosen from hafnium and titanium, in which said coating layer comprises at least 10 Atomic % of yttrium, based on all the atoms of yttrium, titanium and hafnium present in said layer and in which the coating layer constitutes the outermost layer of the succession of layers covering the surface of glass. An article according to claim 1, wherein said coating layer comprises between 20 and 55 atomic % yttrium or even between 33 % and 49 % yttrium, based on the sum of the atoms of yttrium, titanium and of hafnium present in said layer. Article according to one of the preceding claims, in which the coating layer comprises at least 25 atomic % of at least one element chosen from hafnium and titanium, on the basis of all the atoms of yttrium, titanium and hafnium present in said layer, preferably more than 50 atomic % of at least one element chosen from hafnium and titanium. Article according to one of the preceding claims, in which the atomic ratio (Hf+Ti)/Y in the said coating layer is greater than 1. Article of one of the preceding claims, in which the functional layer comprises a material chosen from metallic niobium , niobium nitride, titanium nitride or titanium oxide, ITO, a layer comprising chromium, in particular an alloy of nickel and chromium, optionally nitrided, or a layer consisting essentially of chromium. An article according to any preceding claim, wherein the coating layer comprises less than 5 atomic % zirconium, preferably less than 1 atomic % zirconium, based on all atoms of yttrium, titanium , zirconium and hafnium present in said layer, and more preferably is free of zirconium. Article according to one of the preceding claims, in which the coating layer is an oxide of yttrium and titanium. Article according to one of Claims 1 to 6, in which the coating layer is an oxide of yttrium and hafnium. Article according to one of Claims 1 to 6, in which the coating layer is an oxide of yttrium, titanium and hafnium. Article according to any one of the preceding claims, in which the coating layer has a thickness comprised between 1 and 100 nm, preferably comprised between 1 and 20 nm and very preferably comprised between 2 and 10 nm, even between 3 and 8nm. Article according to any one of the preceding claims, in which the functional layer(s) has(have) a physical thickness comprised between 2 and 50 nm, preferably between 5 and 30 nm. Article according to any one of the preceding claims, in which the stack comprises, above and/or below the functional layer or layers, layers based on silicon nitride, preferably having a physical thickness of between 1 and 100 nm, more preferably between 5 and 50 nm. Article according to any one of the preceding claims, in which the functional stack comprises or is formed by the succession of at least the following layers, from the surface of the glass substrate:
- une sous-couche comprenant du nitrure de silicium, de préférence d'épaisseur comprise entre 1 nm et 100 nm, - an underlayer comprising silicon nitride, preferably with a thickness of between 1 nm and 100 nm,
- une couche fonctionnelle de préférence d'épaisseur physique comprise entre 2 et 50 nm, de préférence entre 5 et 30 nm, la couche fonctionnelle comprenant un matériau choisi parmi le niobium métallique, le nitrure de niobium, le nitrure de titane ou l'oxyde de titane, un alliage d'au moins les éléments Ni et Cr, éventuellement nitruré, - a functional layer preferably with a physical thickness between 2 and 50 nm, preferably between 5 and 30 nm, the functional layer comprising a material chosen from metallic niobium, niobium nitride, titanium nitride or oxide titanium, an alloy of at least the elements Ni and Cr, optionally nitrided,
- une surcouche comprenant du nitrure de silicium, de préférence d'épaisseur comprise entre 1 nm et 100 nm. Article selon l'une quelconque des revendications précédentes, dans lequel l'empilement ne comprend pas de couches à base d'argent, d'or, de platine ou de cuivre. Article selon l'une quelconque des revendications précédentes dans lequel ledit article est trempé. Vitrage monolithique pour bâtiment, comprenant un article selon l'une des revendications précédentes. - an overlayer comprising silicon nitride, preferably with a thickness of between 1 nm and 100 nm. Article according to any one of the preceding claims, in which the stack does not comprise layers based on silver, gold, platinum or copper. An article according to any preceding claim wherein said article is dipped. Monolithic glazing for building, comprising an article according to one of the preceding claims.
PCT/FR2022/052258 2021-12-08 2022-12-06 Glass panel comprising a sun protection stack and a protective coating comprising yttrium oxide and at least one element selected from hafnium and/or titanium WO2023105156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2113166A FR3129938A1 (en) 2021-12-08 2021-12-08 Glazing comprising a solar protection stack and a protective coating comprising an oxide of yttrium and at least one element chosen from hafnium and/or titanium
FRFR2113166 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023105156A1 true WO2023105156A1 (en) 2023-06-15

Family

ID=80225947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/052258 WO2023105156A1 (en) 2021-12-08 2022-12-06 Glass panel comprising a sun protection stack and a protective coating comprising yttrium oxide and at least one element selected from hafnium and/or titanium

Country Status (2)

Country Link
FR (1) FR3129938A1 (en)
WO (1) WO2023105156A1 (en)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747329A1 (en) 1995-06-07 1996-12-11 Guardian Industries Corp. Heat treatable, durable IR-reflecting sputter-coated glasses and method of making same
EP0779255A1 (en) 1995-12-14 1997-06-18 Guardian Industries Corp. Matchable, heat treatable durable, IR-reflecting sputter-coated glasses and method of making same
WO2001021540A1 (en) 1999-09-23 2001-03-29 Saint-Gobain Glass France Glazing provided with a stack of thin layers acting on solar radiation
WO2005021454A2 (en) 2003-09-02 2005-03-10 Guardian Indusries Corp. Heat treatable coated article with diamond-like carbon (dlc) coating
EP1919838A1 (en) 2005-07-29 2008-05-14 Saint-Gobain Glass France Glazing provided with a stack of thin films acting on the sunlight
WO2009112759A2 (en) 2008-02-27 2009-09-17 Saint-Gobain Glass France Solar-protection glazing having an improved light transmission coefficient
WO2009150343A2 (en) 2008-05-19 2009-12-17 Saint-Gobain Glass France Glazing provided with a stack of thin layers
US20100167034A1 (en) * 2007-03-19 2010-07-01 Agc Flat Glass Europe Sa. Low-emissivity glazing
US20100178492A1 (en) * 2006-03-29 2010-07-15 Saint-Gobain Glass France Highly heat-resistant low-emissivity multilayer system for transparent substrates
EP2314451A1 (en) 2003-10-14 2011-04-27 Guardian Industries Corp. Heat treatable coated article
WO2012096771A1 (en) 2011-01-11 2012-07-19 Centre Lexumbourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Heat treatable coated article with breaker layer with extended coloring possibilities
US20140170421A1 (en) * 2012-12-14 2014-06-19 Intermolecular Inc. Low-E Panel with Improved Barrier Layer and Method for Forming the Same
WO2016097557A1 (en) 2014-12-19 2016-06-23 Saint-Gobain Glass France Solar-control or low-emissivity glazing comprising an upper protective layer
EP3122694A1 (en) 2014-03-28 2017-02-01 Saint-Gobain Glass France Glazing provided with a thin-layer stack for solar protection
WO2018129135A1 (en) 2017-01-05 2018-07-12 Guardian Glass, LLC Heat treatable coated article having titanium nitride based ir reflecting layer(s)
US20180251887A1 (en) * 2017-03-03 2018-09-06 Guardian Industries Corp. Coated article having low-e coating with ir reflecting layer(s) and doped titanium oxide dielectric layer(s) and method of making same
WO2019002737A1 (en) 2017-06-26 2019-01-03 Saint-Gobain Glass France Glazing with solar protection properties comprising a titanium oxynitride layer
WO2019020485A1 (en) 2017-07-26 2019-01-31 Saint-Gobain Glass France Temperable coatings comprising diamond-like carbon
WO2020002845A2 (en) 2018-06-27 2020-01-02 Saint-Gobain Glass France Glazing comprising a stack of thin layers acting on solar radiation and a barrier layer
WO2021063921A1 (en) 2019-09-30 2021-04-08 Saint-Gobain Glass France Glazing comprising a solar-protection stack and a protective coating comprising yttrium

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747329A1 (en) 1995-06-07 1996-12-11 Guardian Industries Corp. Heat treatable, durable IR-reflecting sputter-coated glasses and method of making same
EP0779255A1 (en) 1995-12-14 1997-06-18 Guardian Industries Corp. Matchable, heat treatable durable, IR-reflecting sputter-coated glasses and method of making same
WO2001021540A1 (en) 1999-09-23 2001-03-29 Saint-Gobain Glass France Glazing provided with a stack of thin layers acting on solar radiation
WO2005021454A2 (en) 2003-09-02 2005-03-10 Guardian Indusries Corp. Heat treatable coated article with diamond-like carbon (dlc) coating
EP2314451A1 (en) 2003-10-14 2011-04-27 Guardian Industries Corp. Heat treatable coated article
EP1919838A1 (en) 2005-07-29 2008-05-14 Saint-Gobain Glass France Glazing provided with a stack of thin films acting on the sunlight
US20100178492A1 (en) * 2006-03-29 2010-07-15 Saint-Gobain Glass France Highly heat-resistant low-emissivity multilayer system for transparent substrates
US20100167034A1 (en) * 2007-03-19 2010-07-01 Agc Flat Glass Europe Sa. Low-emissivity glazing
WO2009112759A2 (en) 2008-02-27 2009-09-17 Saint-Gobain Glass France Solar-protection glazing having an improved light transmission coefficient
WO2009150343A2 (en) 2008-05-19 2009-12-17 Saint-Gobain Glass France Glazing provided with a stack of thin layers
WO2012096771A1 (en) 2011-01-11 2012-07-19 Centre Lexumbourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Heat treatable coated article with breaker layer with extended coloring possibilities
US20140170421A1 (en) * 2012-12-14 2014-06-19 Intermolecular Inc. Low-E Panel with Improved Barrier Layer and Method for Forming the Same
EP3122694A1 (en) 2014-03-28 2017-02-01 Saint-Gobain Glass France Glazing provided with a thin-layer stack for solar protection
WO2016097557A1 (en) 2014-12-19 2016-06-23 Saint-Gobain Glass France Solar-control or low-emissivity glazing comprising an upper protective layer
WO2018129135A1 (en) 2017-01-05 2018-07-12 Guardian Glass, LLC Heat treatable coated article having titanium nitride based ir reflecting layer(s)
US20180251887A1 (en) * 2017-03-03 2018-09-06 Guardian Industries Corp. Coated article having low-e coating with ir reflecting layer(s) and doped titanium oxide dielectric layer(s) and method of making same
WO2019002737A1 (en) 2017-06-26 2019-01-03 Saint-Gobain Glass France Glazing with solar protection properties comprising a titanium oxynitride layer
WO2019020485A1 (en) 2017-07-26 2019-01-31 Saint-Gobain Glass France Temperable coatings comprising diamond-like carbon
WO2020002845A2 (en) 2018-06-27 2020-01-02 Saint-Gobain Glass France Glazing comprising a stack of thin layers acting on solar radiation and a barrier layer
WO2021063921A1 (en) 2019-09-30 2021-04-08 Saint-Gobain Glass France Glazing comprising a solar-protection stack and a protective coating comprising yttrium

Also Published As

Publication number Publication date
FR3129938A1 (en) 2023-06-09

Similar Documents

Publication Publication Date Title
EP2577368B1 (en) Solar control glazing with low solar factor
EP1833768B1 (en) Glazing panel with a multilayer coating
BE1019346A3 (en) GLAZING OF SOLAR CONTROL.
EP1644297B1 (en) Glazing provided with stacked thin layers which reflect infrared rays and/or solar radiation and application of such a glazing
EP2828215B1 (en) Solar control glazing
EP2276710A1 (en) Solar-control glazing
EP2603469B1 (en) Glass panel having sun-shielding properties
EP1888476A1 (en) Sun blocking stack
WO2009112759A2 (en) Solar-protection glazing having an improved light transmission coefficient
FR2949774A1 (en) MATERIAL COMPRISING A GLASS SUBSTRATE COATED WITH A THIN FILM STACK
EP3898544A1 (en) Solar-control glazing comprising two layers based on titanium nitride
WO2021063921A1 (en) Glazing comprising a solar-protection stack and a protective coating comprising yttrium
WO2023105156A1 (en) Glass panel comprising a sun protection stack and a protective coating comprising yttrium oxide and at least one element selected from hafnium and/or titanium
EP4031506A1 (en) Insulating glass panel comprising a thin chromium-based layer
WO2021170959A1 (en) Solar-control glazing comprising a layer of titanium nitride
FR3111631A1 (en) SOLAR CONTROL GLASS CONSISTING OF A TITANIUM NITRIDE BASED LAYER AND AN ITO BASED LAYER
WO2023047069A1 (en) Solar-control glazing comprising a titanium nitride-based layer
WO2023203192A1 (en) Solar control glazing panel comprising a single functional titanium nitride layer
WO2021069616A1 (en) Insulating glazing comprising layers of ito and niobium nitride
WO2024013059A1 (en) Solar protection glazing with blue external reflection
WO2021123618A1 (en) Photocatalytic glazing comprising a titanium nitride-based layer
WO2021004873A1 (en) Glazing unit with a double layer of tin for solar control
FR3108902A1 (en) Solar control glazing
FR3118441A1 (en) Sunscreen glazing comprising a thin layer of nichrome and a thin layer of silicon nitride substoichiometric in nitrogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840255

Country of ref document: EP

Kind code of ref document: A1