WO2023103847A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2023103847A1
WO2023103847A1 PCT/CN2022/135227 CN2022135227W WO2023103847A1 WO 2023103847 A1 WO2023103847 A1 WO 2023103847A1 CN 2022135227 W CN2022135227 W CN 2022135227W WO 2023103847 A1 WO2023103847 A1 WO 2023103847A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
access network
proxy entity
network device
parameter
Prior art date
Application number
PCT/CN2022/135227
Other languages
English (en)
French (fr)
Inventor
赵鹏涛
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023103847A1 publication Critical patent/WO2023103847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method, device and system.
  • the communication network is in a shared environment, so it may cause network congestion due to multi-party communication.
  • a congestion control mechanism is introduced.
  • the congestion window is a state variable to be maintained by the sender, and the congestion window can change dynamically according to the congestion degree of the network.
  • reduce the size of the congestion window when there is a large degree of congestion due to multi-user competition in the network, reduce the size of the congestion window; when the degree of network congestion is small, keep the size of the congestion window within the threshold range.
  • the mobile communication network is different from the wired network, and the cause of the congestion is not only multi-user competition, but also congestion on the wireless side (for example, congestion caused by retransmission on the wireless side). Congestion on the wireless side is a concern.
  • Embodiments of the present application provide a communication method, device, and system, wherein the communication method is based on a wired network congestion control mechanism and a transport layer proxy mechanism, and can be optimized for wireless network congestion control by utilizing wireless side capability opening.
  • the embodiment of the present application provides a communication method, and the communication method is implemented by interaction between a radio access network device and a proxy entity.
  • the wireless access network device obtains the congestion parameter of the wireless access network according to the indication information, and sends the congestion parameter to the proxy entity; correspondingly, the proxy entity receives the congestion parameter, and performs a congestion control operation according to the congestion parameter.
  • the wireless access network equipment capability opening can be used to obtain the congestion parameters of the wireless access network (including the cache status information and/or congestion cause value of the wireless access network), thereby judging whether the wireless access network is congested;
  • the proxy entity can identify the congestion parameters of the wireless access network, so as to optimize the congestion control of the wireless network.
  • the wireless access network device sends the congestion parameter to the proxy entity in a path-associated manner, where the path-associated manner is to add the congestion parameter to the first data stream from the terminal device.
  • the wireless access network device can directly add the congestion parameter to the uplink data flow, and transmit it to the proxy entity through the uplink data flow, which is beneficial to simplify the processing flow.
  • the road-associated manner is to add a congestion parameter to a user plane General Packet Radio Service Tunneling Protocol G-TPU header or a transport layer protocol header of the first data packet of the first data flow.
  • G-TPU General Packet Radio Service Tunneling Protocol
  • the 3GPP protocol packet header can be multiplexed; when the congestion parameter is carried in the transport layer protocol header, the existing uplink data packet can be multiplexed.
  • the radio access network device generates a second data packet (the second data packet includes a congestion parameter), and sends the second data packet to the proxy entity.
  • the wireless access network device can generate the second data packet by itself, and the second data packet does not include the service data of the uplink data flow, so there is no need to wait for the uplink data flow, which is beneficial to sending congestion information to the proxy entity more quickly.
  • the wireless access network device sends the congestion parameter to the terminal device, and then receives a third data packet from the terminal device, where the third data packet includes the congestion parameter; the wireless access network device sends the third packet to the proxy entity Three packets.
  • the radio access network device can send the congestion parameter to the terminal device, and the terminal device generates or reconstructs the third data packet by itself, so as to realize sending the congestion information to the proxy entity.
  • the radio access network device sends the congestion parameter to the proxy entity through a user plane functional network element. That is to say, the proxy entity and the user plane functional network element may be two entities deployed separately.
  • the user plane functional network element can forward the congestion parameters to the proxy entity, so that the proxy entity can receive the congestion parameters, and then implement congestion control.
  • the radio access network device receives indication information from the session management function entity. That is to say, the proxy entity can instruct the radio access network device to open the capability through the session management function entity.
  • the proxy entity performs congestion control operations according to the measurement information and congestion parameters, and the measurement information includes the bottleneck bandwidth of the transmission path between the proxy entity and the terminal device and/or the round-trip delay of the transmission path.
  • the proxy entity can also refer to the bottleneck bandwidth of the transmission path between the proxy entity and the terminal device and/or the round-trip delay of the transmission path, which is beneficial to judge the congestion situation of the wireless network more accurately.
  • the buffer status information indicates that the queue buffer ratio of the radio access network is greater than or equal to the threshold, and the congestion cause value is In the case of indicating that the cause of the congestion is wireless retransmission, the proxy entity reduces the sending rate of the data sending end.
  • the proxy entity does not need to reduce the congestion window very aggressively, but rather reduces the rate of sending data to the terminal device, optimizing the wireless network Network congestion control.
  • the proxy The entity sets the sending gain coefficient of the data sending end as a first preset value, and sets the size of the congestion window as a second preset value.
  • the proxy entity when the cache status information indicates that the queue cache ratio of the wireless access network is greater than or equal to the threshold, and the congestion cause value indicates that the congestion cause is multi-user competition, the proxy entity sets the transmission gain coefficient of the data sender to Set as a first preset value, and set the size of the congestion window as a second preset value.
  • the cache status information and the congestion cause value indicate that multi-flow contention leads to resource shortage on the wireless side, and the scheduling period of the flow is relatively large, so the proxy entity will directly reduce the congestion window and reduce the rate of sending data to the terminal device.
  • the buffer status information of the radio access network includes buffer status information of the media access control layer and/or buffer status information of the radio link control layer, and the congestion cause value includes multi-user contention or wireless overload pass.
  • the congestion parameter is carried in the packet header of the user plane general packet radio service tunneling protocol, or the congestion parameter is carried in the header of the transport layer protocol.
  • the indication information includes a data flow identifier, where the data flow identifier is used to identify the first data flow. That is to say, the indication information is used to instruct the radio access network device to obtain the congestion parameter of the first data flow.
  • the embodiment of the present application provides a communication method
  • the communication method is implemented by the wireless access network equipment, and may also be performed by components (such as processors, chips, or chip systems, etc.) of the wireless access network equipment, It can also be realized by a logic module or software that can realize all or part of the functions of the wireless access network equipment.
  • the wireless access network device obtains the congestion parameter of the wireless access network according to the instruction information, and sends the congestion parameter to the proxy entity; the instruction information is used to instruct the wireless access network device to obtain the congestion parameter of the wireless access network, and the congestion parameter includes Buffer status information and/or congestion cause values of the radio access network.
  • the wireless access network equipment capability opening can be used to obtain the congestion parameters of the wireless access network, and send the congestion parameters to the proxy entity, which is beneficial to optimize the congestion control of the wireless network.
  • the wireless access network device sends the congestion parameter to the proxy entity in a path-associated manner, where the path-associated manner is to add the congestion parameter to the first data stream from the terminal device.
  • the wireless access network device can directly add the congestion parameter to the uplink data flow, and transmit it to the proxy entity through the uplink data flow, which is beneficial to simplify the processing flow.
  • the road-associated manner is to add a congestion parameter to a user plane General Packet Radio Service Tunneling Protocol G-TPU header or a transport layer protocol header of the first data packet of the first data flow.
  • G-TPU General Packet Radio Service Tunneling Protocol
  • the 3GPP protocol packet header can be multiplexed; when the congestion parameter is carried in the transport layer protocol header, the existing uplink data packet can be multiplexed.
  • the radio access network device generates a second data packet (the second data packet includes a congestion parameter), and sends the second data packet to the proxy entity.
  • the wireless access network device can generate the second data packet by itself, and the second data packet does not include the service data of the uplink data flow, so there is no need to wait for the uplink data flow, which is beneficial to sending congestion information to the proxy entity more quickly.
  • the wireless access network device sends the congestion parameter to the terminal device, and then receives a third data packet from the terminal device, where the third data packet includes the congestion parameter; the wireless access network device sends the third packet to the proxy entity Three packets.
  • the radio access network device can send the congestion parameter to the terminal device, and the terminal device generates or reconstructs the third data packet by itself, so as to realize sending the congestion information to the proxy entity.
  • the radio access network device sends the congestion parameter to the proxy entity through a user plane functional network element. That is to say, the proxy entity and the user plane functional network element may be two entities deployed separately.
  • the user plane functional network element can forward the congestion parameters to the proxy entity, so that the proxy entity can receive the congestion parameters, and then implement congestion control.
  • the radio access network device receives indication information from the session management function entity. That is to say, the proxy entity can instruct the radio access network device to open the capability through the session management function entity.
  • the buffer status information of the radio access network includes buffer status information of the media access control layer and/or buffer status information of the radio link control layer, and the congestion cause value includes multi-user contention or wireless overload pass.
  • the congestion parameter is carried in the packet header of the user plane general packet radio service tunneling protocol, or the congestion parameter is carried in the header of the transport layer protocol.
  • the indication information includes a data flow identifier, where the data flow identifier is used to identify the first data flow. That is to say, the indication information is used to instruct the radio access network device to obtain the congestion parameter of the first data flow.
  • the radio access network device receives second indication information, where the second indication information instructs the radio access network device to stop acquiring the radio access network congestion parameter.
  • the embodiment of the present application provides a communication method, which is implemented by the proxy entity, or may be executed by components of the proxy entity (such as processors, chips, or chip systems, etc.), and may also be implemented by all Or a logic module or software implementation of some functions of the proxy entity.
  • the proxy entity receives the congestion parameter of the wireless access network, and performs a congestion control operation according to the congestion parameter; the congestion parameter includes buffer state information and/or congestion cause value of the wireless access network.
  • the proxy entity can identify the congestion parameters of the wireless access network, and perform congestion control based on the congestion parameters, so as to optimize the congestion control of the wireless network.
  • the proxy entity performs congestion control operations according to the measurement information and congestion parameters, and the measurement information includes the bottleneck bandwidth of the transmission path between the proxy entity and the terminal device and/or the round-trip delay of the transmission path.
  • the proxy entity can also refer to the bottleneck bandwidth of the transmission path between the proxy entity and the terminal device and/or the round-trip delay of the transmission path, which is beneficial to judge the congestion situation of the wireless network more accurately.
  • the buffer status information indicates that the queue buffer ratio of the radio access network is greater than or equal to the threshold, and the congestion cause value is In the case of indicating that the cause of the congestion is wireless retransmission, the proxy entity reduces the sending rate of the data sending end.
  • the proxy entity does not need to reduce the congestion window very aggressively, but rather reduces the rate of sending data to the terminal device, optimizing the wireless network Network congestion control.
  • the proxy The entity sets the sending gain coefficient of the data sending end as a first preset value, and sets the size of the congestion window as a second preset value.
  • the proxy entity when the cache status information indicates that the queue cache ratio of the wireless access network is greater than or equal to the threshold, and the congestion cause value indicates that the congestion cause is multi-user competition, the proxy entity sets the transmission gain coefficient of the data sender to Set as a first preset value, and set the size of the congestion window as a second preset value.
  • the cache status information and the congestion cause value indicate that multi-flow contention leads to resource shortage on the wireless side, and the scheduling period of the flow is relatively large, so the proxy entity will directly reduce the congestion window and reduce the rate of sending data to the terminal device.
  • the buffer status information of the radio access network includes buffer status information of the media access control layer and/or buffer status information of the radio link control layer, and the congestion cause value includes multi-user contention or wireless overload pass.
  • the congestion parameter is carried in the packet header of the user plane general packet radio service tunneling protocol, or the congestion parameter is carried in the header of the transport layer protocol.
  • the embodiment of the present application provides a communication method, the communication method is implemented by a user plane functional network element, and may also be executed by a component (such as a processor, a chip, or a chip system, etc.) of the user plane functional network element, It can also be realized by a logic module or software that can realize all or part of the functions of the network element of the user plane.
  • the user plane functional network element receives the data packet, and the data packet includes the congestion parameter of the wireless access network; the user plane functional network element adjusts the encapsulation position of the congestion parameter in the data packet, and sends the adjusted data packet to the proxy entity.
  • the user plane functional network element receives the congestion parameter before the proxy entity, and adjusts the encapsulation position of the congestion parameter in the data packet, which is beneficial to The proxy entity identifies congestion parameters.
  • the encapsulation position of the congestion parameter is the header of the user plane general packet radio service tunneling protocol
  • the encapsulation position of the congestion parameter is adjusted to the header of the transport layer protocol or the header of the second tunneling protocol
  • the second tunneling protocol is a tunneling protocol between the user plane functional network element and the proxy entity.
  • the encapsulation position of the congestion parameter is a transport layer protocol header
  • the encapsulation position of the congestion parameter is adjusted to the header of the second tunneling protocol.
  • the embodiment of the present application provides a communication method.
  • the communication method is implemented by a terminal device, or may be executed by a component of the terminal device (such as a processor, a chip, or a chip system, etc.), or may be implemented by all Or a logic module or software implementation of some terminal equipment functions.
  • the terminal device receives the congestion parameter of the wireless access network, and generates a third data packet, where the third data packet includes the congestion parameter.
  • the terminal device sends congestion parameters to the proxy entity.
  • the terminal device can generate or reconstruct the third data packet by itself according to the congestion parameter, and can realize sending the congestion information to the proxy entity without adjusting the encapsulation position of the congestion parameter.
  • the terminal device adds a congestion parameter to the user plane general packet radio service tunneling protocol header or the transport layer protocol header of the first data packet of the first data flow, and reconstructs the first data packet as the first data packet Three data packets; or, the terminal device generates a third data packet according to the congestion parameter, and the third data packet does not include the service data in the first data flow.
  • the congestion parameter is carried in the packet header of the user plane general packet radio service tunneling protocol, or the congestion parameter is carried in the header of the transport layer protocol.
  • the embodiment of the present application provides a communication device, where the communication device includes a processing unit and a transceiver unit.
  • the processing unit is configured to acquire the congestion parameter of the wireless access network according to the indication information.
  • the indication information is used to instruct the radio access network device to acquire the congestion parameters of the radio access network.
  • the congestion parameters include buffer status information and/or congestion cause values of the radio access network.
  • the transceiver unit is configured to send the congestion parameter to the proxy entity.
  • congestion parameters For specific implementations of congestion parameters, indication information, how to send congestion parameters to the proxy entity, etc., reference may be made to the corresponding description in the second aspect, and details will not be repeated here.
  • the embodiment of the present application provides a communication device, where the communication device includes a processing unit and a transceiver unit.
  • the transceiver unit is used for receiving congestion parameters of the wireless access network.
  • the congestion parameters include buffer status information and/or congestion cause values of the radio access network.
  • the processing unit is configured to perform congestion control operations according to the congestion parameters.
  • congestion parameters indication information, how to receive congestion parameters, how to perform congestion control operations according to congestion parameters, etc.
  • the embodiment of the present application provides a communication device, where the communication device includes a processing unit and a transceiver unit.
  • the transceiver unit is used for receiving data packets, and the data packets include congestion parameters of the wireless access network.
  • the processing unit is used to adjust the encapsulation position of the congestion parameter in the data packet.
  • the transceiver unit is also used to send the adjusted data packet to the proxy entity.
  • the embodiment of the present application provides a communication device, where the communication device includes a processing unit and a transceiver unit.
  • the transceiver unit is used for receiving congestion parameters of the wireless access network.
  • the processing unit is used to generate a third data packet, and the third data packet includes congestion parameters.
  • the transceiver unit is also used to send the third data packet to the proxy entity.
  • the embodiment of the present application provides a radio access network device, where the radio access network device includes one or more processors and a memory; the memory is coupled to the one or more processors, the memory stores a computer program, and a When a computer program is executed by one or more processors, the device does the following:
  • the indication information is used to instruct the radio access network equipment to acquire the congestion parameters of the radio access network, where the congestion parameters include cache status information and/or congestion cause values of the radio access network;
  • congestion parameters For specific implementations of congestion parameters, indication information, how to send congestion parameters to the proxy entity, etc., reference may be made to the corresponding description in the second aspect, and details will not be repeated here.
  • the embodiment of the present application provides a proxy entity, the proxy entity includes one or more processors and memory; the memory is coupled with the one or more processors, the memory stores computer programs, and the one or more processors When executing a computer program, the device does the following:
  • Receive congestion parameters of the radio access network where the congestion parameters include cache status information and/or congestion cause values of the radio access network
  • congestion parameters indication information, how to receive congestion parameters, how to perform congestion control operations according to congestion parameters, etc.
  • the embodiment of the present application provides a user plane functional network element, where the user plane functional network element includes one or more processors and a memory; the memory is coupled to the one or more processors, and the memory stores a computer program, When a computer program is executed by one or more processors, the device does the following:
  • the entity receives the data packet, and the data packet includes congestion parameters of the radio access network
  • the embodiment of the present application provides a terminal device, the terminal device includes one or more processors and memory; the memory is coupled with one or more processors, the memory stores computer programs, and the one or more processors When executing a computer program, the device does the following:
  • the embodiment of the present application provides a communication system, the communication system includes one or more of the communication devices provided in the fifth aspect to the ninth aspect, or includes the wireless access network as provided in the tenth aspect One or more of the device, the proxy entity provided in the eleventh aspect, the user plane function network element provided in the twelfth aspect, and the terminal device provided in the thirteenth aspect.
  • the communication entity includes one or more of the communication devices provided in the fifth aspect to the ninth aspect, or includes the wireless access network as provided in the tenth aspect
  • the device the proxy entity provided in the eleventh aspect, the user plane function network element provided in the twelfth aspect, and the terminal device provided in the thirteenth aspect.
  • the embodiment of the present application provides a computer-readable storage medium, the above-mentioned computer-readable storage medium stores a computer program, and the above-mentioned computer program is executed by a processor to realize the above-mentioned first to fifth aspects, and the first The method described in any one of the possible implementation manners of the aspect to the fifth aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, and may also include a memory, for realizing the above-mentioned first to fifth aspects, and possible implementations of the first to fifth aspects The method described in any one of the ways.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • an embodiment of the present application provides a computer program product, including instructions, which, when the instructions are run on a computer, cause the computer to execute the above first to fifth aspects, and the first to fifth aspects The method described in any one of the possible implementations.
  • FIG. 1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • Fig. 2 is a state transition diagram of a kind of BBR algorithm
  • FIG. 3 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 4 is a schematic flow diagram when the communication method provided by the embodiment of the present application is applied to an actual network scenario
  • FIG. 5 is another schematic flowchart of when the communication method provided by the embodiment of the present application is applied to an actual network scenario
  • FIG. 6 is a schematic diagram of a device provided in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a device provided by an embodiment of the present application.
  • the communication device may include a radio access network device and a terminal device, and the radio access network device may also be referred to as a wireless network side device.
  • the air interface resources may include at least one of time domain resources, frequency domain resources, code resources and space resources. In the embodiment of this application, at least one can also be described as one or more, and multiple can be two, three, four or more, which is not limited in this application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and any embodiment or design described as “exemplary” or “for example” should not be interpreted It is more preferred or more advantageous than other embodiments or design solutions.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific manner for easy understanding.
  • the communication network is in a shared environment, so it may cause network congestion due to multi-party communication. For example, when the network is congested, if you continue to send a large number of data packets, it may cause increased packet delay, packet loss, etc.; Retransmitting data (referred to as retransmission), but retransmission will increase the burden on the network, further causing greater delay and more packet loss, and this situation will enter a vicious circle and be continuously amplified. Therefore, in order to prevent the data sent by the sender from filling up the entire network, a congestion control mechanism is introduced. In the congestion control mechanism, in order to adjust the amount of data sent by the sender, the concept of congestion window is defined.
  • the congestion window is a state variable to be maintained by the sender, and the congestion window can change dynamically according to the congestion degree of the network.
  • the degree of congestion of the network is large, reduce the size of the congestion window; when the degree of congestion of the network is small, keep the size of the congestion window within the threshold range (in order to send more data packets).
  • the bottleneck bandwidth and round trip time (BBR) algorithm can optimize the congestion control mechanism.
  • the principle of the BBR algorithm is to maximize the utilization of the bandwidth of the network link on the network link that allows a certain packet loss rate, and reduce the occupancy rate of the cache of the data packet on the network link, thereby reducing the delay while ensuring the bandwidth .
  • the round trip time (round trip time, RTT) and bandwidth (band width, BW) will be monitored in real time, and the minimum RTT and maximum BW will be detected in real time.
  • the congestion window is reduced to a minimum value.
  • the mobile communication network is different from the wired network, and the cause of the congestion is not only multi-flow contention, but also congestion on the wireless side (for example, congestion caused by retransmission on the wireless side). Therefore, congestion on the wireless side is of concern.
  • the embodiment of the present application provides a communication method, which can obtain the congestion parameters of the wireless access network (including the cache status information of the wireless access network and/or the cause of congestion) by utilizing the capability opening of the wireless access network equipment value), so as to determine whether the wireless access network is congested; and, the proxy entity can identify the congestion parameters of the wireless access network, so as to optimize the congestion control of the wireless network.
  • the communication method provided by the embodiment of the present application can be applied to a network architecture as shown in FIG. 1, the network architecture includes but not limited to the following devices or network elements: terminal equipment, radio access network RAN) equipment, access and mobility management function (access and mobility management function, AMF) network element, session management function (session management function, SMF) network element, application function (application function, AF) network element, application server ( application server, AS), user plane function (user plane function, UPF) network elements and proxy entities, etc.
  • terminal equipment radio access network RAN
  • AMF access and mobility management function
  • AMF access and mobility management function
  • session management function session management function
  • SMF session management function
  • application function application function, AF
  • application server application server
  • AS application server
  • UPF user plane function
  • the terminal equipment can be user equipment (user equipment, UE), terminal, mobile phone, Internet of Things terminal equipment (such as vehicle equipment, wearable equipment, etc.), terminal equipment in the 5G network, and PLMN network in the future evolution.
  • Terminal equipment or terminal equipment in next-generation networks (such as 6G), etc.
  • the radio access network device may be a device capable of communicating with a terminal device; the radio access network device may be a base station (base station, BS), a relay station, or an access point (access point, AP).
  • the base station can be an evolutional NodeB (referred to as eNB or eNodeB) in a long term evolution (long term evolution, LTE) system, or a gNodeB in a new radio (new radio, NR) network, or a cloud wireless access
  • the wireless controller in the network (cloud radio access network, CRAN) scenario can also be an AP in a wireless fidelity (Wireless Fidelity, WiFi) network, or an AP in a worldwide microwave interoperability for microwave access (WiMAX) network.
  • BS et al. AMF is mainly responsible for the mobility management in the mobile network, such as user location update, user registration network, user handover, etc.
  • SMF is mainly responsible for session management (such as session establishment, modification, and release) in the mobile network, Internet protocol (Internet protocol, IP) address allocation and management, UPF selection and control, etc.
  • the AF is mainly responsible for providing services to the core network, such as influencing service routing and performing policy control.
  • AS is mainly responsible for providing application services.
  • UPF is mainly responsible for forwarding and processing user packets, session anchor point, quality of service (quality of service, QoS) policy enforcement, etc.
  • Proxy entities are used for congestion control.
  • BBR congestion control The purpose of BBR congestion control (also known as the BBR algorithm) is to maximize the use of the bandwidth of the network link on the network link that allows a certain packet loss rate, and to reduce the data packets on the network link.
  • the occupancy rate of the cache can reduce the delay while guaranteeing the bandwidth.
  • the minimum RTT in history that is, the minimum RTT detected at any time before
  • the minimum RTT in history that is, the minimum RTT detected at any time before
  • the BBR algorithm includes the following important parameters:
  • Round-trip time delay RTT Indicates the total experience from when the data sender sends data to when the data sender receives the acknowledgment (acknowledge, ACK) from the data receiver feedback (the data receiver immediately feeds back after receiving the data) delay. It can be understood that each data packet corresponds to one RRT.
  • the bandwidth represents the current actual processing capability of the network; for example, when calculating delivered, the data sender first determines the ACK received from the data receiver within the interval_us, and then calculates the total amount of data corresponding to all the feedback ACKs (ie The total number of bits of data successfully sent by the data sender within interval_us); it can be understood that the feedback ACK includes normal ACK, retransmitted ACK, or selective acknowledgment (selective acknowledgment, SACK), that is, as long as it is received by the data All responses from the receiving end must be counted.
  • SACK selective acknowledgment
  • Congestion window Indicates the maximum number of data packets that the data sender can send at one time under congestion control.
  • the size of the congestion window depends on the degree of network congestion and changes dynamically. The principle of the data sender to control the congestion window is: as long as there is no congestion in the network, the congestion window will be increased to send more data packets; The number of packets transmitted in the network.
  • BBR defines four states according to the congestion behavior of the network, including state one (STARTUP state), state two (DRAIN state), state three (PROBE_BW state) and state four (PROBE_RTT state), as shown in Figure 2 .
  • Proxy entity The proxy entity is used to identify the congestion parameters of the radio access network, and perform congestion control on the network based on the congestion parameters.
  • the proxy entity and the UPF are two separate network elements.
  • the functions of the UPF in the embodiment of the present application can be enhanced.
  • the UPF can identify the data packet containing the congestion parameter, and adjust the encapsulation position of the congestion parameter in the data packet.
  • the proxy entity and UPF can be co-established, that is, the function of the proxy entity is included in the UPF, and the function of the proxy entity can be realized through the UPF; specifically, any one of the above two implementation modes is adopted in this embodiment.
  • the proxy entity provided by the embodiment of the present application may be a transport layer proxy, and the proxy entity can interact at the transport layer, which is more flexible.
  • the proxy entity has some functions of the server, such as listening to a specific TCP or user datagram protocol (UDP) port, receiving the client's request and sending a corresponding response to the client.
  • UDP user datagram protocol
  • Fig. 3 is a schematic flow chart of a communication method provided by the embodiment of the present application, the communication method is implemented by the interaction between the wireless access network device and the proxy entity, and includes the following steps:
  • the radio access network device acquires congestion parameters of the radio access network according to indication information.
  • the indication information is used to instruct the radio access network device to acquire the congestion parameters of the radio access network.
  • the indication information may include but not limited to information opening indication, data flow identification and other information.
  • the information opening indication is used to indicate whether the wireless access network device opens the function to obtain the congestion parameters of the wireless access network.
  • the information opening indication can use two different values (such as "0" or "1") to indicate , assuming "0" indicates that the wireless access network device does not open the function (that is, the wireless access network device does not need to obtain the congestion parameter of the wireless access network at this time), "1" indicates that the wireless access network device opens the function to obtain the wireless access network congestion parameters.
  • the data flow identifier is used to identify the first data flow, and the first data flow is a data flow sent from a data sending end (such as a terminal device) to a data receiving end (such as an AS) (that is, a data flow for which congestion parameters are to be obtained), where the first A data flow may be a service flow (such as an audio and video flow), or a QoS flow, etc.
  • the indication information when the indication information carries the data flow identifier of the first data flow, the indication information is used to instruct the radio access network device to obtain the congestion parameter of the first data flow. Further, the indication information may be sent by the SMF requesting the AMF to the radio access network device.
  • the SMF requests the AMF to send the indication information to the radio access network device through the Namf_Communication_N1N2MessageTransfer service, which is used to instruct the radio access network device to obtain wireless access
  • the congestion parameters of the network or the indication information can also be sent by the proxy entity, and forwarded to the radio access network device through SMF and AMF; or the indication information can also be sent by the proxy entity triggering SMF, and forwarded to the radio access network device through the AMF
  • the specific implementation manner is not limited in this embodiment.
  • the congestion parameters include buffer status information and/or congestion cause values of the radio access network.
  • the cache status information of the radio access network indicates the queue cache status of the radio access network, which may include but not limited to buffer status information of the media access control (media access control, MAC) layer, radio link control ( radio link control (RLC) layer cache status information, etc.; for example, the wireless access network device obtains the cache status information of the wireless access network according to the indication information, including the cache status information of the MAC layer (such as the queue cache ratio of the MAC layer, etc. ) and buffer status information of the RLC layer (for example, information such as the queue buffer ratio of the RLC layer).
  • the congestion cause value of the wireless access network indicates the cause of congestion in the wireless access network, which may specifically include but not limited to multi-user competition, wireless retransmission, etc.; for example, the wireless access network device obtains the wireless access network
  • the value of the cause of congestion in is multi-user competition, which means that the cause of congestion in the wireless access network is multi-user competition (for example, too many connected terminal devices lead to insufficient resources on the wireless access network side, resulting in network congestion ).
  • the congestion parameter is carried in the user plane General Packet Radio Service Tunneling Protocol (GPRStunneling protocol user plane, GTP-U) packet header, or the congestion parameter is carried in the transport layer protocol (such as TCP) header.
  • GPRStunneling protocol user plane, GTP-U General Packet Radio Service Tunneling Protocol
  • TCP transport layer protocol
  • the radio access network device sends the congestion parameter to the proxy entity.
  • the deployment mode of the proxy entity may include the following situations: the proxy entity and the UPF are co-located (that is, the proxy entity and the UPF can be regarded as one device), and the proxy entity and the UPF are separated (that is, the proxy entity and the UPF can be regarded as two different devices) ).
  • the wireless access network device may directly send the congestion parameter to the device co-established by the proxy entity and the UPF.
  • the radio access network device sends the data packet carrying the congestion parameter to the device co-established by the proxy entity and the UPF. Due to the tunnel mechanism between the radio access network device and the UPF, the data packet carrying the congestion parameter sent by the radio access network device can reach the UPF, that is, the proxy entity co-established with the UPF can receive the data packet.
  • the wireless access network device will directly send the data packet carrying the congestion parameter to the proxy entity based on the destination IP address . If the destination IP address of the packet carrying the congestion parameter is not the IP address of the proxy entity (for example, the destination IP address is the IP address of the AS), in one implementation, the wireless access network device can send the congestion parameter to the proxy entity through UPF .
  • the UPF receives the indication information or the UPF pre-configures a processing logic, so that when the UPF receives the data packet carrying the congestion parameter, it can identify the congestion parameter and perform corresponding processing (for example, directly forward it to the proxy entity).
  • the data packet carrying the congestion parameter whose destination IP address is the AS will pass through the gateway and then reach the AS. Then the data packet carrying the congestion parameter can also reach the proxy entity deployed at the gateway (that is, the proxy entity can also receive the congestion parameter). It can be understood that in this application, as long as the congestion parameter can reach the proxy entity, it is regarded as sending the congestion parameter to the proxy entity.
  • the radio access network device can send congestion parameters to the proxy entity in the following ways:
  • Mode 1 The wireless access network device sends the congestion parameter to the proxy entity in a channel-associated manner.
  • the channel-associated mode is to add the congestion parameter to the first data stream from the terminal device.
  • the wireless access network device may receive a first data flow from the terminal device, and the first data flow includes a first data packet; (for example, TCP) adding a congestion parameter to the header, and then sending the first data packet after adding the congestion parameter to the proxy entity.
  • the wireless access network device can directly add the congestion parameter to the uplink data stream to be sent, thereby reducing the number of packets sent by the wireless access network device.
  • the radio access network device generates a second data packet, where the second data packet includes a congestion parameter, and sends the second data packet to the proxy entity.
  • the wireless access network device reconstructs a second data packet, and adds a congestion parameter to the GTP-U header of the second data packet or the header of a transport layer protocol (such as TCP) (in this case, the data field of the second data packet is empty), or add a congestion parameter to the data field of the second data packet, and send the second data packet to the proxy entity.
  • the radio access network device does not need to wait for the arrival of the uplink data stream before sending the congestion parameter to the proxy entity, but can directly send the data packet carrying the congestion parameter to the proxy entity, which is beneficial to the rapid processing of the system.
  • Method 3 The wireless access network device provides the congestion parameter to the terminal device, and the terminal device provides the congestion parameter to the proxy entity through the third data packet, which may include the following steps:
  • the radio access network device sends a congestion parameter to the terminal device
  • the radio access network device receives a third data packet from the terminal device, where the third data packet includes a congestion parameter
  • the wireless access network device sends the third data packet to the proxy entity.
  • the wireless access network device sends a downlink data packet to the terminal device, and the downlink data packet includes congestion parameters; after receiving the downlink data packet, the terminal device obtains the congestion parameter by parsing the downlink data packet; the terminal device will receive the congestion parameter Add to the corresponding uplink data packet (for example, the third data packet), and send the third data packet to the radio access network device.
  • the third data packet may be an uplink data packet that the terminal device originally needs to send (that is, the third data packet includes service data), and the third data packet may also be a data packet reconstructed by the terminal device (that is, the third data packet package does not include business data), which is not limited in this embodiment.
  • the proxy entity performs a congestion control operation according to the congestion parameter.
  • the proxy entity can identify the network congestion caused by multi-user competition or wireless retransmission in the wireless access network according to the congestion parameters provided by the RAN side, and use the transport layer proxy architecture to adaptively apply BBR congestion control to the wireless network to achieve congestion control.
  • the proxy entity can perform congestion control operations according to the measurement information and congestion parameters; the measurement information includes the bottleneck bandwidth of the transmission path between the proxy entity and the terminal device and/or the round-trip delay of the transmission path. It can be understood that the measurement information here includes the important parameters in the BBR algorithm, the round-trip delay RTT and the bandwidth BW.
  • the RTT in this embodiment specifically refers to the RTT of the transmission path between the proxy entity and the terminal device
  • the BW specifically refers to The bottleneck bandwidth of the transmission path between the proxy entity and the end device.
  • the transmission path between the proxy entity and the terminal device includes a wired path and a wireless path
  • the wired path includes a transmission path from the proxy entity to the wireless access network device
  • the wireless path includes a transmission path from the wireless access network device to the terminal device.
  • the proxy entity can combine the measurement information of the BBR and the congestion parameters of the wireless access network to perform congestion control operations in the following ways:
  • Method 1 It is not detected that the round-trip delay of the transmission path reaches the minimum value of the delay record within the measurement period, the buffer status information indicates that the queue buffer ratio of the wireless access network is greater than or equal to the threshold, and the congestion cause value indicates that the congestion cause is wireless retransmission In the case of , the proxy entity reduces the sending rate of the data sender.
  • the proxy entity can determine that the transmission path between the proxy entity and the terminal device is caused by the congestion of the wireless path.
  • the proxy entity can reduce the rate of sending data to the terminal device more gently, instead of directly entering the PROBE_RTT state (that is, reducing the sending rate very aggressively). data rate), thereby optimizing the congestion control of the wireless access network.
  • the proxy entity reduces the rate of sending data to the terminal device relatively gently, for example, the proxy entity may directly reduce the transmission gain coefficient G to a small degree (for example, reduce the transmission gain coefficient to 80% of the original value), thereby reducing the wireless access rate.
  • the queue cache of the network it can also be that the proxy entity reduces the congestion window gain coefficient G' (for example, reducing the congestion window gain coefficient G' to 90% of the original value), thereby reducing the rate of sending data to the terminal device.
  • the specific implementation method is this embodiment Not limited.
  • Method 2 When the round-trip delay of the transmission path is not detected to reach the minimum delay record within the measurement period, and the cache status information indicates that the queue buffer ratio of the radio access network is less than or equal to the threshold, the proxy entity sends the data sender
  • the gain coefficient is set to a first preset value, and the size of the congestion window is set to a second preset value.
  • the proxy entity It can be determined that the congestion of the wired path causes the congestion of the transmission path between the proxy entity and the terminal device.
  • the congestion cause value in the congestion parameter may be multi-user competition, or may be wireless retransmission, or may also be that the congestion cause value is empty ( The RAN side may fail to recognize that congestion has occurred), which is not limited here.
  • the proxy entity can directly reduce the congestion window.
  • the transmission gain coefficient of the data sending end can be set to a first preset value
  • the minimum value for example, 4 maximum message segment lengths, ie the second preset value
  • the proxy entity sets the transmission gain coefficient of the data sending end to the first preset value, and set the size of the congestion window to a second preset value.
  • the congestion cause value indicates that the cause of congestion is multi-user competition (that is, the large queue buffer of the radio access network is caused by multi-user competition), in this case, the scheduling period of the data flow in the current network is large, and the User competition causes the resources of the wireless access network to be tight, and the proxy entity can directly reduce the congestion window.
  • the threshold for example, the queue buffer ratio of the radio access network is 80%, which is greater than the threshold value of 60%, indicating that the queue buffer of the current radio access network is relatively large
  • the congestion cause value indicates that the cause of congestion is multi-user competition (that is, the large queue buffer of the radio access network is caused by multi-user competition), in this case, the scheduling period of the data flow in the current network is large, and the User competition causes the resources of the wireless access network to be tight, and the proxy entity can directly reduce the congestion window.
  • the transmission gain coefficient of the data sending end can be set to the first preset value, and the size of the congestion window can be set to the second preset value. value; for specific implementation methods, refer to the corresponding examples in the above-mentioned method 2, and details will not be repeated here.
  • the congestion control operations described in the first to third methods above are mainly for the transport layer connection between the terminal device and the proxy entity.
  • This embodiment does not specifically limit the congestion control operation of the transport layer connection between the proxy entity and the AS.
  • the receiving window of the proxy entity in the transport layer connection between the proxy entity and the AS may be set based on the above congestion control operation and the queue buffer situation in the proxy entity.
  • the embodiment of the present application provides a communication method, in which the capability opening of the wireless access network device is used, so that the wireless access network device can obtain the congestion parameter of the wireless access network according to the indication information, and send the congestion parameter to the proxy entity ;
  • the proxy entity judges whether the wireless access network is congested according to the congestion parameter; the proxy entity can identify the congestion parameter of the wireless access network, so as to optimize the congestion control of the wireless network.
  • FIG. 4 is a schematic flowchart of when the communication method provided by the embodiment of the present application is applied to an actual network scenario.
  • the communication method provided by the embodiment of the present application is suitable for terminal devices to obtain low-latency services, such as edge computing scenarios, where a proxy entity is added on the network side to perform congestion control.
  • the terminal device triggers and completes a protocol data unit (protocol data unit, PDU) session establishment/modification process, and a transport layer connection is established between the terminal device and the application server, for example, a TCP connection is established between the UE and the AF/AS.
  • PDU protocol data unit
  • the proxy entity enables the proxy function, and completes the corresponding configuration of the segmented transport layer connection. For example, the proxy entity starts the proxy function and builds a segmented transport layer connection (such as a segmented TCP connection).
  • the segmented transport layer connection includes the transport layer connection from the terminal device to the proxy entity, and the transport layer connection from the proxy entity to the AF/AS. It can be understood that when the proxy entity enables the proxy function, the data packet carrying the congestion parameter can reach the proxy entity.
  • the SMF sends indication information to the AMF, where the indication information is used to instruct the radio access network device to obtain the congestion parameter of the radio access network.
  • the SMF requests the AMF to send indication information to the radio access network device through the Namf_Communication_N1N2MessageTransfer service; wherein, the indication information includes information such as an information opening indication and a data flow identifier, and the specific implementation may refer to the description of the indication information in step 301, specifically here No longer.
  • the SMF can send indication information during the PDU session modification process. For example, when the SMF receives the first request message from the terminal device (the first request message is used to request the establishment of a specific service data flow), the SMF based on the session The management policy is mapped to obtain the QoS requirements of the specific service data flow, and according to the QoS requirements, it is judged that it is necessary to indicate the opening capability of the RAN side, and then the SMF sends the indication information to the radio access network device through the AMF.
  • the proxy entity when the proxy entity enables the proxy function and builds a transport layer connection between the proxy entity and the terminal device, the proxy entity sends a second request message to the SMF, and the second request message is used to request the SMF to send
  • the RAN side sends an indication message to instruct the radio access network device to open the RAN side information of a specific service data flow; in this case, the SMF can obtain the corresponding QoS flow and send the indication message to the radio access network device.
  • the AMF sends indication information to the radio access network device.
  • the AMF sends indication information to the radio access network device through the N2PDU Session Request, and the indication information includes information opening indication, data flow identification and other information.
  • Method 1 The wireless access network device adds congestion parameters in the GTP-U packet header, and sends the congestion parameters to the proxy entity through the road-associated method:
  • the radio access network device acquires a congestion parameter and a first data stream from the terminal device, where the congestion parameter includes buffer state information and/or a congestion cause value of the radio access network, and the first data stream includes a first data packet.
  • the congestion parameter includes buffer state information and/or a congestion cause value of the radio access network
  • the first data stream includes a first data packet.
  • the radio access network device adds a congestion parameter to the GTP-U header of the first data packet.
  • the radio access network device sends the first data packet to the proxy entity.
  • the wireless access network device sending the first data packet may include the following two situations:
  • the wireless access network device directly sends the first data packet to the proxy entity.
  • the proxy entity receives the first data packet from the wireless access network device, and obtains the congestion parameters (including wireless access parameters) in the first data packet. network cache status information and/or congestion cause values).
  • Case 2 the radio access network device sends the first data packet to the UPF, and correspondingly, the UPF receives the first data packet.
  • the UPF obtains the congestion parameter from the GTP-U header of the first data packet, then adjusts the encapsulation position of the congestion parameter in the first data packet, and sends the adjusted first data packet to the proxy entity.
  • the proxy entity receives the first data packet from the UPF, and acquires the congestion parameters (including buffer state information and/or congestion cause value of the radio access network) in the first data packet.
  • UPF adjusts the encapsulation position of the congestion parameter to the transport layer protocol header part (such as in TCP options (option)) or the second tunneling protocol header.
  • the second tunnel protocol is a tunnel protocol (for example, SRv6 protocol) between the UPF and the proxy entity.
  • Method 2 The wireless access network device sends congestion parameters to the proxy entity by constructing a data packet:
  • the radio access network acquires congestion parameters, where the congestion parameters include cache status information and/or congestion cause values of the radio access network.
  • the congestion parameters include cache status information and/or congestion cause values of the radio access network.
  • the radio access network device constructs a second data packet (for example, an Echo data packet), where the second data packet includes buffer state information and/or a congestion cause value of the radio access network.
  • a second data packet for example, an Echo data packet
  • the radio access network device sends the second data packet to the proxy entity.
  • sending the second data packet by the wireless access network device may include the following two situations:
  • Case 1 the radio access network device directly sends the second data packet to the proxy entity.
  • the proxy entity receives the second data packet from the radio access network device, and acquires the congestion parameters (including buffer state information and/or congestion cause value of the radio access network) in the second data packet.
  • Case 2 the radio access network device sends the second data packet to the UPF.
  • the UPF receives the second data packet.
  • the UPF obtains the congestion parameter from the GTP-U header of the second data packet or the transport layer protocol (such as TCP) header, then adjusts the encapsulation position of the congestion parameter in the second data packet, and sends the adjusted second packet to the proxy entity. data pack.
  • the proxy entity receives the second data packet from the UPF, and acquires the congestion parameters (including the cache state information and/or the congestion cause value of the radio access network) in the second data packet.
  • 405a and 405b are parallel method steps. For example, when mode 1 is adopted, steps 405a-407a are performed. When mode 2 is adopted, perform steps 405b-407b.
  • step 408 is also included:
  • the proxy entity optimizes the congestion control of the wireless network according to the congestion parameter.
  • the proxy entity performs congestion control based on BBR measurement information (such as round-trip delay RTT, bandwidth BW, data volume, etc.) and congestion parameters (wireless access network cache status information and/or congestion cause value). Optimization. Specifically including but not limited to the following three methods:
  • Mode 1 It is not detected that the round-trip delay of the transmission path reaches the minimum delay record within the measurement period, and the buffer status information indicates that the queue buffer ratio of the wireless access network is greater than or equal to the threshold.
  • the proxy entity reduces the sending rate of the data sending end.
  • Method 2 When the round-trip delay of the transmission path is not detected to reach the minimum delay record within the measurement period, and the cache status information indicates that the queue buffer ratio of the radio access network is less than or equal to the threshold, the proxy entity sends the data sender
  • the gain coefficient is set to a first preset value, and the size of the congestion window is set to a second preset value.
  • Mode 3 When the cache status information indicates that the queue cache ratio of the wireless access network is greater than or equal to the threshold, and the congestion cause value indicates that the congestion cause is multi-user competition, the proxy entity sets the transmission gain coefficient of the data sending end to the first preset value, and set the size of the congestion window to a second preset value.
  • the proxy entity in the embodiment of the present application optimizes the original BBR congestion control mechanism.
  • the original BBR congestion control mechanism can also be reused, for example, it can directly switch to the PROBE_RTT state when performing congestion control.
  • steps 409-413 are also included:
  • the terminal device triggers a PDU session modification/release process.
  • the PDU session modification/release process may be triggered by the terminal device.
  • it may also be triggered by a policy control function (policy control function, PCF), or SMF, etc.
  • policy control function policy control function, PCF
  • SMF policy control function
  • the SMF triggers the PDU session modification/release process, which may be caused by the change of the subscription data. Or based on the request of the proxy entity, for example, the proxy entity is about to close the congestion control optimization of a specific service data flow, and the open information on the RAN side is no longer required. Then the proxy entity can request the SMF to trigger the PDU session modification/release process.
  • the SMF sends second indication information to the AMF.
  • the second indication information is used to instruct the radio access network device to disable the function and stop obtaining the congestion parameter.
  • the SMF requests the AMF to send the second indication information to the radio access network device through the Namf_Communication_N1N2MessageTransfer service.
  • the second indication information includes information such as an information closing indication and a data flow identifier, and the information closing indication is used to instruct the wireless access network device to close the function of obtaining congestion parameters.
  • the SMF may send the second indication information in the PDU session modification/release process.
  • the SMF may send the second indication information to the AMF.
  • the SMF sends the second indication information to the AMF.
  • the SMF sends the second indication information to the AMF .
  • the SMF may send the second indication information to the AMF.
  • the AMF sends second indication information to the radio access network device.
  • the AMF sends the second indication information to the wireless access network device through the N2PDU Session Request, instructing the wireless access network device to disable the function and stop obtaining the congestion parameter.
  • the radio access network device stops acquiring congestion parameters according to the second indication information. For example, stop acquiring the buffer state information and/or the congestion cause value of the radio access network.
  • the terminal device continues to execute the PDU session modification/release process until the process is completed.
  • FIG. 5 is another schematic flowchart of when the communication method provided by the embodiment of the present application is applied to an actual network scenario.
  • the communication method provided by the embodiment of the present application is suitable for terminal devices to obtain low-latency services, such as edge computing scenarios, where a proxy entity is added on the network side to perform congestion control.
  • the radio access network device sends the congestion parameter to the proxy entity in a different manner.
  • the terminal device triggers and completes the PDU session establishment/modification process, and establishes a transport layer connection between the terminal device and the application server.
  • the proxy entity enables the proxy function, and completes the corresponding configuration of the segmented transport layer connection.
  • the SMF sends indication information to the AMF.
  • the indication information is used to instruct the radio access network device to acquire the congestion parameters of the radio access network.
  • the AMF sends indication information to the radio access network device.
  • steps 501-504 for the specific implementation manner of steps 501-504, reference may be made to the description corresponding to steps 401-404 in the embodiment of FIG. 4 , and details are not repeated here.
  • the radio access network device provides the congestion parameter to the terminal device.
  • the terminal device provides congestion parameters to the proxy entity through the third data packet:
  • the radio access network device sends the congestion parameter to the terminal device.
  • the radio access network device may send the congestion parameter to the terminal device through radio resource control (radio resource control, RRC) signaling, or may add the congestion parameter in the downlink data packet from the AS (for example, in the option of the downlink data packet) .
  • RRC radio resource control
  • the radio access network device sends the downlink data packet to the terminal device.
  • the terminal device generates a third data packet, where the third data packet includes a congestion parameter.
  • the third data packet may be an uplink data packet originally required to be sent by the terminal device (that is, the third data packet includes service data).
  • the third data packet may also be a data packet reconstructed by the terminal device (that is, the third data packet does not include service data), which is not limited in this embodiment.
  • the terminal device sends the third data packet to the proxy entity through the wireless access network device.
  • sending the third data packet by the wireless access network device may include the following two situations:
  • the wireless access network device directly sends the third data packet to the proxy entity.
  • the proxy entity receives the third data packet from the radio access network device, and acquires the congestion parameters (including buffer state information and/or congestion cause value of the radio access network) in the third data packet.
  • Case 2 the wireless access network device sends the third data packet to the UPF.
  • the UPF receives the third data packet.
  • the UPF does not need to adjust the encapsulation position of the congestion parameter in the third data packet. That is to say, when the UPF and the proxy entity are separated, the UPF in the second case of this embodiment is used to forward the third data packet to the proxy entity, and does not process the third data packet.
  • case 1 and case 2 described in step 407a of the embodiment in FIG. 4 , and details are not repeated here.
  • Method 4 The wireless access network device adds the congestion parameter to the header of the transport layer protocol, and sends it to the proxy entity through the road-associated method:
  • the terminal device sends the first data packet to the radio access network device.
  • the wireless access network device adds a congestion parameter to the header of the transport layer protocol of the first data packet. Specifically, the wireless access network device adds the congestion parameter to the option field of the transport layer protocol of the first data packet.
  • the option field of the transport layer protocol in this embodiment may be an option field of the TCP protocol, or may be an option field of other transport layer protocols, which is not specifically limited here.
  • the radio access network device sends the first data packet to the proxy entity.
  • the wireless access network device sending the first data packet may include the following two situations:
  • the radio access network device directly sends the first data packet to the proxy entity.
  • the proxy entity receives the first data packet from the radio access network device, and acquires the congestion parameters (including buffer state information and/or congestion cause value of the radio access network) in the first data packet.
  • Case 2 the radio access network device sends the first data packet to the UPF.
  • the UPF receives the first data packet.
  • the UPF does not need to adjust the encapsulation position of the congestion parameter in the first data packet. That is to say, when the UPF and the proxy entity are separated, the UPF in the second case of this embodiment is used to forward the first data packet to the proxy entity, and does not process the first data packet.
  • case 1 and case 2 described in step 407a of the embodiment in FIG. 4 , and details are not repeated here.
  • step 508 is also included:
  • the proxy entity optimizes the congestion control of the wireless network according to the congestion parameter.
  • step 508 reference may be made to the description corresponding to step 408 in the embodiment of FIG. 4 , and details are not repeated here.
  • steps 509-513 are also included:
  • the terminal device triggers a PDU session modification/release process.
  • the SMF sends second indication information to the AMF.
  • the second indication information is used to instruct the radio access network device to disable the function and stop obtaining the congestion parameter.
  • the AMF sends second indication information to the radio access network device.
  • the radio access network device stops acquiring congestion parameters according to the second indication information.
  • the terminal device continues to execute the PDU session modification/release process until the process is completed.
  • the device or device provided in the embodiment of the present application may include a hardware structure and/or a software module.
  • the above-mentioned functions are realized in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • each functional module in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • FIG. 6 is a device 600 provided by an embodiment of the present application, which is used to implement the communication method in the foregoing method embodiment.
  • the device may also be a system on a chip.
  • the device 600 may include a communication interface 601, for example, the communication interface may be a transceiver, an interface, a bus, a circuit, or a device capable of implementing a transceiver function. Wherein, the communication interface 601 is used to communicate with other devices through a transmission medium, so that the apparatus used in the device 600 can communicate with other devices.
  • the device 600 may include at least one processor 602, configured to implement functions in the communication method provided by the embodiment of the present application. It can be understood that the communication interface 601 may also be a part of the processor 602 .
  • the processor 602 and the communication interface 601 are used to implement the method executed by the radio access network device in the method embodiments corresponding to FIG. 3 to FIG. 5 .
  • the device 600 may be a radio access network device, or a device in the radio access network device, or a device that can be matched and used with the radio access network device.
  • the processor 602 is configured to obtain the congestion parameters of the wireless access network according to the indication information, and the indication information is used to instruct the wireless access network equipment to obtain the congestion parameters of the wireless access network, and the congestion parameters include buffer status information of the wireless access network and/or congestion cause values.
  • the communication interface 601 is used to send congestion parameters to the proxy entity.
  • the steps performed by the communication interface 601 and the processor 602 can use the capability opening of the radio access network equipment to obtain the congestion parameters of the radio access network (including the cache status information and/or the congestion cause value of the radio access network ), so as to judge whether the wireless access network is congested; and send the congestion parameter to the proxy entity, which is beneficial to realize the congestion control of the wireless network.
  • the processor 602 and the communication interface 601 are used to implement the method executed by the proxy entity in the method embodiments corresponding to FIG. 3 to FIG. 5 .
  • the device 600 is a proxy entity, and may also be a device in the proxy entity, or a device that can be matched and used with the proxy entity.
  • the communication interface 601 is configured to receive congestion parameters of the radio access network, where the congestion parameters include cache status information and/or congestion cause values of the radio access network.
  • the processor 602 is configured to perform congestion control operations according to the congestion parameters.
  • the steps performed by the communication interface 601 and the processor 602 enable the proxy entity to identify the congestion parameters of the wireless access network, and perform congestion control based on the congestion parameters, thereby realizing the congestion control of the wireless network.
  • the processor 602 and the communication interface 601 are used to implement the method executed by the user plane functional network element in the method embodiments corresponding to FIG. 3 to FIG. 5 .
  • the device 600 is a user plane functional network element, or may be a device in the user plane functional network element, or a device that can be matched and used with the user plane functional network element.
  • the communication interface 601 is used for receiving data packets, and the data packets include congestion parameters of the radio access network.
  • the processor 602 is configured to adjust the encapsulation position of the congestion parameter in the data packet.
  • the communication interface 601 is also used to send the adjusted data packet to the proxy entity.
  • the steps executed by the communication interface 601 and the processor 602 can adjust the encapsulation position of the congestion parameter in the data packet, which is beneficial for the proxy entity to identify the congestion parameter.
  • the processor 602 and the communication interface 601 are used to implement the method executed by the terminal device in the method embodiments corresponding to FIG. 3 to FIG. 5 .
  • the device 600 is a terminal device, and may also be a device in the terminal device, or a device that can be matched and used with the terminal device.
  • the communication interface 601 is used for receiving congestion parameters of the radio access network.
  • the processor 602 is configured to generate a third data packet, where the third data packet includes a congestion parameter.
  • the communication interface 601 is also used to send the third data packet to the proxy entity.
  • the steps performed by the communication interface 601 and the processor 602 enable the terminal device to generate or reconstruct the third data packet by itself according to the congestion parameter, which facilitates sending the congestion information to the proxy entity without adjusting the encapsulation of the congestion parameter Location.
  • Device 600 may also include at least one memory 603 for storing program instructions and/or data.
  • the memory 603 is coupled to the processor 602 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 602 may cooperate with memory 603 .
  • Processor 602 may execute program instructions stored in memory 603 . At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium among the communication interface 601, the processor 602, and the memory 603.
  • the memory 603, the processor 602, and the communication interface 601 are connected through a bus 604.
  • the bus is represented by a thick line in FIG. 6, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 6 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application can be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • FIG. 7 is a device 700 provided by an embodiment of the present application.
  • the device may include a one-to-one corresponding module for executing the methods/operations/steps/actions described in the examples corresponding to FIG. 3 to FIG. It can be implemented by combining hardware circuits with software.
  • the apparatus may include a processing unit 701 and a transceiver unit 702 .
  • the apparatus 700 may be a radio access network device, or a device in the radio access network device, or a device that can be matched with the radio access network device.
  • the processing unit 701 is configured to acquire the congestion parameter of the radio access network according to the indication information.
  • the indication information is used to instruct the radio access network device to acquire the congestion parameters of the radio access network.
  • the congestion parameters include buffer status information and/or congestion cause values of the radio access network.
  • the transceiver unit 702 is configured to send the congestion parameter to the proxy entity.
  • the steps performed by the processing unit 701 and the transceiver unit 702 can use the capability opening of the radio access network equipment to obtain the congestion parameters of the radio access network (including the cache status information and/or the congestion cause value of the radio access network ), so as to determine whether the wireless access network is congested. And the congestion parameter is sent to the proxy entity, which is beneficial to realize the congestion control of the wireless network.
  • the device 700 may be a proxy entity, or a device in the proxy entity, or a device that can be matched with the proxy entity.
  • the transceiving unit 702 is configured to receive congestion parameters of the wireless access network, where the congestion parameters include cache status information and/or congestion cause values of the wireless access network.
  • the processing unit 701 is configured to perform congestion control operations according to congestion parameters. For the specific execution process, refer to the detailed description of the operations performed by the proxy entity in the method examples shown in FIG. 3 to FIG. 5 , which will not be repeated here.
  • the steps performed by the transceiving unit 702 and the processing unit 701 enable the proxy entity to identify the congestion parameters of the wireless access network, and perform congestion control based on the congestion parameters, thereby realizing congestion control of the wireless network.
  • the device 700 may be a user plane functional network element, or a device in the user plane functional network element, or a device that can be matched and used with the user plane functional network element.
  • the transceiver unit 702 is configured to receive data packets, and the data packets include congestion parameters of the wireless access network.
  • the processing unit 701 is configured to adjust the encapsulation position of the congestion parameter in the data packet.
  • the transceiver unit 702 is also configured to send the adjusted data packet to the proxy entity.
  • the steps performed by the transceiver unit 702 and the processing unit 701 can adjust the encapsulation position of the congestion parameter in the data packet, which is beneficial for the proxy entity to identify the congestion parameter.
  • the device 700 may be a terminal device, or a device in the terminal device, or a device that can be matched with the terminal device.
  • the transceiver unit 702 is configured to receive congestion parameters of the wireless access network.
  • the processing unit 701 is configured to generate a third data packet, where the third data packet includes a congestion parameter.
  • the transceiver unit 702 is further configured to send the third data packet to the proxy entity.
  • the specific execution process refer to the detailed description of the operations performed by the terminal device in the method examples shown in FIG. 3 to FIG. 5 , which will not be repeated here.
  • the steps performed by the transceiver unit 702 and the processing unit 701 enable the terminal device to generate or reconstruct the third data packet by itself according to the congestion parameter, which facilitates sending congestion information to the proxy entity, and does not need to adjust the encapsulation of the congestion parameter Location.
  • An embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a program or an instruction, and when the program or instruction is run on a computer, the computer executes the communication shown in Figure 3 to Figure 5 method.
  • An embodiment of the present application provides a chip or a chip system, the chip or chip system includes at least one processor and an interface, the interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to execute 3 to the communication method shown in Figure 5.
  • the interface in the chip may be an input/output interface, a pin or a circuit, and the like.
  • the chip system in the above aspect can be a system on chip (system on chip, SOC), and can also be a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • the chip or the chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • the technical solutions provided by the embodiments of the present application may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general computer, a special computer, a computer network, a network device, a terminal device or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium.
  • the various embodiments may refer to each other, for example, the methods and/or terms between the method embodiments may refer to each other, such as the functions and/or terms between the device embodiments Or terms may refer to each other, for example, functions and/or terms between the apparatus embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及系统,该通信方法中利用无线接入网设备能力开放,无线接入网设备可以根据指示信息获取无线接入网的拥塞参数,从而判断无线接入网是否发生拥塞;并且无线接入网设备可以向代理实体发送拥塞参数,利用代理实体可以识别无线接入网的拥塞参数,从而能够针对无线网络的拥塞控制进行优化。

Description

一种通信方法、装置及系统
本申请要求于2021年12月9日提交中国国家知识产权局、申请号为202111501215.8、申请名称为“一种通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及系统。
背景技术
通信网络处在一个共享的环境,因此有可能因为多方通信使得网络拥堵。为了避免发送方发送的数据填满整个网络,引入了拥塞控制机制。拥塞控制机制中为了调节发送方所要发送的数据量,定义了拥塞窗口的概念。拥塞窗口为发送方要维护的一个状态变量,拥塞窗口可以根据网络的拥塞程度动态变化。当网络中存在多用户竞争导致拥塞程度较大时,降低拥塞窗口的大小;当网络的拥塞程度较小时,保持拥塞窗口的大小在门限范围内。但是,移动通信网络不同于有线网络,造成拥塞的原因除了多用户竞争,还有无线侧的拥塞(例如无线侧的重传导致的拥塞)。无线侧的拥塞值得关注。
发明内容
本申请实施例提供一种通信方法、装置及系统,其中,通信方法基于有线网络的拥塞控制机制和传输层代理机制,利用无线侧能力开放,能够针对无线网络的拥塞控制进行优化。
第一方面,本申请实施例提供一种通信方法,该通信方法由无线接入网设备和代理实体之间的交互实现。其中,无线接入网设备根据指示信息获取无线接入网的拥塞参数,并向代理实体发送拥塞参数;对应的,代理实体接收拥塞参数,并根据拥塞参数,执行拥塞控制操作。通过该方法,利用无线接入网设备能力开放,可以获取无线接入网的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值),从而判断无线接入网是否发生拥塞;并且,利用代理实体可以识别无线接入网的拥塞参数,从而能够针对无线网络的拥塞控制进行优化。
在一种可能的实施方式中,无线接入网设备通过随路方式向所述代理实体发送拥塞参数,其中,随路方式为在来自终端设备的第一数据流中添加拥塞参数。通过该方法,无线接入网设备可以直接将拥塞参数添加至上行数据流中,并通过上行数据流传输至代理实体,有利于简化处理流程。
在一种可能的实施方式中,随路方式为在第一数据流的第一数据包的用户面通用分组无线服务隧道协议G-TPU包头或者传输层协议头部添加拥塞参数。通过该方法,当拥塞参数承载于G-TPU包头时,可以实现复用3GPP协议包头;当拥塞参数承载于传输层协议头部时,可以实现复用现有的上行数据包。
在一种可能的实施方式中,无线接入网设备生成第二数据包(第二数据包包括拥塞参数),并向代理实体发送第二数据包。通过该方法,无线接入网设备可以自行生成第二数据包,第二数据包不包括上行数据流的业务数据,则无需等待上行数据流,有利于更快速地向代理实 体发送拥塞信息。
在一种可能的实施方式中,无线接入网设备向终端设备发送拥塞参数,再接收来自终端设备的第三数据包,第三数据包包括拥塞参数;无线接入网设备向代理实体发送第三数据包。通过该方法,无线接入网设备可以向终端设备发送拥塞参数,通过终端设备自行生成或重新构造第三数据包,从而实现向代理实体发送拥塞信息。
在一种可能的实施方式中,无线接入网设备通过用户面功能网元向代理实体发送拥塞参数。也就是说,代理实体可以和用户面功能网元是分别部署的两个实体。用户面功能网元可以将拥塞参数转发给代理实体,以使代理实体能够收到拥塞参数,进而实现拥塞控制。
在一种可能的实施方式中,无线接入网设备接收来自会话管理功能实体的指示信息。也就是说,代理实体可以通过会话管理功能实体指示无线接入网设备能力开放。
在一种可能的实施方式中,代理实体根据测量信息和拥塞参数,执行拥塞控制操作,测量信息包括代理实体与终端设备之间的传输路径的瓶颈带宽和/或传输路径的往返时延。通过该方法,代理实体还可以参考代理实体与终端设备之间的传输路径的瓶颈带宽和/或传输路径的往返时延,有利于更准确地判断无线网络的拥塞情况。
在一种可能的实施方式中,在测量周期内未检测到传输路径的往返时延RTT达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为无线重传的情况下,代理实体降低数据发送端的发送速率。通过该方法,当测量周期内没有出现原来的最小RTT值或更小的RTT值,并且无线接入网的队列缓存较大时,结合无线接入网的拥塞原因值(例如当前无线信道不稳定导致队列缓存较大,但是无线信道有可能在较短时间内恢复,从而降低队列缓存),代理实体不用非常激进地缩减拥塞窗口,而是较为缓和地降低向终端设备发送数据的速率,优化无线网络的拥塞控制。
在一种可能的实施方式中,在测量周期内未检测到传输路径的往返时延达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例小于或等于阈值的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。通过该方法,当测量周期内没有出现原来的最小RTT值或更小的RTT值,并且无线接入网的队列缓存较小时(表示当前无线信道比较稳定,队列缓存也较小,则造成拥塞的主要原因是无线接入网与代理实体之间的传输路径的队列拥塞),代理实体将直接缩减拥塞窗口,并且降低向终端设备发送数据的速率。
在一种可能的实施方式中,在缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为多用户竞争的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。通过该方法,缓存状态信息和拥塞原因值指示多流竞争导致无线侧资源紧张,流的调度周期较大,则代理实体将直接缩减拥塞窗口,并且降低向终端设备发送数据的速率。
在一种可能的实施方式中,无线接入网的缓存状态信息包括媒体接入控制层的缓存状态信息和/或无线链路控制层的缓存状态信息,拥塞原因值包括多用户竞争或无线重传。
在一种可能的实施方式中,拥塞参数承载于用户面通用分组无线服务隧道协议包头,或者,拥塞参数承载于传输层协议头部。
在一种可能的实施方式中,指示信息包括数据流标识,数据流标识用于标识第一数据流。也就是说,指示信息用于指示无线接入网设备获取第一数据流的拥塞参数。
第二方面,本申请实施例提供一种通信方法,该通信方法由无线接入网设备所实现,也可以由无线接入网设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现 全部或部分无线接入网设备功能的逻辑模块或软件实现。其中,无线接入网设备根据指示信息,获取无线接入网的拥塞参数,并向代理实体发送拥塞参数;指示信息用于指示无线接入网设备获取无线接入网的拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。通过该方法,利用无线接入网设备能力开放,可以获取无线接入网的拥塞参数,并向代理实体发送该拥塞参数,有利于针对无线网络的拥塞控制进行优化。
在一种可能的实施方式中,无线接入网设备通过随路方式向所述代理实体发送拥塞参数,其中,随路方式为在来自终端设备的第一数据流中添加拥塞参数。通过该方法,无线接入网设备可以直接将拥塞参数添加至上行数据流中,并通过上行数据流传输至代理实体,有利于简化处理流程。
在一种可能的实施方式中,随路方式为在第一数据流的第一数据包的用户面通用分组无线服务隧道协议G-TPU包头或者传输层协议头部添加拥塞参数。通过该方法,当拥塞参数承载于G-TPU包头时,可以实现复用3GPP协议包头;当拥塞参数承载于传输层协议头部时,可以实现复用现有的上行数据包。
在一种可能的实施方式中,无线接入网设备生成第二数据包(第二数据包包括拥塞参数),并向代理实体发送第二数据包。通过该方法,无线接入网设备可以自行生成第二数据包,第二数据包不包括上行数据流的业务数据,则无需等待上行数据流,有利于更快速地向代理实体发送拥塞信息。
在一种可能的实施方式中,无线接入网设备向终端设备发送拥塞参数,再接收来自终端设备的第三数据包,第三数据包包括拥塞参数;无线接入网设备向代理实体发送第三数据包。通过该方法,无线接入网设备可以向终端设备发送拥塞参数,通过终端设备自行生成或重新构造第三数据包,从而实现向代理实体发送拥塞信息。
在一种可能的实施方式中,无线接入网设备通过用户面功能网元向代理实体发送拥塞参数。也就是说,代理实体可以和用户面功能网元是分别部署的两个实体。用户面功能网元可以将拥塞参数转发给代理实体,以使代理实体能够收到拥塞参数,进而实现拥塞控制。
在一种可能的实施方式中,无线接入网设备接收来自会话管理功能实体的指示信息。也就是说,代理实体可以通过会话管理功能实体指示无线接入网设备能力开放。
在一种可能的实施方式中,无线接入网的缓存状态信息包括媒体接入控制层的缓存状态信息和/或无线链路控制层的缓存状态信息,拥塞原因值包括多用户竞争或无线重传。
在一种可能的实施方式中,拥塞参数承载于用户面通用分组无线服务隧道协议包头,或者,拥塞参数承载于传输层协议头部。
在一种可能的实施方式中,指示信息包括数据流标识,数据流标识用于标识第一数据流。也就是说,指示信息用于指示无线接入网设备获取第一数据流的拥塞参数。
在一种可能的实施方式中,无线接入网设备接收第二指示信息,第二指示信息指示无线接入网设备停止获取无线接入网拥塞参数。通过该方法,当无线接入网设备无需再获取拥塞参数时,可以直接指示无线接入网设备停止获取拥塞参数,提高网络的灵活性。
第三方面,本申请实施例提供一种通信方法,该通信方法由代理实体所实现,也可以由代理实体的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分代理实体功能的逻辑模块或软件实现。其中,代理实体接收无线接入网的拥塞参数,并根据拥塞参数,执行拥塞控制操作;拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。通过该方法,代理实体可以识别无线接入网的拥塞参数,并基于拥塞参数进行拥塞控制,从而能够针对无线网络的拥塞控制进行优化。
在一种可能的实施方式中,代理实体根据测量信息和拥塞参数,执行拥塞控制操作,测量信息包括代理实体与终端设备之间的传输路径的瓶颈带宽和/或传输路径的往返时延。通过该方法,代理实体还可以参考代理实体与终端设备之间的传输路径的瓶颈带宽和/或传输路径的往返时延,有利于更准确地判断无线网络的拥塞情况。
在一种可能的实施方式中,在测量周期内未检测到传输路径的往返时延RTT达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为无线重传的情况下,代理实体降低数据发送端的发送速率。通过该方法,当测量周期内没有出现原来的最小RTT值或更小的RTT值,并且无线接入网的队列缓存较大时,结合无线接入网的拥塞原因值(例如当前无线信道不稳定导致队列缓存较大,但是无线信道有可能在较短时间内恢复,从而降低队列缓存),代理实体不用非常激进地缩减拥塞窗口,而是较为缓和地降低向终端设备发送数据的速率,优化无线网络的拥塞控制。
在一种可能的实施方式中,在测量周期内未检测到传输路径的往返时延达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例小于或等于阈值的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。通过该方法,当测量周期内没有出现原来的最小RTT值或更小的RTT值,并且无线接入网的队列缓存较小时(表示当前无线信道比较稳定,队列缓存也较小,则造成拥塞的主要原因是无线接入网与代理实体之间的传输路径的队列拥塞),代理实体将直接缩减拥塞窗口,并且降低向终端设备发送数据的速率。
在一种可能的实施方式中,在缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为多用户竞争的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。通过该方法,缓存状态信息和拥塞原因值指示多流竞争导致无线侧资源紧张,流的调度周期较大,则代理实体将直接缩减拥塞窗口,并且降低向终端设备发送数据的速率。
在一种可能的实施方式中,无线接入网的缓存状态信息包括媒体接入控制层的缓存状态信息和/或无线链路控制层的缓存状态信息,拥塞原因值包括多用户竞争或无线重传。
在一种可能的实施方式中,拥塞参数承载于用户面通用分组无线服务隧道协议包头,或者,拥塞参数承载于传输层协议头部。
第四方面,本申请实施例提供一种通信方法,该通信方法由用户面功能网元所实现,也可以由用户面功能网元的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分用户面功能网元功能的逻辑模块或软件实现。其中,用户面功能网元接收数据包,数据包包括无线接入网的拥塞参数;用户面功能网元调整数据包中拥塞参数的封装位置,并向代理实体发送调整后的数据包。通过该方法,假设用户面功能网元与代理实体是分别设置的两个功能实体,用户面功能网元于代理实体之前先接收拥塞参数,并调整拥塞参数在数据包中的封装位置,有利于代理实体识别拥塞参数。
在一种可能的实施方式中,在拥塞参数的封装位置为用户面通用分组无线服务隧道协议包头的情况下,将拥塞参数的封装位置调整至传输层协议头部或第二隧道协议头部,第二隧道协议为用户面功能网元与代理实体之间的隧道协议。通过该方法,将拥塞参数封装至传输层协议头部或第二隧道协议头部,有利于代理实体识别拥塞参数。
在一种可能的实施方式中,在拥塞参数的封装位置为传输层协议头部的情况下,将拥塞参数的封装位置调整至第二隧道协议头部。
第五方面,本申请实施例提供一种通信方法,该通信方法由终端设备所实现,也可以由 终端设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。其中,终端设备接收无线接入网的拥塞参数,并生成第三数据包,第三数据包包括拥塞参数。终端设备向代理实体发送拥塞参数。通过该方法,终端设备可以根据拥塞参数自行生成或重新构造第三数据包,可以实现向代理实体发送拥塞信息,并且无需调整拥塞参数的封装位置。
在一种可能的实施方式中,终端设备在第一数据流的第一数据包的用户面通用分组无线服务隧道协议包头或者传输层协议头部添加拥塞参数,将第一数据包重新构造为第三数据包;或者,终端设备根据拥塞参数生成第三数据包,第三数据包不包括第一数据流中的业务数据。
在一种可能的实施方式中,拥塞参数承载于用户面通用分组无线服务隧道协议包头,或者,拥塞参数承载于传输层协议头部。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理单元和收发单元。其中,处理单元用于根据指示信息,获取无线接入网的拥塞参数。指示信息用于指示无线接入网设备获取无线接入网的拥塞参数。拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。收发单元,用于向代理实体发送拥塞参数。
其中,关于拥塞参数、指示信息、如何向代理实体发送拥塞参数等的具体实现方式可以参考第二方面中对应的描述,具体此处不再赘述。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理单元和收发单元。其中,收发单元用于接收无线接入网的拥塞参数。拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。处理单元用于根据拥塞参数,执行拥塞控制操作。
其中,关于拥塞参数、指示信息、如何接收拥塞参数、如何根据拥塞参数执行拥塞控制操作等的具体实现方式可以参考第三方面中对应的描述,具体此处不再赘述。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理单元和收发单元。其中,收发单元用于接收数据包,数据包包括无线接入网的拥塞参数。处理单元用于调整数据包中拥塞参数的封装位置。收发单元还用于向代理实体发送调整后的数据包。
其中,关于拥塞参数、如何调整拥塞参数的封装位置等的具体实现方式可以参考第四方面中对应的描述,具体此处不再赘述。
第九方面,本申请实施例提供一种通信装置,该通信装置包括处理单元和收发单元。其中,收发单元用于接收无线接入网的拥塞参数。处理单元用于生成第三数据包,第三数据包包括拥塞参数。收发单元还用于向代理实体发送第三数据包。
其中,关于拥塞参数、如何生成第三数据包等的具体实现方式可以参考第五方面中对应的描述,具体此处不再赘述。
第十方面,本申请实施例提供一种无线接入网设备,该无线接入网设备包括一个或多个处理器和存储器;存储器与一个或多个处理器耦合,存储器存储有计算机程序,一个或多个处理器执行计算机程序时,该设备执行如下操作:
根据指示信息,获取无线接入网的拥塞参数,指示信息用于指示无线接入网设备获取无线接入网的拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值;
向代理实体发送拥塞参数。
其中,关于拥塞参数、指示信息、如何向代理实体发送拥塞参数等的具体实现方式可以参考第二方面中对应的描述,具体此处不再赘述。
第十一方面,本申请实施例提供一种代理实体,该代理实体包括一个或多个处理器和存储器;存储器与一个或多个处理器耦合,存储器存储有计算机程序,一个或多个处理器执行 计算机程序时,该设备执行如下操作:
接收无线接入网的拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值;
根据拥塞参数,执行拥塞控制操作。
其中,关于拥塞参数、指示信息、如何接收拥塞参数、如何根据拥塞参数执行拥塞控制操作等的具体实现方式可以参考第三方面中对应的描述,具体此处不再赘述。
第十二方面,本申请实施例提供一种用户面功能网元,该用户面功能网元包括一个或多个处理器和存储器;存储器与一个或多个处理器耦合,存储器存储有计算机程序,一个或多个处理器执行计算机程序时,该设备执行如下操作:
实体接收数据包,数据包包括无线接入网的拥塞参数;
调整数据包中拥塞参数的封装位置;
向代理实体发送调整后的数据包。
其中,关于拥塞参数、如何调整拥塞参数的封装位置等的具体实现方式可以参考第四方面中对应的描述,具体此处不再赘述。
第十三方面,本申请实施例提供一种终端设备,该终端设备包括一个或多个处理器和存储器;存储器与一个或多个处理器耦合,存储器存储有计算机程序,一个或多个处理器执行计算机程序时,该设备执行如下操作:
接收无线接入网的拥塞参数;
生成第三数据包,第三数据包包括拥塞参数;
向代理实体发送第三数据包。
其中,关于拥塞参数、如何生成第三数据包等的具体实现方式可以参考第五方面中对应的描述,具体此处不再赘述。
第十四方面,本申请实施例提供一种通信系统,该通信系统包括第五方面至第九方面提供的通信装置的一种或多种装置,或者包括如第十方面提供的无线接入网设备、第十一方面提供的代理实体、第十二方面提供的用户面功能网元以及第十三方面提供的终端设备中的一种或多种。该通信实体实现的功能的具体描述参考第一方面中的描述,具体此处不再赘述。
第十五方面,本申请实施例提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序被处理器执行以实现上述第一方面至第五方面,以及第一方面至第五方面的可能实现的方式中的任一项所述的方法。
第十六方面,本申请实施例提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第五方面,以及第一方面至第五方面的可能实现的方式中的任一项所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十七方面,本申请实施例中提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行上述第一方面至第五方面,以及第一方面至第五方面的可能实现的方式中的任一项所述的方法。
附图说明
图1为本申请实施例提供的一种网络架构的示意图;
图2为一种BBR算法的状态转移图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的通信方法应用于实际的网络场景中时的一种流程示意图;
图5为本申请实施例提供的通信方法应用于实际的网络场景中时的另一种流程示意图;
图6为本申请实施例提供的一种设备的示意图;
图7为本申请实施例提供的一种装置的示意图。
具体实施方式
在无线通信系统中,包括通信设备,通信设备间可以利用空口资源进行无线通信。其中,通信设备可以包括无线接入网设备和终端设备,无线接入网设备还可以称为无线网络侧设备。空口资源可以包括时域资源、频域资源、码资源和空间资源中至少一个。在本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
通信网络处在一个共享的环境,因此有可能因为多方通信使得网络拥堵。例如,在网络出现拥堵时,如果继续发送大量数据包,可能会导致数据包时延增大、数据包丢失等;按照传输层协议(例如传输层控制协议(transmission control protocol,TCP))就会重新传输数据(简称为重传),但是重传会导致网络的负担加重,进一步造成更大的延迟以及更多的丢包,这个情况就会进入恶性循环被不断地放大。因此,为了避免发送方发送的数据填满整个网络,引入了拥塞控制机制。拥塞控制机制中为了调节发送方所要发送的数据量,定义了拥塞窗口的概念。拥塞窗口为发送方要维护的一个状态变量,拥塞窗口可以根据网络的拥塞程度动态变化。当网络的拥塞程度较大时,降低拥塞窗口的大小;当网络的拥塞程度较小时,保持拥塞窗口的大小在门限范围内(以便把更多的数据包分组发送出去)。
进一步,瓶颈带宽和往返时延(bottleneck bandwidth and round trip time,BBR)算法可以优化拥塞控制机制。BBR算法的原理是在允许有一定丢包率的网络链路上最大化利用网络链路的带宽,并且降低网络链路上的数据包的缓存的占用率,从而在保障带宽的情况下降低延迟。例如,BBR算法执行时会实时的监测往返时延(round trip time,RTT)和带宽(band width,BW),并实时检测最小RTT和最大BW。如果在测量周期(例如连续10秒)内,监测到的RTT中不存在最小RTT,那么认为出现拥塞(例如多流竞争导致的拥塞),将拥塞窗口减小到最小值。但是,移动通信网络不同于有线网络,造成拥塞的原因除了多流竞争,还有无线侧的拥塞(例如无线侧的重传导致的拥塞)。因此,无线侧的拥塞值得关注。
为了解决上述问题,本申请实施例提供一种通信方法,该方法利用无线接入网设备能力开放,可以获取无线接入网的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值), 从而判断无线接入网是否发生拥塞;并且,利用代理实体可以识别无线接入网的拥塞参数,从而能够针对无线网络的拥塞控制进行优化。
其中,本申请实施例提供的通信方法可以应用于如图1所示的一种网络架构中,该网络架构包括但不限于以下设备或网元:终端设备、无线接入网(radio access network,RAN)设备、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、应用功能(application function,AF)网元、应用服务器(application server,AS)、用户面功能(user plane function,UPF)网元和代理实体等。
具体来说,终端设备可以是用户设备(user equipment,UE)、终端、手机、物联网终端设备(例如车载设备、可穿戴设备等),5G网络中的终端设备、未来演进的PLMN网络中的终端设备或下一代网络(例如6G)中的终端设备等。无线接入网设备可以是能和终端设备进行通信的设备;无线接入网设备可以是基站(base station,BS)、中继站或接入点(access point,AP)。其中,基站可以是长期演进(long term evolution,LTE)系统中的evolutional NodeB(简称为eNB或eNodeB),还可以是新无线(new radio,NR)网络中的gNodeB,还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是无线保真(wireless fidelity,WiFi)网络中的AP、全球微波互联接入(worldwide interoperability for microwave access,WiMAX)网络中的BS等。AMF主要负责移动网络中的移动性管理,如用户位置更新、用户注册网络、用户切换等。SMF主要负责移动网络中的会话管理(如会话建立、修改、释放)、网络协议(Internet protocol,IP)地址分配和管理、UPF的选择和控制等。AF主要负责向核心网提供业务,如影响业务路由、进行策略控制等。AS主要负责提供应用服务。UPF主要负责提供用户报文的转发、处理、会话锚点、服务质量(quality of service,QoS)策略执行等。代理实体用于进行拥塞控制。
为了便于理解,下面对本申请实施例涉及的相关名词的定义进行详细介绍。
1、BBR拥塞控制:BBR拥塞控制(也称为BBR算法)的目的是在允许有一定丢包率的网络链路上最大化地利用网络链路的带宽,并且降低网络链路上的数据包的缓存的占用率,从而在保障带宽的情况下,降低延迟。在BBR算法中,通过监测在一段时间内的RTT,判断是否出现(touch)历史最小RTT(即之前任意时刻检测到的最小RTT)或者小于历史最小RTT,来判断网络链路是否产生拥塞;若没有达到历史最小RTT或者小于历史最小RTT,则确定网络链路产生拥塞;反之,若达到历史最小RTT或者小于历史最小RTT,则确定网络链路未产生拥塞。
其中,BBR算法中包括以下几个重要参数:
(1)往返时延RTT:表示从数据发送端发送数据开始,到数据发送端接收到来自数据接收端反馈(数据接收端收到数据后便立即反馈)的确认(acknowledge,ACK)时总共经历的时延。可以理解的是,每一个数据包分别对应一个RRT。
(2)带宽BW:表示应用服务器与终端设备之间的通信链路的带宽。其中,带宽是指该通信链路上每秒所能成功传送的数据总量,单位是比特每秒(bit/s)。假设应答的数据总量(即确认的数据总量)表示为delivered,应答数据总量所用的时间表示为interval_us,则BW=delivered/interval_us。可以理解的是,带宽表示了网络当前的实际处理能力;例如,计算delivered时,数据发送端首先确定interval_us内接收到数据接收端反馈的ACK,再计算所有反馈的ACK对应的数据总量(即数据发送端在interval_us内成功发送数据的总比特数);可以理解的是,反馈的ACK包括正常的ACK,重传后的ACK,或者选择性确认(selective  acknowledgment,SACK),即只要是被数据接收端应答了的都要进行计数。
(3)发送增益系数(gain coefficient,G):表示数据发送端发送数据包时的增益系数。例如,G=2表示以当前发送数据包的速率的两倍发送数据;G=1表示以当前的发送数据包的速率发送数据,即速率保持不变。
(4)拥塞窗口:表示数据发送端在拥塞控制情况下一次最多能发送的数据包的数量。拥塞窗口的大小取决于网络的拥塞程度,并且动态变化。数据发送端控制拥塞窗口的原则是:只要网络没有出现拥塞,拥塞窗口就再增大一些,以便把更多的数据包分组发送出去;但只要网络出现拥塞,拥塞窗口就减少一些,以减少在网络中传输的数据包的数量。
具体来说,BBR根据网络的拥塞行为定义了四种状态,包括状态一(STARTUP状态)、状态二(DRAIN状态)、状态三(PROBE_BW状态)和状态四(PROBE_RTT状态),如图2所示。
状态一(STARTUP状态):表示数据发送端加速抢占带宽的状态,即数据发送端增速发送,例如G=2~3;在STARTUP状态期间数据发送端一直更新最小RTT以及最大BW。
状态二(DRAIN状态):数据发送端在STARTUP状态下实时监测BW,并将BW与历史最大BW进行比较;若监测BW相较于历史最大BW的增幅不超过25%的情况超过三次,那么认为此时BW即将达到链路极限,此时从STARTUP状态进入DRAIN状态(即此时链路中的缓存数据即将过载,因此需要调整相关参数以减少链路中的缓存数据)。例如,将发送增益系数G调整为G=1000/2885,设置拥塞窗口增益系数G′=(1000/2005)+1。当处于DRAIN状态时,数据发送端一直更新最小RTT以及最大BW。
状态三(PROBE_BW状态):表示通信链路即将到达稳态,此时进入PROBE_BW状态。具体来说,数据发送端在DRAIN状态下,若计算得到单位时间内数据发送端在通信链路中发的数据包的数量(In-packet)小于或等于当前最大带宽时延积(bandwidth delay product,BDP,BDP=BW*RTT),则进入PROBE_BW状态。PROBE_BW状态是一个稳定状态,例如,在PROBE_BW状态下可以将发送增益系数调整为G=Random(5/4,3/4,1,1,1,1,1,1),按照排列顺序循环该集合中的发送增益系数。
状态四(PROBE_RTT状态):表示拥塞处理状态。例如,在BBR的任何状态下如果在测量周期(例如连续10秒)内,监测到的RTT没有touch到历史最小RTT,则表示网络链路出现拥塞;可以将发送增益系数调整为G=1,将拥塞窗口缩减(cut)到最小值(4个最大报文段长度(max segment size,MSS))。
综上所述,在BBW算法的四个状态下,都会实时的监测RTT和BW,并实时的检测到当前时刻为止的最小RTT和最大BW。但是,由上述几个状态可以分析得到BW只用来作为前三个状态之间的转换条件,例如根据BW的情况从状态一转换到状态二、从状态二转换到状态三,从状态一转换到状态三,如图2所示;前三个状态之间是可以来回转换的,例如随着网络拥塞情况的变化,向其他状态进行转换。然而,具体判断何时进入状态四(即判断网络是否出现拥塞),只需要判断测量周期内是否touch到历史最小RRT值(例如判断10s内监测到的最小RTT是否小于或等于历史最小RTT;满足了上述RTT的触发条件之后,则进入拥塞处理状态(即PROBE_RTT状态),例如,从状态一直接进入状态四、从状态二直接进入到状态四、从状态三直接进入到状态四,进入状态四之后则进行拥塞控制,如图2所示。
2、代理实体:代理实体用于识别无线接入网的拥塞参数,并基于拥塞参数对网络进行拥塞控制。一种实现方式中,如图1所示,代理实体与UPF是分开的两个网元。在代理实体与UPF分设的实现方式中,本申请实施例UPF的功能可以进行增强,例如,UPF可以识别包含 拥塞参数的数据包,并对拥塞参数在数据包中的封装位置进行调整。另一种实现方式中,代理实体与UPF可以合设,即代理实体的功能包含于UPF中,可以通过UPF实现代理实体的功能;具体采用上述两种实现方式中的任意一种本实施例不作限定。具体来说,本申请实施例提供的一种代理实体可以是传输层代理,代理实体可以在传输层交互,更加灵活。其中,代理实体具有部分服务器的功能,例如监听特定TCP或用户数据报协议(user datagram protocol,UDP)端口,接收客户端的请求同时向客户端发出相应的响应等。
下面对本申请实施例提供的通信方法进行详细描述。
图3为本申请实施例提供的一种通信方法的流程示意图,该通信方法由无线接入网设备与代理实体之间的交互实现,包括以下步骤:
301,无线接入网设备根据指示信息,获取无线接入网的拥塞参数。
指示信息用于指示无线接入网设备获取无线接入网的拥塞参数,具体来说,指示信息可以包括但不限于信息开放指示、数据流标识等信息。其中,信息开放指示用于指示无线接入网设备是否开放功能以获取无线接入网的拥塞参数,例如,信息开放指示可以采用两个不同的值(例如“0”或“1”)来指示,假设“0”表示无线接入网设备不开放功能(即此时无线接入网设备无需获取无线接入网的拥塞参数),“1”表示无线接入网设备开放功能获取无线接入网的拥塞参数。可以理解的是,上述举例仅为一种示例,信息开放指示还可以采用其他方式(例如采用二进制比特、布尔值等)来指示无线接入网设备是否开放功能以获取无线接入网的拥塞参数,具体此处不作限定。数据流标识用于标识第一数据流,第一数据流为数据发送端(例如终端设备)向数据接收端(例如AS)发送的数据流(即待获取拥塞参数的数据流),其中,第一数据流可以是业务流(例如音视频流),也可以是QoS流等。可以理解的是,当指示信息中携带第一数据流的数据流标识时,该指示信息用于指示无线接入网设备获取第一数据流的拥塞参数。进一步的,指示信息可以是由SMF请求AMF向无线接入网设备发送的,例如,SMF通过Namf_Communication_N1N2MessageTransfer服务请求AMF向无线接入网设备发送指示信息,用于指示无线接入网设备获取无线接入网的拥塞参数;或者指示信息还可以是由代理实体发出,经过SMF和AMF转发至无线接入网设备;或者指示信息还可以是由代理实体触发SMF发出,经过AMF转发至无线接入网设备,具体实现方式本实施例不作限定。
拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。具体来说,无线接入网的缓存状态信息表示无线接入网的队列缓存状态,具体可以包括但不限于媒体接入控制(media access control,MAC)层的缓存状态信息、无线链路控制(radio link control,RLC)层的缓存状态信息等;例如,无线接入网设备根据指示信息,获取无线接入网的缓存状态信息包括MAC层的缓存状态信息(例如MAC层的队列缓存比例等信息)和RLC层的缓存状态信息(例如RLC层的队列缓存比例等信息)。无线接入网的拥塞原因值表示导致无线接入网产生拥塞的原因,具体可以包括但不限于多用户竞争、无线重传等;例如,无线接入网设备根据指示信息,获取无线接入网的拥塞原因值为多用户竞争,即表示导致无线接入网产生拥塞的原因是多用户竞争(例如接入的终端设备数量太多,导致无线接入网侧的资源不够用,从而导致网络拥塞)。进一步的,拥塞参数承载于用户面通用分组无线服务隧道协议(GPRStunneling protocoluser plane,GTP-U)包头,或者,所述拥塞参数承载于传输层协议(例如TCP)头部。
302,无线接入网设备向代理实体发送拥塞参数。
其中,代理实体的部署方式可以包括以下情况:代理实体与UPF合设(即代理实体与 UPF可以视为一个设备)、代理实体与UPF分设(即代理实体与UPF可以视为两个不同的设备)。
在代理实体与UPF合设的情况下,无线接入网设备可以直接向代理实体与UPF合设的设备发送拥塞参数。例如,无线接入网设备向代理实体与UPF合设的设备发送携带拥塞参数的数据包。由于无线接入网设备与UPF之间的隧道机制,使得无线接入网设备发送的携带拥塞参数的数据包可以到达UPF,即与UPF合设的代理实体能够收到该数据包。
在代理实体与UPF分设的情况下,若携带拥塞参数的数据包的目的IP地址为代理实体的IP地址,则无线接入网设备基于目的IP地址,直接向代理实体发送携带拥塞参数的数据包。若携带拥塞参数的数据包的目的IP地址不为代理实体的IP地址(例如目的IP地址为AS的IP地址),一种实现方式中,无线接入网设备可以通过UPF向代理实体发送拥塞参数。例如,UPF接收指示信息或者UPF预配置一种处理逻辑,使得UPF在接收到携带拥塞参数的数据包时,可以识别拥塞参数并进行相应的处理(例如直接转发给代理实体)。另一种实现方式中,假设代理实体部署在接入Internet的网关处,则目的IP地址为AS的携带拥塞参数的数据包将经过该网关再到达AS。则携带拥塞参数的数据包也能够到达部署在该网关处的代理实体(即代理实体也能够收到拥塞参数)。可以理解的是,本申请中只要拥塞参数能够到达代理实体,即视为向代理实体发送拥塞参数。
具体来说,无线接入网设备可以通过以下几种方式向代理实体发送拥塞参数:
方式一:无线接入网设备通过随路方式向代理实体发送拥塞参数,随路方式为在来自终端设备的第一数据流中添加拥塞参数。
例如,无线接入网设备可以接收来自终端设备的第一数据流,第一数据流包括第一数据包;无线接入网设备可以在第一数据包的外层GTP-U包头或传输层协议(例如TCP)头部添加拥塞参数,再向代理实体发送添加拥塞参数后的第一数据包。采用方式一,无线接入网设备可以直接将拥塞参数添加至待发送的上行数据流中,进而降低无线接入网设备的发包数量。
方式二:无线接入网设备生成第二数据包,第二数据包包括拥塞参数,并向代理实体发送第二数据包。
例如,无线接入网设备重新构造一个第二数据包,在第二数据包的GTP-U包头或传输层协议(例如TCP)头部添加拥塞参数(这种情况下第二数据包的数据字段为空),或者在第二数据包的数据字段添加拥塞参数,并向代理实体发送第二数据包。采用方式二,无线接入网设备无需等待上行数据流到达后才能向代理实体发送拥塞参数,可以直接向代理实体发送携带了拥塞参数的数据包,有利于系统的快速处理。
方式三:无线接入网设备将拥塞参数提供给终端设备,终端设备通过第三数据包向代理实体提供拥塞参数,可以包括以下步骤:
S11,无线接入网设备向终端设备发送拥塞参数;
S12,无线接入网设备接收来自终端设备的第三数据包,第三数据包包括拥塞参数;
S13,无线接入网设备向代理实体发送第三数据包。
例如,无线接入网设备向终端设备发送下行数据包,该下行数据包包括拥塞参数;终端设备接收该下行数据包后,通过解析该下行数据包获取拥塞参数;终端设备将接收到的拥塞参数添加至相应的上行数据包(例如第三数据包)中,并向无线接入网设备发送第三数据包。其中,该第三数据包可以是终端设备原本需要发送的上行数据包(即第三数据包包括业务数据),该第三数据包也可以是终端设备重新构造的一个数据包(即第三数据包不包括业务数据),本实施例不作限定。
303,代理实体根据拥塞参数,执行拥塞控制操作。
其中,代理实体可以根据RAN侧提供的拥塞参数识别无线接入网因多用户竞争或无线重传导致的网络拥塞,并采用传输层代理架构将BBR拥塞控制适应性地应用于无线网络以实现拥塞控制。具体来说,代理实体可以根据测量信息和拥塞参数,执行拥塞控制操作;测量信息包括代理实体与终端设备之间的传输路径的瓶颈带宽和/或传输路径的往返时延。可以理解的是,这里的测量信息包括BBR算法中的重要参数往返时延RTT和带宽BW,本实施例中的RTT具体是指代理实体与终端设备之间的传输路径的RTT,BW具体是指代理实体与终端设备之间的传输路径的瓶颈带宽。应注意,代理实体与终端设备之间的传输路径包括有线路径和无线路径,有线路径包括代理实体到无线接入网设备的传输路径,无线路径包括无线接入网设备到终端设备的传输路径。具体来说,代理实体可以结合BBR的测量信息和无线接入网的拥塞参数,具体通过以下几种方式执行拥塞控制操作:
方式一:在测量周期内未检测到传输路径的往返时延达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为无线重传的情况下,代理实体降低数据发送端的发送速率。
例如,假设测量周期为10s,若10s内未出现时延记录最小值(即历史最小RTT)或者小于历史最小RTT,则表示代理实体与终端设备之间的传输路径产生拥塞;进一步的,若缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值(例如无线接入网的队列缓存比例为80%,大于阈值60%,表示当前无线接入网的队列缓存较大),拥塞原因值指示拥塞原因为无线重传(即表示无线接入网的队列缓存较大是由无线重传导致的),则代理实体可以确定是无线路径的拥塞导致代理实体与终端设备之间的传输路径产生拥塞。在这种情况下,由于无线网络的无线重传导致的拥塞可以较快速地恢复,代理实体可以较为缓和地降低向终端设备发送数据的速率,而不是直接进入PROBE_RTT状态(即非常激进地降低发送数据的速率),从而优化无线接入网的拥塞控制。其中,代理实体较为缓和地降低向终端设备发送数据的速率,例如可以是代理实体直接较小程度地降低发送增益系数G(例如降低发送增益系数为原值的80%),从而降低无线接入网的队列缓存;也可以是代理实体降低拥塞窗口增益系数G’(例如降低拥塞窗口增益系数G’为原值的90%),从而降低向终端设备发送数据的速率,具体实现方式本实施例不作限定。
方式二:在测量周期内未检测到传输路径的往返时延达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例小于或等于阈值的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
例如,假设测量周期为10s,若10s内未出现时延记录最小值(即历史最小RTT)或者小于历史最小RTT,则表示代理实体与终端设备之间的传输路径产生拥塞;进一步的,若缓存状态信息指示无线接入网的队列缓存比例小于或等于阈值(例如无线接入网的队列缓存比例为50%,小于阈值60%,表示当前无线接入网的队列缓存较小),则代理实体可以确定是有线路径的拥塞导致代理实体与终端设备之间的传输路径产生拥塞。应注意,方式二中,由于导致网络拥塞的主要原因是有线路径的拥塞,拥塞参数中的拥塞原因值可以是多用户竞争,或者可以是无线重传,或者还可以是拥塞原因值为空(RAN侧可能未能识别发生了拥塞),此处不作限定。在这种情况下,基于BBR算法,代理实体可以直接缩减拥塞窗口,具体可以是将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值;例如,直接转换至PROBE_RTT状态,将发送增益系数调整为G=1(即第一预设值),将拥塞窗口缩减至最小值(例如4个最大报文段长度,即第二预设值)。应注意,这里的第一预 设值和第二预设值仅为示例,这两个预设值还可以设置为其他的较小的值,具体此处不作限定。
方式三,在缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为多用户竞争的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
例如,若缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值(例如无线接入网的队列缓存比例为80%,大于阈值60%,表示当前无线接入网的队列缓存较大),拥塞原因值指示拥塞原因为多用户竞争(即表示无线接入网的队列缓存较大是由多用户竞争导致的),在这种情况下,当前网络中数据流的调度周期较大,多用户竞争导致无线接入网的资源紧张,则代理实体可以直接缩减拥塞窗口,具体可以是将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值;具体实现方式可以参考上述方式二中对应的举例说明,具体此处不再赘述。
可以理解的是,上述方式一至方式三中描述的拥塞控制操作主要是针对终端设备和代理实体之间的传输层连接。对于代理实体和AS之间的传输层连接的拥塞控制操作本实施例不作特殊限定。可选地,代理实体和AS之间的传输层连接中代理实体的接收窗口可以基于上述拥塞控制操作和代理实体中的队列缓存情况进行设定。
本申请实施例提供一种通信方法,该通信方法中利用无线接入网设备的能力开放,使得无线接入网设备可以根据指示信息获取无线接入网的拥塞参数,并向代理实体发送拥塞参数;代理实体根据拥塞参数判断无线接入网是否发生拥塞;利用代理实体可以识别无线接入网的拥塞参数,从而能够针对无线网络的拥塞控制进行优化。
图4为本申请实施例提供的通信方法应用于实际的网络场景中时的一种流程示意图。例如,本申请实施例提供的通信方法适用于终端设备获取低时延的服务,例如边缘计算场景,网络侧新增代理实体进行拥塞控制。
401,终端设备触发并完成协议数据单元(protocol data unit,PDU)会话建立/修改流程,终端设备和应用服务器之间建立传输层连接,例如UE与AF/AS之间建立TCP连接。
402,代理实体开启代理功能,完成分段传输层连接的相应配置。例如,代理实体开启代理功能,构建分段传输层连接(例如分段TCP连接),分段传输层连接包括终端设备到代理实体的传输层连接,以及代理实体到AF/AS的传输层连接。可以理解,当代理实体开启代理功能后,可以使携带拥塞参数的数据包能够到达代理实体。
403,SMF向AMF发送指示信息,指示信息用于指示无线接入网设备获取无线接入网的拥塞参数。例如,SMF通过Namf_Communication_N1N2MessageTransfer服务请求AMF向无线接入网设备发送指示信息;其中,指示信息包括信息开放指示、数据流标识等信息,具体实现方式可以参考步骤301中对指示信息的描述,具体此处不再赘述。
一种实现方式中,SMF可以在PDU会话修改流程中发送指示信息,例如当SMF接收来自终端设备的第一请求消息(该第一请求消息用于请求建立特定业务数据流)时,SMF基于会话管理策略映射得到特定业务数据流的QoS需求,并根据QoS需求判断需要指示RAN侧开放能力,则SMF通过AMF向无线接入网设备发送指示信息。另一种实现方式中,当代理实体开启代理功能,并构建了代理实体和终端设备之间的传输层连接时,代理实体向SMF发送第二请求消息,该第二请求消息用于请求SMF向RAN侧发送指示消息以指示无线接入网设备开放特定业务数据流的RAN侧信息;在这种情况下,SMF可以得到对应的QoS流,并向无线接入网设备发送指示信息。
404,AMF向无线接入网设备发送指示信息。例如,AMF通过N2PDU Session Request向无线接入网设备发送指示信息,该指示信息包括信息开放指示、数据流标识等信息。
方式一:无线接入网设备在GTP-U包头中添加拥塞参数,通过随路方式向代理实体发送拥塞参数:
405a,无线接入网设备获取拥塞参数和来自终端设备的第一数据流,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值,第一数据流包括第一数据包。其中,具体实现方式可以参考步骤301中对拥塞参数的描述,具体此处不再赘述。
406a,无线接入网设备在第一数据包的GTP-U包头添加拥塞参数。
407a,无线接入网设备向代理实体发送第一数据包。具体来说,无线接入网设备发送第一数据包可以包括以下两种情况:
情况一:无线接入网设备直接向代理实体发送第一数据包,对应的,代理实体接收来自无线接入网设备的第一数据包,获取第一数据包中的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值)。
情况二:无线接入网设备向UPF发送第一数据包,对应的,UPF接收第一数据包。UPF从第一数据包的GTP-U包头中得到拥塞参数,然后调整拥塞参数在第一数据包中的封装位置,并向代理实体发送调整后的第一数据包。对应的,代理实体接收来自UPF的第一数据包,获取获取第一数据包中的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值)。
具体来说,UPF调整拥塞参数在第一数据包中的封装位置的实现方式中,在拥塞参数的封装位置为GTP-U包头的情况下,UPF将拥塞参数的封装位置调整至传输层协议头部(例如TCP的选项(option)中)或第二隧道协议头部。第二隧道协议为UPF与代理实体之间的隧道协议(例如SRv6协议)。
方式二:无线接入网设备通过构造数据包向代理实体发送拥塞参数:
405b,无线接入网获取拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。其中,具体实现方式可以参考步骤301中对拥塞参数的描述,具体此处不再赘述。
406b,无线接入网设备构造第二数据包(例如Echo数据包),第二数据包包括无线接入网的缓存状态信息和/或拥塞原因值。
407b,无线接入网设备向代理实体发送第二数据包。具体来说,无线接入网设备发送第二数据包可以包括以下两种情况:
情况一:无线接入网设备直接向代理实体发送第二数据包。对应的,代理实体接收来自无线接入网设备的第二数据包,获取第二数据包中的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值)。
情况二:无线接入网设备向UPF发送第二数据包。对应的,UPF接收第二数据包。UPF从第二数据包的GTP-U包头或传输层协议(例如TCP)头部中得到拥塞参数,然后调整拥塞参数在第二数据包中的封装位置,并向代理实体发送调整后的第二数据包。对应的,代理实体接收来自UPF的第二数据包,获取第二数据包中的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值)。
可以理解的是,上述情况一和情况二的具体实现方式可以参考步骤407a中描述的情况一和情况二,具体此处不再赘述。
应注意,405a和405b(或者406a和406b、407a和407b)为并列的方法步骤。例如,当采用方式一时,执行步骤405a~407a。当采用方式二时,执行步骤405b~407b。
进一步的,还包括步骤408:
408,代理实体根据拥塞参数,优化无线网络的拥塞控制。
具体来说,代理实体基于BBR的测量信息(例如往返时延RTT、带宽BW、数据量等信息)和拥塞参数(无线接入网的缓存状态信息和/或拥塞原因值),进行拥塞控制的优化。具体包括但不限于以下三种方式:
方式一:在测量周期内未检测到传输路径的往返时延达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值。拥塞原因值指示拥塞原因为无线重传的情况下,代理实体降低数据发送端的发送速率。
方式二:在测量周期内未检测到传输路径的往返时延达到时延记录最小值,缓存状态信息指示无线接入网的队列缓存比例小于或等于阈值的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
方式三:在缓存状态信息指示无线接入网的队列缓存比例大于或等于阈值,拥塞原因值指示拥塞原因为多用户竞争的情况下,代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
其中,方式一至方式三的具体实现方式可以参考步骤303中对应的描述,具体此处不再赘述。可以理解的是,本申请实施例中的代理实体对原有的BBR拥塞控制机制进行了优化。也可以复用原有的BBR拥塞控制机制,例如在进行拥塞控制时,可以直接转换至PROBE_RTT状态。
可选的,还包括步骤409~413:
409,终端设备触发PDU会话修改/释放流程。
其中,PDU会话修改/释放流程可能由终端设备触发。可选的,也可以由策略控制功能(policy control function,PCF)触发,或者SMF触发等。其中SMF触发PDU会话修改/释放流程,可能是由于签约数据的改变导致的。或者是基于代理实体的请求,例如代理实体即将关闭特定业务数据流的拥塞控制优化,不再需要RAN侧的开放信息。则代理实体可以请求SMF触发PDU会话修改/释放流程。
410,SMF向AMF发送第二指示信息。第二指示信息用于指示无线接入网设备关闭功能,停止获取拥塞参数。例如,SMF通过Namf_Communication_N1N2MessageTransfer服务请求AMF向无线接入网设备发送第二指示信息。第二指示信息包括信息关闭指示、数据流标识等信息,信息关闭指示用于指示无线接入网设备关闭获取拥塞参数的功能。
具体来说,SMF可以在PDU会话修改/释放流程中发送第二指示信息。一种实现方式中,若SMF收到代理实体的请求(例如代理实体即将关闭特定业务数据流的拥塞控制,不再需要RAN侧的开放信息),则SMF向AMF发送第二指示信息。另一种实现方式中,当终端设备的签约数据发生改变(或者需要降低QoS需求等),SMF确定不再向该终端设备的特定业务数据流提供拥塞控制,则SMF向AMF发送第二指示信息。再一种实现方式中,当终端设备请求释放PDU会话时,若该PDU会话上承载的数据流启用了RAN信息开放,则SMF可以向AMF发送第二指示信息。
411,AMF向无线接入网设备发送第二指示信息。例如,AMF通过N2PDU Session Request向无线接入网设备发送第二指示信息,指示无线接入网设备关闭功能,停止获取拥塞参数。
412,无线接入网设备根据第二指示信息,停止获取拥塞参数。例如,停止获取无线接入网的缓存状态信息和/或拥塞原因值。
413,终端设备继续执行PDU会话修改/释放流程直至完成流程。
图5为本申请实施例提供的通信方法应用于实际的网络场景中时的另一种流程示意图。 例如,本申请实施例提供的通信方法适用于终端设备获取低时延的服务,例如边缘计算场景,网络侧新增代理实体进行拥塞控制。其中,相较于图4实施例,图5实施例中无线接入网设备向代理实体发送拥塞参数采用不同的方式。
501,终端设备触发并完成PDU会话建立/修改流程,终端设备和应用服务器之间建立传输层连接。
502,代理实体开启代理功能,完成分段传输层连接的相应配置。
503,SMF向AMF发送指示信息。指示信息用于指示无线接入网设备获取无线接入网的拥塞参数。
504,AMF向无线接入网设备发送指示信息。
其中,步骤501~504的具体实现方式可以参考图4实施例中步骤401~404对应的描述,具体此处不再赘述。
方式三:无线接入网设备将拥塞参数提供给终端设备。终端设备通过第三数据包向代理实体提供拥塞参数:
505a,无线接入网设备向终端设备发送拥塞参数。例如,无线接入网设备可以通过无线资源控制(radio resource control,RRC)信令向终端设备发送拥塞参数,或者可以在来自AS的下行数据包中(例如下行数据包的option中)添加拥塞参数。无线接入网设备向终端设备发送下行数据包。
506a,终端设备生成第三数据包,第三数据包包括拥塞参数。其中,该第三数据包可以是终端设备原本需要发送的上行数据包(即第三数据包包括业务数据)。该第三数据包也可以是终端设备重新构造的一个数据包(即第三数据包不包括业务数据),本实施例不作限定。
507a,终端设备通过无线接入网设备向代理实体发送第三数据包。具体来说,无线接入网设备发送第三数据包可以包括以下两种情况:
情况一:无线接入网设备直接向代理实体发送第三数据包。对应的,代理实体接收来自无线接入网设备的第三数据包,获取第三数据包中的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值)。
情况二:无线接入网设备向UPF发送第三数据包。对应的,UPF接收第三数据包。本实施例的情况二中UPF无需调整拥塞参数在第三数据包中的封装位置。也就是说,当UPF和代理实体分设时,本实施例中的情况二中的UPF用于向代理实体转发第三数据包,不针对第三数据包进行处理。
可以理解的是,上述情况一和情况二的具体实现方式可以参考图4实施例的步骤407a中描述的情况一和情况二,具体此处不再赘述。
方式四:无线接入网设备将拥塞参数添加至传输层协议的头部,通过随路方式发送给代理实体:
505b,终端设备向无线接入网设备发送第一数据包。
506b,无线接入网设备在第一数据包的传输层协议的头部添加拥塞参数。具体来说,无线接入网设备在第一数据包的传输层协议的选项字段添加拥塞参数。应注意,本实施例中的传输层协议的选项字段可以是TCP协议选项字段,也可以是其他传输层协议的选项字段,具体此处不作限定。采用这种添加拥塞参数的方式,UPF无需对拥塞参数的封装位置进行调整。
507b,无线接入网设备向代理实体发送第一数据包。具体来说,无线接入网设备发送第一数据包可以包括以下两种情况:
情况一:无线接入网设备直接向代理实体发送第一数据包。对应的,代理实体接收来自 无线接入网设备的第一数据包,获取第一数据包中的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值)。
情况二:无线接入网设备向UPF发送第一数据包。对应的,UPF接收第一数据包。本实施例的情况二中UPF无需调整拥塞参数在第一数据包中的封装位置。也就是说,当UPF和代理实体分设时,本实施例中的情况二中的UPF用于向代理实体转发第一数据包,不针对第一数据包进行处理。
可以理解的是,上述情况一和情况二的具体实现方式可以参考图4实施例的步骤407a中描述的情况一和情况二,具体此处不再赘述。
进一步的,还包括步骤508:
508,代理实体根据拥塞参数,优化无线网络的拥塞控制。其中,步骤508的具体实现方式可以参考图4实施例中步骤408对应的描述,具体此处不再赘述。
可选的,还包括步骤509~513:
509,终端设备触发PDU会话修改/释放流程。
510,SMF向AMF发送第二指示信息。第二指示信息用于指示无线接入网设备关闭功能,停止获取拥塞参数。
511,AMF向无线接入网设备发送第二指示信息。
512,无线接入网设备根据第二指示信息,停止获取拥塞参数。
513,终端设备继续执行PDU会话修改/释放流程直至完成流程。
可以理解的是,上述步骤509~513的具体实现方式可以参考图4实施例中步骤409~413对应的描述,具体此处不再赘述。
为了实现本申请实施例提供的方法中的各功能,本申请实施例提供的装置或设备可以包括硬件结构和/或软件模块。以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图6为本申请实施例提供的一种设备600,用于实现上述方法实施例中的通信方法。该设备也可以是芯片系统。设备600可以包括通信接口601,该通信接口例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。其中,通信接口601用于通过传输介质和其它设备进行通信,从而用于设备600中的装置可以和其它设备进行通信。设备600可以包括至少一个处理器602,用于实现本申请实施例提供的通信方法中的功能。可以理解的是,通信接口601也可以是处理器602的一部分。
示例性地,处理器602和通信接口601用于实现图3至图5对应的方法实施例中无线接入网设备所执行的方法。也即是,设备600可以是无线接入网设备,也可以是无线接入网设备中的装置,或者是能够和无线接入网设备匹配使用的装置。其中,处理器602用于根据指示信息,获取无线接入网的拥塞参数,指示信息用于指示无线接入网设备获取无线接入网的拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。通信接口601用于向代理实体发送拥塞参数。具体执行流程参考图3至图5所述的方法示例中无线接入网设备所执行的操作的详细描述,此处不再赘述。在该示例中,通信接口601和处理器602所执行的 步骤能够利用无线接入网设备能力开放,获取无线接入网的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值),从而判断无线接入网是否发生拥塞;并向代理实体发送拥塞参数,有利于实现无线网络的拥塞控制。
示例性地,处理器602和通信接口601用于实现图3至图5对应的方法实施例中代理实体所执行的方法。也即是,设备600是代理实体,也可以是代理实体中的装置,或者是能够和代理实体匹配使用的装置。其中,通信接口601用于接收无线接入网的拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。处理器602用于根据拥塞参数,执行拥塞控制操作。具体执行流程参考图3至图5所述的方法示例中代理实体所执行的操作的详细描述,此处不再赘述。在该示例中,通信接口601和处理器602所执行的步骤使得代理实体可以识别无线接入网的拥塞参数,并基于拥塞参数进行拥塞控制,从而能够实现无线网络的拥塞控制。
示例性地,处理器602和通信接口601用于实现图3至图5对应的方法实施例中用户面功能网元所执行的方法。也即是,设备600是用户面功能网元,也可以是用户面功能网元中的装置,或者是能够和用户面功能网元匹配使用的装置。其中,通信接口601用于接收数据包,数据包包括无线接入网的拥塞参数。处理器602用于调整数据包中拥塞参数的封装位置。通信接口601还用于向代理实体发送调整后的数据包。具体执行流程参考图3至图5所述的方法示例中用户面功能网元所执行的操作的详细描述,此处不再赘述。在该示例中,通信接口601和处理器602所执行的步骤可以调整拥塞参数在数据包中的封装位置,有利于代理实体识别拥塞参数。
示例性地,处理器602和通信接口601用于实现图3至图5对应的方法实施例中终端设备所执行的方法。也即是,设备600是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,通信接口601用于接收无线接入网的拥塞参数。处理器602用于生成第三数据包,第三数据包包括拥塞参数。通信接口601还用于向代理实体发送第三数据包。具体执行流程参考图3至图5所述的方法示例中终端设备所执行的操作的详细描述,此处不再赘述。在该示例中,通信接口601和处理器602所执行的步骤使得终端设备可以根据拥塞参数自行生成或重新构造第三数据包,有利于实现向代理实体发送拥塞信息,并且无需调整拥塞参数的封装位置。
设备600还可以包括至少一个存储器603,用于存储程序指令和/或数据。一种实施方式中,存储器603和处理器602耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器602可能和存储器603协同操作。处理器602可能执行存储器603中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口601、处理器602以及存储器603之间的具体连接介质。本申请实施例在图6中以存储器603、处理器602以及通信接口601之间通过总线604连接,总线在图6中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处 理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
图7为本申请实施例提供的一种装置700。一种实施方式中,该装置可以包括执行图3至图5对应的示例中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种实施方式中,该装置可以包括处理单元701和收发单元702。
示例性地,该装置700可以是无线接入网设备,也可以是无线接入网设备中的装置,或者是能够和无线接入网设备匹配使用的装置。其中,处理单元701用于根据指示信息,获取无线接入网的拥塞参数。指示信息用于指示无线接入网设备获取无线接入网的拥塞参数。拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。收发单元702用于用于向代理实体发送拥塞参数。具体执行流程参考图3至图5所述的方法示例中无线接入网设备所执行的操作的详细描述,此处不再赘述。在该示例中,处理单元701和收发单元702所执行的步骤能够利用无线接入网设备能力开放,获取无线接入网的拥塞参数(包括无线接入网的缓存状态信息和/或拥塞原因值),从而判断无线接入网是否发生拥塞。并向代理实体发送拥塞参数,有利于实现无线网络的拥塞控制。
示例性地,该装置700可以是代理实体,也可以是代理实体中的装置,或者是能够和代理实体匹配使用的装置。其中,收发单元702用于接收无线接入网的拥塞参数,拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值。处理单元701用于根据拥塞参数,执行拥塞控制操作。具体执行流程参考图3至图5所述的方法示例中代理实体所执行的操作的详细描述,此处不再赘述。在该示例中,收发单元702和处理单元701所执行的步骤使得代理实体可以识别无线接入网的拥塞参数,并基于拥塞参数进行拥塞控制,从而能够实现无线网络的拥塞控制。
示例性地,该装置700可以是用户面功能网元,也可以是用户面功能网元中的装置,或者是能够和用户面功能网元匹配使用的装置。其中,收发单元702用于接收数据包,数据包包括无线接入网的拥塞参数。处理单元701用于调整数据包中拥塞参数的封装位置。收发单元702还用于向代理实体发送调整后的数据包。具体执行流程参考图3至图5所述的方法示例中用户面功能网元所执行的操作的详细描述,此处不再赘述。在该示例中,收发单元702和处理单元701所执行的步骤可以调整拥塞参数在数据包中的封装位置,有利于代理实体识别拥塞参数。
示例性地,该装置700可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,收发单元702用于接收无线接入网的拥塞参数。处理单元701用于生成第三数据包,第三数据包包括拥塞参数。收发单元702还用于向代理实体发送第三数据包。具体执行流程参考图3至图5所述的方法示例中终端设备所执行的操作的详细描述,此处不再赘述。在该示例中,收发单元702和处理单元701所执行的步骤使得终端设备可以根据拥塞参数自行生成或重新构造第三数据包,有利于实现向代理实体发送拥塞信息,并且无需调整拥塞参数的封装位置。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有程序或指令,当所述程序或指令在计算机上运行时,使得计算机执行如图3至图5所示的通信方法。
本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如图3至图5所示的通信方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    无线接入网设备根据指示信息,获取无线接入网的拥塞参数,所述指示信息用于指示所述无线接入网设备获取无线接入网的拥塞参数,所述拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值;
    所述无线接入网设备向代理实体发送所述拥塞参数;
    所述代理实体接收所述拥塞参数;
    所述代理实体根据所述拥塞参数,执行拥塞控制操作。
  2. 根据权利要求1所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备通过随路方式向所述代理实体发送所述拥塞参数,所述随路方式为在来自终端设备的第一数据流中添加所述拥塞参数。
  3. 根据权利要求2所述的方法,其特征在于,所述随路方式为在所述第一数据流的第一数据包的用户面通用分组无线服务隧道协议包头或者传输层协议头部添加所述拥塞参数。
  4. 根据权利要求1所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备生成第二数据包,所述第二数据包包括所述拥塞参数;
    所述无线接入网设备向所述代理实体发送所述第二数据包。
  5. 根据权利要求1所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备向终端设备发送所述拥塞参数;
    所述无线接入网设备接收来自所述终端设备的第三数据包,所述第三数据包包括所述拥塞参数;
    所述无线接入网设备向所述代理实体发送所述第三数据包。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备通过用户面功能网元向所述代理实体发送所述拥塞参数。
  7. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    所述无线接入网设备接收来自会话管理功能实体的指示信息。
  8. 根据权利要求1所述的方法,其特征在于,所述代理实体根据所述拥塞参数,执行拥塞控制操作,包括:
    所述代理实体根据测量信息和所述拥塞参数,执行拥塞控制操作,所述测量信息包括所述代理实体与终端设备之间的传输路径的瓶颈带宽和/或所述传输路径的往返时延。
  9. 根据权利要求8所述的方法,其特征在于,所述代理实体根据测量信息和所述拥塞参数,执行拥塞控制操作,包括:
    在测量周期内未检测到所述传输路径的往返时延达到时延记录最小值,所述缓存状态信息指示所述无线接入网的队列缓存比例大于或等于阈值,所述拥塞原因值指示拥塞原因为无线重传的情况下,所述代理实体降低数据发送端的发送速率;或者,
    在测量周期内未检测到所述传输路径的往返时延达到时延记录最小值,所述缓存状态信息指示所述无线接入网的队列缓存比例小于或等于阈值的情况下,所述代理实体将数据发送 端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
  10. 根据权利要求1所述的方法,其特征在于,所述代理实体根据所述拥塞参数,执行拥塞控制操作,包括:
    在所述缓存状态信息指示所述无线接入网的队列缓存比例大于或等于阈值,所述拥塞原因值指示拥塞原因为多用户竞争的情况下,所述代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述无线接入网的缓存状态信息包括媒体接入控制层的缓存状态信息和/或无线链路控制层的缓存状态信息,所述拥塞原因值包括多用户竞争或无线重传。
  12. 根据权利要求1至10任一项所述的方法,其特征在于,所述拥塞参数承载于用户面通用分组无线服务隧道协议包头,或者,所述拥塞参数承载于传输层协议头部。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述指示信息包括数据流标识,所述数据流标识用于标识第一数据流,所述指示信息用于指示所述无线接入网设备获取无线接入网的拥塞参数,包括:所述指示信息用于指示所述无线接入网设备获取所述第一数据流的拥塞参数。
  14. 一种通信方法,其特征在于,包括:
    无线接入网设备根据指示信息,获取无线接入网的拥塞参数,所述指示信息用于指示所述无线接入网设备获取无线接入网的拥塞参数,所述拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值;
    所述无线接入网设备向代理实体发送所述拥塞参数。
  15. 根据权利要求14所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备通过随路方式向所述代理实体发送所述拥塞参数,所述随路方式为在来自终端设备的第一数据流中添加所述拥塞参数。
  16. 根据权利要求15所述的方法,其特征在于,所述随路方式为在所述第一数据流的第一数据包的用户面通用分组无线服务隧道协议包头或者传输层协议头部添加所述拥塞参数。
  17. 根据权利要求14所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备生成第二数据包,所述第二数据包包括所述拥塞参数;
    所述无线接入网设备向所述代理实体发送所述第二数据包。
  18. 根据权利要求14所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备向终端设备发送所述拥塞参数;
    所述无线接入网设备接收来自所述终端设备的第三数据包,所述第三数据包包括所述拥塞参数;
    所述无线接入网设备向代理实体发送所述第三数据包。
  19. 根据权利要求14至18任一项所述的方法,其特征在于,所述无线接入网设备向代理实体发送所述拥塞参数,包括:
    所述无线接入网设备通过用户面功能网元向所述代理实体发送所述拥塞参数。
  20. 根据权利要求14至18任一项所述的方法,其特征在于,所述方法还包括:
    所述无线接入网设备接收来自会话管理功能实体的指示信息。
  21. 根据权利要求14至20任一项所述的方法,其特征在于,所述无线接入网的缓存状态信息包括媒体接入控制层的缓存状态信息和/或无线链路控制层的缓存状态信息,所述拥塞原因值包括多用户竞争或无线重传。
  22. 根据权利要求14至21任一项所述的方法,其特征在于,所述指示信息包括数据流标识,所述数据流标识用于标识第一数据流,所述指示信息用于指示所述无线接入网设备获取无线接入网的拥塞参数,包括:所述指示信息用于指示所述无线接入网设备获取第一数据流的拥塞参数。
  23. 一种通信方法,其特征在于,包括:
    代理实体接收无线接入网的拥塞参数,所述拥塞参数包括无线接入网的缓存状态信息和/或拥塞原因值;
    所述代理实体根据所述拥塞参数,执行拥塞控制操作。
  24. 根据权利要求23所述的方法,其特征在于,所述代理实体根据所述拥塞参数,执行拥塞控制操作,包括:
    所述代理实体根据测量信息和所述拥塞参数,执行拥塞控制操作,所述测量信息包括所述代理实体与终端设备之间的传输路径的瓶颈带宽和/或所述传输路径的往返时延。
  25. 根据权利要求24所述的方法,其特征在于,所述代理实体根据测量信息和所述拥塞参数,执行拥塞控制操作,包括:
    在测量周期内未检测到所述传输路径的往返时延达到时延记录最小值,所述缓存状态信息指示所述无线接入网的队列缓存比例大于或等于阈值,所述拥塞原因值指示拥塞原因为无线重传的情况下,所述代理实体降低数据发送端的发送速率;或者,
    在测量周期内未检测到所述传输路径的往返时延达到时延记录最小值,所述缓存状态信息指示所述无线接入网的队列缓存比例小于或等于阈值的情况下,所述代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
  26. 根据权利要求23所述的方法,其特征在于,所述代理实体根据所述拥塞参数,执行拥塞控制操作,包括:
    在所述缓存状态信息指示所述无线接入网的队列缓存比例大于或等于阈值,所述拥塞原因值指示拥塞原因为多用户竞争的情况下,所述代理实体将数据发送端的发送增益系数设置为第一预设值,并且将拥塞窗口的大小设置为第二预设值。
  27. 根据权利要求23至26任一项所述的方法,其特征在于,所述拥塞参数承载于用户面通用分组无线服务隧道协议包头,或者,所述拥塞参数承载于传输层协议头部。
  28. 根据权利要求23至27任一项所述的方法,其特征在于,所述无线接入网的缓存状态信息包括媒体接入控制层的缓存状态信息和/或无线链路控制层的缓存状态信息,所述拥塞原因值包括多用户竞争或无线重传。
  29. 一种通信方法,其特征在于,包括:
    用户面功能网元接收数据包,所述数据包包括无线接入网的拥塞参数;
    所述用户面功能网元调整所述数据包中所述拥塞参数的封装位置;
    所述用户面功能网元向代理实体发送调整后的数据包。
  30. 根据权利要求29所述的方法,其特征在于,所述用户面功能网元调整所述数据包中所述拥塞参数的封装位置,包括:
    在所述拥塞参数的封装位置为用户面通用分组无线服务隧道协议包头的情况下,将所述拥塞参数的封装位置调整至传输层协议头部或第二隧道协议头部;或者,
    在所述拥塞参数的封装位置为传输层协议头部的情况下,将所述拥塞参数的封装位置调整至第二隧道协议头部。
  31. 一种通信方法,其特征在于,包括:
    终端设备接收无线接入网的拥塞参数;
    所述终端设备生成第三数据包,所述第三数据包包括所述拥塞参数;
    所述终端设备向代理实体发送所述第三数据包。
  32. 一种通信系统,其特征在于,包括无线接入网设备和代理实体;
    所述无线接入网设备,用于执行如权利要求1至13任一项所述的通信方法中无线接入网设备的功能;
    所述代理实体,用于执行如权利要求1至13任一项所述的通信方法中代理实体的功能。
  33. 根据权利要求32所述的系统,其特征在于,所述通信系统还包括用户面功能网元,所述用户面功能网元用于执行如权利要求29和30所述的方法。
  34. 根据权利要求32所述的系统,其特征在于,所述通信系统还包括会话管理功能实体,所述会话管理功能实体用于向所述无线接入网设备发送指示信息。
  35. 根据权利要求32所述的系统,其特征在于,所述通信系统还包括终端设备,所述终端设备用于执行如权利要求31所述的方法。
  36. 一种通信装置,其特征在于,包括用于执行所述权利要求14-31任一项方法的一个或多个单元。
  37. 一种通信装置,其特征在于,包括处理器,用于执行所述权利要求14-31任一项方法。
  38. 一种通信系统,其特征在于,包括多个通信装置,其中,所述多个通信装置包括如所述权利要求36或37的一个或多个通信装置。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现如权利要求1至31任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括一个或多个计算机指令,所述计算机程序指令被计算机以实现如权利要求1至31任一项所述的方法。
PCT/CN2022/135227 2021-12-09 2022-11-30 一种通信方法、装置及系统 WO2023103847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111501215.8 2021-12-09
CN202111501215.8A CN116261170A (zh) 2021-12-09 2021-12-09 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023103847A1 true WO2023103847A1 (zh) 2023-06-15

Family

ID=86679772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135227 WO2023103847A1 (zh) 2021-12-09 2022-11-30 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116261170A (zh)
WO (1) WO2023103847A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117499317A (zh) * 2023-12-28 2024-02-02 苏州元脑智能科技有限公司 链路拥塞控制方法及装置、存储介质及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223675A (zh) * 2011-06-08 2011-10-19 大唐移动通信设备有限公司 拥塞告警及处理方法、系统和设备
CN106851727A (zh) * 2017-01-23 2017-06-13 西安电子科技大学 基于多路径路由协议实现自组网拥塞控制的方法
CN108667739A (zh) * 2017-03-27 2018-10-16 华为技术有限公司 拥塞控制方法、装置及系统
WO2018225039A1 (en) * 2017-06-09 2018-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Method for congestion control in a network
CN111586754A (zh) * 2019-02-15 2020-08-25 诺基亚通信公司 无线通信网络中的拥塞控制

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223675A (zh) * 2011-06-08 2011-10-19 大唐移动通信设备有限公司 拥塞告警及处理方法、系统和设备
CN106851727A (zh) * 2017-01-23 2017-06-13 西安电子科技大学 基于多路径路由协议实现自组网拥塞控制的方法
CN108667739A (zh) * 2017-03-27 2018-10-16 华为技术有限公司 拥塞控制方法、装置及系统
WO2018225039A1 (en) * 2017-06-09 2018-12-13 Telefonaktiebolaget Lm Ericsson (Publ) Method for congestion control in a network
CN111586754A (zh) * 2019-02-15 2020-08-25 诺基亚通信公司 无线通信网络中的拥塞控制

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117499317A (zh) * 2023-12-28 2024-02-02 苏州元脑智能科技有限公司 链路拥塞控制方法及装置、存储介质及电子设备
CN117499317B (zh) * 2023-12-28 2024-04-12 苏州元脑智能科技有限公司 链路拥塞控制方法及装置、存储介质及电子设备

Also Published As

Publication number Publication date
CN116261170A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
US11445559B2 (en) Communication method and communications apparatus
JP6907444B2 (ja) データ伝送方法、通信デバイス、端末、および基地局
EP3955487B1 (en) Adapting communication parameters to link conditions, traffic types, and/or priorities
WO2019242612A1 (en) Transmission techniques in a cellular network
US9979653B2 (en) System and method of providing improved throughput control under delay-based congestion situation in a network
US10736174B2 (en) Network node and methods therein for packet data convergence protocol (PDCP) reordering
WO2021184783A1 (zh) 实现网络能力开放的方法、装置、电子设备和存储介质
US10111130B2 (en) Supporting delivery of data packets using transmission control protocol in a wireless communication network
US10412634B2 (en) Predictive adaptive queue management
WO2016068308A1 (ja) ゲートウェイ装置及びゲートウェイ装置の制御方法
WO2020063340A1 (zh) 数据传输方法和设备
US20190223256A1 (en) Data transmission method, network device, and terminal device
WO2019101054A1 (zh) 聚合速率控制方法、设备以及系统
TWI661733B (zh) 適應性tti調諧之方法以及使用者設備
WO2023103847A1 (zh) 一种通信方法、装置及系统
US11425592B2 (en) Packet latency reduction in mobile radio access networks
US20140325064A1 (en) Controlling Establishment of Multiple TCP Connections
US9832133B2 (en) Network node for controlling transport of data in a wireless communication network
US10999210B2 (en) Load sharing method and network device
EP2890179B1 (en) Method, apparatus and computer program for data transfer
WO2017028681A1 (zh) 一种数据传输状态的报告、确定传输数据量的方法及装置
US11647419B2 (en) Adjusting window size based on quality of experience
WO2022143149A1 (zh) 传输业务的方法和通信装置
KR102031896B1 (ko) Udp 캡슐화에 기반한 대역폭 정보 제공 방법 및 이를 위한 장치
US20240056885A1 (en) Multi-access traffic management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903269

Country of ref document: EP

Kind code of ref document: A1