WO2023103724A1 - 双级多自由度空间位置精密稳定系统 - Google Patents

双级多自由度空间位置精密稳定系统 Download PDF

Info

Publication number
WO2023103724A1
WO2023103724A1 PCT/CN2022/132274 CN2022132274W WO2023103724A1 WO 2023103724 A1 WO2023103724 A1 WO 2023103724A1 CN 2022132274 W CN2022132274 W CN 2022132274W WO 2023103724 A1 WO2023103724 A1 WO 2023103724A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
unit
platform
electromagnetic
motion
Prior art date
Application number
PCT/CN2022/132274
Other languages
English (en)
French (fr)
Inventor
李柠
Original Assignee
浙江大学杭州国际科创中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学杭州国际科创中心 filed Critical 浙江大学杭州国际科创中心
Publication of WO2023103724A1 publication Critical patent/WO2023103724A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/106Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric brakes

Definitions

  • the application belongs to the technical field of space position precision stabilization, and in particular relates to a two-stage multi-degree-of-freedom space position precision stabilization system.
  • the current mainstream vibration isolation methods can be divided into active vibration isolation and passive vibration isolation.
  • active vibration isolation and passive vibration isolation isolate the vibration between the instrument and the foundation, and the difference lies in the form of the vibration source. Therefore, for the optical equipment (laser, etc.) at the end of the vibration isolation chain, the vibration or disturbance isolation in the spatial range cannot be well realized, so a precise spatial position stabilization system for stabilizing the optical equipment is needed.
  • a two-stage multi-degree-of-freedom spatial position precision stabilization system is provided.
  • the application provides a two-stage multi-degree-of-freedom space position precision stabilization system, including: a motion platform, a secondary platform, a primary platform and a controller.
  • the secondary platform is connected to the motion platform and is located below the motion platform, and the secondary platform is provided with a second electromagnetic drive assembly to adjust the position of the motion platform in multiple directions through electromagnetic actuation;
  • the primary platform is connected to the secondary platform And located below the secondary platform, the primary platform is provided with a first electromagnetic drive assembly to adjust the secondary platform in multiple directions through electromagnetic actuation, thereby adjusting the position of the motion platform;
  • the controller is used to connect to the first electromagnetic drive assembly drive assembly and the second electromagnetic drive assembly to control the first electromagnetic drive assembly and the second electromagnetic drive assembly.
  • the secondary platform can adjust the position of the motion platform in the three directions of X-axis, Y-axis and Z-axis under the drive of the second electromagnetic drive assembly; the primary platform is driven by the first electromagnetic drive assembly The secondary platform can be adjusted in three directions of X axis, Y axis and Z axis to adjust the position of the motion platform.
  • the first electromagnetic drive assembly includes an electromagnetic actuation unit one, an electromagnetic actuation unit two, and an electromagnetic actuation unit three.
  • the first-level platform includes: a first-level base plate, a first-level Z-axis motion unit, a first-level Y-axis motion unit, and a first-level X-axis motion unit.
  • the first-level Z-axis motion unit is movably connected to the first-level bottom plate along the Z-axis direction, and an electromagnetic actuation unit that drives the first-level Z-axis motion unit to move along the Z-axis direction is arranged between the first-level Z-axis motion unit and the first-level bottom plate .
  • the first-level Y-axis motion unit is movably connected to the first-level Z-axis motion unit along the Y-axis direction, and a drive is provided between the first-level Y-axis motion unit and the first-level Z-axis motion unit to move along the Y-axis direction
  • the electromagnetic actuation unit II is movably connected to the first-level Y-axis movement unit along the X-axis direction.
  • the first-level Y-axis movement unit is provided with a guide groove, and the bottom of the second-level platform is provided with a guide protrusion that cooperates with the guide groove.
  • An electromagnetic actuation unit 3 for driving the secondary platform to move along the X-axis direction is arranged between the protrusion and the guide groove.
  • the primary bottom plate is provided with a U-shaped groove 1
  • the primary Z-axis motion unit is provided with a guide bar 1 that cooperates with the U-shaped groove 1
  • an electromagnetic actuator is provided between the U-shaped groove 1 and the guide bar 1.
  • the first-level Z-axis motion unit is provided with a U-shaped groove 2
  • the first-stage Y-axis motion unit is equipped with a guide bar 2 that cooperates with the U-shaped groove 2
  • an electromagnetic actuator is provided between the U-shaped groove 2 and the guide bar 2 unit two.
  • the second electromagnetic drive assembly includes an electromagnetic actuation unit four, an electromagnetic actuation unit five, and an electromagnetic actuation unit six.
  • the secondary platform includes: a secondary base plate, a secondary Y-axis motion unit and a secondary X-axis motion unit.
  • the bottom of the secondary bottom plate is provided with a guide protrusion, and an electromagnetic actuator unit 4 for driving the secondary base plate to move along the Z-axis direction is also provided between the guide protrusion and the guide groove; the secondary Y-axis motion unit can move along the Y-axis direction.
  • the secondary bottom plate is provided with a U-shaped groove 3
  • the secondary Y-axis motion unit is provided with a guide bar 3 that cooperates with the U-shaped groove 3
  • an electromagnetic actuator is provided between the U-shaped groove 3 and the guide bar 3.
  • Unit five; the second-level Y-axis movement unit is provided with U-shaped groove four, the second-level X-axis movement unit cooperates with the U-shaped groove four, and the electromagnetic actuation unit six is arranged between the U-shaped groove four and the second-level X-axis movement unit.
  • a grating scale sensor 1 for detecting the relative position between the primary base plate and the primary Z-axis motion unit is provided between the U-shaped groove 1 and the guide bar 1; between the U-shaped groove 2 and the guide bar 2 There is a grating scale sensor 2 for detecting the relative position between the first-level Z-axis motion unit and the first-level Y-axis motion unit; the guide protrusion and the guide groove are provided for detecting the distance between the first-level Y-axis motion unit and the second-level base plate.
  • a grating sensor five for detecting the positional relationship between the secondary bottom plate and the secondary Y-axis motion unit is provided between the U-shaped groove 3 and the guide bar 3; a grating sensor 5 is provided between the U-shaped groove 4 and the secondary X-axis motion unit.
  • the two-stage multi-degree-of-freedom space position precision stabilization system further includes: a detection unit, configured to detect the position variation of the motion platform.
  • the controller controls the first electromagnetic drive assembly to adjust the motion platform; when the position change of the motion platform detected by the detection unit does not reach the preset value, The controller controls the second electromagnetic drive assembly to adjust the motion platform.
  • the two-stage multi-degree-of-freedom space position precision stabilization system further includes: a detection unit, which is used to detect the amount of position change of the motion platform in the three directions of X-axis, Y-axis and Z-axis.
  • the controller controls the electromagnetic actuation unit three in the first electromagnetic drive assembly to adjust the motion platform, and when the detection unit detects that it has not reached When the preset value is reached, the controller controls the electromagnetic actuation unit six in the second electromagnetic drive assembly to adjust the motion platform.
  • the controller controls the electromagnetic actuation unit 2 in the first electromagnetic drive assembly to adjust the motion platform, and when the detection unit detects that it has not reached When the value is preset, the controller controls the electromagnetic actuation unit five in the second electromagnetic drive assembly to adjust the motion platform.
  • the controller controls the electromagnetic actuation unit one in the first electromagnetic drive assembly to adjust the motion platform, and when the detection unit detects that it has not reached When the preset value is reached, the controller controls the electromagnetic actuation unit 4 in the second electromagnetic drive assembly to adjust the motion platform.
  • the preset value ranges from 0.1 mm to 2 mm.
  • the advantage of this application is that the provided two-stage multi-degree-of-freedom space position precision stabilization system utilizes the electromagnetic direct drive technology, reduces the intermediate transmission mechanical structure, and realizes the linear positioning function with high precision and quick response.
  • the benefit of this application is also that the provided two-stage multi-degree-of-freedom space position precision stabilization system realizes two-stage three-degree-of-freedom spatial position adjustment, can offset the vibration/disturbance of the three-degree-of-freedom in the space range, and improves optical testing. precision.
  • Fig. 1 is a schematic diagram of a two-stage multi-degree-of-freedom spatial position precision stabilization system according to one or more embodiments.
  • Figure 2 is a schematic diagram of a secondary platform, according to one or more embodiments.
  • Figure 3 is a schematic illustration of another perspective of a secondary platform, according to one or more embodiments.
  • Figure 4 is a schematic diagram of a level one platform, according to one or more embodiments.
  • FIG. 5 is a schematic diagram of a two-stage multi-degree-of-freedom spatial position precision stabilization system according to one or more embodiments.
  • Fig. 6 is a schematic diagram of a two-stage multi-degree-of-freedom spatial position precision stabilization system according to one or more embodiments.
  • Figure 7 is a schematic diagram of a primary platform according to one or more embodiments.
  • Figure 8 is a schematic diagram of a secondary platform, according to one or more embodiments.
  • Guide bar one; 312 U-shaped groove two; 32, first-level bottom plate; 321, U-shaped groove one; 33, X-axis linear guide rail slider assembly one; 34, first-level Y-axis motion unit; 341, guide bar two; 342, guide groove; 35. First-level X-axis motion unit; 36. Y-axis linear guide rail slider assembly one; 37. First electromagnetic drive assembly; 371. Electromagnetic actuation unit one; 372. Electromagnetic actuation unit two; 373. Electromagnetic actuation unit Three; 4. Controller; 5. Detection unit; 61. Grating ruler sensor one; 62. Grating ruler sensor two; 63. Grating ruler sensor three; 64. Grating ruler sensor four; 65. Grating ruler sensor five; 66. Grating Ruler sensor six.
  • a dual-stage multi-degree-of-freedom spatial position precision stabilization system 100 of the present application mainly includes: a motion platform 1 , a secondary platform 2 , a primary platform 3 and a controller 4 .
  • the secondary platform 2 is connected to the moving platform 1 and is located below the moving platform 1, and the secondary platform 2 is provided with a second electromagnetic drive assembly to adjust the position of the moving platform 1 in multiple directions through electromagnetic actuation.
  • the primary platform 3 is connected to the secondary platform 2 and is located below the secondary platform 2.
  • the primary platform 3 is provided with a first electromagnetic drive assembly 37 to adjust the secondary platform 2 in multiple directions by means of electromagnetic actuation.
  • the controller 4 is connected to the first electromagnetic drive assembly 37 and the second electromagnetic drive assembly 26 , and controls the first electromagnetic drive assembly 37 and the second electromagnetic drive assembly 26 to respectively drive the primary platform 3 and the secondary platform 2 .
  • the secondary platform 2 can adjust the position of the moving platform 1 in three directions of X axis, Y axis and Z axis under the drive of the second electromagnetic drive assembly 26 .
  • the primary platform 3 can also adjust the secondary platform 2 in the three directions of X-axis, Y-axis and Z-axis so as to adjust the position of the moving platform 1 .
  • the first electromagnetic drive assembly 37 includes a first electromagnetic actuation unit 371 , a second electromagnetic actuation unit 372 and a third electromagnetic actuation unit 373 .
  • the first-level platform 3 includes: a first-level bottom plate 32 , a first-level Z-axis movement unit 31 , a first-level Y-axis movement unit 34 and a first-level X-axis movement unit 35 .
  • the first-level Z-axis motion unit 31 is movably connected to the first-level bottom plate 32 along the Z-axis direction, and the two are movably connected.
  • An electromagnetic actuation unit 1 371 for driving the primary Z-axis motion unit 31 to move along the Z-axis direction is disposed between the primary Z-axis motion unit 31 and the primary base plate 32 .
  • the primary Y-axis motion unit 34 is movably connected to the primary Z-axis motion unit 31 along the Y-axis direction, and a primary Y-axis motion unit 34 is provided between the primary Y-axis motion unit 34 and the primary Z-axis motion unit 31
  • Electromagnetic actuator unit 2 372 moving along the Y-axis direction.
  • the first-level X-axis movement unit 35 is movably connected to the first-level Y-axis movement unit 34 along the X-axis direction.
  • the first-level Y-axis movement unit 34 is provided with a guide groove 342, and the bottom of the second-level platform 2 is provided with a guide groove 342.
  • the guide protrusion 231 of the guide protrusion 231 and the guide groove 342 are provided with an electromagnetic actuation unit 3 373 for driving the secondary platform 2 to move along the X-axis direction.
  • the first-level bottom plate 32 is provided with a U-shaped groove 321
  • the first-level Z-axis motion unit 31 is provided with a guide bar 311 that cooperates with the U-shaped groove 321.
  • An electromagnetic actuation unit 1 371 is arranged between them.
  • Electromagnetic actuation unit 1 371 includes a coil and a permanent magnet, the coil is mounted on guide bar 1 311 , and the permanent magnet is mounted on U-shaped groove 1 321 . When the coil is energized, the guide strip 1 311 is driven by electromagnetic force and moves along the U-shaped slot 1 321 .
  • the structures and principles of the electromagnetic actuation units described below are the same and will not be repeated here.
  • the first-level Z-axis motion unit 31 is provided with a U-shaped groove 2 312, and the first-level Y-axis motion unit 34 is provided with a guide bar 2 341 that cooperates with the U-shaped groove 2 312, and a U-shaped groove 2 312 and a guide bar 2 341 are provided.
  • the primary platform 3 also includes an X-axis linear guide rail slider assembly 1 33 and a Y-axis linear guide rail slider assembly 1 36 .
  • the first-level X-axis motion unit 35 and the first-level Y-axis motion unit 34 are connected through the X-axis linear guide rail slider assembly one 33, and the slider of the X-axis linear guide rail slider assembly one 33 is fixed to the first-level X-axis motion unit 35 by bolts Connected together, the linear guide rail of the X-axis linear guide rail slider assembly 1 33 and the first-stage Y-axis motion unit 34 are fixedly connected together by bolts, and then the first-stage X-axis motion unit 35 and the first-stage Y-axis motion unit 34 can realize relative slide.
  • the primary Y-axis motion unit 34 is connected to the primary Z-axis motion unit 31 through a Y-axis linear guide rail slider assembly one 36, and the slider of the Y-axis linear guide rail slider assembly one 36 is connected to the primary Y-axis motion unit 34
  • the linear guide rail of the Y-axis linear guide rail slider assembly 1 36 and the first-stage Z-axis motion unit 31 are fixedly connected together by bolts, and then the first-stage Y-axis motion unit 34 and the first-stage Z-axis motion unit 31 Relative sliding can be realized.
  • the second electromagnetic drive assembly 26 includes an electromagnetic actuation unit four 261 , an electromagnetic actuation unit five 262 and an electromagnetic actuation unit six 263 .
  • the secondary platform 2 includes: a secondary bottom plate 23 , a secondary Y-axis motion unit 25 and a secondary X-axis motion unit 21 .
  • the bottom of the secondary bottom plate 23 is provided with a guiding protrusion 231 , and an electromagnetic actuating unit 261 for driving the secondary bottom plate 23 to move along the Z-axis is provided between the guiding protrusion 231 and the guiding groove 342 . That is, the electromagnetic actuation unit three 373 and the electromagnetic actuation unit four 261 are both disposed between the guide protrusion 231 and the guide groove 342.
  • the guide protrusion 231 can move in the direction of the X-axis or along the direction of the Z-axis in the guide groove 342 .
  • the guide protrusion 231 is floatingly inserted into the guide groove 342 .
  • the primary X-axis motion unit 35 assists in supporting the secondary bottom plate 23 .
  • the secondary Y-axis motion unit 25 is movably connected to the secondary bottom plate 23 along the Y-axis direction, and a motor for driving the secondary Y-axis motion unit 25 to move along the Y-axis direction is provided between the secondary Y-axis motion unit 25 and the secondary bottom plate 23 Electromagnetic actuation unit five 262.
  • the secondary X-axis motion unit 21 is movably connected to the secondary Y-axis motion unit 25 along the X-axis direction, and a driving secondary X-axis motion unit 21 is arranged between the secondary X-axis motion unit 21 and the secondary Y-axis motion unit 25
  • the electromagnetic actuator unit 6 263 moving along the X-axis direction, the motion platform 1 is connected to the secondary X-axis motion unit 21 .
  • the secondary bottom plate 23 is provided with a U-shaped groove 3 232
  • the secondary Y-axis motion unit 25 is provided with a guide bar 3 251 that cooperates with the U-shaped groove 3 232, and a U-shaped groove 3 232 and a guide bar 251 are provided.
  • the secondary Y-axis motion unit 25 is provided with a U-shaped groove 252, the secondary X-axis motion unit 21 cooperates with the U-shaped groove 252, and an electromagnetic actuator is provided between the U-shaped groove 252 and the secondary X-axis motion unit 21 Unit six 263.
  • the secondary platform 2 also includes a second X-axis linear guide rail slider assembly 24 and a Y-axis linear guide rail slider assembly second 22 .
  • the secondary Y-axis motion unit 25 is connected to the secondary X-axis motion unit 21 through the X-axis linear guide rail slider assembly 24, and the slider of the X-axis linear guide rail slider assembly 2 24 is fixed to the secondary X-axis motion unit 21 by bolts Connected together, the linear guide rail of the X-axis linear guide rail slider assembly 24 and the secondary Y-axis motion unit 25 are fixedly connected together by bolts, and then the secondary Y-axis motion unit 25 and the secondary X-axis motion unit 21 can realize relative slide.
  • the secondary Y-axis motion unit 25 is connected to the secondary bottom plate 23 through the Y-axis linear guide rail slider assembly 22, and the slider of the Y-axis linear guide rail slider assembly 2 22 is fixedly connected with the secondary Y-axis motion unit 25 through bolts
  • the linear guide rail of the Y-axis linear guide rail slider assembly 22 and the secondary bottom plate 23 are fixedly connected together by bolts, and then the secondary Y-axis motion unit 25 and the secondary bottom plate 23 can slide relative to each other.
  • a grating scale sensor 1 61 for detecting the relative position between the primary bottom plate 32 and the primary Z-axis motion unit 31 is disposed between the U-shaped groove 1 321 and the guide bar 1 311 . Between the U-shaped groove 2 312 and the guide bar 2 341 is provided a grating scale sensor 2 62 for detecting the relative position between the primary Z-axis motion unit 31 and the primary Y-axis motion unit 34 .
  • the guide protrusion 231 and the guide groove 342 are provided with a grating scale sensor 3 63 for detecting the relative position in the X-axis direction between the primary Y-axis motion unit 34 and the secondary base plate 23 and for detecting the primary Y-axis motion unit 34
  • a grating sensor 5 65 for detecting the positional relationship between the secondary bottom plate 23 and the secondary Y-axis motion unit 25 .
  • a grating sensor 66 for detecting the positional relationship between the secondary Y-axis motion unit 25 and the secondary X-axis motion unit 21 is disposed between the U-shaped groove 4 252 and the secondary X-axis motion unit 21 .
  • Grating scale sensor 1 61 , grating scale sensor 2 62 , grating scale sensor 3 63 , grating scale sensor 4 64 , grating scale sensor 5 65 and grating scale sensor 6 66 are connected to the controller 4 .
  • the positional relationship between the two moving parts is detected by the grating ruler sensor, and the controller 4 adjusts the corresponding electromagnetic actuation units according to the positional relationship.
  • the two-stage multi-degree-of-freedom space position precision stabilization system 100 further includes: a detection unit 5 .
  • the detection unit 5 is used to detect the amount of position change of the motion platform 1 .
  • the controller 4 controls the first electromagnetic driving assembly 37 to adjust the moving platform 1 .
  • the controller 4 controls the second electromagnetic driving assembly 26 to adjust the moving platform 1 .
  • the controller 4 controls the first electromagnetic drive assembly 37, so as to perform electromagnetic actuation through the primary platform 3, and realize the rough adjustment of the motion platform 1 in the direction of three degrees of freedom in the spatial position .
  • the controller 4 controls the second electromagnetic drive assembly 26 to perform electromagnetic actuation through the secondary platform 2 to realize fine adjustment of the motion platform 1 in the direction of three degrees of freedom in the spatial position.
  • the two-stage multi-degree-of-freedom space position precision stabilization system 100 further includes: a detection unit 5 .
  • the detection unit 5 is used to detect the position change of the motion platform 1 in the three directions of the X axis, the Y axis and the Z axis. For the amount of position change in the X-axis direction, when the detection unit 5 detects that the amount reaches a preset value, the controller 4 controls the electromagnetic actuation unit three 373 in the first electromagnetic drive assembly 37 to adjust the motion platform 1, when the detection unit 5 detects that it has not reached the preset value, the controller 4 controls the electromagnetic actuation unit 6 263 in the second electromagnetic drive assembly 26 to adjust the motion platform 1.
  • the controller 4 controls the electromagnetic actuation unit 2 372 in the first electromagnetic drive assembly 37 to adjust the motion platform 1.
  • the controller 4 controls the electromagnetic actuation unit 5 262 in the second electromagnetic drive assembly 26 to adjust the motion platform 1 .
  • the controller 4 controls the electromagnetic actuation unit one 371 in the first electromagnetic drive assembly 37 to adjust the motion platform 1.
  • the controller 4 controls the electromagnetic actuation unit 261 in the second electromagnetic drive assembly 26 to adjust the motion platform 1.
  • coarse adjustment and fine adjustment can be performed simultaneously in each axial direction, thereby realizing stepless switch adjustment of spatial positions of two displacement levels.
  • the fine adjustment in the X-axis direction is completed by the secondary platform 2
  • the coarse adjustment in the Y-axis and Z-axis directions is completed by the primary platform 3 .
  • the preset value ranges from 0.1mm to 2mm.
  • the default value is set to 1 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Machine Tool Units (AREA)

Abstract

一种双级多自由度空间位置精密稳定系统(100)。该双级多自由度空间位置精密稳定系统(100)包含:运动平台(1);二级平台(2),连接至运动平台(1)且位于运动平台(1)的下方,二级平台(2)设有第二电磁驱动组件(26)以调节运动平台(1)的位置;一级平台(3),连接至二级平台(2)且位于二级平台(2)的下方,一级平台(3)设有第一电磁驱动组件(37)以调节二级平台(2),从而调节运动平台(1)的位置;控制器(4),用于控制第一电磁驱动组件(37)和第二电磁驱动组件(26)。

Description

双级多自由度空间位置精密稳定系统
相关申请
本申请要求2021年12月10日申请的,申请号为202111510470.9,发明名称为“双级多自由度空间位置精密稳定系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于空间位置精密稳定技术领域,具体涉及一种双级多自由度空间位置精密稳定系统。
背景技术
目前随着先进制造技术的发展,面向纳米级定位控制以及对材料或器件的纳米级操作的高端装备日益得到广泛的关注。基于直线位驱动领域的需求升级和技术快速迭代,滚珠丝杠等传统执行机构由于其传动链较长、系统累计误差大,导致传动精度和响应速度已经不能满足当前的精密直线驱动需求。
同时,机械振动对光学系统的成像质量、测量精度和目标跟踪瞄准精度的影响是不可避免的。目前主流的隔振方法可分为主动隔振和被动隔振,然而主动隔振和被动隔振均是对于仪器设备与地基之间的振动进行隔绝,区别在于振动源形式不同。因此对于隔振链末端的光学仪器设备(激光器等),并不能很好的实现空间范围内的振动或扰动隔绝,所以需要一种用来稳定光学仪器设备的空间位置精密稳定系统。
发明内容
根据本申请的各种实施例,提供了一种双级多自由度空间位置精密稳定系统。
本申请提供一种双级多自由度空间位置精密稳定系统,包含:运动平台、二级平台、一级平台和控制器。二级平台连接至运动平台且位于运动平台的下方,二级平台设有第二电磁驱动组件以通过电磁致动的方式在多个方向上调节运动平台的位置;一级平台连接至二级平台且位于二级平台的下方,一级平台设有第一电磁驱动组件以通过电磁致动的方式在多个方向上调节二级平台,从而调节运动平台的位置;控制器用于连接至第一电磁驱动组件和第二电磁驱动组件以控制第一电磁驱动组件和第二电磁驱动组件。
在一实施例中,二级平台在第二电磁驱动组件的驱动下能够在X轴、Y轴和Z轴三个方向上调节运动平台的位置;一级平台在第一电磁驱动组件的驱动下能够在X轴、Y轴和Z轴三个方向上调节二级平台从而调节运动平台的位置。
在一实施例中,第一电磁驱动组件包含电磁致动单元一、电磁致动单元二和电磁致动单元三。
一级平台包含:一级底板、一级Z轴运动单元、一级Y轴运动单元和一级X轴运动单元。一级Z轴运动单元沿Z轴方向可动连接至一级底板,一级Z轴运动单元和一级底板之间设有驱动一级Z轴运动单元沿Z轴方向运动的电磁致动单元一。一级Y轴运动单元沿Y轴方向可动连接至一级Z轴运动单元,一级Y轴运动单元和一级Z轴运动单元之间设有驱动一级Y轴运动单元沿Y轴方向运动的电磁致动单元二。一级X轴运动单元沿X轴方向可动连接至一级Y轴运动单元,一级Y轴运动单元上设有引导槽,二级平台的底部设有与引导槽配合的引导凸起,引导凸起和引导槽之间设有驱动二级平台沿X 轴方向运动的电磁致动单元三。
在一实施例中,一级底板设有U型槽一,一级Z轴运动单元设有与U型槽一配合的引导条一,U型槽一和引导条一之间设有电磁致动单元一;一级Z轴运动单元设有U型槽二,一级Y轴运动单元设有与U型槽二配合的引导条二,U型槽二和引导条二之间设有电磁致动单元二。
在一实施例中,第二电磁驱动组件包含电磁致动单元四、电磁致动单元五和电磁致动单元六。二级平台包含:二级底板、二级Y轴运动单元和二级X轴运动单元。二级底板其底部设有引导凸起,引导凸起和引导槽之间还设有用于驱动二级底板沿Z轴方向运动的电磁致动单元四;二级Y轴运动单元沿Y轴方向可动连接至二级底板,二级Y轴运动单元和二级底板之间设有驱动二级Y轴运动单元沿Y轴方向运动的电磁致动单元五;二级X轴运动单元沿X轴方向可动连接至二级Y轴运动单元,二级X轴运动单元和二级Y轴运动单元之间设有驱动二级X轴运动单元沿X轴方向运动的电磁致动单元六,运动平台连接至二级X轴运动单元。
在一实施例中,二级底板设有U型槽三,二级Y轴运动单元设有与U型槽三配合的引导条三,U型槽三和引导条三之间设有电磁致动单元五;二级Y轴运动单元设有U型槽四,二级X轴运动单元与U型槽四配合,U型槽四和二级X轴运动单元之间设有电磁致动单元六。
在一实施例中,U型槽一和引导条一之间设有用于检测一级底板和一级Z轴运动单元之间相对位置的光栅尺传感器一;U型槽二和引导条二之间设有用于检测一级Z轴运动单元和一级Y轴运动单元之间相对位置的光栅尺传感器二;引导凸起和引导槽内设有用于检测一级Y轴运动单元和二级底板之间的X轴方向相对位置的光栅尺传感器三和用于检测一级Y轴运动单元和二级 底板之间的Z轴方向相对位置的光栅尺传感器四。U型槽三和引导条三之间设有用于检测二级底板和二级Y轴运动单元之间位置关系的光栅尺传感器五;U型槽四和二级X轴运动单元之间设有用于检测二级Y轴运动单元和二级X轴运动单元之间位置关系的光栅尺传感器六。
在一实施例中,双级多自由度空间位置精密稳定系统还包含:检测单元,用于检测运动平台的位置变化量。
当检测单元检测到的运动平台的位置变化量达到预设值时,控制器控制第一电磁驱动组件以调节运动平台;当检测单元检测到的运动平台的位置变化量未达到预设值时,控制器控制第二电磁驱动组件以调节运动平台。
在一实施例中,双级多自由度空间位置精密稳定系统还包含:检测单元,用于检测运动平台在X轴、Y轴和Z轴三个方向上的位置变化量。
对于X轴方向的位置变化量,当检测单元检测到其量达到预设值时,控制器控制第一电磁驱动组件中的电磁致动单元三以调节运动平台,当检测单元检测到其未达到预设值时,控制器控制第二电磁驱动组件中的电磁致动单元六以调节运动平台。
对于Y轴方向的位置变化量,当检测单元检测到其量达到预设值时,控制器控制第一电磁驱动组件中的电磁致动单元二以调节运动平台,当检测单元检测到其未达到预设值时,控制器控制第二电磁驱动组件中的电磁致动单元五以调节运动平台。
对于Z轴方向的位置变化量,当检测单元检测到其量达到预设值时,控制器控制第一电磁驱动组件中的电磁致动单元一以调节运动平台,当检测单元检测到其未达到预设值时,控制器控制第二电磁驱动组件中的电磁致动单元四以调节运动平台。
在一实施例中,预设值的范围为0.1mm至2mm。
本申请的有益之处在于所提供的双级多自由度空间位置精密稳定系统,利用电磁直驱技术,减少了中间传动机械结构,实现了精度高、响应迅速的直线定位功能。
本申请的有益之处还在于所提供的双级多自由度空间位置精密稳定系统,实现了双级三自由度的空间位置调节,能够抵消空间范围内三自由度的振动/扰动,提高光学测试精度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是根据一个或多个实施例的一种双级多自由度空间位置精密稳定系统的示意图。
图2是根据一个或多个实施例的二级平台的示意图。
图3是根据一个或多个实施例的二级平台的另一视角的示意图。
图4是根据一个或多个实施例的一级平台的示意图。
图5是根据一个或多个实施例的双级多自由度空间位置精密稳定系统的示意图。
图6是根据一个或多个实施例的双级多自由度空间位置精密稳定系统的 示意图。
图7是根据一个或多个实施例的一级平台的示意图。
图8是根据一个或多个实施例的二级平台的示意图。
100、双级多自由度空间位置精密稳定系统;1、运动平台;2、二级平台;21、二级X轴运动单元;22、Y轴直线导轨滑块组件二;23、二级底板;231、引导凸起;232、U型槽三;24、X轴直线导轨滑块组件二;25、二级Y轴运动单元;251、引导条三;252、U型槽四;26、第二电磁驱动组件;261、电磁致动单元四;262、电磁致动单元五;263、电磁致动单元六;3、一级平台;31、一级Z轴运动单元;311、引导条一;312、U型槽二;32、一级底板;321、U型槽一;33、X轴直线导轨滑块组件一;34、一级Y轴运动单元;341、引导条二;342、引导槽;35、一级X轴运动单元;36、Y轴直线导轨滑块组件一;37、第一电磁驱动组件;371、电磁致动单元一;372、电磁致动单元二;373、电磁致动单元三;4、控制器;5、检测单元;61、光栅尺传感器一;62、光栅尺传感器二;63、光栅尺传感器三;64、光栅尺传感器四;65、光栅尺传感器五;66、光栅尺传感器六。
具体实施方式
以下结合附图和具体实施例对本申请作具体的介绍。
如图1-图8所示为本申请的一种双级多自由度空间位置精密稳定系统100,主要包含:运动平台1、二级平台2、一级平台3和控制器4。其中,二级平台2连接至运动平台1且位于运动平台1的下方,二级平台2设有第二电磁驱动组件以通过电磁致动的方式在多个方向上调节运动平台1的位置。一级平台3连接至二级平台2且位于二级平台2的下方,一级平台3设有第 一电磁驱动组件37以通过电磁致动的方式在多个方向上调节二级平台2。由于运动平台1是直接连接在二级平台2上,对二级平台2的调节就是调节运动平台1的位置。控制器4连接至第一电磁驱动组件37和第二电磁驱动组件26,通过控制第一电磁驱动组件37和第二电磁驱动组件26来分别驱动一级平台3和二级平台2。
在本申请中,二级平台2在第二电磁驱动组件26的驱动下能够在X轴、Y轴和Z轴三个方向上调节运动平台1的位置。一级平台3在第一电磁驱动组件37的驱动下同样能够在X轴、Y轴和Z轴三个方向上调节二级平台2从而调节运动平台1的位置。以下具体介绍上述组件。
具体而言,第一电磁驱动组件37包含电磁致动单元一371、电磁致动单元二372和电磁致动单元三373。一级平台3包含:一级底板32、一级Z轴运动单元31、一级Y轴运动单元34和一级X轴运动单元35。一级底板32安装位置周围应没有遮挡物,且尽量远离振动源,以保证良好的稳定精度。一级Z轴运动单元31沿Z轴方向可动连接至一级底板32,两者活动连接。一级Z轴运动单元31和一级底板32之间设有驱动一级Z轴运动单元31沿Z轴方向运动的电磁致动单元一371。一级Y轴运动单元34沿Y轴方向可动连接至一级Z轴运动单元31,一级Y轴运动单元34和一级Z轴运动单元31之间设有驱动一级Y轴运动单元34沿Y轴方向运动的电磁致动单元二372。一级X轴运动单元35沿X轴方向可动连接至一级Y轴运动单元34,一级Y轴运动单元34上设有引导槽342,二级平台2的底部设有与引导槽342配合的引导凸起231,引导凸起231和引导槽342之间设有驱动二级平台2沿X轴方向运动的电磁致动单元三373。
在本申请中,一级底板32设有U型槽一321,一级Z轴运动单元31设 有与U型槽一321配合的引导条一311,U型槽一321和引导条一311之间设有电磁致动单元一371。电磁致动单元一371包含线圈和永磁体,线圈安装在引导条一311上,永磁体安装在U型槽一321上。当线圈通电时,引导条一311被电磁力驱动并沿着U型槽一321运动。下述的电磁致动单元的结构和原理是一致的,不再赘述。一级Z轴运动单元31设有U型槽二312,一级Y轴运动单元34设有与U型槽二312配合的引导条二341,U型槽二312和引导条二341之间设有电磁致动单元二372。
在本申请中,一级平台3还包含X轴直线导轨滑块组件一33和Y轴直线导轨滑块组件一36。一级X轴运动单元35与一级Y轴运动单元34通过X轴直线导轨滑块组件一33连接,X轴直线导轨滑块组件一33的滑块与一级X轴运动单元35通过螺栓固定连接在一起,X轴直线导轨滑块组件一33的直线导轨与一级Y轴运动单元34通过螺栓固定连接在一起,进而一级X轴运动单元35与一级Y轴运动单元34可实现相对滑动。同样的,一级Y轴运动单元34与一级Z轴运动单元31通过Y轴直线导轨滑块组件一36连接,Y轴直线导轨滑块组件一36的滑块与一级Y轴运动单元34通过螺栓固定连接在一起,Y轴直线导轨滑块组件一36的直线导轨与一级Z轴运动单元31通过螺栓固定连接在一起,进而一级Y轴运动单元34与一级Z轴运动单元31可实现相对滑动。
第二电磁驱动组件26包含电磁致动单元四261、电磁致动单元五262和电磁致动单元六263。二级平台2包含:二级底板23、二级Y轴运动单元25和二级X轴运动单元21。二级底板23的底部设有引导凸起231,引导凸起231和引导槽342之间还设有用于驱动二级底板23沿Z轴方向运动的电磁致动单元四261。即,电磁致动单元三373和电磁致动单元四261均设置在引导 凸起231和引导槽342之间。这样,引导凸起231可在引导槽342内沿X轴方向运动,也可以沿Z轴方向运动。引导凸起231浮动插入引导槽342内。当二级底板23沿Z轴方向运动至与一级X轴运动单元35接触时,一级X轴运动单元35辅助支撑二级底板23。
二级Y轴运动单元25沿Y轴方向可动连接至二级底板23,二级Y轴运动单元25和二级底板23之间设有驱动二级Y轴运动单元25沿Y轴方向运动的电磁致动单元五262。二级X轴运动单元21沿X轴方向可动连接至二级Y轴运动单元25,二级X轴运动单元21和二级Y轴运动单元25之间设有驱动二级X轴运动单元21沿X轴方向运动的电磁致动单元六263,运动平台1连接至二级X轴运动单元21。具体的,二级底板23设有U型槽三232,二级Y轴运动单元25设有与U型槽三232配合的引导条三251,U型槽三232和引导条三251之间设有电磁致动单元五262。二级Y轴运动单元25设有U型槽四252,二级X轴运动单元21与U型槽四252配合,U型槽四252和二级X轴运动单元21之间设有电磁致动单元六263。
在本申请中,二级平台2还包括X轴直线导轨滑块组件二24和Y轴直线导轨滑块组件二22。二级Y轴运动单元25与二级X轴运动单元21通过X轴直线导轨滑块组件二24连接,X轴直线导轨滑块组件二24的滑块与二级X轴运动单元21通过螺栓固定连接在一起,X轴直线导轨滑块组件二24的直线导轨与二级Y轴运动单元25通过螺栓固定连接在一起,进而二级Y轴运动单元25与二级X轴运动单元21可实现相对滑动。二级Y轴运动单元25与二级底板23通过Y轴直线导轨滑块组件二22连接,Y轴直线导轨滑块组件二22的滑块与二级Y轴运动单元25通过螺栓固定连接在一起,Y轴直线导轨滑块组件二22的直线导轨与二级底板23通过螺栓固定连接在一起,进 而二级Y轴运动单元25与二级底板23可实现相对滑动。
在一个/多个实施例中,U型槽一321和引导条一311之间设有用于检测一级底板32和一级Z轴运动单元31之间相对位置的光栅尺传感器一61。U型槽二312和引导条二341之间设有用于检测一级Z轴运动单元31和一级Y轴运动单元34之间相对位置的光栅尺传感器二62。引导凸起231和引导槽342内设有用于检测一级Y轴运动单元34和二级底板23之间的X轴方向相对位置的光栅尺传感器三63和用于检测一级Y轴运动单元34和二级底板23之间的Z轴方向相对位置的光栅尺传感器四64。U型槽三232和引导条三251之间设有用于检测二级底板23和二级Y轴运动单元25之间位置关系的光栅尺传感器五65。U型槽四252和二级X轴运动单元21之间设有用于检测二级Y轴运动单元25和二级X轴运动单元21之间位置关系的光栅尺传感器六66。光栅尺传感器一61、光栅尺传感器二62、光栅尺传感器三63、光栅尺传感器四64、光栅尺传感器五65和光栅尺传感器六66连接至控制器4。通过光栅尺传感器检测相互运动的两个部件的位置关系,控制器4根据该位置关系来分别调节对应的电磁致动单元。
在一个/多个实施例中,双级多自由度空间位置精密稳定系统100还包含:检测单元5。
检测单元5用于检测运动平台1的位置变化量。当检测单元5检测到的运动平台1的位置变化量达到预设值时,控制器4控制第一电磁驱动组件37以调节运动平台1。当检测单元5检测到的运动平台1的位置变化量未达到预设值时,控制器4控制第二电磁驱动组件26以调节运动平台1。
可以理解的是,在位置变化量比较大时,控制器4控制第一电磁驱动组件37,从而通过一级平台3进行电磁致动,实现运动平台1在空间位置三自 由度方向上的粗调。当位置变化量较小时,控制器4控制第二电磁驱动组件26,从而通过二级平台2进行电磁致动,实现运动平台1在空间位置三自由度方向上的精调。
在一个/多个实施例中,双级多自由度空间位置精密稳定系统100还包含:检测单元5。
检测单元5用于检测运动平台1在X轴、Y轴和Z轴三个方向上的位置变化量。对于X轴方向的位置变化量,当检测单元5检测到其量达到预设值时,控制器4控制第一电磁驱动组件37中的电磁致动单元三373以调节运动平台1,当检测单元5检测到其未达到预设值时,控制器4控制第二电磁驱动组件26中的电磁致动单元六263以调节运动平台1。对于Y轴方向的位置变化量,当检测单元5检测到其量达到预设值时,控制器4控制第一电磁驱动组件37中的电磁致动单元二372以调节运动平台1,当检测单元5检测到其未达到预设值时,控制器4控制第二电磁驱动组件26中的电磁致动单元五262以调节运动平台1。对于Z轴方向的位置变化量,当检测单元5检测到其量达到预设值时,控制器4控制第一电磁驱动组件37中的电磁致动单元一371以调节运动平台1,当检测单元5检测到其未达到预设值时,控制器4控制第二电磁驱动组件26中的电磁致动单元四261以调节运动平台1。
与前述的检测单元5的控制逻辑不同的是,在本实施例中,粗调和精调在各轴向方向均可同时进行,进而实现两个位移量级的空间位置的无级切换调整。比如在X轴方向的精调由二级平台2完成,同时,在Y轴和Z轴方向的粗调由一级平台3完成。
在一个/多个实施例中,预设值的范围为0.1mm至2mm。在本申请中,预设值设为1mm。
以上显示和描述了本申请的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本申请,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本申请的保护范围内。

Claims (11)

  1. 一种双级多自由度空间位置精密稳定系统,其特征在于,包含:
    运动平台;
    二级平台,连接至所述运动平台且位于所述运动平台的下方,所述二级平台设有第二电磁驱动组件以通过电磁致动的方式在多个方向上调节所述运动平台的位置;
    一级平台,连接至所述二级平台且位于所述二级平台的下方,所述一级平台设有第一电磁驱动组件以通过电磁致动的方式在多个方向上调节所述二级平台,从而调节所述运动平台的位置;
    控制器,用于连接至所述第一电磁驱动组件和所述第二电磁驱动组件以控制所述第一电磁驱动组件和所述第二电磁驱动组件。
  2. 根据权利要求1所述的双级多自由度空间位置精密稳定系统,其中,
    所述二级平台在所述第二电磁驱动组件的驱动下能够在X轴、Y轴和Z轴三个方向上调节所述运动平台的位置;
    所述一级平台在所述第一电磁驱动组件的驱动下能够在X轴、Y轴和Z轴三个方向上调节所述二级平台从而调节所述运动平台的位置。
  3. 根据权利要求2所述的双级多自由度空间位置精密稳定系统,其中,
    所述第一电磁驱动组件包含电磁致动单元一、电磁致动单元二和电磁致动单元三;
    所述一级平台包含:
    一级底板;
    一级Z轴运动单元,沿Z轴方向可动连接至所述一级底板,所述一级Z轴运动单元和所述一级底板之间设有驱动所述一级Z轴运动单元沿Z轴方向 运动的所述电磁致动单元一;
    一级Y轴运动单元,沿Y轴方向可动连接至所述一级Z轴运动单元,所述一级Y轴运动单元和所述一级Z轴运动单元之间设有驱动所述一级Y轴运动单元沿Y轴方向运动的所述电磁致动单元二;
    一级X轴运动单元,沿X轴方向可动连接至所述一级Y轴运动单元,所述一级Y轴运动单元上设有引导槽,所述二级平台的底部设有与所述引导槽配合的引导凸起,所述引导凸起和所述引导槽之间设有驱动所述二级平台沿X轴方向运动的所述电磁致动单元三。
  4. 根据权利要求3所述的双级多自由度空间位置精密稳定系统,其中,
    所述一级底板设有U型槽一,所述一级Z轴运动单元设有与所述U型槽一配合的引导条一,所述U型槽一和所述引导条一之间设有所述电磁致动单元一;
    所述一级Z轴运动单元设有U型槽二,所述一级Y轴运动单元设有与所述U型槽二配合的引导条二,所述U型槽二和所述引导条二之间设有所述电磁致动单元二。
  5. 根据权利要求4所述的双级多自由度空间位置精密稳定系统,其中,
    所述第二电磁驱动组件包含电磁致动单元四、电磁致动单元五和电磁致动单元六;
    所述二级平台包含:
    二级底板,其底部设有所述引导凸起,所述引导凸起和所述引导槽之间还设有用于驱动所述二级底板沿Z轴方向运动的所述电磁致动单元四;
    二级Y轴运动单元,沿Y轴方向可动连接至所述二级底板,所述二级Y轴运动单元和所述二级底板之间设有驱动所述二级Y轴运动单元沿Y轴方向 运动的所述电磁致动单元五;
    二级X轴运动单元,沿X轴方向可动连接至所述二级Y轴运动单元,所述二级X轴运动单元和所述二级Y轴运动单元之间设有驱动所述二级X轴运动单元沿X轴方向运动的电磁致动单元六,所述运动平台连接至所述二级X轴运动单元。
  6. 根据权利要求5所述的双级多自由度空间位置精密稳定系统,其中,
    所述二级底板设有U型槽三,所述二级Y轴运动单元设有与所述U型槽三配合的引导条三,所述U型槽三和所述引导条三之间设有所述电磁致动单元五;
    所述二级Y轴运动单元设有U型槽四,所述二级X轴运动单元与所述U型槽四配合,所述U型槽四和所述二级X轴运动单元之间设有所述电磁致动单元六。
  7. 根据权利要求6所述的双级多自由度空间位置精密稳定系统,其中,
    所述U型槽一和所述引导条一之间设有用于检测所述一级底板和所述一级Z轴运动单元之间相对位置的光栅尺传感器一;
    所述U型槽二和所述引导条二之间设有用于检测所述一级Z轴运动单元和所述一级Y轴运动单元之间相对位置的光栅尺传感器二;
    所述引导凸起和所述引导槽内设有用于检测所述一级Y轴运动单元和所述二级底板之间的X轴方向相对位置的光栅尺传感器三和用于检测所述一级Y轴运动单元和所述二级底板之间的Z轴方向相对位置的光栅尺传感器四;
    所述U型槽三和所述引导条三之间设有用于检测所述二级底板和所述二级Y轴运动单元之间位置关系的光栅尺传感器五;
    所述U型槽四和所述二级X轴运动单元之间设有用于检测所述二级Y轴 运动单元和所述二级X轴运动单元之间位置关系的光栅尺传感器六。
  8. 根据权利要求7所述的双级多自由度空间位置精密稳定系统,其中,
    所述双级多自由度空间位置精密稳定系统还包含:
    检测单元,用于检测所述运动平台的位置变化量;
    当所述检测单元检测到的所述运动平台的位置变化量达到预设值时,所述控制器控制所述第一电磁驱动组件以调节所述运动平台;
    当所述检测单元检测到的所述运动平台的位置变化量未达到所述预设值时,所述控制器控制所述第二电磁驱动组件以调节所述运动平台。
  9. 根据权利要求7所述的双级多自由度空间位置精密稳定系统,其中,
    所述双级多自由度空间位置精密稳定系统还包含:
    检测单元,用于检测所述运动平台在X轴、Y轴和Z轴三个方向上的位置变化量;
    对于X轴方向的位置变化量,当所述检测单元检测到其量达到预设值时,所述控制器控制所述第一电磁驱动组件中的电磁致动单元三以调节所述运动平台,当所述检测单元检测到其未达到所述预设值时,所述控制器控制所述第二电磁驱动组件中的电磁致动单元六以调节所述运动平台;
    对于Y轴方向的位置变化量,当所述检测单元检测到其量达到预设值时,所述控制器控制所述第一电磁驱动组件中的电磁致动单元二以调节所述运动平台,当所述检测单元检测到其未达到所述预设值时,所述控制器控制所述第二电磁驱动组件中的电磁致动单元五以调节所述运动平台;
    对于Z轴方向的位置变化量,当所述检测单元检测到其量达到预设值时,所述控制器控制所述第一电磁驱动组件中的电磁致动单元一以调节所述运动平台,当所述检测单元检测到其未达到所述预设值时,所述控制器控制所述 第二电磁驱动组件中的电磁致动单元四以调节所述运动平台。
  10. 根据权利要求8所述的双级多自由度空间位置精密稳定系统,其中,
    所述预设值的范围为0.1mm至2mm。
  11. 根据权利要求9所述的双级多自由度空间位置精密稳定系统,其中,
    所述预设值的范围为0.1mm至2mm。
PCT/CN2022/132274 2021-12-10 2022-11-16 双级多自由度空间位置精密稳定系统 WO2023103724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111510470.9 2021-12-10
CN202111510470.9A CN114362471B (zh) 2021-12-10 2021-12-10 双级多自由度空间位置精密稳定系统

Publications (1)

Publication Number Publication Date
WO2023103724A1 true WO2023103724A1 (zh) 2023-06-15

Family

ID=81098735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132274 WO2023103724A1 (zh) 2021-12-10 2022-11-16 双级多自由度空间位置精密稳定系统

Country Status (2)

Country Link
CN (1) CN114362471B (zh)
WO (1) WO2023103724A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362471B (zh) * 2021-12-10 2023-07-14 浙江大学杭州国际科创中心 双级多自由度空间位置精密稳定系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038989A1 (en) * 2004-08-23 2006-02-23 Beckman Coulter, Inc. Sensor alignment apparatus for an analysis system
CN101409248A (zh) * 2007-10-12 2009-04-15 深圳市大族精密机电有限公司 二维运动平台
CN102734379A (zh) * 2012-06-09 2012-10-17 哈尔滨工业大学 基于电磁与静压气浮复合支撑的主动隔振装置
CN102880013A (zh) * 2012-09-28 2013-01-16 清华大学 一种掩模台工作台
CN114362471A (zh) * 2021-12-10 2022-04-15 浙江大学杭州国际科创中心 双级多自由度空间位置精密稳定系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1724892A (zh) * 2005-05-20 2006-01-25 上海微电子装备有限公司 一种精密减振和定位装置
US20110102761A1 (en) * 2009-09-28 2011-05-05 Nikon Corporation Stage apparatus, exposure apparatus, and device fabricating method
CN102307031A (zh) * 2011-09-08 2012-01-04 中南大学 一种永磁电磁相结合的磁悬浮直线运动平台
CN102723298A (zh) * 2012-05-11 2012-10-10 哈尔滨工业大学 一种电磁预紧xy精密运动平台
CN102691747A (zh) * 2012-06-11 2012-09-26 哈尔滨工业大学 磁悬浮隔振平台
CN103062289B (zh) * 2012-12-19 2015-04-22 哈尔滨工业大学 双层气浮正交解耦与滚动关节轴承角度解耦的电磁阻尼隔振器
CN104390586B (zh) * 2014-11-12 2017-04-19 广东工业大学 机床单轴运动的几何误差的检测设备及其检测方法
CN105202325B (zh) * 2015-10-30 2017-12-29 上海交通大学 一种大行程单自由度气浮磁驱动纳米定位平台
CN105896785B (zh) * 2016-04-27 2018-11-06 广东工业大学 一种高速高精度二维运动平台
CN106430088B (zh) * 2016-08-30 2018-08-17 上海交通大学 一种六自由度磁浮磁驱纳米定位平台
CN106842546B (zh) * 2017-03-06 2019-05-21 中国科学院长春光学精密机械与物理研究所 一种指向和隔振一体化多维并联平台及系统
CN108206155B (zh) * 2018-03-07 2024-04-19 广东工业大学 一种层架式解耦的xy高速运动平台
CN209434160U (zh) * 2019-02-01 2019-09-24 广东工业大学 一种镶嵌层叠式xyz三维动态微驱动装置
CN110449916B (zh) * 2019-07-16 2024-05-17 杭州电子科技大学 采用磁悬浮式直线电机驱动的二维平台及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060038989A1 (en) * 2004-08-23 2006-02-23 Beckman Coulter, Inc. Sensor alignment apparatus for an analysis system
CN101409248A (zh) * 2007-10-12 2009-04-15 深圳市大族精密机电有限公司 二维运动平台
CN102734379A (zh) * 2012-06-09 2012-10-17 哈尔滨工业大学 基于电磁与静压气浮复合支撑的主动隔振装置
CN102880013A (zh) * 2012-09-28 2013-01-16 清华大学 一种掩模台工作台
CN114362471A (zh) * 2021-12-10 2022-04-15 浙江大学杭州国际科创中心 双级多自由度空间位置精密稳定系统

Also Published As

Publication number Publication date
CN114362471A (zh) 2022-04-15
CN114362471B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN101488371B (zh) 六自由度精密定位平台
KR100818581B1 (ko) 스테이지 장치
US6252234B1 (en) Reaction force isolation system for a planar motor
US7271879B2 (en) Decoupled planar positioning system
TW574632B (en) Stage apparatus and exposure apparatus
US9898000B2 (en) Planar positioning system and method of using the same
WO2023103724A1 (zh) 双级多自由度空间位置精密稳定系统
US5806193A (en) Tilt and movement apparatus using flexure and air cylinder
US8575791B2 (en) Manufacturing-process equipment
CN100349068C (zh) 微影系统及用于组装微影系统的方法
US8823309B2 (en) Stage device
US6486941B1 (en) Guideless stage
KR100663939B1 (ko) 진공용 대변위 나노 스테이지
US20030059194A1 (en) Multi axis component actuator
JP4962779B2 (ja) ステージ装置およびその浮上制御方法と、ステージ装置を用いた露光装置
US6693284B2 (en) Stage apparatus providing multiple degrees of freedom of movement while exhibiting reduced magnetic disturbance of a charged particle beam
US20060061751A1 (en) Stage assembly including a stage having increased vertical stroke
US6591757B1 (en) Motor driven high stability brake for linear motion systems
US20060289783A1 (en) Microscope stage with flexural axis
KR101756800B1 (ko) 이동 가능한 테이블 시스템
US7948715B2 (en) Head positioning assembly
JP4962780B2 (ja) ステージ装置およびその浮上制御方法と、ステージ装置を用いた露光装置
CN220520146U (zh) 样品台和具有它的微纳加工装置
KR100428052B1 (ko) I형 빔으로 구성된 이중 h구조를 이용한 장행정스테이지
KR100507840B1 (ko) 판스프링 가이드를 이용한 이중서보 xy 스테이지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903147

Country of ref document: EP

Kind code of ref document: A1