WO2023103675A1 - 空调器 - Google Patents

空调器 Download PDF

Info

Publication number
WO2023103675A1
WO2023103675A1 PCT/CN2022/130394 CN2022130394W WO2023103675A1 WO 2023103675 A1 WO2023103675 A1 WO 2023103675A1 CN 2022130394 W CN2022130394 W CN 2022130394W WO 2023103675 A1 WO2023103675 A1 WO 2023103675A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
degree
air conditioner
throttling element
subcooling
Prior art date
Application number
PCT/CN2022/130394
Other languages
English (en)
French (fr)
Inventor
王江南
车闫瑾
周敏
高永坤
张恒
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111484727.8A external-priority patent/CN114151934B/zh
Priority claimed from CN202210000948.1A external-priority patent/CN114322106B/zh
Priority claimed from CN202220357510.4U external-priority patent/CN216844913U/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2023103675A1 publication Critical patent/WO2023103675A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present disclosure relates to the technical field of air temperature adjustment, in particular to an air conditioner.
  • the air conditioner uses the vaporization and liquefaction of the refrigerant to absorb or release heat to adjust the temperature of the indoor space. Therefore, the appropriate amount of refrigerant is the basis for the smooth and efficient operation of the air conditioner. If the amount of refrigerant participating in the circulation in the air conditioner is more than the amount of refrigerant required by the air conditioner, it may cause liquid refrigerant to exist at the suction port of the compressor, thereby causing damage to the compressor. If the amount of refrigerant participating in the cycle of the air conditioner is less than the amount of refrigerant required by the air conditioner, it may result in insufficient refrigerant in the indoor unit, which cannot meet the cooling or heating needs of the user.
  • some embodiments of the present disclosure provide an air conditioner.
  • the air conditioner includes an outdoor unit, at least one indoor unit and a controller.
  • the outdoor unit includes a compressor, a first heat exchanger, an accumulator and a first throttling element.
  • the compressor is configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the first heat exchanger is configured to one of liquefy or vaporize the refrigerant.
  • the accumulator is configured to store the refrigerant.
  • One end of the first throttling element communicates with the liquid side of the first heat exchanger, and the other end of the first throttling element communicates with the liquid reservoir through a first delivery pipeline; the first The throttling element is configured to adjust the flow rate of the refrigerant on the first delivery pipeline.
  • the at least one indoor unit communicates with the outdoor unit, and each indoor unit includes a second heat exchanger and a second throttling element.
  • the second heat exchanger is configured to either liquefy or vaporize the refrigerant.
  • One end of the second throttling element communicates with the liquid side of the second heat exchanger, and the other end of the second throttling element communicates with the liquid reservoir through a second delivery pipeline; the second The throttling element is configured to adjust the flow rate of the refrigerant on the second delivery pipeline.
  • the controller is coupled to the first throttling element and the second throttling element, and is configured to: adjust the opening degree of the first throttling element when the air conditioner is in a cooling working state , so that the first subcooling degree of the liquid side of the first heat exchanger is within the preset first subcooling degree range; the opening degree of the first throttling element is used to adjust the to adjust the amount of the refrigerant circulating in the air conditioner; when the air conditioner is in a heating state, adjust the opening of the second throttling element so that the The second subcooling degree of the liquid side of the second heat exchanger is within the preset second subcooling degree range; the opening degree of the second throttling element is used to adjust the refrigerant in the liquid accumulator to adjust the amount of the refrigerant involved in circulation in the air conditioner.
  • the air conditioner includes an outdoor unit, at least one indoor unit and a controller.
  • the outdoor unit includes a compressor, a first heat exchanger and an accumulator.
  • the compressor is configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner.
  • the first heat exchanger is configured to one of liquefy or vaporize the refrigerant.
  • the liquid reservoir communicates with the liquid side of the first heat exchanger through the first delivery pipeline, and the liquid reservoir communicates with the liquid side of the second heat exchanger through the second delivery pipeline; the liquid storage
  • the device is configured to store the refrigerant.
  • the at least one indoor unit communicates with the outdoor unit, and each indoor unit includes the second heat exchanger.
  • the second heat exchanger is configured to either liquefy or vaporize the refrigerant.
  • the liquid reservoir includes a liquid storage body, a heat exchange tube and a separator.
  • the liquid storage body includes at least two ports to communicate with the first delivery pipeline and the second delivery pipeline.
  • the heat exchange tube is located inside the liquid storage body; the input end of the heat exchange tube extends to the outside of the liquid storage body and is connected to the liquid side of the first heat exchanger or the second heat exchanger
  • the liquid side of the heat exchange tube is connected to the liquid side, and the output end of the heat exchange tube extends to the outside of the liquid storage body and communicates with the suction port of the compressor.
  • the heat exchange tube is configured to subcool the refrigerant outside the heat exchange tube and supply air to the compressor.
  • the separator is located inside the liquid storage body and includes a plurality of air holes. The separator is configured to separate gas and liquid from the refrigerant in the liquid storage body.
  • Fig. 1 is a structural diagram of an air conditioner in the related art
  • Fig. 2 is another structural diagram of the air conditioner in the related art
  • FIG. 3 is a block diagram of an air conditioner according to some embodiments.
  • Fig. 4 is another structural diagram of an air conditioner according to some embodiments.
  • FIG. 5 is a pressure-enthalpy diagram of a refrigerant according to some embodiments.
  • 6 is another pressure-enthalpy diagram of a refrigerant according to some embodiments.
  • FIG. 7 is another pressure-enthalpy diagram of a refrigerant according to some embodiments.
  • Fig. 8 is another pressure-enthalpy diagram of a refrigerant according to some embodiments.
  • Figure 9 is a control flow diagram of a controller according to some embodiments.
  • Figure 10 is another control flow diagram of a controller according to some embodiments.
  • Fig. 11 is another structural diagram of an air conditioner according to some embodiments.
  • Fig. 12 is another structural diagram of an air conditioner according to some embodiments.
  • Figure 13 is a block diagram of a divider according to some embodiments.
  • Fig. 14 is a structural diagram of a refrigerant tank according to some embodiments.
  • Fig. 15 is another structural diagram of a refrigerant tank according to some embodiments.
  • Fig. 16 is another structural diagram of a refrigerant tank according to some embodiments.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral body; it can be a direct connection or an indirect connection through an intermediary.
  • coupled indicates that two or more elements are in direct physical or electrical contact.
  • coupled or communicatively coupled may also mean that two or more components are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • an air conditioner 1000' includes an outdoor unit 10' and at least one indoor unit 20' as shown in FIG. 1 .
  • the outdoor unit 10' is the equipment installed in the outside of the wall or the roof of the house in the air conditioner 1000'.
  • the outdoor unit 10' is mainly used to compress refrigerant and drive the refrigerant to circulate in the air conditioner 1000'.
  • the refrigerant is a substance that easily absorbs heat and becomes a gas, and also easily releases heat and becomes a liquid.
  • the indoor unit 20' is a device installed indoors in the air conditioner 1000'.
  • the indoor unit 20' is mainly used to transmit cold air or hot air to the indoor space where it is located, so as to adjust the temperature of the indoor space.
  • the outdoor unit 10' communicates with each indoor unit 20' through at least two pipes.
  • a first cut-off valve 51' is provided to control the on-off of the first pipeline 61' ;
  • a second shut-off valve 52' is provided to control the flow of the second pipe 62'; broken.
  • the first pipe 61' and the second pipe 62' may be collectively referred to as pipes.
  • the outdoor unit 10' includes a compressor 101', an oil separator 102', an oil return capillary 103', a four-way valve 104', a first heat exchanger 105', a first throttling element 106', and a gas-liquid separator 107' and the first fan 108'.
  • the exhaust port of the compressor 101' communicates with the first end of the oil separator 102'
  • the second end of the oil separator 102' communicates with one end of the oil return capillary 103'
  • the other end of the oil return capillary 103' communicates with the compressor
  • the suction port of 101' communicates.
  • the third end of the oil separator 102' communicates with the d' end of the four-way valve 104'.
  • the c' end of the four-way valve 104' communicates with the gas side of the first heat exchanger 105', and the liquid side of the first heat exchanger 105' communicates with one end of the first throttling element 106'.
  • the other end of the first throttling element 106 ′ communicates with one end of the second pipe 62 .
  • the e' end of the four-way valve 104' communicates with one end of the first pipeline 61', and the s' end of the four-way valve 104' communicates with the suction port of the gas-liquid separator 107'.
  • the discharge port of the gas-liquid separator 107' communicates with the suction port of the compressor 101'.
  • Each indoor unit 20' of at least one indoor unit 20' includes a second heat exchanger 201', a second throttling element 202' and a second fan 203'.
  • the gas side of the second heat exchanger 201' communicates with the other end of the first pipe 61', and the liquid side of the second heat exchanger 201' communicates with one end of the second throttling element 202'.
  • the other end of the second throttling element 202 ′ communicates with the other end of the second pipe 62 .
  • the air conditioner 1000' further includes a controller 30'.
  • the controller 30' is coupled with the compressor 101', the four-way valve 104', the first throttling element 106' and the first fan 108' in the outdoor unit 10', and is coupled with the second throttling element in the indoor unit 20'.
  • the element 202' is coupled to a second blower 203'.
  • the controller 30' is configured to control the working status of each component coupled to the controller 30'.
  • the above-mentioned air conditioner 1000' works in a cooling working state to reduce the temperature of the indoor space.
  • the controller 30' controls the compressor 101' to start working, and controls the d' end of the four-way valve 104' to communicate with the c' end, and the s' end to communicate with the e' end.
  • the controller 30' also controls the first throttle element 106', the second throttle element 202', the first cut-off valve 51' and the second cut-off valve 52' to be in an open state.
  • the compressor 101' compresses the gaseous refrigerant to obtain a high-temperature, high-pressure gaseous refrigerant, and drives the compressed refrigerant to enter the oil separator 102'.
  • gas port, and the high-temperature, high-pressure gaseous refrigerant passes through the d' end and c' end of the four-way valve 104' to the gas side of the first heat exchanger 105' to enter the first heat exchanger 105'.
  • the high-temperature, high-pressure gaseous refrigerant is liquefied into a low-temperature, low-pressure liquid refrigerant in the first heat exchanger 105', it passes through the liquid side of the first heat exchanger 105', the first throttling element 106', and the second shut-off valve. 52' and the second throttling element 202' reach the liquid side of the second heat exchanger 201' to enter the second heat exchanger 201'.
  • the low-temperature, low-pressure liquid refrigerant is vaporized into a gaseous refrigerant in the second heat exchanger 201 ′, thereby absorbing heat around the second heat exchanger 201 ′ to reduce the temperature of the indoor space.
  • the vaporized gaseous refrigerant passes through the gas side of the second heat exchanger 201' and the first cut-off valve 51' to reach the four-way valve 104', and then passes through the e' end and s' end of the four-way valve 104' to reach the gas-liquid The suction port of the separator 102'.
  • the gaseous refrigerant may condense to produce liquid during the process of being transferred from the second heat exchanger 201' to the gas-liquid separator 102'. After the gas-liquid separator 102' separates the liquid, the gaseous refrigerant is input into the compressor 101' In order to realize the recycling of refrigerant.
  • the above-mentioned air conditioner 1000' works in a heating working state to increase the temperature of the indoor space. Different from the above-mentioned cooling working state, in the heating working state, the controller 30' controls the d' end of the four-way valve 104' to communicate with the e' end, and the s' end to communicate with the c' end.
  • the high-temperature, high-pressure gaseous refrigerant obtained after the compression process of the compressor 101' passes through the d' end and the e' end of the four-way valve 104', and enters the second heat exchanger 201' from the gas side of the second heat exchanger 201'. device 201'.
  • the high-temperature, high-pressure gaseous refrigerant is liquefied into a low-temperature, low-pressure liquid refrigerant in the second heat exchanger 201 ′, thereby releasing heat to the surroundings of the second heat exchanger 201 ′ to increase the temperature of the indoor space.
  • the low-temperature, low-pressure liquid refrigerant flows out of the second heat exchanger 201' from the liquid side of the second heat exchanger 201', and enters the first heat exchanger 105' from the liquid side of the first heat exchanger 105' middle.
  • the low-temperature, low-pressure liquid refrigerant is vaporized into gaseous refrigerant in the first heat exchanger 105', and then transferred to the gas-liquid separator 102' through the c' end and s' end of the four-way valve 104', and then returns to the compression machine 101'.
  • the first fan 108' (or the second fan 203') is configured to start working under the control of the controller 30' to turn the first heat exchanger 105' (or The heat generated by the liquefied refrigerant in the second heat exchanger 201') or the cold generated by the vaporized refrigerant is discharged from the outdoor unit 10' (or the indoor unit 20').
  • the first heat exchanger 105 in the cooling working state, since the first heat exchanger 105 is used to liquefy the refrigerant and the second heat exchanger 201 is used to vaporize the refrigerant, the first heat exchanger 105 can be called a condenser, and the second heat exchanger 201 can be called a condenser. Heater 201 may be referred to as an evaporator. Similarly, in the heating working state, the first heat exchanger 105 may be called an evaporator, and the second heat exchanger 201 may be called a condenser.
  • the installer when installing the air conditioner 1000', the installer needs to add refrigerant to the compressor 101' of the air conditioner 1000', so that the amount of refrigerant in the air conditioner 1000' can meet the user's daily cooling requirements. or heating demand.
  • the amount of refrigerant required for normal operation of the air conditioner 1000' is different.
  • the amount of refrigerant required by the air conditioner 1000' in the cooling working state is generally more than the refrigerant amount required by the air conditioner 1000' in the heating working state.
  • the longer the pipe connecting the indoor unit 10' and the outdoor unit 20' the larger the amount of refrigerant required by the air conditioner 1000'. Therefore, if the air conditioner 1000' operates with a fixed amount of refrigerant under different working conditions, the amount of refrigerant involved in the circulation in the air conditioner 1000' may be more or less than the amount of refrigerant actually required in the air conditioner 1000', Thus, problems as described in the background art arise.
  • the inventors of the present disclosure researched and found that: in the cooling working state (or heating working state), if the first heat exchanger 105' (or the second heat exchanger of the air conditioner 1000' 201') if the subcooling degree of the liquid side is within the preset range, then the air conditioner 1000' runs more smoothly and efficiently.
  • the air conditioner 1000' runs more smoothly and efficiently.
  • the air conditioner 1000' is in the cooling working state and the heating working state respectively.
  • the amount of refrigerant required for efficient operation thereby accurately controlling the amount of refrigerant participating in the circulation of the air conditioner 1000' under different working conditions, thereby improving the operating effect of the air conditioner 1000'.
  • some embodiments of the present disclosure provide an air conditioner 1000 .
  • the air conditioner 1000 is additionally provided with an accumulator 109 .
  • the liquid accumulator 109 can be used to supplement the refrigerant in the air conditioner 1000 to participate in the cycle, or the refrigerant in the air conditioner 1000 that does not need to participate in the cycle can be stored in the liquid accumulator 109 to Adapt to the demand of the amount of refrigerant of the air conditioner 1000 under different working conditions.
  • the air conditioner 1000 includes an outdoor unit 10 , at least one indoor unit 20 and a controller 30 .
  • the outdoor unit 10 includes a compressor 101 , a first heat exchanger 105 , an accumulator 109 and a first throttling element 106 .
  • the compressor 101 is configured to compress refrigerant to drive the refrigerant to circulate in the air conditioner 1000 .
  • the first heat exchanger 105 is configured to either liquefy or vaporize the refrigerant.
  • the accumulator 109 is configured to store refrigerant.
  • One end of the first throttling element 106 communicates with the liquid side of the first heat exchanger 105 , and the other end of the first throttling element 106 communicates with the liquid reservoir 109 through the first delivery pipeline 110 .
  • the first throttling element 106 is configured to regulate the flow of refrigerant on the first delivery pipeline 110 .
  • At least one indoor unit 20 communicates with the outdoor unit 10 .
  • each indoor unit 20 includes a second heat exchanger 201 and a second throttling element 202 .
  • the second heat exchanger 201 is configured to liquefy or vaporize the refrigerant.
  • One end of the second throttling element 202 communicates with the liquid side of the second heat exchanger 201 , and the other end of the second throttling element 202 communicates with the liquid reservoir 109 through the second delivery pipeline 111 .
  • the second throttling element 202 is configured to adjust the flow rate of the refrigerant on the second delivery pipeline 111 .
  • the controller 30 is coupled to the first throttling element 106 and the second throttling element 202, and is configured to adjust the opening degree of the first throttling element 106 when the air conditioner 1000 is in the cooling working state, so that the first throttling element 106
  • the first subcooling degree SC1 of the liquid side of the heat exchanger 105 is within the preset range of the first subcooling degree; The amount of refrigerant that participates in circulation in the air conditioner 1000 .
  • the opening degree of the second throttling element 202 is used to adjust the amount of refrigerant in the accumulator 109 , so as to adjust the amount of refrigerant participating in the circulation in the air conditioner 1000 .
  • the air conditioner 1000 provided by the embodiment of the present disclosure can be based on the first subcooling degree SC1 of the liquid side of the first heat exchanger 105 (or the second subcooling degree SC2 of the liquid side of the second heat exchanger 201 ) and the air conditioner
  • the positive correlation between the amount of refrigerant required by the air conditioner 1000 in the cooling working state (or heating working state) can accurately determine the amount of refrigerant that needs to participate in the cooling (or heating) cycle in the air conditioner 1000.
  • the controller 30 can adjust the opening degree of the first throttling element 106 and the opening degree of the second throttling element 202 , increase the dryness of the refrigerant in the accumulator 109 (that is, the ratio of the mass of the gaseous refrigerant contained in a unit volume of refrigerant to the total mass of the refrigerant), so that the refrigerant stored in the accumulator 109 participates in the circulation
  • the controller 30 can adjust the opening degree of the first throttling element 106 and the opening degree of the second throttling element 202, The dryness of the refrigerant in the accumulator 109 is reduced, thereby storing redundant refrigerant in the accumulator 109 .
  • the air conditioner 1000 can adaptively distribute the amount of refrigerant that participates in circulation in the air conditioner 1000 and the amount of refrigerant stored in the accumulator 109, thereby ensuring that the air conditioner 1000 operates with an appropriate amount of refrigerant, thereby improving the performance of the air conditioner. 1000' running effect.
  • the outdoor unit 10 of the air conditioner 1000 also includes an oil separator 102, an oil return capillary 103, a four-way valve 104, a gas-liquid separator 107 and a first fan 108; A second fan 203 is included.
  • a first pipeline 61 and a second pipeline 62 for connecting the outdoor unit 10 and the indoor unit 20 are further included.
  • a first shut-off valve 51 is disposed on the first pipeline 61
  • a second shut-off valve 52 is disposed on the second pipeline 62 .
  • first delivery pipeline 110 of the air conditioner 1000 is a pipeline connecting the first throttling element 106 and the liquid reservoir 109
  • the second delivery pipeline 111 is a pipeline connecting the second throttling element 202 and the liquid reservoir 109.
  • the second conveying line 111 includes a second pipe 62 .
  • the first throttling element 106 and the second throttling element 202 are electronic expansion valves.
  • the above opening degree refers to the opening degree of the electronic expansion valve.
  • the first throttling element 106 and the second throttling element 202 can control the first delivery pipeline 110 and the second delivery pipeline 111 respectively.
  • the refrigerant on the pipe plays a throttling role, so that the pressure and temperature of the refrigerant on the first delivery pipeline 110 and the second delivery pipeline 111 drop, and the first delivery pipeline 110 and the second delivery pipeline The dryness of the refrigerant on the path 111 increases.
  • the controller 30 can detect the discharge pressure Pd through the pressure sensor provided at the discharge port of the compressor 101, and calculate (or query) according to the calculation formula (or lookup table) pre-input into the air conditioner 1000
  • the saturation temperature Tdc of the refrigerant at the discharge pressure Pd is obtained.
  • the controller 30 can detect the temperature Te1 through the temperature sensor disposed on the liquid side of the first heat exchanger 105, and detect the temperature Te2 through the temperature sensor disposed on the liquid side of the second heat exchanger 201, thereby according to The first degree of subcooling SC1 is obtained from the saturation temperature Tdc and the temperature Te1, and the second degree of supercooling SC2 is obtained from the saturation temperature Tdc and the temperature Te2.
  • the lower limit of the first subcooling range is greater than zero, and the lower limit of the second subcooling range is greater than zero.
  • the upper limit and lower limit of the first subcooling range, and the upper limit and lower limit of the second subcooling range can be determined through pre-conducted experimental tests or simulations.
  • first subcooling degree SC1 is within the first subcooling degree range, it can be considered that the air conditioner 1000 is running efficiently in the cooling working state; when the second subcooling degree SC2 is within the second subcooling degree range, it can be considered that The air conditioner 1000 operates efficiently in a heating working state.
  • high-efficiency operation means that each component in the air conditioner 1000 can operate normally, and the air conditioner 1000 can meet the cooling or heating demand of the user.
  • the refrigerant in this state is in a supercooled liquid state; if the state point of the refrigerant is in the area on the right side of the curve kb, then the refrigerant in this state is in a superheated gas state ; If the state point of the refrigerant is in the area surrounded by the curve ka, the curve kb and the abscissa, the refrigerant in this state is a two-phase state of gas-liquid mixture.
  • the first state point A in each pressure-enthalpy diagram is the state point of the refrigerant at the suction port of the gas-liquid separator 107;
  • the second state point B is the state of the refrigerant at the discharge port of the compressor 101 point;
  • the third state point C is the state point of the refrigerant on the liquid side of the first heat exchanger 105;
  • the fourth state point D is the state point of the refrigerant in the first delivery pipeline 110;
  • the fifth state point E is the second delivery point
  • the sixth state point F is the state point of the refrigerant on the side of the second delivery pipeline 111 close to the second throttling element 202;
  • the seventh state point G is the state point of the refrigerant on the liquid side of the second heat exchanger 201;
  • the eighth state point H is the state point of the refrigerant on the gas side of the second heat exchanger
  • Table 1 The control method of the controller under different working conditions
  • the pipe length of the air conditioner 1000 is related to the amount of refrigerant required by the air conditioner 1000 .
  • the pipe length of the air conditioner 1000 can be considered as an appropriate pipe length. Therefore, in the above-mentioned working conditions, when the piping length of the air conditioner 1000 is shorter than the above-mentioned suitable piping length, it can be considered that the piping length is shorter; , it can be considered that the pipe length is long.
  • the amount of refrigerant stored in the air conditioner 1000 is more than the amount of refrigerant required for the normal operation of the air conditioner 1000 under this working condition, it can be considered that the amount of refrigerant stored in the air conditioner 1000 Similarly, when the amount of refrigerant stored in the air conditioner 1000 is less than the amount of refrigerant required for normal operation of the air conditioner 1000 under this working condition, it can be considered that the amount of refrigerant stored in the air conditioner 1000 is less.
  • the amount of refrigerant stored in the air conditioner 1000 is relatively large. If the air conditioner 1000 operates with the stored amount of refrigerant, more refrigerant will reach the first heat exchanger 105 through the four-way valve 104 . At this time, the first heat exchanger 105 changes the high-temperature, high-pressure gaseous refrigerant into a high-temperature, high-pressure subcooled liquid refrigerant. Therefore, the first degree of subcooling SC1 on the liquid side of the first heat exchanger 105 is relatively large. If the first subcooling degree SC1 exceeds the upper limit of the first subcooling degree range, the controller 30 may control the opening degree of the first throttling element 106 to increase. Exemplarily, when the first subcooling degree SC1 is reduced to within the first subcooling degree range, or the first throttling element 106 is fully opened, the controller 30 controls the opening degree of the first throttling element 106 to not Change.
  • the state of the refrigerant in the air conditioner 1000 is shown in FIG. 5 .
  • the high-temperature, high-pressure gaseous refrigerant is condensed by the first heat exchanger 105 to become a high-temperature, high-pressure subcooled liquid refrigerant.
  • the refrigerant is throttled by the first throttling element 106 .
  • the refrigerant entering the accumulator 109 is a high-temperature, high-pressure subcooled liquid refrigerant. Since the temperature and pressure of the refrigerant do not decrease substantially after the refrigerant flows through the accumulator 109 , the fourth state point D and the fifth state point E substantially coincide. From the fifth state point E to the sixth state point F, the refrigerant is transported to the second throttling element 202 through the second delivery pipeline 111 , and the temperature and pressure decrease.
  • the refrigerant is throttled by the second throttling element 202 , so the temperature and pressure of the refrigerant further decrease, and the refrigerant becomes a low-temperature, low-pressure two-phase refrigerant.
  • the low-temperature, low-pressure two-phase refrigerant is evaporated by the second heat exchanger 201, and becomes a low-temperature, low-pressure superheated gaseous refrigerant, thereby absorbing heat and reducing the temperature of the indoor space .
  • the refrigerant flows back to the gas-liquid separator 107 through the four-way valve 104, the temperature and pressure do not drop substantially, so the eighth state point H and the first state point A basically coincide.
  • the amount of refrigerant stored in the air conditioner 1000 is small. If the air conditioner 1000 operates with the stored amount of refrigerant, less refrigerant will pass through the four-way valve 104 and reach the first heat exchanger 105 . At this time, if the opening degree of the first throttling element 106 is relatively large, as shown in FIG. 6 , the high-temperature, high-pressure gaseous refrigerant undergoes heat exchange in the first heat exchanger 105 and becomes a high-temperature, high-pressure refrigerant corresponding to the state point C′. two-phase refrigerant.
  • the first subcooling degree SC1 on the liquid side of the first heat exchanger 105 is a negative value, that is, the first subcooling degree SC1 is smaller than the lower limit of the first subcooling degree range.
  • the controller 30 can control the opening degree of the first throttling element 106 to decrease, so as to enhance the throttling effect of the first throttling element 106 on the refrigerant on the first delivery pipeline 110, thereby increasing the amount of refrigerant entering the storage liquid.
  • the dryness of the refrigerant in the device 109 is a negative value, that is, the first subcooling degree SC1 is smaller than the lower limit of the first subcooling degree range.
  • the volume of the gaseous refrigerant of the same mass is larger than that of the liquid refrigerant, the dryness of the refrigerant entering the accumulator 109 increases, and the refrigerant stored in the accumulator 109 can be squeezed into the second delivery pipeline 111 In this way, the amount of refrigerant participating in the circulation in the air conditioner 1000 can be increased, and then the first degree of subcooling SC1 can be increased, so that the first degree of supercooling SC1 is within the range of the first degree of supercooling.
  • the state of the refrigerant corresponding to the third state point C is a high-temperature, high-pressure supercooled liquid state. Since the opening degree of the first throttling element 106 is small, the throttling effect of the first throttling element 106 on the refrigerant is greater, therefore, the temperature and pressure of the refrigerant throttled by the first throttling element 106 decrease. more. At this time, the refrigerant entering the accumulator 109 is a two-phase refrigerant of medium temperature and medium pressure. It should be noted that, for the state changes of the refrigerant at other positions of the air conditioner 1000 in FIG. 6 , reference may be made to the relevant description of FIG. 5 in the foregoing embodiments, and details are not repeated here.
  • the controller 30 may control the opening degree of the second throttling element 202 of the i-th indoor unit 20 to increase.
  • the controller 30 controls the opening degree of the second throttle element 202 of the i-th indoor unit 20 to remain unchanged.
  • the state of the refrigerant in various parts of the air conditioner 1000 is shown in FIG. 7 .
  • the high-temperature, high-pressure gaseous refrigerant is condensed by the second heat exchanger 201, and becomes a high-temperature, high-pressure subcooled liquid refrigerant, Heat is released thereby increasing the temperature of the interior space.
  • the refrigerant is throttled by the second throttling element 202 .
  • the temperature and pressure of the refrigerant throttled by the second throttling element 202 decrease less.
  • the refrigerant is transported to the accumulator 109 through the second delivery pipeline 111 , and the temperature and pressure decrease.
  • the refrigerant entering the accumulator 109 is a high-temperature, high-pressure subcooled liquid refrigerant. Since the temperature and pressure of the refrigerant do not drop substantially after the refrigerant flows through the accumulator 109 , the fifth state point E and the fourth state point D substantially coincide.
  • the refrigerant is throttled by the first throttling element 106, so the temperature and pressure of the refrigerant further decrease. At this time, the refrigerant becomes a low-temperature, low-pressure two-phase refrigerant. From the third state point C to the first state point A, the low-temperature, low-pressure two-phase refrigerant is evaporated by the first heat exchanger 105 to become a low-temperature, low-pressure superheated gaseous refrigerant.
  • working condition 4 similar to the principle of working condition 2, if the air conditioner 1000 operates with the stored amount of refrigerant and the opening of the second throttling element 202 is relatively large, as shown in Figure 8, the high-temperature, high-pressure gaseous state After exchanging heat in the second heat exchanger 201 , the refrigerant becomes a high-temperature, high-pressure two-phase refrigerant corresponding to the state point G′.
  • the second subcooling degree SC2 on the liquid side of the second heat exchanger 201 is a negative value, that is, the second subcooling degree SC2 is smaller than the lower limit of the second subcooling degree range.
  • the controller 30 can control the opening degree of the second throttle element 202 of the i-th indoor unit 20 to decrease. small, so as to enhance the throttling effect of the second throttling element 202 on the refrigerant on the second delivery pipeline 111, thereby increasing the dryness of the refrigerant entering the accumulator 109, and making the refrigerant participating in the circulation in the air conditioner 1000
  • the amount increases, and further increases the second degree of supercooling SC2 of the i-th indoor unit 20, so that the second degree of supercooling SC2 is within the range of the second degree of supercooling.
  • the state of the refrigerant corresponding to the seventh state point G is a supercooled liquid state of high temperature and high pressure. Since the opening degree of the second throttling element 202 is small, the throttling effect of the second throttling element 202 on the refrigerant is greater, so the temperature and pressure of the refrigerant throttled by the second throttling element 202 decrease more. At this time, the refrigerant entering the accumulator 109 is a two-phase refrigerant of medium temperature and medium pressure. It should be noted that, for the state changes of the refrigerant at other positions of the air conditioner 1000 in FIG. 8 , reference may be made to the relevant description of FIG. 7 in the foregoing embodiments, and details are not repeated here.
  • the controller 30 is further configured to: when the air conditioner 1000 is in the cooling working state, adjust the opening degree of the second throttling element 202 so that the first passage on the gas side of the second heat exchanger 201 The heat degree SH1 is within the preset first superheat degree range; when the air conditioner 1000 is in the heating working state, adjust the opening degree of the first throttling element 106 to make the second superheat degree at the exhaust port of the compressor 101 SH2 is within the preset second superheat range.
  • the air conditioner 1000 in this embodiment can control the first degree of superheat SH1 on the air side of the second heat exchanger 201 to be in the first Within the superheat range, it is equivalent to jointly determining the amount of refrigerant that participates in the circulation in the air conditioner 1000 through the first degree of supercooling SC1 and the first degree of superheat SH1, so that the accuracy of the determined amount of refrigerant can be improved, and the air conditioner can be further improved.
  • the operation stability of the air conditioner 1000 in the cooling working state is improved, and the operation efficiency of the air conditioner 1000 is improved.
  • the air conditioner 1000 controls the second degree of superheat SH2 to be within the range of the second degree of superheat on the basis that the second degree of subcooling SC2 is within the range of the second degree of supercooling, which can improve the determination
  • the accuracy of the amount of refrigerant produced can further improve the running stability of the air conditioner 1000 in the heating working state and improve the operating efficiency of the air conditioner 1000.
  • the manner in which the controller 30 acquires the first degree of superheat SH1, the first degree of superheat range, the second degree of superheat SH2, and the range of the second degree of superheat can refer to the above-mentioned embodiment about obtaining the first degree of supercooling SC1, the first degree of supercooling range, the second degree of supercooling SC2 and the manner of the second degree of supercooling range, which will not be repeated here.
  • the controller 30 is configured to: when the air conditioner 1000 is in the cooling working state, if the first superheat SH1 of the i-th indoor unit 20 among the at least one indoor unit 20 is greater than the upper limit of the first superheat range , then the opening degree of the second throttle element 202 of the i-th indoor unit 20 is controlled to increase. In this way, the amount of liquid refrigerant flowing into the second heat exchanger 201 of the i-th indoor unit 20 through the second throttling element 202 per unit time increases.
  • the unit volume of refrigerant in the second heat exchanger 201 The heat absorbed is reduced. Therefore, controlling the opening degree of the second throttling element 202 to increase can reduce the first degree of superheat SH1 of the i-th indoor unit 20 .
  • the controller 30 can control the second throttling element 202 of the i-th indoor unit 20 The opening degree decreases to increase the first degree of superheat SH1 of the i-th indoor unit 20 .
  • the controller 30 is configured to control the opening degree of the first throttling element 106 when the air conditioner 1000 is in the heating working state, if the above-mentioned second degree of superheat SH2 is greater than the upper limit of the second degree of superheat range increase.
  • the amount of refrigerant participating in the circulation in the air conditioner 1000 can be increased, thereby increasing the amount of refrigerant entering the compressor 101 from the suction port of the compressor 101 per unit time.
  • the pressure of the gaseous refrigerant compressed by the compressor 101 decreases, and thus the temperature Tg2 of the refrigerant at the discharge port of the compressor 101 decreases. Therefore, controlling the opening degree of the first throttling element 106 to increase can reduce the second degree of superheat SH2.
  • the controller 30 can control the opening degree of the first throttling element 106 to decrease to increase the second degree of superheat SH2.
  • the air conditioner 1000 includes a plurality of indoor units 20 .
  • the controller 30 is further configured to: when the air conditioner 1000 is in the heating working state, adjust the opening degrees of the plurality of second throttling elements 202 of the plurality of indoor units 20 so that the plurality of second throttle elements 202 of the plurality of indoor units 20
  • the subcooling degree SC2 is within the second subcooling degree range, and the absolute value of the difference between the plurality of second subcooling degrees SC2 and the average value AVE of the plurality of second subcooling degrees SC2 is less than or equal to a preset first threshold.
  • the air conditioner 1000 in this embodiment can reduce the difference between the plurality of second subcooling degrees SC2 of the plurality of indoor units 20, thereby reducing the difference in the amount of refrigerant in the plurality of indoor units 20, The operating states of the plurality of indoor units 20 are approximated. In this way, the operation balance of the plurality of indoor units 20 in the air conditioner 1000 can be improved, thereby improving the operation reliability of the air conditioner 1000.
  • the controller 30 may control the opening degree of the second throttle element 202 of the i-th indoor unit 20 to increase.
  • the throttling effect of the second throttling element 202 on the liquid side of the second heat exchanger 201 of the i-th indoor unit 20 is reduced, so that the temperature and pressure of the refrigerant on the liquid side of the second heat exchanger 201 The amount of decrease decreases, and the temperature Te2 of the liquid side of the second heat exchanger 201 decreases. Therefore, by controlling the opening degree of the second throttle element 202 of the i-th indoor unit 20 to increase, the second subcooling degree SC2 of the i-th indoor unit 20 can be controlled to decrease.
  • the controller 30 may control the opening degree of the second throttling element 202 of the i-th indoor unit 20 to decrease, so as to control the second subcooling degree SC2 of the i-th indoor unit 20 to increase.
  • the controller 30 controls the air conditioner 1000 to enter a cooling working state.
  • the remote control or the electric control board of the air conditioner 1000 can send a cooling operation instruction to the controller 30, and the controller 30 can respond to receiving
  • the aforementioned S101 is executed.
  • the controller 30 first executes S102, that is, controls the first throttling element 106 and the second throttling element 202 to open.
  • the controller 30 can acquire the first degree of subcooling SC1 and the first degree of superheat SH1 every fixed period of time, and judge whether the first degree of supercooling SC1 is within the range of the first degree of supercooling, whether the first degree of superheat SH1 Whether it is within the first superheat range. It should be noted that the time intervals for the controller 30 to obtain the first degree of supercooling SC1 and the first degree of superheat SH1 may be consistent or not. FIG. 9 takes an example in which the time interval for the controller 30 to obtain the first degree of supercooling SC1 is shorter than the time interval for obtaining the first degree of superheat SH1 for exemplary illustration.
  • the controller 30 first judges whether the first supercooling degree SC1 is within the first supercooling degree range (that is, executes S103), and then judges the first superheating degree SH1 of each indoor unit 20. Whether it is within the first superheat range (that is, execute S105).
  • the controller 30 executes S104.
  • the controller 30 adjusts the opening degree of the first throttling element 106, so that the first degree of supercooling SC1 is increased or decreased to be within the range of the first degree of supercooling.
  • the controller 30 executes S105.
  • the controller 30 sequentially judges whether the first superheat degree SH1 of each indoor unit 20 in the air conditioner 1000 is within the first superheat degree range.
  • the controller 30 executes S106.
  • the controller 30 adjusts the opening degree of the second throttling element 202 of the i-th indoor unit 20 to increase or decrease the first degree of superheat SH1 of the i-th indoor unit 20 to the first within the superheat range. If the first degree of superheat SH1 is within the first degree of superheat range, the controller 30 executes S107, that is, ends the current round of control.
  • the controller 30 controls the air conditioner 1000 to enter a heating working state.
  • the controller 30 first executes S202, that is, controls the first throttling element 106 and the second throttling element 202 to open.
  • the time intervals for the controller 30 to obtain the second degree of supercooling SC2 and the second degree of superheat SH2 may be consistent or not.
  • the controller 30 first judges whether the second supercooling degree SC2 of each indoor unit 20 is within the second supercooling degree range (that is, executes S203), and then judges whether the second superheating degree SH2 Whether it is within the second superheat range (that is, execute S207).
  • the controller 30 executes S204.
  • the controller 30 adjusts the opening degree of the second throttling element 202 of the i-th indoor unit 20, so that the second subcooling degree SC2 of the i-th indoor unit 20 decreases or increases to be at the first Within the range of subcooling degree. If the obtained second subcooling degree SC2 of each indoor unit 20 is within the second subcooling degree range, the controller 30 executes S205.
  • the controller 30 judges whether the absolute value of the difference between the second subcooling degree SC2 of each indoor unit 20 and the above-mentioned average value AVE is less than or equal to the first threshold. If the absolute value of the difference between the second subcooling degree SC2 of the i-th indoor unit 20 and the average value AVE is greater than the first threshold, the controller 30 executes S206. In S206, the controller 30 adjusts the opening degree of the second throttle element 202 of the i-th indoor unit 20 so that the difference between the second subcooling degree SC2 of the i-th indoor unit 20 and the average value AVE The absolute value is less than or equal to the first threshold.
  • the controller 30 executes S207.
  • the controller 30 judges whether the second degree of superheat SH2 is within the range of the second degree of superheat. If the second superheat SH2 is outside the second superheat range, the controller 30 executes S208.
  • the controller 30 adjusts the opening degree of the first throttling element 106, so that the second degree of superheat SH2 decreases or increases to be within the range of the second degree of superheat. If the second degree of superheat SH2 is within the range of the second degree of superheat, the controller 30 executes S209, that is, ends the current round of control.
  • the outdoor unit 10 in FIG. 11 further includes a heat exchange tube 1091 , a third throttling element 112 and a fourth throttling element 113 .
  • the controller 30 can control the openings of the third throttling element 112 and the fourth throttling element 113, so as to supplement the compressor 101 with air through the heat exchange tube 1091, and increase the volume of the refrigerant in the accumulator 109.
  • the degree of subcooling increases, thereby increasing the first degree of subcooling SC1 on the liquid side of the first heat exchanger 105 .
  • the above-mentioned heat exchange tube 1091 is located inside the liquid reservoir 109 .
  • One end of the third throttling element 112 communicates with the liquid side of the first heat exchanger 105 , and the other end of the third throttling element 112 communicates with the input end of the heat exchange tube 1091 .
  • the output end of the heat exchange tube 1091 communicates with the suction port of the compressor 101 .
  • the third throttling element 112 is configured to control the flow of refrigerant flowing into the heat exchange tube 1091 when the fourth throttling element 113 is closed.
  • the fourth throttling element 113 communicates with the output end of the heat exchange tube 1091 , and the other end of the fourth throttling element 113 communicates with the liquid side of the second heat exchanger 201 .
  • the fourth throttling element 113 is configured to control the flow of refrigerant flowing into the heat exchange tube 1091 when the third throttling element 112 is closed.
  • the controller 30 is further configured to: when the air conditioner is in the cooling working state and the first subcooling degree SC1 is within the first subcooling degree range, control the fourth throttling element 113 to close, and control the third throttling
  • the element 112 is turned on to supercool the refrigerant outside the heat exchange tube 1091 and supply air to the compressor 101; when the air conditioner is in the heating working state and the second subcooling degree SC2 is within the second subcooling degree range , control the third throttling element 112 to close, and control the fourth throttling element 113 to open, so as to supercool the refrigerant outside the heat exchange tube 1091 and supply air to the compressor 101 .
  • the air conditioner 1000 in the cooling working state can control the third throttling element 112 to open when the first subcooling degree SC1 is controlled to be within the first subcooling degree range, so that Part of the refrigerant condensed by the heater 105 enters the heat exchange tube 1091 through the third throttling element 112 .
  • the heat exchange tube 1091 can vaporize the liquid refrigerant entering the heat exchange tube 1091 into a gaseous refrigerant, and transmit the gaseous refrigerant to the suction port of the compressor 101, so as to supply air to the compressor 101, thus reducing the The working pressure of the compressor 101 reduces the possibility of liquid refrigerant appearing at the suction port of the compressor 101 .
  • the vaporized refrigerant in the heat exchange tube 1091 can also absorb the heat of the refrigerant in the liquid accumulator 109, thereby increasing the subcooling degree of the refrigerant in the liquid accumulator 109, and avoiding the decrease in the amount of refrigerant entering the liquid accumulator 109. Therefore, the lowering of the subcooling degree can ensure that the first subcooling degree SC1 is in the first subcooling degree range, thereby improving the operation effect of the air conditioner 1000 .
  • the refrigerant when the refrigerant completes a refrigeration cycle and returns to the suction port of the compressor 101 , the refrigerant is a low-temperature, low-pressure superheated gaseous refrigerant. At this time, the temperature of the refrigerant is relatively low, and liquid is likely to exist in the refrigerant. However, the refrigerant entering the heat exchange tube 1091 is a high-temperature, high-pressure liquid refrigerant after heat exchange in the first heat exchanger 105. Therefore, the high-temperature, high-pressure gaseous refrigerant is obtained after heat exchange in the heat exchange tube 1091. High-pressure gaseous refrigerant is supplemented into the compressor 101 .
  • the low-temperature, low-pressure superheated gaseous refrigerant that has completed a refrigeration cycle in the compressor 101 is mixed with the high-temperature, high-pressure gaseous refrigerant from the heat exchange tube 1091, thereby increasing the temperature of the refrigerant entering the compressor 101, The possibility of liquid refrigerant appearing at the suction port of the compressor 101 is reduced, thereby improving the reliability of the compressor 101 .
  • the controller 30 is configured to: when the air conditioner is in the cooling working state and the first subcooling degree SC1 is within the first subcooling degree range, control the third throttling element 112 to the first The opening is turned on; obtain the first temperature of the input end of the heat exchange tube 1091 and the second temperature of the output end of the heat exchange tube 1091, and judge whether the temperature difference between the second temperature and the first temperature is greater than or equal to a preset second threshold.
  • the temperature difference between the second temperature and the first temperature is greater than or equal to the second threshold, it means that the temperature difference between the two ends of the heat exchange tube 1091 is relatively large, and the state of the refrigerant at both ends of the heat exchange tube 1091 is different, that is, It is illustrated that after the refrigerant in the heat exchange tube 1091 exchanges heat with the refrigerant outside the heat exchange tube 1091 , the state of the refrigerant in the heat exchange tube 1091 changes from a liquid state to a gas state. At this time, the controller 30 controls the opening degree of the third throttling element 112 to remain unchanged.
  • the controller 30 controls the opening degree of the third throttling element 112 to increase to increase the amount of refrigerant flowing into the heat exchange tube 1091 and improve the heat exchange effect of the refrigerant in the heat exchange tube 1091 .
  • the refrigerant entering the compressor 101 through the heat exchange tube 1091 is a high-temperature gaseous refrigerant, and it is also ensured that the heat exchange tube 1091 passes through the refrigerant in the accumulator 109. cold effect.
  • the controller 30 is further configured to: after controlling the third throttling element 112 to open at the first opening degree, obtain the first subcooling degree SC1 every first time period, and adjust the first throttling The opening degree of the element 106 is such that the first subcooling degree SC1 after the third throttling element 112 is opened is within the first supercooling degree range.
  • the controller 30 may control the opening degree of the first throttling element 106 to decrease to increase the first subcooling degree SC1. Therefore, the air conditioner 1000 in this embodiment can ensure that the first degree of supercooling SC1 is within the range of the first degree of supercooling by adjusting the opening degree of the first throttling element 106 after controlling the heat exchange tube 1091 to start heat exchange. Therefore, it is ensured that the air conditioner 1000 operates stably and efficiently in the cooling working state.
  • the controller 30 is configured to: when the air conditioner is in the heating working state and the second subcooling degree SC2 is within the second subcooling degree range, control the fourth throttling element 113 to the first Open at two opening degrees; obtain the first temperature of the input end of the heat exchange tube 1091 and the second temperature of the output end of the heat exchange tube 1091, and judge whether the temperature difference between the second temperature and the first temperature is greater than or equal to a preset the second threshold.
  • the controller 30 controls the opening degree of the fourth throttling element 113 to remain unchanged.
  • the controller 30 controls the opening degree of the fourth throttling element 113 to increase to increase the amount of refrigerant flowing into the heat exchange tube 1091 and improve the heat exchange effect of the refrigerant in the heat exchange tube 1091 .
  • the refrigerant entering the compressor 101 through the heat exchange tube 1091 is a high-temperature gaseous refrigerant, and it is also ensured that the heat exchange tube 1091 is compatible with the refrigerant in the accumulator 109. supercooling effect.
  • the controller 30 is further configured to: after controlling the fourth throttling element 113 to open at the second opening degree, obtain the second supercooling degree SC2 every first time period, and adjust the second throttling
  • the opening degree of the element 202 is such that the second degree of supercooling SC2 after the opening of the fourth throttling element 113 is within the range of the second degree of supercooling.
  • the opening degree of the second throttling element 202 can be adjusted to ensure that the second degree of supercooling SC2 is within the range of the second degree of supercooling, so as to ensure that the air conditioner 1000 is in the operating range. Stable and efficient operation under hot working conditions.
  • Some embodiments of the present disclosure also provide an air conditioner 1000 .
  • the components included in the air conditioner 1000 and the working methods of the components, etc. reference may be made to the description of the air conditioner 1000 in the foregoing embodiments, and details are not repeated here.
  • the liquid reservoir 109 in the air conditioner 1000 in this embodiment includes a liquid storage body 1092 , a heat exchange tube 1091 and a partition 1093 .
  • the separator 1093 provided in the liquid storage body 1092 the gas and liquid of the refrigerant in the liquid storage 109 can be separated, so as to better control the dryness of the refrigerant input into the liquid storage 109 and control the participation in the air conditioner 1000.
  • the amount of refrigerant circulating is not limited to control the dryness of the refrigerant input into the liquid storage 109 and control the participation in the air conditioner 1000.
  • the liquid storage body 1092 includes at least two ports to communicate with the first delivery pipeline 110 and the second delivery pipeline 111 .
  • the heat exchange tube 1091 is located inside the liquid storage body 1092 .
  • the input end of the heat exchange tube 1091 extends to the outside of the liquid storage body 1092 and communicates with the liquid side of the first heat exchanger 105 or the liquid side of the second heat exchanger 201, and the output end of the heat exchange tube 1091 extends to the liquid storage body 1092 is external and communicates with the suction port of the compressor 101.
  • the heat exchange tube 1091 is configured to supercool the refrigerant outside the heat exchange tube 1091 and supply air to the compressor 101 .
  • the separator 1093 is located inside the liquid storage body 1092 and includes a plurality of air holes K. The separator 1093 is configured to separate the refrigerant in the liquid storage body 1092 from gas to liquid.
  • a partition 1093 is provided in the liquid storage body 1092 of the liquid storage 109 .
  • the separator 1093 is immersed in the liquid refrigerant in the liquid storage 109 , part of the gaseous refrigerant in the liquid refrigerant will adhere to the surface of the separator 1093 having a porous structure.
  • the separator 1093 When the separator 1093 is located in the gaseous refrigerant in the liquid receiver 109, if the two-phase refrigerant bubbles formed by the gaseous refrigerant engulfing the liquid refrigerant reach the surface of the separator 1093, the two-phase refrigerant bubbles will burst, and the bubbles will The gaseous refrigerant in the bubbles passes through the partition 1093 through the pores K on the partition 1093 to reach one side of the partition; while the liquid refrigerant in the bubbles will stay on the other side of the partition 1093 . In this way, as shown in FIG.
  • the refrigerant in the liquid storage 109 can be separated from gas to liquid through the separator 1093, so that the liquid refrigerant in the liquid storage 109 is in the lower layer of the gas refrigerant, so that it is convenient to control the input storage.
  • the dryness of the refrigerant in the liquid tank 109 controls the amount of refrigerant that participates in circulation in the air conditioner 1000 .
  • the gaseous refrigerant in the accumulator 109 increases, and the liquid level of the accumulator 109 (that is, the exchange rate between the gaseous refrigerant and the liquid refrigerant Interface) is lowered, and the liquid refrigerant in the accumulator 109 is more squeezed into the first delivery pipeline 110 or the second delivery pipeline 111 , thereby increasing the amount of refrigerant participating in the circulation in the air conditioner 1000 .
  • the gaseous refrigerant in the accumulator 109 decreases, and the liquid level of the accumulator 109 rises, and the refrigerant in the air conditioner 1000 that participates in circulation Part of it will enter the accumulator 109, thereby reducing the amount of refrigerant involved in the circulation in the air conditioner 1000.
  • the port of the first delivery line 110 and the port of the second delivery line 111 extend through the partition 1093 into the interior of the liquid storage body 1092 .
  • the port of the first delivery pipeline 110 and the port of the second delivery pipeline 111 will be submerged in the liquid refrigerant in the accumulator 109 .
  • the density of the two-phase refrigerant entering the accumulator 109 through the first delivery pipeline 110 or the second delivery pipeline 111 is smaller than the density of the liquid refrigerant in the accumulator 109, the two-phase refrigerant The refrigerant floats up through the partition 1093 and is separated from gas and liquid by the partition 1093 . In this way, the gas-liquid separation efficiency of the separator 1093 for the refrigerant can be improved.
  • the heat exchange tube 1091 is located between the partition 1093 and the bottom of the liquid storage body 1092, and the input end of the heat exchange tube 1091 and the output end of the heat exchange tube 1091 extend through the partition 1093 to the liquid storage body 1092 of the exterior. In this way, the heat exchange tube 1091 can be immersed in the liquid refrigerant in the liquid receiver 109 to increase the subcooling degree of the liquid refrigerant through the heat exchange tube 1091 .
  • the outer contour of the divider 1093 matches the inner contour of the reservoir body 1092 .
  • the gap between the outer contour of the partition 1093 and the inner contour of the liquid storage body 1092 can be reduced, thereby reducing the probability of the refrigerant input into the liquid storage 109 passing through the partition 1093 from the gap, thereby improving the separation.
  • the refrigerant in the liquid storage body 1092 is separated into a gaseous refrigerant and a liquid refrigerant by the partition 1093 .
  • the density of the material of the separator 1093 is less than that of the liquid refrigerant and greater than that of the gas refrigerant, so that the separator 1093 floats at the junction of the gas refrigerant and the liquid refrigerant. In this way, the separator 1093 can move with the change of the liquid level in the liquid reservoir 109 , so as to ensure the gas-liquid separation of the two-phase refrigerant input into the liquid refrigerant and improve the gas-liquid separation effect.
  • the reservoir 109 further includes a support member. One end of the support member is fixedly connected to the bottom of the reservoir 109 , and the other end is fixedly connected to the side of the partition 1093 close to the bottom of the reservoir 109 , so that the partition 1093 is fixed in the reservoir 109 . In this way, the fixing reliability of the partition 1093 can be improved.
  • the material of the spacer 1093 includes a magnetic material.
  • the side wall of the liquid storage body 1092 is provided with a multi-turn electromagnetic coil 1094 .
  • the separator 1093 moves with the change of the electromagnetic force generated by the multi-turn electromagnetic coil 1094 .
  • the position of the partition 1093 can be changed by changing the magnitude of the current in the multi-turn electromagnetic coil 1094 ; the moving direction of the partition 1093 can also be changed by changing the direction of the current in the multi-turn electromagnetic coil 1094 .
  • the controller 30 can periodically change the direction of the current in the multi-turn electromagnetic coil 1094, so that the partition 1093 reciprocates up and down in the liquid reservoir 109, so that the partition 1093 and the liquid reservoir 109
  • the refrigerants at different positions in the spacer are in contact with each other to improve the gas-liquid separation efficiency of the separator 1093 .
  • At least one guide 1095 is provided at the bottom of the liquid storage body 1092 .
  • the partition 1093 is sleeved on the guide 1095 to limit the moving direction of the partition 1093 . In this way, the partition 1093 can move along the guide 1095, which prevents the partition 1093 from tilting, overturning, etc. during operation.
  • the reservoir 109 further includes a resilient member 1096 .
  • One end of the elastic member 1096 is fixedly connected to the side of the partition member 1093 near the bottom of the liquid storage body 1092 , and the other end of the elastic member 1096 is fixedly connected to the bottom of the liquid storage body 1092 .
  • the elastic member 1096 is configured to provide power for the partition 1093 to move toward or away from the bottom of the liquid storage body 1092 .
  • the elastic member 1096 is squeezed to accumulate elastic force.
  • the elastic force stored in the elastic member 1096 is released to provide power for the partition 1093 , which is beneficial to save energy consumption.
  • some embodiments of the present disclosure provide an air conditioner 1000 that can adaptively distribute the amount of refrigerant that participates in the cycle in the air conditioner 1000 and the amount of refrigerant stored in the liquid storage device 109, thereby ensuring that the air conditioner
  • the air conditioner 1000 operates with an appropriate amount of refrigerant, thereby improving the operating effect of the air conditioner 1000'.
  • the air conditioner 1000 can also vaporize the refrigerant through the heat exchange tube 1091, and transmit the vaporized gaseous refrigerant to the suction port of the compressor 101, so as to replenish the compressor 101, thereby reducing the burden on the compressor 101. working pressure, and reduce the possibility of liquid refrigerant appearing at the suction port of the compressor 101 .
  • Vaporizing the refrigerant through the heat exchange tube 1091 can also absorb the heat of the refrigerant in the accumulator 109, thereby increasing the degree of subcooling of the refrigerant in the accumulator 109, ensuring that the first degree of subcooling SC1 is within the range of the first degree of supercooling , so as to improve the operation effect of the air conditioner 1000.
  • the refrigerant in the liquid storage 109 can be separated from gas to liquid through the separator 1093, so that the liquid refrigerant in the liquid storage 109 is in the lower layer of the gas refrigerant, so that it can be easily passed through.
  • the dryness of the refrigerant input into the accumulator 109 is controlled, and the amount of refrigerant participating in circulation in the air conditioner 1000 is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开一些实施例提供一种空调器,涉及空气温度调节技术领域。一种空调器。该空调器包括室外机、至少一个室内机和控制器。室外机包括压缩机、第一换热器、储液器和第一节流元件。储液器被配置为存储冷媒。各个室内机包括第二换热器和第二节流元件。控制器被配置为:当空调器处于制冷工作状态时,调节第一节流元件的开度,以使第一过冷度处于预设的第一过冷度范围内;第一节流元件的开度用于调整储液器中的冷媒的量,以调整空调器中参与循环的冷媒的量;当空调器处于制热工作状态时,调节第二节流元件的开度,以使第二过冷度处于预设的第二过冷度范围内;第二节流元件的开度用于调整储液器中的冷媒的量,以调整空调器中参与循环的冷媒的量。

Description

空调器
本申请要求于2021年12月07日提交的、申请号为202111484727.8的中国专利申请的优先权,于2022年01月04日提交的、申请号为202210000948.1的中国专利申请的优先权,以及于2022年02月22日提交的、申请号为202220357510.4的中国专利申请的优先权;其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气温度调节技术领域,尤其涉及一种空调器。
背景技术
空调器利用冷媒的汽化和液化来吸收或释放热量,以调节室内空间的温度,因此,合适的冷媒量是该空调器平稳、高效运行的基础。若空调器中参与循环的冷媒量多于该空调器所需要的冷媒量,则可能导致压缩机吸气口存在液态冷媒,从而引起压缩机损坏。若空调器参与循环中的冷媒量少于该空调器所需要的冷媒量,则可能导致室内机中的冷媒不足,不能满足用户的制冷或制热需求。
发明内容
一方面,本公开一些实施例提供一种空调器。所述空调器包括室外机、至少一个室内机和控制器。所述室外机包括压缩机、第一换热器、储液器和第一节流元件。所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述第一换热器被配置为对所述冷媒进行液化或汽化中的一种。所述储液器被配置为存储所述冷媒。所述第一节流元件的一端与所述第一换热器的液侧连通,所述第一节流元件的另一端通过第一输送管路与所述储液器连通;所述第一节流元件被配置为调节所述第一输送管路上的所述冷媒的流量。
所述至少一个室内机,与所述室外机连通,且各个室内机包括第二换热器和第二节流元件。所述第二换热器被配置为对所述冷媒进行液化或汽化中的另一种。所述第二节流元件的一端与所述第二换热器的液侧连通,所述第二节流元件的另一端通过第二输送管路与所述储液器连通;所述第二节流元件被配置为调节所述第二输送管路上的所述冷媒的流量。
所述控制器与所述第一节流元件和所述第二节流元件耦接,且被配置为:当所述空调器处于制冷工作状态时,调节所述第一节流元件的开度,以使所述第一换热器的液侧的第一过冷度处于预设的第一过冷度范围内;所述第一节流元件的开度用于调整所述储液器中的所述冷媒的量,以调整所述空调器中参与循环的所述冷媒的量;当所述空调器处于制热工作状态时,调节所述第二节流元件的开度,以使所述第二换热器的液侧的第二过冷度处于预设的第二过冷度范围内;所述第二节流元件的开度用于调整所述储液器中的所述冷媒的量,以调整所述空调器中参与循环的所述冷媒的量。
另一方面,本公开一些实施例提供一种空调器。所述空调器包括室外机、至少一个室内机和控制器。所述室外机包括压缩机、第一换热器和储液器。所述压缩机被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环。所述第一换热器被配置为对所述冷媒进行液化或汽化中的一种。所述储液器通过第一输送管路与所述第一换热器的液侧连通,所述储液器通过第二输送管路与第二换热器的液侧连通;所述储液器被配置为存储所述冷媒。
所述至少一个室内机,与所述室外机连通,且各个室内机包括所述第二换热器。所述第二换热器被配置为对所述冷媒进行液化或汽化中的另一种。
其中,所述储液器包括储液本体、换热管和分隔件。所述储液本体包括至少两个端口,以与所述第一输送管路和所述第二输送管路连通。所述换热管位于所述储液本体内部;所述换热管的输入端延伸至所述储液本体外部、并与所述第一换热器的液侧或所述第二换热器的液侧连通,所述换热管的输出端延伸至所述储液本体外部、并与所述压缩机的吸气口连通。所述换热管被配置为过冷所述换热管外部的冷媒、并对所述压缩机补气。所述分隔件位于所述储液本体内部,且包括多个气孔。所述分隔件被配置为对所述 储液本体中的冷媒进行气液分离。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为相关技术中的空调器的一个结构图;
图2为相关技术中的空调器的另一个结构图;
图3为根据一些实施例的空调器的一个结构图;
图4为根据一些实施例的空调器的另一个结构图;
图5为根据一些实施例的冷媒的一个压焓图;
图6为根据一些实施例的冷媒的另一个压焓图;
图7为根据一些实施例的冷媒的又一个压焓图;
图8为根据一些实施例的冷媒的又一个压焓图;
图9为根据一些实施例的控制器的一个控制流程图;
图10为根据一些实施例的控制器的另一个控制流程图;
图11为根据一些实施例的空调器的又一个结构图;
图12为根据一些实施例的空调器的又一个结构图;
图13为根据一些实施例的分隔件的结构图;
图14为根据一些实施例的冷媒罐的一个结构图;
图15为根据一些实施例的冷媒罐的另一个结构图;
图16为根据一些实施例的冷媒罐的又一个结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”例如表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
在相关技术中,空调器1000′包括如图1所示的室外机10′和至少一个室内机20′。室外机10′为空调器1000′中,安装于房屋的墙体外侧或楼顶等区域的设备。室外机10′主要用于压缩冷媒,并驱动该冷媒在空调器1000′中循环。冷媒为容易吸热变成气体、也容易放热变成液体的物质。室内机20′为空调器1000′中,安装于室内的设备。室内机20′主要用于向其所在的室内空间传输冷气或热气,以调节该室内空间的温度。
继续参照图1,室外机10′与各个室内机20′通过至少两根管道连通。在连通室外机10′第一端d11′与室内机20′的第一端d21′的第一管道61′上,设置有第一截止阀51′,以控制该第一管道61′的通断;在连通室外机10′第二端d12′与室内机20′的第二端d22′的第二管道62′上,设置有第二截止阀52′,以控制该第二管道62′的通断。第一管道61′和第二管道62′可以统称为配管。
室外机10′包括压缩机101′、油分离器102′、回油毛细管103′、四通阀104′、第一换热器105′、第一节流元件106′、气液分离器107′和第一风机108′。压缩机101′的排气口与油分离器102′的第一端连通,油分离器102′的第二端与回油毛细管103′的一端连通,回油毛细管103′的另一端与压缩机101′的吸气口连通。油分离器102′的第三端与四通阀104′的d′端连通。四通阀104′的c′端与第一换热器105′的气侧连通,第一换热器105′的液侧与第一节流元件106′的一端连通。第一节流元件106′的另一端与第二管道62的一端连通。四通阀104′的e′端与第一管道61′的一端连通,四通阀104′的s′端与气液分离器107′的吸气口连通。气液分离器107′的排气口与压缩机101′的吸气口连通。
至少一个室内机20′中的各个室内机20′包括第二换热器201′、第二节流元件202′和第二风机203′。第二换热器201′的气侧与第一管道61′的另一端连通,第二换热器201′的液侧与第二节流元件202′的一端连通。第二节流元件202′的另一端与第二管道62的另一端连通。
如图2所示,空调器1000′还包括控制器30′。控制器30′与室外机10′中的压缩机101′、四通阀104′、第一节流元件106′和第一风机108′耦接,且与室内机20′中的第二节流元件202′和第二风机203′耦接。控制器30′被配置为控制与该控制器30′耦接的各部件的工作状态。
在一些实施例中,上述空调器1000′在制冷工作状态下工作,以降低室内空间的温度。在制冷工作状态下,控制器30′控制压缩机101′开始工作,并控制四通阀104′的d′端与c′端连通、s′端与e′端连通。此外,控制器30′还控制第一节流元件106′、第二节流元件202′、第一截止阀51′和第二截止阀52′处于开启状态。
这样,压缩机101′对气态的冷媒进行压缩处理后,得到高温、高压的气态冷媒,并驱动压缩处理后的冷媒进入油分离器102′中。压缩机101′的排气口排出的冷媒中可能存在机油,油分离器102′可以将机油从冷媒中分离出去,以使分离出的机油通过回油毛细管103′回到压缩机101′的吸气口,并使高温、高压的气态冷媒经过四通阀104′的d′端和c′端到达第一换热器105′的气侧,以进入该第一换热器105′中。高温、高压的气态冷媒在第一换热器105′中被液化为低温、低压的液态冷媒后,经过第一换热器105′的液侧、第一节流元件106′、第二截止阀52′和第二节流元件202′到达第二换热器201′的液侧,以进入第二换热器201′中。低温、低压的液态冷媒在第二换热器201′中被汽化为气态冷媒,从而吸收该第二换热器201′周围的热量,达到降低室内空间的温度的效果。然后,汽化后的气态冷媒经过第二换热器201′的气侧和第一截止阀51′到达四通阀104′,并经过四通阀104′的e′端和s′端到达气液分离器102′的吸气口。气态冷媒在从第二换热器201′传输至该气液分离器102′的过程中可能会冷凝产生液体,气液分离器102′将该液体分离出去后,将气态冷媒输入压缩机101′中,以实现冷媒的循环利用。
在另一些实施例中,上述空调器1000′在制热工作状态下工作,以升高室内空间的温度。区别于上述制冷工作状态,在制热工作状态下,控制器30′控制四通阀104′的d′端与e′端连通、s′端与c′端连通。
这样,压缩机101′进行压缩处理后得到的高温、高压的气态冷媒经过四通阀104′的d′端和e′端,从第二换热器201′的气侧进入该第二换热器201′中。高温、高压的气态冷媒在该第二换热器201′中被液化为低温、低压的液态冷媒,从而向该第二换热器201′周围释放热量,达到升高室内空间的温度的效果。然后,低温、低压的液态冷媒从第二换热器201′的液侧流出该第二换热器201′,并从第一换热器105′的液侧进入该第一换热器105′中。低温、低压的液态冷媒在第一换热器105′中被汽化为气态冷媒,然后经过四通阀104′的c′端和s′端传输至气液分离器102′中,再回到压缩机101′中。
在上述制冷工作状态或制热工作状态下,第一风机108′(或第二风机203′)被配置为在控制器30′的控制下开始工作,以将第一换热器105′(或第二换热器201′)液化冷媒所产生的热量或汽化冷媒所产生的冷量排出室外机10′(或室内机20′)。
另外,在制冷工作状态下,由于第一换热器105用于液化冷媒、第二换热器201用于汽化冷媒,因此,该第一换热器105可以称为冷凝器、该第二换热器201可以称为蒸发器。类似地,在制热工作状态下,第一换热器105可以称为蒸发器、第二换热器201可以称为冷凝器。
在相关技术中,在安装空调器1000′时,安装人员需要向该空调器1000′的压缩机101′中补充冷媒,以使该空调器1000′中的冷媒量能够满足用户日常使用时的制冷或制热需求。
然而,在不同工况下,空调器1000′正常运行所需的冷媒量不同。例如,空调器1000′在制冷工作状态下所需的冷媒量,通常多于该空调器1000′在制热工作状态下所需的冷媒量。又例如,连接室内机10′和室外机20′的配管越长,空调器1000′所需的冷媒量通常越多。因此,若空调1000′在不同工况下以固定的冷媒量运行,则该空调器1000′中参与循环的冷媒量可能会多于或少于该空调器1000′中实际所需的冷媒量,从而产生如背景技术中所述的问题。
针对相关技术中存在的技术问题,本公开的发明人研究发现:在制冷工作状态(或制热工作状态)下,若空调器1000′的第一换热器105′(或第二换热器201′)的液侧的过冷度在预设范围内,则该空调器1000′的运行较为平稳且高效。此外,空调器1000′中参与循环的冷媒量与第一换热器105′(或第二换热器201′)的液侧的过冷度之间,具有正相关关系。因此,可以根据第一换热器105′的液侧的过冷度和第二换热器201′的液侧的过冷度,分别确定空调器1000′在制冷工作状态和制热工作状态下高效运行所需的冷媒量,从而精准控制该空调器1000′在不同工况下的参与循环的冷媒量,进而提升该空调器1000′的运行效果。
基于上述技术构思,本公开一些实施例提供一种空调器1000。该空调器1000增加设置了储液器109。这样,在空调器1000的运行过程中,可以利用储液器109向该空调器1000中补充冷媒以参与循环,或者将空调器1000中无需参与循环的冷媒储存在该储液器109中,以适应空调器1000在不同工况下的冷媒量需求。
如图3和图4所示,该空调器1000包括室外机10、至少一个室内机20和控制器30。
室外机10包括压缩机101、第一换热器105、储液器109和第一节流元件106。压缩机101被配置为压缩冷媒,以驱动冷媒在空调器1000中循环。第一换热器105被配置为对冷媒进行液化或汽化中的一种。储液器109被配置为存储冷媒。第一节流元件106的一端与第一换热器105的液侧连通,第一节流元件106的另一端通过第一输送管路110与储液器109连通。第一节流元件106被配置为调节第一输送管路110上的冷媒的流量。
至少一个室内机20与室外机10连通。且各个室内机20包括第二换热器201和第二节流元件202。第二换热器201被配置为对冷媒进行液化或汽化中的另一种。第二节流元件202的一端与第二换热器201的液侧连通,第二节流元件202的另一端通过第二输送管路111与储液器109连通。第二节流元件202被配置为调节第二输送管路111上的冷媒的流量。
控制器30与第一节流元件106和第二节流元件202耦接,且被配置为:当空调器1000处于制冷工作状态时,调节第一节流元件106的开度,以使第一换热器105的液侧 的第一过冷度SC1处于预设的第一过冷度范围内;第一节流元件106的开度用于调整储液器109中的冷媒的量,以调整空调器1000中参与循环的冷媒的量。当空调器1000处于制热工作状态时,调节第二节流元件202的开度,以使第二换热器201的液侧的第二过冷度SC2处于预设的第二过冷度范围内;第二节流元件202的开度用于调整储液器109中的冷媒的量,以调整空调器1000中参与循环的冷媒的量。
本公开实施例提供的空调器1000,可以根据第一换热器105的液侧的第一过冷度SC1(或第二换热器201的液侧的第二过冷度SC2)与该空调器1000在制冷工作状态(或制热工作状态)下所需的冷媒量之间的正相关关系,准确地确定出该空调器1000中需要参与制冷(或制热)循坏的冷媒量。这样,在根据过冷度确定出的冷媒量多于该空调器1000中存储的冷媒量时,控制器30可以通过调节第一节流元件106的开度和第二节流元件202的开度,增大储液器109中的冷媒的干度(即,单位体积的冷媒中所含的气态冷媒的质量与该冷媒的总质量的比值),从而使储液器109中存储的冷媒参与循环;在根据过冷度确定出的冷媒量少于该空调器1000中存储的冷媒量时,控制器30可以通过调节第一节流元件106的开度和第二节流元件202的开度,减小储液器109中的冷媒的干度,从而将冗余的冷媒存储在储液器109中。因此,该空调器1000可以适应性地分配该空调器1000中参与循环的冷媒量和存储在储液器109中的冷媒量,从而保证空调器1000以合适的冷媒量运行,进而提升该空调器1000′的运行效果。
需要说明的是,如图3所示,空调器1000的室外机10还包括油分离器102、回油毛细管103、四通阀104、气液分离器107和第一风机108;室内机20还包括第二风机203。在室外机10和室内机20之间,还包括用于连接该室外机10和该室内机20的第一管道61和第二管道62。第一管道61上设置有第一截止阀51,第二管道62上设置有第二截止阀52。关于前述各部件的连接关系,以及该各部件的工作方式等可以参照前文中关于相关技术的说明,在此不再赘述。另外,该空调器1000的第一输送管路110为连通第一节流元件106与储液器109的管路,第二输送管路111为连通第二节流元件202与储液器109的管路。该第二输送管路111包括第二管道62。
在一些实施例中,上述第一节流元件106和第二节流元件202为电子膨胀阀。此时,上述开度是指电子膨胀阀的开启程度。当第一节流元件106和第二节流元件202不完全开启时,该第一节流元件106和该第二节流元件202可以分别对第一输送管路110和第二输送管路111上的冷媒起到节流作用,以使该第一输送管路110和该第二输送管路111上的冷媒的压力和温度下降,并使该第一输送管路110和该第二输送管路111上的冷媒的干度增大。
需要说明的是,上述第一过冷度SC1为冷媒在压缩机101的排气压力Pd下的饱和温度Tdc与第一换热器105的液侧的温度Te1的差值,即,SC1=Tdc-Te1。上述第二过冷度SC2为饱和温度Tdc与第二换热器201的液侧的温度Te2的差值,即,SC2=Tdc-Te2。示例性地,控制器30可以通过设置在压缩机101的排气口处的压力传感器检测到排气压力Pd,并根据预先输入空调器1000中的计算公式(或查询表格)计算(或查询)得到冷媒在该排气压力Pd下的饱和温度Tdc。示例性地,控制器30可以通过设置在第一换热器105的液侧的温度传感器检测到温度Te1、通过设置在第二换热器201的液侧的温度传感器检测到温度Te2,从而根据饱和温度Tdc和温度Te1得到第一过冷度SC1、根据饱和温度Tdc和温度Te2得到第二过冷度SC2。
在一些实施例中,第一过冷度范围的下限值大于零,且第二过冷度范围的下限值大于零。该第一过冷度范围的上限值和下限值,以及该第二过冷度范围的上限值和下限值,可以通过预先进行的实验测试或仿真模拟等确定。当第一过冷度SC1位于第一过冷度范围内时,可以认为该空调器1000在制冷工作状态下高效运行;当第二过冷度SC2位于第二过冷度范围内时,可以认为该空调器1000在制热工作状态下高效运行。其中,高效运行是指空调器1000中的各部件能够正常运行,且该空调器1000能够满足用户的制冷或制热需求。
下面主要结合空调器1000在不同工况下的冷媒的压焓图(图5至图8),对上述空 调器1000的工作原理进行示例性说明。
需要说明的是,在图5至图8的压焓图中,横坐标为冷媒的焓值h,纵坐标为冷媒的压力P的对数lg P。若冷媒的状态点在曲线ka的左侧的区域中,则该状态下的冷媒为过冷液态;若冷媒的状态点在曲线kb的右侧的区域中,则该状态下的冷媒为过热气态;若冷媒的状态点在曲线ka、曲线kb与横坐标围成的区域中,则该状态下的冷媒为气液混合的两相态。另外,结合图3,各个压焓图中的第一状态点A为气液分离器107吸气口处的冷媒的状态点;第二状态点B为压缩机101排气口处的冷媒的状态点;第三状态点C为第一换热器105液侧的冷媒的状态点;第四状态点D为第一输送管路110中的冷媒的状态点;第五状态点E为第二输送管路111上靠近储液器109一侧的冷媒的状态点;第六状态点F为第二输送管路111上靠近第二节流元件202一侧的冷媒的状态点;第七状态点G为第二换热器201液侧的冷媒的状态点;第八状态点H为第二换热器201气侧的冷媒的状态点。示例性地,控制器30在不同工况下的控制方法如表1所示。
表1控制器在不同工况下的控制方法
Figure PCTCN2022130394-appb-000001
如前所述,空调器1000的配管长度与该空调器1000所需要的冷媒量有关。当与配管长度对应的、空调器1000所需要的冷媒量,等于该空调器1000中存储的冷媒量时,可以认为该空调器1000的该配管长度为合适的配管长度。因此,在上述各工况中,当空调器1000的配管长度短于上述合适的配管长度时,可以认为该配管长度较短;同理,当空调器1000的配管长度长于上述合适的配管长度时,可以认为该配管长度较长。
另外,在某个工况下,当空调器1000中存储的冷媒量,多于该空调器1000在该工况下正常运行所需要的冷媒量时,可以认为该空调器1000中存储的冷媒量较多;同理,当空调器1000中存储的冷媒量,少于该空调器1000在该工况下正常运行所需要的冷媒量时,可以认为该空调器1000中存储的冷媒量较少。
如表1所示,在工况1中,空调器1000中存储的冷媒量较多。若空调器1000以存储的冷媒量运行,则经过四通阀104到达第一换热器105中的冷媒较多。此时,第一换热器105将高温、高压的气态冷媒变为高温、高压的过冷液态冷媒,因此,该第一换热器105液侧的第一过冷度SC1较大。若该第一过冷度SC1超过第一过冷度范围的上限,则控制器30可以控制第一节流元件106的开度增大。示例性地,当第一过冷度SC1减小至处于第一过冷度范围内、或第一节流元件106已完全开启时,控制器30控制该第一节流元件106的开度不变。
以控制器30控制第一节流元件106的开度增大至该第一节流元件106完全开启为例,空调器1000中各处的冷媒状态如图5所示。在该工况下的制冷循环中,从第二状态点B到第三状态点C,高温、高压的气态冷媒被第一换热器105冷凝,变为高温、高压的过冷液态冷媒。从第三状态点C到第四状态点D,冷媒被第一节流元件106节流。由于该第一节流元件106完全开启,该第一节流元件106对冷媒的节流作用较小,因此,经过该第一节流元件106节流后的冷媒的温度和压力降低得较少。此时,进入储液器109中的冷媒为高温、高压的过冷液态冷媒。由于冷媒流经储液器109后,温度和压力基本不降低,因此,第四状态点D与第五状态点E基本重合。从第五状态点E到第六状态点F,冷媒经第二输送管路111传输至第二节流元件202处,温度和压力有所下降。从第六状态点F到第七状态点G,冷媒被第二节流元件202节流,因此,冷媒的温度和压力进一步降低,变为低温、低压的两相态冷媒。从第七状态点G到第八状态点H,低温、低压的两相态冷媒被第二换热器201蒸发,变为低温、低压的过热气态冷媒,从而吸收热量,以降低室内空间的温度。由于冷媒经四通阀104流回气液分离器107的过程中,温度和压力基本不降 低,因此,第八状态点H与第一状态点A基本重合。
在工况2中,空调器1000中存储的冷媒量较少。若空调器1000以存储的冷媒量运行,则经过四通阀104到达第一换热器105中的冷媒较少。此时,若第一节流元件106的开度较大,则如图6所示,高温、高压的气态冷媒经第一换热器105换热后变为状态点C′对应的高温、高压的两相态冷媒。这样,第一换热器105的液侧的第一过冷度SC1为负值,即,第一过冷度SC1小于第一过冷度范围的下限。此时,控制器30可以控制第一节流元件106的开度减小,以增强该第一节流元件106对第一输送管路110上的冷媒的节流作用,从而增大进入储液器109中的冷媒的干度。由于相同质量的气态冷媒的体积大于液态冷媒的体积,因此,进入储液器109的冷媒的干度增大,可以使该储液器109中存储的冷媒被挤压进入第二输送管路111中,从而可以使空调器1000中参与循环的冷媒量增大,进而增大第一过冷度SC1,以使该第一过冷度SC1处于第一过冷度范围内。
当第一过冷度SC1增大至处于第一过冷度范围内时,继续参照图6,第三状态点C对应的冷媒状态为高温、高压的过冷液态。由于该第一节流元件106的开度较小,该第一节流元件106对冷媒的节流作用较大,因此,经过该第一节流元件106节流后的冷媒的温度和压力降低得较多。此时,进入储液器109中的冷媒为中温、中压的两相态冷媒。需要说明的是,图6中空调器1000的其他位置处的冷媒状态变化,可以参照前述实施例中对图5的相关说明,在此不再赘述。
在工况3中,与工况1中的原理类似,各个室内机20的第二换热器201的液侧的第二过冷度SC2较大。若第i个室内机20的第二过冷度SC2超过第二过冷度范围的上限,则控制器30可以控制该第i个室内机20的第二节流元件202的开度增大。示例性地,当该第i个室内机20的第二过冷度SC2减小至处于第二过冷度范围内、或该第i个室内机20的第二节流元件202已完全开启时,控制器30控制该第i个室内机20的第二节流元件202的开度不变。
以控制器30控制第二节流元件202的开度增大至该第二节流元件202完全开启为例,空调器1000中各处的冷媒状态如图7所示。在该工况下的制热循环中,从第二状态点B到第七状态点G,高温、高压的气态冷媒被第二换热器201冷凝,变为高温、高压的过冷液态冷媒,从而释放热量,以升高室内空间的温度。从第七状态点G到第六状态点F,冷媒被第二节流元件202节流。由于该第二节流元件202完全开启,因此,经过该第二节流元件202节流后的冷媒的温度和压力降低得较少。从第六状态点F到第五状态点E,冷媒经第二输送管路111传输至储液器109中,温度和压力有所下降。此时,进入储液器109中的冷媒为高温、高压的过冷液态冷媒。由于冷媒流经储液器109后,温度和压力基本不降低,因此,第五状态点E与第四状态点D基本重合。从第四状态点D到第三状态点C,冷媒被第一节流元件106节流,因此,冷媒的温度和压力进一步降低。此时,冷媒变为低温、低压的两相态冷媒。从第三状态点C到第一状态点A,低温、低压的两相态冷媒被第一换热器105蒸发,变为低温、低压的过热气态冷媒。
在工况4中,与工况2的原理类似,若空调器1000以存储的冷媒量运行、且第二节流元件202的开度较大,则如图8所示,高温、高压的气态冷媒经第二换热器201换热后变为状态点G′对应的高温、高压的两相态冷媒。这样,第二换热器201的液侧的第二过冷度SC2为负值,即,第二过冷度SC2小于第二过冷度范围的下限。此时,针对第二过冷度SC2小于第二过冷度范围的下限的第i个室内机20,控制器30可以控制该第i个室内机20的第二节流元件202的开度减小,以增强该第二节流元件202对第二输送管路111上的冷媒的节流作用,从而增大进入储液器109中的冷媒的干度、使空调器1000中参与循环的冷媒量增大,进而增大该第i个室内机20的第二过冷度SC2,使该第二过冷度SC2处于第二过冷度范围内。
当第二过冷度SC2增大至处于第二过冷度范围内时,继续参照图8,第七状态点G对应的冷媒状态为高温、高压的过冷液态。由于该第二节流元件202的开度较小,该第二节流元件202对冷媒的节流作用较大,因此,经过该第二节流元件202节流后的冷媒的温度和压力降低得较多。此时,进入储液器109中的冷媒为中温、中压的两相态冷媒。需要 说明的是,图8中空调器1000的其他位置处的冷媒状态变化,可以参照前述实施例中对图7的相关说明,在此不再赘述。
在一些实施例中,控制器30还被配置为:当空调器1000处于制冷工作状态时,调节第二节流元件202的开度,以使第二换热器201的气侧的第一过热度SH1处于预设的第一过热度范围内;当空调器1000处于制热工作状态时,调节第一节流元件106的开度,以使压缩机101的排气口处的第二过热度SH2处于预设的第二过热度范围内。
在制冷工作状态下,第二换热器201的气侧的第一过热度SH1会影响经过四通阀104和气液分离器107回到压缩机101的冷媒的状态,从而影响空调器1000的运行状态。因此,该实施例中的空调器1000可以在控制第一过冷度SC1处于第一过冷度范围内的基础上,控制第二换热器201的气侧的第一过热度SH1处于第一过热度范围内,相当于通过第一过冷度SC1和第一过热度SH1共同确定空调器1000中参与循环的冷媒量,从而可以提高确定出的冷媒量的准确性,进而可以进一步提升该空调器1000在制冷工作状态下的运行平稳性,提高该空调器1000的运行效率。
类似地,在制热工作状态下,该空调器1000在第二过冷度SC2处于第二过冷度范围内的基础上,控制第二过热度SH2位于第二过热度范围内,可以提高确定出的冷媒量的准确性,进而可以进一步提升该空调器1000在制热工作状态下的运行平稳性,提高该空调器1000的运行效率。
需要说明的是,上述第一过热度SH1为第二换热器201的气侧的温度Tg1与冷媒在压缩机101的吸气压力Ps下的饱和温度Tsc的差值,即,SH1=Tg1-Tsc。上述第二过热度SH2为压缩机101的排气口处的温度Tg2与冷媒在压缩机101的吸气压力Ps下的饱和温度Tsc的差值,即,SH2=Tg2-Tsc。控制器30获取第一过热度SH1、第一过热度范围、第二过热度SH2和第二过热度范围的方式,可以参照前述实施例中关于获取第一过冷度SC1、第一过冷度范围、第二过冷度SC2和第二过冷度范围的方式,在此不再赘述。
在一些示例中,控制器30被配置为:当空调器1000处于制冷工作状态时,若至少一个室内机20中的第i个室内机20的第一过热度SH1大于第一过热度范围的上限,则控制该第i个室内机20的第二节流元件202的开度增大。这样,单位时间内经过该第二节流元件202流入该第i个室内机20的第二换热器201的液态冷媒量增多。该第二换热器201中用于蒸发换热的冷媒量增多后,在利用冷媒蒸发所吸收的室内空间的热量总量相同的情况下,该第二换热器201中的单位体积的冷媒所吸收的热量减少。因此,控制该第二节流元件202的开度增大,可以减小该第i个室内机20的第一过热度SH1。
同理,在该情况下,若第i个室内机20的第一过热度小于第一过热度范围的下限,则控制器30可以通过控制第i个室内机20的第二节流元件202的开度减小,以增大该第i个室内机20的第一过热度SH1。
在一些示例中,控制器30被配置为:当空调器1000处于制热工作状态时,若上述第二过热度SH2大于第二过热度范围的上限,则控制第一节流元件106的开度增大。这样,如前所述,可以增大空调器1000中参与循环的冷媒量,从而增大单位时间内从压缩机101的吸气口进入该压缩机101的冷媒量。此时,在压缩机101的运行功率相同的情况下,该压缩机101压缩后的气态冷媒的压力下降,从而该压缩机101的排气口处的冷媒的温度Tg2下降。因此,控制该第一节流元件106的开度增大,可以减小第二过热度SH2。
同理,在该情况下,若第二过热度SH2小于第二过热度范围的下限,则控制器30可以通过控制第一节流元件106的开度减小,以增大该第二过热度SH2。
在一些实施例中,空调器1000包括多个室内机20。控制器30还被配置为:当空调器1000处于制热工作状态时,调节多个室内机20的多个第二节流元件202的开度,以使多个室内机20的多个第二过冷度SC2处于第二过冷度范围内、且该多个第二过冷度SC2与该多个第二过冷度SC2的平均值AVE的差值的绝对值,小于或等于预设的第一阈值。
该实施例中的空调器1000,可以在使多个室内机20的多个第二过冷度SC2之间的差距减小,从而使该多个室内机20中的冷媒量的差距减小,以使该多个室内机20的工作状态接近。这样,可以提高空调器1000中的多个室内机20的运行均衡性,从而提高该空调 器1000的运行可靠性。
在一些示例中,若多个室内机20中的第i个室内机20的第二过冷度SC2与上述平均值AVE之间的差值大于第一阈值,则说明该第i个室内机20的第二过冷度SC2较大。此时,控制器30可以控制该第i个室内机20的第二节流元件202的开度增大。这样,第二节流元件202对该第i个室内机20的第二换热器201的液侧的节流作用减小,从而该第二换热器201的液侧的冷媒的温度和压力的降低量减小,进而该第二换热器201的液侧的温度Te2降低。因此,通过控制该第i个室内机20的第二节流元件202的开度增大,可以控制该第i个室内机20的第二过冷度SC2减小。
同理,若上述平均值AVE与第i个室内机20的第二过冷度SC2之间的差值大于第一阈值,则说明该第i个室内机20的第二过冷度SC2较小。此时,控制器30可以控制第i个室内机20的第二节流元件202的开度减小,以控制该第i个室内机20的第二过冷度SC2增大。
下面通过两个具体示例,对控制器30进行上述控制的顺序进行示例性说明。
如图9所示,在S101中,控制器30控制空调器1000进入制冷工作状态。示例性地,用户在按下空调器1000的遥控器或电控板上的对应按钮后,该遥控器或该电控板可以向控制器30发出制冷工作指令,该控制器30可以响应于接收到该制冷工作指令,执行前述S101。在控制器30的一轮控制中,该控制器30先执行S102,即,控制第一节流元件106和第二节流元件202开启。然后,控制器30可以每隔固定时间段获取第一过冷度SC1和第一过热度SH1,并判断该第一过冷度SC1是否处于第一过冷度范围内、该第一过热度SH1是否处于第一过热度范围内。需要说明的是,控制器30获取第一过冷度SC1和第一过热度SH1的时间间隔可以一致,也可以不一致。图9以控制器30获取第一过冷度SC1的时间间隔,短于获取第一过热度SH1的时间间隔为例,进行示例性说明。此时,在获取次数相同的情况下,控制器30先判断第一过冷度SC1是否处于第一过冷度范围内(即,执行S103),再判断各个室内机20的第一过热度SH1是否处于第一过热度范围内(即,执行S105)。
在S103中,若获取到的第一过冷度SC1处于第一过冷度范围外,则控制器30执行S104。在S104中,控制器30调整第一节流元件106的开度,以使该第一过冷度SC1增大或减小至处于第一过冷度范围内。在S103中,若获取到的第一过冷度SC1处于第一过冷度范围内,则控制器30执行S105。在S105中,控制器30依次判断该空调器1000中的各个室内机20的第一过热度SH1是否处于第一过热度范围内。若第i个室内机20的第一过热度SH1处于第一过热度范围外,则控制器30执行S106。在S106中,控制器30调整该第i个室内机20的第二节流元件202的开度,以使该第i个室内机20的第一过热度SH1增大或减小至处于第一过热度范围内。若该第一过热度SH1处于第一过热度范围内,则控制器30执行S107,即,结束本轮控制。
如图10所示,在S201中,控制器30控制空调器1000进入制热工作状态。需要说明的是,控制器30执行前述S201的触发条件,可以参考前文中对执行S101的触发条件的相关说明,在此不再赘述。在控制器30的一轮控制中,该控制器30先执行S202,即,控制第一节流元件106和第二节流元件202开启。需要说明的是,控制器30获取第二过冷度SC2和第二过热度SH2的时间间隔可以一致,也可以不一致。图10以获取第二过冷度SC2的时间间隔短于获取第二过热度SH2的时间间隔为例,进行示例性说明。此时,在获取次数相同的情况下,控制器30先判断各个室内机20的第二过冷度SC2是否处于第二过冷度范围内(即,执行S203),再判断第二过热度SH2是否处于第二过热度范围内(即,执行S207)。
在S203中,若获取到的第i个室内机20的第二过冷度SC2处于第二过冷度范围外,则控制器30执行S204。在S204中,控制器30调整该第i个室内机20的第二节流元件202的开度,以使该第i个室内机20的第二过冷度SC2减小或增大至处于第二过冷度范围内。若获取到的各个室内机20的第二过冷度SC2处于第二过冷度范围内,则控制器30执行S205。在S205中,控制器30判断各个室内机20的第二过冷度SC2与上述平均值 AVE的差值的绝对值是否小于或等于第一阈值。若第i个室内机20的第二过冷度SC2与平均值AVE的差值的绝对值大于第一阈值,则控制器30执行S206。在S206中,控制器30调整该第i个室内机20的第二节流元件202的开度,以使该第i个室内机20的第二过冷度SC2与平均值AVE的差值的绝对值小于或等于第一阈值。若各个室内机20的第二过冷度SC2与上述平均值AVE的差值的绝对值均小于或等于第一阈值,则控制器30执行S207。在S207中,控制器30判断第二过热度SH2是否处于第二过热度范围内。若该第二过热度SH2处于第二过热度范围外,则控制器30执行S208。在S208中,控制器30调整第一节流元件106的开度,以使该第二过热度SH2减小或增大至处于第二过热度范围内。若该第二过热度SH2处于第二过热度范围内,则控制器30执行S209,即,结束本轮控制。
在一些实施例中,相比于图3,图11中的室外机10还包括换热管1091、第三节流元件112和第四节流元件113。控制器30可以控制该第三节流元件112和该第四节流元件113的开度,以通过该换热管1091对压缩机101进行补气,以及增大储液器109中的冷媒的过冷度,从而增大第一换热器105的液侧的第一过冷度SC1。
在该实施例中,上述换热管1091位于储液器109内部。第三节流元件112的一端与第一换热器105的液侧连通,第三节流元件112的另一端与换热管1091的输入端连通。换热管1091的输出端与压缩机101的吸气口连通。第三节流元件112被配置为在第四节流元件113关闭时,控制流入换热管1091中的冷媒的流量。第四节流元件113的一端与换热管1091的输出端连通,第四节流元件113的另一端与第二换热器201的液侧连通。第四节流元件113被配置为在第三节流元件112关闭时,控制流入换热管1091中的冷媒的流量。
控制器30还被配置为:在空调器处于制冷工作状态、且第一过冷度SC1处于第一过冷度范围内的情况下,控制第四节流元件113关闭、并控制第三节流元件112开启,以过冷换热管1091外部的冷媒、并对压缩机101补气;在空调器处于制热工作状态、且第二过冷度SC2处于第二过冷度范围内的情况下,控制第三节流元件112关闭、并控制第四节流元件113开启,以过冷换热管1091外部的冷媒、并对压缩机101补气。
在该实施例中,制冷工作状态下的空调器1000可以在控制第一过冷度SC1处于第一过冷度范围内的情况下,控制第三节流元件112开启,以使被第一换热器105冷凝后的冷媒中的一部分,经该第三节流元件112进入换热管1091中。此时,换热管1091可以将进入该换热管1091中的液态冷媒汽化为气态冷媒,并将该气态冷媒传输至压缩机101的吸气口,以实现对压缩机101补气,从而减轻该压缩机101的工作压力、并降低该压缩机101的吸气口出现液态冷媒的可能性。此外,换热管1091汽化冷媒还可以吸收储液器109中的冷媒的热量,从而增大该储液器109中的冷媒的过冷度,避免出现因进入储液器109中的冷媒量减少而引起的过冷度下降问题,进而保证第一过冷度SC1处于第一过冷度范围,提升空调器1000的运行效果。
需要说明的是,以上述工况1为例,当冷媒完成一次制冷循环回到压缩机101的吸气口时,该冷媒为低温、低压的过热气态冷媒。此时,该冷媒的温度较低,该冷媒中容易存在液体。然而,进入换热管1091中的冷媒为第一换热器105换热后的高温、高压的液态冷媒,因此,换热管1091换热后得到高温、高压的气态冷媒,并将该高温、高压的气态冷媒补入压缩机101中。这样,压缩机101中完成了一次制冷循环的低温、低压的过热气态冷媒,与来自换热管1091的高温、高压的气态冷媒混合,从而升高了进入该压缩机101中的冷媒的温度,降低了该压缩机101的吸气口出现液态冷媒的可能性,进而提高了该压缩机101的可靠性。
在一些实施例中,控制器30被配置为:在空调器处于制冷工作状态、且第一过冷度SC1处于第一过冷度范围内的情况下,控制第三节流元件112以第一开度开启;获取换热管1091的输入端的第一温度和换热管1091的输出端的第二温度,并判断该第二温度与该第一温度之间的温度差是否大于或等于预设的第二阈值。
若该第二温度与该第一温度之间的温度差大于或等于该第二阈值,说明该换热管 1091两端的温差较大,该换热管1091两端的冷媒的状态有差异,即,说明该换热管1091中的冷媒与该换热管1091外部的冷媒进行换热后,该换热管1091中的冷媒的状态从液态变为了气态。此时,控制器30控制第三节流元件112的开度不变。
若该第二温度与该第一温度之间的温度差小于该第二阈值,说明该换热管1091中的冷媒与该换热管1091外部的冷媒进行换热后,该换热管1091中的冷媒的状态仍为液态、或从液态变为了气液两相态。此时,控制器30控制第三节流元件112的开度增大,以增大流入换热管1091中的冷媒量,提升该换热管1091中冷媒的换热效果。这样,在空调器1000的制冷工作状态下,保证了通过该换热管1091进入压缩机101中的冷媒为高温气态冷媒,也保证了该换热管1091对储液器109中的冷媒的过冷作用。
在一些实施例中,控制器30还被配置为:在控制第三节流元件112以第一开度开启之后,每隔第一时间段获取第一过冷度SC1,并调节第一节流元件106的开度,以使第三节流元件112开启之后的第一过冷度SC1处于第一过冷度范围内。
由于换热管1091分走了部分冷媒,因此,通过第一节流元件106流入第一输送管路110中的冷媒量减少,从而第一换热器105的液侧的第一过冷度SC1减小。为保证该第一过冷度SC1处于第一过冷度范围内,控制器30可以控制第一节流元件106的开度减小,以增大该第一过冷度SC1。因此,本实施例中的空调器1000可以在控制换热管1091开始换热后,通过调整第一节流元件106的开度,保证第一过冷度SC1处于第一过冷度范围内,从而保证该空调器1000在制冷工作状态下平稳、高效运行。
在一些实施例中,控制器30被配置为:在空调器处于制热工作状态、且第二过冷度SC2处于第二过冷度范围内的情况下,控制第四节流元件113以第二开度开启;获取换热管1091的输入端的第一温度和换热管1091的输出端的第二温度,并判断该第二温度与该第一温度之间的温度差是否大于或等于预设的第二阈值。
若该第二温度与该第一温度之间的温度差大于或等于该第二阈值,说明换热管1091中的冷媒与该换热管1091外部的冷媒进行换热后,该换热管1091中的冷媒的状态从液态变为了气态。此时,控制器30控制第四节流元件113的开度不变。
若该第二温度与该第一温度之间的温度差小于该第二阈值,说明该换热管1091中的冷媒与该换热管1091外部的冷媒进行换热后,该换热管1091中的冷媒的状态仍为液态、或从液态变为了气液两相态。此时,控制器30控制第四节流元件113的开度增大,以增大流入换热管1091中的冷媒量,提升该换热管1091中冷媒的换热效果。这样,在空调器1000的制热工作状态下,保证了通过该换热管1091进入压缩机101中的冷媒为高温气态冷媒,也保证了该换热管1091对储液器109中的冷媒的过冷作用。
在一些实施例中,控制器30还被配置为:在控制第四节流元件113以第二开度开启之后,每隔第一时间段获取第二过冷度SC2,并调节第二节流元件202的开度,以使第四节流元件113开启之后的第二过冷度SC2处于第二过冷度范围内。
这样,可以在控制换热管1091开始换热后,通过调整第二节流元件202的开度,保证第二过冷度SC2处于第二过冷度范围内,从而保证该空调器1000在制热工作状态下平稳、高效运行。
本公开一些实施例还提供一种空调器1000。该空调器1000中所包括的部件和各部件的工作方式等可以参照前述实施例中对空调器1000的说明,在此不再赘述。
如图12所示,区别于前述实施例,本实施例中的空调器1000中的储液器109包括储液本体1092、换热管1091和分隔件1093。通过设置在储液本体1092中的分隔件1093,可以使储液器109中的冷媒气液分离,从而更好地通过控制输入该储液器109的冷媒的干度,控制空调器1000中参与循环的冷媒量。
在本实施例中,储液本体1092,包括至少两个端口,以与第一输送管路110和第二输送管路111连通。换热管1091位于储液本体1092内部。换热管1091的输入端延伸至储液本体1092外部、并与第一换热器105的液侧或第二换热器201的液侧连通,换热管1091的输出端延伸至储液本体1092外部、并与压缩机101的吸气口连通。换热管1091被配置为过冷换热管1091外部的冷媒、并对压缩机101补气。如图13所示,分隔件 1093位于储液本体1092内部,且包括多个气孔K。分隔件1093被配置为对储液本体1092中的冷媒进行气液分离。
本公开实施例提供的空调器1000,在储液器109的储液本体1092中设置了分隔件1093。当该分隔件1093浸没在储液器109中的液态冷媒中时,该液态冷媒中所存在的部分气态冷媒会附着在具有多孔结构的分隔件1093表面。当该分隔件1093位于储液器109中的气态冷媒中时,若气态冷媒裹挟液态冷媒所形成的两相态冷媒气泡到达该分隔件1093表面,则该两相态冷媒气泡会破裂,该气泡中的气态冷媒通过分隔件1093上的气孔K穿过该分隔件1093,以到达该分隔件的一侧;而该气泡中的液态冷媒会留在该分隔件1093的另一侧。这样,如图14所示,可以通过分隔件1093将储液器109中的冷媒进行气液分离,以使该储液器109中的液态冷媒处于气态冷媒的下层,从而可以便于通过控制输入储液器109中的冷媒的干度,控制空调器1000中参与循环的冷媒量。
示例性地,当输入储液器109中的冷媒的干度增大时,该储液器109中的气态冷媒增多,则该储液器109的液面(即,气态冷媒与液态冷媒的交界面)下降,该储液器109中的液体冷媒被更多地挤压进入第一输送管路110或第二输送管路111中,从而增大该空调器1000中参与循环的冷媒量。或者,当输入储液器109中的冷媒的干度减小时,该储液器109中的气态冷媒减少,则该储液器109的液面上升,该空调器1000中参与循环的冷媒中的部分会进入该储液器109中,从而减小该空调器1000中参与循环的冷媒量。
在一些实施例中,如图14所示,第一输送管路110的端口和第二输送管路111的端口穿过分隔件1093延伸进入储液本体1092内部。此时,第一输送管路110的端口和第二输送管路111的端口会浸没在储液器109中的液态冷媒中。这样,由于通过第一输送管路110或第二输送管路111进入储液器109中的两相态冷媒的密度,小于该储液器109中的液态冷媒的密度,因此,该两相态冷媒会上浮经过分隔件1093,从而被该分隔件1093气液分离。这样,可以提高分隔件1093对冷媒的气液分离效率。
在该实施例中,换热管1091位于分隔件1093与储液本体1092的底部之间,换热管1091的输入端和换热管1091的输出端穿过分隔件1093延伸至储液本体1092的外部。这样,可以使该换热管1091浸没在储液器109中的液态冷媒中,以通过该换热管1091增大该液态冷媒的过冷度。
在一些实施例中,分隔件1093的外部轮廓与储液本体1092的内部轮廓相配合。这样,可以减小该分隔件1093的外部轮廓与储液本体1092的内部轮廓之间的间隙,从而减少输入储液器109中的冷媒从该间隙越过该分隔件1093的概率,进而提高该分隔件1093对储液器109中的冷媒进行气液分离的效率。
在一些实施例中,储液本体1092中的冷媒被分隔件1093分离为气态冷媒和液态冷媒。分隔件1093的材料的密度小于该液态冷媒的密度、且大于该气态冷媒的密度,以使分隔件1093漂浮在气态冷媒和液态冷媒的交界处。这样,分隔件1093可以随储液器109中的液面高度变化而移动,从而可以保证对输入至液态冷媒中的两相态冷媒进行气液分离,提升气液分离效果。
在另一些实施例中,继续参照图14,储液器109中还包括支撑件。该支撑件的一端与储液器109的底部固定连接,另一端与分隔件1093靠近储液器109的底部的一侧固定连接,从而将该分隔件1093固定在储液器109中。这样,可以提高分隔件1093的固定可靠性。
在一些实施例中,分隔件1093的材料包括磁性材料。此时,如图15和图16所示,储液本体1092的侧壁设置有多圈电磁线圈1094。多圈电磁线圈1094通电后,分隔件1093随多圈电磁线圈1094所产生的电磁力的变化而移动。这样,可以通过改变该多圈电磁线圈1094中的电流大小,改变该分隔件1093的位置;还可以通过改变该多圈电磁线圈1094中的电流方向,改变该分隔件1093的移动方向。
示例性地,控制器30可以周期性地改变该多圈电磁线圈1094中的电流方向,以使该分隔件1093在储液器109中上下往复运动,从而使该分隔件1093与储液器109中不同位置处的冷媒进行接触,提高该分隔件1093的气液分离效率。
为提高该分隔件1093移动平稳性,继续参照图15和图16,在一些实施例中,储液本体1092的底部设置有至少一个导向件1095。分隔件1093套接在导向件1095上,以限制分隔件1093的移动方向。这样,分隔件1093可以沿导向件1095运动,避免了该分隔件1093在运行过程中出现倾斜、翻转等。
在一些实施例中,继续参照图16,储液器109还包括弹性件1096。该弹性件1096的一端与分隔件1093靠近储液本体1092的底部的一侧固定连接,该弹性件1096的另一端与储液本体1092的底部固定连接。弹性件1096被配置为:为分隔件1093提供在靠近或远离储液本体1092的底部方向上移动的动力。例如,当分隔件1093沿靠近储液器109的底部的方向运动时,该弹性件1096被挤压,以积蓄弹力。当分隔件1093接着沿远离储液器109的底部的方向运行时,该弹性件1096积蓄的弹力释放,从而为分隔件1093提供动力,有利于节约能耗。
综上所述,本公开一些实施例提供的空调器1000,该空调器1000可以适应性地分配该空调器1000中参与循环的冷媒量和存储在储液器109中的冷媒量,从而保证空调器1000以合适的冷媒量运行,进而提升该空调器1000′的运行效果。此外,该空调器1000还可以通过换热管1091汽化冷媒,并将企汽化得到的气态冷媒传输至压缩机101的吸气口,以实现对压缩机101补气,从而减轻该压缩机101的工作压力、并降低该压缩机101的吸气口出现液态冷媒的可能性。通过换热管1091汽化冷媒还可以吸收储液器109中的冷媒的热量,从而增大该储液器109中的冷媒的过冷度,保证第一过冷度SC1处于第一过冷度范围,以提升空调器1000的运行效果。本公开另一些实施例提供的空调器1000可以通过分隔件1093将储液器109中的冷媒进行气液分离,以使该储液器109中的液态冷媒处于气态冷媒的下层,从而可以便于通过控制输入储液器109中的冷媒的干度,控制空调器1000中参与循环的冷媒量。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种空调器,包括:
    室外机,包括:
    压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    第一换热器,被配置为对所述冷媒进行液化或汽化中的一种;
    储液器,被配置为存储所述冷媒;
    第一节流元件;所述第一节流元件的一端与所述第一换热器的液侧连通,所述第一节流元件的另一端通过第一输送管路与所述储液器连通;所述第一节流元件被配置为调节所述第一输送管路上的所述冷媒的流量;
    至少一个室内机,与所述室外机连通,且各个室内机包括:
    第二换热器,被配置为对所述冷媒进行液化或汽化中的另一种;
    第二节流元件;所述第二节流元件的一端与所述第二换热器的液侧连通,所述第二节流元件的另一端通过第二输送管路与所述储液器连通;所述第二节流元件被配置为调节所述第二输送管路上的所述冷媒的流量;
    控制器,与所述第一节流元件和所述第二节流元件耦接,且被配置为:
    当所述空调器处于制冷工作状态时,调节所述第一节流元件的开度,以使所述第一换热器的液侧的第一过冷度处于预设的第一过冷度范围内;所述第一节流元件的开度用于调整所述储液器中的所述冷媒的量,以调整所述空调器中参与循环的所述冷媒的量;
    当所述空调器处于制热工作状态时,调节所述第二节流元件的开度,以使所述第二换热器的液侧的第二过冷度处于预设的第二过冷度范围内;所述第二节流元件的开度用于调整所述储液器中的所述冷媒的量,以调整所述空调器中参与循环的所述冷媒的量。
  2. 根据权利要求1所述的空调器,其中,所述控制器被配置为:
    当所述空调器处于所述制冷工作状态时,若所述第一过冷度大于所述第一过冷度范围的上限,则控制所述第一节流元件的开度增大;
    若所述第一过冷度小于所述第一过冷度范围的下限,则控制所述第一节流元件的开度减小。
  3. 根据权利要求1或2所述的空调器,其中,所述控制器被配置为:
    当所述空调器处于所述制热工作状态时,若所述至少一个室内机中的第i个室内机的所述第二过冷度大于所述第二过冷度范围的上限,则控制所述第i个室内机的所述第二节流元件的开度增大;
    若所述第i个室内机的所述第二过冷度小于所述第二过冷度范围的下限,则控制所述第i个室内机的所述第二节流元件的开度减小。
  4. 根据权利要求1至3中任一项所述的空调器,其中,所述控制器还被配置为:
    当所述空调器处于所述制冷工作状态时,调节所述第二节流元件的开度,以使所述第二换热器的气侧的第一过热度处于预设的第一过热度范围内;
    当所述空调器处于所述制热工作状态时,调节所述第一节流元件的开度,以使所述压缩机的排气口处的第二过热度处于预设的第二过热度范围内。
  5. 根据权利要求4所述的空调器,其中,所述控制器被配置为:
    当所述空调器处于所述制冷工作状态时,若所述至少一个室内机中的第i个室内机的所述第一过热度大于所述第一过热度范围的上限,则控制所述第i个室内机的所述第二节流元件的开度增大;
    若所述第i个室内机的所述第一过热度小于所述第一过热度范围的下限,则控制所述第i个室内机的所述第二节流元件的开度减小。
  6. 根据权利要求4或5所述的空调器,其中,所述控制器被配置为:
    当所述空调器处于所述制热工作状态时,若所述第二过热度大于所述第二过热度范围的上限,则控制所述第一节流元件的开度增大;
    若所述第二过热度小于所述第二过热度范围的下限,则控制所述第一节流元件的开 度减小。
  7. 根据权利要求1至6中任一项所述的空调器,其中,所述空调器包括多个室内机;所述控制器还被配置为:
    当所述空调器处于所述制热工作状态时,调节所述多个室内机的多个所述第二节流元件的开度,以使所述多个室内机的多个所述第二过冷度处于所述第二过冷度范围内、且所述多个所述第二过冷度与所述多个所述第二过冷度的平均值的差值的绝对值,小于或等于预设的第一阈值。
  8. 根据权利要求7所述的空调器,其中,所述控制器被配置为:
    若所述多个室内机中的第i个室内机的所述第二过冷度与所述平均值之间的差值大于所述第一阈值,则控制所述第i个室内机的所述第二节流元件的开度增大;
    若所述平均值与所述第i个室内机的所述第二过冷度之间的差值大于所述第一阈值,则控制所述第i个室内机的所述第二节流元件的开度减小。
  9. 根据权利要求1所述的空调器,其中,所述室外机还包括:
    换热管,位于所述储液器内部;
    第三节流元件;所述第三节流元件的一端与所述第一换热器的液侧连通,所述第三节流元件的另一端与所述换热管的输入端连通;所述换热管的输出端与所述压缩机的吸气口连通;所述第三节流元件被配置为在第四节流元件关闭时,控制流入所述换热管中的所述冷媒的流量;
    所述第四节流元件;所述第四节流元件的一端与所述换热管的输出端连通,所述第四节流元件的另一端与所述第二换热器的液侧连通;所述第四节流元件被配置为在所述第三节流元件关闭时,控制流入所述换热管中的所述冷媒的流量;
    所述控制器还被配置为:
    在所述空调器处于所述制冷工作状态、且所述第一过冷度处于所述第一过冷度范围内的情况下,控制所述第四节流元件关闭、并控制所述第三节流元件开启,以过冷所述换热管外部的冷媒、并对所述压缩机补气;
    在所述空调器处于所述制热工作状态、且所述第二过冷度处于所述第二过冷度范围内的情况下,控制所述第三节流元件关闭、并控制所述第四节流元件开启,以过冷所述换热管外部的冷媒、并对所述压缩机补气。
  10. 根据权利要求9所述的空调器,其中,所述控制器被配置为:
    在所述空调器处于所述制冷工作状态、且所述第一过冷度处于所述第一过冷度范围内的情况下,控制所述第三节流元件以第一开度开启;
    获取所述换热管的输入端的第一温度和所述换热管的输出端的第二温度,并判断所述第二温度与所述第一温度之间的温度差是否大于或等于预设的第二阈值;
    若是,则控制所述第三节流元件的开度不变;
    若否,则控制所述第三节流元件的开度增大。
  11. 根据权利要求10所述的空调器,其中,所述控制器还被配置为:
    在控制所述第三节流元件以所述第一开度开启之后,每隔第一时间段获取所述第一过冷度,并调节所述第一节流元件的开度,以使所述第三节流元件开启之后的所述第一过冷度处于所述第一过冷度范围内。
  12. 根据权利要求9所述的空调器,其中,所述控制器被配置为:
    在所述空调器处于所述制热工作状态、且所述第二过冷度处于所述第二过冷度范围内的情况下,控制所述第四节流元件以第二开度开启;
    获取所述换热管的输入端的第一温度和所述换热管的输出端的第二温度,并判断所述第二温度与所述第一温度之间的温度差是否大于或等于预设的第二阈值;
    若是,则控制所述第四节流元件的开度不变;
    若否,则控制所述第四节流元件的开度增大。
  13. 根据权利要求12所述的空调器,其中,所述控制器还被配置为:
    在控制所述第四节流元件以所述第二开度开启之后,每隔第一时间段获取所述第二 过冷度,并调节所述第二节流元件的开度,以使所述第四节流元件开启之后的所述第二过冷度处于所述第二过冷度范围内。
  14. 一种空调器,包括:
    室外机,包括:
    压缩机,被配置为压缩冷媒,以驱动所述冷媒在所述空调器中循环;
    第一换热器,被配置为对所述冷媒进行液化或汽化中的一种;
    储液器;所述储液器通过第一输送管路与所述第一换热器的液侧连通,并通过第二输送管路与第二换热器的液侧连通;所述储液器被配置为存储所述冷媒;
    至少一个室内机,与所述室外机连通,且各个室内机包括:
    所述第二换热器,被配置为对所述冷媒进行液化或汽化中的另一种;
    其中,所述储液器包括:
    储液本体,包括至少两个端口,以与所述第一输送管路和所述第二输送管路连通;
    换热管,位于所述储液本体内部;所述换热管的输入端延伸至所述储液本体外部、并与所述第一换热器的液侧或所述第二换热器的液侧连通,所述换热管的输出端延伸至所述储液本体外部、并与所述压缩机的吸气口连通;所述换热管被配置为过冷所述换热管外部的冷媒、并对所述压缩机补气;
    分隔件,位于所述储液本体内部,且包括多个气孔;所述分隔件被配置为对所述储液本体中的冷媒进行气液分离。
  15. 根据权利要求14所述的空调器,其中,所述第一输送管路的端口和所述第二输送管路的端口穿过所述分隔件延伸进入所述储液本体内部;
    所述换热管位于所述分隔件与所述储液本体的底部之间,所述换热管的输入端和所述换热管的输出端穿过所述分隔件延伸至所述储液本体的外部。
  16. 根据权利要求14或15所述的空调器,其中,所述分隔件的外部轮廓与所述储液本体的内部轮廓相配合。
  17. 根据权利要求15或16所述的空调器,其中,所述储液本体中的所述冷媒被所述分隔件分离为气态冷媒和液态冷媒;
    所述分隔件的材料的密度小于所述液态冷媒的密度、且大于所述气态冷媒的密度,以使所述分隔件漂浮在所述气态冷媒和所述液态冷媒的交界处。
  18. 根据权利要求14至17中任一项所述的空调器,其中,所述分隔件的材料包括磁性材料;所述储液本体的侧壁设置有多圈电磁线圈;
    所述多圈电磁线圈通电后,所述分隔件随所述多圈电磁线圈所产生的电磁力的变化而移动。
  19. 根据权利要求14至18中任一项所述的空调器,其中,所述储液本体的底部设置有至少一个导向件;所述分隔件套接在所述导向件上,以限制所述分隔件的移动方向。
  20. 根据权利要求15至19中任一项所述的空调器,其中,所述储液器还包括:
    弹性件;所述弹性件的一端与所述分隔件靠近所述储液本体的底部的一侧固定连接,所述弹性件的另一端与所述储液本体的底部固定连接;所述弹性件被配置为:为所述分隔件提供在靠近或远离所述储液本体的底部方向上移动的动力。
PCT/CN2022/130394 2021-12-07 2022-11-07 空调器 WO2023103675A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202111484727.8A CN114151934B (zh) 2021-12-07 2021-12-07 空调器
CN202111484727.8 2021-12-07
CN202210000948.1 2022-01-04
CN202210000948.1A CN114322106B (zh) 2022-01-04 2022-01-04 一种空调系统
CN202220357510.4 2022-02-22
CN202220357510.4U CN216844913U (zh) 2022-02-22 2022-02-22 空调器

Publications (1)

Publication Number Publication Date
WO2023103675A1 true WO2023103675A1 (zh) 2023-06-15

Family

ID=86729596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130394 WO2023103675A1 (zh) 2021-12-07 2022-11-07 空调器

Country Status (1)

Country Link
WO (1) WO2023103675A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509693A (zh) * 2009-03-16 2009-08-19 宁波奥克斯电气有限公司 变频热泵空调室外机电子膨胀阀的控制方法
CN101539322A (zh) * 2009-03-31 2009-09-23 宁波奥克斯电气有限公司 制热待机的室内机电子膨胀阀的控制方法
CN203100306U (zh) * 2012-12-26 2013-07-31 广东美的制冷设备有限公司 储液式空调系统
CN113074447A (zh) * 2021-03-17 2021-07-06 海信(山东)空调有限公司 空调系统、空调系统的控制方法和空调器
CN113587253A (zh) * 2021-07-05 2021-11-02 青岛海信日立空调系统有限公司 一种空调器
CN114151934A (zh) * 2021-12-07 2022-03-08 青岛海信日立空调系统有限公司 空调器
CN114322106A (zh) * 2022-01-04 2022-04-12 青岛海信日立空调系统有限公司 一种空调系统
CN216844913U (zh) * 2022-02-22 2022-06-28 青岛海信日立空调系统有限公司 空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509693A (zh) * 2009-03-16 2009-08-19 宁波奥克斯电气有限公司 变频热泵空调室外机电子膨胀阀的控制方法
CN101539322A (zh) * 2009-03-31 2009-09-23 宁波奥克斯电气有限公司 制热待机的室内机电子膨胀阀的控制方法
CN203100306U (zh) * 2012-12-26 2013-07-31 广东美的制冷设备有限公司 储液式空调系统
CN113074447A (zh) * 2021-03-17 2021-07-06 海信(山东)空调有限公司 空调系统、空调系统的控制方法和空调器
CN113587253A (zh) * 2021-07-05 2021-11-02 青岛海信日立空调系统有限公司 一种空调器
CN114151934A (zh) * 2021-12-07 2022-03-08 青岛海信日立空调系统有限公司 空调器
CN114322106A (zh) * 2022-01-04 2022-04-12 青岛海信日立空调系统有限公司 一种空调系统
CN216844913U (zh) * 2022-02-22 2022-06-28 青岛海信日立空调系统有限公司 空调器

Similar Documents

Publication Publication Date Title
CN105605816B (zh) 空调装置
JP4982713B2 (ja) 冷凍サイクル用エネルギー効率改善装置
WO2019091241A1 (zh) 空调制冷循环系统及空调器
CN107178833B (zh) 热回收外机系统和空调系统
WO2018094841A1 (zh) 一种空调器及其制冷控制方法
CN104364591B (zh) 空气调节装置
CN102042724A (zh) 冷媒控制部件、空调制冷系统及冷媒循环控制方法
CN114151934A (zh) 空调器
CN112013515B (zh) 空调器的控制方法
CN101776358B (zh) 一种变浓度混合工质自复叠制冷机
CN108317772B (zh) 一种补气增焓系统及家用电器
CN109520170B (zh) 一种具有双级过冷和液体脉冲融霜功能的空气源热泵机组
US20240151441A1 (en) Air conditioning system and control method thereof
CN112325494A (zh) 一种制冷剂循环系统及其控制方法
CN212274312U (zh) 一种温控设备
CN113883763A (zh) 蒸发器前制冷剂气液分离的制冷/热泵系统及控制方法
CN201615644U (zh) 空调冷媒循环机组
JP2005214444A (ja) 冷凍装置
WO2023103675A1 (zh) 空调器
CN112013472A (zh) 空调器及其控制方法
CN112229095A (zh) 热泵机组
CN214701327U (zh) 离心复叠式高压比串联机组
CN112013473A (zh) 空调器的控制方法
CN210569393U (zh) 冷水机组
CN112013471B (zh) 空调器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903098

Country of ref document: EP

Kind code of ref document: A1